-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
382 lines (348 loc) · 304 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta name="generator" content="MATLAB R2016a"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><title>Recreate Bayesian Linear Regression</title><style type="text/css">
* {margin: 0; padding: 0;}
body {text-align: start; line-height: 17.2339992523193px; min-height: 0px; white-space: normal; color: rgb(0, 0, 0); font-family: Consolas, Inconsolata, Menlo, monospace; font-style: normal; font-size: 14px; font-weight: normal; text-decoration: none; white-space: normal; }
h1, h2 {font-weight: normal;}
.content { padding: 30px; }
.S0 { margin-left: 0px; margin-top: 0px; margin-bottom: 0px; margin-right: 0px; }
.S1 { line-height: 20.576000213623px; min-height: 20px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-size: 16px; font-weight: bold; white-space: pre-wrap; margin-left: 4px; margin-top: 3px; margin-bottom: 9px; margin-right: 10px; }
.S2 { min-height: 0px; margin-left: 0px; margin-top: 0px; margin-bottom: 0px; margin-right: 0px; }
.S3 { line-height: 20.576000213623px; min-height: 20px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-size: 16px; font-weight: bold; white-space: pre-wrap; margin-left: 4px; margin-top: 15px; margin-bottom: 9px; margin-right: 10px; }
.S4 { margin-left: 3px; margin-top: 10px; margin-bottom: 4px; margin-right: 3px; }
.S5 { line-height: 15.5926666259766px; min-height: 18px; white-space: nowrap; font-size: 12.6666669845581px; white-space: nowrap; margin-left: 0px; margin-top: 0px; margin-bottom: 0px; margin-right: 0px; }
.S6 { line-height: 15.5926675796509px; min-height: 0px; white-space: pre; font-size: 12.6666679382324px; white-space: pre; margin-left: 0px; margin-top: 0px; margin-bottom: 0px; margin-right: 0px; }
.S7 { line-height: 15.5926675796509px; min-height: 0px; white-space: pre; color: rgb(160, 32, 240); font-size: 12.6666679382324px; white-space: pre; margin-left: 0px; margin-top: 0px; margin-bottom: 0px; margin-right: 0px; }
.S8 { line-height: 15.5926675796509px; min-height: 0px; white-space: pre; color: rgb(34, 139, 34); font-size: 12.6666679382324px; white-space: pre; margin-left: 0px; margin-top: 0px; margin-bottom: 0px; margin-right: 45px; }
.S9 { line-height: 15.5926675796509px; min-height: 0px; white-space: pre; font-size: 12.6666679382324px; white-space: pre; margin-left: 0px; margin-top: 0px; margin-bottom: 0px; margin-right: 45px; }
.S10 { color: rgb(64, 64, 64); margin-left: 0px; margin-top: 0px; margin-bottom: 0px; margin-right: 0px; }
.S11 { line-height: 15.5926675796509px; min-height: 0px; white-space: pre; color: rgb(0, 0, 255); font-size: 12.6666679382324px; white-space: pre; margin-left: 0px; margin-top: 0px; margin-bottom: 0px; margin-right: 0px; }
.S12 { line-height: 15.5926675796509px; min-height: 0px; white-space: pre; color: rgb(0, 0, 255); font-size: 12.6666679382324px; white-space: pre; margin-left: 0px; margin-top: 0px; margin-bottom: 0px; margin-right: 45px; }
.S13 { margin-left: 3px; margin-top: 4px; margin-bottom: 4px; margin-right: 3px; }
.S14 { margin-left: 3px; margin-top: 10px; margin-bottom: 10px; margin-right: 3px; }
.S15 { line-height: 21px; min-height: 17px; white-space: pre-wrap; font-family: Helvetica, Arial, sans-serif; white-space: pre-wrap; margin-left: 4px; margin-top: 10px; margin-bottom: 9px; margin-right: 10px; }
.LineNodeBlock {margin: 10px 0 10px 0; background-color: #F7F7F7;}
.LineNodeBlock+.paragraphNode {margin-top: 10px;}
.lineNode {padding-left: 10px; border-left: 1px solid #E9E9E9; border-right: 1px solid #E9E9E9;}
.inlineWrapper:first-child .lineNode,.inlineWrapper.outputs+.inlineWrapper .lineNode {padding-top: 5px; border-top: 1px solid #E9E9E9;}
.inlineWrapper:last-child .lineNode,.inlineWrapper.outputs .lineNode {padding-bottom: 5px; border-bottom: 1px solid #E9E9E9;}
.lineNode .textBox {white-space: pre;}
.outputGroup {margin: 2px 0 2px 0; padding: 2px 2px 2px 4px;}
.outputRegion {}
.outputParagraph {color: rgba(64, 64, 64, 1); padding: 10px 0 6px 17px; background: white; overflow-x: hidden;}
.inlineWrapper:last-child .outputParagraph {border-bottom-left-radius: 4px; border-bottom-right-radius: 4px;}
.outputParagraph:empty {margin: 0;}
.inlineElement .symbolicElement {margin-top: 1px; margin-bottom: 1px;}
.embeddedOutputsSymbolicElement .MathEquation {margin-top: 4px; margin-bottom: 4px;}
.embeddedOutputsSymbolicElement .MathEquation.displaySymbolicElement {margin-left: 15px;}
.embeddedOutputsSymbolicElement .MathEquation.inlineSymbolicElement {}
.embeddedOutputsSymbolicElement {overflow-x: auto; overflow-y: hidden;}
.embeddedOutputsSymbolicElement { overflow: initial !important;}
.embeddedOutputsTextElement,.embeddedOutputsVariableStringElement {font-family: Consolas, Inconsolata, Menlo, monospace; font-size: 12px; white-space: pre; word-wrap: initial; min-height: 18px; max-height: 250px; overflow: auto;}
.textElement,.rtcDataTipElement .textElement {padding-top: 3px;}
.embeddedOutputsTextElement.inlineElement,.embeddedOutputsVariableStringElement.inlineElement {}
.inlineElement .textElement {}
.embeddedOutputsTextElement,.embeddedOutputsVariableStringElement { max-height: none !important; overflow: initial !important;}
.veSpecifier {}
.veContainer {}
.veSpecifierBox {height: 400px; width: 500px;}
.veSpecifier .veTable {padding-top: 3px; padding-bottom: 4px;}
.veSpecifierBox .veSpecifier .veContainer {position: relative; width: 100%; height: 370px;}
.veSpecifierBox .dijitDialogPaneContent {width: 97% !important; height: 88% !important;}
.veSpecifier .veTable .rowHeadersWrapper {padding-bottom: 0;}
.veSpecifier .veTable .scroller .variableEditorRenderers {padding-right: 3px; -webkit-user-select: none; -moz-user-select: none; -ms-user-select: none;}
.veSpecifier .veTable .topHeaderWrapper,.veSpecifier .veTable .bottomRowHeaderWrapper {visibility: hidden; z-index: 0;}
.veMetaSummary {font-style: italic;}
