-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtest_basic.infini.py
123 lines (101 loc) · 4.24 KB
/
test_basic.infini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # TODO: set the GPU device
import torch
from torch.nn import functional as F
from transformers import AutoTokenizer, pipeline
from infini_gemma import GemmaForCausalLM
from infini_gemma import GemmaConfig
print("Torch Version:", torch.__version__)
print("CUDA:", torch.cuda.is_available())
if torch.cuda.is_available():
device = "cuda:0" # set GPU device using CUDA_VISIBLE_DEVICES
else:
device = "cpu"
config = GemmaConfig.from_pretrained(
"google/gemma-2b",
)
print(config)
# Create the Gemma model with Infini-attention
model = GemmaForCausalLM(config)
# model = model.from_pretrained("google/gemma-2b")
pretrained_model = GemmaForCausalLM.from_pretrained("google/gemma-2b")
# Step 4: Transfer weights
# Note: This is a simplified example; you need to ensure that each parameter's dimensions match.
for param in model.named_parameters():
name = param[0]
if name in pretrained_model.state_dict():
# Check if dimensions match, and only then assign the weights
if param[1].size() == pretrained_model.state_dict()[name].size():
param[1].data = pretrained_model.state_dict()[name].data.clone()
else:
print(f"Skipping {name} due to size mismatch.")
print(model)
model.to(device)
# Generate some dummy input data
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
text = """This work introduces an efficient method to scale Transformer-based"""
longtext = """The new memory states M s and z s are then passed to the next segment S + 1, building in a recurrence in each attention layer. The right side term σ (K ) T V in Eq. (4) is known as an associative binding operator (Smolensky, 1990; Hebb, 2005; Schlag et al., 2020).
Inspired by the success of delta rule (Munkhdalai et al., 2019; Schlag et al., 2020; 2021), we have also incorporated it into our Infini-attention. The delta rule attempts a slightly improved memory update by first retrieving existing value entries and subtracting them from the new values before applying the associative bindings as new update."""
encoded = tokenizer(
text,
return_tensors="pt",
)
# attention_mask = torch.ones_like(input_ids)
encoded["labels"] = encoded["input_ids"].clone()
long_encoded = tokenizer(
longtext,
return_tensors="pt",
)
# attention_mask = torch.ones_like(input_ids)
long_encoded["labels"] = long_encoded["input_ids"].clone()
print(encoded)
# Test the forward pass
outputs = model(**encoded.to(device)) # position_ids=position_ids)
print("Short Text Loss")
print(outputs.loss)
outputs.loss.backward() # Test the backward pass
outputs = model(**long_encoded.to(device)) # position_ids=position_ids)
print("Long Text Loss")
print(outputs.loss)
outputs.loss.backward() # Test the backward pass
print("backprop done")
# Step 1: Get effective batch size and sequence length
batch_size = encoded["input_ids"].shape[0]
sequence_length = encoded["input_ids"].shape[1]
# Step 2: Prepare input data for generation
input_ids = encoded["input_ids"]
attention_mask = encoded.get("attention_mask", None)
# Step 3: Initialize past
past = None
# Step 4: Start generation loop
for _ in range(10): # 10 is the number of new tokens to generate
with torch.no_grad():
# Get next token scores
outputs = model(
input_ids,
attention_mask=attention_mask,
use_cache=True,
past_key_values=past,
)
next_token_logits = outputs.logits[:, -1, :]
past = outputs.past_key_values
# Perform sampling to get the next token
next_token = torch.multinomial(
F.softmax(next_token_logits, dim=-1), num_samples=1
)
# Update input_ids, attention_mask, and past
input_ids = torch.cat([input_ids, next_token], dim=-1)
if attention_mask is not None:
attention_mask = F.pad(attention_mask, (0, 1), value=1)
# Step 5: Return generated sequence
generated_sequence = tokenizer.decode(input_ids[0], skip_special_tokens=False)
print("generated_sequence:", generated_sequence)
# Test .generate() method
generated = model.generate(
**encoded,
max_new_tokens=32,
do_sample=True,
num_return_sequences=1,
)
print("Generated:")
print(tokenizer.decode(generated[0], skip_special_tokens=False))