diff --git a/.github/workflows/primary.yml b/.github/workflows/primary.yml index b674ae321..f7ee7649c 100644 --- a/.github/workflows/primary.yml +++ b/.github/workflows/primary.yml @@ -10,6 +10,7 @@ on: - ".github/workflows/primary.yml" branches: - canary + workflow_dispatch: {} concurrency: group: ${{ github.workflow }}-${{ github.ref }} diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml index b58a9eaf5..bfde59405 100644 --- a/.github/workflows/release.yml +++ b/.github/workflows/release.yml @@ -11,9 +11,12 @@ concurrency: cancel-in-progress: true permissions: - contents: read + contents: write id-token: write - +env: + DEBUG: napi:* + APP_NAME: baml + MACOSX_DEPLOYMENT_TARGET: "10.13" jobs: build-wasm: runs-on: ubuntu-latest @@ -39,7 +42,7 @@ jobs: uses: actions/setup-node@v3 with: cache: "pnpm" - node-version: 18 + node-version: 20 cache-dependency-path: | typescript/**/pnpm-lock.yaml - name: Install Dependencies @@ -63,7 +66,8 @@ jobs: uses: actions/upload-artifact@v4 with: name: baml-vscode.vsix - path: typescript/vscode-ext/packages/baml-${{ steps.build.outputs.version }}.vsix + path: typescript/vscode-ext/packages/baml-extension-${{ steps.build.outputs.version }}.vsix + if-no-files-found: error # Upload the artifact (helpful for debugging and manual downloads) - name: Upload VSCode Extension Artifact @@ -71,6 +75,7 @@ jobs: with: name: baml-out path: typescript/vscode-ext/packages/vscode/out + if-no-files-found: error # upload the lang server artifact - name: Upload VSCode Lang Server Extension Artifact @@ -78,12 +83,14 @@ jobs: with: name: language-server path: typescript/vscode-ext/packages/language-server/out + if-no-files-found: error - name: VSCode Playground Artifact uses: actions/upload-artifact@v4 with: name: vscode-playground path: typescript/vscode-ext/packages/web-panel/dist + if-no-files-found: error build-release: strategy: @@ -99,9 +106,10 @@ jobs: # host: windows-latest # node_build: pnpm build --target aarch64-pc-windows-msvc - - target: aarch64-unknown-linux-gnu - host: ubuntu-latest - node_build: pnpm build --target aarch64-unknown-linux-gnu --use-napi-cross + # maturin doesn't support aarch64-linux-gnu + # - target: aarch64-unknown-linux-gnu + # host: ubuntu-latest + # node_build: pnpm build --target aarch64-unknown-linux-gnu --use-napi-cross - target: x86_64-apple-darwin host: macos-latest @@ -135,7 +143,6 @@ jobs: cache: pnpm cache-dependency-path: | engine/language_client_typescript/pnpm-lock.yaml - typescript/**/pnpm-lock.yaml # Install rust - uses: dtolnay/rust-toolchain@stable with: @@ -206,8 +213,9 @@ jobs: python-version: "3.8" - uses: actions/download-artifact@v4 with: - name: wheels-* + pattern: wheels-* + - run: mkdir dist && mv wheels-*/* dist # authz is managed via OIDC configured at https://pypi.org/manage/project/baml-py/settings/publishing/ # it is pinned to this github actions filename, so renaming this file is not safe!! - name: Publish package to PyPI @@ -218,6 +226,8 @@ jobs: environment: release needs: [build-release, build-wasm] runs-on: ubuntu-latest + env: + NODE_AUTH_TOKEN: ${{ secrets.NPM_TOKEN }} steps: - uses: actions/checkout@v4 - uses: actions/setup-node@v4 @@ -245,7 +255,8 @@ jobs: - uses: actions/download-artifact@v4 with: - name: bindings-* + pattern: bindings-* + path: engine/language_client_typescript/artifacts - name: create npm dirs run: pnpm napi create-npm-dirs @@ -259,68 +270,76 @@ jobs: if: ${{ !startsWith(github.ref, 'refs/tags/test-release') }} run: | npm publish --access public + working-directory: engine/language_client_typescript env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} NPM_TOKEN: ${{ secrets.NPM_TOKEN }} - publish-vscode: - environment: release - needs: [build-release, build-wasm] - if: ${{ !startsWith(github.ref, 'refs/tags/test-release') }} + # publish-vscode: + # environment: release + # needs: [build-release, build-wasm] + # if: ${{ !startsWith(github.ref, 'refs/tags/test-release') }} + # runs-on: ubuntu-latest + # steps: + # - uses: actions/checkout@v4 + + # # Get all the artifacts + # - name: Get artifact + # uses: actions/download-artifact@v4 + # with: + # name: baml-vscode.vsix + # path: typescript/vscode-ext/packages + # - name: Get artifact + # uses: actions/download-artifact@v4 + # with: + # name: baml-out + # path: typescript/vscode-ext/packages/vscode/out + # - name: Get artifact + # uses: actions/download-artifact@v4 + # with: + # name: language-server + # path: typescript/vscode-ext/packages/language-server/out + # - name: Get artifact + # uses: actions/download-artifact@v4 + # with: + # pattern: vscode-playground + # path: typescript/vscode-ext/packages/web-panel/dist + + # - name: setup pnpm + # uses: pnpm/action-setup@v3 + # with: + # version: 9.0.6 + # package_json_file: typescript/package.json + # run_install: false + # # Set up Node.js + # - name: Setup Node.js + # uses: actions/setup-node@v3 + # with: + # cache: "pnpm" + # node-version: 20 + # cache-dependency-path: typescript/pnpm-lock.yaml + + # - name: Install Dependencies + # run: pnpm install --frozen-lockfile + # working-directory: typescript/ + # - name: Publish + # if: ${{ !startsWith(github.ref, 'refs/tags/test-release') }} + # run: | + # pnpm run vscode:publish --no-git-tag-version -p ${{ secrets.VSCODE_PAT }} + # working-directory: typescript/vscode-ext/packages + + release-github: runs-on: ubuntu-latest + needs: [publish-to-pypi, publish-to-npm] steps: - uses: actions/checkout@v4 - # Get all the artifacts - - name: Get artifact - uses: actions/download-artifact@v4 - with: - name: baml-vscode.vsix - path: typescript/vscode-ext/packages - - name: Get artifact - uses: actions/download-artifact@v4 - with: - name: baml-out - path: typescript/vscode-ext/packages/vscode/out - - name: Get artifact - uses: actions/download-artifact@v4 - with: - name: language-server - path: typescript/vscode-ext/packages/language-server/out - - name: Get artifact - uses: actions/download-artifact@v4 - with: - name: vscode-playground - path: typescript/vscode-ext/packages/web-panel/dist - - # Set up Node.js - - name: Setup Node.js - uses: actions/setup-node@v3 - with: - cache: "pnpm" - node-version: 18 - cache-dependency-path: typescript/pnpm-lock.yaml - - - name: Install Dependencies - run: pnpm install --frozen-lockfile - working-directory: typescript/ - - name: Publish - if: ${{ !startsWith(github.ref, 'refs/tags/test-release') }} + - name: Get Changelog + id: latest_release run: | - pnpm run vscode:publish --pre-release --no-git-tag-version -p ${{ secrets.VSCODE_PAT }} - working-directory: typescript/vscode-ext/packages - - release-github: - runs-on: ubuntu-latest - needs: [publish-to-pypi, publish-to-npm, publish-vscode] - steps: - - name: Build Changelog - id: github_release - uses: mikepenz/release-changelog-builder-action@v4 - env: - GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} + echo "::set-output name=changelog::$(awk '/^## \[/{if (p) exit; p=1} p' CHANGELOG.md)" - name: Create Release - uses: mikepenz/action-gh-release@v0.2.0-a03 #softprops/action-gh-release + uses: mikepenz/action-gh-release@v1 #softprops/action-gh-release with: - body: ${{steps.github_release.outputs.changelog}} + body: ${{steps.latest_release.outputs.changelog}} diff --git a/.gitignore b/.gitignore index 15e8215d2..a82d4d444 100644 --- a/.gitignore +++ b/.gitignore @@ -122,6 +122,10 @@ $RECYCLE.BIN/ /dist /node_modules /out/ +engine/language_client_typescript/*.d.ts +engine/language_client_typescript/*.d.ts.map +engine/language_client_typescript/*.js +!engine/language_client_typescript/cli.js engine/language_client_ruby/**/*.bundle engine/target/ Cargo.lock diff --git a/CHANGELOG.md b/CHANGELOG.md new file mode 100644 index 000000000..a96417897 --- /dev/null +++ b/CHANGELOG.md @@ -0,0 +1,110 @@ +# Changelog + +All notable changes to this project will be documented in this file. See [conventional commits](https://www.conventionalcommits.org/) for commit guidelines. + +## [0.45.0](https://github.com/boundaryml/baml/compare/0.44.0..0.45.0) - 2024-06-29 + +### Bug Fixes + +- Fixed streaming in Python Client which didn't show result until later (#726) - ([e4f2daa](https://github.com/boundaryml/baml/commit/e4f2daa9e85bb1711d112fb0c87c0d769be0bb2d)) - Anish Palakurthi +- Improve playground stability on first load (#732) - ([2ac7b32](https://github.com/boundaryml/baml/commit/2ac7b328e89400cba0d9eb4f6d09c6a03feb71a5)) - Anish Palakurthi +- Add improved static analysis for jinja (#734) - ([423faa1](https://github.com/boundaryml/baml/commit/423faa1af5a594b7f78f7bb5620e3146a8989da5)) - hellovai + +### Documentation + +- Docs for Dynamic Types (#722) [https://docs.boundaryml.com/docs/calling-baml/dynamic-types](https://docs.boundaryml.com/docs/calling-baml/dynamic-types) + +### Features + +- Show raw cURL request in Playground (#723) - ([57928e1](https://github.com/boundaryml/baml/commit/57928e178549cb3e5118ce374aab5d0fbad7038b)) - Anish Palakurthi +- Support bedrock as a provider (#725) - ([c64c665](https://github.com/boundaryml/baml/commit/c64c66522a1d496493a30f593103209acd201364)) - Samuel Lijin + +## [0.44.0](https://github.com/boundaryml/baml/compare/0.43.0..0.44.0) - 2024-06-26 + +### Bug Fixes +- Fix typebuilder for random enums (#721) + +## [0.43.0](https://github.com/boundaryml/baml/compare/0.42.0..0.43.0) - 2024-06-26 + +### Bug Fixes +- fix pnpm lockfile issue (#720) + +## [0.42.0](https://github.com/boundaryml/baml/compare/0.41.0..0.42.0) - 2024-06-26 + +### Bug Fixes + +- correctly propagate LICENSE to baml-py (#695) - ([3fda880](https://github.com/boundaryml/baml/commit/3fda880bf39b32191b425ae75e8b491d10884cf6)) - Samuel Lijin + +### Miscellaneous Chores + +- update jsonish readme (#685) - ([b19f04a](https://github.com/boundaryml/baml/commit/b19f04a059ba18d54544cb278b6990b95170d3f3)) - Samuel Lijin + +### Vscode + +- add link to tracing, show token counts (#703) - ([64aa18a](https://github.com/boundaryml/baml/commit/64aa18a9cc34071655141c8f6e2ad04ac90e7be1)) - Samuel Lijin + +## [0.41.0] - 2024-06-20 + +### Bug Fixes + +- rollback git lfs, images broken in docs rn (#534) - ([6945506](https://github.com/boundaryml/baml/commit/694550664fa45b5f76987e2663c9d7e7a9a6a2d2)) - Samuel Lijin +- search for markdown blocks correctly (#641) - ([6b8abf1](https://github.com/boundaryml/baml/commit/6b8abf1ccf55bbe7c3bc1046c78081126e01f134)) - Samuel Lijin +- restore one-workspace-per-folder (#656) - ([a464bde](https://github.com/boundaryml/baml/commit/a464bde566199ace45285a78a7f542cd7217fb65)) - Samuel Lijin +- ruby generator should be ruby/sorbet (#661) - ([0019f39](https://github.com/boundaryml/baml/commit/0019f3951b8fe2b49e62eb11d869516b8088e9cb)) - Samuel Lijin +- ruby compile error snuck in (#663) - ([0cb2583](https://github.com/boundaryml/baml/commit/0cb25831788eb8b3eb0a38383917f6d1ffb5633a)) - Samuel Lijin + +### Documentation + +- add typescript examples (#477) - ([532481c](https://github.com/boundaryml/baml/commit/532481c3df4063b37a8834a5fe2bbce3bb37d2f5)) - Samuel Lijin +- add titles to code blocks for all CodeGroup elems (#483) - ([76c6b68](https://github.com/boundaryml/baml/commit/76c6b68b27ee37972fa226be0b4dfe31f7b4b5ec)) - Samuel Lijin +- add docs for round-robin clients (#500) - ([221f902](https://github.com/boundaryml/baml/commit/221f9020d850e6d24fe2fd8a684081726a0659af)) - Samuel Lijin +- add ruby example (#689) - ([16e187f](https://github.com/boundaryml/baml/commit/16e187f6698a1cc86a37eedf2447648d810370ad)) - Samuel Lijin + +### Features + +- implement `baml version --check --output json` (#444) - ([5f076ac](https://github.com/boundaryml/baml/commit/5f076ace1f92dc2141b231c9e62f4dc23f7fef18)) - Samuel Lijin +- show update prompts in vscode (#451) - ([b66da3e](https://github.com/boundaryml/baml/commit/b66da3ee355fcd6a8677d834ecb05af44cbf8f20)) - Samuel Lijin +- add tests to check that baml version --check works (#454) - ([be1499d](https://github.com/boundaryml/baml/commit/be1499dfa82ff8ab923a16d45290758120d95015)) - Samuel Lijin +- parse typescript versions in version --check (#473) - ([b4b2250](https://github.com/boundaryml/baml/commit/b4b2250c37b900db899256159bbfc3aa2ec819cb)) - Samuel Lijin +- implement round robin client strategies (#494) - ([599fcdd](https://github.com/boundaryml/baml/commit/599fcdd2a45c5b1e935f36769784ca944566b88c)) - Samuel Lijin +- add integ-tests support to build (#542) - ([f59cf2e](https://github.com/boundaryml/baml/commit/f59cf2e1a9ec7edbe174f4bc7ff9391f2cff3208)) - Samuel Lijin +- make ruby work again (#650) - ([6472bec](https://github.com/boundaryml/baml/commit/6472bec231b581076ee7edefaab2e7979b2bf336)) - Samuel Lijin +- Add RB2B tracking script (#682) - ([54547a3](https://github.com/boundaryml/baml/commit/54547a34d40cd40a43767919dbc9faa68a82faea)) - hellovai + +### Miscellaneous Chores + +- add nodemon config to typescript/ (#435) - ([231b396](https://github.com/boundaryml/baml/commit/231b3967bc947c4651156bc55fd66552782824c9)) - Samuel Lijin +- finish gloo to BoundaryML renames (#452) - ([88a7fda](https://github.com/boundaryml/baml/commit/88a7fdacc826e78ef21c6b24745ee469d9d02e6a)) - Samuel Lijin +- set up lfs (#511) - ([3a43143](https://github.com/boundaryml/baml/commit/3a431431e8e38dfc68763f15ccdcd1d131f23984)) - Samuel Lijin +- add internal build tooling for sam (#512) - ([9ebacca](https://github.com/boundaryml/baml/commit/9ebaccaa542760cb96382ae2a91d780f1ade613b)) - Samuel Lijin +- delete clients dir, this is now dead code (#652) - ([ec2627f](https://github.com/boundaryml/baml/commit/ec2627f59c7fe9edfff46fcdb65f9b9f0e2e072c)) - Samuel Lijin +- consolidate vscode workspace, bump a bunch of deps (#654) - ([82bf6ab](https://github.com/boundaryml/baml/commit/82bf6ab1ad839f84782a7ef0441f21124c368757)) - Samuel Lijin +- Add RB2B tracking script to propmt fiddle (#681) - ([4cf806b](https://github.com/boundaryml/baml/commit/4cf806bba26563fd8b6ddbd68296ab8bdfac21c4)) - hellovai +- Adding better release script (#688) - ([5bec282](https://github.com/boundaryml/baml/commit/5bec282d39d2250b39ef4aba5d6bba9830a35988)) - hellovai + +### [AUTO + +- patch] Version bump for nightly release [NIGHTLY:cli] [NIGHTLY:vscode_ext] [NIGHTLY:client-python] - ([d05a22c](https://github.com/boundaryml/baml/commit/d05a22ca4135887738adbce638193d71abca42ec)) - GitHub Action + +### Build + +- fix baml-core-ffi script (#521) - ([b1b7f4a](https://github.com/boundaryml/baml/commit/b1b7f4af0991ef6453f888f27930f3faaae337f5)) - Samuel Lijin +- fix engine/ (#522) - ([154f646](https://github.com/boundaryml/baml/commit/154f6468ec0aa6de1b033ee1cbc76e60acc363ea)) - Samuel Lijin + +### Integ-tests + +- add ruby test - ([c0bc101](https://github.com/boundaryml/baml/commit/c0bc10126ea32d099f1398f2c5faa08b111554ba)) - Sam Lijin + +### Readme + +- add function calling, collapse the table (#505) - ([2f9024c](https://github.com/boundaryml/baml/commit/2f9024c28ba438267de37ac43c6570a2f0398b5a)) - Samuel Lijin + +### Release + +- bump versions for everything (#662) - ([c0254ae](https://github.com/boundaryml/baml/commit/c0254ae680365854c51c7a4e58ea68d1901ea033)) - Samuel Lijin + +### Vscode + +- check for updates on the hour (#434) - ([c70a3b3](https://github.com/boundaryml/baml/commit/c70a3b373cb2346a0df9a1eba0ebacb74d59b53e)) - Samuel Lijin + + diff --git a/README.md b/README.md index fb358f9f7..76f366849 100644 --- a/README.md +++ b/README.md @@ -8,10 +8,9 @@ # BAML -An LLM function is a prompt template with some defined input variables, and a specific output type like a class, enum, union, optional string, etc. - -**BAML is a configuration file format to write better and cleaner LLM functions.** +**BAML is a domain-specific-language to write and test LLM functions.** +An LLM function is a prompt template with some defined input variables, and a specific output type like a class, enum, union, optional string, etc. With BAML you can write and test a complex LLM function in 1/10 of the time it takes to setup a python LLM testing environment. ## Try it out in the playground -- [PromptFiddle.com](https://promptfiddle.com) @@ -53,7 +52,7 @@ Share your creations and ask questions in our [Discord](https://discord.gg/BTNBe ## Starter projects - [BAML + NextJS 14](https://github.com/BoundaryML/baml-examples/tree/main/nextjs-starter) -- [BAML + FastAPI + Streaming](https://github.com/BoundaryML/baml-examples/tree/main/fastapi-starter) +- [BAML + FastAPI + Streaming](https://github.com/BoundaryML/baml-examples/tree/main/python-fastapi-starter) ## A BAML LLM Function @@ -177,7 +176,7 @@ Python: `baml-cli init` ### 4. OR use these starter projects: - [NextJS 14](https://github.com/BoundaryML/baml-examples/tree/main/nextjs-starter) -- [FastAPI](https://github.com/BoundaryML/baml-examples/tree/main/fastapi-starter) +- [FastAPI](https://github.com/BoundaryML/baml-examples/tree/main/python-fastapi-starter) ## Observability @@ -225,7 +224,7 @@ Here's how BAML differs from these frameworks: **Aliasing object fields in Zod** -``` +```typescript const UserSchema = z.object({ first_name: z.string(), }).transform((user) => ({ @@ -247,7 +246,7 @@ Zod: not possible Pydantic: -``` +```python class Sentiment(Enum): HAPPY = ("ecstatic") SAD = ("sad") diff --git a/cliff.toml b/cliff.toml new file mode 100644 index 000000000..3105778ce --- /dev/null +++ b/cliff.toml @@ -0,0 +1,99 @@ +# git-cliff ~ configuration file +# https://git-cliff.org/docs/configuration + +[changelog] +# template for the changelog footer +header = """ +# Changelog\n +All notable changes to this project will be documented in this file. See [conventional commits](https://www.conventionalcommits.org/) for commit guidelines.\n +""" +# template for the changelog body +# https://keats.github.io/tera/docs/#introduction +body = """ +{% if version %}\ + {% if previous.version %}\ + ## [{{ version | trim_start_matches(pat="v") }}]($REPO/compare/{{ previous.version }}..{{ version }}) - {{ timestamp | date(format="%Y-%m-%d") }} + {% else %}\ + ## [{{ version | trim_start_matches(pat="v") }}] - {{ timestamp | date(format="%Y-%m-%d") }} + {% endif %}\ +{% else %}\ + ## [unreleased] +{% endif %}\ +{% for group, commits in commits | group_by(attribute="group") %} + ### {{ group | striptags | trim | upper_first }} + {% for commit in commits + | filter(attribute="scope") + | sort(attribute="scope") %} + - **({{commit.scope}})**{% if commit.breaking %} [**breaking**]{% endif %} \ + {{ commit.message }} - ([{{ commit.id | truncate(length=7, end="") }}]($REPO/commit/{{ commit.id }})) - {{ commit.author.name }} + {%- endfor -%} + {% raw %}\n{% endraw %}\ + {%- for commit in commits %} + {%- if commit.scope -%} + {% else -%} + - {% if commit.breaking %} [**breaking**]{% endif %}\ + {{ commit.message }} - ([{{ commit.id | truncate(length=7, end="") }}]($REPO/commit/{{ commit.id }})) - {{ commit.author.name }} + {% endif -%} + {% endfor -%} +{% endfor %}\n +### UNMATCHED +{% for commit in commits %} + {%- if commit.group -%} + {% else -%} + - {% if commit.breaking %} [**breaking**]{% endif %}\ + {{ commit.message | split(pat="\n") | first }} - ([{{ commit.id | truncate(length=7, end="") }}]($REPO/commit/{{ commit.id }})) - {{ commit.author.name }} + {% endif -%} +{% endfor %}\n +""" +# template for the changelog footer +footer = """ + +""" +# remove the leading and trailing whitespace from the templates +trim = true +# postprocessors +postprocessors = [ + { pattern = '\$REPO', replace = "https://github.com/boundaryml/baml" }, # replace repository URL +] + +[git] +# parse the commits based on https://www.conventionalcommits.org +conventional_commits = true +# filter out the commits that are not conventional +filter_unconventional = false +# process each line of a commit as an individual commit +split_commits = false +# regex for preprocessing the commit messages +commit_preprocessors = [ + # { pattern = '\((\w+\s)?#([0-9]+)\)', replace = "([#${2}](https://github.com/orhun/git-cliff/issues/${2}))"}, # replace issue numbers +] +# regex for parsing and grouping commits +commit_parsers = [ + { message = "^feat", group = "Features" }, + { message = "^fix", group = "Bug Fixes" }, + { message = "^doc", group = "Documentation" }, + { message = "^perf", group = "Performance" }, + { message = "^refactor", group = "Refactoring" }, + { message = "^style", group = "Style" }, + { message = "^revert", group = "Revert" }, + { message = "^test", group = "Tests" }, + { message = "^chore\\(version\\):", skip = true }, + { message = "^chore", group = "Miscellaneous Chores" }, + { body = ".*security", group = "Security" }, +] +# protect breaking changes from being skipped due to matching a skipping commit_parser +protect_breaking_commits = false +# filter out the commits that are not matched by commit parsers +filter_commits = false +# regex for matching git tags +tag_pattern = "^[0-9].[0-9]+.[0-9]+$" +# regex for skipping tags +skip_tags = "" +# regex for ignoring tags +ignore_tags = "" +# sort the tags topologically +topo_order = false +# sort the commits inside sections by oldest/newest order +sort_commits = "oldest" +# limit the number of commits included in the changelog. +# limit_commits = 42 diff --git a/docs/contact.mdx b/docs/contact.mdx new file mode 100644 index 000000000..be61879fb --- /dev/null +++ b/docs/contact.mdx @@ -0,0 +1,15 @@ +--- +title: "Contact Us" +--- + +BAML is here to serve its users: we always want to hear your feedback, whether +it's a bug, feature request, or just general comment. + +You can reach us using: + + - [Discord](/discord) (fastest for a "how do i... ?") + - [GitHub](https://github.com/BoundaryML/baml/issues) (for bugs and feature requests) + - Email: [contact@boundaryml.com](mailto:contact@boundaryml.com) + - Twitter: [@boundaryml](https://twitter.com/boundaryml) + +We try our best to respond as quickly as possible, so don't hesitate to reach out! \ No newline at end of file diff --git a/docs/docs/calling-baml/calling-functions.mdx b/docs/docs/calling-baml/calling-functions.mdx new file mode 100644 index 000000000..436b47612 --- /dev/null +++ b/docs/docs/calling-baml/calling-functions.mdx @@ -0,0 +1,106 @@ +--- +title: "Calling BAML Functions" +--- + +Once you've [generated the BAML client] and set your environment variables, +you can call BAML functions from your code. + +You can check out more examples in the [BAML Examples] repo. + +[generated the BAML client]: /docs/calling-baml/generate-baml-client +[BAML Examples]: https://github.com/BoundaryML/baml-examples/tree/main + +We’ll use `function ClassifyMessage(input: string) -> Category` for our example: + + +```rust +enum Category { + Refund + CancelOrder + TechnicalSupport + AccountIssue + Question +} + +function ClassifyMessage(input: string) -> Category { + client GPT4o + prompt #" + Classify the following INPUT into ONE + of the following categories: + + INPUT: {{ input }} + + {{ ctx.output_format }} + + Response: + "# +} +``` + + + + + +BAML will generate `b.ClassifyMessage()` for you, which you can use like so: + +```python main.py +import asyncio + +from baml_client import b +from baml_client.types import Category + +async def main(): + category = await b.ClassifyMessage("I want to cancel my order") + print(category) + assert category == Category.CancelOrder + +if __name__ == '__main__': + asyncio.run(main()) +``` + + + + +BAML will generate `b.ClassifyMessage()` for you, which you can use like so: + +```ts main.ts +import { b } from './baml_client' +import { Category } from './baml_client/types' +import assert from 'assert' + +const main = async () => { + const category = await b.ClassifyMessage('I want to cancel my order') + console.log(category) + assert(category == Category.CancelOrder) +} + +if (require.main === module) { + main() +} + +``` + + + + +BAML will generate `Baml.Client.ClassifyMessage()` for you, which you can use like so: + +```ruby main.rb +require_relative "baml_client/client" + +$b = Baml.Client + +def main + category = $b.ClassifyMessage(input: "I want to cancel my order") + puts category + category == Baml::Types::Category::CancelOrder +end + +if __FILE__ == $0 + puts main +end + +``` + + + \ No newline at end of file diff --git a/docs/docs/calling-baml/concurrent-calls.mdx b/docs/docs/calling-baml/concurrent-calls.mdx new file mode 100644 index 000000000..a673e37ab --- /dev/null +++ b/docs/docs/calling-baml/concurrent-calls.mdx @@ -0,0 +1,85 @@ +--- +title: "Concurrent function calls" +--- + +We’ll use `function ClassifyMessage(input: string) -> Category` for our example: + + +```rust +enum Category { + Refund + CancelOrder + TechnicalSupport + AccountIssue + Question +} + +function ClassifyMessage(input: string) -> Category { + client GPT4o + prompt #" + Classify the following INPUT into ONE + of the following categories: + + INPUT: {{ input }} + + {{ ctx.output_format }} + + Response: + "# +} +``` + + + + + +You can make concurrent `b.ClassifyMessage()` calls like so: + +```python main.py +import asyncio + +from baml_client import b +from baml_client.types import Category + +async def main(): + await asyncio.gather( + b.ClassifyMessage("I want to cancel my order"), + b.ClassifyMessage("I want a refund") + ) + +if __name__ == '__main__': + asyncio.run(main()) +``` + + + + +You can make concurrent `b.ClassifyMessage()` calls like so: + +```ts main.ts +import { b } from './baml_client' +import { Category } from './baml_client/types' +import assert from 'assert' + +const main = async () => { + const category = await Promise.all( + b.ClassifyMessage('I want to cancel my order'), + b.ClassifyMessage('I want a refund'), + ) +} + +if (require.main === module) { + main() +} + +``` + + + + +BAML Ruby (beta) does not currently support async/concurrent calls. + +Please [contact us](/contact) if this is something you need. + + + \ No newline at end of file diff --git a/docs/docs/calling-baml/dynamic-clients.mdx b/docs/docs/calling-baml/dynamic-clients.mdx new file mode 100644 index 000000000..e69de29bb diff --git a/docs/docs/calling-baml/dynamic-types.mdx b/docs/docs/calling-baml/dynamic-types.mdx new file mode 100644 index 000000000..a07d981e2 --- /dev/null +++ b/docs/docs/calling-baml/dynamic-types.mdx @@ -0,0 +1,193 @@ + + +Sometimes you have a **output schemas that change at runtime** -- for example if you have a list of Categories that you need to classify that come from a database, or your schema is user-provided. + + +**Dynamic types are types that can be modified at runtime**, which means you can change the output schema of a function at runtime. + +Here are the steps to make this work: +1. Add `@@dynamic` to the class or enum definition to mark it as dynamic + +```rust baml +enum Category { + VALUE1 // normal static enum values that don't change + VALUE2 + @@dynamic // this enum can have more values added at runtime +} + +function DynamicCategorizer(input: string) -> Category { + client GPT4 + prompt #" + Given a string, classify it into a category + {{ input }} + + {{ ctx.output_format }} + "# +} + +``` + +2. Create a TypeBuilder and modify the existing type. All dynamic types you define in BAML will be available as properties of `TypeBuilder`. Think of the typebuilder as a registry of modified runtime types that the baml function will read from when building the output schema in the prompt. + + + +```python python +from baml_client.type_builder import TypeBuilder +from baml_client import b + +async def run(): + tb = TypeBuilder() + tb.Category.add_value('VALUE3') + tb.Category.add_value('VALUE4') + # Pass the typebuilder in the baml_options argument -- the last argument of the function. + res = await b.DynamicCategorizer("some input", { "tb": tb }) + # Now res can be VALUE1, VALUE2, VALUE3, or VALUE4 + print(res) + +``` + +```typescript TypeScript +import TypeBuilder from '../baml_client/type_builder' +import { + b +} from '../baml_client' + +async function run() { + const tb = new TypeBuilder() + tb.Category.addValue('VALUE3') + tb.Category.addValue('VALUE4') + const res = await b.DynamicCategorizer("some input", { tb: tb }) + // Now res can be VALUE1, VALUE2, VALUE3, or VALUE4 + console.log(res) +} +``` + + +```ruby Ruby (beta) +Not available yet +``` + + +### Dynamic BAML Classes +Existing BAML classes marked with @@dynamic will be available as properties of `TypeBuilder`. + +```rust BAML +class User { + name string + age int + @@dynamic +} + +function DynamicUserCreator(user_info: string) -> User { + client GPT4 + prompt #" + Extract the information from this chunk of text: + "{{ user_info }}" + + {{ ctx.output_format }} + "# +} +``` + +Modify the `User` schema at runtime: + + + +```python python +from baml_client.type_builder import TypeBuilder +from baml_client import b + +async def run(): + tb = TypeBuilder() + tb.User.add_property('email', 'string') + tb.User.add_property('address', 'string') + res = await b.DynamicUserCreator("some user info", { "tb": tb }) + # Now res can have email and address fields + print(res) + +``` + +```typescript TypeScript +import TypeBuilder from '../baml_client/type_builder' +import { + b +} from '../baml_client' + +async function run() { + const tb = new TypeBuilder() + tb.User.add_property('email', tb.string()) + tb.User.add_property('address', tb.string()) + const res = await b.DynamicUserCreator("some user info", { tb: tb }) + // Now res can have email and address fields + console.log(res) +} +``` + + +### Creating new dynamic classes or enums not in BAML +Here we create a new `Hobbies` enum, and a new class called `Address`. + + + + +```python python +from baml_client.type_builder import TypeBuilder +from baml_client import b + +async def run(): + tb = TypeBuilder() + const hobbiesEnum = tb.add_enum('Hobbies') + hobbiesEnum.add_value('Soccer') + hobbiesEnum.add_value('Reading') + + address_class = tb.add_class('Address') + address_class.add_property('street', tb.string()) + + tb.User.add_property('hobby', hobbiesEnum.type().optional()) + tb.User.add_property('address', addressClass.type().optional()) + res = await b.DynamicUserCreator("some user info", { "tb": tb }) + # Now res might have the hobby property, which can be Soccer or Reading + print(res) + +``` + +```typescript TypeScript +import TypeBuilder from '../baml_client/type_builder' +import { + b +} from '../baml_client' + +async function run() { + const tb = new TypeBuilder() + const hobbiesEnum = tb.addEnum('Hobbies') + hobbiesEnum.addValue('Soccer') + hobbiesEnum.addValue('Reading') + + const addressClass = tb.addClass('Address') + addressClass.addProperty('street', tb.string()) + + + tb.User.addProperty('hobby', hobbiesEnum.type().optional()) + tb.User.addProperty('address', addressClass.type()) + const res = await b.DynamicUserCreator("some user info", { tb: tb }) + // Now res might have the hobby property, which can be Soccer or Reading + console.log(res) +} +``` + + +### Adding descriptions to dynamic types + + + +```python python +tb = TypeBuilder() +tb.User.add_property("email", tb.string()).description("The user's email") +``` + +```typescript TypeScript +const tb = new TypeBuilder() +tb.User.addProperty("email", tb.string()).description("The user's email") +``` + + \ No newline at end of file diff --git a/docs/docs/calling-baml/generate-baml-client.mdx b/docs/docs/calling-baml/generate-baml-client.mdx new file mode 100644 index 000000000..c797a2aaf --- /dev/null +++ b/docs/docs/calling-baml/generate-baml-client.mdx @@ -0,0 +1,133 @@ +--- +title: "Generate the BAML Client" +--- + +This page assumes you've already defined a function in BAML. If you +haven't done that yet, check out [how to define a function]. + +[how to define a function]: /docs/snippets/functions + +Once you've defined a function in BAML, you need to generate code in your +language of choice to call that function: we call this generating the BAML client. + +If you use VSCode, the [BAML extension] will re-generate the client every time +you save a BAML file. Otherwise, you can generate the client manually: + +[BAML extension]: https://marketplace.visualstudio.com/items?itemName=Boundary.baml-extension + + + +```bash Python +pipx run baml-cli generate --from path/to/baml_src + +# If using your local installation, venv or conda: +pip install baml-py +baml-cli generate --from path/to/baml_src + +# If using poetry: +poetry add baml-py +poetry run baml-cli generate --from path/to/baml_src + +# If using pipenv: +pipenv install baml-py +pipenv run baml-cli generate --from path/to/baml_src +``` + +```bash TypeScript +npx @boundaryml/baml generate --from path/to/baml_src + +# If using npm: +npm install @boundaryml/baml +npm run baml-cli generate --from path/to/baml_src + +# If using pnpm: +pnpm install @boundaryml/baml +pnpm run baml-cli generate --from path/to/baml_src + +# If using pnpm: +yarn add @boundaryml/baml +yarn run baml-cli generate --from path/to/baml_src +``` + +```bash Ruby (beta) +bundle add baml +bundle exec baml-cli generate --from path/to/baml_src +``` + + + +## Best Practices + +### Define a `generator` clause + +If you created your project using `baml-cli init`, then one has already been generated for you! + +Each `generator` that you define in your BAML project will tell `baml-cli +generate` to generate code for a specific target language. You can define +multiple `generator` clauses in your BAML project, and `baml-cli generate` will +generate code for each of them. + + + +```rust Python +generator target { + // Valid values: "python/pydantic", "typescript", "ruby/sorbet" + output_type "python/pydantic" + // Where the generated code will be saved (relative to baml_src/) + output_dir "../" +} +``` + +```rust TypeScript +generator target { + // Valid values: "python/pydantic", "typescript", "ruby/sorbet" + output_type "typescript" + // Where the generated code will be saved (relative to baml_src/) + output_dir "../" +} +``` + +```rust Python +generator target { + // Valid values: "python/pydantic", "typescript", "ruby/sorbet" + output_type "ruby/sorbet" + // Where the generated code will be saved (relative to baml_src/) + output_dir "../" +} +``` + + + + +### Generate the BAML client on-demand + +Although you can check in the generated BAML client, we recommend that you +instead add it to your `.gitignore` and generate it on-demand when you +build/release your code: + + - this will make your PRs more readable; + - this will save you from handling merge conflicts in generated code; and + - this will ensure a single source-of-truth for your BAML code (and prevent + your client from falling out of sync with your BAML code). + +To add the generated client to your `.gitignore`, you can run: + +```bash +echo "baml_client" >> .gitignore +``` + +and then you just need to run `baml-cli generate` in your CI/CD build/release +workflows. Here's what that might look like in a GitHub Actions workflow file: + +```yaml +jobs: + build: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + + # Install your Python/Node/Ruby (beta) dependencies here + + - name: Generate BAML client + run: baml-cli generate --from baml_src +``` \ No newline at end of file diff --git a/docs/docs/calling-baml/multi-modal.mdx b/docs/docs/calling-baml/multi-modal.mdx new file mode 100644 index 000000000..efc3fc047 --- /dev/null +++ b/docs/docs/calling-baml/multi-modal.mdx @@ -0,0 +1,94 @@ + +## Multi-modal input + +### Images +Calling a BAML function with an `image` input argument type (see [image types](/docs/snippets/supported-types)) + +```python Python +from baml_py import Image +from baml_client import b + +async def test_image_input(): + # from URL + res = await b.TestImageInput( + img=Image.from_url( + "https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png" + ) + ) + + # Base64 image + image_b64 = "iVBORw0K...." + res = await b.TestImageInput( + img=Image.from_base64("image/png", image_b64) + ) +``` + +```typescript TypeScript +import { b } from '../baml_client' +import { Image } from "@boundaryml/baml" +... + + // URL + let res = await b.TestImageInput( + Image.fromUrl('https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png'), + ) + + // Base64 + const image_b64 = "iVB0R..." + let res = await b.TestImageInput( + Image.fromBase64('image/png', image_b64), + ) + +``` + +```ruby Ruby (beta) +we're working on it! +``` + + + +### Audio +Calling functions that have `audio` types. See [audio types](/docs/snippets/supported-types) + + +```python Python +from baml_py import Audio +from baml_client import b + +async def run(): + # from URL + res = await b.TestAudioInput( + img=Audio.from_url( + "https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png" + ) + ) + + # Base64 + b64 = "iVBORw0K...." + res = await b.TestAudioInput( + img=Audio.from_base64("image/png", b64) + ) +``` + +```typescript TypeScript +import { b } from '../baml_client' +import { Audio } from "@boundaryml/baml" +... + + // URL + let res = await b.TestAudioInput( + Audio.fromUrl('https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.mp4'), + ) + + // Base64 + const audio_base64 = ".." + let res = await b.TestAudioInput( + Audio.fromBase64('image/png', audio_base64), + ) + +``` + +```ruby Ruby (beta) +we're working on it! +``` + diff --git a/docs/docs/calling-baml/set-env-vars.mdx b/docs/docs/calling-baml/set-env-vars.mdx new file mode 100644 index 000000000..1d2eb91e6 --- /dev/null +++ b/docs/docs/calling-baml/set-env-vars.mdx @@ -0,0 +1,81 @@ +--- +title: "Set Environment Variables" +--- + + +The generated BAML client will capture all environment variables when you import it, +and will not be able to see any environment variables you load after importing +the BAML client. + +Any of the following strategies are compatible with BAML: + + - set environment variables in your `Dockerfile` + - set environment variables in your `next.config.js` + - set environment variables in your Kubernetes manifest + - load environment variables from secrets-store.csi.k8s.io + - load environment variables from a secrets provider such as [Infisical](https://infisical.com/) / [Doppler](https://www.doppler.com/) + - dotenv (`.env` file) cli (e.g. `dotenv -e .env python myscript.py`) + +If BAML doesn't work for your use case, please [contact us]! + + +## Loading env variables in your program + +If you do anything to load environment variables in-process - e.g. using a +`.env` file - make sure to do it before importing the BAML client. + + + +```python Python +import dotenv +dotenv.load_dotenv() + +# Wait to import the BAML client until after loading environment variables +from baml_client import b +``` + +```typescript TypeScript +import dotenv from 'dotenv' +dotenv.config() + +// Wait to import the BAML client until after loading environment variables +import { b } from 'baml-client' +``` + +```ruby Ruby (beta) +require 'dotenv/load' + +# Wait to import the BAML client until after loading environment variables +require 'baml_client' +``` + + + + + +## Environment Variables in BAML + +Environment variables are primarily used in clients to propagate authorization +credentials, such as API keys, like so: + +```rust + +client GPT4o { + provider baml-openai-chat + options { + model gpt-4o + api_key env.OPENAI_API_KEY + } +} +``` + +We do not currently support any other mechanisms for providing authorization +credentials, including but not limited to: + + - exchanging refresh tokens for ephemeral authorization tokens + - fetching credentials from a secret storage service, such as AWS Secrets + Manager or HashiCorp Vault + +Please [contact us] if you need support for these use cases. + +[contact us]: /contact \ No newline at end of file diff --git a/docs/docs/calling-baml/streaming.mdx b/docs/docs/calling-baml/streaming.mdx new file mode 100644 index 000000000..d0acde4f5 --- /dev/null +++ b/docs/docs/calling-baml/streaming.mdx @@ -0,0 +1,229 @@ +--- +title: "Streaming BAML Functions" +--- + +Now that we know how to [call BAML functions], let's learn how to stream +BAML function calls. + +You can check out more examples in the [BAML Examples] repo. + +[call BAML functions]: /docs/calling-baml/calling-functions +[BAML Examples]: https://github.com/BoundaryML/baml-examples/tree/main + +This time, we'll use `function ExtractReceiptInfo(email: string) -> ReceiptInfo` for our example: + + + +```rust +class ReceiptItem { + name string + description string? + quantity int + price float +} + +class ReceiptInfo { + items ReceiptItem[] + total_cost float? +} + +function ExtractReceiptInfo(email: string) -> ReceiptInfo { + client GPT4o + prompt #" + Given the receipt below: + + {{ email }} + + {{ ctx.output_format }} + "# +} +``` + + + + + +BAML will generate `b.stream.ExtractReceiptInfo()` for you, which you can use like so: + +```python main.py +import asyncio +from baml_client import b, partial_types, types + +# Using both async iteration and get_final_response() from a stream +async def example1(receipt: str): + stream = b.stream.ExtractReceiptInfo(receipt) + + async for partial in stream: + print(f"partial: parsed {len(partial.items)} items (object: {partial})") + + final = await stream.get_final_response() + print(f"final: {len(final.items)} items (object: {final})") + +# Using only async iteration of a stream +async def example2(receipt: str): + async for partial in b.stream.ExtractReceiptInfo(receipt): + print(f"partial: parsed {len(partial.items)} items (object: {partial})") + +# Using only get_final_response() of a stream +# +# In this case, you should just use b.ExtractReceiptInfo(receipt) instead, +# which is faster and more efficient. +async def example3(receipt: str): + final = await b.stream.ExtractReceiptInfo(receipt).get_final_response() + print(f"final: {len(final.items)} items (object: {final})") + +receipt = """ +04/14/2024 1:05 pm + +Ticket: 220000082489 +Register: Shop Counter +Employee: Connor +Customer: Sam +Item # Price +Guide leash (1 Pair) uni UNI +1 $34.95 +The Index Town Walls +1 $35.00 +Boot Punch +3 $60.00 +Subtotal $129.95 +Tax ($129.95 @ 9%) $11.70 +Total Tax $11.70 +Total $141.65 +""" + +if __name__ == '__main__': + asyncio.run(example1(receipt)) + asyncio.run(example2(receipt)) + asyncio.run(example3(receipt)) +``` + + + +BAML will generate `b.stream.ExtractReceiptInfo()` for you, which you can use like so: + +```ts main.ts +import { b } from './baml_client' + +// Using both async iteration and getFinalResponse() from a stream +const example1 = async (receipt: string) => { + const stream = b.stream.ExtractReceiptInfo(receipt) + + for await (const partial of stream) { + console.log(`partial: ${partial.items?.length} items (object: ${partial})`) + } + + const final = await stream.getFinalResponse() + console.log(`final: ${final.items.length} items (object: ${final})`) +} + +// Using only async iteration of a stream +const example2 = async (receipt: string) => { + for await (const partial of b.stream.ExtractReceiptInfo(receipt)) { + console.log(`partial: ${partial.items?.length} items (object: ${partial})`) + } +} + +// Using only getFinalResponse() of a stream +// +// In this case, you should just use b.ExtractReceiptInfo(receipt) instead, +// which is faster and more efficient. +const example3 = async (receipt: string) => { + const final = await b.stream.ExtractReceiptInfo(receipt).getFinalResponse() + console.log(`final: ${final.items.length} items (object: ${final})`) +} + +const receipt = ` +04/14/2024 1:05 pm + +Ticket: 220000082489 +Register: Shop Counter +Employee: Connor +Customer: Sam +Item # Price +Guide leash (1 Pair) uni UNI +1 $34.95 +The Index Town Walls +1 $35.00 +Boot Punch +3 $60.00 +Subtotal $129.95 +Tax ($129.95 @ 9%) $11.70 +Total Tax $11.70 +Total $141.65 +` + +if (require.main === module) { + example1(receipt) + example2(receipt) + example3(receipt) +} +``` + + + +BAML will generate `Baml.Client.stream.ExtractReceiptInfo()` for you, +which you can use like so: + +```ruby main.rb +require_relative "baml_client/client" + +$b = Baml.Client + +# Using both iteration and get_final_response() from a stream +def example1(receipt) + stream = $b.stream.ExtractReceiptInfo(receipt) + + stream.each do |partial| + puts "partial: #{partial.items&.length} items" + end + + final = stream.get_final_response + puts "final: #{final.items.length} items" +end + +# Using only iteration of a stream +def example2(receipt) + $b.stream.ExtractReceiptInfo(receipt).each do |partial| + puts "partial: #{partial.items&.length} items" + end +end + +# Using only get_final_response() of a stream +# +# In this case, you should just use BamlClient.ExtractReceiptInfo(receipt) instead, +# which is faster and more efficient. +def example3(receipt) + final = $b.stream.ExtractReceiptInfo(receipt).get_final_response + puts "final: #{final.items.length} items" +end + +receipt = <<~RECEIPT + 04/14/2024 1:05 pm + + Ticket: 220000082489 + Register: Shop Counter + Employee: Connor + Customer: Sam + Item # Price + Guide leash (1 Pair) uni UNI + 1 $34.95 + The Index Town Walls + 1 $35.00 + Boot Punch + 3 $60.00 + Subtotal $129.95 + Tax ($129.95 @ 9%) $11.70 + Total Tax $11.70 + Total $141.65 +RECEIPT + +if __FILE__ == $0 + example1(receipt) + example2(receipt) + example3(receipt) +end +``` + + + \ No newline at end of file diff --git a/docs/docs/home/comparisons/langchain.mdx b/docs/docs/comparisons/langchain.mdx similarity index 100% rename from docs/docs/home/comparisons/langchain.mdx rename to docs/docs/comparisons/langchain.mdx diff --git a/docs/docs/home/comparisons/marvin.mdx b/docs/docs/comparisons/marvin.mdx similarity index 90% rename from docs/docs/home/comparisons/marvin.mdx rename to docs/docs/comparisons/marvin.mdx index 55bc0018c..deec96766 100644 --- a/docs/docs/home/comparisons/marvin.mdx +++ b/docs/docs/comparisons/marvin.mdx @@ -77,12 +77,7 @@ enum RequestType { INQUIRY @alias("general inquiry") } -function