forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
527 lines (459 loc) · 19.8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ImageNet dataset with typical pre-processing and advanced augs."""
# pylint: disable=logging-format-interpolation
import enum
import itertools as it
import logging
import re
from typing import Generator, Mapping, Optional, Sequence, Text, Tuple
import jax
import jax.numpy as jnp
import numpy as np
import tensorflow.compat.v2 as tf
import tensorflow_datasets as tfds
import tensorflow_probability as tfp
from nfnets import autoaugment
Batch = Mapping[Text, np.ndarray]
MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)
AUTOTUNE = tf.data.experimental.AUTOTUNE
class Split(enum.Enum):
"""Imagenet dataset split."""
TRAIN = 1
TRAIN_AND_VALID = 2
VALID = 3
TEST = 4
@classmethod
def from_string(cls, name: Text) -> 'Split':
return {'TRAIN': Split.TRAIN, 'TRAIN_AND_VALID': Split.TRAIN_AND_VALID,
'VALID': Split.VALID, 'VALIDATION': Split.VALID,
'TEST': Split.TEST}[name.upper()]
@property
def num_examples(self):
return {Split.TRAIN_AND_VALID: 1281167, Split.TRAIN: 1271167,
Split.VALID: 10000, Split.TEST: 50000}[self]
def load(
split: Split,
*,
is_training: bool,
batch_dims: Sequence[int],
name: str = 'imagenet',
dtype: jnp.dtype = jnp.float32,
transpose: bool = False,
fake_data: bool = False,
image_size: Tuple[int, int] = (224, 224),
augment_name: Optional[str] = None,
eval_preproc: str = 'crop_resize',
augment_before_mix: bool = True,
) -> Generator[Batch, None, None]:
"""Loads the given split of the dataset.
Args:
split: Dataset split to use.
is_training: If true, use training preproc and augmentation.
batch_dims: List indicating how to batch the dataset (typically expected to
be of shape (num_devices, bs_per_device)
name: Which dataset to use, (must be 'imagenet')
dtype: One of float32 or bfloat16 (bf16 may not be supported fully)
transpose: If true, employs double transpose trick.
fake_data: Return batches of fake data for debugging purposes.
image_size: Final image size returned by dataset pipeline. Note that the
exact procedure to arrive at this size will depend on the chosen preproc.
augment_name: Optional additional aug strategy (applied atop the default
of distorted bboxes and random L/R flips). Specified with a string
such as 'cutmix_mixup_0.4_randaugment_415'. See README for deets.
eval_preproc: Eval preproc method, either 'crop_resize' (crop on the long
edge then resize) or `resize_crop_{pct}`, which will resize the image to
`image_size / pct` on each side then take a center crop.
augment_before_mix: Apply augs like RA/AA before or after cutmix/mixup.
Yields:
A TFDS numpy iterator.
"""
start, end = _shard(split, jax.host_id(), jax.host_count())
if fake_data:
print('Using fake data!')
images = np.zeros(tuple(batch_dims) + image_size + (3,), dtype=dtype)
labels = np.zeros(tuple(batch_dims), dtype=np.int32)
if transpose:
axes = tuple(range(images.ndim))
axes = axes[:-4] + axes[-3:] + (axes[-4],) # NHWC -> HWCN
images = np.transpose(images, axes)
yield from it.repeat({'images': images, 'labels': labels}, end - start)
return
total_batch_size = np.prod(batch_dims)
if name.lower() == 'imagenet':
tfds_split = tfds.core.ReadInstruction(_to_tfds_split(split),
from_=start, to=end, unit='abs')
ds = tfds.load('imagenet2012:5.*.*', split=tfds_split,
decoders={'image': tfds.decode.SkipDecoding()})
else:
raise ValueError('Only imagenet is presently supported for this dataset.')
options = tf.data.Options()
options.experimental_threading.private_threadpool_size = 48
options.experimental_threading.max_intra_op_parallelism = 1
options.experimental_optimization.map_parallelization = True
options.experimental_optimization.parallel_batch = True
if is_training:
options.experimental_deterministic = False
ds = ds.with_options(options)
if is_training:
if jax.host_count() > 1:
# Only cache if we are reading a subset of the dataset.
ds = ds.cache()
ds = ds.repeat()
ds = ds.shuffle(buffer_size=10 * total_batch_size, seed=None)
else:
if split.num_examples % total_batch_size != 0:
raise ValueError(f'Test/valid must be divisible by {total_batch_size}')
def augment_normalize(batch):
"""Optionally augment, then normalize an image."""
