-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminimax.py
89 lines (68 loc) · 2.54 KB
/
minimax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
"""
MiniMax and AlphaBeta algorithms.
Author: Cyrille Dejemeppe <[email protected]>
Copyright (C) 2014, Université catholique de Louvain
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
"""
class Game:
"""Abstract base class for a game."""
def successors(self, state):
"""Return the successors of state as (action, state) pairs."""
abstract
def cutoff(self, state, depth):
"""Return whether state should be expanded further.
This function should at least check whether state is a finishing
state and return True in that case.
"""
abstract
def evaluate(self, state):
"""Return the evaluation of state."""
abstract
inf = float("inf")
def search(state, game, prune=True):
"""Perform a MiniMax/AlphaBeta search and return the best action.
Arguments:
state -- initial state
game -- a concrete instance of class Game
prune -- whether to use AlphaBeta pruning
"""
def max_value(state, alpha, beta, depth):
if game.cutoff(state, depth):
return game.evaluate(state), None
val = -inf
action = None
for a, s in game.successors(state):
v, _ = min_value(s, alpha, beta, depth + 1)
if v > val:
val = v
action = a
if prune:
if v >= beta:
return v, a
alpha = max(alpha, v)
return val, action
def min_value(state, alpha, beta, depth):
if game.cutoff(state, depth):
return game.evaluate(state), None
val = inf
action = None
for a, s in game.successors(state):
v, _ = max_value(s, alpha, beta, depth + 1)
if v < val:
val = v
action = a
if prune:
if v <= alpha:
return v, a
beta = min(beta, v)
return val, action
_, action = max_value(state, -inf, inf, 0)
return action