ClassifyRequest { - input string - output RequestType -} - -impl { +function ClassifyRequest(input: string) -> RequestType { client GPT4 // choose even open source models prompt #" You are an expert classifier that always maintains as much semantic meaning @@ -91,11 +86,10 @@ impl { TEXT: --- - Reset my password + {{ input }} --- - LABELS: - {#print_enum(RequestType)} + {{ ctx.output_format }} The best label for the text is: "# @@ -129,5 +123,3 @@ Marvin was a big source of inspiration for us -- their approach is simple and el BAML does have some limitations we are continuously working on. Here are a few of them: 1. It is a new language. However, it is fully open source and getting started takes less than 10 minutes. We are on-call 24/7 to help with any issues (and even provide prompt engineering tips) 1. Developing requires VSCode. You _could_ use vim and we have workarounds but we don't recommend it. -1. Explicitly defining system / and user prompts. We have worked with many customers across healthcare and finance and have not seen any issues but we will support this soon. -1. BAML does not support images. Until this is available you can definitely use BAML alongside other frameworks. \ No newline at end of file diff --git a/docs/docs/home/comparisons/pydantic.mdx b/docs/docs/comparisons/pydantic.mdx similarity index 98% rename from docs/docs/home/comparisons/pydantic.mdx rename to docs/docs/comparisons/pydantic.mdx index 3fae14463..658afce8c 100644 --- a/docs/docs/home/comparisons/pydantic.mdx +++ b/docs/docs/comparisons/pydantic.mdx @@ -342,10 +342,7 @@ Here we use a "GPT4" client, but you can use any model. See [client docs](/docs/ {/* ```rust -function ExtractResume { - input (resume_text: string) - output Resume -} + class Education { school string @@ -359,18 +356,18 @@ class Resume { education Education[] } -impl version1 { +function ExtractResume(resume_text: string) -> Resume { client GPT4 prompt #" Parse the following resume and return a structured representation of the data in the schema below. Resume: --- - {#input.resume_text} + {{ input.resume_text }} --- Output in this JSON format: - {#print_type(output)} + {{ ctx.output_format }} Output JSON: "# diff --git a/docs/docs/get-started/debugging/enable-logging.mdx b/docs/docs/get-started/debugging/enable-logging.mdx new file mode 100644 index 000000000..a1ebd19f0 --- /dev/null +++ b/docs/docs/get-started/debugging/enable-logging.mdx @@ -0,0 +1,10 @@ +You can add logging to determine what the BAML runtime is doing. + +To enable logging, set the `BAML_LOG` environment variable: +``` +BAML_LOG=info +``` + +BAML uses the rust `log` crate for logging. You can see more information on how to better configure the `log` crate [here](https://rust-lang-nursery.github.io/rust-cookbook/development_tools/debugging/config_log.html). + +Just instead of using the `RUST_LOG` environment variable, use the `BAML_LOG` environment variable. diff --git a/docs/docs/get-started/debugging/vscode-playground.mdx b/docs/docs/get-started/debugging/vscode-playground.mdx new file mode 100644 index 000000000..891f7798b --- /dev/null +++ b/docs/docs/get-started/debugging/vscode-playground.mdx @@ -0,0 +1,28 @@ +## General debugging strategy +- Check [Discord (#announcements channel)](https://discord.gg/BTNBeXGuaS) / [Github](https://github.com/BoundaryML/baml/issues) for any known issues +- Close the playground and reopen it +- Try reloading the entire window by pressing `Ctrl + Shift + P` or `Cmd + Shift + P` and typing `Developer: Reload Window` +- Ensure your VSCode Extension for BAML is up-to-date (It should should it its up-to-date in the Extensions tab in VSCode) + + +- If nothing works, please file an issue on [Github](https://github.com/BoundaryML/baml/issues), ideally with a screenshot of the error and the steps to reproduce it. + +## Common Issues +### No code lens in BAML files + +This can happen in two cases: +1. You have syntax error in some `.baml` file. You can check the error in the `Problems` tab in VSCode or running the `generate` command in the terminal (See [Generate](/docs/calling-baml/generate-baml-client)) + +2. BAML extension is broken. Please try the tools above! + +### BAML extension is not working + +### Tests hanging + +We've seen sparse repros of this, but closing the playground and reopening it should fix it. + +### Tests failing to run + +You can debug the actual network request being made by BAML by opening developer tools: + + diff --git a/docs/docs/get-started/deploying/docker.mdx b/docs/docs/get-started/deploying/docker.mdx new file mode 100644 index 000000000..362bc2732 --- /dev/null +++ b/docs/docs/get-started/deploying/docker.mdx @@ -0,0 +1,30 @@ + +When you develop with BAML, the BAML VScode extension generates a `baml_client` directory (on every save) with all the generated code you need to use your AI functions in your application. + +We recommend you add `baml_client` to your `.gitignore` file to avoid committing generated code to your repository, and re-generate the client code when you build and deploy your application. + +You _could_ commit the generated code if you're starting out to not deal with this, just make sure the VSCode extension version matches your baml package dependency version (e.g. `baml-py` for python and `@boundaryml/baml` for TS) so there are no compatibility issues. + +To build your client you can use the following command. See also [Generating Clients](/docs/calling-baml/generate-baml-client): + + + +```dockerfile python Dockerfile +RUN baml-cli generate --from path-to-baml_src +``` + +```dockerfile TypeScript Dockerfile +# Do this early on in the dockerfile script before transpiling to JS +RUN npx baml-cli generate --from path-to-baml_src +``` + +```dockerfile Ruby Dockerfile +RUN bundle add baml +RUN bundle exec baml-cli generate --from path/to/baml_src +``` + + + +### Current limitations +- We do not yet support `alpine` images. BAML will not properly build for those platforms. Let us know if you need to support lighter weight alpine images, and we'll prioritize it. + diff --git a/docs/docs/get-started/deploying/nextjs.mdx b/docs/docs/get-started/deploying/nextjs.mdx new file mode 100644 index 000000000..40e542651 --- /dev/null +++ b/docs/docs/get-started/deploying/nextjs.mdx @@ -0,0 +1,41 @@ +To deploy a NextJS with BAML, take a look at the starter template: +https://github.com/BoundaryML/baml-examples/tree/main/nextjs-starter + +All you need is to modify the `nextjs.config.mjs` to allow BAML to run properly: +```JS +/** @type {import('next').NextConfig} */ +const nextConfig = { + experimental: { + serverComponentsExternalPackages: ["@boundaryml/baml"], + }, + webpack: (config, { dev, isServer, webpack, nextRuntime }) => { + config.module.rules.push({ + test: /\.node$/, + use: [ + { + loader: "nextjs-node-loader", + options: { + outputPath: config.output.path, + }, + }, + ], + }); + + return config; + }, +}; + +export default nextConfig; +``` + +and change your `package.json` to build the baml client automatically (and enable logging in dev mode if you want): + +```json + "scripts": { + "dev": "BAML_LOG=info next dev", + "build": "pnpm generate && next build", + "start": "next start", + "lint": "next lint", + "generate": "baml-cli generate --from ./baml_src" + }, +``` \ No newline at end of file diff --git a/docs/docs/get-started/interactive-demos.mdx b/docs/docs/get-started/interactive-demos.mdx new file mode 100644 index 000000000..f6a627cc7 --- /dev/null +++ b/docs/docs/get-started/interactive-demos.mdx @@ -0,0 +1,19 @@ +--- +title: "Interactive Demos" +--- + +## Interactive playground +You can try BAML online over at [Prompt Fiddle](https://www.promptfiddle.com) + + +## Examples built with BAML + +You can find the code here: https://github.com/BoundaryML/baml-examples/tree/main/nextjs-starter + + +| Example | Link | +| - | - | +| Streaming Simple Objects | https://baml-examples.vercel.app/examples/stream-object | +| RAG + Citations | https://baml-examples.vercel.app/examples/rag | +| Generative UI / Streaming charts | https://baml-examples.vercel.app/examples/book-analyzer | +| Getting a recipe | https://baml-examples.vercel.app/examples/get-recipe | diff --git a/docs/docs/get-started/quickstart/editors-other.mdx b/docs/docs/get-started/quickstart/editors-other.mdx new file mode 100644 index 000000000..23ca4f837 --- /dev/null +++ b/docs/docs/get-started/quickstart/editors-other.mdx @@ -0,0 +1,11 @@ +--- +title: "Other Editors" +--- + +We currently don't have support for other editors, but we are working on it. If you have a favorite editor that you would like to see support for, please let us know by [opening an issue](https://github.com/boundaryml/baml/issues/new?title=Add%20%20Editor%20Support&body=Hi%21%20I%20use%20%3Ceditor%3E%20please%20add%20support.). + +To get around this you can: + +1. Use [Prompt Fiddle](https://www.promptfiddle.com) to write your code and then copy it to your editor. + +2. Use the CLI. See [Generate the BAML Client](/docs/calling-baml/generate-baml-client) diff --git a/docs/docs/get-started/quickstart/editors-vscode.mdx b/docs/docs/get-started/quickstart/editors-vscode.mdx new file mode 100644 index 000000000..799572744 --- /dev/null +++ b/docs/docs/get-started/quickstart/editors-vscode.mdx @@ -0,0 +1,72 @@ +--- +title: "VSCode" +--- + +We provide a BAML VSCode extension: https://marketplace.visualstudio.com/items?itemName=Boundary.baml-extension + + +| Feature | Supported | +|---------|-----------| +| Syntax highlighting for BAML files | ✅ | +| Code snippets for BAML | ✅ | +| LLM playground for testing BAML functions | ✅ | +| Jump to definition for BAML files | ✅ | +| Jump to definition between Python/TS files and BAML files | ✅ | +| Auto generate `baml_client` on save | ✅ | +| BAML formatter | ❌ | + + + For any issues, see the [troubleshooting](/docs/get-started/debugging/vscode-playground) page. + + +## Opening BAML Playground + +Once you open a `.baml` file, in VSCode, you should see a small button over every BAML function: `Open Playground`. + + + +Or type `BAML Playground` in the VSCode Command Bar (`CMD + Shift + P` or `CTRL + Shift + P`) to open the playground. + + + +## Setting Env Variables + +Click on the `Settings` button in top right of the playground and set the environment variables. + +It should have an indicator saying how many unset variables are there. + + + +The playground should persist the environment variables between closing and opening VSCode. + + + You can set environment variables lazily. If anything is unset you'll get an error when you run the function. + + + + Environment Variables are stored in VSCode's local storage! We don't save any additional data to disk, or send them across the network. + + + +## Running Tests + +- Click on the `Run All Tests` button in the playground. + +- Press the `▶️` button next to an individual test case to run that just that test case. + + +## Switching Functions + +The playground will automatically switch to the function you're currently editing. + +To manually change it, click on the current function name in the playground (next to the dropdown) and search for your desired function. + +## Switching Test Cases + +The test case with the highlighted background is the currently rendered test case. Clicking on a different test case will render that test case. + + + +You can toggle between seeing the results of all test cases or all test cases for the current function. + + diff --git a/docs/docs/get-started/quickstart/python.mdx b/docs/docs/get-started/quickstart/python.mdx new file mode 100644 index 000000000..8dee33156 --- /dev/null +++ b/docs/docs/get-started/quickstart/python.mdx @@ -0,0 +1,73 @@ +Here's a sample repository: +https://github.com/BoundaryML/baml-examples/tree/main/python-fastapi-starter + +To set up BAML in python do the following: + + + + https://marketplace.visualstudio.com/items?itemName=boundary.BAML + + - syntax highlighting + - testing playground + - prompt previews + + + In your VSCode User Settings, highly recommend adding this to get better autocomplete for python in general, not just BAML. + + ```json + { + "python.analysis.typeCheckingMode": "basic" + } + ``` + + + + ```bash + pip install baml-py + ``` + + + This will give you some starter BAML code in a `baml_src` directory. + + ```bash + baml-cli init + ``` + + + + This command will help you convert `.baml` files to `.py` files. Everytime you modify your `.baml` files, + you must re-run this command, and regenerate the `baml_client` folder. + + + If you download our [VSCode extension](https://marketplace.visualstudio.com/items?itemName=Boundary.baml-extension), it will automatically generate `baml_client` on save! + + + ```bash + baml-cli generate + ``` + + + If `baml_client` doesn't exist, make sure to run the previous step! + + ```python main.py + from baml_client import b + from baml_client.types import Resume + + async def example(raw_resume: str) -> Resume: + # BAML's internal parser guarantees ExtractResume + # to be always return a Resume type + response = await b.ExtractResume(raw_resume) + return response + + async def example_stream(raw_resume: str) -> Resume: + stream = b.stream.ExtractResume(raw_resume) + async for msg in stream: + print(msg) # This will be a PartialResume type + + # This will be a Resume type + final = stream.get_final_response() + + return final + ``` + + \ No newline at end of file diff --git a/docs/docs/get-started/quickstart/ruby.mdx b/docs/docs/get-started/quickstart/ruby.mdx new file mode 100644 index 000000000..f1ed0bdf8 --- /dev/null +++ b/docs/docs/get-started/quickstart/ruby.mdx @@ -0,0 +1,73 @@ +Here's a sample repository: https://github.com/BoundaryML/baml-examples/tree/main/ruby-example + +To set up BAML in ruby do the following: + + + + https://marketplace.visualstudio.com/items?itemName=boundary.BAML + + - syntax highlighting + - testing playground + - prompt previews + + + + ```bash + bundle init + bundle add baml sorbet-runtime sorbet-struct-comparable + ``` + + + This will give you some starter BAML code in a `baml_src` directory. + + ```bash + bundle exec baml-cli init + ``` + + + + + This command will help you convert `.baml` files to `.rb` files. Everytime you modify your `.baml` files, + you must re-run this command, and regenerate the `baml_client` folder. + + + If you download our [VSCode extension](https://marketplace.visualstudio.com/items?itemName=Boundary.baml-extension), it will automatically generate `baml_client` on save! + + + ```bash + bundle exec baml-cli generate + ``` + + + + If `baml_client` doesn't exist, make sure to run the previous step! + + ```ruby main.rb + require_relative "baml_client/client" + + def example(raw_resume) + # r is an instance of Baml::Types::Resume, defined in baml_client/types + r = Baml.Client.ExtractResume(resume: raw_resume) + + puts "ExtractResume response:" + puts r.inspect + end + + def example_stream(raw_resume) + stream = Baml.Client.stream.ExtractResume(resume: raw_resume) + + stream.each do |msg| + # msg is an instance of Baml::PartialTypes::Resume + # defined in baml_client/partial_types + puts msg.inspect + end + + stream.get_final_response + end + + example 'Grace Hopper created COBOL' + example_stream 'Grace Hopper created COBOL' + ``` + + + diff --git a/docs/docs/get-started/quickstart/typescript.mdx b/docs/docs/get-started/quickstart/typescript.mdx new file mode 100644 index 000000000..7e16b0da2 --- /dev/null +++ b/docs/docs/get-started/quickstart/typescript.mdx @@ -0,0 +1,90 @@ +Here's a sample repository: +https://github.com/BoundaryML/baml-examples/tree/main/nextjs-starter + +To set up BAML in typescript do the following: + + + + https://marketplace.visualstudio.com/items?itemName=boundary.BAML + + - syntax highlighting + - testing playground + - prompt previews + + + + ```bash npm + npm install @boundaryml/baml + ``` + + ```bash pnpm + pnpm add @boundaryml/baml + ``` + + ```bash yarn + yarn add @boundaryml/baml + ``` + + + + This will give you some starter BAML code in a `baml_src` directory. + + ```bash npm + npx baml-cli init + ``` + + ```bash pnpm + pnpx baml-cli init + ``` + + ```bash yarn + yarn baml-cli init + ``` + + + + + This command will help you convert `.baml` files to `.ts` files. Everytime you modify your `.baml` files, + you must re-run this command, and regenerate the `baml_client` folder. + + + If you download our [VSCode extension](https://marketplace.visualstudio.com/items?itemName=Boundary.baml-extension), it will automatically generate `baml_client` on save! + + + ```json package.json + { + "scripts": { + // Add a new command + "baml-generate": "baml-cli generate", + // Always call baml-generate on every build. + "build": "npm run baml-generate && tsc --build", + } + } + ``` + + + If `baml_client` doesn't exist, make sure to run `npm run baml-generate` + + ```typescript index.ts + import {b} from "baml_client" + import type {Resume} from "baml_client/types" + + async function Example(raw_resume: string): Resume { + // BAML's internal parser guarantees ExtractResume + // to be always return a Resume type + const response = await b.ExtractResume(raw_resume); + return response; + } + + async function ExampleStream(raw_resume: string): Resume { + const stream = b.stream.ExtractResume(raw_resume); + for await (const msg of stream) { + console.log(msg) // This will be a Partial type + } + + // This is guaranteed to be a Resume type. + return await stream.get_final_response(); + } + ``` + + \ No newline at end of file diff --git a/docs/docs/home/overview.mdx b/docs/docs/get-started/what-is-baml.mdx similarity index 70% rename from docs/docs/home/overview.mdx rename to docs/docs/get-started/what-is-baml.mdx index 5593c2ca6..72ad88aa9 100644 --- a/docs/docs/home/overview.mdx +++ b/docs/docs/get-started/what-is-baml.mdx @@ -1,13 +1,13 @@ --- title: What is BAML? -"og:description": BAML is a configuration file format to write better and cleaner LLM functions. +"og:description": BAML is a domain-specific language to get structured data from LLMs "og:image": https://mintlify.s3-us-west-1.amazonaws.com/gloo/images/v3/AITeam.png "twitter:image": https://mintlify.s3-us-west-1.amazonaws.com/gloo/images/v3/AITeam.png --- -An LLM function is a prompt template with some defined input variables, and a specific output type like a class, enum, union, optional string, etc. +**BAML is a domain-specific language to write and test LLM functions.** -**BAML is a configuration file format to write better and cleaner LLM functions.** +In BAML, prompts are treated like functions. An LLM function is a prompt template with some defined input variables, and a specific output type like a class, enum, union, optional string, etc. With BAML you can write and test a complex LLM function in 1/10 of the time it takes to setup a python LLM testing environment. @@ -17,12 +17,16 @@ With BAML you can write and test a complex LLM function in 1/10 of the time it t Share your creations and ask questions in our [Discord](https://discord.gg/BTNBeXGuaS). +## Demo video + + + ## Features ### Language features -- **Python and Typescript support**: Plug-and-play BAML with other languages +- **Python / Typescript / Ruby support**: Plug-and-play BAML with other languages - **JSON correction**: BAML fixes bad JSON returned by LLMs (e.g. unquoted keys, newlines, comments, extra quotes, and more) -- **Wide model support**: Ollama, Openai, Anthropic. Tested on small models like Llama2 +- **Wide model support**: Ollama, Openai, Anthropic, Gemini. Tested on small models like Llama2 - **Streaming**: Stream structured partial outputs - **Resilience and fallback features**: Add retries, redundancy, to your LLM calls @@ -51,4 +55,4 @@ Share your creations and ask questions in our [Discord](https://discord.gg/BTNBe - [BAML + FastAPI + Streaming](https://github.com/BoundaryML/baml-examples/tree/main/fastapi-starter) ## First steps -We recommend checking the examples in [PromptFiddle.com](https://promptfiddle.com). Once you're ready to start, [install the toolchain](./installation) and read the [guides](../guides/overview). +We recommend checking the examples in [PromptFiddle.com](https://promptfiddle.com). Once you're ready to start, [install the toolchain](/docs/get-started/quickstart/python) and read the [guides](/docs/calling-baml/calling-functions). diff --git a/docs/docs/guides/hello_world/baml-project-structure.mdx b/docs/docs/guides/hello_world/baml-project-structure.mdx deleted file mode 100644 index 84643385d..000000000 --- a/docs/docs/guides/hello_world/baml-project-structure.mdx +++ /dev/null @@ -1,71 +0,0 @@ ---- -title: "BAML Project Structure" ---- - -At a high level, you will define your AI prompts and interfaces in BAML files. -The BAML compiler will then generate Python or Typescript code for you to use in -your application, depending on the generators configured in your `main.baml`: - -```rust main.baml -generator MyGenerator{ - output_type typescript - output_dir "../" -} -``` - -Here is the typical project structure: - -```bash -. -├── baml_client/ # Generated code -├── baml_src/ # Prompts and baml tests live here -│ └── foo.baml -# The rest of your project (not generated nor used by BAML) -├── app/ -│ ├── __init__.py -│ └── main.py -└── pyproject.toml - -``` - -1. `baml_src/` is where you write your BAML files with the AI -function declarations, prompts, retry policies, etc. It also contains -[generator](/docs/syntax/generator) blocks which configure how and where to -transpile your BAML code. - -2. `baml_client/` is where the BAML compiler will generate code for you, -based on the types and functions you define in your BAML code. Here's how you'd access the generated functions from baml_client: - - -```python Python -from baml_client import baml as b - -async def use_llm_for_task(): - await b.CallMyLLM() -``` - -```typescript TypeScript -import b from '@/baml_client' - -const use_llm_for_task = async () => { - await b.CallMyLLM(); -}; -``` - - - - - **You should never edit any files inside baml_client directory** as the whole - directory gets regenerated on every `baml build` (auto runs on save if using - the VSCode extension). - - - - If you ever run into any issues with the generated code (like merge - conflicts), you can always delete the `baml_client` directory and it will get - regenerated automatically on save. - - -### imports - -BAML by default has global imports. Every entity declared in any `.baml` file is available to all other `.baml` files under the same `baml_src` directory. You **can** have multiple `baml_src` directories, but no promises on how the VSCode extension will behave (yet). diff --git a/docs/docs/guides/hello_world/testing-ai-functions.mdx b/docs/docs/guides/hello_world/testing-ai-functions.mdx deleted file mode 100644 index 7fac24b87..000000000 --- a/docs/docs/guides/hello_world/testing-ai-functions.mdx +++ /dev/null @@ -1,22 +0,0 @@ ---- -title: "Testing AI functions" ---- - - -One important way to ensure your AI functions are working as expected is to write unit tests. This is especially important when you're working with AI functions that are used in production, or when you're working with a team. - -To test functions: -1. Install the VSCode extension -2. Create a test in any .baml file: -```rust -test MyTest { - functions [ExtractResume] - args { - resume_text "hello" - } -} - -``` -3. Run the test in the VSCode extension! - -We have more capabilities like assertions coming soon! \ No newline at end of file diff --git a/docs/docs/guides/hello_world/writing-ai-functions.mdx b/docs/docs/guides/hello_world/writing-ai-functions.mdx deleted file mode 100644 index e3584ab5f..000000000 --- a/docs/docs/guides/hello_world/writing-ai-functions.mdx +++ /dev/null @@ -1,145 +0,0 @@ ---- -title: "BAML AI functions in 2 minutes" ---- - - -### Pre-requisites - -Follow the [installation](/v3/home/installation) instructions. - -{/* The starting project structure will look something like this: */} -{/* */} - -## Overview - -Before you call an LLM, ask yourself what kind of input or output youre -expecting. If you want the LLM to generate text, then you probably want a -string, but if you're trying to get it to collect user details, you may want it -to return a complex type like `UserDetails`. - -Thinking this way can help you decompose large complex prompts into smaller, -more measurable functions, and will also help you build more complex workflows -and agents. - -# Extracting a resume from text - -The best way to learn BAML is to run an example in our web playground -- [PromptFiddle.com](https://promptfiddle.com). - -But at a high-level, BAML is simple to use -- prompts are built using [Jinja syntax](https://jinja.palletsprojects.com/en/3.1.x/) to make working with strings easier. But we extended jinja to add type-support, static analysis of your template variables, and we have a real-time preview of prompts in the BAML VSCode extension no matter how much logic your prompts use. - -Here's an example from PromptFiddle: - -```rust baml_src/main.baml -client GPT4Turbo { - provider openai - options { - model gpt-4-turbo - api_key env.OPENAI_API_KEY - } -} -// Declare the Resume type we want the AI function to return -class Resume { - name string - education Education[] @description("Extract in the same order listed") - skills string[] @description("Only include programming languages") -} - -class Education { - school string - degree string - year int -} - -// Declare the function signature, with the prompt that will be used to make the AI function work -function ExtractResume(resume_text: string) -> Resume { - // An LLM client we define elsewhere, with some parameters and our API key - client GPT4Turbo - - // The prompt uses Jinja syntax - prompt #" - Parse the following resume and return a structured representation of the data in the schema below. - - Resume: - --- - {{ resume_text }} - --- - - {# special macro to print the output instructions. #} - {{ ctx.output_format }} - - JSON: - "# -} -``` -That's it! If you use the VSCode extension, everytime you save this .baml file, it will convert this configuration file into a usable Python or TypeScript function in milliseconds, with full types. - -All your types become Pydantic models in Python, or type definitions in Typescript (soon we'll support generating Zod types). - - -## 2. Usage in Python or TypeScript - -Our VSCode extension automatically generates a **baml_client** in the language of choice. (Click the tabs for Python or TypeScript) - - - -```python Python -from baml_client import baml as b -# BAML types get converted to Pydantic models -from baml_client.types import Resume -import asyncio - -async def main(): - resume_text = """Jason Doe -Python, Rust -University of California, Berkeley, B.S. -in Computer Science, 2020 -Also an expert in Tableau, SQL, and C++ -""" - - # this function comes from the autogenerated "baml_client". - # It calls the LLM you specified and handles the parsing. - resume = await b.ExtractResume(resume_text) - - # Fully type-checked and validated! - assert isinstance(resume, Resume) - - -if __name__ == "__main__": - asyncio.run(main()) -``` - -```typescript TypeScript -import b from 'baml_client' - -async function main() { - const resume_text = `Jason Doe -Python, Rust -University of California, Berkeley, B.S. -in Computer Science, 2020 -Also an expert in Tableau, SQL, and C++ -` - - // this function comes from the autogenerated "baml_client". - // It calls the LLM you specified and handles the parsing. - const resume = await b.ExtractResume(resume_text) - - // Fully type-checked and validated! - assert resume.name === "Jason Doe" -} - -if (require.main === module) { - main(); -} -``` - - - - - The BAML client exports async versions of your functions, so you can parallelize things easily if you need to. To run async functions sequentially you can easily just wrap them in the `asyncio.run(....)`. - - Let us know if you want synchronous versions of your functions instead! - - -## Further reading -- Browse more PromptFiddle [examples](https://promptfiddle.com) -- See other types of [function signatures](/docs/syntax/function) possible in BAML. \ No newline at end of file diff --git a/docs/docs/guides/improve_results/diagnose.mdx b/docs/docs/guides/improve_results/diagnose.mdx deleted file mode 100644 index 97da6264e..000000000 --- a/docs/docs/guides/improve_results/diagnose.mdx +++ /dev/null @@ -1,16 +0,0 @@ ---- -title: "Improve my prompt automatically" ---- - -Use **Boundary Studio** to automatically improve your prompt by using the **Diagnose** feature! We use **GPT-4 powered analysis** to provide you with improvements you can make to your prompt. We aim to incorporate all the best learnings we've acquired from working with many different customers and models. - -We have more improvements here planned, like different suggestions depending on your model being used and task type. - -To access it: -1. Click on the "comment" icon on one of the requests. -2. Click on the "Diagnose" tab. - - - - -This feature is limited for users on the free tier, and available as many times as needed for paid users. diff --git a/docs/docs/guides/improve_results/fine_tune.mdx b/docs/docs/guides/improve_results/fine_tune.mdx deleted file mode 100644 index d7c5d3ca5..000000000 --- a/docs/docs/guides/improve_results/fine_tune.mdx +++ /dev/null @@ -1,5 +0,0 @@ ---- -title: "Fine-tune a model using my production data" ---- - -Reach out to us on Discord if you want to improve performance, reduce costs or latencies using fine-tuned models! We are working on seamless integrations with fine-tuning platforms. \ No newline at end of file diff --git a/docs/docs/guides/overview.mdx b/docs/docs/guides/overview.mdx deleted file mode 100644 index 1e8b2eccd..000000000 --- a/docs/docs/guides/overview.mdx +++ /dev/null @@ -1,50 +0,0 @@ ---- -title: "Table of contents" ---- - -These tutorials assume you've already done the [Learn BAML](/docs/guides/hello_world/level0) tutorials first and have a hang of some of the basics. - -Ping us on [Discord](https://discord.gg/BTNBeXGuaS) if you have any questions! - \ No newline at end of file diff --git a/docs/docs/guides/prompt_engineering/chat-prompts.mdx b/docs/docs/guides/prompt_engineering/chat-prompts.mdx deleted file mode 100644 index 3e25606f5..000000000 --- a/docs/docs/guides/prompt_engineering/chat-prompts.mdx +++ /dev/null @@ -1,5 +0,0 @@ ---- -title: "System vs user prompts" ---- - -See [PromptFiddle demo](https://promptfiddle.com/chat-roles) \ No newline at end of file diff --git a/docs/docs/guides/prompt_engineering/conditional_rendering.mdx b/docs/docs/guides/prompt_engineering/conditional_rendering.mdx deleted file mode 100644 index 8f70ece36..000000000 --- a/docs/docs/guides/prompt_engineering/conditional_rendering.mdx +++ /dev/null @@ -1,7 +0,0 @@ ---- -title: "Conditionally generate the prompt based on the input variables" ---- - -Prompts use Jinja syntax to render variables. You can use any jinja syntax you like. - -Examples coming soon! \ No newline at end of file diff --git a/docs/docs/guides/prompt_engineering/serialize_complex_input.mdx b/docs/docs/guides/prompt_engineering/serialize_complex_input.mdx deleted file mode 100644 index f82d0b4a5..000000000 --- a/docs/docs/guides/prompt_engineering/serialize_complex_input.mdx +++ /dev/null @@ -1,5 +0,0 @@ ---- -title: "Customize input variables" ---- - -Examples coming soon! \ No newline at end of file diff --git a/docs/docs/guides/prompt_engineering/serialize_list.mdx b/docs/docs/guides/prompt_engineering/serialize_list.mdx deleted file mode 100644 index b5bda6733..000000000 --- a/docs/docs/guides/prompt_engineering/serialize_list.mdx +++ /dev/null @@ -1,5 +0,0 @@ ---- -title: "Serialize a List of chat messages into a prompt" ---- - -Example coming soon! \ No newline at end of file diff --git a/docs/docs/guides/prompt_engineering/strategies.mdx b/docs/docs/guides/prompt_engineering/strategies.mdx deleted file mode 100644 index 820db3911..000000000 --- a/docs/docs/guides/prompt_engineering/strategies.mdx +++ /dev/null @@ -1 +0,0 @@ -# TODO: add symbol tuning here \ No newline at end of file diff --git a/docs/docs/guides/resilience/fallback.mdx b/docs/docs/guides/resilience/fallback.mdx deleted file mode 100644 index 6fec86273..000000000 --- a/docs/docs/guides/resilience/fallback.mdx +++ /dev/null @@ -1,5 +0,0 @@ ---- -title: "Fall-back to another model on failure" ---- - -Checkout the [Fallback API reference](/docs/syntax/client/redundancy) to learn how to make a BAML client fall-back to a different LLM on failure. \ No newline at end of file diff --git a/docs/docs/guides/resilience/retries.mdx b/docs/docs/guides/resilience/retries.mdx deleted file mode 100644 index 26b885ce5..000000000 --- a/docs/docs/guides/resilience/retries.mdx +++ /dev/null @@ -1,5 +0,0 @@ ---- -title: "Add retries to my AI function (and different retry policies)." ---- - -Checkout the [retry_policy reference](/docs/syntax/client/retry) to add retries to your AI function. \ No newline at end of file diff --git a/docs/docs/guides/streaming/streaming.mdx b/docs/docs/guides/streaming/streaming.mdx deleted file mode 100644 index c96e4d8d2..000000000 --- a/docs/docs/guides/streaming/streaming.mdx +++ /dev/null @@ -1,46 +0,0 @@ ---- -title: "Streaming structured data" ---- - -### Streaming partial objects -The following returns an object that slowly gets filled in as the response comes in. This is useful if you want to start processing the response before it's fully complete. -You can stream anything from a `string` output type, to a complex object. - -Example: -``` -{"prop1": "hello"} -{"prop1": "hello how are you"} -{"prop1": "hello how are you", "prop2": "I'm good, how are you?"} -{"prop1": "hello how are you", "prop2": "I'm good, how are you?", "prop3": "I'm doing great, thanks for asking!"} -``` - -### Python -```python FastAPI -from baml_client import b - -@app.get("/extract_resume") -async def extract_resume(resume_text: str): - async def stream_resume(resume): - stream = b.stream.ExtractResume(resume_text) - async for chunk in stream: - yield str(chunk.model_dump_json()) + "\n" - - return StreamingResponse(stream_resume(resume), media_type="text/plain") -``` - - -### TypeScript -```typescript -import { b } from '../baml_client'; // or whatever path baml_client is in - -export async function streamText() { - const stream = b.stream.MyFunction(MyInput(...)); - for await (const output of stream) { - console.log(`streaming: ${output}`); // this is the output type of my function - } - - const finalOutput = await stream.getFinalResponse(); - console.log(`final response: ${finalOutput}`); -} -``` - diff --git a/docs/docs/guides/testing/test_with_assertions.mdx b/docs/docs/guides/testing/test_with_assertions.mdx deleted file mode 100644 index be3e76f59..000000000 --- a/docs/docs/guides/testing/test_with_assertions.mdx +++ /dev/null @@ -1,96 +0,0 @@ ---- -title: "Evaluate results with assertions or using LLM Evals" ---- - - - -# Python guide -To add assertions to your tests, or add more complex testing scenarios, you can use pytest to test your functions, since Playground BAML tests don't currently support assertions. - -### Example -```python test_file.py -from baml_client import baml as b -from baml_client.types import Email -from baml_client.testing import baml_test -import pytest - -# Run `poetry run pytest -m baml_test` in this directory. -# Setup Boundary Studio to see test details! -@pytest.mark.asyncio -async def test_get_order_info(): - order_info = await b.GetOrderInfo(Email( - subject="Order #1234", - body="Your order has been shipped. It will arrive on 1st Jan 2022. Product: iPhone 13. Cost: $999.99" - )) - - assert order_info.cost == 999.99 -``` - - Make sure your test file, the Test class AND/or the test function is prefixed with `Test` or `test` respectively. Otherwise, pytest will not pick up your tests. E.g. `test_foo.py`, `TestFoo`, `test_foo` - - - -Run `pytest -k 'order_info'` to run this test. To show have pytest show print statements add the `-s` flag. - - - Make sure you are running these commands from your python virtual environment - (or **`poetry shell`** if you use poetry) - - -For more advanced testing scenarios, helpful commands, and gotchas, check out the [Advanced Guide](./advanced_testing_guide) - - - -### Using an LLM eval -You can also declare a new BAML function that you can use in your tests to validate results. - -This is helpful for testing more ambiguous LLM free-form text generations. You can measure anything from sentiment, to the tone of of the text. - -For example, the following GPT-4-powered function can be used in your tests to assert that a given generated sentence is professional-sounding: - -```rust -enum ProfessionalismRating { - GREAT - OK - BAD -} - -function ValidateProfessionalism { - // The string to validate - input string - output ProfessionalismRating -} - -impl v1 { - client GPT4 - prompt #" - Is this text professional-sounding? - - Use the following scale: - {#print_enum(ProfessionalismRating)} - - Sentence: {#input} - - ProfessionalismRating: - "# -} -``` - -```python -from baml_client import baml as b -from baml_client.types import Email, ProfessionalismRating -from baml_client.testing import baml_test - -@baml_test -async def test_message_professionalism(): - order_info = await b.GetOrderInfo(Email( - subject="Order #1234", - body="Your order has been shipped. It will arrive on 1st Jan 2022. Product: iPhone 13. Cost: $999.99" - )) - - assert order_info.cost == 999.99 - - professionalism_rating = await b.ValidateProfessionalism(order_info.body) - assert professionalism_rating == b.ProfessionalismRating.GREAT -``` - diff --git a/docs/docs/guides/testing/unit_test.mdx b/docs/docs/guides/testing/unit_test.mdx deleted file mode 100644 index 808b45880..000000000 --- a/docs/docs/guides/testing/unit_test.mdx +++ /dev/null @@ -1,11 +0,0 @@ ---- -title: "Test an AI function" ---- - - -There are two types of tests you may want to run on your AI functions: - -- Unit Tests: Tests a single AI function (using the playground) -- Integration Tests: Tests a pipeline of AI functions and potentially buisness logic - -For integration tests, see the [Integration Testing Guide](/docs/guides/testing/test_with_assertions). \ No newline at end of file diff --git a/docs/docs/home/baml-in-2-min.mdx b/docs/docs/home/baml-in-2-min.mdx deleted file mode 100644 index 6b129cc18..000000000 --- a/docs/docs/home/baml-in-2-min.mdx +++ /dev/null @@ -1,4 +0,0 @@ ---- -title: "BAML in 2 minutes" -url: "/docs/guides/hello_world/writing-ai-functions" ---- diff --git a/docs/docs/home/faq.mdx b/docs/docs/home/faq.mdx deleted file mode 100644 index a890a3943..000000000 --- a/docs/docs/home/faq.mdx +++ /dev/null @@ -1,36 +0,0 @@ ---- -title: FAQs ---- - - - -You don't! BAML files get converted into Python or Typescript using the BAML CLI. You can run the generated code locally or in the cloud. - - -Contact us at contact@boundaryml.com for more details. We have a free tier available. - - -Nope. We do not proxy LLM calls for you. BAML just generates a bunch of python or TypeScript code you can run on your machine. If you opt-in to our logging and analytics we only send logs to our backend. Deploying your app is like deploying any other python/TS application. - - - -BAML isn't a full-fledged language -- it's more of a configuration file / templating language. You can load it into your code as if it were YAML. Think of it as an extension of [Jinja](https://jinja.palletsprojects.com/en/3.1.x/) or Handlebars. - -Earlier we tried making a YAML-based sdk, and even a Python SDK, but they were not powerful enough. - - - - We are working on more tools like [PromptFiddle.com](https://promptfiddle.com) to make it easier to edit prompts for non-engineers, but we want to make sure all your prompts can be backed by a file in your codebase and versioned by Git. - - - - Typescript, Python, and Ruby - Contact us for more - - - - - The VSCode extension and BAML are free to use (Open Source as well!). We only charge for usage of - Boundary Studio, our observability platform. Contact us for pricing. We do have a hobbyist tier and a startup tier available. - - diff --git a/docs/docs/home/installation.mdx b/docs/docs/home/installation.mdx deleted file mode 100644 index 819e00d3a..000000000 --- a/docs/docs/home/installation.mdx +++ /dev/null @@ -1,53 +0,0 @@ ---- -title: Installation ---- - - - - [https://marketplace.visualstudio.com/items?itemName=boundary.BAML](https://marketplace.visualstudio.com/items?itemName=boundary.Baml-extension) - - If you are using python, [enable typechecking in VSCode's](https://code.visualstudio.com/docs/python/settings-reference#_python-language-server-settings) `settings.json`: - ``` - "python.analysis.typecheckingMode": "basic" - ``` - - - - ```bash Python - pip install baml-py - ``` - - ```bash Typescript - npm install @boundaryml/baml - ``` - - - - - ```bash Python - # Should be installed via pip install baml-py - baml-cli init - ``` - - ```bash Typescript (npx) - npx baml-cli init - ``` - - ```bash Typescript (pnpx) - pnpx baml-cli init - ``` - - - - - [PromptFiddle](https://promptfiddle.com): Interactive examples to learn BAML. (recommended) - - [BAML Tutorials](docs/guides): Advanced guides on using BAML. - - [BAML Syntax](/v3/syntax): Documentation for BAML syntax. - - [BAML Starters for NextJS and FastAPI](https://github.com/BoundaryML/baml-examples/tree/main) - - - -## Ensure BAML extension can generate your Python / TS client - -Save a `.baml` file using VSCode, and you should see a successful generation message pop up! - -You can also run `baml-cli generate --from path-to-baml-src` to generate the client code manually. \ No newline at end of file diff --git a/docs/docs/home/roadmap.mdx b/docs/docs/home/roadmap.mdx deleted file mode 100644 index ea05334a8..000000000 --- a/docs/docs/home/roadmap.mdx +++ /dev/null @@ -1,15 +0,0 @@ ---- -title: "Roadmap" ---- - -### Language Support - -Features are available in all languages at equal parity unless otherwise noted. - -| Language Support | Status | Notes | -| ---------------- | ------ | ----------------------------------- | -| Python | ✅ | | -| TypeScript | ✅ | | -| Ruby | 🚧 | Alpha release, contact us to use it | - -Contact us on Discord if you have a language you'd like to see supported. diff --git a/docs/docs/home/running-tests.mdx b/docs/docs/home/running-tests.mdx deleted file mode 100644 index 62879ebd6..000000000 --- a/docs/docs/home/running-tests.mdx +++ /dev/null @@ -1,26 +0,0 @@ ---- -title: "Running Tests" ---- - -## Using the playground - -Use the playground to run tests against individual function impls. - - - -## From BAML Studio - -Coming soon -You can also create tests from production logs in BAML Studio. Any weird or atypical -user inputs can be used to create a test case with just 1 click. - -## Programmatically - -Tests can also be defined using common testing frameworks like pytest. [Learn more](/v3/syntax/function-testing). diff --git a/docs/docs/observability/overview.mdx b/docs/docs/observability/overview.mdx new file mode 100644 index 000000000..a62924c39 --- /dev/null +++ b/docs/docs/observability/overview.mdx @@ -0,0 +1,14 @@ +--- +title: "Enabling" +--- + +To enable observability with BAML, you'll first need to sign up for a [Boundary Studio](https://app.boundaryml.com) account. + +Once you've signed up, you'll be able to create a new project and get your project token. + +Then simply add the following environment variables prior to running your application: + +```bash +export BOUNDARY_PROJECT_ID=project_uuid +export BOUNDARY_SECRET=your_token +``` diff --git a/docs/docs/guides/boundary_studio/tracing-tagging.mdx b/docs/docs/observability/tracing-tagging.mdx similarity index 94% rename from docs/docs/guides/boundary_studio/tracing-tagging.mdx rename to docs/docs/observability/tracing-tagging.mdx index 1d8c25b35..fd603595e 100644 --- a/docs/docs/guides/boundary_studio/tracing-tagging.mdx +++ b/docs/docs/observability/tracing-tagging.mdx @@ -29,10 +29,10 @@ async def pre_process_text(text): @trace async def full_analysis(book: Book): - sentiment = await baml.ClassifySentiment.get_impl("v1").run( + sentiment = await baml.ClassifySentiment( pre_process_text(book.content) ) - book_analysis = await baml.AnalyzeBook.get_impl("v1").run(book) + book_analysis = await baml.AnalyzeBook(book) return book_analysis @@ -67,7 +67,7 @@ To add a custom tag, you can import **update_trace_tags(..)