-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathsdp8.cpp
205 lines (187 loc) · 6.25 KB
/
sdp8.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/* Copyright (C) 2018, Project Pluto. See LICENSE. */
#include <math.h>
#include "norad.h"
#include "norad_in.h"
#define tthmun params[0]
#define sini2 params[1]
#define cosi2 params[2]
#define unm5th params[3]
#define unmth2 params[4]
#define xmdt1 params[5]
#define xgdt1 params[6]
#define xhdt1 params[7]
#define xndt params[8]
#define edot params[9]
void sxpall_common_init( const tle_t *tle, deep_arg_t *deep_arg);
void sxp8_common_init( double *params, const tle_t *tle, deep_arg_t *deep_arg);
void DLL_FUNC SDP8_init( double *params, const tle_t *tle)
{
const double rho = .15696615;
const double b = tle->bstar*2./rho;
double
alpha2, b1, b2, b3, c0,
c1, c4, c5, cos2g, d1, d2, d3, d4,
d5, eeta, eta, eta2,
po, psim2, r1, tsi, xndtn;
deep_arg_t *deep_arg = ((deep_arg_t *)( params + 10));
sxpall_common_init( tle, deep_arg);
sxp8_common_init( params, tle, deep_arg);
deep_arg->sinio = sin( tle->xincl);
/* Initialization */
po = deep_arg->aodp*deep_arg->betao2;
tsi = 1./(po-s_const);
eta = tle->eo*s_const*tsi;
eta2 = eta * eta;
psim2 = (r1 = 1./(1.-eta2), fabs(r1));
alpha2 = deep_arg->eosq+1.;
eeta = tle->eo*eta;
cos2g = deep_arg->cosg * deep_arg->cosg * 2. - 1.;
d5 = tsi*psim2;
d1 = d5/po;
d2 = eta2*(eta2*4.5+36.)+12.;
d3 = eta2*(eta2*2.5+15.);
d4 = eta*(eta2*3.75+5.);
b1 = ck2*tthmun;
b2 = -ck2*unmth2;
b3 = a3ovk2*deep_arg->sinio;
r1 = tsi, r1 *= r1;
c0 = b*.5*rho*qoms2t*deep_arg->xnodp*deep_arg->aodp*
(r1*r1)*pow( psim2, 3.5)/sqrt(alpha2);
r1 = alpha2;
c1 = deep_arg->xnodp*1.5*(r1*r1)*c0;
c4 = d1*d3*b2;
c5 = d5*d4*b3;
xndt = c1*(eta2*(deep_arg->eosq*34.+3.)+2.+eeta*5.*(eta2+4.)+
deep_arg->eosq*8.5+d1*d2*b1+c4*cos2g+c5*deep_arg->sing);
xndtn = xndt/deep_arg->xnodp;
edot = -two_thirds*xndtn*(1.-tle->eo);
/* initialize Deep() */
Deep_dpinit( tle, deep_arg);
#ifdef RETAIN_PERTURBATION_VALUES_AT_EPOCH
/* initialize lunisolar perturbations: */
deep_arg->t = 0.; /* added 30 Dec 2003 */
deep_arg->solar_lunar_init_flag = 1;
Deep_dpper( tle, deep_arg);
deep_arg->solar_lunar_init_flag = 0;
#endif
} /* End of SDP8() initialization */
int DLL_FUNC SDP8( const double tsince, const tle_t *tle, const double *params,
double *pos, double *vel)
{
double
am, aovr, axnm, aynm, beta, beta2m,
cose, cosos, cs2f2g, csf, csfg, cslamb, di,
diwc, dr, ecosf, fm, g1, g10, g13, g14, g2,
g3, g4, g5, pm, r1, rdot, rm, rr, rvdot, sine,
sinos, sn2f2g, snf, snfg, sni2du, sinio2,
snlamb, temp, ux, uy, uz, vx, vy, vz, xlamb,
xmam, xmamdf, y4, y5, z1, z7, zc2, zc5;
int i;
deep_arg_t *deep_arg = ((deep_arg_t *)( params + 10));
/* Update for secular gravity and atmospheric drag */
z1 = xndt*.5*tsince*tsince;
z7 = two_thirds*3.5*z1/deep_arg->xnodp;
xmamdf = tle->xmo+deep_arg->xmdot*tsince;
deep_arg->omgadf = tle->omegao+deep_arg->omgdot*tsince+z7*xgdt1;