.veSpecifier .veTable .scroller {overflow: hidden;}
.veSpecifier .veTable:hover .scroller {overflow: auto;}
.veSpecifier .veVariableName,.veSpecifier .veDimensionFont {font-family: Consolas, Inconsolata, Menlo, monospace; font-size: 12px;}
.veSpecifier .veVariableName {padding-top: 2px;}
.veSpecifier .veDimensionFont {font-style: italic; color: #9A9A9A;}
.veSpecifier .scroller::-webkit-scrollbar-track {background-color: white;}
.veSpecifier .scroller::-webkit-scrollbar-corner {background-color: white;}
.veSpecifier .veTable .topRowHeaderWrapper {border: none; background-color: #F8F9FA;}
.veSpecifier .mw_type_ListBase.showCellBorders,.veSpecifier .veTable .topHeaderWrapper,.veSpecifier .veTable .bottomRowHeaderWrapper,.veSpecifier .veTable .verticalScrollSpacer,.veSpecifier .veTable .horizontalScrollSpacer {border: none;}
.veSpecifier .veTable .dataScrollerNode {border: 1px solid #BFBFBF;}
.veSpecifier .veTable .columnHeaderNode,.veSpecifier .veTable .rowHeaderNode,.veSpecifier .veTable .dataBody {font-family: Arial; font-size: 13px;}
.veSpecifier .veTable .columnHeaderNode,.veSpecifier .veTable .rowHeaderNode {color: #7F7F7F;}
.veSpecifier .veTable .dataBody {color: #000000;}
.veSpecifier .veTable .columnHeaderNode .cell .drag,.veSpecifier .veTable .columnHeaderNode .cell .header,.veSpecifier .veTable .topHeaderWrapper,.veSpecifier .veTable .bottomRowHeaderWrapper {background-color: #F8F9FA;}
.veSpecifier .veTable .columnHeaderNode .cell .dragBorder {border-right: 1px solid #F8F9FA;}
.veSpecifier .veTable .rowHeaderNode .cell {padding-top: 3px; text-align: center; border-bottom: 1px solid #F8F9FA;}
.veSpecifier .veTable .dataBody .cell .plainText {text-align: right;}
.veSpecifier .veTable .dataBody .row .cell {border-bottom: 1px solid #E9E9E9; border-right: 1px solid #E9E9E9;}
.embeddedOutputsVariableElement {font-family: Consolas, Inconsolata, Menlo, monospace; font-size: 12px; white-space: pre-wrap; word-wrap: break-word; min-height: 18px; max-height: 250px; overflow: auto;}
.variableElement {}
.embeddedOutputsVariableElement.inlineElement {}
.inlineElement .variableElement {}
.variableNameElement {margin-bottom: 3px; display: inline-block;}
.variableValue { width: 100% !important; }
.embeddedOutputsMatrixElement {min-height: 18px; box-sizing: border-box; font-family: Consolas, Inconsolata, Menlo, monospace; font-size: 12px;}
.embeddedOutputsMatrixElement .matrixElement,.rtcDataTipElement .matrixElement {position: relative;}
.matrixElement .variableValue,.rtcDataTipElement .matrixElement .variableValue {white-space: pre; display: inline-block; vertical-align: top; overflow: hidden;}
.embeddedOutputsMatrixElement.inlineElement {}
.embeddedOutputsMatrixElement.inlineElement .topHeaderWrapper {display: none;}
.embeddedOutputsMatrixElement.inlineElement .veTable .body {padding-top: 0 !important; max-height: 100px;}
.inlineElement .matrixElement {max-height: 300px;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer,.rtcDataTipElement .matrixElement .valueContainer {white-space: nowrap; margin-bottom: 3px;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis.hide,.embeddedOutputsMatrixElement .matrixElement .verticalEllipsis.hide,.rtcDataTipElement .matrixElement .valueContainer .horizontalEllipsis.hide,.rtcDataTipElement .matrixElement .verticalEllipsis.hide {display: none;}
.embeddedOutputsMatrixElement .matrixElement .valueContainer .horizontalEllipsis {margin-bottom: -3px;}
.matrixElement { max-height: none !important; }
.dijitTooltipDialog .dijitTooltipContainer .dijitTooltipContents .alertPlugin-alertMessage {min-width: 12px; max-width: 400px; max-height: 300px; overflow: auto;}
.dijitTooltipDialog .alertPlugin-alertMessage::-webkit-scrollbar {width: 11px; height: 11px;}
.dijitTooltipDialog .alertPlugin-alertMessage::-webkit-scrollbar-track {background-color: rgba(0, 0, 0, 0);}
.dijitTooltipDialog .alertPlugin-alertMessage::-webkit-scrollbar-corner {background-color: rgba(0, 0, 0, 0);}
.dijitTooltipDialog .alertPlugin-alertMessage::-webkit-scrollbar-thumb {border-radius: 7px; background-color: rgba(0, 0, 0, 0.1); border: 2px solid rgba(0, 0, 0, 0); background-clip: padding-box;}
.dijitTooltipDialog .alertPlugin-alertMessage::-webkit-scrollbar-thumb:hover {background-color: rgba(0, 0, 0, 0.2);}
.dijitTooltipDialog .alertPlugin-alertMessage::-webkit-scrollbar-thumb {background-color: rgba(0, 0, 0, 0);}
.dijitTooltipDialog .alertPlugin-alertMessage:hover::-webkit-scrollbar-thumb {background-color: rgba(0, 0, 0, 0.1);}
.dijitTooltipDialog .alertPlugin-alertMessage:hover::-webkit-scrollbar-thumb:hover {background-color: rgba(0, 0, 0, 0.2);}
.alertPlugin-alertLine {position: absolute; display: initial; width: 40px; text-align: right; cursor: text;}
.alertPlugin-onTextLine {visibility: hidden;}
.alertPlugin-hasTooltip .alertPlugin-warningImg,.alertPlugin-hasTooltip .alertPlugin-errorImg {cursor: pointer;}
.alertPlugin-alertLine .alertPlugin-warningElement,.alertPlugin-alertLine .alertPlugin-errorElement {display: inline-block; margin-right: 4px;}
.alertPlugin-isStale {-webkit-filter: opacity(0.4) grayscale(80%); filter: opacity(0.4) grayscale(80%);}
.diagnosticMessage-wrapper {font-family: Consolas, Inconsolata, Menlo, monospace; font-size: 12px;}
.diagnosticMessage-wrapper.diagnosticMessage-warningType {color: rgb(255,100,0);}
.diagnosticMessage-wrapper.diagnosticMessage-warningType a {color: rgb(255,100,0); text-decoration: underline;}
.diagnosticMessage-wrapper.diagnosticMessage-errorType {color: rgb(230,0,0);}
.diagnosticMessage-wrapper.diagnosticMessage-errorType a {color: rgb(230,0,0); text-decoration: underline;}
.diagnosticMessage-wrapper .diagnosticMessage-messagePart {white-space: pre-wrap;}
.diagnosticMessage-wrapper .diagnosticMessage-stackPart {white-space: pre;}
.embeddedOutputsWarningElement{min-height: 18px; max-height: 250px; overflow: auto;}
.embeddedOutputsWarningElement.inlineElement {}
.embeddedOutputsErrorElement {min-height: 18px; max-height: 250px; overflow: auto;}