** as below: from baml_client.tracing import set_tags, trace import typing -@trace() +@trace async def pre_process_text(text): set_tags(userId="1234") diff --git a/docs/docs/snippets/class.mdx b/docs/docs/snippets/class.mdx new file mode 100644 index 000000000..c5f9d0230 --- /dev/null +++ b/docs/docs/snippets/class.mdx @@ -0,0 +1,115 @@ +--- +title: "class" +--- + +Classes consist of a name, a list of properties, and their [types](/docs/snippets/supported-types). +In the context of LLMs, classes describe the type of the variables you can inject into prompts and extract out from the response. + + + Note properties have no `:` + + + +```llvm Baml +class Foo { + property1 string + property2 int? + property3 Bar[] + property4 MyEnum +} +``` + +```python Python Equivalent +from pydantic import BaseModel +from path.to.bar import Bar +from path.to.my_enum import MyEnum + +class Foo(BaseModel): + property1: str + property2: Optional[int]= None + property3: List[Bar] + property4: MyEnum +``` + +```typescript Typescript Equivalent +import z from "zod"; +import { BarZod } from "./path/to/bar"; +import { MyEnumZod } from "./path/to/my_enum"; + +const FooZod = z.object({ + property1: z.string(), + property2: z.number().int().nullable().optional(), + property3: z.array(BarZod), + property4: MyEnumZod, +}); + +type Foo = z.infer; +``` + + + +## Class Attributes + + +If set, will allow you to add fields to the class dynamically at runtime (in your python/ts/etc code). See [dynamic classes](/docs/calling-baml/dynamic-types) for more information. + + + +```rust BAML +class MyClass { + property1 string + property2 int? + + @@dynamic // allows me to later propert3 float[] at runtime +} +``` + +## Field Attributes + +When prompt engineering, you can also alias values and add descriptions. + + +Aliasing renames the field for the llm to potentially "understand" your value better, while keeping the original name in your code, so you don't need to change your downstream code everytime. + +This will also be used for parsing the output of the LLM back into the original object. + + + +This adds some additional context to the field in the prompt. + + + +```rust BAML +class MyClass { + property1 string @alias("name") @description("The name of the object") + age int? @description("The age of the object") +} +``` + +## Constraints + +Classes may have any number of properties. +Property names must follow these rules: +- Must start with a letter +- Must contain only letters, numbers, and underscores +- Must be unique within the class +- classes cannot be self-referential (cannot have a property of the same type as the class itself) + +The type of a property can be any [supported type](/docs/snippets/supported-types) + +### Default values + +- Not yet supported. For optional properties, the default value is `None` in python. + +## Inheritance + +Never supported. Like rust, we take the stance that [composition is better than inheritance](https://www.digitalocean.com/community/tutorials/composition-vs-inheritance). + diff --git a/docs/docs/snippets/clients/fallback.mdx b/docs/docs/snippets/clients/fallback.mdx new file mode 100644 index 000000000..c1561110d --- /dev/null +++ b/docs/docs/snippets/clients/fallback.mdx @@ -0,0 +1,75 @@ +--- +title: fallback +--- + +You can use the `fallback` provider to add more resilliancy to your application. + +A fallback will attempt to use the first client, and if it fails, it will try the second client, and so on. + +You can nest fallbacks inside of other fallbacks. + +```rust BAML +client SuperDuperClient { + provider fallback + options { + strategy [ + ClientA + ClientB + ClientC + ] + } +} +``` + +## Options + + + The list of client names to try in order. Cannot be empty. + + +## retry_policy + +Like any other client, you can specify a retry policy for the fallback client. See [retry_policy](retry-policy) for more information. + +The retry policy will test the fallback itself, after the entire strategy has failed. + +```rust BAML +client SuperDuperClient { + provider fallback + retry_policy MyRetryPolicy + options { + strategy [ + ClientA + ClientB + ClientC + ] + } +} +``` + +## Nesting multiple fallbacks + +You can nest multiple fallbacks inside of each other. The fallbacks will just chain as you would expect. + +```rust BAML +client SuperDuperClient { + provider fallback + options { + strategy [ + ClientA + ClientB + ClientC + ] + } +} + +client MegaClient { + provider fallback + options { + strategy [ + SuperDuperClient + ClientD + ] + } +} +``` \ No newline at end of file diff --git a/docs/docs/snippets/clients/overview.mdx b/docs/docs/snippets/clients/overview.mdx new file mode 100644 index 000000000..e2a8f88da --- /dev/null +++ b/docs/docs/snippets/clients/overview.mdx @@ -0,0 +1,54 @@ +Clients are used to configure how LLMs are called. + +Here's an example of a client configuration: + +```rust BAML +client MyClient { + provider openai + options { + model gpt-4o // Configure which model is used + temperature 0.7 // Pass additional options to the model + } +} +``` + +Usage: + +```rust BAML +function MakeHaiku(topic: string) -> string { + client MyClient + prompt #" + Write a haiku about {{ topic }}. + "# +} +``` + +## Fields + + +This configures which provider to use. The provider is responsible for handling the actual API calls to the LLM service. The provider is a required field. + +The configuration modifies the URL request BAML runtime makes. + +| Provider Name | Docs | Notes | +| -------------- | -------------------------------- | ---------------------------------------------------------- | +| `openai` | [OpenAI](providers/openai) | Anything that follows openai's API exactly | +| `ollama` | [Ollama](providers/ollama) | Alias for an openai client but with default ollama options | +| `azure-openai` | [Azure OpenAI](providers/azure) | | +| `anthropic` | [Anthropic](providers/anthropic) | | +| `google-ai` | [Google AI](providers/gemini) | | +| `fallback` | [Fallback](fallback) | Used to chain models conditional on failures | +| `round-robin` | [Round Robin](round-robin) | Used to load balance | + + + + + The name of the retry policy. See [Retry + Policy](/docs/snippets/clients/retry). + + + + These vary per provider. Please see provider specific documentation for more + information. Generally they are pass through options to the POST request made + to the LLM. + diff --git a/docs/docs/snippets/clients/providers/anthropic.mdx b/docs/docs/snippets/clients/providers/anthropic.mdx new file mode 100644 index 000000000..15344d59d --- /dev/null +++ b/docs/docs/snippets/clients/providers/anthropic.mdx @@ -0,0 +1,117 @@ +--- +title: anthropic +--- + +The `anthropic` provider supports all APIs that use the same interface for the `/v1/messages` endpoint. + +For `ollama` ([Docs](ollama)) or `azure` ([Docs](azure)) we recommend using the respective provider instead as there are more checks. + +Example: +```rust BAML +client MyClient { + provider anthropic + options { + model "claude-3-5-sonnet-20240620" + temperature 0 + } +} +``` + +The options are passed through directly to the API, barring a few. Here's a shorthand of the options: + +## Non-forwarded options + + Will be passed as a bearer token. **Default: `env.ANTHROPIC_API_KEY`** + + `Authorization: Bearer $api_key` + + + + The base URL for the API. **Default: `https://api.anthropic.com`** + + + + The default role for any prompts that don't specify a role. **Default: `system`** + + We don't have any checks for this field, you can pass any string you wish. + + + + Additional headers to send with the request. + + Unless specified with a different value, we inject in the following headers: + ``` + "anthropic-version" "2023-06-01" + ``` + +Example: +```rust +client MyClient { + provider anthropic + options { + api_key env.MY_ANTHROPIC_KEY + model "claude-3-5-sonnet-20240620" + headers { + "X-My-Header" "my-value" + } + } +} +``` + + +## Forwarded options + + BAML will auto construct this field for you from the prompt, if necessary. + Only the first system message will be used, all subsequent ones will be cast to the `assistant` role. + + + + BAML will auto construct this field for you from the prompt + + + + BAML will auto construct this field for you based on how you call the client in your code + + + + The model to use. + +| Model | Description | +| --- | --- | +| `claude-3-5-sonnet-20240620` | | +| `claude-3-opus-20240229` | | +| `claude-3-sonnet-20240229` | | +| `claude-3-haiku-20240307` | | + + + +See anthropic docs for the latest list of all models. You can pass any model name you wish, we will not check if it exists. + + + + The maximum number of tokens to generate. **Default: `4069`** + + + +For all other options, see the [official anthropic API documentation](https://docs.anthropic.com/en/api/messages). \ No newline at end of file diff --git a/docs/docs/snippets/clients/providers/aws-bedrock.mdx b/docs/docs/snippets/clients/providers/aws-bedrock.mdx new file mode 100644 index 000000000..c96456d0f --- /dev/null +++ b/docs/docs/snippets/clients/providers/aws-bedrock.mdx @@ -0,0 +1,80 @@ +--- +title: aws-bedrock +description: AWS Bedrock provider for BAML +--- + +The `aws-bedrock` provider supports all text-output models available via the [`Converse` API](https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html). + +Example: + +```rust BAML +client MyClient { + provider aws-bedrock + options { + api_key env.MY_OPENAI_KEY + model "gpt-3.5-turbo" + temperature 0.1 + } +} +``` + +## Authorization + +We use the AWS SDK under the hood, which will respect [all authentication mechanisms supported by the SDK](https://docs.rs/aws-config/latest/aws_config/index.html), including but not limited to: + + - `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` as set in your environment variables + - loading the specified `AWS_PROFILE` from `~/.aws/config` + - built-in authn for services running in EC2, ECS, Lambda, etc. + +## Forwarded options + + + BAML will auto construct this field for you from the prompt + + + + The model to use. + +| Model | Description | +| --------------- | ------------------------------ | +| `anthropic.claude-3-haiku-20240307-v1:0` | Fastest + Cheapest | +| `anthropic.claude-3-sonnet-20240307-v1:0` | Smartest | +| `meta.llama3-8b-instruct-v1:0` | | +| `meta.llama3-70b-instruct-v1:0` | | +| `mistral.mistral-7b-instruct-v0:2` | | +| `mistral.mixtral-8x7b-instruct-v0:1` | | + +Run `aws bedrock list-foundation-models | jq '.modelSummaries.[].modelId` to get a list of available foundation models; you can also use any custom models you've deployed. + +Note that to use any of these models you'll need to [request model access]. + +[request model access]: https://docs.aws.amazon.com/bedrock/latest/userguide/model-access.html + + + + + Additional inference configuration to send with the request; see [AWS Bedrock documentation](https://docs.rs/aws-sdk-bedrockruntime/latest/aws_sdk_bedrockruntime/types/struct.InferenceConfiguration.html). + +Example: + +```rust BAML +client MyClient { + provider aws-bedrock + options { + inference_configuration { + max_tokens 1000 + temperature 1.0 + top_p 0.8 + stop_sequence ["_EOF"] + } + } +} +``` + + diff --git a/docs/docs/snippets/clients/providers/azure.mdx b/docs/docs/snippets/clients/providers/azure.mdx new file mode 100644 index 000000000..f4745b2dd --- /dev/null +++ b/docs/docs/snippets/clients/providers/azure.mdx @@ -0,0 +1,111 @@ +--- +title: azure-openai +--- + +For `azure-openai`, we provide a client that can be used to interact with the OpenAI API hosted on Azure using the `/chat/completions` endpoint. + +Example: +```rust BAML +client MyClient { + provider azure-openai + options { + resource_name "my-resource-name" + deployment_id "my-deployment-id" + // Alternatively, you can use the base_url field + // base_url "https://my-resource-name.openai.azure.com/openai/deployments/my-deployment-id" + api_version "2024-02-01" + api_key env.AZURE_OPENAI_API_KEY + } +} +``` + + + `api_version` is required. Azure will return not found if the version is not specified. + + + +The options are passed through directly to the API, barring a few. Here's a shorthand of the options: + +## Non-forwarded options + + Will be injected via the header `API-KEY`. **Default: `env.AZURE_OPENAI_API_KEY`** + + `API-KEY: $api_key` + + + + The base URL for the API. **Default: `https://${resource_name}.openai.azure.com/openai/deployments/${deployment_id}`** + + May be used instead of `resource_name` and `deployment_id`. + + + + See the `base_url` field. + + + + See the `base_url` field. + + + + The default role for any prompts that don't specify a role. **Default: `system`** + + We don't have any checks for this field, you can pass any string you wish. + + + + Will be passed via a query parameter `api-version`. + + + + Additional headers to send with the request. + +Example: +```rust BAML +client MyClient { + provider azure-openai + options { + resource_name "my-resource-name" + deployment_id "my-deployment-id" + api_version "2024-02-01" + api_key env.AZURE_OPENAI_API_KEY + headers { + "X-My-Header" "my-value" + } + } +} +``` + + +## Forwarded options + + BAML will auto construct this field for you from the prompt + + + BAML will auto construct this field for you based on how you call the client in your code + + +For all other options, see the [official Azure API documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions). diff --git a/docs/docs/snippets/clients/providers/gemini.mdx b/docs/docs/snippets/clients/providers/gemini.mdx new file mode 100644 index 000000000..48537cafe --- /dev/null +++ b/docs/docs/snippets/clients/providers/gemini.mdx @@ -0,0 +1,89 @@ +--- +title: google-ai +--- + +The `google-ai` provider supports the `https://generativelanguage.googleapis.com/v1/models/{model_id}/generateContent` and `https://generativelanguage.googleapis.com/v1/models/{model_id}/streamGenerateContent` endpoint. + + +BAML will automatically pick `streamGenerateContent` if you call the streaming interface. + + +Example: +```rust BAML +client MyClient { + provider google-ai + options { + model "gemini-1.5-flash" + } +} +``` + +The options are passed through directly to the API, barring a few. Here's a shorthand of the options: + +## Non-forwarded options + + Will be passed as the `x-goog-api-key` header. **Default: `env.GOOGLE_API_KEY`** + + `x-goog-api-key: $api_key` + + + + The base URL for the API. **Default: `https://generativelanguage.googleapis.com/v1`** + + + + The default role for any prompts that don't specify a role. **Default: `user`** + + We don't have any checks for this field, you can pass any string you wish. + + + + The model to use. **Default: `gemini-1.5-flash`** + + We don't have any checks for this field, you can pass any string you wish. + +| Model | Input(s) | Optimized for | +| --- | --- | --- | +| `gemini-1.5-pro` | Audio, images, videos, and text | Complex reasoning tasks such as code and text generation, text editing, problem solving, data extraction and generation | +| `gemini-1.5-flash` | Audio, images, videos, and text | Fast and versatile performance across a diverse variety of tasks | +| `gemini-1.0-pro` | Text | Natural language tasks, multi-turn text and code chat, and code generation | + +See the [Google Docs](https://ai.google.dev/gemini-api/docs/models/gemini) for the latest models. + + + + Additional headers to send with the request. + +Example: +```rust BAML +client MyClient { + provider google-ai + options { + model "gemini-1.5-flash" + headers { + "X-My-Header" "my-value" + } + } +} +``` + + +## Forwarded options + + BAML will auto construct this field for you from the prompt + + + +For all other options, see the [official Google Gemini API documentation](https://ai.google.dev/api/rest/v1/models/generateContent). diff --git a/docs/docs/snippets/clients/providers/ollama.mdx b/docs/docs/snippets/clients/providers/ollama.mdx new file mode 100644 index 000000000..3c83f1ea8 --- /dev/null +++ b/docs/docs/snippets/clients/providers/ollama.mdx @@ -0,0 +1,91 @@ +--- +title: ollama +--- + +For `ollama`, we provide a client that can be used to interact with [ollama](https://ollama.com/) `/chat/completions` endpoint. + +What is ollama? Ollama is an easy way to run LLMs locally! + +Example: +```rust BAML +client MyClient { + provider ollama + options { + model llama2 + } +} +``` + +The options are passed through directly to the API, barring a few. Here's a shorthand of the options: + +## Non-forwarded options + + The base URL for the API. **Default: `http://localhost:11434/v1`** + Note the `/v1` at the end of the URL. See [Ollama's OpenAI compatability](https://ollama.com/blog/openai-compatibility) + + + + The default role for any prompts that don't specify a role. **Default: `system`** + + We don't have any checks for this field, you can pass any string you wish. + + + + Additional headers to send with the request. + +Example: +```rust BAML +client MyClient { + provider ollama + options { + model llama2 + headers { + "X-My-Header" "my-value" + } + } +} +``` + + +## Forwarded options + + BAML will auto construct this field for you from the prompt + + + BAML will auto construct this field for you based on how you call the client in your code + + + The model to use. + +| Model | Description | +| --- | --- | +| `llama3` | Meta Llama 3: The most capable openly available LLM to date | +| `qwen2` | Qwen2 is a new series of large language models from Alibaba group | +| `phi3` | Phi-3 is a family of lightweight 3B (Mini) and 14B (Medium) state-of-the-art open models by Microsoft | +| `aya` | Aya 23, released by Cohere, is a new family of state-of-the-art, multilingual models that support 23 languages. | +| `mistral` | The 7B model released by Mistral AI, updated to version 0.3. | +| `gemma` | Gemma is a family of lightweight, state-of-the-art open models built by Google DeepMind. Updated to version 1.1 | +| `mixtral` | A set of Mixture of Experts (MoE) model with open weights by Mistral AI in 8x7b and 8x22b parameter sizes. | + +See ollama docs for the list of ollama models. [Model Library](https://ollama.com/library) + +To use a specific version you would do: `"mixtral:8x22b"` + + + +For all other options, see the [official OpenAI API documentation](https://platform.openai.com/docs/api-reference/chat/create). diff --git a/docs/docs/snippets/clients/providers/openai.mdx b/docs/docs/snippets/clients/providers/openai.mdx new file mode 100644 index 000000000..310298120 --- /dev/null +++ b/docs/docs/snippets/clients/providers/openai.mdx @@ -0,0 +1,94 @@ +--- +title: openai +--- + +The `openai` provider supports all APIs that use the same interface for the `/chat` endpoint. + + + For `ollama` ([Docs](ollama)) or `azure-openai` ([Docs](azure)) we recommend + using the respective provider instead. + + +Example: + +```rust BAML +client MyClient { + provider openai + options { + api_key env.MY_OPENAI_KEY + model "gpt-3.5-turbo" + temperature 0.1 + } +} +``` + +The options are passed through directly to the API, barring a few. Here's a shorthand of the options: + +## Non-forwarded options + + + Will be passed as a bearer token. **Default: `env.OPENAI_API_KEY`** + `Authorization: Bearer $api_key` + + + + The base URL for the API. **Default: `https://api.openai.com/v1`** + + + + The default role for any prompts that don't specify a role. **Default: + `system`** We don't have any checks for this field, you can pass any string + you wish. + + + + Additional headers to send with the request. + +Example: + +```rust BAML +client MyClient { + provider openai + options { + api_key env.MY_OPENAI_KEY + model "gpt-3.5-turbo" + headers { + "X-My-Header" "my-value" + } + } +} +``` + + + +## Forwarded options + + + BAML will auto construct this field for you from the prompt + + + BAML will auto construct this field for you based on how you call the client in your code + + + The model to use. + +| Model | Description | +| --------------- | ------------------------------ | +| `gpt-3.5-turbo` | Fastest + Cheapest | +| `gpt-4o` | Fast + text + image | +| `gpt-4-turbo` | Smartest + text + image + code | + +See openai docs for the list of openai models. You can pass any model name you wish, we will not check if it exists. + + + +For all other options, see the [official OpenAI API documentation](https://platform.openai.com/docs/api-reference/chat/create). diff --git a/docs/docs/snippets/clients/providers/other.mdx b/docs/docs/snippets/clients/providers/other.mdx new file mode 100644 index 000000000..33ee98a34 --- /dev/null +++ b/docs/docs/snippets/clients/providers/other.mdx @@ -0,0 +1,28 @@ +--- +title: Others (e.g. openrouter) +--- + +Since many model providers are settling on following the OpenAI Chat API spec, the recommended way to use them is to use the `openai` provider. + +Please report an [issue](https://github.com/BoundaryML/baml/issues) if you encounter something that doesn't work as expected. + +## Examples + +### OpenRouter + +https://openrouter.ai - A unified interface for LLMs + +```rust BAML +client MyClient { + provider openai + options { + base_url "https://openrouter.ai/api/v1" + api_key env.OPENROUTER_API_KEY + model "openai/gpt-3.5-turbo" + headers { + "HTTP-Referer" "YOUR-SITE-URL" // Optional + "X-Title" "YOUR-TITLE" // Optional + } + } +} +``` diff --git a/docs/docs/snippets/clients/providers/vertex.mdx b/docs/docs/snippets/clients/providers/vertex.mdx new file mode 100644 index 000000000..b3668ef78 --- /dev/null +++ b/docs/docs/snippets/clients/providers/vertex.mdx @@ -0,0 +1,7 @@ +--- +title: vertex-ai +--- + +We don't currently offer `vertex-ai` as a provider. If you'd like to see it, please comment on this issue: [Support Vertex AI provider](https://github.com/BoundaryML/baml/issues/706). + +You can instead use gemini-models with the `google-ai` provider, [see here](gemini). \ No newline at end of file diff --git a/docs/docs/snippets/clients/retry.mdx b/docs/docs/snippets/clients/retry.mdx new file mode 100644 index 000000000..5201a69e6 --- /dev/null +++ b/docs/docs/snippets/clients/retry.mdx @@ -0,0 +1,85 @@ +--- +title: retry_policy +--- + +A retry policy can be attached to any `client` and will attempt to retry requests that fail due to a network error. + +```rust BAML +retry_policy MyPolicyName { + max_retries 3 +} +``` + +Usage: +```rust BAML +client MyClient { + provider anthropic + retry_policy MyPolicyName + options { + model "claude-3-sonnet-20240229" + api_key env.ANTHROPIC_API_KEY + } +} +``` + +## Fields + + Number of **additional** retries to attempt after the initial request fails. + + + + The strategy to use for retrying requests. Default is `constant_delay(delay_ms=200)`. + +| Strategy | Docs | Notes | +| --- | --- | --- | +| `constant_delay` | [Docs](#constant-delay) | | +| `exponential_backoff` | [Docs](#exponential-backoff) | | + +Example: +```rust BAML +retry_policy MyPolicyName { + max_retries 3 + strategy { + type constant_delay + delay_ms 200 + } +} +``` + + + +## Strategies + +### constant_delay + + Configures to the constant delay strategy. + + + + The delay in milliseconds to wait between retries. **Default: 200** + + + +### exponential_backoff + + Configures to the exponential backoff strategy. + + + + The initial delay in milliseconds to wait between retries. **Default: 200** + + + + The multiplier to apply to the delay after each retry. **Default: 1.5** + + + + The maximum delay in milliseconds to wait between retries. **Default: 10000** + \ No newline at end of file diff --git a/docs/docs/snippets/clients/round-robin.mdx b/docs/docs/snippets/clients/round-robin.mdx new file mode 100644 index 000000000..e968dd643 --- /dev/null +++ b/docs/docs/snippets/clients/round-robin.mdx @@ -0,0 +1,85 @@ +--- +title: round-robin +--- + +The `round_robin` provider allows you to distribute requests across multiple clients in a round-robin fashion. After each call, the next client in the list will be used. + +```rust BAML +client MyClient { + provider round-robin + options { + strategy [ + ClientA + ClientB + ClientC + ] + } +} +``` + +## Options + + + The list of client names to try in order. Cannot be empty. + + + + The index of the client to start with. + + **Default is `random(0, len(strategy))`** + + In the [BAML Playground](/docs/get-started/quickstart/editors-vscode.mdx), Default is `0`. + + +## retry_policy + +When using a retry_policy with a round-robin client, it will rotate the strategy list after each retry. + +```rust BAML +client MyClient { + provider round-robin + retry_policy MyRetryPolicy + options { + strategy [ + ClientA + ClientB + ClientC + ] + } +} +``` + +## Nesting multiple round-robin clients + +You can nest multiple round-robin clients inside of each other. The round-robin as you would expect. + +```rust BAML +client MyClient { + provider round-robin + options { + strategy [ + ClientA + ClientB + ClientC + ] + } +} + +client MegaClient { + provider round-robin + options { + strategy [ + MyClient + ClientD + ClientE + ] + } +} + +// Calling MegaClient will call: +// MyClient(ClientA) +// ClientD +// ClientE +// MyClient(ClientB) +// etc. +``` diff --git a/docs/docs/snippets/enum.mdx b/docs/docs/snippets/enum.mdx new file mode 100644 index 000000000..af432eece --- /dev/null +++ b/docs/docs/snippets/enum.mdx @@ -0,0 +1,109 @@ +--- +title: "enum" +--- + +Enums are useful for classification tasks. BAML has helper functions that can help you serialize an enum into your prompt in a neatly formatted list (more on that later). + +To define your own custom enum in BAML: + + +```rust BAML +enum MyEnum { + Value1 + Value2 + Value3 +} +``` + +```python Python Equivalent +from enum import StrEnum + +class MyEnum(StrEnum): + Value1 = "Value1" + Value2 = "Value2" + Value3 = "Value3" +``` + +```typescript Typescript Equivalent +enum MyEnum { + Value1 = "Value1", + Value2 = "Value2", + Value3 = "Value3", +} +``` + + + +- You may have as many values as you'd like. +- Values may not be duplicated or empty. +- Values may not contain spaces or special characters and must not start with a number. + +## Enum Attributes + + +This is the name of the enum rendered in the prompt. + + + + +If set, will allow you to add/remove/modify values to the enum dynamically at runtime (in your python/ts/etc code). See [dynamic enums](/docs/calling-baml/dynamic-types) for more information. + + + +```rust BAML +enum MyEnum { + Value1 + Value2 + Value3 + + @@alias("My Custom Enum") + @@dynamic // allows me to later skip Value2 at runtime +} +``` + +## Value Attributes + +When prompt engineering, you can also alias values and add descriptions, or even skip them. + + +Aliasing renames the values for the llm to potentially "understand" your value better, while keeping the original name in your code, so you don't need to change your downstream code everytime. + +This will also be used for parsing the output of the LLM back into the enum. + + + +This adds some additional context to the value in the prompt. + + + +Skip this value in the prompt and during parsing. + + + +```rust BAML +enum MyEnum { + Value1 @alias("complete_summary") @description("Answer in 2 sentences") + Value2 + Value3 @skip + Value4 @description(#" + This is a long description that spans multiple lines. + It can be useful for providing more context to the value. + "#) +} +``` + + +See more in [prompt syntax docs](prompt-syntax/what-is-jinja) diff --git a/docs/docs/snippets/functions/classification.mdx b/docs/docs/snippets/functions/classification.mdx new file mode 100644 index 000000000..b40e0775c --- /dev/null +++ b/docs/docs/snippets/functions/classification.mdx @@ -0,0 +1,77 @@ +You can write functions to classify elements using [Enums](/docs/snippets/enum). + +Here is such an example: + +```rust BAML +enum Category { + Refund + CancelOrder @description("some description") + TechnicalSupport @alias("technical-help") // or alias the name + AccountIssue + Question +} + +function ClassifyMessage(input: string) -> Category { + client GPT4Turbo + prompt #" + {# + This automatically injects good instructions + for classification since BAML knows + Category is an enum. + #} + {{ ctx.output_format }} + + {{ _.role('user') }} + {{ input }} + + {{ _.role('assistant') }} + Response: + "# +} +``` +If you use BAML Playground, you can see what we inject into the prompt, with full transparency. + +The neat part about BAML is that you don't need to parse the enums out of the answer yourself. It _will just work_. BAML's fuzzy parsing detects when the LLM prints something like: +```text +Based on the information provided, I think the answer is Refund +``` +and will give you the actual `Category.Refund` when you call the function. We will add more knobs so you can make this parsing more or less strict. + +## Usage + +```python python +from baml_client import b +from baml_client.types import Category + +... + result = await b.ClassifyMessage("I want to cancel my order") + assert result == Category.CancelOrder +``` + +```typescript typescript +import b from 'baml_client' +import { Category } from 'baml_client/types' + +... + const result = await b.ClassifyMessage("I want to cancel my order") + assert(result === Category.Cancel) + +```ruby ruby +require_relative "baml_client/client" + +$b = Baml.Client + +def main + category = $b.ClassifyMessage(input: "I want to cancel my order") + puts category == Baml::Types::Category::CancelOrder +end + +if __FILE__ == $0 + main +end +``` + + +## Handling Dynamic Categories (e.g. user-provided, or from a database) +To handle dynamic categories you can use [dynamic enums](/docs/calling-baml/dynamic-types) to build your enum at runtime. + diff --git a/docs/docs/snippets/functions/extraction.mdx b/docs/docs/snippets/functions/extraction.mdx new file mode 100644 index 000000000..3dd195aec --- /dev/null +++ b/docs/docs/snippets/functions/extraction.mdx @@ -0,0 +1,75 @@ +Here is how we can get structured data from a chunk of text or even an image (using a union input type): + +```rust BAML +class CharacterDescription { + name string + clothingItems string[] + hairColor string? @description(#" + The color of the character's hair. + "#) + spells Spells[] +} + +class Spells { + name string + description string +} + +function DescribeCharacter(image_or_paragraph: image | string) -> CharacterDescription { + client GPT4o + prompt #" + {{ _.role("user")}} + + Describe this character according to the schema provided: + {{ image_or_paragraph }} + + + {{ ctx.output_format }} + + Before you answer, explain your reasoning in 3 sentences. + "# +} +``` + +If you open up the **VSCode Playground** you will be able to test this function instantly. + +## Usage + +See [image docs](/docs/snippets/supported-types#image) + + +```python python +from baml_client import b +from baml_client.types import CharacterDescription +from baml_py import Image + +... + result = await b.DescribeCharacter("...") + assert isinstance(result, CharacterDescription) + + result_from_image = await b.DescribeCharacter(Image.from_url("http://...")) +``` + +```typescript typescript +import { Image } from "@boundaryml/baml" +import b from 'baml_client' +import { Category } from 'baml_client/types' + +... + const result = await b.DescribeCharacter("...") + // result == interface CharacterDescription + + const result_from_image = await b.DescribeCharacter(Image.fromUrl("http://...")) +``` + +```ruby ruby +require_relative "baml_client/client" + +$b = Baml.Client + +# images are not supported in Ruby +def example + stream = $b.DescribeCharacter("Bob the builder wears overalls") +end +``` + \ No newline at end of file diff --git a/docs/docs/snippets/functions/function-calling.mdx b/docs/docs/snippets/functions/function-calling.mdx new file mode 100644 index 000000000..5f3997836 --- /dev/null +++ b/docs/docs/snippets/functions/function-calling.mdx @@ -0,0 +1,61 @@ +--- +title: Function Calling / Tools +--- +"Function calling" is a technique for getting an LLM to choose a function to call for you. + +The way it works is: +1. You define a task with certain function(s) +2. Ask the LLM to **choose which function to call** +3. **Get the function parameters from the LLM** for the appropriate function it choose +4. **Call the functions** in your code with those parameters + +In BAML, you can get represent a `tool` or a `function` you want to call as a BAML `class`, and make the function output be that class definition. + +```rust BAML +class WeatherAPI { + city string @description("the user's city") + timeOfDay string @description("As an ISO8601 timestamp") +} + +function UseTool(user_message: string) -> WeatherAPI { + client GPT4Turbo + prompt #" + Extract the info from this message + --- + {{ user_message }} + --- + + {# special macro to print the output schema. #} + {{ ctx.output_format }} + + JSON: + "# +} +``` + +## Choosing multiple Tools + +To choose ONE tool out of many, you can use a union: +```rust BAML +function UseTool(user_message: string) -> WeatherAPI | MyOtherAPI { + .... // same thing +} +``` + +If you use [VSCode Playground](/docs/get-started/quickstart/editors-vscode), you can see what we inject into the prompt, with full transparency. + +## Choosing N Tools +To choose many tools, you can use a union of a list: +```rust BAML +function UseTool(user_message: string) -> (WeatherAPI | MyOtherAPI)[] { + .... // same thing +} +``` + +## Function-calling APIs vs Prompting +Injecting your function schemas into the prompt, as BAML does, outperforms function-calling across all benchmarks for major providers (see [Berkeley's Function-calling Leaderboard](https://gorilla.cs.berkeley.edu/leaderboard.html), where "Prompt" outperforms "FC"). + +Keep in mind that "JSON mode" is nearly the same thing as "prompting", but it enforces the LLM response is ONLY a JSON blob. +BAML does not use JSON mode since it allows developers to use better prompting techniques like chain-of-thought, to allow the LLM to express its reasoning before printing out the actual schema. BAML's parser can find the json schema(s) out of free-form text for you. + +BAML may support native function-calling APIs in the future (please let us know more about your use-case so we can prioritize accordingly) \ No newline at end of file diff --git a/docs/docs/snippets/functions/overview.mdx b/docs/docs/snippets/functions/overview.mdx new file mode 100644 index 000000000..81237f247 --- /dev/null +++ b/docs/docs/snippets/functions/overview.mdx @@ -0,0 +1,128 @@ +A **function** is the contract between the application and the AI model. It defines the desired **input** and a **guaranteed output**. + +Here is a simple BAML function to extract a resume. Note the input is a chunk of resume_text, and the output is an actual resume class. Read [prompt syntax](/docs/snippets/prompt-syntax/what-is-jinja) to learn more about the prompt and what Jinja templating is. + +```rust BAML +class Resume { + name string + education Education[] @description("Extract in the same order listed") + skills string[] @description("Only include programming languages") +} + +class Education { + school string + degree string + year int +} + +function ExtractResume(resume_text: string) -> Resume { + client GPT4Turbo + // The prompt uses Jinja syntax. Change the models or this text and watch the prompt preview change! + prompt #" + Parse the following resume and return a structured representation of the data in the schema below. + + Resume: + --- + {{ resume_text }} + --- + + {# special macro to print the output instructions. #} + {{ ctx.output_format }} + + JSON: + "# +} +``` + +A function signature directly translates into the same function in the language of your choice, and BAML's fuzzy parser will handle fixing any common json mistakes LLMs make. Here's how you call it: + + +```python python +from baml_client import b +from baml_client.types import Resume + +async def main(): +resume_text = """Jason Doe\nPython, Rust\nUniversity of California, Berkeley, B.S.\nin Computer Science, 2020\nAlso an expert in Tableau, SQL, and C++\n""" + + # this function comes from the autogenerated "baml_client". + # It calls the LLM you specified and handles the parsing. + resume = await b.ExtractResume(resume_text) + + # Fully type-checked and validated! + assert isinstance(resume, Resume) + +``` + +```typescript typescript +import b from 'baml_client' + +async function main() { + const resume_text = `Jason Doe\nPython, Rust\nUniversity of California, Berkeley, B.S.\nin Computer Science, 2020\nAlso an expert in Tableau, SQL, and C++` + + // this function comes from the autogenerated "baml_client". + // It calls the LLM you specified and handles the parsing. + const resume = await b.ExtractResume(resume_text) + + // Fully type-checked and validated! + resume.name === 'Jason Doe' +} +``` + +```ruby ruby + +require_relative "baml_client/client" +b = Baml.Client + +# Note this is not async +res = b.TestFnNamedArgsSingleClass( + myArg: Baml::Types::Resume.new( + key: "key", + key_two: true, + key_three: 52, + ) +) +``` + + + +## Complex input types + +If you have a complex input type you can import them from `baml_client` and use them when calling your function. Imagine we injected `class Resume` into a different baml function called AnalyzeResume. Here's what the call looks like: + + +```python Python +from baml_client.types import Resume +from baml_client import b +... + await b.AnalyzeResume( + Resume(name="Mark", education=[...])) + +```` + +```typescript typescript +import { Resume, b } from "baml_client" + +... + await b.AnalyzeResume({ + name: "Mark", + education: [...] + }) +```` + +```ruby Ruby +require_relative "baml_client/client" +b = Baml.Client +... +res = b.AnalyzeResume( + myArg: Baml::Types::Resume.new( + name: "key", + education: [...] + ) +) +``` + + + +See more at [Calling functions](/docs/calling-baml/calling-functions) + +Checkout [PromptFiddle](https://promptfiddle.com) to see various interactive BAML function examples. diff --git a/docs/docs/snippets/prompt-syntax/comments.mdx b/docs/docs/snippets/prompt-syntax/comments.mdx new file mode 100644 index 000000000..a6e648177 --- /dev/null +++ b/docs/docs/snippets/prompt-syntax/comments.mdx @@ -0,0 +1 @@ +Use `{# ... #}` inside the `prompt` to add comments diff --git a/docs/docs/snippets/prompt-syntax/conditionals.mdx b/docs/docs/snippets/prompt-syntax/conditionals.mdx new file mode 100644 index 000000000..3bf1f53e2 --- /dev/null +++ b/docs/docs/snippets/prompt-syntax/conditionals.mdx @@ -0,0 +1,13 @@ +Use conditional statements to control the flow and output of your templates based on conditions: + +```jinja2 +function MyFunc(user: User) -> string { + prompt #" + {% if user.is_active %} + Welcome back, {{ user.name }}! + {% else %} + Please activate your account. + {% endif %} + "# +} +``` diff --git a/docs/docs/snippets/prompt-syntax/ctx.mdx b/docs/docs/snippets/prompt-syntax/ctx.mdx new file mode 100644 index 000000000..771cbad72 --- /dev/null +++ b/docs/docs/snippets/prompt-syntax/ctx.mdx @@ -0,0 +1,38 @@ +--- +title: ctx (accessing metadata) +--- + +If you try rendering `{{ ctx }}` into the prompt (literally just write that out!), you'll see all the metadata we inject to run this prompt within the playground preview. + +In the earlier tutorial we mentioned `ctx.output_format`, which contains the schema, but you can also access client information: + + +## Usecase: Conditionally render based on client provider + +In this example, we render the list of messages in XML tags if the provider is Anthropic (as they recommend using them as delimiters). See also [template_string](/docs/snippets/template-string) as it's used in here. + +```jinja2 +template_string RenderConditionally(messages: Message[]) #" + {% for message in messages %} + {%if ctx.client.provider == "anthropic" %} + {{ message.user_name }}: {{ message.content }} + {% else %} + {{ message.user_name }}: {{ message.content }} + {% endif %} + {% endfor %} +"# + +function MyFuncWithGPT4(messages: Message[]) -> string { + client GPT4o + prompt #" + {{ RenderConditionally(messages)}} + "# +} + +function MyFuncWithAnthropic(messages: Message[]) -> string { + client Claude35 + prompt #" + {{ RenderConditionally(messages )}} + #" +} +``` \ No newline at end of file diff --git a/docs/docs/snippets/prompt-syntax/loops.mdx b/docs/docs/snippets/prompt-syntax/loops.mdx new file mode 100644 index 000000000..7667ace4b --- /dev/null +++ b/docs/docs/snippets/prompt-syntax/loops.mdx @@ -0,0 +1,40 @@ +Here's how you can iterate over a list of items, accessing each item's attributes: + +```jinja2 +function MyFunc(messages: Message[]) -> string { + prompt #" + {% for message in messages %} + {{ message.user_name }}: {{ message.content }} + {% endfor %} + "# +} +``` + +## loop + +Jinja provides a `loop` object that can be used to access information about the loop. Here are some of the attributes of the `loop` object: + + +| Variable | Description | +|------------------|-----------------------------------------------------------------------------| +| loop.index | The current iteration of the loop. (1 indexed) | +| loop.index0 | The current iteration of the loop. (0 indexed) | +| loop.revindex | The number of iterations from the end of the loop (1 indexed) | +| loop.revindex0 | The number of iterations from the end of the loop (0 indexed) | +| loop.first | True if first iteration. | +| loop.last | True if last iteration. | +| loop.length | The number of items in the sequence. | +| loop.cycle | A helper function to cycle between a list of sequences. See the explanation below. | +| loop.depth | Indicates how deep in a recursive loop the rendering currently is. Starts at level 1 | +| loop.depth0 | Indicates how deep in a recursive loop the rendering currently is. Starts at level 0 | +| loop.previtem | The item from the previous iteration of the loop. Undefined during the first iteration. | +| loop.nextitem | The item from the following iteration of the loop. Undefined during the last iteration. | +| loop.changed(*val) | True if previously called with a different value (or not called at all). | + +```jinja2 +prompt #" + {% for item in items %} + {{ loop.index }}: {{ item }} + {% endfor %} +"# +``` \ No newline at end of file diff --git a/docs/docs/snippets/prompt-syntax/output-format.mdx b/docs/docs/snippets/prompt-syntax/output-format.mdx new file mode 100644 index 000000000..414f29657 --- /dev/null +++ b/docs/docs/snippets/prompt-syntax/output-format.mdx @@ -0,0 +1,132 @@ +--- +title: ctx.output_format +--- + +`{{ ctx.output_format }}` is used within a prompt template (or in any template_string) to print out the function's output schema into the prompt. It describes to the LLM how to generate a structure BAML can parse (usually JSON). + +Here's an example of a function with `{{ ctx.output_format }}`, and how it gets rendered by BAML before sending it to the LLM. + +**BAML Prompt** + +```rust +class Resume { + name string + education Education[] +} +function ExtractResume(resume_text: string) -> Resume { + prompt #" + Extract this resume: + --- + {{ resume_text }} + --- + + {{ ctx.output_format }} + "# +} +``` + +**Rendered prompt** + +```text +Extract this resume +--- +Aaron V. +Bachelors CS, 2015 +UT Austin +--- + +Answer in JSON using this schema: +{ + name: string + education: [ + { + school: string + graduation_year: string + } + ] +} +``` + +## Controlling the output_format + +`ctx.output_format` can also be called as a function with parameters to customize how the schema is printed, like this: +```text + +{{ ctx.output_format(prefix="If you use this schema correctly and I'll tip $400:\n", always_hoist_enums=true)}} +``` + +Here's the parameters: + +The prefix instruction to use before printing out the schema. + +```text +Answer in this schema correctly I'll tip $400: +{ + ... +} +``` +BAML's default prefix varies based on the function's return type. + +| Fuction return type | Default Prefix | +| --- | --- | +| Primitive (String) | | +| Primitive (Other) | `Answer as a: ` | +| Enum | `Answer with any of the categories:\n` | +| Class | `Answer in JSON using this schema:\n` | +| List | `Answer with a JSON Array using this schema:\n` | +| Union | `Answer in JSON using any of these schemas:\n` | +| Optional | `Answer in JSON using this schema:\n` | + + + + +Whether to inline the enum definitions in the schema, or print them above. **Default: false** + + +**Inlined** +``` + +Answer in this json schema: +{ + categories: "ONE" | "TWO" | "THREE" +} +``` + +**hoisted** +``` +MyCategory +--- +ONE +TWO +THREE + +Answer in this json schema: +{ + categories: MyCategory +} +``` + +BAML will always hoist if you add a [description](/docs/snippets/enum#aliases-descriptions) to any of the enum values. + + + + + +**Default: ` or `** + +If a type is a union like `string | int` or an optional like `string?`, this indicates how it's rendered. + + +BAML renders it as `property: string or null` as we have observed some LLMs have trouble identifying what `property: string | null` means (and are better with plain english). + +You can always set it to ` | ` or something else for a specific model you use. + + +## Why BAML doesn't use JSON schema format in prompts +BAML uses "type definitions" or "jsonish" format instead of the long-winded json-schema format. +The tl;dr is that json schemas are +1. 4x more inefficient than "type definitions". +2. very unreadable by humans (and hence models) +3. perform worse than type definitions (especially on deeper nested objects or smaller models) + +Read our [full article on json schema vs type definitions](https://www.boundaryml.com/blog/type-definition-prompting-baml) diff --git a/docs/docs/snippets/prompt-syntax/roles.mdx b/docs/docs/snippets/prompt-syntax/roles.mdx new file mode 100644 index 000000000..685453f66 --- /dev/null +++ b/docs/docs/snippets/prompt-syntax/roles.mdx @@ -0,0 +1,83 @@ +--- +title: _.role +--- + +BAML prompts are compiled into a `messages` array (or equivalent) that most LLM providers use: + +BAML Prompt -> `[{ role: "user": content: "hi there"}, { role: "assistant", ...