forked from causal-rl-anonymous/causal-rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stat_tests.py
71 lines (57 loc) · 2.3 KB
/
stat_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Courtesy of Cédric Colas
# https://github.com/ccolas/rl_stats
import numpy as np
from scipy.stats import ttest_ind, mannwhitneyu, rankdata, median_test, wilcoxon
tests_list = ['t-test', "Welch t-test", 'Mann-Whitney', 'Ranked t-test', 'permutation']
def run_permutation_test(all_data, n1, n2):
np.random.shuffle(all_data)
data_a = all_data[:n1]
data_b = all_data[-n2:]
return data_a.mean() - data_b.mean()
def run_test(test_id, data1, data2, alpha=0.05):
"""
Compute tests comparing data1 and data2 with confidence level alpha
:param test_id: (str) refers to what test should be used
:param data1: (np.ndarray) sample 1
:param data2: (np.ndarray) sample 2
:param alpha: (float) confidence level of the test
:return: (bool) if True, the null hypothesis is rejected
"""
data1 = data1.squeeze()
data2 = data2.squeeze()
n1 = data1.size
n2 = data2.size
if all(data1 == data2):
return False
if test_id == 't-test':
_, p = ttest_ind(data1, data2, equal_var=True)
return p < alpha
elif test_id == "Welch t-test":
_, p = ttest_ind(data1, data2, equal_var=False)
return p < alpha
elif test_id == 'Mann-Whitney':
_, p = mannwhitneyu(data1, data2, alternative='two-sided')
return p < alpha
elif test_id == 'Wilcoxon':
_, p = wilcoxon(data1, data2, correction=True, alternative='two-sided', zero_method="pratt")
return p < alpha
elif test_id == 'Ranked t-test':
all_data = np.concatenate([data1.copy(), data2.copy()], axis=0)
ranks = rankdata(all_data)
ranks1 = ranks[: n1]
ranks2 = ranks[n1:n1 + n2]
assert ranks2.size == n2
_, p = ttest_ind(ranks1, ranks2, equal_var=True)
return p < alpha
elif test_id == 'permutation':
all_data = np.concatenate([data1.copy(), data2.copy()], axis=0)
delta = np.abs(data1.mean() - data2.mean())
num_samples = 1000
estimates = []
for _ in range(num_samples):
estimates.append(run_permutation_test(all_data.copy(), n1, n2))
estimates = np.abs(np.array(estimates))
diff_count = len(np.where(estimates <= delta)[0])
return (1.0 - (float(diff_count) / float(num_samples))) < alpha
else:
raise NotImplementedError