batch = dict(**batch)
image = _augment_image(batch['images'], is_training, augment_name)
batch['images'] = _normalize_image(image)
return batch
def preprocess(example):
image = _preprocess_image(example['image'], is_training, image_size,
eval_preproc)
label = tf.cast(example['label'], tf.int32)
out = {'images': image, 'labels': label}
if augment_name is not None and 'cutmix' in augment_name:
out['mask'] = cutmix_padding(*image_size)
out['cutmix_ratio'] = tf.reduce_mean(out['mask'])
if augment_name is not None and 'mixup' in augment_name:
mixup_alpha = 0.2 # default to alpha=0.2
# If float provided, get it
if 'mixup_' in augment_name:
alpha = augment_name.split('mixup_')[1].split('_')
if any(alpha) and re.match(r'^-?\d+(?:\.\d+)?$', alpha[0]) is not None:
mixup_alpha = float(alpha[0])
beta = tfp.distributions.Beta(mixup_alpha, mixup_alpha)
out['mixup_ratio'] = beta.sample()
# Apply augs before mixing?
if augment_before_mix or augment_name is None:
out = augment_normalize(out)
return out
ds = ds.map(preprocess, num_parallel_calls=AUTOTUNE)
ds = ds.prefetch(AUTOTUNE)
def transpose_fn(batch):
# Applies the double-transpose trick for TPU.
batch = dict(**batch)
batch['images'] = tf.transpose(batch['images'], (1, 2, 3, 0))
return batch
def cast_fn(batch):
batch = dict(**batch)
batch['images'] = tf.cast(batch['images'], tf.dtypes.as_dtype(dtype))
return batch
for i, batch_size in enumerate(reversed(batch_dims)):
if i == 0:
# Deal with vectorized MixUp + CutMix ops
if augment_name is not None:
if 'mixup' in augment_name or 'cutmix' in augment_name:
ds = ds.batch(batch_size * 2)
else:
ds = ds.map(augment_normalize, num_parallel_calls=AUTOTUNE)
ds = ds.batch(batch_size)
# Apply mixup, cutmix, or mixup + cutmix
if 'mixup' in augment_name and 'cutmix' not in augment_name:
logging.info('Applying MixUp!')
ds = ds.map(my_mixup, num_parallel_calls=AUTOTUNE)
elif 'cutmix' in augment_name and 'mixup' not in augment_name:
logging.info('Applying CutMix!')
ds = ds.map(my_cutmix, num_parallel_calls=AUTOTUNE)
elif 'mixup' in augment_name and 'cutmix' in augment_name:
logging.info('Applying MixUp and CutMix!')
ds = ds.map(my_mixup_cutmix, num_parallel_calls=AUTOTUNE)
# If applying augs after mixing, unbatch, map, and rebatch
if (not augment_before_mix and
('mixup' in augment_name or 'cutmix' in augment_name)):
ds = ds.unbatch().map(augment_normalize, num_parallel_calls=AUTOTUNE)
ds = ds.batch(batch_size)
else:
ds = ds.batch(batch_size)
# Transpose and cast as needbe
if transpose:
ds = ds.map(transpose_fn) # NHWC -> HWCN
# NOTE: You may be tempted to move the casting earlier on in the pipeline,
# but for bf16 some operations will end up silently placed on the TPU and
# this causes stalls while TF and JAX battle for the accelerator.
ds = ds.map(cast_fn)
else:
ds = ds.batch(batch_size)
ds = ds.prefetch(AUTOTUNE)
ds = tfds.as_numpy(ds)
yield from ds
def cutmix_padding(h, w):
"""Returns image mask for CutMix.
Taken from (https://github.com/google/edward2/blob/master/experimental
/marginalization_mixup/data_utils.py#L367)
Args:
h: image height.
w: image width.