}]` + +By default, BAML puts everything into a single message with the `system` role if available (or whichever one is best for the provider you have selected). +When in doubt, the playground always shows you the current role for each message. + +To specify a role explicitly, add the `{{ _.role("user")}}` syntax to the prompt +```jinja2 +prompt #" + {{ _.role("system") }} Everything after + this element will be a system prompt! + + {{ _.role("user")}} + And everything after this + will be a user role +"# +``` +Try it out in [PromptFiddle](https://www.promptfiddle.com) + + + BAML may change the default role to `user` if using specific APIs that only support user prompts, like when using prompts with images. + + +We use `_` as the prefix of `_.role()` since we plan on adding more helpers here in the future. + +## Example -- Using `_.role()` in for-loops + +Here's how you can inject a list of user/assistant messages and mark each as a user or assistant role: + +```rust BAML +class Message { + role string + message string +} + +function ChatWithAgent(input: Message[]) -> string { + client GPT4o + prompt #" + {% for m in messages %} + {{ _.role(m.role) }} + {{ m.message }} + {% endfor %} + "# +} +``` + +```rust BAML +function ChatMessages(messages: string[]) -> string { + client GPT4o + prompt #" + {% for m in messages %} + {{ _.role("user" if loop.index % 2 == 1 else "assistant") }} + {{ m }} + {% endfor %} + "# +} +``` + +## Example -- Using `_.role()` in a template string + +```rust BAML +template_strings YouAreA(name: string, job: string) #" + {{ _.role("system") }} + You are an expert {{ name }}. {{ job }} + + {{ ctx.output_format }} + {{ _.role("user") }} +"# + +function CheckJobPosting(post: string) -> bool { + client GPT4o + prompt #" + {{ YouAreA("hr admin", "You're role is to ensure every job posting is bias free.") }} + + {{ post }} + "# +} +``` diff --git a/docs/docs/snippets/prompt-syntax/variables.mdx b/docs/docs/snippets/prompt-syntax/variables.mdx new file mode 100644 index 000000000..b79b53ef3 --- /dev/null +++ b/docs/docs/snippets/prompt-syntax/variables.mdx @@ -0,0 +1,2 @@ + +See [template_string](/docs/snippets/template-string) to learn how to add variables in .baml files \ No newline at end of file diff --git a/docs/docs/snippets/prompt-syntax/what-is-jinja.mdx b/docs/docs/snippets/prompt-syntax/what-is-jinja.mdx new file mode 100644 index 000000000..05b70c177 --- /dev/null +++ b/docs/docs/snippets/prompt-syntax/what-is-jinja.mdx @@ -0,0 +1,82 @@ +--- +title: What is Jinja / Cookbook +--- + +BAML Prompt strings are essentially [Jinja](https://jinja.palletsprojects.com/en/3.1.x/templates/) templates, which offer the ability to express logic and data manipulation within strings. Jinja is a very popular and mature templating language amongst python developers, so github copilot or GPT4 can already help you write most of the logic you want. + +## Jinja Cookbook + +When in doubt -- use the BAML VSCode Playground preview. It will show you the fully rendered prompt, even when it has complex logic. + +### Basic Syntax + +- `{% ... %}`: Use for executing statements such as for-loops or conditionals. +- `{{ ... }}`: Use for outputting expressions or variables. +- `{# ... #}`: Use for comments within the template, which will not be rendered. + +### Loops / Iterating Over Lists + +Here's how you can iterate over a list of items, accessing each item's attributes: + +```jinja2 +function MyFunc(messages: Message[]) -> string { + prompt #" + {% for message in messages %} + {{ message.user_name }}: {{ message.content }} + {% endfor %} + "# +} +``` + +### Conditional Statements + +Use conditional statements to control the flow and output of your templates based on conditions: + +```jinja2 +function MyFunc(user: User) -> string { + prompt #" + {% if user.is_active %} + Welcome back, {{ user.name }}! + {% else %} + Please activate your account. + {% endif %} + "# +} +``` + +### Setting Variables + +You can define and use variables within your templates to simplify expressions or manage data: + +```jinja2 +function MyFunc(items: Item[]) -> string { + prompt #" + {% set total_price = 0 %} + {% for item in items %} + {% set total_price = total_price + item.price %} + {% endfor %} + Total price: {{ total_price }} + "# +} +``` + +### Including other Templates + +To promote reusability, you can include other templates within a template. See [template strings](/docs/snippets/template-string): + +```rust +template_string PrintUserInfo(arg1: string, arg2: User) #" + {{ arg1 }} + The user's name is: {{ arg2.name }} +"# + +function MyFunc(arg1: string, user: User) -> string { + prompt #" + Here is the user info: + {{ PrintUserInfo(arg1, user) }} + "# +} +``` + +### Built-in filters +See [jinja docs](https://jinja.palletsprojects.com/en/3.1.x/templates/#list-of-builtin-filters) \ No newline at end of file diff --git a/docs/docs/snippets/supported-types.mdx b/docs/docs/snippets/supported-types.mdx new file mode 100644 index 000000000..05a08b2bc --- /dev/null +++ b/docs/docs/snippets/supported-types.mdx @@ -0,0 +1,286 @@ +--- +title: Supported Types +--- + +Here's a list of all the types you can extract from LLMs with BAML: + +## Primitive types +* `bool` +* `int` +* `float` +* `string` +* `null` + +## Multimodal Types +See [calling a function with multimodal types](/docs/snippets/calling-baml/multi-modal) + +### `image` + +You can use an image like this for models that support them: + +```rust +function DescribeImage(myImg: image) -> string { + client GPT4Turbo + prompt #" + {{ _.role("user")}} + Describe the image in four words: + {{ myImg }} + "# +} +``` +You cannot name as variable "image" at the moment as it is a reserved keyword. + +Calling a function with an image type: + +```python Python +from baml_py import Image +from baml_client import b + +async def test_image_input(): + # from URL + res = await b.TestImageInput( + img=Image.from_url( + "https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png" + ) + ) + + # Base64 image + image_b64 = "iVBORw0K...." + res = await b.TestImageInput( + img=Image.from_base64("image/png", image_b64) + ) +``` + +```typescript TypeScript +import { b } from '../baml_client' +import { Image } from "@boundaryml/baml" +... + + // URL + let res = await b.TestImageInput( + Image.fromUrl('https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png'), + ) + + // Base64 + let res = await b.TestImageInput( + Image.fromBase64('image/png', image_b64), + ) +``` + +```ruby Ruby +(we're working on it!) +``` + + +### `audio` + +Example +```rust +function DescribeSound(myAudio: audio) -> string { + client GPT4Turbo + prompt #" + {{ _.role("user")}} + Describe the audio in four words: + {{ myAudio }} + "# +} +``` +Calling functions that have `audio` types. + + +```python Python +from baml_py import Audio +from baml_client import b + +async def run(): + # from URL + res = await b.TestAudioInput( + img=Audio.from_url( + "https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png" + ) + ) + + # Base64 + b64 = "iVBORw0K...." + res = await b.TestAudioInput( + img=Audio.from_base64("image/png", b64) + ) +``` + +```typescript TypeScript +import { b } from '../baml_client' +import { Audio } from "@boundaryml/baml" +... + + // URL + let res = await b.TestAudioInput( + Audio.fromUrl('https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.mp4'), + ) + + // Base64 + const audio_base64 = ".." + let res = await b.TestAudioInput( + Audio.fromBase64('image/png', audio_base64), + ) + +``` + +```ruby Ruby +we're working on it! +``` + + +## Composite/Structured Types + +### enum + +**See also:** [Enum](/docs/syntax/enum) + +A user-defined type consisting of a set of named constants. +Use it when you need a model to choose from a known set of values, like in classification problems + +```rust +enum Name { + Value1 + Value2 @description("My optional description annotation") +} +``` +### class + +**See also:** [Class](/docs/syntax/class) + +Classes are for user-defined complex data structures. + +Use when you need an LLM to call another function (e.g. OpenAI's function calling), you can model the function's parameters as a class. You can also get models to return complex structured data by using a class. + +**Example:** +Note that properties have no `:` +```rust +class Car { + model string + year int @description("Year of manufacture") +} +``` + +### Optional (?) +A type that represents a value that might or might not be present. + +Useful when a variable might not have a value and you want to explicitly handle its absence. +**Syntax:** `?` + +**Example:** `int?` or `(MyClass | int)?` + +### Union (|) + +A type that can hold one of several specified types. + +This can be helpful with **function calling**, where you want to return different types of data depending on which function should be called. +- **Syntax:** `|` +- **Example:** `int | string` or `(int | string) | MyClass` or `string | MyClass | int[]` + + Order is important. `int | string` is not the same as `string | int`. +
+ For example, if you have a `"1"` string, it will be parsed as an `int` if + you use `int | string`, but as a `string` if you use `string | int`. +
+ +### List/Array ([]) +A collection of elements of the same type. +- **Syntax:** `[]` +- **Example:** `string[]` or `(int | string)[]` or `int[][]` + + +
    +
  • Array types can be nested to create multi-dimensional arrays
  • +
  • An array type cannot be optional
  • +
+
+ +### ❌ Dictionary + +- Not yet supported. Use a `class` instead. + +### ❌ Set + +- Not yet supported. Use a `List` instead. + +### ❌ Tuple + +- Not yet supported. Use a `class` instead. + +## Examples and Equivalents + +Here are some examples and what their equivalents are in different languages. + +### Example 1 + + +```baml Baml +int?|string[]|MyClass +```` + +```python Python Equivalent +Union[Optional[int], List[str], MyClass] +``` + +```typescript TypeScript Equivalent +(number | null) | string[] | MyClass +``` + + + +### Example 2 + + +```baml Baml +string[] +``` + +```python Python Equivalent +List[str] +``` + +```typescript TypeScript Equivalent +string[] +``` + + + +### Example 3 + + +```baml Baml +(int|float)[] +``` +```python Python Equivalent +List[Union[int, float]] +``` + +```typescript TypeScript Equivalent +number[] +``` + + + +### Example 4 + + +```baml Baml +(int? | string[] | MyClass)[] +``` + +```python Python Equivalent +Optional[List[Union[Optional[int], List[str], MyClass]]] +``` + +```typescript TypeScript Equivalent +((number | null) | string[] | MyClass)[] +``` + + + +## ⚠️ Unsupported +- `any/json` - Not supported. We don't want to encourage its use as it defeats the purpose of having a type system. if you really need it, for now use `string` and call `json.parse` yourself or use [dynamic types](/docs/calling-baml/dynamic-types) +- `datetime` - Not yet supported. Use a `string` instead. +- `duration` - Not yet supported. We recommend using `string` and specifying that it must be an "ISO8601 duration" in the description, which you can parse yourself into a duration. +- `units (currency, temperature)` - Not yet supported. Use a number (`int` or `float`) and have the unit be part of the variable name. For example, `temperature_fahrenheit` and `cost_usd` (see [@alias](/docs/snippets/class#aliases-descriptions)) diff --git a/docs/docs/syntax/comments.mdx b/docs/docs/snippets/syntax/comments.mdx similarity index 99% rename from docs/docs/syntax/comments.mdx rename to docs/docs/snippets/syntax/comments.mdx index d29f2ebed..6fe8d6448 100644 --- a/docs/docs/syntax/comments.mdx +++ b/docs/docs/snippets/syntax/comments.mdx @@ -33,4 +33,4 @@ Multiline comments are denoted via `{//` and `//}`. bar //} ``` - + diff --git a/docs/docs/snippets/syntax/dictionaries.mdx b/docs/docs/snippets/syntax/dictionaries.mdx new file mode 100644 index 000000000..81e71a03f --- /dev/null +++ b/docs/docs/snippets/syntax/dictionaries.mdx @@ -0,0 +1,34 @@ +Dictionaries in BAML have this syntax. You'll see them mainly in `tests` declared in BAML, and `clients`. + +```baml BAML +{ + key1 value1 + key2 { + nestedKey1 nestedValue1 + } +} +``` +Note they do not use `:` + +You can use unquoted or quoted strings, booleans, numbers and nested dictionaries as values. + +```rust BAML +{ + key1 "value1" + key2 { + nestedKey1 1 + nestedKey2 true + } +} +``` + +**Dictionary with multiline string as a value**: + +```rust BAML +{ + key1 #" + This is a + multiline string + "# +} +``` \ No newline at end of file diff --git a/docs/docs/snippets/syntax/lists.mdx b/docs/docs/snippets/syntax/lists.mdx new file mode 100644 index 000000000..958b790d5 --- /dev/null +++ b/docs/docs/snippets/syntax/lists.mdx @@ -0,0 +1,22 @@ +If you have to declare a list in a .baml file you can use this syntax: +```rust baml +{ + key1 [value1, value2, value3], + key2 [ + value1, + value2, + value3 + ] + key3 [ + { + key1 value1, + key2 value2 + } + { + key1 value1, + key2 value2 + } + ] +} +``` +The commas are optional if doing a multiline list. \ No newline at end of file diff --git a/docs/docs/syntax/strings.mdx b/docs/docs/snippets/syntax/strings.mdx similarity index 93% rename from docs/docs/syntax/strings.mdx rename to docs/docs/snippets/syntax/strings.mdx index 657fa726d..512f63533 100644 --- a/docs/docs/syntax/strings.mdx +++ b/docs/docs/snippets/syntax/strings.mdx @@ -63,4 +63,4 @@ python#" return 1 "# ``` -these are not functional code blocks they are can just be used for documentation purposes. +these are not functional code blocks -- they are only used for documentation purposes. diff --git a/docs/docs/snippets/template-string.mdx b/docs/docs/snippets/template-string.mdx new file mode 100644 index 000000000..2525921de --- /dev/null +++ b/docs/docs/snippets/template-string.mdx @@ -0,0 +1,35 @@ +Writing prompts requires a lot of string manipulation. BAML has a `template_string` to let you combine different string templates together. Under-the-hood they use [jinja](/docs/snippets/prompt-syntax/what-is-jinja) to evaluate the string and its inputs. + +Think of template strings as functions that have variables, and return a string. They can be used to define reusable parts of a prompt, or to make the prompt more readable by breaking it into smaller parts. + +Example +```rust BAML +// Inject a list of "system" or "user" messages into the prompt. +template_string PrintMessages(messages: Message[]) #" + {% for m in messages %} + {{ _.role(m.role) }} + {{ m.message }} + {% endfor %} +"# + +function ClassifyConversation(messages: Message[]) -> Category[] { + client GPT4Turbo + prompt #" + Classify this conversation: + {{ PrintMessages(messages) }} + + Use the following categories: + {{ ctx.output_format}} + "# +} +``` + +In this example we can call the template_string `PrintMessages` to subdivide the prompt into "user" or "system" messages using `_.role()` (see [message roles](/docs/snippets/prompt-syntax/roles)). This allows us to reuse the logic for printing messages in multiple prompts. + +You can nest as many template strings inside each other and call them however many times you want. + + + The BAML linter may give you a warning when you use template strings due to a static analysis limitation. You can ignore this warning. If it renders in the playground, you're good! + +Use the playground preview to ensure your template string is being evaluated correctly! + diff --git a/docs/docs/snippets/test-cases.mdx b/docs/docs/snippets/test-cases.mdx new file mode 100644 index 000000000..48690915d --- /dev/null +++ b/docs/docs/snippets/test-cases.mdx @@ -0,0 +1,109 @@ +You can test your BAML functions in the VSCode Playground by adding a `test` snippet into a BAML file: + +```rust +enum Category { + Refund + CancelOrder + TechnicalSupport + AccountIssue + Question +} + +function ClassifyMessage(input: string) -> Category { + client GPT4Turbo + prompt #" + ... truncated ... + "# +} + +test Test1 { + functions [ClassifyMessage] + args { + input "Can't access my account using my usual login credentials, and each attempt results in an error message stating 'Invalid username or password.' I have tried resetting my password using the 'Forgot Password' link, but I haven't received the promised password reset email." + } +} +``` +See the [interactive examples](https://promptfiddle.com) + +The BAML playground will give you a starting snippet to copy that will match your function signature. + + +BAML doesn't use between key-value pairs `:` except in function parameters + + +## Complex object inputs + +Objects are injected as dictionaries +```rust +class Message { + user string + content string +} + +function ClassifyMessage(messages: Messages[]) -> Category { +... +} + +test Test1 { + functions [ClassifyMessage] + args { + messages [ + { + user "hey there" + content #" + You can also add a multi-line + string with the hashtags + Instead of ugly json with \n + "# + } + ] + } +} +``` + +## Images +An `image` input type is translated into this object (assuming the function signature is `function MyFunction(myImage: image) -> ...`): + +URL input +``` +test Test1 { + args { + myImage { + url "https...." + } + } +} +``` +base64 input +``` +test Test1 { + args { + myImage { + base64 "base64string" + media_type "image/png" + } + } +} +``` +file input (coming soon) + + +## Audio +Audio inputs are similar to images: + +URL input +``` +... + { + url "https//domain.com/somefile.mp3" + } +... +``` +Base64 input +``` +{ + media_type "audio/mp3" + base64 "base64string" +} +``` +file input (coming soon) \ No newline at end of file diff --git a/docs/docs/syntax/class.mdx b/docs/docs/syntax/class.mdx deleted file mode 100644 index f5b0fc74b..000000000 --- a/docs/docs/syntax/class.mdx +++ /dev/null @@ -1,67 +0,0 @@ ---- -title: "class" ---- - -Classes consist of a name, a list of properties, and their [types](/docs/syntax/type). -In the context of LLMs, classes describe the type of the variables you can inject into prompts and extract out from the response. In python, classes are represented by [pydantic](https://pydantic-docs.helpmanual.io/) models. - - -```llvm Baml -class Foo { - property1 string - property2 int? - property3 Bar[] - property4 MyEnum -} -``` - -```python Python Equivalent -from pydantic import BaseModel -from path.to.bar import Bar -from path.to.my_enum import MyEnum - -class Foo(BaseModel): - property1: str - property2: Optional[int]= None - property3: List[Bar] - property4: MyEnum -``` - -```typescript Typescript Equivalent -import z from "zod"; -import { BarZod } from "./path/to/bar"; -import { MyEnumZod } from "./path/to/my_enum"; - -const FooZod = z.object({ - property1: z.string(), - property2: z.number().int().nullable().optional(), - property3: z.array(BarZod), - property4: MyEnumZod, -}); - -type Foo = z.infer; -``` - - - -## Properties - -Classes may have any number of properties. -Property names must follow: - -- Must start with a letter -- Must contain only letters, numbers, and underscores -- Must be unique within the class - -The type of a property can be any [supported type](/docs/syntax/type) - -### Default values - -- Not yet supported. For optional properties, the default value is `None` in python. - -## Inheritance - -Not supported. Like rust, we take the stance that [composition is better than inheritance](https://www.digitalocean.com/community/tutorials/composition-vs-inheritance). - -## aliases, descriptions -Classes support aliases, descriptions, and other kinds of attributes. See the [prompt engineering docs](./prompt_engineering/class) diff --git a/docs/docs/syntax/client/client.mdx b/docs/docs/syntax/client/client.mdx deleted file mode 100644 index fd309a96c..000000000 --- a/docs/docs/syntax/client/client.mdx +++ /dev/null @@ -1,229 +0,0 @@ ---- -title: client ---- - -A **client** is the mechanism by which a function calls an LLM. - -## Syntax - -```rust -client Name { - provider ProviderName - options { - // ... - } -} -``` - -- `Name`: The name of the client (can be any [a-zA-Z], numbers or `_`). Must start with a letter. - -## Properties - -| Property | Type | Description | Required | -| -------------- | -------------------- | -------------------------------------------------- | -------- | -| `provider` | name of the provider | The provider to use. | Yes | -| `options` | key-value pair | These are passed through directly to the provider. | No | -| `retry_policy` | name of the policy | [Learn more](/docs/syntax/client/retry) | No | - -## Providers - -BAML ships with the following providers (you can can also write your own!): - -- LLM client providers - - `openai` - - `azure-openai` - - `anthropic` - - `google-ai` - - `ollama` -- Composite client providers - - `fallback` - - `round-robin` - -There are two primary types of LLM clients: chat and completion. BAML abstracts -away the differences between these two types of LLMs by putting that logic in -the clients. - -You can call a chat client with a single completion prompt and it will -automatically map it to a chat prompt. Similarly you can call a completion -client with multiple chat prompts and it will automatically map it to a -completion prompt. - -### OpenAI/Azure - -Provider names: - -- `openai-azure` - -You must pick the right provider for the type of model you are using. For -example, if you are using a GPT-3 model, you must use a `chat` provider, but if -you're using the instruct model, you must use a `completion` provider. - -You can see all models supported by OpenAI [here](https://platform.openai.com/docs/models). - -Accepts any options as defined by [OpenAI/Azure SDK](https://github.com/openai/openai-python/blob/9e6e1a284eeb2c20c05a03831e5566a4e9eaba50/src/openai/types/chat/completion_create_params.py#L28) - -See [Azure Docs](https://learn.microsoft.com/en-us/azure/ai-services/openai/quickstart?tabs=command-line,python&pivots=programming-language-python#create-a-new-python-application) to learn how to get your Azure API key. - -```rust -// A client that uses the OpenAI chat API. -client MyGPT35Client { - // Since we're using a GPT-3 model, we must use a chat provider. - provider openai - options { - model gpt-3.5-turbo - // Set the api_key parameter to the OPENAI_API_KEY environment variable - api_key env.OPENAI_API_KEY - } -} - -// A client that uses the OpenAI chat API. -client MyAzureClient { - // I configured the deployment to use a GPT-3 model, - // so I must use a chat provider. - provider openai-azure - options { - api_key env.AZURE_OPENAI_KEY - // This may change in the future - api_version "2023-05-15" - api_type azure - azure_endpoint env.AZURE_OPENAI_ENDPOINT - model "gpt-35-turbo-default" - } -} -``` - - -### Anthropic - -Provider names: - -- `anthropic` - -Accepts any options as defined by [Anthropic SDK](https://github.com/anthropics/anthropic-sdk-python/blob/fc90c357176b67cfe3a8152bbbf07df0f12ce27c/src/anthropic/types/completion_create_params.py#L20) - -```rust -client MyClient { - provider baml-anthropic - options { - model claude-2 - max_tokens_to_sample 300 - } -} -``` -### Google - -Provider names: -- `google-ai` - -Accepts any options as defined by the [Gemini SDK](https://ai.google.dev/gemini-api/docs/get-started/tutorial?lang=rest#configuration). - -```rust -client MyGoogleClient { - provider google-ai - options{ - model "gemini-1.5-pro-001" - } -} -``` - -### Ollama - -- BAML Python Client >= 0.18.0 -- BAML Typescript Client >= 0.0.6 - -Provider names: - -- `ollama` - -Accepts any options as defined by [Ollama SDK](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-a-chat-completion). - -```rust -client MyOllamaClient { - provider ollama - options { - model llama2 - } -} -``` -#### Requirements - -1. For Ollama, in your terminal run `ollama serve` -2. In another window, run `ollama run llama2` (or your model), and you should be good to go. -3. If your Ollama port is not 11434, you can specify the endpoint manually. - -```rust -client MyClient { - provider ollama - options { - model llama2 - options { - temperature 0 - base_url "http://localhost:" // Default is 11434 - } - } -} -``` - - -This is not the Vertex AI Gemini API, but the Google Generative AI Gemini API, which supports the same models but at a different endpoint. - - -### Fallback - -The `baml-fallback` provider allows you to define a resilient client, by -specifying strategies for re-running failed requests. See -[Fallbacks/Redundancy](/docs/syntax/client/redundancy) for more information. - -### Round Robin - -The `baml-round-robin` provider allows you to load-balance your requests across -multiple clients. Here's an example: - -```rust -client MyClient { - provider round-robin - options { - strategy [ - MyGptClient - MyAnthropicClient - ] - } -} -``` - -This will alternate between `MyGptClient` and `MyAnthropicClient` for successive -requests, starting from a randomly selected client (so that if you run multiple -instances of your application, they won't all start with the same client). - -If you want to control which client is used for the first request, you can specify -a `start` index, which tells BAML to start with the client at index `start`, like -so: - -```rust -client MyClient { - provider baml-round-robin - options { - start 1 - strategy [ - MyGptClient - MyAnthropicClient - ] - } -} -``` - -## Other providers -You can use the `openai` provider if the provider you're trying to use has the same ChatML response format (i.e. HuggingFace via their Inference Endpoint or your own local endpoint) - -Some providers ask you to add a `base_url`, which you can do like this: - -```rust -client MyClient { - provider openai - options { - model some-custom-model - api_key env.OPEN - base_url "https://some-custom-url-here" - } -} -``` \ No newline at end of file diff --git a/docs/docs/syntax/client/redundancy.mdx b/docs/docs/syntax/client/redundancy.mdx deleted file mode 100644 index 3e11ce8f8..000000000 --- a/docs/docs/syntax/client/redundancy.mdx +++ /dev/null @@ -1,52 +0,0 @@ ---- -title: Fallbacks/Redundancy ---- - -Many LLMs are subject to fail due to transient errors. Setting up a fallback allows you to switch to a different LLM when prior LLMs fail (e.g. outage, high latency, rate limits, etc). - -To accomplish this, instead of new syntax, you can simple define a `client` using a `baml-fallback` provider. - -The `baml-fallback` provider takes a `strategy` option, which is a list of `client`s to try in order. If the first client fails, the second client is tried, and so on. - -```rust -client MySafeClient { - provider baml-fallback - options { - // First try GPT4 client, if it fails, try GPT35 client. - strategy [ - GPT4, - GPT35 - // If you had more clients, you could add them here. - // Anthropic - ] - } -} - -client GPT4 { - provider baml-openai-chat - options { - // ... - } -} - -client GPT35 { - provider baml-openai-chat - options { - // ... - } -} -``` - -Fallbacks are triggered on any error. - -Errors codes are: -| Name | Error Code | -| ----------------- | -------------------- | -| BAD_REQUEST | 400 | -| UNAUTHORIZED | 401 | -| FORBIDDEN | 403 | -| NOT_FOUND | 404 | -| RATE_LIMITED | 429 | -| INTERNAL_ERROR | 500 | -| SERVICE_UNAVAILABLE | 503 | -| UNKNOWN | 1 | diff --git a/docs/docs/syntax/client/retry.mdx b/docs/docs/syntax/client/retry.mdx deleted file mode 100644 index 0584bc561..000000000 --- a/docs/docs/syntax/client/retry.mdx +++ /dev/null @@ -1,80 +0,0 @@ ---- -title: retry_policy ---- - -Many LLMs are subject to fail due to transient errors. The retry policy allows you to configure how many times and how the client should retry a failed operation before giving up. - -## Syntax - -```rust -retry_policy PolicyName { - max_retries int - strategy { - type constant_delay - delay_ms int? // defaults to 200 - } | { - type exponential_backoff - delay_ms int? // defaults to 200 - max_delay_ms int? // defaults to 10000 - multiplier float? // defaults to 1.5 - } -} -``` - -### Properties - -| Name | Description | Required | -| ------------- | ----------------------------------------------------------------------- | -------------------------------------- | -| `max_retries` | The maximum number of times the client should retry a failed operation. | YES | -| `strategy` | The strategy to use for retrying failed operations. | NO, defauts to `constant_delay(200ms)` | - -You can read more about specific retry strategy param: - -- [constant_delay](https://tenacity.readthedocs.io/en/latest/api.html?highlight=wait_exponential#tenacity.wait.wait_fixed) -- [exponential_backoff](https://tenacity.readthedocs.io/en/latest/api.html?highlight=wait_exponential#tenacity.wait.wait_exponential) - -## Conditions for retrying - -If the client encounters a transient error, it will retry the operation. The following errors are considered transient: -| Name | Error Code | Retry | -| ----------------- | -------------------- | --- | -| BAD_REQUEST | 400 | NO | -| UNAUTHORIZED | 401 | NO | -| FORBIDDEN | 403 | NO | -| NOT_FOUND | 404 | NO | -| RATE_LIMITED | 429 | YES | -| INTERNAL_ERROR | 500 | YES | -| SERVICE_UNAVAILABLE | 503 | YES | -| UNKNOWN | 1 | YES | - -The UNKNOWN error code is used when the client encounters an error that is not listed above. This is usually a temporary error, but it is not guaranteed. - -## Example - - - Each client may have a different retry policy, or no retry policy at all. But - you can also reuse the same retry policy across multiple clients. - - -```rust -// in a .baml file - -retry_policy MyRetryPolicy { - max_retries 5 - strategy { - type exponential_backoff - } -} - -// A client that uses the OpenAI chat API. -client MyGPT35Client { - provider baml-openai-chat - // Set the retry policy to the MyRetryPolicy defined above. - // Any impl that uses this client will retry failed operations. - retry_policy MyRetryPolicy - options { - model gpt-3.5-turbo - api_key env.OPENAI_API_KEY - } -} -``` diff --git a/docs/docs/syntax/enum.mdx b/docs/docs/syntax/enum.mdx deleted file mode 100644 index 7b0feb15a..000000000 --- a/docs/docs/syntax/enum.mdx +++ /dev/null @@ -1,39 +0,0 @@ ---- -title: "enum" ---- - -Enums are useful for classification tasks. BAML has helper functions that can help you serialize an enum into your prompt in a neatly formatted list (more on that later). - -To define your own custom enum in BAML: - - -```rust BAML -enum MyEnum { - Value1 - Value2 - Value3 -} -``` - -```python Python Equivalent -from enum import StrEnum - -class MyEnum(StrEnum): - Value1 = "Value1" - Value2 = "Value2" - Value3 = "Value3" -``` - -```typescript Typescript Equivalent -enum MyEnum { - Value1 = "Value1", - Value2 = "Value2", - Value3 = "Value3", -} -``` - - - -- You may have as many values as you'd like. -- Values may not be duplicated or empty. -- Values may not contain spaces or special characters and must not start with a number. diff --git a/docs/docs/syntax/function-testing.mdx b/docs/docs/syntax/function-testing.mdx deleted file mode 100644 index 9799409bf..000000000 --- a/docs/docs/syntax/function-testing.mdx +++ /dev/null @@ -1,279 +0,0 @@ ---- -title: "Unit Testing" ---- - -There are two types of tests you may want to run on your AI functions: - -- Unit Tests: Tests a single AI function -- Integration Tests: Tests a pipeline of AI functions and potentially buisness logic - -We support both types of tests using BAML. - -## Using the playground - -Use the playground to run tests against individual functions - - - -## Baml CLI - -You can run tests defined - -## From BAML Studio - -Coming soon -You can also create tests from production logs in BAML Studio. Any weird or atypical -user inputs can be used to create a test case with just 1 click. - -## JSON Files (`__tests__` folder) - -Unit tests created by the playground are stored in the `__tests__` folder. - -The project structure should look like this: - -```bash -. -├── baml_client/ -└── baml_src/ - ├── __tests__/ - │ ├── YourAIFunction/ - │ │ ├── test_name_monkey.json - │ │ └── test_name_cricket.json - │ └── YourAIFunction2/ - │ └── test_name_jellyfish.json - ├── main.baml - └── foo.baml -``` - -You can manually create tests by creating a folder for each function you want to test. Inside each folder, create a json file for each test case you want to run. The json file should be named `test_name.json` where `test_name` is the name of the test case. - -To see the structure of the JSON file, you can create a test using the playground and then copy the JSON file into your project. - - - The BAML compiler reads the `__tests__` folder and generates a pytest file for - you so you don't have to manually write test boilerplate code. - - -## Programmatic Testing (using pytest) - -For python, you can leverage **pytest** to run tests. All you need is to add a **@baml_test** decorator to your test functions to get your test data visualized on the baml dashboard. - -### Running tests - - - Make sure you are running these commands from your python virtual environment - (or **`poetry shell`** if you use poetry) - - -```bash -# From your project root -# Lists all tests -pytest -m baml_test --collect-only -``` - -```bash -# From your project root -# Runs all tests -# For every function -pytest -m baml_test -``` - -To run tests for a subdirectory - -```bash -# From your project root -# Note the underscore at the end of the folder name -pytest -m baml_test ./your-tests-folder/ -``` - -To run tests that have a specific name or group name - -```bash -# From your project root -pytest -m baml_test -k test_group_name -``` - -You can read more about the `-k` arg of pytest here ([PyTest Docs](https://docs.pytest.org/en/latest/example/markers.html#using-k-expr-to-select-tests-based-on-their-name)) - -`-k` will match any tests with that given name. - -To run a specific test case in a test group - -```bash -# From your project root -pytest -m baml_test -k 'test_group_name and test_case_name' -``` - -### Unit Test an AI Function - -Section in progress.. - -### Integration Tests (test a pipeline calling multiple functions) - - - TypeScript support for testing is still in closed alpha - please contact us if you would like to use it! - - - - -```python Test Pipeline -# Import your baml-generated LLM functions -from baml_client import baml as b - -# Import testing library -from baml_client.testing import baml_test - -# Mark this as a baml test (recorded on dashboard and does some setup) -@baml_test -async def test_pipeline(): - message = "I am ecstatic" - response = await b.ClassifySentiment(message) - assert response == Sentiment.POSITIVE - response = await b.GetHappyResponse(message) -``` - - - - - Make sure your test file, the Test class and/or test function is prefixed with - `test` or `Test` respectively. Otherwise, pytest will not pick up your tests. - - -### Parameterized Tests - -Parameterized tests allow you declare a list of inputs and expected outputs for a test case. baml will run the test for each input and compare the output to the expected output. - -```python -from baml_client.testing import baml_test -# Import your baml-generated LLM functions -from baml_client import baml -# Import any custom types defined in .baml files -from baml_client.types import Sentiment - -@baml_test -@pytest.mark.parametrize( - "input, expected_output", - [ - ("I am ecstatic", Sentiment.POSITIVE), - ("I am sad", Sentiment.NEGATIVE), - ("I am angry", Sentiment.NEGATIVE), - ], -) -async def test_sentiments(input, expected_output): - response = await baml.ClassifySentiment(input) - assert response == expected_output -``` - -This will generate 3 test_cases on the dashboard, one for each input. - -### Using custom names for each test - -The parametrize decorator also allows you to specify a custom name for each test case. See below on how we name each test case using the ids parameter. - -```python -from baml_client import baml as b -from baml_client.types import Sentiment, IClassifySentiment - -test_cases = [ - {"input": "I am ecstatic", "expected_output": Sentiment.POSITIVE, "id": "ecstatic-test"}, - {"input": "I am sad", "expected_output": Sentiment.NEGATIVE, "id": "sad-test"}, - {"input": "I am angry", "expected_output": Sentiment.NEGATIVE, "id": "angry-test"}, -] - -@b.ClassifySentiment.test -@pytest.mark.parametrize( - "test_case", - test_cases, - ids=[case['id'] for case in test_cases] -) -# Note the argument name "test_case" is set by the first parameter in the parametrize() decorator -async def test_sentiments(ClassifySentimentImpl: IClassifySentiment, test_case): - response = await ClassifySentimentImpl(test_case["input"]) - assert response == test_case["expected_output"] -``` - -### Grouping Tests by Input Type - -Alternatively, you can group things together logically by defining one test case or test class per input type your testing. In our case, we'll split up all Positive sentiments into their own group. - -```python -from baml_client.testing import baml_test -# Import your baml-generated LLM functions -from baml_client import baml -# Import any custom types defined in .baml files -from baml_client.types import Sentiment - -@baml_test -@pytest.mark.asyncio -@pytest.mark.parametrize( - # Note we only need to pass in one variable to the test, the "input". - "input", - [ - "I am ecstatic", - "I am super happy!" - ], -) -class TestHappySentiments: - async def test_sentiments(input, expected_output): - response = await baml.ClassifySentiment(input) - assert response == Sentiment.POSITIVE - -@baml_test -@pytest.mark.asyncio -@pytest.mark.parametrize( - # Note we only need to pass in one variable to the test, the "input". - "input", - [ - "I am sad", - "I am angry" - ], -) -class TestSadSentiments: - async def test_sentiments(input, expected_output): - response = await baml.ClassifySentiment(input) - assert response == Sentiment.NEGATIVE -``` - -Alternatively you can just write a test function for each input type. - -```python -from baml_client.testing import baml_test -from baml_client import baml -from baml_client.types import Sentiment - -@baml_test -@pytest.mark.asyncio -@pytest.mark.parametrize( - "input", - [ - "I am ecstatic", - "I am super happy!", - "I am thrilled", - "I am overjoyed", - ], -) -async def test_happy_sentiments(input): - response = await baml.ClassifySentiment(input) - assert response == Sentiment.POSITIVE - -@baml_test -@pytest.mark.asyncio -@pytest.mark.parametrize( - "input", - [ - "I am sad", - "I am angry", - "I am upset", - "I am frustrated", - ], -) -async def test_sad_sentiments(input): - response = await baml.ClassifySentiment(input) - assert response == Sentiment.NEGATIVE -``` diff --git a/docs/docs/syntax/function.mdx b/docs/docs/syntax/function.mdx deleted file mode 100644 index 338480230..000000000 --- a/docs/docs/syntax/function.mdx +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: "function" ---- - -A **function** is the contract between the application and the AI model. It defines the desired **input** and **output**. - - - - -With baml, you can modify the implementation of a function and keep the application logic that uses the -function unchanged. - -Checkout [PromptFiddle](https://promptfiddle.com) to see various BAML function examples. \ No newline at end of file diff --git a/docs/docs/syntax/generator.mdx b/docs/docs/syntax/generator.mdx deleted file mode 100644 index fa788dc7d..000000000 --- a/docs/docs/syntax/generator.mdx +++ /dev/null @@ -1,21 +0,0 @@ ---- -title: generator ---- - -The `generator` configuration needs to be added anywhere in .baml files to generate the `baml_client` in Python or Typescript. - -We recommend running **baml init** to have this setup for you with sane defaults. - -Here is how you can add a generator block: - -```rust -generator MyGenerator{ - output_type typescript // or python/pydantic, ruby - output_dir ../ -} -``` - -| Property | Description | Options | Default | -| ------------------- | ------------------------------------------------ | --------------------------------- | ---------------------------------------------- | -| output_type | The language of the generated client | python/pydantic, ruby, typescript | | -| output_dir | The directory where we'll output the generated baml_client | | ../ | diff --git a/docs/docs/syntax/overview.mdx b/docs/docs/syntax/overview.mdx deleted file mode 100644 index 29f7a8ef9..000000000 --- a/docs/docs/syntax/overview.mdx +++ /dev/null @@ -1,68 +0,0 @@ ---- -title: BAML Project Structure ---- - -A BAML project has the following structure: - -```bash -. -├── baml_client/ # Generated code -├── baml_src/ # Prompts live here -│ └── foo.baml -# The rest of your project (not generated nor used by BAML) -├── app/ -│ ├── __init__.py -│ └── main.py -└── pyproject.toml - -``` - -1. `baml_src/` is the directory where you write your BAML files with the AI - function declarations, prompts, retry policies, etc. It also contains - [generator](/syntax/generator) blocks which configure how and where to - transpile your BAML code. - -2. `baml_client/` is the directory where BAML will generate code, and where you'll - import the generated code from. - - - -```python Python -from baml_client import baml as b - -await b.YourAIFunction() -``` - -```typescript TypeScript -import b from "@/baml_client"; - -await b.YourAIFunction(); -``` - - - -3. `baml_src/__tests__/` are where your unit tests live. The `.json` files - store the test inputs that can be loaded, deleted, created, and ran using - the BAML VSCode extension. You can also write programmatic python/TS tests - anywhere you like. See [here](/v3/syntax/function-testing) for more - information. - - - **You should never edit any files inside baml_client directory** as the whole - directory gets regenerated on every `baml build` (auto runs on save if using - the VSCode extension). - - - - If you ever run into any issues with the generated code (like merge - conflicts), you can always delete the `baml_client` directory and it will get - regenerated automatically once you fix any other conflicts in your `.baml` - files. - - -### imports - -BAML by default has global imports. Every entity declared in any `.baml` file -is available to all other `.baml` files under the same `baml_src` directory. -You **can** have multiple `baml_src` directories, but no promises on how the -VSCode extension will behave (yet). diff --git a/docs/docs/syntax/prompt_engineering/overview.mdx b/docs/docs/syntax/prompt_engineering/overview.mdx deleted file mode 100644 index 9f044879f..000000000 --- a/docs/docs/syntax/prompt_engineering/overview.mdx +++ /dev/null @@ -1,89 +0,0 @@ ---- -title: Prompt Syntax ---- - -Prompts are written using the [Jinja templating language](https://jinja.palletsprojects.com/en/3.0.x/templates/). - -There are **2 jinja macros** (or functions) that we have included into the language for you. We recommend viewing what they do using the VSCode preview (or in [promptfiddle.com](promptfiddle.com)), so you can see the full string transform in real time. - -1. **`{{ _.role("user") }}`**: This divides up the string into different message roles. -2. **`{{ ctx.output_format }}`**: This prints out the output format instructions for the prompt. -You can add your own prefix instructions like this: `{{ ctx.output_format(prefix="Please please please format your output like this:")}}`. We have more parameters you can customize. Docs coming soon. -3. **`{{ ctx.client }}`**: This prints out the client model the function is using - -"ctx" is contextual information about the prompt (like the output format or client). "_." is a special namespace for other BAML functions. - - - -Here is what a prompt with jinja looks like using these macros: - -```rust -enum Category { - Refund - CancelOrder - TechnicalSupport - AccountIssue - Question -} - -class Message { - role string - message string -} - - -function ClassifyConversation(messages: Message[]) -> Category[] { - client GPT4Turbo - prompt #" - Classify this conversation: - {% for m in messages %} - {{ _.role(m.role) }} - {{ m.message }} - {% endfor %} - - Use the following categories: - {{ ctx.output_format}} - "# -} -``` - -### Template strings -You can create your own typed templates using the `template_string` keyword, and call them from a prompt: - -```rust -// Extract the logic out of the prompt: -template_string PrintMessages(messages: Message[]) -> string { - {% for m in messages %} - {{ _.role(m.role) }} - {{ m.message }} - {% endfor %} -} - -function ClassifyConversation(messages: Message[]) -> Category[] { - client GPT4Turbo - prompt #" - Classify this conversation: - {{ PrintMessages(messages) }} - - Use the following categories: - {{ ctx.output_format}} - "# -} -``` - -### Conditionals -You can use these special variables to write conditionals, like if you want to change your prompt depending on the model: - - ```rust - {% if ctx.client.name == "GPT4Turbo" %} - // Do something - {% endif %} - ``` - -You can use conditionals on your input objects as well: - - ```rust - {% if messages[0].role == "user" %} - // Do something - {% endif %} - ``` diff --git a/docs/docs/syntax/type-deserializer.mdx b/docs/docs/syntax/type-deserializer.mdx deleted file mode 100644 index 461b97620..000000000 --- a/docs/docs/syntax/type-deserializer.mdx +++ /dev/null @@ -1,110 +0,0 @@ ---- -title: Parsing and Deserialization ---- - -Baml uses a custom `Deserializer` to parse a string into the desired type. **You don't have to do anything to enable to deserializer, it comes built in.** - -Instead of doing the following, you can rely on BAML to do the parsing for you. - -```python -# Example parsing code you might be writing today -# without baml -import json - -openai_response_text = await openai.completions.create( - ... -) -response = SomePydanticModel(**json.loads(openai_response_text)) - -``` - -## Examples - - - -| LLM Output | Desired Type | Baml Output | How | -| ------------------------------------------------------------------------------------------------------------------------------------------------ | ------------ | --------------- | ------------------------------------------------------------------------------------------ | -| `great` | Style | `Style.GREAT` | We handle case insensitivity | -| `"great"` | Style | `Style.GREAT` | We handle extra quotes | -| `great` | Style[] | `[Style.GREAT]` | Non-array types are automatically wrapped in an array | -| `{ "feeling": "great" }` | Style | `Style.GREAT` | When looking for a singular value, we can parse dictionaries of 1 keys as singular objects | -|
Some text that goes before...