.embeddedOutputsErrorElement.inlineElement {}
.variableNameElement .headerElement {color: rgb(179, 179, 179); font-style: italic;}
.variableNameElement .headerElement .headerDataType {color: rgb(147, 176, 230);}
</style></head><body><div class = "content"><div class = 'SectionBlock containment active'><h2 class = "S1"><span class = "S2">Benjamin Linnik</span></h2>
<h2 class = "S3"><span class = "S2">Recreate Bayesian Linear Regression plots from Christopher M. Bishop - Pattern Recognition and Machine Learning p. 157-158</span></h2>
<h2 class = "S3"><span class = "S2">Part 1</span></h2>
<div class = 'LineNodeBlock contiguous'><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">clear; close </span><span class = "S7">all</span><span class = "S6">; </span><span class = "S8">% clear everything</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">%rng(5); % start seed, make deterministic</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">n = 20; </span><span class = "S8">% number of data points</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">s = 0.1; </span><span class = "S8">% s Used for gaussian basis function width</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">alpha = 100; </span><span class = "S8">% initial spread</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">betaInv = (0.3)^2; </span><span class = "S8">% beta^-1, used as sigma for noise estimation</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">beta = 1/betaInv; </span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">XAxisPrecision = 200 ;</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">%[X, t, Xsin, Ysin] = genData(n, L)</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">X = rand(n,1); </span><span class = "S8">% data sampling, evenly distributed</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">X = sort(X) </span><span class = "S8">% sort ascending (for convinience)</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsMatrixElement" uid="E15E56E0" data-width="1369" data-testid="output_0" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">X = </span><span class="veVariableValueSummary" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></span></div><div class="valueContainer" data-layout="{"columnWidth":72.5,"totalColumns":1,"totalRows":20,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 74.5px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 0.0046
0.0844
0.1067
0.1361
0.1455
0.1818
0.2599
0.2638
0.3998
0.4314
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">noise = randn(n,1); </span><span class = "S8">% sample n normal distributed variables</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">t = sin(2*pi*X)+sqrt(betaInv)*noise </span><span class = "S8">% n targets get generated, with noise added</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsMatrixElement" uid="35F13EEB" data-width="1369" data-testid="output_1" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">t = </span><span class="veVariableValueSummary" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></span></div><div class="valueContainer" data-layout="{"columnWidth":72.5,"totalColumns":1,"totalRows":20,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 74.5px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> -0.3710
0.8442
0.7261
0.6648
0.7991
0.8311
0.4730
0.9105
0.3395
0.1240
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">Xsin = linspace(0,1,XAxisPrecision); </span><span class = "S8">% used for plotting, evenly distributed X's</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">Ysin = sin(2*pi*Xsin); </span><span class = "S8">% used for plotting of underlying function without noise</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% plot sampled data and underlying function</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">plotCurveBar( Xsin, Ysin, ones(1,XAxisPrecision)*sqrt(betaInv) );</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">hold </span><span class = "S7">on</span><span class = "S9">;</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plot(X,t,</span><span class = "S7">'ob'</span><span class = "S9">);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">title(</span><span class = "S7">"Data sampled"</span><span class = "S9">);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">ylabel(</span><span class = "S7">"t"</span><span class = "S9">);</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">hold </span><span class = "S7">off</span><span class = "S9">;</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsFigure" uid="6C714E30" data-testid="output_2" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="figureElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><img class="figureImage" src="" style="width: 560px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% get dimension of input</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">%[n,L] = size(X);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">M = 10; </span><span class = "S8">% 10 basis functions</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% take only first column, if matrix was given as input</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">%X = X(:,1)</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">xbar = mean(X,1); </span><span class = "S8">% x mean</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">tbar = mean(t,1); </span><span class = "S8">% t mean</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">XM = ones(n,M-1).*X; </span><span class = "S8">% help matrix to construct Phi</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% help matrix to construct Phi, eveny distributed mean values of gaussianbasis functions</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">mu = ones(n,M-1).*linspace(0,1,M-1); </span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">Phi = exp(-((XM-mu).^2)/(2*s^2)); </span><span class = "S8">% part of Phi matrix</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">Phi0 = ones(n,1)*tbar; </span><span class = "S8">% constant part of Phi matrix</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">Phi = [Phi0 Phi] </span><span class = "S8">% complete Phi matrix</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsMatrixElement" uid="4433116D" data-width="1369" data-testid="output_3" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">Phi = </span><span class="veVariableValueSummary" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></span></div><div class="valueContainer" data-layout="{"columnWidth":72.5,"totalColumns":10,"totalRows":20,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 727px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> -0.0417 0.9989 0.4846 0.0493 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000