"""
r_x = tf.random.uniform([], 0, w, tf.int32)
r_y = tf.random.uniform([], 0, h, tf.int32)
# Beta dist in paper, but they used Beta(1,1) which is just uniform.
image1_proportion = tf.random.uniform([])
patch_length_ratio = tf.math.sqrt(1 - image1_proportion)
r_w = tf.cast(patch_length_ratio * tf.cast(w, tf.float32), tf.int32)
r_h = tf.cast(patch_length_ratio * tf.cast(h, tf.float32), tf.int32)
bbx1 = tf.clip_by_value(tf.cast(r_x - r_w // 2, tf.int32), 0, w)
bby1 = tf.clip_by_value(tf.cast(r_y - r_h // 2, tf.int32), 0, h)
bbx2 = tf.clip_by_value(tf.cast(r_x + r_w // 2, tf.int32), 0, w)
bby2 = tf.clip_by_value(tf.cast(r_y + r_h // 2, tf.int32), 0, h)
# Create the binary mask.
pad_left = bbx1
pad_top = bby1
pad_right = tf.maximum(w - bbx2, 0)
pad_bottom = tf.maximum(h - bby2, 0)
r_h = bby2 - bby1
r_w = bbx2 - bbx1
mask = tf.pad(
tf.ones((r_h, r_w)),
paddings=[[pad_top, pad_bottom], [pad_left, pad_right]],
mode='CONSTANT',
constant_values=0)
mask.set_shape((h, w))
return mask[..., None] # Add channel dim.
def my_cutmix(batch):
"""Cutmix."""
batch = dict(**batch)
bs = tf.shape(batch['images'])[0] // 2
mask = batch['mask'][:bs]
images = (mask * batch['images'][:bs] + (1.0 - mask) * batch['images'][bs:])
mix_labels = batch['labels'][bs:]
labels = batch['labels'][:bs]
ratio = batch['cutmix_ratio'][:bs]
return {'images': images, 'labels': labels,
'mix_labels': mix_labels, 'ratio': ratio}
def my_mixup(batch):
"""Mixup."""
batch = dict(**batch)
bs = tf.shape(batch['images'])[0] // 2
ratio = batch['mixup_ratio'][:bs, None, None, None]
images = (ratio * batch['images'][:bs] + (1.0 - ratio) * batch['images'][bs:])
mix_labels = batch['labels'][bs:]
labels = batch['labels'][:bs]
ratio = ratio[..., 0, 0, 0] # Unsqueeze
return {'images': images, 'labels': labels,
'mix_labels': mix_labels, 'ratio': ratio}
def mixup_or_cutmix(batch):
"""Randomly applies one of cutmix or mixup to a batch."""
logging.info('Randomly applying cutmix or mixup with 50% chance!')
return tf.cond(
tf.cast(tf.random.uniform([], maxval=2, dtype=tf.int32), tf.bool),
lambda: my_mixup(batch),
lambda: my_cutmix(batch))
def my_mixup_cutmix(batch):
"""Apply mixup to half the batch, and cutmix to the other."""
batch = dict(**batch)
bs = tf.shape(batch['images'])[0] // 4
mixup_ratio = batch['mixup_ratio'][:bs, None, None, None]
mixup_images = (mixup_ratio * batch['images'][:bs]
+ (1.0 - mixup_ratio) * batch['images'][bs:2*bs])
mixup_labels = batch['labels'][:bs]
mixup_mix_labels = batch['labels'][bs:2*bs]
cutmix_mask = batch['mask'][2*bs:3*bs]
cutmix_images = (cutmix_mask * batch['images'][2*bs:3*bs]
+ (1.0 - cutmix_mask) * batch['images'][-bs:])
cutmix_labels = batch['labels'][2*bs:3*bs]
cutmix_mix_labels = batch['labels'][-bs:]
cutmix_ratio = batch['cutmix_ratio'][2*bs : 3*bs]
return {'images': tf.concat([mixup_images, cutmix_images], axis=0),
'labels': tf.concat([mixup_labels, cutmix_labels], axis=0),
'mix_labels': tf.concat([mixup_mix_labels, cutmix_mix_labels], 0),
'ratio': tf.concat([mixup_ratio[..., 0, 0, 0], cutmix_ratio], axis=0)}
def _to_tfds_split(split: Split) -> tfds.Split:
"""Returns the TFDS split appropriately sharded."""