\```json
{"feeling": "great"}
\```
Some text that came after
| Style | `Style.GREAT` | We can find the inner json object and parse it even when surrounded by lots of text | - - -Note, we can apply the same parsing logic to any type, not just enums. e.g. in the -case of numbers, we can remove commas and parse the number. This page outlines all -the rules we use to parse each type. - - - The deserializer makes 0 external calls and runs fully locally! - - -## Error handling - -All parsing errors are handled by the `Deserializer` and will raise a `DeserializerException`. - - - -```python Python -from baml_client import baml as b -from baml_client import DeserializerException - -try: - response = await b.SomeAIFunction(query="I want to buy a car") -except DeserializerException as e: - # The parser was not able read the response as the expected type - print(e) -``` - -```typescript TypeScript -import b, { DeserializerException } from "@/baml_client"; - -const main = async () => { - try { - await b.ClassifyMessage("I want to cancel my order"); - } catch (e) { - if (e instanceof DeserializerException) { - // The parser was not able read the response as the expected type - console.log(e); - } - throw e; - } -}; - -if (require.main === module) { - main(); -} -``` - - - -## Primitive Types - -TODO: Include a section on how each type is parsed and coerced from other types. - -## Composite/Structured Types - -### enum - -**See:** [Prompt engineering > Enum > @alias](/docs/syntax/prompt_engineering/enum#deserialization-with-alias) - -### class - -**See:** [Prompt engineering > Class](/docs/syntax/class) - -### Optional (?) - -If the type is optional, the parser will attempt to parse the value as the type, or return `null` if we failed to parse. - -### Union (|) - -Unions are parsed in left to right order. The first type that successfully parses the value will be returned. -If no types are able to parse the value, a `DeserializerException` will be raised. - -### List/Array ([]) - -Lists parse each element in the list as the type specified in the list. - -- It will always return a list, even if the list is empty. -- If an element fails to parse, it is skipped and not included in the final list. -- If the value is not a list, the parser will attempt to parse the value as the type and return a list with a single element. diff --git a/docs/docs/syntax/type.mdx b/docs/docs/syntax/type.mdx deleted file mode 100644 index b7e33be6e..000000000 --- a/docs/docs/syntax/type.mdx +++ /dev/null @@ -1,251 +0,0 @@ ---- -title: Supported Types ---- - -## Primitive Types - -### ✅ bool - -- **When to use it:** When you need to represent a simple true/false condition. -- **Syntax:** `bool` - -### ✅ int - -- **When to use it:** When you want numeric values -- **Syntax:** `int` - -### ✅ float - -- **When to use it:** When dealing with numerical values that require precision (like measurements or monetary values). -- **Syntax:** `float` - -### ✅ string - -- **Syntax:** `string` - -### ✅ char - -- **When to use it:** When you need to represent a single letter, digit, or other symbols. -- **Syntax:** `char` - -### ✅ null - -- **Syntax:** `null` - -### ✅ Images - -You can use an image like this: - -```rust -function DescribeImage(myImg: image) -> string { - client GPT4Turbo - prompt #" - {{ _.role("user")}} - Describe the image in four words: - {{ myImg }} - "# -} -``` - -### ⚠️ bytes - -- Not yet supported. Use a `string[]` or `int[]` instead. - -### ⚠️ any/json - -- Not supported. - - We don't want to encourage its use as it defeats the purpose of having a - type system. if you really need it, for now use `string` and call - `json.parse` yourself. Also, message us on discord so we can understand your - use case and consider supporting it. - - -### Dates/Times - -#### ⚠️ datetime - -- Not yet supported. Use a `string` or `int` (milliseconds since epoch) instead. - -#### ⚠️ datetime interval - -- Not yet supported. Use a `string` or `int` (milliseconds since epoch) instead. - -### ⚠️ Unit Values (currency, temperature, etc) - -Many times you may want to represent a number with a unit. For example, a -temperature of 32 degrees Fahrenheit or cost of $100.00. - -- Not yet supported. We recommend using a number (`int` or `float`) and having - the unit be part of the variable name. For example, `temperature_fahrenheit` - and `cost_usd` (see [@alias](/docs/syntax/class#alias)). - - - - -## Composite/Structured Types - -### ✅ enum - -**See also:** [Enum](/docs/syntax/enum) - -A user-defined type consisting of a set of named constants. -- **When to use it:** Use it when you need a model to choose from a known set of values, like in classification problems -- **Syntax:** - -```rust -enum Name { - Value1 - Value2 -} -``` - -- **Example:** - -```rust -enum Color { - Red - Green - Blue -} -``` - -### ✅ class - -**See also:** [Class](/docs/syntax/class) - -- **What it is:** User-defined complex data structures. -- **When to use it:** When you need an LLM to call another function (e.g. OpenAI's function calling), you can model the function's parameters as a class. You can also get models to return complex structured data by using a class. -- **Syntax:** - -```rust -class ClassName { - ... -} -``` - -- **Example:** - -```rust -class Car { - model string - year int -} -``` - -### ✅ Optional (?) - -- **What it is:** A type that represents a value that might or might not be present. -- **When to use it:** When a variable might not have a value and you want to explicitly handle its absence. -- **Syntax:** `?` -- **Example:** `int?` or `(MyClass | int)?` - -### ✅ Union (|) - -- **What it is:** A type that can hold one of several specified types. -- **When to use it:** When a variable can legitimately be of more than one type. This can be helpful with function calling, where you want to return different types of data depending on which function should be called. -- **Syntax:** `|` -- **Example:** `int | string` or `(int | string) | MyClass` or `string | MyClass | int[]` - - Order is important. `int | string` is not the same as `string | int`. -
- For example, if you have a `"1"` string, it will be parsed as an `int` if - you use `int | string`, but as a `string` if you use `string | int`. -
- -### ✅ List/Array ([]) - -- **What it is:** A collection of elements of the same type. -- **When to use it:** When you need to store a list of items of the same type. -- **Syntax:** `[]` -- **Example:** `string[]` or `(int | string)[]` or `int[][]` - - -
    -
  • Array types can be nested to create multi-dimensional arrays
  • -
  • An array type cannot be optional
  • -
-
- -### ❌ Dictionary - -- Not yet supported. Use a `class` instead. - -### ❌ Set - -- Not yet supported. Use a `List` instead. - -### ❌ Tuple - -- Not yet supported. Use a `class` instead. - -## Examples and Equivalents - -Here are some examples and what their equivalents are in different languages. - -### Example 1 - - -```baml Baml -int?|string[]|MyClass -```` - -```python Python Equivalent -Union[Optional[int], List[str], MyClass] -``` - -```typescript TypeScript Equivalent -(number | null) | string[] | MyClass -``` - - - -### Example 2 - - -```baml Baml -string[] -``` - -```python Python Equivalent -List[str] -``` - -```typescript TypeScript Equivalent -string[] -``` - - - -### Example 3 - - -```baml Baml -(int|float)[] -``` -```python Python Equivalent -List[Union[int, float]] -``` - -```typescript TypeScript Equivalent -number[] -``` - - - -### Example 4 - - -```baml Baml -(int? | string[] | MyClass)[] -``` - -```python Python Equivalent -Optional[List[Union[Optional[int], List[str], MyClass]]] -``` - -```typescript TypeScript Equivalent -((number | null) | string[] | MyClass)[] -``` - - diff --git a/docs/images/docs_latest/vscode/code-lens.png b/docs/images/docs_latest/vscode/code-lens.png new file mode 100644 index 000000000..c397169f9 Binary files /dev/null and b/docs/images/docs_latest/vscode/code-lens.png differ diff --git a/docs/images/docs_latest/vscode/dev-tools.png b/docs/images/docs_latest/vscode/dev-tools.png new file mode 100644 index 000000000..9fbab7c0e Binary files /dev/null and b/docs/images/docs_latest/vscode/dev-tools.png differ diff --git a/docs/images/docs_latest/vscode/extension-status.png b/docs/images/docs_latest/vscode/extension-status.png new file mode 100644 index 000000000..05041a2a7 Binary files /dev/null and b/docs/images/docs_latest/vscode/extension-status.png differ diff --git a/docs/images/docs_latest/vscode/open-playground.png b/docs/images/docs_latest/vscode/open-playground.png new file mode 100644 index 000000000..5645ca1d9 Binary files /dev/null and b/docs/images/docs_latest/vscode/open-playground.png differ diff --git a/docs/images/docs_latest/vscode/playground-preview.png b/docs/images/docs_latest/vscode/playground-preview.png new file mode 100644 index 000000000..31a4c9f39 Binary files /dev/null and b/docs/images/docs_latest/vscode/playground-preview.png differ diff --git a/docs/images/docs_latest/vscode/test-case-buttons.png b/docs/images/docs_latest/vscode/test-case-buttons.png new file mode 100644 index 000000000..91ffc7877 Binary files /dev/null and b/docs/images/docs_latest/vscode/test-case-buttons.png differ diff --git a/docs/images/docs_latest/vscode/test-cases.png b/docs/images/docs_latest/vscode/test-cases.png new file mode 100644 index 000000000..20660f8d4 Binary files /dev/null and b/docs/images/docs_latest/vscode/test-cases.png differ diff --git a/docs/mint.json b/docs/mint.json index 0191cb60e..45a21b030 100644 --- a/docs/mint.json +++ b/docs/mint.json @@ -1,6 +1,7 @@ { "$schema": "https://mintlify.com/schema.json", "name": "BoundaryML", + "logo": { "light": "/logo/favicon.png", "dark": "/logo/favicon.png" @@ -20,137 +21,149 @@ }, "anchors": [ { - "name": "Open Boundary Studio", - "icon": "sparkles", - "url": "https://app.boundaryml.com" - }, - { - "name": "Join our Discord", + "name": "Community", "icon": "discord", - "url": "https://discord.gg/BTNBeXGuaS" - }, - { - "name": "Schedule a call", - "icon": "phone", - "url": "https://calendly.com/boundaryml/meeting-with-founders" + "url": "/discord" } ], "topbarCtaButton": { "type": "github", "url": "https://github.com/boundaryml/baml" }, - "tabs": [ - { - "name": "Guides & Examples", - "url": "docs/guides" - }, + "redirects": [ { - "name": "BAML Syntax Reference", - "url": "docs/syntax" + "source": "/discord", + "destination": "https://discord.gg/BTNBeXGuaS" } ], "navigation": [ { - "group": "Overview", - "pages": ["docs/home/overview", "docs/home/faq"] - }, - { - "group": "Quickstart", + "group": "Get started", "pages": [ - "docs/home/installation", - "docs/home/baml-in-2-min", - "docs/home/roadmap" - ] - }, - { - "group": "Comparisons", - "pages": [ - "docs/home/comparisons/marvin", - "docs/home/comparisons/pydantic" + "docs/get-started/what-is-baml", + "docs/get-started/interactive-demos", + { + "group": "Quickstart", + "pages": [ + "docs/get-started/quickstart/python", + "docs/get-started/quickstart/typescript", + "docs/get-started/quickstart/ruby", + "docs/get-started/quickstart/editors-vscode", + "docs/get-started/quickstart/editors-other" + ] + }, + { + "group": "Debugging", + "pages": [ + "docs/get-started/debugging/vscode-playground", + "docs/get-started/debugging/enable-logging" + ] + }, + { + "group": "Deploying BAML Projects", + "pages": [ + "docs/get-started/deploying/docker", + "docs/get-started/deploying/nextjs" + ] + } ] }, { - "group": "Hello World", + "group": "BAML Snippets", "pages": [ - "docs/guides/hello_world/writing-ai-functions", - "docs/guides/hello_world/testing-ai-functions", - "docs/guides/hello_world/baml-project-structure" + { + "group": "General BAML Syntax", + "pages": [ + "docs/snippets/syntax/comments", + "docs/snippets/syntax/strings", + "docs/snippets/syntax/lists", + "docs/snippets/syntax/dictionaries" + ] + }, + "docs/snippets/supported-types", + { + "group": "LLM Clients", + "pages": [ + "docs/snippets/clients/overview", + { + "group": "providers", + "pages": [ + "docs/snippets/clients/providers/anthropic", + "docs/snippets/clients/providers/aws-bedrock", + "docs/snippets/clients/providers/azure", + "docs/snippets/clients/providers/gemini", + "docs/snippets/clients/providers/ollama", + "docs/snippets/clients/providers/openai", + "docs/snippets/clients/providers/vertex", + "docs/snippets/clients/providers/other" + ] + }, + { + "group": "provider strategies", + "pages": [ + "docs/snippets/clients/fallback", + "docs/snippets/clients/round-robin" + ] + }, + "docs/snippets/clients/retry" + ] + }, + { + "group": "Functions", + "pages": [ + "docs/snippets/functions/overview", + "docs/snippets/functions/classification", + "docs/snippets/functions/extraction", + "docs/snippets/functions/function-calling" + ] + }, + "docs/snippets/class", + "docs/snippets/enum", + { + "group": "Prompt Syntax", + "pages": [ + "docs/snippets/prompt-syntax/what-is-jinja", + "docs/snippets/prompt-syntax/output-format", + "docs/snippets/prompt-syntax/roles", + "docs/snippets/prompt-syntax/variables", + "docs/snippets/prompt-syntax/conditionals", + "docs/snippets/prompt-syntax/loops", + "docs/snippets/prompt-syntax/comments", + "docs/snippets/prompt-syntax/ctx" + ] + }, + "docs/snippets/template-string", + "docs/snippets/test-cases" ] }, { - "group": "Overview", + "group": "Calling BAML Functions", "pages": [ - "docs/syntax/overview", - "docs/syntax/generator", - "docs/syntax/comments", - "docs/syntax/strings", - "docs/syntax/function" + "docs/calling-baml/generate-baml-client", + "docs/calling-baml/set-env-vars", + "docs/calling-baml/calling-functions", + "docs/calling-baml/streaming", + "docs/calling-baml/concurrent-calls", + "docs/calling-baml/multi-modal", + "docs/calling-baml/dynamic-types", + "docs/calling-baml/dynamic-clients" ] }, { - "group": "Types", - "pages": ["docs/syntax/type", "docs/syntax/enum", "docs/syntax/class"] - }, - { - "group": "prompt", + "group": "Observability [Paid]", "pages": [ - "docs/syntax/prompt_engineering/overview" + "docs/observability/overview", + "docs/observability/tracing-tagging" ] }, { - "group": "client", - "pages": [ - "docs/syntax/client/client", - "docs/syntax/client/retry", - "docs/syntax/client/redundancy" - ] + "group": "Comparisons", + "pages": ["docs/comparisons/marvin", "docs/comparisons/pydantic"] }, - { - "group": "How-to Guides", - "pages": [ - "docs/guides/overview", - { - "group": "Prompt engineering", - "icon": "sparkles", - "pages": ["docs/guides/prompt_engineering/chat-prompts"] - }, - { - "group": "Testing", - "pages": [ - "docs/guides/testing/unit_test", - "docs/guides/testing/test_with_assertions" - ], - "icon": "flask-vial" - }, - { - "group": "Resilience / Reliability", - "pages": [ - "docs/guides/resilience/retries", - "docs/guides/resilience/fallback" - ], - "icon": "shield-check" - }, - { - "group": "Observability", - "icon": "chart-mixed", - "pages": ["docs/guides/boundary_studio/tracing-tagging"] - }, - { - "group": "Improve LLM results", - "pages": [ - "docs/guides/improve_results/diagnose", - "docs/guides/improve_results/fine_tune" - ], - "icon": "bolt" - }, - { - "group": "Streaming", - "icon": "water", - "pages": ["docs/guides/streaming/streaming"] - } - ] + "group": "Reference", + "pages": ["contact"] } ], "footerSocials": { @@ -158,7 +171,7 @@ "github": "https://github.com/BoundaryML/baml" }, "modeToggle": { - "default": "dark", + "default": "light", "isHidden": false }, "analytics": { diff --git a/engine/.gitignore b/engine/.gitignore deleted file mode 100644 index a7456499a..000000000 --- a/engine/.gitignore +++ /dev/null @@ -1,5 +0,0 @@ -target -*.env -**/__pycache__ -test_logs/** -*.so \ No newline at end of file diff --git a/engine/.vscode/settings.json b/engine/.vscode/settings.json deleted file mode 100644 index 4f3c62aba..000000000 --- a/engine/.vscode/settings.json +++ /dev/null @@ -1,5 +0,0 @@ -{ - "[rust]": { - "editor.formatOnSave": true, - }, -} \ No newline at end of file diff --git a/engine/Cargo.lock b/engine/Cargo.lock index 20fcdc380..9312aabe7 100644 --- a/engine/Cargo.lock +++ b/engine/Cargo.lock @@ -26,6 +26,18 @@ dependencies = [ "memchr", ] +[[package]] +name = "ambassador" +version = "0.4.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "06baa18a48752d8177eca1bafa9970b2dc649a81b98d6dde9ae83bea1867030b" +dependencies = [ + "itertools 0.10.5", + "proc-macro2", + "quote", + "syn 1.0.109", +] + [[package]] name = "android-tzdata" version = "0.1.1" @@ -301,17 +313,6 @@ version = "4.7.1" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "8b75356056920673b02621b35afd0f7dda9306d03c79a30f5c56c44cf256e3de" -[[package]] -name = "async-trait" -version = "0.1.80" -source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "c6fa2087f2753a7da8cc1c0dbfcf89579dd57458e36769de5ac750b4671737ca" -dependencies = [ - "proc-macro2", - "quote", - "syn 2.0.66", -] - [[package]] name = "atomic-waker" version = "1.1.2" @@ -335,6 +336,340 @@ version = "1.3.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "0c4b4d0bd25bd0b74681c0ad21497610ce1b7c91b1022cd21c80c6fbdd9476b0" +[[package]] +name = "aws-config" +version = "1.5.3" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "2368fb843e9eec932f7789d64d0e05850f4a79067188c657e572f1f5a7589df0" +dependencies = [ + "aws-credential-types", + "aws-runtime", + "aws-sdk-sso", + "aws-sdk-ssooidc", + "aws-sdk-sts", + "aws-smithy-async", + "aws-smithy-http", + "aws-smithy-json", + "aws-smithy-runtime", + "aws-smithy-runtime-api", + "aws-smithy-types", + "aws-types", + "bytes", + "fastrand 2.1.0", + "hex", + "http 0.2.12", + "hyper 0.14.29", + "ring", + "time", + "tokio", + "tracing", + "url", + "zeroize", +] + +[[package]] +name = "aws-credential-types" +version = "1.2.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "e16838e6c9e12125face1c1eff1343c75e3ff540de98ff7ebd61874a89bcfeb9" +dependencies = [ + "aws-smithy-async", + "aws-smithy-runtime-api", + "aws-smithy-types", + "zeroize", +] + +[[package]] +name = "aws-runtime" +version = "1.3.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "9a4a5e448145999d7de17bf44a886900ecb834953408dae8aaf90465ce91c1dd" +dependencies = [ + "aws-credential-types", + "aws-sigv4", + "aws-smithy-async", + "aws-smithy-http", + "aws-smithy-runtime-api", + "aws-smithy-types", + "aws-types", + "bytes", + "fastrand 2.1.0", + "http 0.2.12", + "http-body 0.4.6", + "percent-encoding", + "pin-project-lite", + "tracing", + "uuid", +] + +[[package]] +name = "aws-sdk-bedrockruntime" +version = "1.37.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "cb59d04e42baf3f80956e3703f219228f254206774ccda6a756dd8921ac5603d" +dependencies = [ + "aws-credential-types", + "aws-runtime", + "aws-smithy-async", + "aws-smithy-eventstream", + "aws-smithy-http", + "aws-smithy-json", + "aws-smithy-runtime", + "aws-smithy-runtime-api", + "aws-smithy-types", + "aws-types", + "bytes", + "http 0.2.12", + "once_cell", + "regex-lite", + "tracing", +] + +[[package]] +name = "aws-sdk-sso" +version = "1.33.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "b8aee358b755b2738b3ffb8a5b54ee991b28c8a07483a0ff7d49a58305cc2609" +dependencies = [ + "aws-credential-types", + "aws-runtime", + "aws-smithy-async", + "aws-smithy-http", + "aws-smithy-json", + "aws-smithy-runtime", + "aws-smithy-runtime-api", + "aws-smithy-types", + "aws-types", + "bytes", + "http 0.2.12", + "once_cell", + "regex-lite", + "tracing", +] + +[[package]] +name = "aws-sdk-ssooidc" +version = "1.34.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "1d5ce026f0ae73e06b20be5932150dd0e9b063417fd7c3acf5ca97018b9cbd64" +dependencies = [ + "aws-credential-types", + "aws-runtime", + "aws-smithy-async", + "aws-smithy-http", + "aws-smithy-json", + "aws-smithy-runtime", + "aws-smithy-runtime-api", + "aws-smithy-types", + "aws-types", + "bytes", + "http 0.2.12", + "once_cell", + "regex-lite", + "tracing", +] + +[[package]] +name = "aws-sdk-sts" +version = "1.33.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "c820248cb02e4ea83630ad2e43d0721cdbccedba5ac902cd0b6fb84d7271f205" +dependencies = [ + "aws-credential-types", + "aws-runtime", + "aws-smithy-async", + "aws-smithy-http", + "aws-smithy-json", + "aws-smithy-query", + "aws-smithy-runtime", + "aws-smithy-runtime-api", + "aws-smithy-types", + "aws-smithy-xml", + "aws-types", + "http 0.2.12", + "once_cell", + "regex-lite", + "tracing", +] + +[[package]] +name = "aws-sigv4" +version = "1.2.2" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "31eed8d45759b2c5fe7fd304dd70739060e9e0de509209036eabea14d0720cce" +dependencies = [ + "aws-credential-types", + "aws-smithy-http", + "aws-smithy-runtime-api", + "aws-smithy-types", + "bytes", + "form_urlencoded", + "hex", + "hmac", + "http 0.2.12", + "http 1.1.0", + "once_cell", + "percent-encoding", + "sha2", + "time", + "tracing", +] + +[[package]] +name = "aws-smithy-async" +version = "1.2.1" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "62220bc6e97f946ddd51b5f1361f78996e704677afc518a4ff66b7a72ea1378c" +dependencies = [ + "futures-util", + "pin-project-lite", + "tokio", +] + +[[package]] +name = "aws-smithy-eventstream" +version = "0.60.4" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "e6363078f927f612b970edf9d1903ef5cef9a64d1e8423525ebb1f0a1633c858" +dependencies = [ + "aws-smithy-types", + "bytes", + "crc32fast", +] + +[[package]] +name = "aws-smithy-http" +version = "0.60.8" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "4a7de001a1b9a25601016d8057ea16e31a45fdca3751304c8edf4ad72e706c08" +dependencies = [ + "aws-smithy-eventstream", + "aws-smithy-runtime-api", + "aws-smithy-types", + "bytes", + "bytes-utils", + "futures-core", + "http 0.2.12", + "http-body 0.4.6", + "once_cell", + "percent-encoding", + "pin-project-lite", + "pin-utils", + "tracing", +] + +[[package]] +name = "aws-smithy-json" +version = "0.60.7" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "4683df9469ef09468dad3473d129960119a0d3593617542b7d52086c8486f2d6" +dependencies = [ + "aws-smithy-types", +] + +[[package]] +name = "aws-smithy-query" +version = "0.60.7" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "f2fbd61ceb3fe8a1cb7352e42689cec5335833cd9f94103a61e98f9bb61c64bb" +dependencies = [ + "aws-smithy-types", + "urlencoding", +] + +[[package]] +name = "aws-smithy-runtime" +version = "1.6.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "db83b08939838d18e33b5dbaf1a0f048f28c10bd28071ab7ce6f245451855414" +dependencies = [ + "aws-smithy-async", + "aws-smithy-http", + "aws-smithy-runtime-api", + "aws-smithy-types", + "bytes", + "fastrand 2.1.0", + "h2 0.3.26", + "http 0.2.12", + "http-body 0.4.6", + "http-body 1.0.0", + "httparse", + "hyper 0.14.29", + "hyper-rustls 0.24.2", + "once_cell", + "pin-project-lite", + "pin-utils", + "rustls 0.21.12", + "tokio", + "tracing", +] + +[[package]] +name = "aws-smithy-runtime-api" +version = "1.7.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "1b570ea39eb95bd32543f6e4032bce172cb6209b9bc8c83c770d08169e875afc" +dependencies = [ + "aws-smithy-async", + "aws-smithy-types", + "bytes", + "http 0.2.12", + "http 1.1.0", + "pin-project-lite", + "tokio", + "tracing", + "zeroize", +] + +[[package]] +name = "aws-smithy-types" +version = "1.2.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "cfe321a6b21f5d8eabd0ade9c55d3d0335f3c3157fc2b3e87f05f34b539e4df5" +dependencies = [ + "base64-simd", + "bytes", + "bytes-utils", + "futures-core", + "http 0.2.12", + "http 1.1.0", + "http-body 0.4.6", + "http-body 1.0.0", + "http-body-util", + "itoa", + "num-integer", + "pin-project-lite", + "pin-utils", + "ryu", + "serde", + "time", + "tokio", + "tokio-util", +] + +[[package]] +name = "aws-smithy-xml" +version = "0.60.8" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "d123fbc2a4adc3c301652ba8e149bf4bc1d1725affb9784eb20c953ace06bf55" +dependencies = [ + "xmlparser", +] + +[[package]] +name = "aws-types" +version = "1.3.2" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "2009a9733865d0ebf428a314440bbe357cc10d0c16d86a8e15d32e9b47c1e80e" +dependencies = [ + "aws-credential-types", + "aws-smithy-async", + "aws-smithy-runtime-api", + "aws-smithy-types", + "rustc_version", + "tracing", +] + [[package]] name = "backtrace" version = "0.3.72" @@ -352,7 +687,7 @@ dependencies = [ [[package]] name = "baml" -version = "0.40.0" +version = "0.45.0" dependencies = [ "anyhow", "baml-lib", @@ -393,7 +728,7 @@ dependencies = [ [[package]] name = "baml-fmt" -version = "0.40.0" +version = "0.45.0" dependencies = [ "anyhow", "baml-lib", @@ -415,7 +750,7 @@ dependencies = [ [[package]] name = "baml-lib" -version = "0.40.0" +version = "0.45.0" dependencies = [ "base64 0.13.1", "dissimilar", @@ -453,13 +788,23 @@ dependencies = [ [[package]] name = "baml-runtime" -version = "0.40.0" +version = "0.45.0" dependencies = [ + "ambassador", "anyhow", "async-std", - "async-trait", + "aws-config", + "aws-credential-types", + "aws-sdk-bedrockruntime", + "aws-sigv4", + "aws-smithy-async", + "aws-smithy-json", + "aws-smithy-runtime", + "aws-smithy-runtime-api", + "aws-smithy-types", "baml-types", "base64 0.22.1", + "bytes", "cfg-if", "chrono", "clap 4.5.6", @@ -469,17 +814,20 @@ dependencies = [ "dissimilar", "dunce", "either", + "enum_dispatch", "env_logger", "envy", "eventsource-stream", "expect-test", "fastrand 2.1.0", "futures", + "futures-timer", "hostname", + "http-body 1.0.0", "include_dir", "indexmap 2.2.6", "indoc", - "instant", + "infer", "internal-baml-codegen", "internal-baml-core", "internal-baml-jinja", @@ -490,11 +838,13 @@ dependencies = [ "mime", "mime_guess", "pin-project-lite", - "reqwest 0.11.27", + "reqwest 0.12.5", "reqwest-eventsource", + "send_wrapper 0.6.0", "serde", "serde-wasm-bindgen 0.6.5", "serde_json", + "shell-escape", "static_assertions", "stream-cancel", "strsim 0.11.1", @@ -502,6 +852,7 @@ dependencies = [ "strum_macros", "test-log", "tokio", + "url", "uuid", "walkdir", "wasm-bindgen", @@ -514,7 +865,7 @@ dependencies = [ [[package]] name = "baml-schema-build" -version = "0.40.0" +version = "0.45.0" dependencies = [ "anyhow", "baml-runtime", @@ -533,6 +884,7 @@ dependencies = [ "serde", "serde-wasm-bindgen 0.4.5", "serde_json", + "time", "uuid", "walkdir", "wasm-bindgen", @@ -545,7 +897,7 @@ dependencies = [ [[package]] name = "baml-types" -version = "0.40.0" +version = "0.45.0" dependencies = [ "indexmap 2.2.6", "minijinja", @@ -590,6 +942,16 @@ version = "0.22.1" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "72b3254f16251a8381aa12e40e3c4d2f0199f8c6508fbecb9d91f575e0fbb8c6" +[[package]] +name = "base64-simd" +version = "0.8.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "339abbe78e73178762e23bea9dfd08e697eb3f3301cd4be981c0f78ba5859195" +dependencies = [ + "outref", + "vsimd", +] + [[package]] name = "basic-toml" version = "0.1.9" @@ -608,7 +970,7 @@ dependencies = [ "bitflags 2.5.0", "cexpr", "clang-sys", - "itertools", + "itertools 0.12.1", "lazy_static", "lazycell", "proc-macro2", @@ -659,12 +1021,28 @@ version = "3.16.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "79296716171880943b8470b5f8d03aa55eb2e645a4874bdbb28adb49162e012c" +[[package]] +name = "byteorder" +version = "1.5.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b" + [[package]] name = "bytes" version = "1.6.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "514de17de45fdb8dc022b1a7975556c53c86f9f0aa5f534b98977b171857c2c9" +[[package]] +name = "bytes-utils" +version = "0.1.4" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "7dafe3a8757b027e2be6e4e5601ed563c55989fcf1546e933c66c8eb3a058d35" +dependencies = [ + "bytes", + "either", +] + [[package]] name = "cc" version = "1.0.99" @@ -680,6 +1058,17 @@ dependencies = [ "nom", ] +[[package]] +name = "cfb" +version = "0.7.3" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "d38f2da7a0a2c4ccf0065be06397cc26a81f4e528be095826eee9d4adbb8c60f" +dependencies = [ + "byteorder", + "fnv", + "uuid", +] + [[package]] name = "cfg-if" version = "1.0.0" @@ -873,6 +1262,15 @@ dependencies = [ "libc", ] +[[package]] +name = "crc32fast" +version = "1.4.2" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "a97769d94ddab943e4510d138150169a2758b5ef3eb191a9ee688de3e23ef7b3" +dependencies = [ + "cfg-if", +] + [[package]] name = "crossbeam-deque" version = "0.8.5" @@ -966,6 +1364,15 @@ dependencies = [ "parking_lot_core", ] +[[package]] +name = "deranged" +version = "0.3.11" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "b42b6fa04a440b495c8b04d0e71b707c585f83cb9cb28cf8cd0d976c315e31b4" +dependencies = [ + "powerfmt", +] + [[package]] name = "derive_builder" version = "0.20.0" @@ -1024,6 +1431,7 @@ checksum = "9ed9a281f7bc9b7576e61468ba615a66a5c8cfdff42420a70aa82701a3b1e292" dependencies = [ "block-buffer", "crypto-common", + "subtle", ] [[package]] @@ -1059,6 +1467,18 @@ dependencies = [ "cfg-if", ] +[[package]] +name = "enum_dispatch" +version = "0.3.13" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "aa18ce2bc66555b3218614519ac839ddb759a7d6720732f979ef8d13be147ecd" +dependencies = [ + "once_cell", + "proc-macro2", + "quote", + "syn 2.0.66", +] + [[package]] name = "enumflags2" version = "0.7.10" @@ -1324,6 +1744,10 @@ name = "futures-timer" version = "3.0.3" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "f288b0a4f20f9a56b5d1da57e2227c661b7b16168e2f72365f57b63326e29b24" +dependencies = [ + "gloo-timers", + "send_wrapper 0.4.0", +] [[package]] name = "futures-util" @@ -1409,6 +1833,25 @@ dependencies = [ "tracing", ] +[[package]] +name = "h2" +version = "0.4.5" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "fa82e28a107a8cc405f0839610bdc9b15f1e25ec7d696aa5cf173edbcb1486ab" +dependencies = [ + "atomic-waker", + "bytes", + "fnv", + "futures-core", + "futures-sink", + "http 1.1.0", + "indexmap 2.2.6", + "slab", + "tokio", + "tokio-util", + "tracing", +] + [[package]] name = "handlebars" version = "4.5.0" @@ -1471,6 +1914,21 @@ version = "0.3.9" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "d231dfb89cfffdbc30e7fc41579ed6066ad03abda9e567ccafae602b97ec5024" +[[package]] +name = "hex" +version = "0.4.3" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "7f24254aa9a54b5c858eaee2f5bccdb46aaf0e486a595ed5fd8f86ba55232a70" + +[[package]] +name = "hmac" +version = "0.12.1" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "6c49c37c09c17a53d937dfbb742eb3a961d65a994e6bcdcf37e7399d0cc8ab5e" +dependencies = [ + "digest", +] + [[package]] name = "hostname" version = "0.3.1" @@ -1575,7 +2033,7 @@ dependencies = [ "futures-channel", "futures-core", "futures-util", - "h2", + "h2 0.3.26", "http 0.2.12", "http-body 0.4.6", "httparse", @@ -1598,6 +2056,7 @@ dependencies = [ "bytes", "futures-channel", "futures-util", + "h2 0.4.5", "http 1.1.0", "http-body 1.0.0", "httparse", @@ -1617,9 +2076,28 @@ dependencies = [ "futures-util", "http 0.2.12", "hyper 0.14.29", - "rustls", + "log", + "rustls 0.21.12", + "rustls-native-certs", "tokio", - "tokio-rustls", + "tokio-rustls 0.24.1", +] + +[[package]] +name = "hyper-rustls" +version = "0.27.2" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "5ee4be2c948921a1a5320b629c4193916ed787a7f7f293fd3f7f5a6c9de74155" +dependencies = [ + "futures-util", + "http 1.1.0", + "hyper 1.3.1", + "hyper-util", + "rustls 0.23.10", + "rustls-pki-types", + "tokio", + "tokio-rustls 0.26.0", + "tower-service", ] [[package]] @@ -1635,6 +2113,22 @@ dependencies = [ "tokio-native-tls", ] +[[package]] +name = "hyper-tls" +version = "0.6.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "70206fc6890eaca9fde8a0bf71caa2ddfc9fe045ac9e5c70df101a7dbde866e0" +dependencies = [ + "bytes", + "http-body-util", + "hyper 1.3.1", + "hyper-util", + "native-tls", + "tokio", + "tokio-native-tls", + "tower-service", +] + [[package]] name = "hyper-util" version = "0.1.5" @@ -1755,6 +2249,15 @@ version = "2.0.5" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "b248f5224d1d606005e02c97f5aa4e88eeb230488bcc03bc9ca4d7991399f2b5" +[[package]] +name = "infer" +version = "0.16.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "bc150e5ce2330295b8616ce0e3f53250e53af31759a9dbedad1621ba29151847" +dependencies = [ + "cfb", +] + [[package]] name = "instant" version = "0.1.13" @@ -1766,7 +2269,7 @@ dependencies = [ [[package]] name = "internal-baml-codegen" -version = "0.40.0" +version = "0.45.0" dependencies = [ "anyhow", "askama", @@ -1786,7 +2289,7 @@ dependencies = [ [[package]] name = "internal-baml-core" -version = "0.40.0" +version = "0.45.0" dependencies = [ "anyhow", "baml-types", @@ -1820,7 +2323,7 @@ dependencies = [ [[package]] name = "internal-baml-diagnostics" -version = "0.40.0" +version = "0.45.0" dependencies = [ "anyhow", "colored", @@ -1833,7 +2336,7 @@ dependencies = [ [[package]] name = "internal-baml-jinja" -version = "0.40.0" +version = "0.45.0" dependencies = [ "anyhow", "askama", @@ -1850,7 +2353,7 @@ dependencies = [ [[package]] name = "internal-baml-parser-database" -version = "0.40.0" +version = "0.45.0" dependencies = [ "baml-types", "colored", @@ -1872,7 +2375,7 @@ dependencies = [ [[package]] name = "internal-baml-prompt-parser" -version = "0.40.0" +version = "0.45.0" dependencies = [ "internal-baml-diagnostics", "internal-baml-schema-ast", @@ -1884,7 +2387,7 @@ dependencies = [ [[package]] name = "internal-baml-schema-ast" -version = "0.40.0" +version = "0.45.0" dependencies = [ "baml-types", "either", @@ -1919,6 +2422,15 @@ version = "1.70.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "f8478577c03552c21db0e2724ffb8986a5ce7af88107e6be5d2ee6e158c12800" +[[package]] +name = "itertools" +version = "0.10.5" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "b0fd2260e829bddf4cb6ea802289de2f86d6a7a690192fbe91b3f46e0f2c8473" +dependencies = [ + "either", +] + [[package]] name = "itertools" version = "0.12.1" @@ -1951,7 +2463,7 @@ checksum = "9dbbfed4e59ba9750e15ba154fdfd9329cee16ff3df539c2666b70f58cc32105" [[package]] name = "jsonish" -version = "0.40.0" +version = "0.45.0" dependencies = [ "anyhow", "assert-json-diff", @@ -2264,6 +2776,21 @@ dependencies = [ "winapi", ] +[[package]] +name = "num-conv" +version = "0.1.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "51d515d32fb182ee37cda2ccdcb92950d6a3c2893aa280e540671c2cd0f3b1d9" + +[[package]] +name = "num-integer" +version = "0.1.46" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "7969661fd2958a5cb096e56c8e1ad0444ac2bbcd0061bd28660485a44879858f" +dependencies = [ + "num-traits", +] + [[package]] name = "num-traits" version = "0.2.19" @@ -2358,6 +2885,12 @@ dependencies = [ "vcpkg", ] +[[package]] +name = "outref" +version = "0.5.1" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "4030760ffd992bef45b0ae3f10ce1aba99e33464c90d14dd7c039884963ddc7a" + [[package]] name = "overload" version = "0.1.1" @@ -2536,6 +3069,12 @@ version = "1.6.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "7170ef9988bc169ba16dd36a7fa041e5c4cbeb6a35b76d4c03daded371eae7c0" +[[package]] +name = "powerfmt" +version = "0.2.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "439ee305def115ba05938db6eb1644ff94165c5ab5e9420d1c1bcedbba909391" + [[package]] name = "pretty_assertions" version = "1.4.0" @@ -2784,6 +3323,12 @@ dependencies = [ "regex-syntax 0.8.3", ] +[[package]] +name = "regex-lite" +version = "0.1.6" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "53a49587ad06b26609c52e423de037e7f57f20d53535d66e08c695f347df952a" + [[package]] name = "regex-syntax" version = "0.6.29" @@ -2807,12 +3352,12 @@ dependencies = [ "encoding_rs", "futures-core", "futures-util", - "h2", + "h2 0.3.26", "http 0.2.12", "http-body 0.4.6", "hyper 0.14.29", - "hyper-rustls", - "hyper-tls", + "hyper-rustls 0.24.2", + "hyper-tls 0.5.0", "ipnet", "js-sys", "log", @@ -2821,22 +3366,20 @@ dependencies = [ "once_cell", "percent-encoding", "pin-project-lite", - "rustls", - "rustls-pemfile", + "rustls 0.21.12", + "rustls-pemfile 1.0.4", "serde", "serde_json", "serde_urlencoded", - "sync_wrapper", + "sync_wrapper 0.1.2", "system-configuration", "tokio", "tokio-native-tls", - "tokio-rustls", - "tokio-util", + "tokio-rustls 0.24.1", "tower-service", "url", "wasm-bindgen", "wasm-bindgen-futures", - "wasm-streams", "web-sys", "webpki-roots", "winreg 0.50.0", @@ -2844,31 +3387,39 @@ dependencies = [ [[package]] name = "reqwest" -version = "0.12.4" +version = "0.12.5" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "566cafdd92868e0939d3fb961bd0dc25fcfaaed179291093b3d43e6b3150ea10" +checksum = "c7d6d2a27d57148378eb5e111173f4276ad26340ecc5c49a4a2152167a2d6a37" dependencies = [ "base64 0.22.1", "bytes", + "encoding_rs", "futures-core", "futures-util", + "h2 0.4.5", "http 1.1.0", "http-body 1.0.0", "http-body-util", "hyper 1.3.1", + "hyper-rustls 0.27.2", + "hyper-tls 0.6.0", "hyper-util", "ipnet", "js-sys", "log", "mime", + "native-tls", "once_cell", "percent-encoding", "pin-project-lite", + "rustls-pemfile 2.1.2", "serde", "serde_json", "serde_urlencoded", - "sync_wrapper", + "sync_wrapper 1.0.1", + "system-configuration", "tokio", + "tokio-native-tls", "tokio-util", "tower-service", "url", @@ -2891,7 +3442,7 @@ dependencies = [ "mime", "nom", "pin-project-lite", - "reqwest 0.12.4", + "reqwest 0.12.5", "thiserror", ] @@ -2943,6 +3494,15 @@ version = "1.1.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "08d43f7aa6b08d49f382cde6a7982047c3426db949b1424bc4b7ec9ae12c6ce2" +[[package]] +name = "rustc_version" +version = "0.4.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "bfa0f585226d2e68097d4f95d113b15b83a82e819ab25717ec0590d9584ef366" +dependencies = [ + "semver", +] + [[package]] name = "rustix" version = "0.37.27" @@ -2978,10 +3538,35 @@ checksum = "3f56a14d1f48b391359b22f731fd4bd7e43c97f3c50eee276f3aa09c94784d3e" dependencies = [ "log", "ring", - "rustls-webpki", + "rustls-webpki 0.101.7", "sct", ] +[[package]] +name = "rustls" +version = "0.23.10" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "05cff451f60db80f490f3c182b77c35260baace73209e9cdbbe526bfe3a4d402" +dependencies = [ + "once_cell", + "rustls-pki-types", + "rustls-webpki 0.102.4", + "subtle", + "zeroize", +] + +[[package]] +name = "rustls-native-certs" +version = "0.6.3" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "a9aace74cb666635c918e9c12bc0d348266037aa8eb599b5cba565709a8dff00" +dependencies = [ + "openssl-probe", + "rustls-pemfile 1.0.4", + "schannel", + "security-framework", +] + [[package]] name = "rustls-pemfile" version = "1.0.4" @@ -2991,6 +3576,22 @@ dependencies = [ "base64 0.21.7", ] +[[package]] +name = "rustls-pemfile" +version = "2.1.2" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "29993a25686778eb88d4189742cd713c9bce943bc54251a33509dc63cbacf73d" +dependencies = [ + "base64 0.22.1", + "rustls-pki-types", +] + +[[package]] +name = "rustls-pki-types" +version = "1.7.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "976295e77ce332211c0d24d92c0e83e50f5c5f046d11082cea19f3df13a3562d" + [[package]] name = "rustls-webpki" version = "0.101.7" @@ -3001,6 +3602,17 @@ dependencies = [ "untrusted", ] +[[package]] +name = "rustls-webpki" +version = "0.102.4" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "ff448f7e92e913c4b7d4c6d8e4540a1724b319b4152b8aef6d4cf8339712b33e" +dependencies = [ + "ring", + "rustls-pki-types", + "untrusted", +] + [[package]] name = "rustversion" version = "1.0.17" @@ -3085,6 +3697,21 @@ dependencies = [ "serde", ] +[[package]] +name = "send_wrapper" +version = "0.4.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "f638d531eccd6e23b980caf34876660d38e265409d8e99b397ab71eb3612fad0" + +[[package]] +name = "send_wrapper" +version = "0.6.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "cd0b0ec5f1c1ca621c432a25813d8d60c88abe6d3e08a3eb9cf37d97a0fe3d73" +dependencies = [ + "futures-core", +] + [[package]] name = "seq-macro" version = "0.3.5" @@ -3199,6 +3826,12 @@ dependencies = [ "lazy_static", ] +[[package]] +name = "shell-escape" +version = "0.1.5" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "45bb67a18fa91266cc7807181f62f9178a6873bfad7dc788c42e6430db40184f" + [[package]] name = "shell-words" version = "1.1.0" @@ -3367,6 +4000,12 @@ dependencies = [ "syn 2.0.66", ] +[[package]] +name = "subtle" +version = "2.6.1" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "13c2bddecc57b384dee18652358fb23172facb8a2c51ccc10d74c157bdea3292" + [[package]] name = "sugar_path" version = "1.2.0" @@ -3401,6 +4040,12 @@ version = "0.1.2" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "2047c6ded9c721764247e62cd3b03c09ffc529b2ba5b10ec482ae507a4a70160" +[[package]] +name = "sync_wrapper" +version = "1.0.1" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "a7065abeca94b6a8a577f9bd45aa0867a2238b74e8eb67cf10d492bc39351394" + [[package]] name = "system-configuration" version = "0.5.1" @@ -3518,6 +4163,37 @@ dependencies = [ "once_cell", ] +[[package]] +name = "time" +version = "0.3.36" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "5dfd88e563464686c916c7e46e623e520ddc6d79fa6641390f2e3fa86e83e885" +dependencies = [ + "deranged", + "itoa", + "num-conv", + "powerfmt", + "serde", + "time-core", + "time-macros", +] + +[[package]] +name = "time-core" +version = "0.1.2" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "ef927ca75afb808a4d64dd374f00a2adf8d0fcff8e7b184af886c3c87ec4a3f3" + +[[package]] +name = "time-macros" +version = "0.2.18" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "3f252a68540fde3a3877aeea552b832b40ab9a69e318efd078774a01ddee1ccf" +dependencies = [ + "num-conv", + "time-core", +] + [[package]] name = "tinyvec" version = "1.6.0" @@ -3579,7 +4255,18 @@ version = "0.24.1" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "c28327cf380ac148141087fbfb9de9d7bd4e84ab5d2c28fbc911d753de8a7081" dependencies = [ - "rustls", + "rustls 0.21.12", + "tokio", +] + +[[package]] +name = "tokio-rustls" +version = "0.26.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "0c7bc40d0e5a97695bb96e27995cd3a08538541b0a846f65bba7a359f36700d4" +dependencies = [ + "rustls 0.23.10", + "rustls-pki-types", "tokio", ] @@ -3630,9 +4317,21 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "c3523ab5a71916ccf420eebdf5521fcef02141234bbc0b8a49f2fdc4544364ef" dependencies = [ "pin-project-lite", + "tracing-attributes", "tracing-core", ] +[[package]] +name = "tracing-attributes" +version = "0.1.27" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "34704c8d6ebcbc939824180af020566b01a7c01f80641264eba0999f6c2b6be7" +dependencies = [ + "proc-macro2", + "quote", + "syn 2.0.66", +] + [[package]] name = "tracing-core" version = "0.1.32" @@ -3751,9 +4450,9 @@ checksum = "8ecb6da28b8a351d773b68d5825ac39017e680750f980f3a1a85cd8dd28a47c1" [[package]] name = "url" -version = "2.5.0" +version = "2.5.2" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "31e6302e3bb753d46e83516cae55ae196fc0c309407cf11ab35cc51a4c2a4633" +checksum = "22784dbdf76fdde8af1aeda5622b546b422b6fc585325248a2bf9f5e41e94d6c" dependencies = [ "form_urlencoded", "idna", @@ -3761,6 +4460,12 @@ dependencies = [ "serde", ] +[[package]] +name = "urlencoding" +version = "2.1.3" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "daf8dba3b7eb870caf1ddeed7bc9d2a049f3cfdfae7cb521b087cc33ae4c49da" + [[package]] name = "utf8parse" version = "0.2.1" @@ -3808,6 +4513,12 @@ version = "0.9.4" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "49874b5167b65d7193b8aba1567f5c7d93d001cafc34600cee003eda787e483f" +[[package]] +name = "vsimd" +version = "0.8.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "5c3082ca00d5a5ef149bb8b555a72ae84c9c59f7250f013ac822ac2e49b19c64" + [[package]] name = "vte" version = "0.11.1" @@ -4218,6 +4929,12 @@ dependencies = [ "windows-sys 0.48.0", ] +[[package]] +name = "xmlparser" +version = "0.13.6" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "66fee0b777b0f5ac1c69bb06d361268faafa61cd4682ae064a171c16c433e9e4" + [[package]] name = "yansi" version = "0.5.1" diff --git a/engine/Cargo.toml b/engine/Cargo.toml index 7e0cdd16a..06418b383 100644 --- a/engine/Cargo.toml +++ b/engine/Cargo.toml @@ -32,6 +32,7 @@ default-members = [ anyhow = "1.0" askama = "0.12.1" base64 = "0.22.1" +bytes = "1.6.0" cfg-if = "1.0.0" dashmap = "5.5.3" derive_builder = "0.20.0" @@ -39,24 +40,27 @@ either = "1.8.1" env_logger = "0.11.3" futures = { version = "0.3.30", features = ["executor"] } log = "0.4.20" +http-body = "1.0.0" indexmap = { version = "2.1.0", features = ["serde"] } indoc = "2.0.1" -instant = "0.1" regex = "1.10.4" serde_json = { version = "1", features = ["float_roundtrip", "preserve_order"] } serde = { version = "1", features = ["derive"] } static_assertions = "1.1.0" strum = { version = "0.26.2", features = ["derive"] } strum_macros = "0.26.2" +time = { version = "0.3.36", features = ["formatting"] } +pin-project-lite = "0.2.14" walkdir = "2.5.0" web-time = "1.1.0" + baml-types = { path = "baml-lib/baml-types" } internal-baml-codegen = { path = "language-client-codegen" } internal-baml-core = { path = "baml-lib/baml-core" } internal-baml-jinja = { path = "baml-lib/jinja" } [workspace.package] -version = "0.40.0" +version = "0.45.0" authors = ["Boundary "] description = "BAML Toolchain" diff --git a/engine/baml-cli/src/main.rs b/engine/baml-cli/src/main.rs index c8f17f153..b149ee761 100644 --- a/engine/baml-cli/src/main.rs +++ b/engine/baml-cli/src/main.rs @@ -2,14 +2,23 @@ use colored::*; use std::io::Write; +#[allow(dead_code)] mod builder; +#[allow(dead_code)] mod command; +#[allow(dead_code)] mod errors; +#[allow(dead_code)] mod import_command; +#[allow(dead_code)] mod init_command; +#[allow(dead_code)] mod runtime_test_command; +#[allow(dead_code)] mod shell; +#[allow(dead_code)] mod update; +#[allow(dead_code)] mod version_command; use clap::{Args, Parser, Subcommand, ValueEnum}; @@ -118,6 +127,7 @@ pub enum OutputType { Json, } +#[allow(dead_code)] pub(crate) fn main() { const NAME: &str = concat!