-0.0417 0.7001 0.9210 0.2540 0.0147 0.0002 0.0000 0.0000 0.0000 0.0000
-0.0417 0.5662 0.9833 0.3579 0.0273 0.0004 0.0000 0.0000 0.0000 0.0000
-0.0417 0.3962 0.9939 0.5226 0.0576 0.0013 0.0000 0.0000 0.0000 0.0000
-0.0417 0.3468 0.9791 0.5795 0.0719 0.0019 0.0000 0.0000 0.0000 0.0000
-0.0417 0.1914 0.8508 0.7928 0.1548 0.0063 0.0001 0.0000 0.0000 0.0000
-0.0417 0.0342 0.4027 0.9951 0.5154 0.0560 0.0013 0.0000 0.0000 0.0000
-0.0417 0.0308 0.3816 0.9905 0.5389 0.0615 0.0015 0.0000 0.0000 0.0000
-0.0417 0.0003 0.0229 0.3257 0.9698 0.6052 0.0792 0.0022 0.0000 0.0000
-0.0417 0.0001 0.0091 0.1929 0.8529 0.7904 0.1535 0.0063 0.0001 0.0000
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">figure</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">hold </span><span class = "S7">on</span><span class = "S9">;</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">phi = [];</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S11">for </span><span class = "S9">index = 1:M-1</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S6">phi</span><span class = "S9"> = [phi exp(-((Xsin'-mu(1,index)).^2)/(2*s^2))];</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> plot(Xsin,phi(:,index)); </span><span class = "S8">% plot basis functions for control</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S12">end</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">titlestr = sprintf(</span><span class = "S7">'Gaussian basis functions, without weights, s = %.1f'</span><span class = "S9">,s);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">title(titlestr);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">phi = [tbar*ones(XAxisPrecision,1) phi];</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">hold </span><span class = "S7">off</span><span class = "S9">;</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsFigure" uid="55F71484" data-testid="output_4" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="figureElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><img class="figureImage" src="" style="width: 560px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">SNInv = alpha * diag(M)+ beta*(Phi'*Phi); </span><span class = "S8">%S_N^-1</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">SN = inv(SNInv) </span><span class = "S8">%S_N </span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsMatrixElement" uid="8140CCA8" data-width="1369" data-testid="output_5" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">SN = </span><span class="veVariableValueSummary" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></span></div><div class="valueContainer" data-layout="{"columnWidth":72.5,"totalColumns":10,"totalRows":10,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 727px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 0.2197 -0.0586 0.0291 0.0149 -0.0920 0.1152 -0.0944 -0.1097 0.1731 -0.1964
-0.0586 0.2032 -0.2056 0.2038 -0.2347 0.2426 -0.2092 0.0800 -0.0400 0.0185
0.0291 -0.2056 0.2888 -0.3518 0.4377 -0.4660 0.4003 -0.1680 0.0905 -0.0549
0.0149 0.2038 -0.3518 0.5577 -0.7872 0.8650 -0.7453 0.3075 -0.1583 0.0938
-0.0920 -0.2347 0.4377 -0.7872 1.3238 -1.5185 1.3191 -0.5583 0.2935 -0.1833
0.1152 0.2426 -0.4660 0.8650 -1.5185 1.8400 -1.6376 0.6996 -0.3699 0.2297
-0.0944 -0.2092 0.4003 -0.7453 1.3191 -1.6376 1.5624 -0.7404 0.4326 -0.2875
-0.1097 0.0800 -0.1680 0.3075 -0.5583 0.6996 -0.7404 0.6104 -0.4973 0.3762
0.1731 -0.0400 0.0905 -0.1583 0.2935 -0.3699 0.4326 -0.4973 0.5071 -0.4312
-0.1964 0.0185 -0.0549 0.0938 -0.1833 0.2297 -0.2875 0.3762 -0.4312 0.4353
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">mN = beta * </span><span class = "S6">SN</span><span class = "S6"> * Phi' *t </span><span class = "S8">%m_N, Bayesian method for weight calclation </span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsMatrixElement" uid="EC9F9B00" data-width="1369" data-testid="output_6" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">mN = </span><span class="veVariableValueSummary" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></span></div><div class="valueContainer" data-layout="{"columnWidth":72.5,"totalColumns":1,"totalRows":10,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 74.5px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 0.5185
-0.7840
1.1872
-0.0562
0.5508
-0.2112
-0.8347
0.0159
-0.9285
0.5422