deep_arg->xnode = tle->xnodeo+deep_arg->xnodot*tsince+z7*xhdt1;
deep_arg->xn = deep_arg->xnodp;
/* Update for deep-space secular effects */
deep_arg->xll = xmamdf;
deep_arg->t = tsince;
Deep_dpsec( tle, deep_arg);
xmamdf = deep_arg->xll;
deep_arg->xn += xndt*tsince;
deep_arg->em += edot*tsince;
xmam = xmamdf+z1+z7*xmdt1;
/* Update for deep-space periodic effects */
deep_arg->xll = xmam;
Deep_dpper( tle, deep_arg);
xmam = deep_arg->xll;
xmam = FMod2p(xmam);
/* Solve Kepler's equation */
zc2 = xmam+deep_arg->em*sin(xmam)*(deep_arg->em*cos(xmam)+1.);
i = 0;
do
{
double cape;
sine = sin(zc2);
cose = cos(zc2);
zc5 = 1./(1.-deep_arg->em*cose);
cape = (xmam+deep_arg->em*sine-zc2)*zc5+zc2;
r1 = cape-zc2;
if (fabs(r1) <= e6a) break;
zc2 = cape;
}
while(i++ < 10);
/* Short period preliminary quantities */
am = pow( xke / deep_arg->xn, two_thirds);
beta2m = 1.f-deep_arg->em*deep_arg->em;
sinos = sin(deep_arg->omgadf);
cosos = cos(deep_arg->omgadf);
axnm = deep_arg->em*cosos;
aynm = deep_arg->em*sinos;
pm = am*beta2m;
g1 = 1./pm;
g2 = ck2*.5*g1;
g3 = g2*g1;
beta = sqrt(beta2m);
g4 = a3ovk2*.25*deep_arg->sinio;
g5 = a3ovk2*.25*g1;
snf = beta*sine*zc5;
csf = (cose-deep_arg->em)*zc5;
fm = atan2(snf, csf);
if( fm < 0.)
fm += pi + pi;
snfg = snf*cosos+csf*sinos;
csfg = csf*cosos-snf*sinos;
sn2f2g = snfg*2.*csfg;
r1 = csfg;
cs2f2g = r1*r1*2.-1.;
ecosf = deep_arg->em*csf;
g10 = fm-xmam+deep_arg->em*snf;
rm = pm/(ecosf+1.);
aovr = am/rm;
g13 = deep_arg->xn*aovr;
g14 = -g13*aovr;
dr = g2*(unmth2*cs2f2g-tthmun*3.)-g4*snfg;
diwc = g3*3.*deep_arg->sinio*cs2f2g-g5*aynm;
di = diwc*deep_arg->cosio;
sinio2 = sin(deep_arg->xinc*.5);
/* Update for short period periodics */
sni2du = sini2*(g3*((1.-deep_arg->cosio2*7.)*.5*sn2f2g-unm5th*
3.*g10)-g5*deep_arg->sinio*csfg*(ecosf+2.))-g5*.5*
deep_arg->cosio2*axnm/cosi2;
xlamb = fm+deep_arg->omgadf+deep_arg->xnode+g3*((deep_arg->cosio*6.+
1.-deep_arg->cosio2*7.)*.5*sn2f2g-(unm5th+deep_arg->cosio*2.)*
3.*g10)+g5*deep_arg->sinio*(deep_arg->cosio*axnm/
(deep_arg->cosio+1.)-(ecosf+2.)*csfg);
y4 = sinio2*snfg+csfg*sni2du+snfg*.5*cosi2*di;
y5 = sinio2*csfg-snfg*sni2du+csfg*.5*cosi2*di;
rr = rm+dr;
rdot = deep_arg->xn*am*deep_arg->em*snf/beta+g14*(g2*2.*unmth2*sn2f2g+g4*csfg);
r1 = am;
rvdot = deep_arg->xn*(r1*r1)*beta/rm+g14*dr+am*g13*deep_arg->sinio*diwc;
/* Orientation vectors */
snlamb = sin(xlamb);
cslamb = cos(xlamb);
temp = (y5*snlamb-y4*cslamb)*2.;
ux = y4*temp+cslamb;
vx = y5*temp-snlamb;
temp = (y5*cslamb+y4*snlamb)*2.;
uy = -y4*temp+snlamb;
vy = -y5*temp+cslamb;
temp = sqrt(1.-y4*y4-y5*y5)*2.;
uz = y4*temp;
vz = y5*temp;
/* Position and velocity */
pos[0] = rr*ux*earth_radius_in_km;
pos[1] = rr*uy*earth_radius_in_km;
pos[2] = rr*uz*earth_radius_in_km;
if( vel)
{
vel[0] = (rdot*ux+rvdot*vx)*earth_radius_in_km;
vel[1] = (rdot*uy+rvdot*vy)*earth_radius_in_km;
vel[2] = (rdot*uz+rvdot*vz)*earth_radius_in_km;
}
return( 0);
} /* SDP8 */