("[", clap::crate_name!(), "]"); env_logger::Builder::from_env(env_logger::Env::default().default_filter_or("info")) diff --git a/engine/baml-cli/src/runtime_test_command/run_state.rs b/engine/baml-cli/src/runtime_test_command/run_state.rs index 114e4c624..cbbf335f9 100644 --- a/engine/baml-cli/src/runtime_test_command/run_state.rs +++ b/engine/baml-cli/src/runtime_test_command/run_state.rs @@ -11,7 +11,7 @@ use tokio::{ }; use baml_runtime::{ - BamlRuntime, InternalRuntimeInterface, RuntimeContext, RuntimeContextManager, TestResponse, + BamlRuntime, InternalRuntimeInterface, RuntimeContextManager, TestResponse, }; use super::filter::FilterArgs; diff --git a/engine/baml-cli/src/shell.rs b/engine/baml-cli/src/shell.rs index b368424c5..866db9903 100644 --- a/engine/baml-cli/src/shell.rs +++ b/engine/baml-cli/src/shell.rs @@ -1,6 +1,7 @@ use std::process::Command; // Function for safely running a shell command (including chained commands) +#[allow(dead_code)] pub fn build_shell_command(cmd: Vec) -> Command { // Check if the command is a chained command (i.e. contains a pipe or a semicolon or a double ampersand) let is_chained = cmd @@ -14,6 +15,7 @@ pub fn build_shell_command(cmd: Vec) -> Command { } } +#[allow(dead_code)] fn build_chained_shell_command(cmd: Vec) -> Command { let shell_command = cmd .iter() @@ -42,6 +44,7 @@ fn build_chained_shell_command(cmd: Vec) -> Command { cmd } +#[allow(dead_code)] fn build_single_shell_command(cmd: Vec) -> Command { let mut cmd_ = Command::new(cmd[0].clone()); cmd_.args(&cmd[1..]); diff --git a/engine/baml-cli/src/version_command.rs b/engine/baml-cli/src/version_command.rs index 1e8d1794c..2ff1c4d77 100644 --- a/engine/baml-cli/src/version_command.rs +++ b/engine/baml-cli/src/version_command.rs @@ -1,5 +1,5 @@ -use crate::{builder::get_src_dir, shell::build_shell_command, update::UPDATE_CHANNEL}; use crate::{errors::CliError, OutputType}; +use crate::{shell::build_shell_command, update::UPDATE_CHANNEL}; use colored::Colorize; use dunce::canonicalize; @@ -178,6 +178,7 @@ dependencies } /// This is redundant with GeneratorLanguage.parse_version +#[allow(dead_code)] fn extract_client_version(package_version_command: &str, output: &str) -> Result { let package_version_command = shellwords::split(package_version_command) .map_err(|e| CliError::StringError(e.to_string()))?; @@ -223,6 +224,7 @@ fn extract_client_version(package_version_command: &str, output: &str) -> Result } /// This is redundant with GeneratorLanguage.parse_version +#[allow(dead_code)] pub fn get_client_version( project_root: &str, package_version_command: &str, diff --git a/engine/baml-lib/baml-core/src/ir/ir_helpers/to_baml_arg.rs b/engine/baml-lib/baml-core/src/ir/ir_helpers/to_baml_arg.rs index 479a08722..73b66eb6a 100644 --- a/engine/baml-lib/baml-core/src/ir/ir_helpers/to_baml_arg.rs +++ b/engine/baml-lib/baml-core/src/ir/ir_helpers/to_baml_arg.rs @@ -1,4 +1,4 @@ -use baml_types::{BamlMap, BamlValue, TypeValue}; +use baml_types::{BamlMap, BamlMediaType, BamlValue, TypeValue}; use crate::ir::{FieldType, IntermediateRepr}; @@ -27,7 +27,7 @@ impl ParameterError { pub fn validate_arg( ir: &IntermediateRepr, field_type: &FieldType, - value: &BamlValue, + value: &BamlValue, // original value passed in by user scope: &mut ScopeStack, allow_implicit_cast_to_string: bool, ) -> Option { @@ -57,18 +57,23 @@ pub fn validate_arg( TypeValue::Bool if matches!(value, BamlValue::Bool(_)) => Some(value.clone()), TypeValue::Null if matches!(value, BamlValue::Null) => Some(value.clone()), TypeValue::Image => match value { - BamlValue::Image(v) => Some(BamlValue::Image(v.clone())), + BamlValue::Media(v) => Some(BamlValue::Media(v.clone())), BamlValue::Map(kv) => { if let Some(BamlValue::String(s)) = kv.get("url") { - Some(BamlValue::Image(baml_types::BamlImage::url(s.to_string()))) + Some(BamlValue::Media(baml_types::BamlMedia::url( + BamlMediaType::Image, + s.to_string(), + None, + ))) } else if let ( Some(BamlValue::String(s)), - Some(BamlValue::String(media_type)), + Some(BamlValue::String(media_type_str)), ) = (kv.get("base64"), kv.get("media_type")) { - Some(BamlValue::Image(baml_types::BamlImage::base64( + Some(BamlValue::Media(baml_types::BamlMedia::base64( + BamlMediaType::Image, s.to_string(), - media_type.to_string(), + media_type_str.to_string(), ))) } else { scope.push_error(format!( @@ -83,6 +88,38 @@ pub fn validate_arg( None } }, + TypeValue::Audio => match value { + BamlValue::Media(v) => Some(BamlValue::Media(v.clone())), + BamlValue::Map(kv) => { + if let Some(BamlValue::String(s)) = kv.get("url") { + Some(BamlValue::Media(baml_types::BamlMedia::url( + BamlMediaType::Audio, + s.to_string(), + None, + ))) + } else if let ( + Some(BamlValue::String(s)), + Some(BamlValue::String(media_type_str)), + ) = (kv.get("base64"), kv.get("media_type")) + { + Some(BamlValue::Media(baml_types::BamlMedia::base64( + BamlMediaType::Audio, + s.to_string(), + media_type_str.to_string(), + ))) + } else { + scope.push_error(format!( + "Invalid audio: expected `url` or (`base64` and `media_type`), got `{}`", + value + )); + None + } + } + _ => { + scope.push_error(format!("Expected type {:?}, got `{}`", t, value)); + None + } + }, _ => { scope.push_error(format!("Expected type {:?}, got `{}`", t, value)); None @@ -121,6 +158,7 @@ pub fn validate_arg( BamlValue::Class(_, obj) | BamlValue::Map(obj) => match ir.find_class(name) { Ok(c) => { let mut fields = BamlMap::new(); + for f in c.walk_fields() { if let Some(v) = obj.get(f.name()) { if let Some(v) = validate_arg( @@ -140,6 +178,25 @@ pub fn validate_arg( )); } } + let is_dynamic = c.item.attributes.get("dynamic_type").is_some(); + if is_dynamic { + for (key, value) in obj { + if !fields.contains_key(key) { + fields.insert(key.clone(), value.clone()); + } + } + } else { + // We let it slide here... but we should probably emit a warning like this: + // for key in obj.keys() { + // if !fields.contains_key(key) { + // scope.push_error(format!( + // "Unexpected field `{}` for class {}. Mark the class as @@dynamic if you want to allow additional fields.", + // key, name + // )); + // } + // } + } + Some(BamlValue::Class(name.to_string(), fields)) } Err(_) => { diff --git a/engine/baml-lib/baml-core/src/ir/json_schema.rs b/engine/baml-lib/baml-core/src/ir/json_schema.rs index 87f7e8322..152df8516 100644 --- a/engine/baml-lib/baml-core/src/ir/json_schema.rs +++ b/engine/baml-lib/baml-core/src/ir/json_schema.rs @@ -193,6 +193,17 @@ impl<'db> WithJsonSchema for FieldType { "required": ["url"], }), + TypeValue::Audio => json!({ + // anyOf either an object that has a uri, or it has a base64 string + "type": "object", + "properties": { + "url": { + "type": "string", + // "format": "uri", + } + }, + "required": ["url"], + }), }, FieldType::List(item) => json!({ "type": "array", diff --git a/engine/baml-lib/baml-core/src/ir/mod.rs b/engine/baml-lib/baml-core/src/ir/mod.rs index 125fe6566..120559de3 100644 --- a/engine/baml-lib/baml-core/src/ir/mod.rs +++ b/engine/baml-lib/baml-core/src/ir/mod.rs @@ -3,13 +3,11 @@ mod json_schema; pub mod repr; mod walker; -use internal_baml_schema_ast::ast; pub use ir_helpers::{ ClassFieldWalker, ClassWalker, ClientWalker, EnumValueWalker, EnumWalker, FunctionWalker, IRHelper, RetryPolicyWalker, TemplateStringWalker, TestCaseWalker, }; -pub(super) use json_schema::WithJsonSchema; pub(super) use repr::IntermediateRepr; // Add aliases for the IR types diff --git a/engine/baml-lib/baml-core/src/ir/repr.rs b/engine/baml-lib/baml-core/src/ir/repr.rs index ae63ba69a..070fa4b39 100644 --- a/engine/baml-lib/baml-core/src/ir/repr.rs +++ b/engine/baml-lib/baml-core/src/ir/repr.rs @@ -10,8 +10,7 @@ use internal_baml_parser_database::{ ClassWalker, ClientWalker, ConfigurationWalker, EnumValueWalker, EnumWalker, FieldWalker, FunctionWalker, TemplateStringWalker, VariantWalker, }, - ParserDatabase, PromptAst, RetryPolicyStrategy, ToStringAttributes, WithSerialize, - WithStaticRenames, + ParserDatabase, PromptAst, RetryPolicyStrategy, ToStringAttributes, WithStaticRenames, }; use internal_baml_schema_ast::ast::{self, FieldArity, WithName, WithSpan}; @@ -294,7 +293,7 @@ impl WithRepr for ast::FieldType { fn repr(&self, db: &ParserDatabase) -> Result { Ok(match self { ast::FieldType::Identifier(arity, idn) => type_with_arity( - (match idn { + match idn { ast::Identifier::Primitive(t, ..) => FieldType::Primitive(*t), ast::Identifier::Local(name, _) => match db.find_type(idn) { Some(Either::Left(_class_walker)) => Ok(FieldType::Class(name.clone())), @@ -302,7 +301,7 @@ impl WithRepr for ast::FieldType { None => Err(anyhow!("Field type uses unresolvable local identifier")), }?, _ => bail!("Field type uses unsupported identifier type"), - }), + }, arity, ), ast::FieldType::List(ft, dims, _) => { @@ -1102,6 +1101,14 @@ pub struct TestCase { } impl WithRepr for ConfigurationWalker<'_> { + fn attributes(&self, _db: &ParserDatabase) -> NodeAttributes { + NodeAttributes { + meta: IndexMap::new(), + overrides: IndexMap::new(), + span: Some(self.span().clone()), + } + } + fn repr(&self, db: &ParserDatabase) -> Result { Ok(TestCase { name: self.name().to_string(), diff --git a/engine/baml-lib/baml-core/src/ir/walker.rs b/engine/baml-lib/baml-core/src/ir/walker.rs index 1e34aae1e..3b0bd80a9 100644 --- a/engine/baml-lib/baml-core/src/ir/walker.rs +++ b/engine/baml-lib/baml-core/src/ir/walker.rs @@ -265,6 +265,10 @@ impl<'a> Walker<'a, (&'a Function, &'a TestCase)> { &self.item.1.elem } + pub fn span(&self) -> Option<&crate::Span> { + self.item.1.attributes.span.as_ref() + } + pub fn test_case_params( &self, env_values: &HashMap, @@ -340,6 +344,10 @@ impl<'a> Walker<'a, &'a Client> { pub fn span(&self) -> Option<&crate::Span> { self.item.attributes.span.as_ref() } + + pub fn options(&self) -> &Vec<(String, Expression)> { + &self.elem().options + } } impl<'a> Walker<'a, &'a RetryPolicy> { diff --git a/engine/baml-lib/baml-core/src/validate/generator_loader/mod.rs b/engine/baml-lib/baml-core/src/validate/generator_loader/mod.rs index 93c5d2b90..a32c80b6b 100644 --- a/engine/baml-lib/baml-core/src/validate/generator_loader/mod.rs +++ b/engine/baml-lib/baml-core/src/validate/generator_loader/mod.rs @@ -33,7 +33,7 @@ fn parse_generator( Err(errors) => errors, }; - log::info!("Failed to parse generator as v2 generator, moving on to v1 and v0."); + log::trace!("Failed to parse generator as v2 generator, moving on to v1 and v0."); if let Ok(gen) = v1::parse_generator(ast_generator, &diagnostics.root_path) { diagnostics.push_warning(DatamodelWarning::new( @@ -46,7 +46,7 @@ fn parse_generator( return None; }; - log::info!("Failed to parse generator as v1 generator, moving on to v0."); + log::trace!("Failed to parse generator as v1 generator, moving on to v0."); if let Ok(gen) = v0::parse_generator(ast_generator, &diagnostics.root_path) { diagnostics.push_warning(DatamodelWarning::new( diff --git a/engine/baml-lib/baml-core/src/validate/validation_pipeline/validations/clients.rs b/engine/baml-lib/baml-core/src/validate/validation_pipeline/validations/clients.rs index a21475a26..7d8331920 100644 --- a/engine/baml-lib/baml-core/src/validate/validation_pipeline/validations/clients.rs +++ b/engine/baml-lib/baml-core/src/validate/validation_pipeline/validations/clients.rs @@ -1,4 +1,4 @@ -use internal_baml_diagnostics::{DatamodelError, DatamodelWarning}; +use internal_baml_diagnostics::{DatamodelError}; use crate::validate::validation_pipeline::context::Context; @@ -20,6 +20,7 @@ pub(super) fn validate(ctx: &mut Context<'_>) { "baml-fallback", "fallback", "google-ai", + "aws-bedrock", ]; let suggestions: Vec = allowed_providers diff --git a/engine/baml-lib/baml-types/src/baml_value.rs b/engine/baml-lib/baml-types/src/baml_value.rs index b6b3ec030..c236afcf6 100644 --- a/engine/baml-lib/baml-types/src/baml_value.rs +++ b/engine/baml-lib/baml-types/src/baml_value.rs @@ -2,7 +2,8 @@ use std::{collections::HashSet, fmt}; use serde::{de::Visitor, ser::SerializeStruct, Deserialize, Deserializer}; -use crate::{BamlImage, BamlMap}; +use crate::media::BamlMediaType; +use crate::{BamlMap, BamlMedia}; #[derive(Debug, PartialEq, Clone)] pub enum BamlValue { @@ -12,7 +13,7 @@ pub enum BamlValue { Bool(bool), Map(BamlMap), List(Vec), - Image(BamlImage), + Media(BamlMedia), Enum(String, String), Class(String, BamlMap), Null, @@ -27,19 +28,33 @@ impl serde::Serialize for BamlValue { BamlValue::Bool(b) => serializer.serialize_bool(*b), BamlValue::Map(m) => m.serialize(serializer), BamlValue::List(l) => l.serialize(serializer), - BamlValue::Image(i) => { - let mut s = serializer.serialize_struct("BamlImage", 2)?; - match i { - BamlImage::Url(u) => { - s.serialize_field("url", &u.url)?; - } - BamlImage::Base64(b) => { - s.serialize_field("base64", &b.base64)?; - s.serialize_field("media_type", &b.media_type)?; - } + BamlValue::Media(i) => match i { + BamlMedia::Url(BamlMediaType::Image, u) => { + let mut s = serializer.serialize_struct("BamlImage", 2)?; + s.serialize_field("url", &u.url)?; + s.end() } - s.end() - } + BamlMedia::Base64(BamlMediaType::Image, b) => { + let mut s = serializer.serialize_struct("BamlImage", 2)?; + s.serialize_field("base64", &b.base64)?; + s.serialize_field("media_type", &b.media_type)?; + s.end() + } + BamlMedia::Url(BamlMediaType::Audio, u) => { + let mut s = serializer.serialize_struct("BamlAudio", 2)?; + + s.serialize_field("url", &u.url)?; + s.end() + } + BamlMedia::Base64(BamlMediaType::Audio, b) => { + let mut s = serializer.serialize_struct("BamlAudio", 2)?; + + s.serialize_field("base64", &b.base64)?; + s.serialize_field("media_type", &b.media_type)?; + s.end() + } + }, + BamlValue::Enum(_, v) => serializer.serialize_str(v), BamlValue::Class(_, m) => m.serialize(serializer), BamlValue::Null => serializer.serialize_none(), @@ -82,7 +97,12 @@ impl BamlValue { format!("list<{}>", value_type) } } - BamlValue::Image(_) => "image".into(), + BamlValue::Media(m) => match m { + BamlMedia::Url(BamlMediaType::Image, _) => "image".into(), + BamlMedia::Base64(BamlMediaType::Image, _) => "image".into(), + BamlMedia::Url(BamlMediaType::Audio, _) => "audio".into(), + BamlMedia::Base64(BamlMediaType::Audio, _) => "audio".into(), + }, BamlValue::Enum(e, _) => format!("enum {}", e), BamlValue::Class(c, _) => format!("class {}", c), BamlValue::Null => "null".into(), diff --git a/engine/baml-lib/baml-types/src/field_type/mod.rs b/engine/baml-lib/baml-types/src/field_type/mod.rs index 8972c5f52..c495e34fa 100644 --- a/engine/baml-lib/baml-types/src/field_type/mod.rs +++ b/engine/baml-lib/baml-types/src/field_type/mod.rs @@ -9,6 +9,7 @@ pub enum TypeValue { // Char, Null, Image, + Audio, } impl std::fmt::Display for TypeValue { @@ -20,6 +21,7 @@ impl std::fmt::Display for TypeValue { TypeValue::Bool => write!(f, "bool"), TypeValue::Null => write!(f, "null"), TypeValue::Image => write!(f, "image"), + TypeValue::Audio => write!(f, "audio"), } } } diff --git a/engine/baml-lib/baml-types/src/image.rs b/engine/baml-lib/baml-types/src/image.rs deleted file mode 100644 index 5e80b03e5..000000000 --- a/engine/baml-lib/baml-types/src/image.rs +++ /dev/null @@ -1,41 +0,0 @@ -use serde::{Deserialize, Serialize}; - -#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)] -#[serde(untagged)] -pub enum BamlImage { - Url(ImageUrl), - Base64(ImageBase64), -} - -impl BamlImage { - pub fn url(url: String) -> BamlImage { - BamlImage::Url(ImageUrl::new(url)) - } - - pub fn base64(base64: String, media_type: String) -> BamlImage { - BamlImage::Base64(ImageBase64::new(base64, media_type)) - } -} - -#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)] -pub struct ImageUrl { - pub url: String, -} - -impl ImageUrl { - pub fn new(url: String) -> ImageUrl { - ImageUrl { url } - } -} - -#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)] -pub struct ImageBase64 { - pub base64: String, - pub media_type: String, -} - -impl ImageBase64 { - pub fn new(base64: String, media_type: String) -> ImageBase64 { - ImageBase64 { base64, media_type } - } -} diff --git a/engine/baml-lib/baml-types/src/lib.rs b/engine/baml-lib/baml-types/src/lib.rs index ebf6cb7f8..692420a49 100644 --- a/engine/baml-lib/baml-types/src/lib.rs +++ b/engine/baml-lib/baml-types/src/lib.rs @@ -1,5 +1,5 @@ -mod image; mod map; +mod media; #[cfg(feature = "mini-jinja")] mod minijinja; @@ -8,5 +8,5 @@ mod field_type; pub use baml_value::BamlValue; pub use field_type::{FieldType, TypeValue}; -pub use image::{BamlImage, ImageBase64, ImageUrl}; pub use map::Map as BamlMap; +pub use media::{BamlMedia, BamlMediaType, MediaBase64, MediaUrl}; diff --git a/engine/baml-lib/baml-types/src/media.rs b/engine/baml-lib/baml-types/src/media.rs new file mode 100644 index 000000000..57da5506b --- /dev/null +++ b/engine/baml-lib/baml-types/src/media.rs @@ -0,0 +1,70 @@ +use serde::{Deserialize, Serialize}; + +use std::fmt; + +#[derive(Debug, PartialEq, Clone, Copy, Serialize, Deserialize)] +pub enum BamlMediaType { + Image, + Audio, +} + +impl fmt::Display for BamlMediaType { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match *self { + BamlMediaType::Image => write!(f, "image"), + BamlMediaType::Audio => write!(f, "audio"), + } + } +} + +#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)] +#[serde(untagged)] +pub enum BamlMedia { + Url(BamlMediaType, MediaUrl), + Base64(BamlMediaType, MediaBase64), +} + +impl BamlMedia { + pub fn url(t: BamlMediaType, url: String, media_type: Option) -> BamlMedia { + BamlMedia::Url( + t, + MediaUrl::new(url, Some(media_type.unwrap_or_else(|| "".to_string()))), + ) + } + + pub fn base64(t: BamlMediaType, base64: String, media_type: String) -> BamlMedia { + BamlMedia::Base64(t, MediaBase64::new(base64, media_type)) + } +} + +#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)] +pub struct MediaUrl { + pub url: String, + pub media_type: Option, +} + +impl MediaUrl { + pub fn new(url: String, media_type: Option) -> Self { + Self { url, media_type } + } +} + +impl fmt::Display for MediaUrl { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "{}", self.url) + } +} + +#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)] +pub struct MediaBase64 { + pub base64: String, + /// Explicitly specified by the 'type' field on img and audio structs in BAML files. + /// example: "image/png", "image/jpeg", "audio/mp3" + pub media_type: String, +} + +impl MediaBase64 { + pub fn new(base64: String, media_type: String) -> Self { + Self { base64, media_type } + } +} diff --git a/engine/baml-lib/baml-types/src/minijinja.rs b/engine/baml-lib/baml-types/src/minijinja.rs index 694f3a13d..c6c2314f1 100644 --- a/engine/baml-lib/baml-types/src/minijinja.rs +++ b/engine/baml-lib/baml-types/src/minijinja.rs @@ -1,4 +1,4 @@ -use crate::{BamlImage, BamlValue}; +use crate::{BamlMedia, BamlValue}; impl From for minijinja::Value { fn from(arg: BamlValue) -> minijinja::Value { @@ -15,7 +15,7 @@ impl From for minijinja::Value { let list: Vec = l.into_iter().map(|v| v.into()).collect(); minijinja::Value::from(list) } - BamlValue::Image(i) => i.into(), + BamlValue::Media(i) => i.into(), BamlValue::Enum(_, v) => minijinja::Value::from(v), BamlValue::Class(_, m) => { let map = m.into_iter().map(|(k, v)| (k, minijinja::Value::from(v))); @@ -28,17 +28,17 @@ impl From for minijinja::Value { #[derive(Debug)] struct MinijinjaBamlImage { - image: BamlImage, + image: BamlMedia, } -impl From for MinijinjaBamlImage { - fn from(image: BamlImage) -> MinijinjaBamlImage { +impl From for MinijinjaBamlImage { + fn from(image: BamlMedia) -> MinijinjaBamlImage { MinijinjaBamlImage { image } } } -impl From for minijinja::Value { - fn from(arg: BamlImage) -> minijinja::Value { +impl From for minijinja::Value { + fn from(arg: BamlMedia) -> minijinja::Value { minijinja::Value::from_object(MinijinjaBamlImage::from(arg)) } } diff --git a/engine/baml-lib/baml/tests/validation_files/functions_v2/prompt_errors/prompt1.baml b/engine/baml-lib/baml/tests/validation_files/functions_v2/prompt_errors/prompt1.baml index c8314407e..76396e2ce 100644 --- a/engine/baml-lib/baml/tests/validation_files/functions_v2/prompt_errors/prompt1.baml +++ b/engine/baml-lib/baml/tests/validation_files/functions_v2/prompt_errors/prompt1.baml @@ -50,9 +50,3 @@ function Bar1(a: string) -> int { // 23 | prompt #" // 24 | {{ Foo(a) }} // | -// warning: 'b' is a (function Foo | function Foo2), expected function -// --> functions_v2/prompt_errors/prompt1.baml:37 -// | -// 36 | -// 37 | {{ b() }} -// | diff --git a/engine/baml-lib/jinja/src/evaluate_type/expr.rs b/engine/baml-lib/jinja/src/evaluate_type/expr.rs index 1b92d1bfa..8362fdf10 100644 --- a/engine/baml-lib/jinja/src/evaluate_type/expr.rs +++ b/engine/baml-lib/jinja/src/evaluate_type/expr.rs @@ -8,6 +8,90 @@ use super::{ ScopeTracker, TypeError, }; +fn parse_as_function_call<'a>( + expr: &ast::Spanned, + state: &mut ScopeTracker, + types: &PredefinedTypes, + t: &Type, +) -> (Type, Vec) { + match t { + Type::FunctionRef(name) => { + let mut positional_args = Vec::new(); + let mut kwargs = HashMap::new(); + for arg in &expr.args { + match arg { + ast::Expr::Kwargs(kkwargs) => { + for (k, v) in &kkwargs.pairs { + let t = tracker_visit_expr(v, state, types); + kwargs.insert(*k, t); + } + } + _ => { + let t = tracker_visit_expr(arg, state, types); + positional_args.push(t); + } + } + } + + types.check_function_args((&name, expr), &positional_args, &kwargs) + } + Type::Both(x, y) => { + match (x.as_ref(), y.as_ref()) { + (Type::FunctionRef(_), Type::FunctionRef(_)) => {} + (Type::FunctionRef(_), _) => return parse_as_function_call(expr, state, types, x), + (_, Type::FunctionRef(_)) => return parse_as_function_call(expr, state, types, y), + _ => {} + } + + let (t1, e1) = parse_as_function_call(expr, state, types, x); + let (t2, e2) = parse_as_function_call(expr, state, types, y); + match (e1.is_empty(), e2.is_empty()) { + (true, true) => (Type::merge([t1, t2]), vec![]), + (true, false) => (t1, e1), + (false, true) => (t2, e2), + (false, false) => ( + Type::merge([t1, t2]), + e1.into_iter().chain(e2.into_iter()).collect(), + ), + } + } + Type::Union(items) => { + let items = items + .iter() + .map(|x| parse_as_function_call(expr, state, types, x)) + .reduce(|acc, x| { + let (t1, e1) = acc; + let (t2, e2) = x; + ( + Type::merge([t1, t2]), + e1.into_iter().chain(e2.into_iter()).collect(), + ) + }); + match items { + Some(x) => x, + None => ( + Type::Unknown, + vec![TypeError::new_invalid_type( + &expr.expr, + t, + "function", + expr.span(), + )], + ), + } + } + _ => ( + Type::Unknown, + vec![TypeError::new_invalid_type( + &expr.expr, + t, + "function", + expr.span(), + )], + ), + } +} + fn tracker_visit_expr<'a>( expr: &ast::Expr<'a>, state: &mut ScopeTracker, @@ -79,16 +163,145 @@ fn tracker_visit_expr<'a>( .unwrap_or(Type::Unknown); Type::merge([true_expr, false_expr]) } - ast::Expr::Filter(expr) => match expr.name { - "items" => { - let inner = tracker_visit_expr(expr.expr.as_ref().unwrap(), state, types); - match inner { + ast::Expr::Filter(expr) => { + // Filters have a name + let inner = tracker_visit_expr(expr.expr.as_ref().unwrap(), state, types); + + let mut ensure_type = |error_string: &str| { + state.errors.push(TypeError::new_invalid_type( + expr.expr.as_ref().unwrap(), + &inner, + error_string, + expr.span(), + )); + }; + + let valid_filters = vec![ + "abs", + "attrs", + "batch", + "bool", + "capitalize", + "escape", + "first", + "last", + "default", + "float", + "indent", + "int", + "dictsort", + "items", + "join", + "length", + "list", + "lower", + "upper", + "map", + "max", + "min", + "pprint", + "reject", + "rejectattr", + "replace", + "reverse", + "round", + "safe", + "select", + "selectattr", + "slice", + "sort", + "split", + "title", + "tojson", + "json", + "trim", + "unique", + "urlencode", + ]; + match expr.name { + "abs" => { + if inner.matches(&Type::Number) { + ensure_type("number"); + } + Type::Number + } + "attrs" => Type::Unknown, + "batch" => Type::Unknown, + "bool" => Type::Bool, + "capitalize" | "escape" => { + if inner.matches(&Type::String) { + ensure_type("string"); + } + Type::String + } + "first" | "last" => match inner { + Type::List(t) => Type::merge([*t, Type::None]), + Type::Unknown => Type::Unknown, + _ => { + ensure_type("list"); + Type::Unknown + } + }, + "default" => Type::Unknown, + "float" => Type::Float, + "indent" => Type::String, + "int" => Type::Int, + "dictsort" | "items" => match inner { Type::Map(k, v) => Type::List(Box::new(Type::Tuple(vec![*k, *v]))), - _ => Type::Unknown, + Type::ClassRef(_) => { + Type::List(Box::new(Type::Tuple(vec![Type::String, Type::Unknown]))) + } + _ => { + ensure_type("map or class"); + Type::Unknown + } + }, + "join" => Type::String, + "length" => match inner { + Type::List(_) | Type::String | Type::ClassRef(_) | Type::Map(_, _) => Type::Int, + Type::Unknown => Type::Unknown, + _ => { + ensure_type("list, string, class or map"); + Type::Unknown + } + }, + "list" => Type::List(Box::new(Type::Unknown)), + "lower" | "upper" => { + if inner.matches(&Type::String) { + ensure_type("string"); + } + Type::String + } + "map" => Type::Unknown, + "max" => Type::Unknown, + "min" => Type::Unknown, + "pprint" => Type::Unknown, + "reject" => Type::Unknown, + "rejectattr" => Type::Unknown, + "replace" => Type::String, + "reverse" => Type::Unknown, + "round" => Type::Float, + "safe" => Type::String, + "select" => Type::Unknown, + "selectattr" => Type::Unknown, + "slice" => Type::Unknown, + "sort" => Type::Unknown, + "split" => Type::List(Box::new(Type::String)), + "title" => Type::String, + "tojson" | "json" => Type::String, + "trim" => Type::String, + "unique" => Type::Unknown, + "urlencode" => Type::String, + other => { + state.errors.push(TypeError::new_invalid_filter( + other, + expr.span(), + &valid_filters, + )); + Type::Unknown } } - _ => Type::Unknown, - }, + } ast::Expr::Test(expr) => { let _test = tracker_visit_expr(&expr.expr, state, types); // TODO: Check for type compatibility @@ -122,41 +335,9 @@ fn tracker_visit_expr<'a>( ast::Expr::Slice(_slice) => Type::Unknown, ast::Expr::Call(expr) => { let func = tracker_visit_expr(&expr.expr, state, types); - - match func { - Type::FunctionRef(name) => { - // lets segregate positional and keyword arguments - let mut positional_args = Vec::new(); - let mut kwargs = HashMap::new(); - for arg in &expr.args { - match arg { - ast::Expr::Kwargs(kkwargs) => { - for (k, v) in &kkwargs.pairs { - let t = tracker_visit_expr(v, state, types); - kwargs.insert(*k, t); - } - } - _ => { - let t = tracker_visit_expr(arg, state, types); - positional_args.push(t); - } - } - } - - let res = types.check_function_args((&name, expr), &positional_args, &kwargs); - state.errors.extend(res.1); - res.0 - } - t => { - state.errors.push(TypeError::new_invalid_type( - &expr.expr, - &t, - "function", - expr.span(), - )); - Type::Unknown - } - } + let (t, errs) = parse_as_function_call(expr, state, types, &func); + state.errors.extend(errs); + t } ast::Expr::List(expr) => { let inner = Type::merge( diff --git a/engine/baml-lib/jinja/src/evaluate_type/mod.rs b/engine/baml-lib/jinja/src/evaluate_type/mod.rs index 8dfb4f4d4..aafa1530c 100644 --- a/engine/baml-lib/jinja/src/evaluate_type/mod.rs +++ b/engine/baml-lib/jinja/src/evaluate_type/mod.rs @@ -7,6 +7,7 @@ mod test_expr; mod test_stmt; mod types; +use std::collections::HashSet; use std::fmt::Debug; use std::ops::Index; @@ -143,11 +144,57 @@ impl TypeError { } } - fn new_unknown_arg(func: &str, span: Span, name: &str) -> Self { - Self { - message: format!("Function '{}' does not have an argument '{}'", func, name), - span, - } + fn new_unknown_arg(func: &str, span: Span, name: &str, valid_args: HashSet<&String>) -> Self { + let names = valid_args.into_iter().collect::>(); + let mut close_names = sort_by_match(name, &names, Some(3)); + close_names.sort(); + let close_names = close_names; + + let message = if close_names.is_empty() { + // If no names are close enough, suggest nothing or provide a generic message + format!("Function '{}' does not have an argument '{}'.", func, name) + } else if close_names.len() == 1 { + // If there's only one close name, suggest it + format!( + "Function '{}' does not have an argument '{}'. Did you mean '{}'?", + func, name, close_names[0] + ) + } else { + // If there are multiple close names, suggest them all + let suggestions = close_names.join("', '"); + format!( + "Function '{}' does not have an argument '{}'. Did you mean one of these: '{}'?", + func, name, suggestions + ) + }; + + Self { message, span } + } + + fn new_invalid_filter(name: &str, span: Span, valid_filters: &Vec<&str>) -> Self { + let mut close_names = sort_by_match(name, valid_filters, Some(5)); + close_names.sort(); + let close_names = close_names; + + let message = if close_names.is_empty() { + // If no names are close enough, suggest nothing or provide a generic message + format!("Filter '{}' does not exist", name) + } else if close_names.len() == 1 { + // If there's only one close name, suggest it + format!( + "Filter '{}' does not exist. Did you mean '{}'?", + name, close_names[0] + ) + } else { + // If there are multiple close names, suggest them all + let suggestions = close_names.join("', '"); + format!( + "Filter '{}' does not exist. Did you mean one of these: '{}'?", + name, suggestions + ) + }; + + Self { message: format!("{message}\n\nSee: https://docs.rs/minijinja/latest/minijinja/filters/index.html#functions for the compelete list"), span } } fn new_invalid_type(expr: &Expr, got: &Type, expected: &str, span: Span) -> Self { diff --git a/engine/baml-lib/jinja/src/evaluate_type/test_expr.rs b/engine/baml-lib/jinja/src/evaluate_type/test_expr.rs index a8eaa2028..9c484c392 100644 --- a/engine/baml-lib/jinja/src/evaluate_type/test_expr.rs +++ b/engine/baml-lib/jinja/src/evaluate_type/test_expr.rs @@ -100,6 +100,11 @@ fn test_ifexpr() { Type::Union(vec![Type::Number, Type::String]) ); + assert_eq!( + assert_evaluates_to!("1 if true else '2'", &types), + Type::Union(vec![Type::String, Type::Number]) + ); + types.add_function("AnotherFunc", Type::Float, vec![("arg".into(), Type::Bool)]); types.add_variable("BasicTest", Type::Int); @@ -192,7 +197,42 @@ fn test_call_function() { assert_fails_to!("AnotherFunc(true, arg2='1', arg4=1)", &types), vec![ "Function 'AnotherFunc' expects argument 'arg3'", - "Function 'AnotherFunc' does not have an argument 'arg4'" + "Function 'AnotherFunc' does not have an argument 'arg4'. Did you mean 'arg3'?" ] ); } + +#[test] +fn test_output_format() { + let types = PredefinedTypes::default(); + assert_eq!( + assert_evaluates_to!("ctx.output_format(prefix='hi')", &types), + Type::String + ); + + assert_eq!( + assert_evaluates_to!("ctx.output_format(prefix='1', or_splitter='1')", &types), + Type::String + ); + + assert_eq!( + assert_evaluates_to!( + "ctx.output_format(prefix='1', enum_value_prefix=none)", + &types + ), + Type::String + ); + + assert_eq!( + assert_fails_to!( + "ctx.output_format(prefix='1', always_hoist_enums=1)", + &types + ), + vec!["Function 'baml::OutputFormat' expects argument 'always_hoist_enums' to be of type (bool | none), but got number"] + ); + + assert_eq!( + assert_fails_to!("ctx.output_format(prefix='1', unknown=1)", &types), + vec!["Function 'baml::OutputFormat' does not have an argument 'unknown'. Did you mean one of these: 'always_hoist_enums', 'enum_value_prefix', 'or_splitter'?"] + ); +} diff --git a/engine/baml-lib/jinja/src/evaluate_type/types.rs b/engine/baml-lib/jinja/src/evaluate_type/types.rs index 3ef9adfd8..c92aa8756 100644 --- a/engine/baml-lib/jinja/src/evaluate_type/types.rs +++ b/engine/baml-lib/jinja/src/evaluate_type/types.rs @@ -1,5 +1,9 @@ use core::panic; -use std::{collections::HashMap, ops::BitOr}; +use std::{ + collections::{HashMap, HashSet}, + ops::BitOr, + vec, +}; use minijinja::machinery::{ ast::{Call, Spanned}, @@ -23,32 +27,47 @@ pub enum Type { Map(Box, Box), Tuple(Vec), Union(Vec), + // It is simultaneously two types, whichever fits best + Both(Box, Box), ClassRef(String), FunctionRef(String), Image, + Audio, } impl PartialEq for Type { fn eq(&self, other: &Self) -> bool { - match (self, other) { + self.matches(other) + } +} + +impl Eq for Type {} + +impl Type { + pub fn matches(&self, r: &Self) -> bool { + match (self, r) { (Self::Unknown, Self::Unknown) => true, (Self::Unknown, _) => true, (_, Self::Unknown) => true, (Self::Number, Self::Int | Self::Float) => true, (Self::Int | Self::Float, Self::Number) => true, - (Self::List(l0), Self::List(r0)) => l0 == r0, - (Self::Map(l0, l1), Self::Map(r0, r1)) => l0 == r0 && l1 == r1, - (Self::Union(l0), Self::Union(r0)) => l0 == r0, + (Self::List(l0), Self::List(r0)) => l0.matches(r0), + (Self::Map(l0, l1), Self::Map(r0, r1)) => l0.matches(r0) && l1.matches(r1), + (Self::Union(l0), Self::Union(r0)) => { + // Sort l0 and r0 to make sure the order doesn't matter + let mut l0 = l0.clone(); + let mut r0 = r0.clone(); + l0.sort(); + r0.sort(); + l0 == r0 + } + (l0, Self::Union(r0)) => r0.iter().any(|x| l0.matches(x)), (Self::ClassRef(l0), Self::ClassRef(r0)) => l0 == r0, (Self::FunctionRef(l0), Self::FunctionRef(r0)) => l0 == r0, - _ => core::mem::discriminant(self) == core::mem::discriminant(other), + _ => core::mem::discriminant(self) == core::mem::discriminant(r), } } -} - -impl Eq for Type {} -impl Type { pub fn name(&self) -> String { match self { Type::Unknown => "".into(), @@ -69,9 +88,19 @@ impl Type { "({})", v.iter().map(|x| x.name()).collect::>().join(" | ") ), + Type::Both(l, r) => format!("{} & {}", l.name(), r.name()), Type::ClassRef(name) => format!("class {}", name), Type::FunctionRef(name) => format!("function {}", name), Type::Image => "image".into(), + Type::Audio => "audio".into(), + } + } + + pub fn is_optional(&self) -> bool { + match self { + Type::None => true, + Type::Union(v) => v.iter().any(|x| x.is_optional()), + _ => false, } } @@ -156,10 +185,33 @@ impl PredefinedTypes { pub fn default() -> Self { Self { - functions: HashMap::from([( - "baml::Chat".into(), - (Type::String, vec![("role".into(), Type::String)]), - )]), + functions: HashMap::from([ + ( + "baml::Chat".into(), + (Type::String, vec![("role".into(), Type::String)]), + ), + ( + "baml::OutputFormat".into(), + ( + Type::String, + vec![ + ("prefix".into(), Type::merge(vec![Type::String, Type::None])), + ( + "or_splitter".into(), + Type::merge(vec![Type::String, Type::None]), + ), + ( + "enum_value_prefix".into(), + Type::merge(vec![Type::String, Type::None]), + ), + ( + "always_hoist_enums".into(), + Type::merge(vec![Type::Bool, Type::None]), + ), + ], + ), + ), + ]), classes: HashMap::from([ ( "baml::Client".into(), @@ -171,10 +223,16 @@ impl PredefinedTypes { ( "baml::Context".into(), HashMap::from([ - ("output_format".into(), Type::String), + ( + "output_format".into(), + Type::Both( + Type::String.into(), + Type::FunctionRef("baml::OutputFormat".into()).into(), + ), + ), ("client".into(), Type::ClassRef("baml::Client".into())), ( - "env".into(), + "tags".into(), Type::Map(Box::new(Type::String), Box::new(Type::String)), ), ]), @@ -383,8 +441,20 @@ impl PredefinedTypes { let (ret, args) = val.unwrap(); let mut errors = Vec::new(); + // Check how many args are required. + let mut optional_args = vec![]; + for (name, t) in args.iter().rev() { + if !t.is_optional() { + break; + } + optional_args.push(name); + } + let required_args = args.len() - optional_args.len(); + // Check count - if positional_args.len() + kwargs.len() != args.len() { + if positional_args.len() + kwargs.len() < required_args + || (positional_args.len() + kwargs.len()) > args.len() + { errors.push(TypeError::new_wrong_arg_count( func, span, @@ -392,9 +462,11 @@ impl PredefinedTypes { positional_args.len() + kwargs.len(), )); } else { + let mut unused_args = args.iter().map(|(name, _)| name).collect::>(); // Check types for (i, (name, t)) in args.iter().enumerate() { if i < positional_args.len() { + unused_args.remove(name); let arg_t = &positional_args[i]; if arg_t != t { errors.push(TypeError::new_wrong_arg_type( @@ -408,6 +480,7 @@ impl PredefinedTypes { } } else { if let Some(arg_t) = kwargs.get(name.as_str()) { + unused_args.remove(name); if arg_t != t { errors.push(TypeError::new_wrong_arg_type( func, @@ -419,14 +492,21 @@ impl PredefinedTypes { )); } } else { - errors.push(TypeError::new_missing_arg(func, span, name)); + if !optional_args.contains(&name) { + errors.push(TypeError::new_missing_arg(func, span, name)); + } } } } kwargs.iter().for_each(|(name, _)| { if !args.iter().any(|(arg_name, _)| arg_name == name) { - errors.push(TypeError::new_unknown_arg(func, span, name)); + errors.push(TypeError::new_unknown_arg( + func, + span, + name, + unused_args.clone(), + )); } }); } diff --git a/engine/baml-lib/jinja/src/lib.rs b/engine/baml-lib/jinja/src/lib.rs index 4e4716f67..ca87bbe87 100644 --- a/engine/baml-lib/jinja/src/lib.rs +++ b/engine/baml-lib/jinja/src/lib.rs @@ -1,4 +1,4 @@ -use baml_types::{BamlImage, BamlValue}; +use baml_types::{BamlMedia, BamlMediaType, BamlValue}; use colored::*; mod evaluate_type; mod get_vars; @@ -74,6 +74,7 @@ pub fn validate_template( pub struct RenderContext_Client { pub name: String, pub provider: String, + pub default_role: String, } #[derive(Debug)] @@ -97,6 +98,7 @@ fn render_minijinja( args: &minijinja::Value, mut ctx: RenderContext, template_string_macros: &[TemplateStringMacro], + default_role: String, ) -> Result { let mut env = get_env(); @@ -194,7 +196,6 @@ fn render_minijinja( let mut chat_messages = vec![]; let mut role = None; - for chunk in rendered.split(MAGIC_CHAT_ROLE_DELIMITER) { if chunk.starts_with(":baml-start-baml:") && chunk.ends_with(":baml-end-baml:") { role = Some( @@ -216,10 +217,17 @@ fn render_minijinja( .strip_suffix(":baml-end-image:") .unwrap_or(part); - match serde_json::from_str::(image_data) { - Ok(image) => { - parts.push(ChatMessagePart::Image(image)); - } + match serde_json::from_str::(image_data) { + Ok(media) => match media { + BamlMedia::Url(media_type, _) => match media_type { + BamlMediaType::Image => parts.push(ChatMessagePart::Image(media)), + BamlMediaType::Audio => parts.push(ChatMessagePart::Audio(media)), + }, + BamlMedia::Base64(media_type, _) => match media_type { + BamlMediaType::Image => parts.push(ChatMessagePart::Image(media)), + BamlMediaType::Audio => parts.push(ChatMessagePart::Audio(media)), + }, + }, Err(_) => { Err(minijinja::Error::new( ErrorKind::CannotUnpack, @@ -227,16 +235,18 @@ fn render_minijinja( ))?; } } - } else if part.is_empty() { - // only whitespace, so discard - } else { + } else if !part.trim().is_empty() { parts.push(ChatMessagePart::Text(part.trim().to_string())); } } - chat_messages.push(RenderedChatMessage { - role: role.unwrap_or("system").to_string(), - parts, - }); + + // Only add the message if it contains meaningful content + if !parts.is_empty() { + chat_messages.push(RenderedChatMessage { + role: role.unwrap_or(&default_role).to_string(), + parts, + }); + } } } @@ -275,7 +285,8 @@ impl ImageBase64 { #[derive(Debug, PartialEq, Serialize, Clone)] pub enum ChatMessagePart { Text(String), // raw user-provided text - Image(BamlImage), + Image(BamlMedia), + Audio(BamlMedia), } #[derive(Debug, PartialEq, Clone)] @@ -300,12 +311,19 @@ impl std::fmt::Display for RenderedPrompt { .iter() .map(|p| match p { ChatMessagePart::Text(t) => t.clone(), - ChatMessagePart::Image(img) => match img { - BamlImage::Url(url) => + ChatMessagePart::Image(media) => match media { + BamlMedia::Url(BamlMediaType::Image, url) => format!("", url.url), - BamlImage::Base64(_) => - // TODO: print this as well? + BamlMedia::Base64(BamlMediaType::Image, _) => "".to_string(), + _ => unreachable!(), + }, + ChatMessagePart::Audio(media) => match media { + BamlMedia::Url(BamlMediaType::Audio, url) => + format!("", url.url), + BamlMedia::Base64(BamlMediaType::Audio, _) => + "".to_string(), + _ => unreachable!(), }, }) .collect::>() @@ -364,7 +382,8 @@ impl RenderedPrompt { .flat_map(|m| { m.parts.into_iter().map(|p| match p { ChatMessagePart::Text(t) => t, - ChatMessagePart::Image(_) => "".to_string(), // we are choosing to ignore the image for now + ChatMessagePart::Image(_) | ChatMessagePart::Audio(_) => "".to_string(), + // we are choosing to ignore the image for now }) }) .collect::>() @@ -411,8 +430,14 @@ pub fn render_prompt( } let minijinja_args: Value = args.clone().into(); - - let rendered = render_minijinja(template, &minijinja_args, ctx, template_string_macros); + let default_role = ctx.client.default_role.clone(); + let rendered = render_minijinja( + template, + &minijinja_args, + ctx, + template_string_macros, + default_role, + ); match rendered { Ok(r) => Ok(r), @@ -454,7 +479,11 @@ mod render_tests { let args = BamlValue::Map(BamlMap::from([( "img".to_string(), - BamlValue::Image(BamlImage::url("https://example.com/image.jpg".to_string())), + BamlValue::Media(BamlMedia::url( + BamlMediaType::Image, + "https://example.com/image.jpg".to_string(), + None, + )), )])); let rendered = render_prompt( @@ -465,6 +494,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::from([("ROLE".to_string(), BamlValue::String("john doe".into()))]), @@ -478,9 +508,11 @@ mod render_tests { role: "system".to_string(), parts: vec![ ChatMessagePart::Text(vec!["Here is an image:",].join("\n")), - ChatMessagePart::Image(BamlImage::url( - "https://example.com/image.jpg".to_string() - ),), + ChatMessagePart::Image(BamlMedia::url( + BamlMediaType::Image, + "https://example.com/image.jpg".to_string(), + None + )), ] },]) ); @@ -496,7 +528,11 @@ mod render_tests { "myObject".to_string(), BamlValue::Map(BamlMap::from([( "img".to_string(), - BamlValue::Image(BamlImage::url("https://example.com/image.jpg".to_string())), + BamlValue::Media(BamlMedia::url( + BamlMediaType::Image, + "https://example.com/image.jpg".to_string(), + None, + )), )])), )])); @@ -508,6 +544,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::from([("ROLE".to_string(), BamlValue::String("john doe".into()))]), @@ -521,9 +558,11 @@ mod render_tests { role: "system".to_string(), parts: vec![ ChatMessagePart::Text(vec!["Here is an image:",].join("\n")), - ChatMessagePart::Image(BamlImage::url( - "https://example.com/image.jpg".to_string() - ),), + ChatMessagePart::Image(BamlMedia::url( + BamlMediaType::Image, + "https://example.com/image.jpg".to_string(), + None + )), ] },]) ); @@ -537,7 +576,11 @@ mod render_tests { let args: BamlValue = BamlValue::Map(BamlMap::from([( "img".to_string(), - BamlValue::Image(BamlImage::url("https://example.com/image.jpg".to_string())), + BamlValue::Media(BamlMedia::url( + BamlMediaType::Image, + "https://example.com/image.jpg".to_string(), + None, + )), )])); let rendered = render_prompt( @@ -548,6 +591,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::from([("ROLE".to_string(), BamlValue::String("john doe".into()))]), @@ -561,9 +605,11 @@ mod render_tests { role: "system".to_string(), parts: vec![ ChatMessagePart::Text(vec!