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">%mN = beta * ( SNInv \ Phi' *t ) %m_N same result, just debugging</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">mNphi = (mN'.*ones(XAxisPrecision,M)).*phi; </span><span class = "S8">% weights * basis functions</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">estfctmNphi = []; </span><span class = "S8">% sum of all basis functions</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S11">for </span><span class = "S9">index = 1:XAxisPrecision</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S6">estfctmNphi</span><span class = "S6"> = [estfctmNphi sum(mNphi(index,:))]; </span><span class = "S8">% sum each basis function at given x</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S12">end</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">figure</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plot (Xsin, mNphi) </span><span class = "S8">% plot each weighted basis function</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">title(</span><span class = "S7">"Weighted basis functions"</span><span class = "S9">)</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsFigure" uid="47C36D0D" data-testid="output_7" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="figureElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><img class="figureImage" src="" style="width: 560px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">sigmaSquared = []; </span><span class = "S8">% calculate sigma squared</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S11">for </span><span class = "S9">index = 1:n</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S8">%sigmaSquaredAtData = [sigmaSquaredAtData 1/beta + Phi(index,:)*SN*Phi(index,:)'];</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S6">sigmaSquared</span><span class = "S6"> = [sigmaSquared 1/beta + phi(index,:)*</span><span class = "S6">SN</span><span class = "S9">*phi(index,:)'];</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S12">end</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">sigmaSquared </span><span class = "S8">% control and debugging</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsMatrixElement" uid="5264ED78" data-width="1369" data-testid="output_8" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">sigmaSquared = </span><span class="veVariableValueSummary" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></span></div><div class="valueContainer" data-layout="{"columnWidth":72.5,"totalColumns":20,"totalRows":1,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 1307px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 0.1743 0.1697 0.1648 0.1598 0.1548 0.1498 0.1449 0.1403 0.1361 0.1322 0.1287 0.1256 0.1230 0.1209 0.1191 0.1178 0.1167 0.1159 0.1153 0.1149
</div><div class="horizontalEllipsis" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">sigmaSquaredi = pchip(X',sigmaSquared,Xsin); </span><span class = "S8">% make smoother for plotting</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">figure</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% plot sampled data and underlying function</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plotCurveBar( Xsin, estfctmNphi, sqrt(sigmaSquaredi) ); </span><span class = "S8">% make plot like Bishop</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">hold </span><span class = "S7">on</span><span class = "S9">;</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">titlestr = sprintf(</span><span class = "S7">'n = %d, s = %.1f'</span><span class = "S9">,n,s);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plot( Xsin, Ysin, </span><span class = "S7">'g-'</span><span class = "S6">, </span><span class = "S7">'linewidth'</span><span class = "S6">,2); </span><span class = "S8">% plot sampling function without noise</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plot( X, t, </span><span class = "S7">'bo'</span><span class = "S6">, </span><span class = "S7">'linewidth'</span><span class = "S6">,2); </span><span class = "S8">% plot the data</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">xlim([0 1]) </span><span class = "S8">% set limits for axis</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">ylim([-2 2])</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">xlabel(</span><span class = "S7">"x"</span><span class = "S9">)</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">ylabel(</span><span class = "S7">"t"</span><span class = "S9">)</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">title(titlestr)</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">hold </span><span class = "S7">off</span><span class = "S9">;</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsFigure" uid="1E64182F" data-testid="output_9" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="figureElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><img class="figureImage" src="" style="width: 560px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">figure </span><span class = "S8">% same plot again, but without limits on axis</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% plot sampled data and underlying function</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">plotCurveBar( Xsin, estfctmNphi, sqrt(sigmaSquaredi) );</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">hold </span><span class = "S7">on</span><span class = "S9">;</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plot( Xsin, Ysin, </span><span class = "S7">'g-'</span><span class = "S6">, </span><span class = "S7">'linewidth'</span><span class = "S9">,2);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plot( X, t, </span><span class = "S7">'bo'</span><span class = "S6">, </span><span class = "S7">'linewidth'</span><span class = "S9">,2);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">xlim([0 1])</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">xlabel(</span><span class = "S7">"x"</span><span class = "S9">)</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">ylabel(</span><span class = "S7">"t"</span><span class = "S9">)</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">titlestr = sprintf(</span><span class = "S7">'Unzoomed, n = %d, s = %.1f'</span><span class = "S9">,n,s);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">title(titlestr)</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">hold </span><span class = "S7">off</span><span class = "S9">;</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsFigure" uid="6F9E12CC" data-testid="output_10" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="figureElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><img class="figureImage" src="" style="width: 560px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div></div></div><div class = "S0"></div><div class = 'SectionBlock containment'><div class = 'LineNodeBlock contiguous'><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">%% other method to plot</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">cholSN = chol(SN); </span><span class = "S8">% used to calculate sigma of posterior distributions</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">mNphiLower = ((mN'-(ones(1,M)*cholSN)).