RSA is our first asymmetric key encryption algorithm, meaning the key used for encryption is different than the key used for decryption. In order to encrypt/decrypt with RSA and pull off the various attacks on this algorithm, we need to be comfortable with modular arithmetic in python first.
A Note on Notation
ℤ refers to the set of integers.
ℝ refers to the set of real numbers.
Quotient Remainder Theorem
For every integer a and every positive integer b, there exists unique q,r ∈ ℤ such that
a = b⋅q + r 0 ≤ r < b. So when we take a (mod b), we get r.
Addition of two integers (mod n)
a + b (mod n) ≡ (a (mod n) + b (mod n)) (mod n)
Multiplication of two integers (mod n)
a ⋅ b (mod n) ≡ (a (mod n) ⋅ b (mod n)) (mod n)
Subtraction (or the Additive Inverse)
When we are dealing with real numbers, and we compute a - b, we are also doing
a + (-b). But negative numbers aren't in our range from 0 ≤ x < n, where
n is our modulus. If 0 ≤ b < n, then -b = n - b, and instead of
subtracting we can add (-b).
If we take n = 30, and we take powers of 29 (mod n), what pattern do you see?
The Greatest Common Divisor (GCD)
The GCD(a, b) a, b ∈ ℤ is the largest integer that divides both a and b.
To calculate the GCD in python we can use
#this is a must have when doing a Crypto Challenge
from Crypto.Util.number import *
a = 6
b = 2
print(GCD(a, b))
> 2
The calculation of the GCD using this function is done in O(log(N)) time, where N is the size of the number (in bits). This fact is extremely powerful since RSA uses massive numbers, and we have a very finite amount of time to crack these CTF problems.
Here's a fact about the GCD of two numbers.
For a, b ∈ ℤ we can find x,y ∈ ℤ such that
x⋅a + y⋅b = GCD(a, b)
This fact matters to calculating the multiplicative inverse of a mod n. This inverse, which we will call s, is a number such that
s⋅a ≡ 1 (mod n).
Now, suppose we have integers a and b, and the GCD(a, b) = 1.
We can then find x and y that satisfies
x⋅a + y⋅b = 1
Now, what's the inverse of a mod b?
We take both sides of our equation mod b.
x⋅a (mod b) + y⋅b (mod b) ≡ 1 (mod b)
x⋅a (mod b) + 0 ≡ 1 (mod b)
x⋅a ≡ 1 (mod b)
So x is our inverse!
Okay, so how do we compute it in python?
from Crypto.Util.number import *
a = 7 # the number we want to find the inverse of
b = 30 # our modulus
print(inverse(7, 30))
> 13
a = 6
b = 12
print(inverse(6, 12))
> 1 # ??? Why is this the case???
What is Euler's Totient Function?
Euler's Totient Function, denoted by Φ(n), is how many numbers less than n that are relatively prime to n.
What does relatively prime mean?
Two numbers are relatively prime if they share no common factors, so their GCD is 1
In RSA, we will mainly be concerned about Φ(n) where n is a prime, and the there are n - 1 integers less than n that do not share a factor with n.
So Φ(n) = n - 1
Also Φ(p⋅q) = (p - 1)⋅(q - 1), when p and q are prime.
Euler's Theorem
For any integer a, aΦ(n) (mod n) = 1
^^^This is huge, it's the reason that RSA works!
The Affine Cipher is a function that maps plaintext characters to ciphertext characters by taking a⋅x + b (mod n), where the GCD(a, n) = 1, for each plaintext character x. n is the size of the alphabet you are using. So if you are using lowercase letters as your alphabet n = 26 and a = 0, b = 1, etc.
Here's a flag encrypted with the Affine Cipher ciphertext.txt
- Choose two large primes p and q, the choice of primes is important
- Calculate N = p⋅q and Φ = (p - 1)(q - 1)
- Choose an exponent e, such that GCD(e, Φ) = 1. This is usually 65537
- Calculate your decryption exponent d = e-1 (mod Φ)
- Your public key is (N, e) which you publish to the world
- d is your private key, never publish that (or any of p, q, and Φ)!
To encrypt your plaintext, p, you first convert p to an integer. Then the
ciphertext, c = pe (mod n).
To decrypt a ciphertext c, when you have d, p = cd (mod n), then convert p to a string.
Now send and decrypt over slack, with this key!
print(key.e)
>65537
print(key.n)
>119546758637783075126820852310213183956028506278962788973539167421549816563740172946126536868890831621992587470355427694792841749824799477393973846219705980373048973271453203719080512002915967988824996746065131197955540220010933957159761229668255226945159229475684131563512438308228380645250009471577548499359
print(key.p)
>9893370682145942967026953572091664340426935959057317402278437220088945657441992951731943880502868000786284031860973857263807191155029855499978170975388237
print(key.q)
>12083521630653439426834660791911602530882615669910573863030084061323641858216244992435837350517030764744721186399209888543665171595454805925781521368734107
If we are given multiple moduli, it's a good idea to check the GCD of the modulus, to see common factors. Since GCD is O(log(N)) complexity checking for common factors is MUCH faster than manual factoring!