["Here is an image:",].join("\n")), - ChatMessagePart::Image(BamlImage::url( - "https://example.com/image.jpg".to_string() - ),), + ChatMessagePart::Image(BamlMedia::url( + BamlMediaType::Image, + "https://example.com/image.jpg".to_string(), + None + )), ChatMessagePart::Text(vec![". Please help me.",].join("\n")), ] },]) @@ -602,6 +648,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::from([("ROLE".to_string(), BamlValue::String("john doe".into()))]), @@ -666,6 +713,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::from([("ROLE".to_string(), BamlValue::String("john doe".into()))]), @@ -705,6 +753,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::from([("ROLE".to_string(), BamlValue::String("john doe".into()))]), @@ -733,6 +782,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::from([("ROLE".to_string(), BamlValue::String("john doe".into()))]), @@ -761,6 +811,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::from([("ROLE".to_string(), BamlValue::String("john doe".into()))]), @@ -789,6 +840,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::from([("ROLE".to_string(), BamlValue::String("john doe".into()))]), @@ -839,6 +891,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::from([("ROLE".to_string(), BamlValue::String("john doe".into()))]), @@ -888,6 +941,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::from([("ROLE".to_string(), BamlValue::String("john doe".into()))]), @@ -951,6 +1005,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::from([("ROLE".to_string(), BamlValue::String("john doe".into()))]), @@ -993,6 +1048,7 @@ mod render_tests { client: RenderContext_Client { name: "gpt4".to_string(), provider: "openai".to_string(), + default_role: "system".to_string(), }, output_format: OutputFormatContent::new_string(), tags: HashMap::new(), diff --git a/engine/baml-lib/jinja/src/output_format/types.rs b/engine/baml-lib/jinja/src/output_format/types.rs index 5c0764502..b9016cd83 100644 --- a/engine/baml-lib/jinja/src/output_format/types.rs +++ b/engine/baml-lib/jinja/src/output_format/types.rs @@ -68,10 +68,10 @@ impl Default for RenderSetting { } pub struct RenderOptions { - pub prefix: RenderSetting, + prefix: RenderSetting, pub or_splitter: String, - pub enum_value_prefix: RenderSetting, - pub always_hoist_enums: RenderSetting, + enum_value_prefix: RenderSetting, + always_hoist_enums: RenderSetting, } impl Default for RenderOptions { @@ -146,6 +146,7 @@ impl Attribute { } struct ClassRender { + #[allow(dead_code)] name: String, values: Vec, } @@ -251,6 +252,12 @@ impl OutputFormatContent { "Image type is not supported in outputs", )) } + TypeValue::Audio => { + return Err(minijinja::Error::new( + minijinja::ErrorKind::BadSerialization, + "Audio type is not supported in outputs", + )) + } }, FieldType::Enum(e) => { let Some(enm) = self.enums.get(e) else { diff --git a/engine/baml-lib/jsonish/README.md b/engine/baml-lib/jsonish/README.md index d0d60eed4..921c3b88d 100644 --- a/engine/baml-lib/jsonish/README.md +++ b/engine/baml-lib/jsonish/README.md @@ -5,7 +5,12 @@ This library exposes an interface: ```rust -fn parse(input: &str, schema: JSONSchema) -> Result +pub fn from_str( + of: &OutputFormatContent, + target: &FieldType, + raw_string: &str, + allow_partials: bool, +) -> Result ``` It provides a guarantee that the schema is able to be flexibly parsed out from the input. diff --git a/engine/baml-lib/jsonish/src/deserializer/coercer/coerce_primitive.rs b/engine/baml-lib/jsonish/src/deserializer/coercer/coerce_primitive.rs index 4f6d8a753..4274ceb09 100644 --- a/engine/baml-lib/jsonish/src/deserializer/coercer/coerce_primitive.rs +++ b/engine/baml-lib/jsonish/src/deserializer/coercer/coerce_primitive.rs @@ -37,6 +37,7 @@ impl TypeCoercer for TypeValue { TypeValue::Bool => coerce_bool(ctx, target, value), TypeValue::Null => coerce_null(ctx, target, value), TypeValue::Image => Err(ctx.error_image_not_supported()), + TypeValue::Audio => Err(ctx.error_audio_not_supported()), } } } diff --git a/engine/baml-lib/jsonish/src/deserializer/coercer/ir_ref/coerce_class.rs b/engine/baml-lib/jsonish/src/deserializer/coercer/ir_ref/coerce_class.rs index ea6c23a89..a63957fb6 100644 --- a/engine/baml-lib/jsonish/src/deserializer/coercer/ir_ref/coerce_class.rs +++ b/engine/baml-lib/jsonish/src/deserializer/coercer/ir_ref/coerce_class.rs @@ -1,10 +1,8 @@ -use std::{collections::HashMap, iter}; use anyhow::Result; use baml_types::BamlMap; use internal_baml_core::{ - ast::Field, - ir::{ClassFieldWalker, ClassWalker, FieldType}, + ir::{FieldType}, }; use internal_baml_jinja::types::{Class, Name}; @@ -246,12 +244,21 @@ impl TypeCoercer for Class { })) .collect::>(); + // Create a BamlMap ordered according to self.fields + let mut ordered_valid_fields = BamlMap::new(); + for field in self.fields.iter() { + let key = field.0.real_name(); + if let Some(value) = valid_fields.get(key) { + ordered_valid_fields.insert(key.to_string(), value.clone()); + } + } + completed_cls.insert( 0, Ok(BamlValueWithFlags::Class( self.name.real_name().into(), flags, - valid_fields, + ordered_valid_fields, )), ); } diff --git a/engine/baml-lib/jsonish/src/deserializer/coercer/mod.rs b/engine/baml-lib/jsonish/src/deserializer/coercer/mod.rs index 85192f4b5..7acdf4089 100644 --- a/engine/baml-lib/jsonish/src/deserializer/coercer/mod.rs +++ b/engine/baml-lib/jsonish/src/deserializer/coercer/mod.rs @@ -7,9 +7,8 @@ mod field_type; mod ir_ref; use anyhow::Result; use internal_baml_jinja::types::OutputFormatContent; -use std::{collections::HashMap, fmt::Display}; -use internal_baml_core::ir::{repr::IntermediateRepr, FieldType}; +use internal_baml_core::ir::{FieldType}; use super::types::BamlValueWithFlags; @@ -120,6 +119,12 @@ impl ParsingContext<'_> { scope: self.scope.clone(), } } + pub(crate) fn error_audio_not_supported(&self) -> ParsingError { + ParsingError { + reason: "Audio type is not supported here".to_string(), + scope: self.scope.clone(), + } + } pub(crate) fn error_missing_required_field>( &self, diff --git a/engine/baml-lib/jsonish/src/deserializer/types.rs b/engine/baml-lib/jsonish/src/deserializer/types.rs index 9ffb6e6b8..b1a85415f 100644 --- a/engine/baml-lib/jsonish/src/deserializer/types.rs +++ b/engine/baml-lib/jsonish/src/deserializer/types.rs @@ -1,6 +1,6 @@ use std::collections::HashSet; -use baml_types::{BamlImage, BamlMap, BamlValue}; +use baml_types::{BamlMap, BamlMedia, BamlValue}; use super::{ deserialize_flags::{DeserializerConditions, Flag}, @@ -26,7 +26,7 @@ pub enum BamlValueWithFlags { BamlMap, ), Null(DeserializerConditions), - Image(ValueWithFlags), + Image(ValueWithFlags), } impl BamlValueWithFlags { @@ -114,7 +114,7 @@ impl From for BamlValue { BamlValue::Class(s, m.into_iter().map(|(k, v)| (k, v.into())).collect()) } BamlValueWithFlags::Null(_) => BamlValue::Null, - BamlValueWithFlags::Image(i) => BamlValue::Image(i.value), + BamlValueWithFlags::Image(i) => BamlValue::Media(i.value), } } } @@ -140,7 +140,7 @@ impl From<&BamlValueWithFlags> for BamlValue { m.into_iter().map(|(k, v)| (k.clone(), v.into())).collect(), ), BamlValueWithFlags::Null(_) => BamlValue::Null, - BamlValueWithFlags::Image(i) => BamlValue::Image(i.value.clone()), + BamlValueWithFlags::Image(i) => BamlValue::Media(i.value.clone()), } } } diff --git a/engine/baml-lib/jsonish/src/jsonish/parser/fixing_parser/json_collection.rs b/engine/baml-lib/jsonish/src/jsonish/parser/fixing_parser/json_collection.rs index 9faa75076..098cf205e 100644 --- a/engine/baml-lib/jsonish/src/jsonish/parser/fixing_parser/json_collection.rs +++ b/engine/baml-lib/jsonish/src/jsonish/parser/fixing_parser/json_collection.rs @@ -36,7 +36,7 @@ impl From for Option { Some(match collection { JsonCollection::TrailingComment(_) | JsonCollection::BlockComment(_) => return None, JsonCollection::Object(keys, values) => { - log::info!("keys: {:?}", keys); + // log::debug!("keys: {:?}", keys); let mut object = BamlMap::new(); for (key, value) in keys.into_iter().zip(values.into_iter()) { object.insert(key, value); diff --git a/engine/baml-lib/jsonish/src/jsonish/parser/markdown_parser.rs b/engine/baml-lib/jsonish/src/jsonish/parser/markdown_parser.rs index ba9670822..f8a746ce5 100644 --- a/engine/baml-lib/jsonish/src/jsonish/parser/markdown_parser.rs +++ b/engine/baml-lib/jsonish/src/jsonish/parser/markdown_parser.rs @@ -21,7 +21,7 @@ pub fn parse<'a>(str: &'a str, options: &ParseOptions) -> Result(str: &'a str, options: &ParseOptions) -> Result WithSerializeableContent for (&ParserDatabase, &FieldType) { baml_types::TypeValue::String => "string", baml_types::TypeValue::Null => "null", baml_types::TypeValue::Image => "image", + baml_types::TypeValue::Audio => "audio", } }) } diff --git a/engine/baml-lib/parser-database/src/walkers/mod.rs b/engine/baml-lib/parser-database/src/walkers/mod.rs index a63fd0c3e..04659bcfd 100644 --- a/engine/baml-lib/parser-database/src/walkers/mod.rs +++ b/engine/baml-lib/parser-database/src/walkers/mod.rs @@ -321,6 +321,7 @@ impl<'db> crate::ParserDatabase { baml_types::TypeValue::Bool => Type::Bool, baml_types::TypeValue::Null => Type::None, baml_types::TypeValue::Image => Type::Image, + baml_types::TypeValue::Audio => Type::Audio, }, ast::Identifier::String(_, _) => Type::String, ast::Identifier::Invalid(_, _) => Type::Unknown, diff --git a/engine/baml-lib/schema-ast/src/ast/identifier.rs b/engine/baml-lib/schema-ast/src/ast/identifier.rs index ecb325ef4..e20e83f60 100644 --- a/engine/baml-lib/schema-ast/src/ast/identifier.rs +++ b/engine/baml-lib/schema-ast/src/ast/identifier.rs @@ -87,6 +87,7 @@ impl WithName for Identifier { TypeValue::Bool => "bool", TypeValue::Null => "null", TypeValue::Image => "image", + TypeValue::Audio => "audio", }, Identifier::String(s, _) => s, Identifier::ENV(name, _) => name, @@ -115,6 +116,7 @@ impl From<(&str, Span)> for Identifier { "bool" => Identifier::Primitive(TypeValue::Bool, span), "null" => Identifier::Primitive(TypeValue::Null, span), "image" => Identifier::Primitive(TypeValue::Image, span), + "audio" => Identifier::Primitive(TypeValue::Audio, span), "env" => Identifier::Invalid("env".into(), span), other if other.contains('-') => Identifier::String(other.to_string(), span), other => Identifier::Local(other.to_string(), span), diff --git a/engine/baml-runtime/Cargo.toml b/engine/baml-runtime/Cargo.toml index 87a59df94..e914c383e 100644 --- a/engine/baml-runtime/Cargo.toml +++ b/engine/baml-runtime/Cargo.toml @@ -10,23 +10,29 @@ license-file.workspace = true [dependencies] anyhow.workspace = true base64.workspace = true +bytes.workspace = true +cfg-if.workspace = true clap = { version = "4.4.6", features = ["cargo", "derive"] } colored = "2.1.0" dashmap.workspace = true dunce = "1.0.4" either.workspace = true env_logger.workspace = true +eventsource-stream = "0.2.3" futures.workspace = true +http-body.workspace = true indexmap.workspace = true +# instant = "0.1" # do not use this or wasm-timer - use web-time instead json_comments = "0.2.2" jsonish = { path = "../baml-lib/jsonish" } -instant.workspace = true internal-baml-codegen.workspace = true baml-types = { path = "../baml-lib/baml-types" } internal-baml-core = { path = "../baml-lib/baml-core" } internal-baml-jinja = { path = "../baml-lib/jinja" } # internal-baml-client-llm = { path = "../baml-lib/client-llm" } log.workspace = true +pin-project-lite.workspace = true +reqwest-eventsource = "0.6.0" serde.workspace = true serde_json.workspace = true strsim = "0.11.1" @@ -45,22 +51,40 @@ mime = "0.3.17" # For tracing envy = "0.4.2" chrono = "0.4.38" -reqwest-eventsource = "0.6.0" -eventsource-stream = "0.2.3" stream-cancel = "0.8.2" async-std = "1.12.0" fastrand = "2.1.0" test-log = "0.2.16" -pin-project-lite = "0.2.14" -async-trait = "0.1.80" -cfg-if = "1.0.0" include_dir = "0.7.3" +infer = "0.16.0" +url = "2.5.2" +shell-escape = "0.1.5" +aws-sigv4 = "1.2.2" +aws-credential-types = "1.2.0" +aws-smithy-async = "1.2.1" +aws-smithy-runtime-api = "1.7.0" +aws-smithy-types = "1.2.0" +aws-smithy-runtime = "1.6.0" +enum_dispatch = "0.3.13" +ambassador = "0.4.0" +aws-smithy-json = "0.60.7" [target.'cfg(target_arch = "wasm32")'.dependencies] +aws-config = { version = "1.5.3", default-features = false, features = [] } +aws-sdk-bedrockruntime = { version = "1.37.0", default-features = false, features = [ +] } +colored = { version = "2.1.0", default-features = false, features = [ + "no-color", +] } +futures-timer = { version = "3.0.3", features = ["wasm-bindgen"] } +js-sys = "0.3.69" +reqwest = { version = "0.12.5", features = ["stream", "json"] } +# +send_wrapper = { version = "0.6.0", features = ["futures"] } serde-wasm-bindgen = "0.6.5" +uuid = { version = "1.8.0", features = ["v4", "serde", "js"] } wasm-bindgen = { version = "^0.2.74", features = ["serde-serialize"] } wasm-bindgen-futures = "0.4" -js-sys = "0.3.69" web-sys = { version = "0.3.69", features = [ "Headers", "Request", @@ -69,21 +93,18 @@ web-sys = { version = "0.3.69", features = [ "RequestMode", "Window", ] } -uuid = { version = "1.8.0", features = ["v4", "serde", "js"] } -reqwest = { version = "0.11", features = ["stream", "json"] } -colored = { version = "2.1.0", default-features = false, features = [ - "no-color", -] } [target.'cfg(not(target_arch = "wasm32"))'.dependencies] +aws-config = "1.5.3" +aws-sdk-bedrockruntime = "1.37.0" +hostname = "0.3.1" tokio = { version = "1", features = ["full"] } -reqwest = { version = "0.11", features = [ +reqwest = { version = "0.12.5", features = [ "json", "native-tls-vendored", "stream", ] } walkdir = "2.5.0" -hostname = "0.3.1" [features] diff --git a/engine/baml-runtime/src/cli/generate.rs b/engine/baml-runtime/src/cli/generate.rs index 3a52996b3..5935c5698 100644 --- a/engine/baml-runtime/src/cli/generate.rs +++ b/engine/baml-runtime/src/cli/generate.rs @@ -1,12 +1,10 @@ use crate::{ - runtime::{self, runtime_interface::baml_src_files}, + runtime::{runtime_interface::baml_src_files}, BamlRuntime, }; use anyhow::Result; -use internal_baml_core::configuration::GeneratorOutputType; use std::path::PathBuf; -use super::LanguageClientType; #[derive(clap::Args, Debug)] pub struct GenerateArgs { diff --git a/engine/baml-runtime/src/cli/init.rs b/engine/baml-runtime/src/cli/init.rs index b2056624e..261f3340b 100644 --- a/engine/baml-runtime/src/cli/init.rs +++ b/engine/baml-runtime/src/cli/init.rs @@ -50,7 +50,7 @@ impl InitArgs { // your choice. You can have multiple generators if you use multiple languages. // Just ensure that the output_dir is different for each generator. generator target {{ - // Valid values: "typescript", "python-pydantic", "ruby" + // Valid values: "python/pydantic", "typescript", "ruby/sorbet" output_type "{}" // Where the generated code will be saved (relative to baml_src/) output_dir "../" diff --git a/engine/baml-runtime/src/internal/llm_client/common/images.rs b/engine/baml-runtime/src/internal/llm_client/common/images.rs deleted file mode 100644 index 7746a900a..000000000 --- a/engine/baml-runtime/src/internal/llm_client/common/images.rs +++ /dev/null @@ -1,52 +0,0 @@ -use anyhow::Result; -use base64::prelude::*; -use mime_guess::MimeGuess; - -#[cfg(not(target_arch = "wasm32"))] -async fn fetch_image(url: &str) -> Result> { - use reqwest; - let response = reqwest::get(url).await?; - let image_data = response.bytes().await?.to_vec(); - Ok(image_data) -} - -#[cfg(target_arch = "wasm32")] -async fn fetch_image(url: &str) -> Result> { - use wasm_bindgen::JsCast; - use wasm_bindgen_futures::JsFuture; - use web_sys::{Request, RequestInit, RequestMode, Response}; - - let mut opts = RequestInit::new(); - opts.method("GET"); - opts.mode(RequestMode::Cors); - - let request = - Request::new_with_str_and_init(url, &opts).map_err(|e| anyhow::anyhow!("{:#?}", e))?; - - let window = web_sys::window().unwrap(); - let resp_value = JsFuture::from(window.fetch_with_request(&request)) - .await - .map_err(|e| anyhow::anyhow!("Failed to fetch request: {:#?}", e))?; - - let resp: Response = resp_value.dyn_into().unwrap(); - let buf = JsFuture::from( - resp.array_buffer() - .map_err(|e| anyhow::anyhow!("{:#?}", e))?, - ) - .await - .map_err(|e| anyhow::anyhow!("{:#?}", e))?; - let array = js_sys::Uint8Array::new(&buf); - Ok(array.to_vec()) -} - -pub async fn download_image_as_base64(url: &str) -> Result<(String, String)> { - let guessed_mime_type = MimeGuess::from_path(url) - .first_or_octet_stream() - .to_string(); - - let image_data = fetch_image(url).await?; - - let encoded_image = BASE64_STANDARD.encode(&image_data); - - Ok((guessed_mime_type, encoded_image)) -} diff --git a/engine/baml-runtime/src/internal/llm_client/common/mod.rs b/engine/baml-runtime/src/internal/llm_client/common/mod.rs deleted file mode 100644 index 8f0da9f8e..000000000 --- a/engine/baml-runtime/src/internal/llm_client/common/mod.rs +++ /dev/null @@ -1 +0,0 @@ -pub mod images; diff --git a/engine/baml-runtime/src/internal/llm_client/mod.rs b/engine/baml-runtime/src/internal/llm_client/mod.rs index 836a18a02..63b8cdaf7 100644 --- a/engine/baml-runtime/src/internal/llm_client/mod.rs +++ b/engine/baml-runtime/src/internal/llm_client/mod.rs @@ -1,11 +1,10 @@ use std::collections::HashMap; use colored::*; -// mod anthropic; -mod common; pub mod llm_provider; pub mod orchestrator; -mod primitive; +pub mod primitive; + pub mod retry_policy; mod strategy; pub mod traits; @@ -15,6 +14,7 @@ use anyhow::Result; use internal_baml_core::ir::ClientWalker; use internal_baml_jinja::RenderedPrompt; use serde::Serialize; +use std::error::Error; use reqwest::StatusCode; @@ -26,6 +26,7 @@ pub struct ModelFeatures { pub completion: bool, pub chat: bool, pub anthropic_system_constraints: bool, + pub resolve_media_urls: bool, } #[derive(Debug)] @@ -42,6 +43,8 @@ pub enum LLMResponse { OtherFailure(String), } +impl Error for LLMResponse {} + impl std::fmt::Display for LLMResponse { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { @@ -67,7 +70,7 @@ pub struct LLMErrorResponse { pub client: String, pub model: Option, pub prompt: RenderedPrompt, - pub invocation_params: HashMap, + pub request_options: HashMap, pub start_time: web_time::SystemTime, pub latency: web_time::Duration, @@ -132,7 +135,7 @@ pub struct LLMCompleteResponse { pub client: String, pub model: String, pub prompt: RenderedPrompt, - pub invocation_params: HashMap, + pub request_options: HashMap, pub content: String, pub start_time: web_time::SystemTime, pub latency: web_time::Duration, diff --git a/engine/baml-runtime/src/internal/llm_client/orchestrator/call.rs b/engine/baml-runtime/src/internal/llm_client/orchestrator/call.rs index 23639de10..bd3658748 100644 --- a/engine/baml-runtime/src/internal/llm_client/orchestrator/call.rs +++ b/engine/baml-runtime/src/internal/llm_client/orchestrator/call.rs @@ -1,6 +1,6 @@ use anyhow::Result; use baml_types::BamlValue; -use instant::Duration; +use web_time::Duration; use internal_baml_core::ir::repr::IntermediateRepr; use jsonish::BamlValueWithFlags; diff --git a/engine/baml-runtime/src/internal/llm_client/orchestrator/mod.rs b/engine/baml-runtime/src/internal/llm_client/orchestrator/mod.rs index c205ebe71..c91bf55b9 100644 --- a/engine/baml-runtime/src/internal/llm_client/orchestrator/mod.rs +++ b/engine/baml-runtime/src/internal/llm_client/orchestrator/mod.rs @@ -5,16 +5,17 @@ use anyhow::Result; use baml_types::BamlValue; use internal_baml_core::ir::repr::IntermediateRepr; +use internal_baml_jinja::RenderedChatMessage; use internal_baml_jinja::RenderedPrompt; use std::{collections::HashMap, sync::Arc}; - -use instant::Duration; +use web_time::Duration; use crate::{ internal::prompt_renderer::PromptRenderer, runtime_interface::InternalClientLookup, RuntimeContext, }; +use super::traits::WithRenderRawCurl; use super::{ strategy::roundrobin::RoundRobinStrategy, traits::{StreamResponse, WithPrompt, WithSingleCallable, WithStreamable}, @@ -181,6 +182,17 @@ impl<'ir> WithPrompt<'ir> for OrchestratorNode { } } +impl WithRenderRawCurl for OrchestratorNode { + async fn render_raw_curl( + &self, + ctx: &RuntimeContext, + prompt: &Vec, + stream: bool, + ) -> Result { + self.provider.render_raw_curl(ctx, prompt, stream).await + } +} + impl WithSingleCallable for OrchestratorNode { async fn single_call(&self, ctx: &RuntimeContext, prompt: &RenderedPrompt) -> LLMResponse { self.scope diff --git a/engine/baml-runtime/src/internal/llm_client/orchestrator/stream.rs b/engine/baml-runtime/src/internal/llm_client/orchestrator/stream.rs index 2de4e325c..c46f156ef 100644 --- a/engine/baml-runtime/src/internal/llm_client/orchestrator/stream.rs +++ b/engine/baml-runtime/src/internal/llm_client/orchestrator/stream.rs @@ -1,16 +1,14 @@ -use std::ops::Deref; use anyhow::Result; use async_std::stream::StreamExt; use baml_types::BamlValue; -use instant::Duration; use internal_baml_core::ir::repr::IntermediateRepr; use jsonish::BamlValueWithFlags; +use web_time::Duration; use crate::{ internal::{ llm_client::{ - primitive::request::RequestBuilder, traits::{WithPrompt, WithStreamable}, LLMErrorResponse, LLMResponse, }, @@ -44,6 +42,7 @@ where let mut results = Vec::new(); let mut total_sleep_duration = std::time::Duration::from_secs(0); + //advanced curl viewing, use render_raw_curl on each node. TODO for node in iter { let prompt = match node.render_prompt(ir, prompt, ctx, params) { Ok(p) => p, @@ -82,7 +81,7 @@ where prompt, start_time: system_start, latency: instant_start.elapsed(), - invocation_params: node.provider.invocation_params().clone(), + request_options: node.provider.request_options().clone(), message: "Stream ended without response".to_string(), code: crate::internal::llm_client::ErrorCode::from_u16(2), }) diff --git a/engine/baml-runtime/src/internal/llm_client/primitive/anthropic/anthropic_client.rs b/engine/baml-runtime/src/internal/llm_client/primitive/anthropic/anthropic_client.rs index 13c69acbb..cd7992443 100644 --- a/engine/baml-runtime/src/internal/llm_client/primitive/anthropic/anthropic_client.rs +++ b/engine/baml-runtime/src/internal/llm_client/primitive/anthropic/anthropic_client.rs @@ -1,18 +1,13 @@ -use std::{ - collections::HashMap, - fmt::format, - sync::{Arc, Mutex}, -}; +use std::collections::HashMap; use anyhow::{Context, Result}; -use baml_types::BamlImage; +use baml_types::BamlMedia; use eventsource_stream::Eventsource; -use futures::{SinkExt, StreamExt}; +use futures::StreamExt; use internal_baml_core::ir::ClientWalker; use internal_baml_jinja::{ ChatMessagePart, RenderContext_Client, RenderedChatMessage, RenderedPrompt, }; -use reqwest::Response; use crate::{ client_builder::ClientProperty, @@ -85,26 +80,20 @@ fn resolve_properties( .and_then(|v| v.as_str().map(|s| s.to_string())) .or_else(|| ctx.env.get("ANTHROPIC_API_KEY").map(|s| s.to_string())); - let headers = properties.remove("headers").map(|v| { - if let Some(v) = v.as_object() { - v.iter() - .map(|(k, v)| { - Ok(( - k.to_string(), - match v { - serde_json::Value::String(s) => s.to_string(), - _ => anyhow::bail!("Header '{k}' must be a string"), - }, - )) - }) - .collect::>>() - } else { - Ok(Default::default()) - } - }); - - let mut headers = match headers { - Some(h) => h?, + let mut headers = match properties.remove("headers") { + Some(headers) => headers + .as_object() + .context("headers must be a map of strings to strings")? + .iter() + .map(|(k, v)| { + Ok(( + k.to_string(), + v.as_str() + .context(format!("Header '{}' must be a string", k))? + .to_string(), + )) + }) + .collect::>>()?, None => Default::default(), }; @@ -168,7 +157,7 @@ impl SseResponseTrait for AnthropicClient { start_time: system_start, latency: instant_start.elapsed(), model: "".to_string(), - invocation_params: params.clone(), + request_options: params.clone(), metadata: LLMCompleteResponseMetadata { baml_is_complete: false, finish_reason: None, @@ -195,7 +184,7 @@ impl SseResponseTrait for AnthropicClient { prompt: internal_baml_jinja::RenderedPrompt::Chat( prompt.clone(), ), - invocation_params: params.clone(), + request_options: params.clone(), start_time: system_start, latency: instant_start.elapsed(), message: format!("Failed to parse event: {:#?}", e), @@ -260,7 +249,7 @@ impl SseResponseTrait for AnthropicClient { prompt: internal_baml_jinja::RenderedPrompt::Chat( prompt.clone(), ), - invocation_params: params.clone(), + request_options: params.clone(), start_time: system_start, latency: instant_start.elapsed(), message: err.message, @@ -282,7 +271,7 @@ impl SseResponseTrait for AnthropicClient { impl WithStreamChat for AnthropicClient { async fn stream_chat( &self, - ctx: &RuntimeContext, + _ctx: &RuntimeContext, prompt: &Vec, ) -> StreamResponse { let (response, system_now, instant_now) = @@ -297,24 +286,28 @@ impl WithStreamChat for AnthropicClient { // constructs base client and resolves properties based on context impl AnthropicClient { pub fn dynamic_new(client: &ClientProperty, ctx: &RuntimeContext) -> Result { + let properties = resolve_properties( + client + .options + .iter() + .map(|(k, v)| Ok((k.clone(), json!(v)))) + .collect::>>()?, + ctx, + )?; + let default_role = properties.default_role.clone(); Ok(Self { name: client.name.clone(), - properties: resolve_properties( - client - .options - .iter() - .map(|(k, v)| Ok((k.clone(), json!(v)))) - .collect::>>()?, - ctx, - )?, + properties, context: RenderContext_Client { name: client.name.clone(), provider: client.provider.clone(), + default_role, }, features: ModelFeatures { chat: true, completion: false, anthropic_system_constraints: true, + resolve_media_urls: true, }, retry_policy: client.retry_policy.clone(), client: create_client()?, @@ -323,17 +316,21 @@ impl AnthropicClient { pub fn new(client: &ClientWalker, ctx: &RuntimeContext) -> Result { let properties = super::super::resolve_properties_walker(client, ctx)?; + let properties = resolve_properties(properties, ctx)?; + let default_role = properties.default_role.clone(); Ok(Self { name: client.name().into(), - properties: resolve_properties(properties, ctx)?, + properties, context: RenderContext_Client { name: client.name().into(), provider: client.elem().provider.clone(), + default_role, }, features: ModelFeatures { chat: true, completion: false, anthropic_system_constraints: true, + resolve_media_urls: true, }, retry_policy: client .elem() @@ -351,11 +348,11 @@ impl RequestBuilder for AnthropicClient { &self.client } - fn build_request( + async fn build_request( &self, prompt: either::Either<&String, &Vec>, stream: bool, - ) -> reqwest::RequestBuilder { + ) -> Result { let mut req = self.client.post(if prompt.is_left() { format!( "{}/v1/complete", @@ -384,6 +381,10 @@ impl RequestBuilder for AnthropicClient { } req = req.header("baml-original-url", self.properties.base_url.as_str()); + req = req.header( + "baml-render-url", + format!("{}/v1/messages", self.properties.base_url), + ); let mut body = json!(self.properties.properties); let body_obj = body.as_object_mut().unwrap(); @@ -399,12 +400,12 @@ impl RequestBuilder for AnthropicClient { if stream { body_obj.insert("stream".into(), true.into()); } - log::info!("Request body: {:#?}", body); + log::debug!("Request body: {:#?}", body); - req.json(&body) + Ok(req.json(&body)) } - fn invocation_params(&self) -> &HashMap { + fn request_options(&self) -> &HashMap { &self.properties.properties } } @@ -435,7 +436,7 @@ impl WithChat for AnthropicClient { model: None, prompt: internal_baml_jinja::RenderedPrompt::Chat(prompt.clone()), start_time: system_now, - invocation_params: self.properties.properties.clone(), + request_options: self.properties.properties.clone(), latency: instant_now.elapsed(), message: format!( "Expected exactly one content block, got {}", @@ -451,7 +452,7 @@ impl WithChat for AnthropicClient { content: response.content[0].text.clone(), start_time: system_now, latency: instant_now.elapsed(), - invocation_params: self.properties.properties.clone(), + request_options: self.properties.properties.clone(), model: response.model, metadata: LLMCompleteResponseMetadata { baml_is_complete: match response.stop_reason { @@ -550,23 +551,29 @@ fn convert_message_parts_to_content(parts: &Vec) -> serde_json: "type": "text", "text": text }), - ChatMessagePart::Image(image) => match image { - BamlImage::Base64(image) => json!({ - "type": "image", + + ChatMessagePart::Image(media) => match media { + BamlMedia::Base64(media_type, data) => json!({ + "type": media_type.to_string(), + "source": { "type": "base64", - "media_type": image.media_type, - "data": image.base64 - } - }), - BamlImage::Url(image) => json!({ - "type": "image", - "source": { - "type": "url", - "url": image.url + "media_type": data.media_type, + "data": data.base64 } }), + _ => panic!("Unsupported media type"), + //never executes, keep for future if anthropic supports urls + // BamlMedia::Url(media_type, data) => json!({ + // "type": "image", + + // "source": { + // "type": "url", + // "url": data.url + // } + // }), }, + _ => json!({}), }) .collect() } diff --git a/engine/baml-runtime/src/internal/llm_client/primitive/aws/aws_client.rs b/engine/baml-runtime/src/internal/llm_client/primitive/aws/aws_client.rs new file mode 100644 index 000000000..cd80b9f5e --- /dev/null +++ b/engine/baml-runtime/src/internal/llm_client/primitive/aws/aws_client.rs @@ -0,0 +1,668 @@ +use std::collections::HashMap; + +use aws_config::{identity::IdentityCache, retry::RetryConfig, BehaviorVersion, ConfigLoader}; +use aws_sdk_bedrockruntime::{self as bedrock, operation::converse::ConverseOutput}; + +use anyhow::{Context, Result}; +use aws_smithy_json::serialize::JsonObjectWriter; +use aws_smithy_runtime_api::client::result::SdkError; +use aws_smithy_types::Blob; +use baml_types::{BamlMedia, BamlMediaType}; +use futures::{stream, SinkExt, StreamExt}; +use internal_baml_core::ir::ClientWalker; +use internal_baml_jinja::{ChatMessagePart, RenderContext_Client, RenderedChatMessage}; +use serde::Deserialize; +use web_time::Instant; +use web_time::SystemTime; + +use crate::internal::llm_client::{ + primitive::request::RequestBuilder, + traits::{ + StreamResponse, WithChat, WithClient, WithNoCompletion, WithRenderRawCurl, WithRetryPolicy, + WithStreamChat, + }, + ErrorCode, LLMCompleteResponse, LLMCompleteResponseMetadata, LLMErrorResponse, LLMResponse, + ModelFeatures, +}; + +use crate::RuntimeContext; + +// stores properties required for making a post request to the API +struct RequestProperties { + model_id: String, + + default_role: String, + inference_config: Option, + + request_options: HashMap, + ctx_env: HashMap, +} + +// represents client that interacts with the Anthropic API +pub struct AwsClient { + pub name: String, + retry_policy: Option, + context: RenderContext_Client, + features: ModelFeatures, + properties: RequestProperties, +} + +fn resolve_properties(client: &ClientWalker, ctx: &RuntimeContext) -> Result { + let mut properties = (&client.item.elem.options) + .iter() + .map(|(k, v)| { + Ok(( + k.into(), + ctx.resolve_expression::(v) + .context(format!( + "client {} could not resolve options.{}", + client.name(), + k + ))?, + )) + }) + .collect::>>()?; + + let model_id = properties + .remove("model_id") + .context("model_id is required")? + .as_str() + .context("model_id should be a string")? + .to_string(); + + let default_role = properties + .remove("default_role") + .and_then(|v| v.as_str().map(|s| s.to_string())) + .unwrap_or_else(|| "user".to_string()); + + let inference_config = match properties.remove("inference_configuration") { + Some(v) => Some( + super::types::InferenceConfiguration::deserialize(v) + .context("Failed to parse inference_configuration")? + .into(), + ), + None => None, + }; + + Ok(RequestProperties { + model_id, + default_role, + inference_config, + request_options: properties, + ctx_env: ctx.env.clone(), + }) +} + +impl AwsClient { + pub fn new(client: &ClientWalker, ctx: &RuntimeContext) -> Result { + let post_properties = resolve_properties(client, ctx)?; + let default_role = post_properties.default_role.clone(); // clone before moving + + Ok(Self { + name: client.name().into(), + properties: post_properties, + context: RenderContext_Client { + name: client.name().into(), + provider: client.elem().provider.clone(), + default_role: default_role, + }, + features: ModelFeatures { + chat: true, + completion: false, + anthropic_system_constraints: true, + resolve_media_urls: true, + }, + retry_policy: client + .elem() + .retry_policy_id + .as_ref() + .map(|s| s.to_string()), + }) + } + + pub fn request_options(&self) -> &std::collections::HashMap { + &self.properties.request_options + } + + // TODO: this should be memoized on client construction, but because config loading is async, + // we can't do this in AwsClient::new (which is called from LLMPRimitiveProvider::try_from) + async fn client_anyhow(&self) -> Result { + let loader: ConfigLoader = { + cfg_if::cfg_if! { + if #[cfg(target_arch = "wasm32")] { + use aws_config::Region; + use aws_credential_types::Credentials; + + let (aws_region, aws_access_key_id, aws_secret_access_key) = match ( + self.properties.ctx_env.get("AWS_REGION"), + self.properties.ctx_env.get("AWS_ACCESS_KEY_ID"), + self.properties.ctx_env.get("AWS_SECRET_ACCESS_KEY"), + ) { + (Some(aws_region), Some(aws_access_key_id), Some(aws_secret_access_key)) => { + (aws_region, aws_access_key_id, aws_secret_access_key) + } + _ => { + anyhow::bail!( + "AWS_REGION, AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY must be set in the environment" + ) + } + }; + + let mut loader = super::wasm::load_aws_config() + .region(Region::new(aws_region.clone())) + .credentials_provider(Credentials::new( + aws_access_key_id.clone(), + aws_secret_access_key.clone(), + None, + None, + "baml-runtime/wasm", + )); + + loader + } else { + aws_config::defaults(BehaviorVersion::latest()) + } + } + }; + + let config = loader + .retry_config(RetryConfig::disabled()) + .identity_cache(IdentityCache::no_cache()) + .load() + .await; + + Ok(bedrock::Client::new(&config)) + } + + async fn chat_anyhow<'r>(&self, response: &'r ConverseOutput) -> Result<&'r String> { + let Some(bedrock::types::ConverseOutput::Message(ref message)) = response.output else { + anyhow::bail!( + "Expected message output in response, but is type {}", + "unknown" + ); + }; + let content = message + .content + .get(0) + .context("Expected message output to have content")?; + let bedrock::types::ContentBlock::Text(ref content) = content else { + anyhow::bail!( + "Expected message output to be text, got {}", + match content { + bedrock::types::ContentBlock::Image(_) => "image", + bedrock::types::ContentBlock::GuardContent(_) => "guardContent", + bedrock::types::ContentBlock::ToolResult(_) => "toolResult", + bedrock::types::ContentBlock::ToolUse(_) => "toolUse", + bedrock::types::ContentBlock::Text(_) => "text", + _ => "unknown", + } + ); + }; + + Ok(content) + } + + fn build_request( + &self, + ctx: &RuntimeContext, + chat_messages: &Vec, + ) -> Result { + let mut system_message = None; + let mut chat_slice = chat_messages.as_slice(); + + if let Some((first, remainder_slice)) = chat_slice.split_first() { + if first.role == "system" { + system_message = Some(first.parts.iter() + .map(|part| match part { + ChatMessagePart::Text(text) => Ok(bedrock::types::SystemContentBlock::Text(text.clone())), + _ => anyhow::bail!("AWS Bedrock only supports text blocks for system messages, but got {:#?}", part), + }) + .collect::>()?); + chat_slice = remainder_slice; + } + } + + let converse_messages = chat_slice + .iter() + .map(|m| AwsChatMessage(m).try_into()) + .collect::>>()?; + + bedrock::operation::converse::ConverseInput::builder() + .set_inference_config(self.properties.inference_config.clone()) + .set_model_id(Some(self.properties.model_id.clone())) + .set_system(system_message) + .set_messages(Some(converse_messages)) + .build() + .context("Failed to convert BAML prompt to AWS Bedrock request") + } +} + +fn try_to_json< + Ser: Fn( + &mut JsonObjectWriter, + &T, + ) -> Result<(), ::aws_smithy_types::error::operation::SerializationError>, + T, +>( + shape: Ser, + input: &T, +) -> Result { + let mut out = String::new(); + let mut object = JsonObjectWriter::new(&mut out); + shape(&mut object, input)?; + object.finish(); + + Ok(out) +} + +impl WithRenderRawCurl for AwsClient { + async fn render_raw_curl( + &self, + ctx: &RuntimeContext, + prompt: &Vec, + _stream: bool, + ) -> Result { + let converse_input = self.build_request(ctx, prompt)?; + + // TODO(sam): this is fucked up. The SDK actually hides all the serializers inside the crate and doesn't let the user access them. + + Ok(format!( + "Note, this is not yet complete!\n\nSee: https://docs.aws.amazon.com/cli/latest/reference/bedrock-runtime/converse.html\n\naws bedrock converse --model-id {} --messages {} {}", + converse_input.model_id.unwrap_or("".to_string()), + "", + "TODO" + )) + } +} + +// getters for client info +impl WithRetryPolicy for AwsClient { + fn retry_policy_name(&self) -> Option<&str> { + self.retry_policy.as_deref() + } +} + +impl WithClient for AwsClient { + fn context(&self) -> &RenderContext_Client { + &self.context + } + + fn model_features(&self) -> &ModelFeatures { + &self.features + } +} + +impl WithNoCompletion for AwsClient {} + +impl WithStreamChat for AwsClient { + async fn stream_chat( + &self, + ctx: &RuntimeContext, + chat_messages: &Vec, + ) -> StreamResponse { + let client = self.context.name.to_string(); + let model = Some(self.properties.model_id.clone()); + let request_options = self.properties.request_options.clone(); + let prompt = internal_baml_jinja::RenderedPrompt::Chat(chat_messages.clone()); + + let aws_client = match self.client_anyhow().await { + Ok(c) => c, + Err(e) => { + return Err(LLMResponse::LLMFailure(LLMErrorResponse { + client, + model, + prompt, + start_time: SystemTime::now(), + request_options, + latency: web_time::Duration::ZERO, + message: format!("{:#?}", e), + code: ErrorCode::Other(2), + })); + } + }; + + let request = match self.build_request(ctx, chat_messages) { + Ok(r) => r, + Err(e) => { + return Err(LLMResponse::LLMFailure(LLMErrorResponse { + client, + model, + prompt, + start_time: SystemTime::now(), + request_options, + latency: web_time::Duration::ZERO, + message: format!("{:#?}", e), + code: ErrorCode::Other(2), + })) + } + }; + + let request = aws_client + .converse_stream() + .set_model_id(request.model_id) + .set_inference_config(request.inference_config) + .set_system(request.system) + .set_messages(request.messages); + + let system_start = SystemTime::now(); + let instant_start = Instant::now(); + + let response = match request.send().await { + Ok(resp) => resp, + Err(e) => { + return Err(LLMResponse::LLMFailure(LLMErrorResponse { + client, + model, + prompt, + start_time: system_start, + request_options, + latency: instant_start.elapsed(), + message: format!("{:#?}", e), + code: match e { + SdkError::ConstructionFailure(_) => ErrorCode::Other(2), + SdkError::TimeoutError(_) => ErrorCode::Other(2), + SdkError::DispatchFailure(_) => ErrorCode::Other(2), + SdkError::ResponseError(e) => { + ErrorCode::UnsupportedResponse(e.raw().status().as_u16()) + } + SdkError::ServiceError(e) => { + let status = e.raw().status(); + match status.as_u16() { + 400 => ErrorCode::InvalidAuthentication, + 403 => ErrorCode::NotSupported, + 429 => ErrorCode::RateLimited, + 500 => ErrorCode::ServerError, + 503 => ErrorCode::ServiceUnavailable, + _ => { + if status.is_server_error() { + ErrorCode::ServerError + } else { + ErrorCode::Other(status.as_u16()) + } + } + } + } + _ => ErrorCode::Other(2), + }, + })); + } + }; + + let stream = stream::unfold( + ( + Some(LLMCompleteResponse { + client, + prompt, + content: "".to_string(), + start_time: system_start, + latency: instant_start.elapsed(), + model: self.properties.model_id.clone(), + request_options, + metadata: LLMCompleteResponseMetadata { + baml_is_complete: false, + finish_reason: None, + prompt_tokens: None, + output_tokens: None, + total_tokens: None, + }, + }), + response, + ), + move |(initial_state, mut response)| { + async move { + let Some(mut new_state) = initial_state else { + return None; + }; + match response.stream.recv().await { + Ok(Some(message)) => { + log::trace!("Received message: {:#?}", message); + match message { + bedrock::types::ConverseStreamOutput::ContentBlockDelta( + content_block_delta, + ) => { + if let Some(bedrock::types::ContentBlockDelta::Text( + ref delta, + )) = content_block_delta.delta + { + new_state.content += delta; + // TODO- handle + } + // TODO- handle + } + bedrock::types::ConverseStreamOutput::ContentBlockStart(_) => { + // TODO- handle + } + bedrock::types::ConverseStreamOutput::ContentBlockStop(_) => { + // TODO- handle + } + bedrock::types::ConverseStreamOutput::MessageStart(_) => { + // TODO- handle + } + bedrock::types::ConverseStreamOutput::MessageStop(stop) => { + new_state.metadata.baml_is_complete = match stop.stop_reason { + bedrock::types::StopReason::StopSequence + | bedrock::types::StopReason::EndTurn => true, + _ => false, + }; + // TODO- handle + } + bedrock::types::ConverseStreamOutput::Metadata(metadata) => { + if let Some(usage) = metadata.usage() { + new_state.metadata.prompt_tokens = + Some(usage.input_tokens() as u64); + new_state.metadata.output_tokens = + Some(usage.output_tokens() as u64); + new_state.metadata.total_tokens = + Some((usage.total_tokens()) as u64); + } + } + _ => { + // TODO- handle + } + } + new_state.latency = instant_start.elapsed(); + Some(( + LLMResponse::Success(new_state.clone()), + (Some(new_state), response), + )) + } + Ok(None) => None, + Err(e) => Some(( + LLMResponse::LLMFailure(LLMErrorResponse { + client: new_state.client, + model: Some(new_state.model), + prompt: new_state.prompt, + start_time: new_state.start_time, + request_options: new_state.request_options, + latency: instant_start.elapsed(), + message: format!("Failed to parse event: {:#?}", e), + code: ErrorCode::Other(2), + }), + (None, response), + )), + } + } + }, + ); + + Ok(Box::pin(stream)) + } +} + +struct AwsChatMessage<'m>(&'m RenderedChatMessage); + +impl TryInto for AwsChatMessage<'_> { + type Error = anyhow::Error; + + fn try_into(self) -> Result { + let message = self.0; + + let role = match message.role.as_str() { + "user" => bedrock::types::ConversationRole::User, + "assistant" => bedrock::types::ConversationRole::Assistant, + _ => bedrock::types::ConversationRole::User, + }; + + let content = message + .parts + .iter() + .map(|part| match part { + ChatMessagePart::Text(text) => Ok(bedrock::types::ContentBlock::Text(text.clone())), + ChatMessagePart::Image(media) | ChatMessagePart::Audio(media) => match media { + BamlMedia::Url(_, _) => { + anyhow::bail!( + "BAML internal error: media URL should have been resolved to base64" + ) + } + BamlMedia::Base64(BamlMediaType::Image, media) => { + Ok(bedrock::types::ContentBlock::Image( + bedrock::types::ImageBlock::builder() + .set_format(Some(bedrock::types::ImageFormat::from( + media + .media_type + .strip_prefix("image/") + .unwrap_or(media.media_type.as_str()), + ))) + .set_source(Some(bedrock::types::ImageSource::Bytes(Blob::new( + aws_smithy_types::base64::decode(media.base64.clone())?, + )))) + .build() + .context("Failed to build image block")?, + )) + } + _ => anyhow::bail!("AWS does not support this media type: {:#?}", media), + }, + _ => anyhow::bail!("AWS does not support this message part type: {:#?}", part), + }) + .collect::>()?; + + bedrock::types::Message::builder() + .set_role(Some(role)) + .set_content(Some(content)) + .build() + .map_err(|e| e.into()) + } +} + +impl WithChat for AwsClient { + fn chat_options(&self, _ctx: &RuntimeContext) -> Result { + Ok(internal_baml_jinja::ChatOptions::new( + self.properties.default_role.clone(), + None, + )) + } + + async fn chat( + &self, + _ctx: &RuntimeContext, + chat_messages: &Vec, + ) -> LLMResponse { + let client = self.context.name.to_string(); + let model = Some(self.properties.model_id.clone()); + let request_options = self.properties.request_options.clone(); + let prompt = internal_baml_jinja::RenderedPrompt::Chat(chat_messages.clone()); + + let aws_client = match self.client_anyhow().await { + Ok(c) => c, + Err(e) => { + return LLMResponse::LLMFailure(LLMErrorResponse { + client, + model, + prompt, + start_time: SystemTime::now(), + request_options, + latency: web_time::Duration::ZERO, + message: format!("{:#?}", e), + code: ErrorCode::Other(2), + }) + } + }; + + let request = match self.build_request(_ctx, chat_messages) { + Ok(r) => r, + Err(e) => { + return LLMResponse::LLMFailure(LLMErrorResponse { + client, + model, + prompt, + start_time: SystemTime::now(), + request_options, + latency: web_time::Duration::ZERO, + message: format!("{:#?}", e), + code: ErrorCode::Other(2), + }) + } + }; + let request = aws_client + .converse() + .set_model_id(request.model_id) + .set_inference_config(request.inference_config) + .set_system(request.system) + .set_messages(request.messages); + + let system_start = SystemTime::now(); + let instant_start = Instant::now(); + + let response = match request.send().await { + Ok(resp) => resp, + Err(e) => { + return LLMResponse::LLMFailure(LLMErrorResponse { + client, + model, + prompt, + start_time: system_start, + request_options, + latency: instant_start.elapsed(), + message: format!("{:#?}", e), + // TODO: derive this from the aws-returned error + code: ErrorCode::Other(2), + }); + } + }; + + match self.chat_anyhow(&response).await { + Ok(content) => LLMResponse::Success(LLMCompleteResponse { + client, + prompt, + content: content.clone(), + start_time: system_start.clone(), + latency: instant_start.elapsed(), + request_options, + model: self.properties.model_id.clone(), + metadata: LLMCompleteResponseMetadata { + baml_is_complete: match response.stop_reason { + bedrock::types::StopReason::StopSequence + | bedrock::types::StopReason::EndTurn => true, + _ => false, + }, + finish_reason: Some(response.stop_reason().as_str().into()), + prompt_tokens: response + .usage + .as_ref() + .map(|i| i.input_tokens.try_into().ok()) + .flatten(), + output_tokens: response + .usage + .as_ref() + .map(|i| i.output_tokens.try_into().ok()) + .flatten(), + total_tokens: response + .usage + .as_ref() + .map(|i| i.total_tokens.try_into().ok()) + .flatten(), + }, + }), + Err(e) => LLMResponse::LLMFailure(LLMErrorResponse { + client, + model, + prompt, + start_time: system_start, + request_options, + latency: instant_start.elapsed(), + message: format!("{:#?}", e), + code: ErrorCode::Other(200), + }), + } + } +} diff --git a/engine/baml-runtime/src/internal/llm_client/primitive/aws/mod.rs b/engine/baml-runtime/src/internal/llm_client/primitive/aws/mod.rs new file mode 100644 index 000000000..a87b9a49e --- /dev/null +++ b/engine/baml-runtime/src/internal/llm_client/primitive/aws/mod.rs @@ -0,0 +1,6 @@ +mod aws_client; +pub(super) mod types; +#[cfg(target_arch = "wasm32")] +pub(super) mod wasm; + +pub use aws_client::AwsClient; diff --git a/engine/baml-runtime/src/internal/llm_client/primitive/aws/types.rs b/engine/baml-runtime/src/internal/llm_client/primitive/aws/types.rs new file mode 100644 index 000000000..3ccafbdf6 --- /dev/null +++ b/engine/baml-runtime/src/internal/llm_client/primitive/aws/types.rs @@ -0,0 +1,29 @@ +use aws_sdk_bedrockruntime::{self as bedrock}; +use serde::Deserialize; + +#[derive(Deserialize)] +/// Used to extract options.inference_configuration from the BAML client +/// We can't use #[serde(remote="bedrock::types::InferenceConfiguration")] because it's non-exhaustive +pub(super) struct InferenceConfiguration { + ///

The maximum number of tokens to allow in the generated response. The default value is the maximum allowed value for the model that you are using. For more information, see Inference parameters for foundation models.