*ones(XAxisPrecision,M)).*phi; </span><span class = "S8">% m_N * phi - sigma</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">estfctmNphiLower = []; </span><span class = "S8">% sum of all basis functions ; % m_N * phi - sigma</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S11">for </span><span class = "S9">index = 1:XAxisPrecision</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S8">% sum each basis function at given x ; % m_N * phi - sigma</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S6">estfctmNphiLower</span><span class = "S9"> = [estfctmNphiLower sum(mNphiLower(index,:))]; </span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S12">end</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">estfctmNphiLower;</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S8">% weights * basis functions; % m_N * phi + sigma</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">mNphiUpper = ((mN'+(ones(1,M)*cholSN)).*ones(XAxisPrecision,M)).*phi;</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">estfctmNphiUpper = []; </span><span class = "S8">% sum of all basis functions % m_N * phi + sigma</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S11">for </span><span class = "S9">index = 1:XAxisPrecision</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S8">% sum each basis function at given x % m_N * phi + sigma</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S6">estfctmNphiUpper</span><span class = "S9"> = [estfctmNphiUpper sum(mNphiUpper(index,:))];</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S12">end</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">estfctmNphiUpper;</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">figure</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% plot sampled data and underlying function</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">color = [255,228,225]/255; </span><span class = "S8">%pink</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">fill([Xsin,fliplr(Xsin)],[estfctmNphiUpper,fliplr(estfctmNphiLower)],color,</span><span class = "S7">'LineStyle'</span><span class = "S6">,</span><span class = "S7">'none'</span><span class = "S9">);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">hold </span><span class = "S7">on</span><span class = "S9">;</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plot( Xsin, estfctmNphi, </span><span class = "S7">'r-'</span><span class = "S6">, </span><span class = "S7">'linewidth'</span><span class = "S9">,2);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plot( Xsin, Ysin, </span><span class = "S7">'g-'</span><span class = "S6">, </span><span class = "S7">'linewidth'</span><span class = "S9">,2);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plot( X, t, </span><span class = "S7">'bo'</span><span class = "S6">, </span><span class = "S7">'linewidth'</span><span class = "S9">,2);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">xlabel(</span><span class = "S7">"x"</span><span class = "S9">)</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">ylabel(</span><span class = "S7">"t"</span><span class = "S9">)</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">titlestr = sprintf(</span><span class = "S7">'Other method, posterior bases, n = %d, s = %.1f'</span><span class = "S9">,n,s);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">title(titlestr)</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">xlim([0 1])</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">ylim([-4 4])</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">hold </span><span class = "S7">off</span><span class = "S9">;</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsFigure" uid="1D06D303" data-testid="output_11" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="figureElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><img class="figureImage" src="" style="width: 560px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div></div></div><div class = "S0"></div><div class = 'SectionBlock containment'><h2 class = "S1"><span class = "S2">Part 2</span></h2><div class = 'LineNodeBlock contiguous'><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">w = randn(n,1); </span><span class = "S8">% sample n normal distributed variables</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">mN' </span><span class = "S8">% for comparison, show average mN</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsMatrixElement" uid="408ADDE0" data-width="1369" data-testid="output_12" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">ans = </span><span class="veVariableValueSummary" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></span></div><div class="valueContainer" data-layout="{"columnWidth":72.5,"totalColumns":10,"totalRows":1,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 727px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 0.5185 -0.7840 1.1872 -0.0562 0.5508 -0.2112 -0.8347 0.0159 -0.9285 0.5422
