参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
《代码随想录》算法视频公开课:带你学透完全背包问题! ,相信结合视频再看本篇题解,更有助于大家对本题的理解。
有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
同样leetcode上没有纯完全背包问题,都是需要完全背包的各种应用,需要转化成完全背包问题,所以我这里还是以纯完全背包问题进行讲解理论和原理。
在下面的讲解中,我依然举这个例子:
背包最大重量为4。
物品为:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
每件商品都有无限个!
问背包能背的物品最大价值是多少?
01背包和完全背包唯一不同就是体现在遍历顺序上,所以本文就不去做动规五部曲了,我们直接针对遍历顺序经行分析!
关于01背包我如下两篇已经进行深入分析了:
首先在回顾一下01背包的核心代码
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
至于为什么,我在动态规划:关于01背包问题,你该了解这些!(滚动数组)中也做了讲解。
dp状态图如下:
相信很多同学看网上的文章,关于完全背包介绍基本就到为止了。
其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?
这个问题很多题解关于这里都是轻描淡写就略过了,大家都默认 遍历物品在外层,遍历背包容量在内层,好像本应该如此一样,那么为什么呢?
难道就不能遍历背包容量在外层,遍历物品在内层?
看过这两篇的话:
就知道了,01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。
在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!
因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。
遍历物品在外层循环,遍历背包容量在内层循环,状态如图:
遍历背包容量在外层循环,遍历物品在内层循环,状态如图:
看了这两个图,大家就会理解,完全背包中,两个for循环的先后循序,都不影响计算dp[j]所需要的值(这个值就是下标j之前所对应的dp[j])。
先遍历背包在遍历物品,代码如下:
// 先遍历背包,再遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
for(int i = 0; i < weight.size(); i++) { // 遍历物品
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
cout << endl;
}
完整的C++测试代码如下:
// 先遍历物品,在遍历背包
void test_CompletePack() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagWeight = 4;
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
test_CompletePack();
}
// 先遍历背包,再遍历物品
void test_CompletePack() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagWeight = 4;
vector<int> dp(bagWeight + 1, 0);
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
for(int i = 0; i < weight.size(); i++) { // 遍历物品
if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
test_CompletePack();
}
细心的同学可能发现,全文我说的都是对于纯完全背包问题,其for循环的先后循环是可以颠倒的!
但如果题目稍稍有点变化,就会体现在遍历顺序上。
如果问装满背包有几种方式的话? 那么两个for循环的先后顺序就有很大区别了,而leetcode上的题目都是这种稍有变化的类型。
这个区别,我将在后面讲解具体leetcode题目中给大家介绍,因为这块如果不结合具题目,单纯的介绍原理估计很多同学会越看越懵!
别急,下一篇就是了!哈哈
最后,又可以出一道面试题了,就是纯完全背包,要求先用二维dp数组实现,然后再用一维dp数组实现,最后在问,两个for循环的先后是否可以颠倒?为什么? 这个简单的完全背包问题,估计就可以难住不少候选人了。
Java:
//先遍历物品,再遍历背包
private static void testCompletePack(){
int[] weight = {1, 3, 4};
int[] value = {15, 20, 30};
int bagWeight = 4;
int[] dp = new int[bagWeight + 1];
for (int i = 0; i < weight.length; i++){ // 遍历物品
for (int j = weight[i]; j <= bagWeight; j++){ // 遍历背包容量
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
for (int maxValue : dp){
System.out.println(maxValue + " ");
}
}
//先遍历背包,再遍历物品
private static void testCompletePackAnotherWay(){
int[] weight = {1, 3, 4};
int[] value = {15, 20, 30};
int bagWeight = 4;
int[] dp = new int[bagWeight + 1];
for (int i = 1; i <= bagWeight; i++){ // 遍历背包容量
for (int j = 0; j < weight.length; j++){ // 遍历物品
if (i - weight[j] >= 0){
dp[i] = Math.max(dp[i], dp[i - weight[j]] + value[j]);
}
}
}
for (int maxValue : dp){
System.out.println(maxValue + " ");
}
}
Python:
# 先遍历物品,再遍历背包
def test_complete_pack1():