Related Challenge:
from Crypto.Util.number import *
from secret import flag
modulus_list = [143786356117385195355522728814418684024129402954309769186869633376407480449846714776247533950484109173163811708549269029920405450237443197994941951104068001708682945191370596050916441792714228818475059839352105948003874426539429621408867171203559281132589926504992702401428910240117807627890055235377744541913L,
73988726804584255779346831019194873108586184186524793132656027600961771331094234332693404730437468912329694216269372797532334390363774803642809945268154324370355113538927414351037561899998734391507272602074924837440885467211134022878597523920836541794820777951492188067045604789153534513271406458984968338509L,
95666403279611361071535593067846981517930129087906362381453835849857496766736720885263927273295086034390557353492037703154353541274448884795437287235560639118986397838850340017834752502157881329960725771502503917735194236743345777337851076649842634506339513864285786698870866229339372558162315435127197444193L,
119235191922699211973494433973985286182951917872084464216722572875998345005104112625024274855529546680909781406076412741844254205002739352725207590519921992295941563460138887173402493503653397592300336588721082590464192875253265214253650991510709511154297580284525736720396804660126786258245028204861220690641L]
e = [114194L, 130478L, 122694L, 79874L]
message = bytes_to_long(flag)
ciphertext = [pow(message, e[i], modulus_list[i]) for i in range(4)]
ciphertext = [long_to_bytes(ciphertext[i]) for i in range(4)]
ciphertext = [ciphertext[i].encode("hex") for i in range(4)]
obj1 = open("ciphertext.txt",'w')
obj1.write(str(ciphertext))
Fermat's Factorization algorithm works decently for moduli that are composed of close primes.
#gmpy2 is pretty cool for RSA
#replacing the math library functions with gmpy2 functions makes it work
#for larger numbers
import gmpy2
import math
def fermat(n):
x = math.ceil(math.sqrt(n))
y = x**2 - n
while not math.sqrt(y).is_integer():
x += 1
y = x**2 - n
return x + math.sqrt(y), x - math.sqrt(y)
You can't crack RSA if you don't know the modulus, or the exponent ... right??
HINTS
GCD is really cool, really fast, really powerful.
Quotient remainder theorem is even cooler.
print(pt1)
>'RIP Jimmy Johns, you will be missed'
print(pt2)
>'RSAyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy'
print(pow(pt1, e, N))
> 37136243312715194902825584928406235525283657682725727003721902911865685912699457626719275624510200759546830788626751812490141990006185681291468792820791075087727683924995491234509081293131153108046492280906609660584225561342162738122131612475572515001081095045610089483419744190651486880693292444259126406227
print(pow(pt2, e, N))
> 92027579278568818255866803849226126628098931474043114856529263276899076120611074244237998936731276676799838109285541616227085388842702382089431528878948787830838701877990669907443292252823133095465973136139733409428610250070275480695447688980536659354404589985676637375480254742562779684329642271419871247070
print(pow(bytes_to_long(flag), e, N))
> 89896527191363342552285596608328113231337146238965456851235282108365490243543109572523985741155824590398146282394405103311919137006124962265604354222740776721552722681294226978405640606005849483021299844407142233753224229166231183549470003898396317815700071757576809381179354037743498756899618484854570966413
I encrypted my flag twice with different encryption exponents, because it's more secure that way... I think.
Hints
There's a neat fact about the GCD of two numbers in the notes
Do you remember the properties of exponents?
#ct1 is encrypted with e1 and ct2 is encrypted with e2
ct1 = 86486974605436968323225664985717643937987648757532515394390546902377379148034323381259080363032530579939303607082465244569495111587800086263169077916240903627802377995094121218002515685344843494874850133287531008426469547647946934275225168919273373760375157066647910419425494640591728148959728201587576063033
ct2 = 13046866468973144131848665810111029526334655294930955471433017698268816761298194393342098962617466436503366899286273740670935308591431539568926586925720313096145172525548956205569769512971414246385086867194340769520382101558334593411134344494478733657007131885588111064288264224746453182012169946178930796791
e1 = 13
e2 = 15
N = 103109065902334620226101162008793963504256027939117020091876799039690801944735604259018655534860183205031069083254290258577291605287053538752280231959857465853228851714786887294961873006234153079187216285516823832102424110934062954272346111907571393964363630079343598511602013316604641904852018969178919051627
- Intro to RSA
- Sign
- Small N
- Dr RSA and the Multiprimes of Madness
- Mersenne-d It
- Magnolia