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% repmatrepmat(A,n, m) returns an array containing n x m copies of A</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% in the row and column dimensions</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">mN_array = repmat(mN',5,1) + randn(5,M)*cholSN </span><span class = "S8">% generate n-dimensional matrix</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsMatrixElement" uid="446C1CDC" data-width="1369" data-testid="output_13" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="matrixElement veSpecifier" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="veVariableName variableNameElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;">mN_array = </span><span class="veVariableValueSummary" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></span></div><div class="valueContainer" data-layout="{"columnWidth":72.5,"totalColumns":10,"totalRows":5,"charsPerColumn":10}" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"><div class="variableValue" style="width: 727px; white-space: pre; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"> 0.4574 -0.5706 0.6626 0.6380 0.3037 -0.4576 -0.3659 0.0925 -1.0450 0.3415
0.6046 -1.1745 1.9344 -1.1626 2.1912 -1.7838 0.1295 -0.5835 -0.5867 0.4688
0.2953 -0.8695 1.4929 -0.5470 1.1727 -0.7823 -0.4436 -0.0917 -0.6307 0.3919
0.9225 -0.6522 0.9694 0.2846 0.2137 0.1312 -1.1638 -0.4116 -0.4130 0.0724
-0.1198 -0.1637 0.5742 0.7404 -0.3642 0.8857 -2.0180 0.6556 -1.7350 1.5269
</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(64, 64, 64); font-size: 12px;"></div></div></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% like learned in the lecture, first 'randn'</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% creates a normal distribution with 5 x M values</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% Afterwards scale this distribution to the correct covariance with cholSN</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% Finally move it to the correct mean value by adding the mN vector</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">estfctmNphiArray = []; </span><span class = "S8">% sum of all basis functions</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S11">for </span><span class = "S9">mN_i = 1:5</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S8">% weights * basis functions</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"> mNphi = (mN_array(mN_i,:).*ones(XAxisPrecision,M)).*phi;</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> estfctmNphi = []; </span><span class = "S8">% sum of all basis functions</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S11">for </span><span class = "S9">index = 1:XAxisPrecision</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S8">% sum each basis function at given x</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S6">estfctmNphi</span><span class = "S9"> = [estfctmNphi sum(mNphi(index,:))];</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S12">end</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> estfctmNphi</span><span class = "S6">'</span><span class = "S9">;</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6"> </span><span class = "S6">estfctmNphiArray</span><span class = "S9"> = [estfctmNphiArray estfctmNphi'];</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S12">end</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">estfctmNphiArray = estfctmNphiArray';</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">figure </span><span class = "S8">% same plot again, but without limits on axis</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">% plot sampled data and underlying function</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S8">%plotCurveBar( Xsin, estfctmNphi, sqrt(sigmaSquaredi) );</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">plot( Xsin, estfctmNphi );</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">hold </span><span class = "S7">on</span><span class = "S9">;</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plot( Xsin, estfctmNphiArray, </span><span class = "S7">'r-'</span><span class = "S6">, </span><span class = "S7">'linewidth'</span><span class = "S9">,1);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plot( Xsin, Ysin, </span><span class = "S7">'g-'</span><span class = "S6">, </span><span class = "S7">'linewidth'</span><span class = "S9">,2);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">plot( X, t, </span><span class = "S7">'bo'</span><span class = "S6">, </span><span class = "S7">'linewidth'</span><span class = "S9">,2);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">xlim([0 1])</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">xlabel(</span><span class = "S7">"x"</span><span class = "S9">)</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">ylabel(</span><span class = "S7">"t"</span><span class = "S9">)</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">ylim([-3 3])</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S6">titlestr = sprintf(</span><span class = "S7">Part 2, n = %d, s = %.1f'</span><span class = "S9">,n,s);</span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9">title(titlestr)</span></div></div><div class = 'inlineWrapper outputs'><div class = "S5 lineNode"><span class = "S6">hold </span><span class = "S7">off</span><span class = "S9">;</span></div><div class="outputParagraph" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="inlineElement embeddedOutputsFigure" uid="E9BD66B5" data-testid="output_14" style="width: 1399px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><div class="figureElement" style="white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"><img class="figureImage" src="" style="width: 560px; white-space: normal; font-style: normal; color: rgb(64, 64, 64); font-size: 14px;"></div></div></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div><div class = 'inlineWrapper'><div class = "S5 lineNode"><span class = "S9"></span></div></div></div><div class = "S15"><span class = "S2"></span></div></div></div>
<!--
##### SOURCE BEGIN #####
%% Benjamin Linnik
%% Part 1
%% Recreate Bayesian Linear Regression plots from Christopher M. Bishop - Pattern Recognition and Machine Learning p. 157-158
clear; close all; % clear everything
%rng(5); % start seed, make deterministic
n = 20; % number of data points
