-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgifflar_lm_tt.py
215 lines (174 loc) · 6.98 KB
/
gifflar_lm_tt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from pathlib import Path
from collections import defaultdict
from gifflar.grammar.GIFFLARLexer import GIFFLARLexer
from gifflar.grammar.GIFFLARParser import GIFFLARParser
from antlr4 import InputStream, CommonTokenStream
import transformers
from transformers import PreTrainedTokenizerFast, DataCollatorForLanguageModeling, EsmConfig, EsmForMaskedLM, Trainer, TrainingArguments
from tokenizers import Tokenizer, NormalizedString, PreTokenizedString, pre_tokenizers, Encoding
from tokenizers.models import BPE, Unigram, WordPiece
from tokenizers.pre_tokenizers import Whitespace
from tokenizers.trainers import BpeTrainer, UnigramTrainer, WordPieceTrainer
from datasets import load_dataset
from tokenizers import models, normalizers, processors
import tokenizers
import random
MAX_LENGTH = 200
random.seed(42)
class TokenizerGIFFLAR(PreTrainedTokenizerFast):
def __init__(self, base_vocab: list[str] | Path | str | None = None, *args, **kwargs):
super(TokenizerGIFFLAR, self).__init__(tokenizer_object=Tokenizer(models.Model()), *args, **kwargs)
self.cls_token = "[CLS]"
self.bos_token = "[BOS]"
self.unk_token = "[UNK]"
self.sep_token = "[SEP]"
self.mask_token = "[MASK]"
self.eos_token = "[EOS]"
self.pad_token = "[PAD]"
self.vocab_ = {}
if base_vocab is not None:
if not isinstance(base_vocab, list):
with open(base_vocab, "r") as f:
base_vocab = [v.strip() for v in f.readlines()]
self.vocab_.update({v: i for i, v in enumerate(base_vocab)})
self.mergers_ = {}
@property
def vocab_size(self):
return len(self.vocab_)
@property
def cls_token_id(self):
return len(self.vocab_)
@property
def bos_token_id(self):
return len(self.vocab_) + 1
@property
def unk_token_id(self):
return len(self.vocab_) + 2
@property
def sep_token_id(self):
return len(self.vocab_) + 3
@property
def mask_token_id(self):
return len(self.vocab_) + 4
@property
def eos_token_id(self):
return len(self.vocab_) + 5
@property
def pas_token_id(self):
return len(self.vocab_) + 6
def __len__(self):
return len(self.vocab_)
def _gifflar_pre_tokenize(self, iupac):
iuapc = iupac.strip().replace(" ", "")
token = CommonTokenStream(GIFFLARLexer(InputStream(data="{" + iupac + "}")))
GIFFLARParser(token).start()
return [t.text for t in token.tokens[1:-2]]
def _merge(self, tokens):
pass
def train_bpe(self, corpus):
pass
def __call__(self, text, *args, **kwargs):
tokens = self._gifflar_pre_tokenize(text)
input_ids = []
token_type_ids = []
attention_mask = []
for token in tokens:
input_ids.append(self.vocab_[token])
token_type_ids.append(0)
attention_mask.append(1)
return transformers.tokenization_utils_base.BatchEncoding({
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'attention_mask': attention_mask,
})
def bpe_compute_pair_freqs(splits, corpus):
pair_freqs = defaultdict(int)
for word in corpus:
split = splits[word]
if len(split) == 1:
continue
for i in range(len(split) - 1):
pair = (split[i], split[i + 1])
pair_freqs[pair] += 1
return pair_freqs
def bpe_merge_pair_gpt(a, b, splits, corpus):
merge_token = a + b[2:] if b[:2] == "##" else a + b
new_freqs = defaultdict(int)
for word in corpus:
tokens = splits[word]
for i in range(len(tokens)):
if i < len(tokens) - 1:
# Check if the current pair is (a, b)
if tokens[i] == a and tokens[i + 1] == b:
# Merge the pair
tokens = tokens[:i] + [merge_token] + tokens[i + 2:]
# Update frequencies on the go if there's at least one token in new_tokens
if 0 < i <= len(tokens) - 1:
new_freqs[(tokens[i - 1], tokens[i])] += 1
# Update the tokenization for the current word
splits[word] = tokens
return splits, new_freqs, merge_token
def bpe_merge_pair(a, b, splits, corpus, freqs):
merge = a + b[2:] if b[:2] == "##" else a + b
del_freqs = set()
del_freqs.add((a, b))
for word in corpus:
split = splits[word]
if len(split) == 1:
continue
i = 0
while i < len(split) - 1:
if split[i] == a and split[i + 1] == b:
split = split[:i] + [merge] + split[i + 2:]
if i > 0:
freqs[(split[i - 1], merge)] += 1
freqs[(split[i - 1], a)] -= 1
if freqs[(split[i - 1], a)] <= 0:
del_freqs.add((split[i - 1], a))
if i < len(split) - 1:
freqs[(merge, split[i + 1])] += 1
freqs[(b, split[i + 1])] -= 1
if freqs[(b, split[i + 1])] <= 0:
del_freqs.add((b, split[i + 1]))
#if split[i] in a or (i < len(split) - 1 and split[i + 1] == b):
# freqs[(split[i], split[i + 1])] += 1
i += 1
splits[word] = split
# print(del_freqs)
for pair in del_freqs:
if freqs[*pair] <= 0 or pair == (a, b):
del freqs[*pair]
return splits, freqs
def bpe(token_path="gifflar/grammar/tokens.txt", corpus_path="glycans_1000.txt", num_token: int = 50):
with open(token_path, "r") as f:
base_vocab = [v.strip() for v in f.readlines()]
with open(corpus_path, "r") as f:
corpus = [line.strip().replace(" ", "") for line in f.readlines()]
splits = {word: tg._gifflar_pre_tokenize(word) for word in corpus}
vocab_size = num_token + len(base_vocab)
merges = {}
pair_freqs = bpe_compute_pair_freqs(splits, corpus)
while len(base_vocab) < vocab_size:
best_pair, max_freq = "", None
for pair, freq in pair_freqs.items():
if max_freq is None or max_freq < freq:
best_pair = pair
max_freq = freq
splits, pair_freqs, merge_token = bpe_merge_pair_gpt(*best_pair, splits, corpus)
merges[best_pair] = merge_token
base_vocab.append(merge_token)
return base_vocab, merges
def bpe_tokenize(text, merges):
splits = tg._gifflar_pre_tokenize(text)
for pair, merge in merges.items():
i = 0
while i < len(splits) - 1:
if splits[i] == pair[0] and splits[i + 1] == pair[1]:
splits = splits[:i] + [merge] + splits[i + 2 :]
else:
i += 1
return splits
tg = TokenizerGIFFLAR("gifflar/grammar/tokens.txt")
base_vocab_test, merges_test = bpe(corpus_path="data/pretrain/glycans_100.txt", num_token=50)
print(bpe_tokenize("NeuNAc(a2-3)Gal(b1-4)GlcNAc(b1-2)Man(a1-3)[Man(a1-3)Man(a1-6)]Man(b1-4)GlcNAc(b1-4)GlcNAc",
merges_test))