if split in (Split.TRAIN, Split.TRAIN_AND_VALID, Split.VALID):
return tfds.Split.TRAIN
else:
assert split == Split.TEST
return tfds.Split.VALIDATION
def _shard(split: Split, shard_index: int, num_shards: int) -> Tuple[int, int]:
"""Returns [start, end) for the given shard index."""
assert shard_index < num_shards
arange = np.arange(split.num_examples)
shard_range = np.array_split(arange, num_shards)[shard_index]
start, end = shard_range[0], (shard_range[-1] + 1)
if split == Split.TRAIN:
# Note that our TRAIN=TFDS_TRAIN[10000:] and VALID=TFDS_TRAIN[:10000].
offset = Split.VALID.num_examples
start += offset
end += offset
return start, end
def _preprocess_image(
image_bytes: tf.Tensor,
is_training: bool,
image_size: Sequence[int],
eval_preproc: str = 'crop_resize'
) -> tf.Tensor:
"""Returns processed and resized images."""
# NOTE: Bicubic resize (1) casts uint8 to float32 and (2) resizes without
# clamping overshoots. This means values returned will be outside the range
# [0.0, 255.0] (e.g. we have observed outputs in the range [-51.1, 336.6]).
if is_training:
image = _decode_and_random_crop(image_bytes, image_size)
image = tf.image.random_flip_left_right(image)
assert image.dtype == tf.uint8
image = tf.image.resize(image, image_size, tf.image.ResizeMethod.BICUBIC)
else:
if eval_preproc == 'crop_resize':
image = _decode_and_center_crop(image_bytes, image_size=image_size)
assert image.dtype == tf.uint8
image = tf.image.resize(image, image_size, tf.image.ResizeMethod.BICUBIC)
elif 'resize_crop' in eval_preproc:
# Pass in crop percent
crop_pct = float(eval_preproc.split('_')[-1])
image = _decode_and_resize_then_crop(image_bytes, image_size=image_size,
crop_pct=crop_pct)
else:
raise ValueError(f'Unknown Eval Preproc {eval_preproc} provided!')
return image
def _augment_image(
image: tf.Tensor,
is_training: bool,
augment_name: Optional[str] = None,
) -> tf.Tensor:
"""Applies AA/RA to an image."""
if is_training and augment_name:
if 'autoaugment' in augment_name or 'randaugment' in augment_name:
input_image_type = image.dtype
image = tf.clip_by_value(image, 0.0, 255.0)
# Autoaugment requires a uint8 image; we cast here and then cast back
image = tf.cast(image, dtype=tf.uint8)
if 'autoaugment' in augment_name:
logging.info(f'Applying AutoAugment policy {augment_name}')
image = autoaugment.distort_image_with_autoaugment(image, 'v0')
elif 'randaugment' in augment_name:
magnitude = int(augment_name.split('_')[-1]) # pytype: disable=attribute-error
# Allow passing in num_layers as a magnitude > 100
if magnitude > 100:
num_layers = magnitude // 100
magnitude = magnitude - int(num_layers * 100)
else:
num_layers = 2
logging.info(f'Applying RA {num_layers} x {magnitude}')
image = autoaugment.distort_image_with_randaugment(
image, num_layers=num_layers, magnitude=magnitude)
image = tf.cast(image, dtype=input_image_type)
return image
def _normalize_image(image: tf.Tensor) -> tf.Tensor:
"""Normalize the image to zero mean and unit variance."""
image -= tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=image.dtype)
image /= tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=image.dtype)
return image
def _distorted_bounding_box_crop(
image_bytes: tf.Tensor,
*,
jpeg_shape: tf.Tensor,
bbox: tf.Tensor,
min_object_covered: float,
aspect_ratio_range: Tuple[float, float],
area_range: Tuple[float, float],
max_attempts: int,
) -> tf.Tensor:
"""Generates cropped_image using one of the bboxes randomly distorted."""
bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(
jpeg_shape,
bounding_boxes=bbox,
min_object_covered=min_object_covered,
aspect_ratio_range=aspect_ratio_range,
area_range=area_range,
max_attempts=max_attempts,
use_image_if_no_bounding_boxes=True)
# Crop the image to the specified bounding box.
offset_y, offset_x, _ = tf.unstack(bbox_begin)
target_height, target_width, _ = tf.unstack(bbox_size)
crop_window = [offset_y, offset_x, target_height, target_width]
image = crop(image_bytes, crop_window)
return image
def _decode_and_random_crop(image_bytes: tf.Tensor,
image_size: Sequence[int] = (224, 224),
jpeg_shape: Optional[tf.Tensor] = None
) -> tf.Tensor:
"""Make a random crop of chosen size."""
if jpeg_shape is None:
jpeg_shape = get_shape(image_bytes)
bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4])
image = _distorted_bounding_box_crop(
image_bytes,
jpeg_shape=jpeg_shape,
bbox=bbox,
min_object_covered=0.1,
aspect_ratio_range=(3 / 4, 4 / 3),
area_range=(0.08, 1.0),
max_attempts=10)
if tf.reduce_all(tf.equal(jpeg_shape, tf.shape(image))):
# If the random crop failed fall back to center crop.
image = _decode_and_center_crop(image_bytes, jpeg_shape, image_size)
return image
def _decode_and_center_crop(
image_bytes: tf.Tensor,
jpeg_shape: Optional[tf.Tensor] = None,
image_size: Sequence[int] = (224, 224),
) -> tf.Tensor:
"""Crops to center of image with padding then scales."""
if jpeg_shape is None:
jpeg_shape = get_shape(image_bytes)
image_height = jpeg_shape[0]
image_width = jpeg_shape[1]
# Pad the image with at least 32px on the short edge and take a
# crop that maintains aspect ratio.
scale = tf.minimum(tf.cast(image_height, tf.float32) / (image_size[0] + 32),
tf.cast(image_width, tf.float32) / (image_size[1] + 32))
padded_center_crop_height = tf.cast(scale * image_size[0], tf.int32)
padded_center_crop_width = tf.cast(scale * image_size[1], tf.int32)
offset_height = ((image_height - padded_center_crop_height) + 1) // 2
offset_width = ((image_width - padded_center_crop_width) + 1) // 2
crop_window = [offset_height, offset_width,
padded_center_crop_height, padded_center_crop_width]
image = crop(image_bytes, crop_window)
return image
def get_shape(image_bytes):
"""Gets the image shape for jpeg bytes or a uint8 decoded image."""
if image_bytes.dtype == tf.dtypes.string:
image_shape = tf.image.extract_jpeg_shape(image_bytes)
else:
image_shape = tf.shape(image_bytes)
return image_shape
def crop(image_bytes, crop_window):
"""Helper function to crop a jpeg or a decoded image."""
if image_bytes.dtype == tf.dtypes.string:
image = tf.image.decode_and_crop_jpeg(image_bytes,
tf.stack(crop_window),
channels=3)
else:
image = tf.image.crop_to_bounding_box(image_bytes, *crop_window)
return image
def _decode_and_resize_then_crop(
image_bytes: tf.Tensor,
image_size: Sequence[int] = (224, 224),
crop_pct: float = 1.0,
) -> tf.Tensor:
"""Rescales an image to image_size / crop_pct, then center crops."""
image = tf.image.decode_jpeg(image_bytes, channels=3)
# Scale image to "scaled size" before taking a center crop
if crop_pct > 1.0: # If crop_pct is >1, treat it as num pad pixels (like VGG)
scale_size = tuple([int(x + crop_pct) for x in image_size])
else:
scale_size = tuple([int(float(x) / crop_pct) for x in image_size])
image = tf.image.resize(image, scale_size, tf.image.ResizeMethod.BICUBIC)
crop_height = tf.cast(image_size[0], tf.int32)
crop_width = tf.cast(image_size[1], tf.int32)
offset_height = ((scale_size[0] - crop_height) + 1) // 2
offset_width = ((scale_size[1] - crop_width) + 1) // 2
crop_window = [offset_height, offset_width, crop_height, crop_width]
image = crop(image, crop_window)
return image