s = 0.1; % used for gaussian basis function width
alpha = 100; % initial spread
betaInv = (0.3)^2; % beta^-1, used as sigma for noise estimation
beta = 1/betaInv;
XAxisPrecision = 200 ;
%[X, t, Xsin, Ysin] = genData(n, L)
X = rand(n,1); % data sampling, evenly distributed
X = sort(X) % sort ascending (for convinience)
noise = randn(n,1); % sample n normal distributed variables
t = sin(2*pi*X)+sqrt(betaInv)*noise % n targets get generated, with noise added
Xsin = linspace(0,1,XAxisPrecision); % used for plotting, evenly distributed X's
Ysin = sin(2*pi*Xsin); % used for plotting of underlying function without noise
% plot sampled data and underlying function
plotCurveBar( Xsin, Ysin, ones(1,XAxisPrecision)*sqrt(betaInv) );
hold on;
plot(X,t,'ob');
title("Data sampled");
ylabel("t");
hold off;
% get dimension of input
%[n,L] = size(X);
M = 10; % 10 basis functions
% take only first column, if matrix was given as input
%X = X(:,1)
xbar = mean(X,1); % x mean
tbar = mean(t,1); % t mean
XM = ones(n,M-1).*X; % help matrix to construct Phi
% help matrix to construct Phi, eveny distributed mean values of gaussianbasis functions
mu = ones(n,M-1).*linspace(0,1,M-1);
Phi = exp(-((XM-mu).^2)/(2*s^2)); % part of Phi matrix
Phi0 = ones(n,1)*tbar; % constant part of Phi matrix
Phi = [Phi0 Phi] % complete Phi matrix
figure
hold on;
phi = [];
for index = 1:M-1
phi = [phi exp(-((Xsin'-mu(1,index)).^2)/(2*s^2))];
plot(Xsin,phi(:,index)); % plot basis functions for control
end
titlestr = sprintf('Gaussian basis functions, without weights, s = %.1f',s);
title(titlestr);
phi = [tbar*ones(XAxisPrecision,1) phi];
hold off;
SNInv = alpha * diag(M)+ beta*(Phi'*Phi); %S_N^-1
SN = inv(SNInv) %S_N
mN = beta * SN * Phi' *t %m_N, Bayesian method for weight calclation
%mN = beta * ( SNInv \ Phi' *t ) %m_N same result, just debugging
mNphi = (mN'.*ones(XAxisPrecision,M)).*phi; % weights * basis functions
estfctmNphi = []; % sum of all basis functions
for index = 1:XAxisPrecision
estfctmNphi = [estfctmNphi sum(mNphi(index,:))]; % sum each basis function at given x
end
figure
plot (Xsin, mNphi) % plot each weighted basis function
title("Weighted basis functions")
sigmaSquared = []; % calculate sigma squared
for index = 1:n
%sigmaSquaredAtData = [sigmaSquaredAtData 1/beta + Phi(index,:)*SN*Phi(index,:)'];
sigmaSquared = [sigmaSquared 1/beta + phi(index,:)*SN*phi(index,:)'];
end
sigmaSquared % control and debugging
sigmaSquaredi = pchip(X',sigmaSquared,Xsin); % make smoother for plotting
figure
% plot sampled data and underlying function
plotCurveBar( Xsin, estfctmNphi, sqrt(sigmaSquaredi) ); % make plot like Bishop
hold on;
titlestr = sprintf('n = %d, s = %.1f',n,s);
plot( Xsin, Ysin, 'g-', 'linewidth',2); % plot sampling function without noise
plot( X, t, 'bo', 'linewidth',2); % plot the data
xlim([0 1]) % set limits for axis
ylim([-2 2])
xlabel("x")
ylabel("t")
title(titlestr)
hold off;
figure % same plot again, but without limits on axis
% plot sampled data and underlying function
plotCurveBar( Xsin, estfctmNphi, sqrt(sigmaSquaredi) );
hold on;
plot( Xsin, Ysin, 'g-', 'linewidth',2);
plot( X, t, 'bo', 'linewidth',2);
xlim([0 1])
xlabel("x")
ylabel("t")
titlestr = sprintf('Unzoomed, n = %d, s = %.1f',n,s);
title(titlestr)
hold off;
%%
%% other method to plot
cholSN = chol(SN); % used to calculate sigma of posterior distributions
mNphiLower = ((mN'-(ones(1,M)*cholSN)).*ones(XAxisPrecision,M)).*phi; % m_N * phi - sigma
estfctmNphiLower = []; % sum of all basis functions ; % m_N * phi - sigma
for index = 1:XAxisPrecision
% sum each basis function at given x ; % m_N * phi - sigma
estfctmNphiLower = [estfctmNphiLower sum(mNphiLower(index,:))];
end
estfctmNphiLower;
% weights * basis functions; % m_N * phi + sigma
mNphiUpper = ((mN'+(ones(1,M)*cholSN)).*ones(XAxisPrecision,M)).*phi;
estfctmNphiUpper = []; % sum of all basis functions % m_N * phi + sigma
for index = 1:XAxisPrecision
% sum each basis function at given x % m_N * phi + sigma
estfctmNphiUpper = [estfctmNphiUpper sum(mNphiUpper(index,:))];
end
estfctmNphiUpper;
figure
% plot sampled data and underlying function
color = [255,228,225]/255; %pink
fill([Xsin,fliplr(Xsin)],[estfctmNphiUpper,fliplr(estfctmNphiLower)],color,'LineStyle','none');
hold on;
plot( Xsin, estfctmNphi, 'r-', 'linewidth',2);
plot( Xsin, Ysin, 'g-', 'linewidth',2);
plot( X, t, 'bo', 'linewidth',2);
xlabel("x")
ylabel("t")
titlestr = sprintf('Other method, posterior bases, n = %d, s = %.1f',n,s);
title(titlestr)
xlim([0 1])
ylim([-4 4])
hold off;
%% Part 2
%%
w = randn(n,1); % sample n normal distributed variables
mN' % for comparison, show average mN
% repmatrepmat(A,n, m) returns an array containing n x m copies of A
% in the row and column dimensions
mN_array = repmat(mN',5,1) + randn(5,M)*cholSN % generate n-dimensional matrix
% like learned in the lecture, first 'randn'
% creates a normal distribution with 5 x M values
% Afterwards scale this distribution to the correct covariance with cholSN
% Finally move it to the correct mean value by adding the mN vector
estfctmNphiArray = []; % sum of all basis functions
for mN_i = 1:5
% weights * basis functions
mNphi = (mN_array(mN_i,:).*ones(XAxisPrecision,M)).*phi;
estfctmNphi = []; % sum of all basis functions
for index = 1:XAxisPrecision
% sum each basis function at given x
estfctmNphi = [estfctmNphi sum(mNphi(index,:))];
end
estfctmNphi';
estfctmNphiArray = [estfctmNphiArray estfctmNphi'];
end
estfctmNphiArray = estfctmNphiArray';
figure % same plot again, but without limits on axis
% plot sampled data and underlying function
%plotCurveBar( Xsin, estfctmNphi, sqrt(sigmaSquaredi) );
plot( Xsin, estfctmNphi );
hold on;
plot( Xsin, estfctmNphiArray, 'r-', 'linewidth',1);
plot( Xsin, Ysin, 'g-', 'linewidth',2);
plot( X, t, 'bo', 'linewidth',2);
xlim([0 1])
xlabel("x")
ylabel("t")
ylim([-3 3])
titlestr = sprintf('Part 2, n = %d, s = %.1f',n,s);
title(titlestr)
hold off;
%%
%
##### SOURCE END #####
--></body></html>