weight = [1, 3, 4]
value = [15, 20, 30]
bag_weight = 4
dp = [0]*(bag_weight + 1)
for i in range(len(weight)):
for j in range(weight[i], bag_weight + 1):
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
print(dp[bag_weight])
# 先遍历背包,再遍历物品
def test_complete_pack2():
weight = [1, 3, 4]
value = [15, 20, 30]
bag_weight = 4
dp = [0]*(bag_weight + 1)
for j in range(bag_weight + 1):
for i in range(len(weight)):
if j >= weight[i]: dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
print(dp[bag_weight])
if __name__ == '__main__':
test_complete_pack1()
test_complete_pack2()
Go:
// test_CompletePack1 先遍历物品, 在遍历背包
func test_CompletePack1(weight, value []int, bagWeight int) int {
// 定义dp数组 和初始化
dp := make([]int, bagWeight+1)
// 遍历顺序
for i := 0; i < len(weight); i++ {
// 正序会多次添加 value[i]
for j := weight[i]; j <= bagWeight; j++ {
// 推导公式
dp[j] = max(dp[j], dp[j-weight[i]]+value[i])
// debug
//fmt.Println(dp)
}
}
return dp[bagWeight]
}
// test_CompletePack2 先遍历背包, 在遍历物品
func test_CompletePack2(weight, value []int, bagWeight int) int {
// 定义dp数组 和初始化
dp := make([]int, bagWeight+1)
// 遍历顺序
// j从0 开始
for j := 0; j <= bagWeight; j++ {
for i := 0; i < len(weight); i++ {
if j >= weight[i] {
// 推导公式
dp[j] = max(dp[j], dp[j-weight[i]]+value[i])
}
// debug
//fmt.Println(dp)
}
}
return dp[bagWeight]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func main() {
weight := []int{1, 3, 4}
price := []int{15, 20, 30}
fmt.Println(test_CompletePack1(weight, price, 4))
fmt.Println(test_CompletePack2(weight, price, 4))
}
Javascript:
// 先遍历物品,再遍历背包容量
function test_completePack1() {
let weight = [1, 3, 5]
let value = [15, 20, 30]
let bagWeight = 4
let dp = new Array(bagWeight + 1).fill(0)
for(let i = 0; i <= weight.length; i++) {
for(let j = weight[i]; j <= bagWeight; j++) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])
}
}
console.log(dp)
}
// 先遍历背包容量,再遍历物品
function test_completePack2() {
let weight = [1, 3, 5]
let value = [15, 20, 30]
let bagWeight = 4
let dp = new Array(bagWeight + 1).fill(0)
for(let j = 0; j <= bagWeight; j++) {
for(let i = 0; i < weight.length; i++) {
if (j >= weight[i]) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])
}
}
}
console.log(2, dp);
}
TypeScript:
// 先遍历物品,再遍历背包容量
function test_CompletePack(): void {
const weight: number[] = [1, 3, 4];
const value: number[] = [15, 20, 30];
const bagSize: number = 4;
const dp: number[] = new Array(bagSize + 1).fill(0);
for (let i = 0; i < weight.length; i++) {
for (let j = weight[i]; j <= bagSize; j++) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
console.log(dp);
}
test_CompletePack();
Scala:
// 先遍历物品,再遍历背包容量
object Solution {
def test_CompletePack() {
var weight = Array[Int](1, 3, 4)
var value = Array[Int](15, 20, 30)
var baseweight = 4
var dp = new Array[Int](baseweight + 1)
for (i <- 0 until weight.length) {
for (j <- weight(i) to baseweight) {
dp(j) = math.max(dp(j), dp(j - weight(i)) + value(i))
}
}
dp(baseweight)
}
}