-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtesting_altered_file.py
74 lines (48 loc) · 1.74 KB
/
testing_altered_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import csv
import numpy as np
import pandas as pd
from sklearn.utils import shuffle
arra = []
with open('simulated_csv.csv') as file:
reader = csv.reader(file, delimiter=',')
a = 0
for row in reader:
if(a==0):
a+=1
continue
arr = np.array(row)
if(arr[7]==""):
arr[7]=arr[9]
if(arr[8]==""):
arr[8]=arr[10]
arr = np.delete(arr,(9,10))
arra.append(arr)
file.close()
# preprocessing this data #############################################
columns = ['frameNumber','timeRelative','frame.len','protocolNumber','protocolName','ipSrc','ipDst','srcPort','dstPort','ipDSCP','ethsrc','ethdst']
dfs = pd.DataFrame(data=arra,columns=columns)
features = ['frameNumber','timeRelative','frame.len','protocolNumber','protocolName','ipSrc','ipDst','srcPort','dstPort','ipDSCP']
X = dfs[features]
y1 = dfs['ethsrc']
y2 = dfs['ethdst']
import pickle
cat_list = pickle.load(open('cat_lists.txt','rb'))
cat_list
#Adding new values introduced in this file to previous categories respectively
cat_list[2] = np.append(cat_list[2],[341,774]) # frame len
cat_list[6] = np.append(cat_list[6],['62.210.177.42','158.69.38.240','62.210.205.141']) # ip.dst
cat_list[7] = np.append(cat_list[7],[44675,44756,45546,45547,45548,23323,23325,23326,23456]) # src.port
cat_list
enc = OrdinalEncoder(categories=cat_list,dtype=np.float64)
enc.fit(X)
X_enc = enc.transform(X)
X = pd.DataFrame(data=X_enc,columns=features)
from sklearn.preprocessing import LabelEncoder
le1 = LabelEncoder()
le1.fit(y1)
le1.classes_
le1.transform(y1)
import pickle
model = pickle.load(open('final_model.sav','rb')) # saved model
# accuracy on new data
model.score(X,y1)