+ max_tokens: ::std::option::Option, + ///

The likelihood of the model selecting higher-probability options while generating a response. A lower value makes the model more likely to choose higher-probability options, while a higher value makes the model more likely to choose lower-probability options.

+ ///

The default value is the default value for the model that you are using. For more information, see Inference parameters for foundation models.

+ temperature: ::std::option::Option, + ///

The percentage of most-likely candidates that the model considers for the next token. For example, if you choose a value of 0.8 for topP, the model selects from the top 80% of the probability distribution of tokens that could be next in the sequence.

+ ///

The default value is the default value for the model that you are using. For more information, see Inference parameters for foundation models.

+ top_p: ::std::option::Option, + ///

A list of stop sequences. A stop sequence is a sequence of characters that causes the model to stop generating the response.

+ stop_sequences: ::std::option::Option<::std::vec::Vec<::std::string::String>>, +} + +impl Into for InferenceConfiguration { + fn into(self) -> bedrock::types::InferenceConfiguration { + bedrock::types::InferenceConfiguration::builder() + .set_max_tokens(self.max_tokens) + .set_temperature(self.temperature) + .set_top_p(self.top_p) + .set_stop_sequences(self.stop_sequences) + .build() + } +} diff --git a/engine/baml-runtime/src/internal/llm_client/primitive/aws/wasm.rs b/engine/baml-runtime/src/internal/llm_client/primitive/aws/wasm.rs new file mode 100644 index 000000000..76ace6b35 --- /dev/null +++ b/engine/baml-runtime/src/internal/llm_client/primitive/aws/wasm.rs @@ -0,0 +1,148 @@ +// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. +// SPDX-License-Identifier: Apache-2.0 + +use aws_config::ConfigLoader; +use aws_smithy_async::{ + rt::sleep::{AsyncSleep, Sleep}, + time::TimeSource, +}; +use aws_smithy_runtime_api::client::result::{ConnectorError, SdkError}; +use aws_smithy_runtime_api::http::{self, Request}; +use aws_smithy_runtime_api::{ + client::{ + http::{ + HttpClient, HttpConnector, HttpConnectorFuture, HttpConnectorSettings, + SharedHttpConnector, + }, + orchestrator::HttpRequest, + runtime_components::RuntimeComponents, + }, + shared::IntoShared, +}; +use aws_smithy_types::body::SdkBody; + +use aws_config::{BehaviorVersion, SdkConfig}; +use core::pin::Pin; +use core::task::{Context, Poll}; +use futures::Stream; +use pin_project_lite::pin_project; +use std::sync::Arc; +use std::time::SystemTime; + +pub fn load_aws_config() -> ConfigLoader { + aws_config::defaults(BehaviorVersion::latest()) + .sleep_impl(BrowserSleep) + .time_source(BrowserTime) + .http_client(BrowserHttp2::new()) +} + +#[derive(Debug)] +struct BrowserTime; +impl TimeSource for BrowserTime { + fn now(&self) -> SystemTime { + let offset = web_time::SystemTime::now() + .duration_since(web_time::UNIX_EPOCH) + .unwrap(); + std::time::UNIX_EPOCH + offset + } +} + +#[derive(Debug, Clone)] +struct BrowserSleep; +impl AsyncSleep for BrowserSleep { + fn sleep(&self, duration: std::time::Duration) -> Sleep { + Sleep::new(futures_timer::Delay::new(duration)) + } +} + +pin_project! { + struct StreamWrapper { + #[pin] + resp: S, + } +} + +// These are lies, but JsFuture is only !Send because of web workers, so this is +// safe in the web panel: https://github.com/rustwasm/wasm-bindgen/issues/2833 +unsafe impl Send for StreamWrapper {} +unsafe impl Sync for StreamWrapper {} + +impl>> http_body::Body for StreamWrapper { + type Data = bytes::Bytes; + type Error = reqwest::Error; + + fn poll_frame( + self: Pin<&mut Self>, + cx: &mut Context<'_>, + ) -> Poll, Self::Error>>> { + let resp = self.project().resp; + + let Poll::Ready(chunk) = resp.poll_next(cx) else { + return Poll::Pending; + }; + Poll::Ready(match chunk { + Some(Ok(chunk_bytes)) => Some(Ok(http_body::Frame::data(chunk_bytes))), + Some(Err(e)) => Some(Err(e)), + None => None, + }) + } +} + +#[derive(Debug, Clone)] +struct BrowserHttp2 { + client: Arc, +} + +impl BrowserHttp2 { + pub fn new() -> Self { + Self { + client: Arc::new(reqwest::Client::new()), + } + } + + async fn send3(&self, smithy_req: Request) -> Result, ConnectorError> { + let method = match reqwest::Method::from_bytes(smithy_req.method().as_bytes()) { + Ok(method) => method, + Err(e) => return Err(ConnectorError::user(Box::new(e))), + }; + let mut req = self.client.request(method, smithy_req.uri()); + + for (k, v) in smithy_req.headers() { + req = req.header(k, v); + } + + if let Some(body) = smithy_req.body().bytes() { + req = req.body(Vec::from(body)); + } + + match req.send().await { + Ok(resp) => Ok(http::Response::new( + resp.status().into(), + SdkBody::from_body_1_x(StreamWrapper { + resp: resp.bytes_stream(), + }), + )), + Err(e) => Err(ConnectorError::other(Box::new(e), None)), + } + } +} + +impl HttpConnector for BrowserHttp2 { + fn call(&self, req: HttpRequest) -> HttpConnectorFuture { + let clone = self.clone(); + + HttpConnectorFuture::new( + async move { send_wrapper::SendWrapper::new(clone.send3(req)).await }, + ) + } +} + +impl HttpClient for BrowserHttp2 { + fn http_connector( + &self, + _settings: &HttpConnectorSettings, + _components: &RuntimeComponents, + ) -> SharedHttpConnector { + self.clone().into_shared() + } +} diff --git a/engine/baml-runtime/src/internal/llm_client/primitive/google/google_client.rs b/engine/baml-runtime/src/internal/llm_client/primitive/google/google_client.rs index 92e346cc4..17c3bc028 100644 --- a/engine/baml-runtime/src/internal/llm_client/primitive/google/google_client.rs +++ b/engine/baml-runtime/src/internal/llm_client/primitive/google/google_client.rs @@ -16,18 +16,18 @@ use crate::{ request::create_client, }; use anyhow::{Context, Result}; -use baml_types::BamlImage; +use baml_types::BamlMedia; use eventsource_stream::Eventsource; use futures::StreamExt; use internal_baml_core::ir::ClientWalker; use internal_baml_jinja::{ChatMessagePart, RenderContext_Client, RenderedChatMessage}; -use reqwest::Response; use serde_json::json; use std::collections::HashMap; struct PostRequestProperities { default_role: String, api_key: Option, headers: HashMap, + base_url: String, proxy_url: Option, model_id: Option, properties: HashMap, @@ -61,6 +61,11 @@ fn resolve_properties( .and_then(|v| v.as_str().map(|s| s.to_string())) .or_else(|| Some("gemini-1.5-flash".to_string())); + let base_url = properties + .remove("base_url") + .and_then(|v| v.as_str().map(|s| s.to_string())) + .unwrap_or_else(|| "https://generativelanguage.googleapis.com/v1".to_string()); + let headers = properties.remove("headers").map(|v| { if let Some(v) = v.as_object() { v.iter() @@ -89,6 +94,7 @@ fn resolve_properties( api_key, headers, properties, + base_url, model_id, proxy_url: ctx.env.get("BOUNDARY_PROXY_URL").map(|s| s.to_string()), }) @@ -127,7 +133,7 @@ impl SseResponseTrait for GoogleClient { Ok(Box::pin( resp.bytes_stream() .eventsource() - .inspect(|event| log::info!("Received event: {:?}", event)) + .inspect(|event| log::trace!("Received event: {:?}", event)) .take_while(|event| { std::future::ready(event.as_ref().is_ok_and(|e| e.data != "data: \n")) }) @@ -142,7 +148,7 @@ impl SseResponseTrait for GoogleClient { start_time: system_start, latency: instant_start.elapsed(), model: model_id, - invocation_params: params.clone(), + request_options: params.clone(), metadata: LLMCompleteResponseMetadata { baml_is_complete: false, finish_reason: None, @@ -171,7 +177,7 @@ impl SseResponseTrait for GoogleClient { prompt.clone(), ), start_time: system_start, - invocation_params: params.clone(), + request_options: params.clone(), latency: instant_start.elapsed(), message: format!("Failed to parse event: {:#?}", e), code: ErrorCode::Other(2), @@ -205,7 +211,7 @@ impl SseResponseTrait for GoogleClient { impl WithStreamChat for GoogleClient { async fn stream_chat( &self, - ctx: &RuntimeContext, + _ctx: &RuntimeContext, prompt: &Vec, ) -> StreamResponse { //incomplete, streaming response object is returned @@ -221,17 +227,21 @@ impl WithStreamChat for GoogleClient { impl GoogleClient { pub fn new(client: &ClientWalker, ctx: &RuntimeContext) -> Result { let properties = super::super::resolve_properties_walker(client, ctx)?; + let properties = resolve_properties(properties, ctx)?; + let default_role = properties.default_role.clone(); Ok(Self { name: client.name().into(), - properties: resolve_properties(properties, ctx)?, + properties, context: RenderContext_Client { name: client.name().into(), provider: client.elem().provider.clone(), + default_role, }, features: ModelFeatures { chat: true, completion: false, anthropic_system_constraints: false, + resolve_media_urls: true, }, retry_policy: client .elem() @@ -243,24 +253,29 @@ impl GoogleClient { } pub fn dynamic_new(client: &ClientProperty, ctx: &RuntimeContext) -> Result { + let properties = resolve_properties( + client + .options + .iter() + .map(|(k, v)| Ok((k.clone(), json!(v)))) + .collect::>>()?, + ctx, + )?; + let default_role = properties.default_role.clone(); + Ok(Self { name: client.name.clone(), - properties: resolve_properties( - client - .options - .iter() - .map(|(k, v)| Ok((k.clone(), json!(v)))) - .collect::>>()?, - ctx, - )?, + properties, context: RenderContext_Client { name: client.name.clone(), provider: client.provider.clone(), + default_role, }, features: ModelFeatures { chat: true, completion: false, anthropic_system_constraints: false, + resolve_media_urls: true, }, retry_policy: client.retry_policy.clone(), client: create_client()?, @@ -273,18 +288,19 @@ impl RequestBuilder for GoogleClient { &self.client } - fn build_request( + async fn build_request( &self, prompt: either::Either<&String, &Vec>, stream: bool, - ) -> reqwest::RequestBuilder { + ) -> Result { let mut should_stream = "generateContent"; if stream { should_stream = "streamGenerateContent?alt=sse"; } let baml_original_url = format!( - "https://generativelanguage.googleapis.com/v1/models/{}:{}", + "{}/models/{}:{}", + self.properties.base_url, self.properties.model_id.as_ref().unwrap_or(&"".to_string()), should_stream ); @@ -301,7 +317,8 @@ impl RequestBuilder for GoogleClient { req = req.header(key, value); } - req = req.header("baml-original-url", baml_original_url); + req = req.header("baml-original-url", baml_original_url.clone()); + req = req.header("baml-render-url", baml_original_url); req = req.header( "x-goog-api-key", self.properties @@ -312,20 +329,18 @@ impl RequestBuilder for GoogleClient { let mut body = json!(self.properties.properties); let body_obj = body.as_object_mut().unwrap(); - match prompt { either::Either::Left(prompt) => { body_obj.extend(convert_completion_prompt_to_body(prompt)) } either::Either::Right(messages) => { - body_obj.extend(convert_chat_prompt_to_body(messages)) + body_obj.extend(convert_chat_prompt_to_body(messages)); } } - req.json(&body) + Ok(req.json(&body)) } - - fn invocation_params(&self) -> &HashMap { + fn request_options(&self) -> &HashMap { &self.properties.properties } } @@ -354,7 +369,7 @@ impl WithChat for GoogleClient { model: None, prompt: internal_baml_jinja::RenderedPrompt::Chat(prompt.clone()), start_time: system_now, - invocation_params: self.properties.properties.clone(), + request_options: self.properties.properties.clone(), latency: instant_now.elapsed(), message: format!( "Expected exactly one content block, got {}", @@ -370,7 +385,7 @@ impl WithChat for GoogleClient { content: response.candidates[0].content.parts[0].text.clone(), start_time: system_now, latency: instant_now.elapsed(), - invocation_params: self.properties.properties.clone(), + request_options: self.properties.properties.clone(), model: self .properties .properties @@ -387,14 +402,13 @@ impl WithChat for GoogleClient { .finish_reason .as_ref() .map(|r| serde_json::to_string(r).unwrap_or("".into())), - prompt_tokens: Some(response.usage_metadata.prompt_token_count), - output_tokens: Some(response.usage_metadata.candidates_token_count), - total_tokens: Some(response.usage_metadata.total_token_count), + prompt_tokens: response.usage_metadata.prompt_token_count, + output_tokens: response.usage_metadata.candidates_token_count, + total_tokens: response.usage_metadata.total_token_count, }, }) } } - //simple, Map with key "prompt" and value of the prompt string fn convert_completion_prompt_to_body(prompt: &String) -> HashMap { let mut map = HashMap::new(); @@ -437,20 +451,20 @@ fn convert_message_parts_to_content(parts: &Vec) -> serde_json: ChatMessagePart::Text(text) => json!({ "text": text }), - ChatMessagePart::Image(image) => match image { - BamlImage::Base64(image) => json!({ - "inlineDATA": { - "mimeType": image.media_type, - "data": image.base64 - } - }), - BamlImage::Url(image) => json!({ - "fileData": { - "type": "url", - "url": image.url - } - }), - }, + ChatMessagePart::Image(image) => convert_media_to_content(image, "image"), + ChatMessagePart::Audio(audio) => convert_media_to_content(audio, "audio"), }) .collect() } + +fn convert_media_to_content(media: &BamlMedia, media_type: &str) -> serde_json::Value { + match media { + BamlMedia::Base64(_, data) => json!({ + "inlineData": { + "mimeType": format!("{}", data.media_type), + "data": data.base64 + } + }), + _ => panic!("Unsupported media type"), + } +} diff --git a/engine/baml-runtime/src/internal/llm_client/primitive/google/types.rs b/engine/baml-runtime/src/internal/llm_client/primitive/google/types.rs index 85c59db95..c3a5c983c 100644 --- a/engine/baml-runtime/src/internal/llm_client/primitive/google/types.rs +++ b/engine/baml-runtime/src/internal/llm_client/primitive/google/types.rs @@ -364,9 +364,9 @@ pub struct SearchEntryPoint { #[derive(Serialize, Deserialize, Debug)] #[serde(rename_all = "camelCase")] pub struct UsageMetaData { - pub prompt_token_count: u64, - pub candidates_token_count: u64, - pub total_token_count: u64, + pub prompt_token_count: Option, + pub candidates_token_count: Option, + pub total_token_count: Option, } #[cfg(test)] diff --git a/engine/baml-runtime/src/internal/llm_client/primitive/mod.rs b/engine/baml-runtime/src/internal/llm_client/primitive/mod.rs index e15d35b86..17f5de130 100644 --- a/engine/baml-runtime/src/internal/llm_client/primitive/mod.rs +++ b/engine/baml-runtime/src/internal/llm_client/primitive/mod.rs @@ -10,7 +10,8 @@ use crate::{ }; use self::{ - anthropic::AnthropicClient, google::GoogleClient, openai::OpenAIClient, request::RequestBuilder, + anthropic::AnthropicClient, aws::AwsClient, google::GoogleClient, openai::OpenAIClient, + request::RequestBuilder, }; use super::{ @@ -18,22 +19,59 @@ use super::{ ExecutionScope, IterOrchestrator, OrchestrationScope, OrchestrationState, OrchestratorNode, OrchestratorNodeIterator, }, - retry_policy::CallablePolicy, - traits::{WithClient, WithPrompt, WithRetryPolicy, WithSingleCallable, WithStreamable}, + traits::{ + WithClient, WithPrompt, WithRenderRawCurl, WithRetryPolicy, WithSingleCallable, + WithStreamable, + }, LLMResponse, }; mod anthropic; +mod aws; mod google; mod openai; pub(super) mod request; +// use crate::internal::llm_client::traits::ambassador_impl_WithRenderRawCurl; +// use crate::internal::llm_client::traits::ambassador_impl_WithRetryPolicy; +use enum_dispatch::enum_dispatch; + +#[enum_dispatch(WithRetryPolicy)] +pub enum LLMPrimitive2 { + OpenAIClient, + AnthropicClient, + GoogleClient, + AwsClient, +} + +// #[derive(Delegate)] +// #[delegate(WithRetryPolicy, WithRenderRawCurl)] pub enum LLMPrimitiveProvider { OpenAI(OpenAIClient), Anthropic(AnthropicClient), Google(GoogleClient), + Aws(aws::AwsClient), } +// impl WithRetryPolicy for LLMPrimitiveProvider { +// fn retry_policy_name(&self) -> Option<&str> { +// match self { +// LLMPrimitiveProvider::OpenAI(client) => { +// LLMPrimitive2::OpenAIClient(client).retry_policy_name() +// } +// LLMPrimitiveProvider::Anthropic(client) => { +// LLMPrimitive2::AnthropicClient(client).retry_policy_name() +// } +// LLMPrimitiveProvider::Google(client) => { +// LLMPrimitive2::GoogleClient(client).retry_policy_name() +// } +// LLMPrimitiveProvider::Aws(client) => { +// LLMPrimitive2::AwsClient(client).retry_policy_name() +// } +// } +// } +// } + macro_rules! match_llm_provider { // Define the variants inside the macro ($self:expr, $method:ident, async $(, $args:tt)*) => { @@ -41,6 +79,7 @@ macro_rules! match_llm_provider { LLMPrimitiveProvider::OpenAI(client) => client.$method($($args),*).await, LLMPrimitiveProvider::Anthropic(client) => client.$method($($args),*).await, LLMPrimitiveProvider::Google(client) => client.$method($($args),*).await, + LLMPrimitiveProvider::Aws(client) => client.$method($($args),*).await, } }; @@ -49,6 +88,7 @@ macro_rules! match_llm_provider { LLMPrimitiveProvider::OpenAI(client) => client.$method($($args),*), LLMPrimitiveProvider::Anthropic(client) => client.$method($($args),*), LLMPrimitiveProvider::Google(client) => client.$method($($args),*), + LLMPrimitiveProvider::Aws(client) => client.$method($($args),*), } }; } @@ -107,6 +147,7 @@ impl TryFrom<(&ClientWalker<'_>, &RuntimeContext)> for LLMPrimitiveProvider { OpenAIClient::new_ollama(client, ctx).map(LLMPrimitiveProvider::OpenAI) } "google-ai" => GoogleClient::new(client, ctx).map(LLMPrimitiveProvider::Google), + "aws-bedrock" => aws::AwsClient::new(client, ctx).map(LLMPrimitiveProvider::Aws), other => { let options = [ "openai", @@ -116,6 +157,7 @@ impl TryFrom<(&ClientWalker<'_>, &RuntimeContext)> for LLMPrimitiveProvider { "azure-openai", "fallback", "round-robin", + "aws-bedrock", ]; anyhow::bail!( "Unsupported provider: {}. Available ones are: {}", @@ -139,9 +181,14 @@ impl<'ir> WithPrompt<'ir> for LLMPrimitiveProvider { } } -impl WithRetryPolicy for LLMPrimitiveProvider { - fn retry_policy_name(&self) -> Option<&str> { - match_llm_provider!(self, retry_policy_name) +impl WithRenderRawCurl for LLMPrimitiveProvider { + async fn render_raw_curl( + &self, + ctx: &RuntimeContext, + prompt: &Vec, + stream: bool, + ) -> Result { + match_llm_provider!(self, render_raw_curl, async, ctx, prompt, stream) } } @@ -186,6 +233,7 @@ impl std::fmt::Display for LLMPrimitiveProvider { LLMPrimitiveProvider::OpenAI(_) => write!(f, "OpenAI"), LLMPrimitiveProvider::Anthropic(_) => write!(f, "Anthropic"), LLMPrimitiveProvider::Google(_) => write!(f, "Google"), + LLMPrimitiveProvider::Aws(_) => write!(f, "AWS"), } } } @@ -194,23 +242,9 @@ impl LLMPrimitiveProvider { pub fn name(&self) -> &str { &match_llm_provider!(self, context).name } -} - -impl RequestBuilder for LLMPrimitiveProvider { - fn http_client(&self) -> &reqwest::Client { - match_llm_provider!(self, http_client) - } - fn invocation_params(&self) -> &std::collections::HashMap { - match_llm_provider!(self, invocation_params) - } - - fn build_request( - &self, - prompt: either::Either<&String, &Vec>, - stream: bool, - ) -> reqwest::RequestBuilder { - match_llm_provider!(self, build_request, prompt, stream) + pub fn request_options(&self) -> &std::collections::HashMap { + match_llm_provider!(self, request_options) } } diff --git a/engine/baml-runtime/src/internal/llm_client/primitive/openai/mod.rs b/engine/baml-runtime/src/internal/llm_client/primitive/openai/mod.rs index 6bbd188bb..0c046b927 100644 --- a/engine/baml-runtime/src/internal/llm_client/primitive/openai/mod.rs +++ b/engine/baml-runtime/src/internal/llm_client/primitive/openai/mod.rs @@ -1,5 +1,6 @@ mod openai_client; mod properties; +#[allow(dead_code)] mod types; pub use openai_client::OpenAIClient; diff --git a/engine/baml-runtime/src/internal/llm_client/primitive/openai/openai_client.rs b/engine/baml-runtime/src/internal/llm_client/primitive/openai/openai_client.rs index b1ff59ed9..1c69630d2 100644 --- a/engine/baml-runtime/src/internal/llm_client/primitive/openai/openai_client.rs +++ b/engine/baml-runtime/src/internal/llm_client/primitive/openai/openai_client.rs @@ -1,7 +1,7 @@ use std::collections::HashMap; -use anyhow::{Context, Result}; -use baml_types::BamlImage; +use anyhow::Result; +use baml_types::{BamlMedia, BamlMediaType}; use internal_baml_core::ir::ClientWalker; use internal_baml_jinja::{ChatMessagePart, RenderContext_Client, RenderedChatMessage}; @@ -11,9 +11,7 @@ use crate::client_builder::ClientProperty; use crate::internal::llm_client::primitive::request::{ make_parsed_request, make_request, RequestBuilder, }; -use crate::internal::llm_client::traits::{ - SseResponseTrait, StreamResponse, WithCompletion, WithStreamChat, -}; +use crate::internal::llm_client::traits::{SseResponseTrait, StreamResponse, WithStreamChat}; use crate::internal::llm_client::{ traits::{WithChat, WithClient, WithNoCompletion, WithRetryPolicy}, LLMResponse, ModelFeatures, @@ -81,7 +79,7 @@ impl WithNoCompletion for OpenAIClient {} // prompt: internal_baml_jinja::RenderedPrompt::Completion(prompt.clone()), // start_time: system_start, // latency: instant_start.elapsed(), -// invocation_params: self.properties.properties.clone(), +// request_options: self.properties.properties.clone(), // message: format!( // "Expected exactly one choices block, got {}", // response.choices.len() @@ -99,7 +97,7 @@ impl WithNoCompletion for OpenAIClient {} // start_time: system_start, // latency: instant_start.elapsed(), // model: response.model, -// invocation_params: self.properties.properties.clone(), +// request_options: self.properties.properties.clone(), // metadata: LLMCompleteResponseMetadata { // baml_is_complete: match response.choices.get(0) { // Some(c) => match c.finish_reason { @@ -151,7 +149,7 @@ impl WithChat for OpenAIClient { prompt: internal_baml_jinja::RenderedPrompt::Chat(prompt.clone()), start_time: system_start, latency: instant_start.elapsed(), - invocation_params: self.properties.properties.clone(), + request_options: self.properties.properties.clone(), message: format!( "Expected exactly one choices block, got {}", response.choices.len() @@ -174,7 +172,7 @@ impl WithChat for OpenAIClient { start_time: system_start, latency: instant_start.elapsed(), model: response.model, - invocation_params: self.properties.properties.clone(), + request_options: self.properties.properties.clone(), metadata: LLMCompleteResponseMetadata { baml_is_complete: match response.choices.get(0) { Some(c) => match c.finish_reason { @@ -213,11 +211,11 @@ impl RequestBuilder for OpenAIClient { &self.client } - fn build_request( + async fn build_request( &self, prompt: either::Either<&String, &Vec>, stream: bool, - ) -> reqwest::RequestBuilder { + ) -> Result { let mut req = self.client.post(if prompt.is_left() { format!( "{}/completions", @@ -250,6 +248,10 @@ impl RequestBuilder for OpenAIClient { } req = req.header("baml-original-url", self.properties.base_url.as_str()); + req = req.header( + "baml-render-url", + format!("{}/chat/completions", self.properties.base_url), + ); let mut body = json!(self.properties.properties); let body_obj = body.as_object_mut().unwrap(); match prompt { @@ -273,13 +275,19 @@ impl RequestBuilder for OpenAIClient { } if stream { - body_obj.insert("stream".into(), true.into()); + body_obj.insert("stream".into(), json!(true)); + body_obj.insert( + "stream_options".into(), + json!({ + "include_usage": true, + }), + ); } - req.json(&body) + Ok(req.json(&body)) } - fn invocation_params(&self) -> &HashMap { + fn request_options(&self) -> &HashMap { &self.properties.properties } } @@ -315,7 +323,7 @@ impl SseResponseTrait for OpenAIClient { start_time: system_start, latency: instant_start.elapsed(), model: "".to_string(), - invocation_params: params.clone(), + request_options: params.clone(), metadata: LLMCompleteResponseMetadata { baml_is_complete: false, finish_reason: None, @@ -344,7 +352,7 @@ impl SseResponseTrait for OpenAIClient { prompt.clone(), ), start_time: system_start, - invocation_params: params.clone(), + request_options: params.clone(), latency: instant_start.elapsed(), message: format!("Failed to parse event: {:#?}", e), code: ErrorCode::Other(2), @@ -367,6 +375,11 @@ impl SseResponseTrait for OpenAIClient { } } inner.latency = instant_start.elapsed(); + if let Some(usage) = event.usage.as_ref() { + inner.metadata.prompt_tokens = Some(usage.prompt_tokens); + inner.metadata.output_tokens = Some(usage.completion_tokens); + inner.metadata.total_tokens = Some(usage.total_tokens); + } std::future::ready(Some(LLMResponse::Success(inner.clone()))) }, @@ -378,7 +391,7 @@ impl SseResponseTrait for OpenAIClient { impl WithStreamChat for OpenAIClient { async fn stream_chat( &self, - ctx: &RuntimeContext, + _ctx: &RuntimeContext, prompt: &Vec, ) -> StreamResponse { let (resp, system_start, instant_start) = @@ -411,15 +424,18 @@ macro_rules! make_openai_client { ($client:ident, $properties:ident) => { Ok(Self { name: $client.name().into(), - properties: $properties, + context: RenderContext_Client { name: $client.name().into(), provider: $client.elem().provider.clone(), + default_role: $properties.default_role.clone(), }, + properties: $properties, features: ModelFeatures { chat: true, completion: false, anthropic_system_constraints: false, + resolve_media_urls: false, }, retry_policy: $client .elem() @@ -506,17 +522,20 @@ fn convert_message_parts_to_content(parts: &Vec) -> serde_json: .map(|part| match part { ChatMessagePart::Text(text) => json!({"type": "text", "text": text}), ChatMessagePart::Image(image) => match image { - BamlImage::Url(image) => { + BamlMedia::Url(BamlMediaType::Image, image) => { json!({"type": "image_url", "image_url": json!({ "url": image.url })}) } - BamlImage::Base64(image) => { + BamlMedia::Base64(BamlMediaType::Image, image) => { json!({"type": "image_url", "image_url": json!({ - "base64": image.base64 + "url" : format!("data:{};base64,{}", image.media_type, image.base64) })}) } + _ => json!({}), // return an empty JSON object or any other default value }, + // OpenAI does not yet support audio + _ => json!({}), // return an empty JSON object or any other default value }) .collect(); diff --git a/engine/baml-runtime/src/internal/llm_client/primitive/openai/properties/azure.rs b/engine/baml-runtime/src/internal/llm_client/primitive/openai/properties/azure.rs index 26d310349..e01af2b37 100644 --- a/engine/baml-runtime/src/internal/llm_client/primitive/openai/properties/azure.rs +++ b/engine/baml-runtime/src/internal/llm_client/primitive/openai/properties/azure.rs @@ -83,6 +83,10 @@ pub fn resolve_properties( } }; + properties + .entry("max_tokens".into()) + .or_insert_with(|| 4096.into()); + Ok(PostRequestProperities { default_role, base_url, diff --git a/engine/baml-runtime/src/internal/llm_client/primitive/request.rs b/engine/baml-runtime/src/internal/llm_client/primitive/request.rs index 3d480552b..bc31c9f53 100644 --- a/engine/baml-runtime/src/internal/llm_client/primitive/request.rs +++ b/engine/baml-runtime/src/internal/llm_client/primitive/request.rs @@ -1,4 +1,4 @@ -use std::{collections::HashMap, fmt::format}; +use std::collections::HashMap; use anyhow::{Context, Result}; use internal_baml_jinja::RenderedChatMessage; @@ -8,13 +8,14 @@ use serde::de::DeserializeOwned; use crate::internal::llm_client::{traits::WithClient, ErrorCode, LLMErrorResponse, LLMResponse}; pub trait RequestBuilder { - fn build_request( + #[allow(async_fn_in_trait)] + async fn build_request( &self, prompt: either::Either<&String, &Vec>, stream: bool, - ) -> reqwest::RequestBuilder; + ) -> Result; - fn invocation_params(&self) -> &HashMap; + fn request_options(&self) -> &HashMap; fn http_client(&self) -> &reqwest::Client; } @@ -36,7 +37,11 @@ pub async fn make_request( let (system_now, instant_now) = (web_time::SystemTime::now(), web_time::Instant::now()); log::debug!("Making request using client {}", client.context().name); - let req = match client.build_request(prompt, stream).build() { + let req = match client + .build_request(prompt, stream) + .await + .context("Failed to build request") + { Ok(req) => req, Err(e) => { return Err(LLMResponse::LLMFailure(LLMErrorResponse { @@ -44,14 +49,32 @@ pub async fn make_request( model: None, prompt: to_prompt(prompt), start_time: system_now, - invocation_params: client.invocation_params().clone(), + request_options: client.request_options().clone(), latency: instant_now.elapsed(), - message: e.to_string(), + message: format!("{:?}", e), code: ErrorCode::Other(2), })); } }; + let req = match req.build() { + Ok(req) => req, + Err(e) => { + return Err(LLMResponse::LLMFailure(LLMErrorResponse { + client: client.context().name.to_string(), + model: None, + prompt: to_prompt(prompt), + start_time: system_now, + request_options: client.request_options().clone(), + latency: instant_now.elapsed(), + message: format!("{:?}", e), + code: ErrorCode::Other(2), + })); + } + }; + + log::debug!("built request: {:?}", req); + let response = match client.http_client().execute(req).await { Ok(response) => response, Err(e) => { @@ -60,9 +83,9 @@ pub async fn make_request( model: None, prompt: to_prompt(prompt), start_time: system_now, - invocation_params: client.invocation_params().clone(), + request_options: client.request_options().clone(), latency: instant_now.elapsed(), - message: e.to_string(), + message: format!("{:?}", e), code: ErrorCode::Other(2), })); } @@ -75,7 +98,7 @@ pub async fn make_request( model: None, prompt: to_prompt(prompt), start_time: system_now, - invocation_params: client.invocation_params().clone(), + request_options: client.request_options().clone(), latency: instant_now.elapsed(), message: format!( "Request failed: {}", @@ -94,9 +117,26 @@ pub async fn make_parsed_request( stream: bool, ) -> Result<(T, web_time::SystemTime, web_time::Instant), LLMResponse> { let (response, system_now, instant_now) = make_request(client, prompt, stream).await?; - match response.json::().await.context(format!( - "Failed to parse into a response accepted by {}", - std::any::type_name::() + let j = match response.json::().await { + Ok(response) => response, + Err(e) => { + return Err(LLMResponse::LLMFailure(LLMErrorResponse { + client: client.context().name.to_string(), + model: None, + prompt: to_prompt(prompt), + start_time: system_now, + request_options: client.request_options().clone(), + latency: instant_now.elapsed(), + message: e.to_string(), + code: ErrorCode::Other(2), + })) + } + }; + + match T::deserialize(&j).context(format!( + "Failed to parse into a response accepted by {}: {}", + std::any::type_name::(), + j )) { Ok(response) => Ok((response, system_now, instant_now)), Err(e) => Err(LLMResponse::LLMFailure(LLMErrorResponse { @@ -104,9 +144,9 @@ pub async fn make_parsed_request( model: None, prompt: to_prompt(prompt), start_time: system_now, - invocation_params: client.invocation_params().clone(), + request_options: client.request_options().clone(), latency: instant_now.elapsed(), - message: e.to_string(), + message: format!("{:?}", e), code: ErrorCode::Other(2), })), } diff --git a/engine/baml-runtime/src/internal/llm_client/traits/chat.rs b/engine/baml-runtime/src/internal/llm_client/traits/chat.rs index 523834d4d..5ce186551 100644 --- a/engine/baml-runtime/src/internal/llm_client/traits/chat.rs +++ b/engine/baml-runtime/src/internal/llm_client/traits/chat.rs @@ -2,11 +2,11 @@ use anyhow::Result; use internal_baml_jinja::{ChatOptions, RenderedChatMessage}; use crate::{ - internal::llm_client::{LLMErrorResponse, LLMResponse}, + internal::llm_client::{LLMResponse}, RuntimeContext, }; -use super::{SseResponseTrait, StreamResponse}; +use super::{StreamResponse}; pub trait WithChat: Sync + Send { fn chat_options(&self, ctx: &RuntimeContext) -> Result; diff --git a/engine/baml-runtime/src/internal/llm_client/traits/mod.rs b/engine/baml-runtime/src/internal/llm_client/traits/mod.rs index d06e26fe3..cb07775ef 100644 --- a/engine/baml-runtime/src/internal/llm_client/traits/mod.rs +++ b/engine/baml-runtime/src/internal/llm_client/traits/mod.rs @@ -1,22 +1,35 @@ use std::pin::Pin; use anyhow::Result; + mod chat; mod completion; +pub use self::{ + chat::{WithChat, WithStreamChat}, + completion::{WithCompletion, WithNoCompletion, WithStreamCompletion}, +}; +use super::{primitive::request::RequestBuilder, LLMResponse, ModelFeatures}; -use baml_types::BamlValue; +use crate::{internal::prompt_renderer::PromptRenderer, RuntimeContext}; +use baml_types::{BamlMedia, BamlMediaType, BamlValue, MediaBase64}; +use base64::{prelude::BASE64_STANDARD, Engine}; +use futures::stream::{StreamExt, TryStreamExt}; +use infer; use internal_baml_core::ir::repr::IntermediateRepr; +use internal_baml_jinja::{ChatMessagePart, RenderedChatMessage}; use internal_baml_jinja::{RenderContext_Client, RenderedPrompt}; -use crate::{internal::prompt_renderer::PromptRenderer, RuntimeContext}; +use reqwest::Url; -pub use self::{ - chat::{WithChat, WithStreamChat}, - completion::{WithCompletion, WithNoCompletion, WithStreamCompletion}, -}; +use shell_escape::escape; +use std::borrow::Cow; -use super::{retry_policy::CallablePolicy, LLMResponse, ModelFeatures}; +use std::str::FromStr; // Add this line at the top of your file // Add this line at the top of your file +// #[enum_dispatch] + +// #[delegatable_trait] +// #[enum_dispatch] pub trait WithRetryPolicy { fn retry_policy_name(&self) -> Option<&str>; } @@ -26,6 +39,14 @@ pub trait WithSingleCallable { async fn single_call(&self, ctx: &RuntimeContext, prompt: &RenderedPrompt) -> LLMResponse; } +pub trait WithCurl { + #[allow(async_fn_in_trait)] + async fn curl_call( + &self, + ctx: &RuntimeContext, + prompt: &RenderedPrompt, + ) -> Result, LLMResponse>; +} pub trait WithClient { fn context(&self) -> &RenderContext_Client; @@ -42,12 +63,127 @@ pub trait WithPrompt<'ir> { ) -> Result; } +// #[delegatable_trait] +// #[enum_dispatch] +pub trait WithRenderRawCurl { + #[allow(async_fn_in_trait)] + async fn render_raw_curl( + &self, + ctx: &RuntimeContext, + prompt: &Vec, + stream: bool, + ) -> Result; +} + impl WithSingleCallable for T where T: WithClient + WithChat + WithCompletion, { #[allow(async_fn_in_trait)] async fn single_call(&self, ctx: &RuntimeContext, prompt: &RenderedPrompt) -> LLMResponse { + if self.model_features().resolve_media_urls { + if let RenderedPrompt::Chat(ref chat) = prompt { + let messages_result = futures::stream::iter(chat.iter().map(|p| { + let new_parts = p + .parts + .iter() + .map(|part| async move { + match part { + ChatMessagePart::Image(BamlMedia::Url(_, media_url)) + | ChatMessagePart::Audio(BamlMedia::Url(_, media_url)) => { + let (base64, mime_type) = if media_url.url.starts_with("data:") { + let parts: Vec<&str> = + media_url.url.splitn(2, ',').collect(); + let base64 = parts.get(1).unwrap().to_string(); + let prefix = parts.get(0).unwrap(); + let mime_type = + prefix.splitn(2, ':').next().unwrap().to_string() + .split('/').last().unwrap().to_string(); + + (base64, mime_type) + } else { + let client = reqwest::Client::new(); + let response = match client.get(&media_url.url) + // NB(sam): this would workaround CORS issues, but https://github.com/seanmonstar/reqwest/issues/1401 + //.fetch_mode_no_cors() + .send().await + { + Ok(response) => response, + Err(e) => { + return Err(LLMResponse::OtherFailure( + format!("Failed to fetch image due to CORS issue: {e:?}") + )) + } // replace with your error conversion logic + }; + let bytes = match response.bytes().await { + Ok(bytes) => bytes, + Err(e) => { + return Err(LLMResponse::OtherFailure( + e.to_string(), + )); + } // replace with your error conversion logic + }; + let base64 = BASE64_STANDARD.encode(&bytes); + let inferred_type = infer::get(&bytes); + let mime_type = inferred_type.map_or_else( + || "application/octet-stream".into(), + |t| t.extension().into(), + ); + (base64, mime_type) + }; + + Ok(if matches!(part, ChatMessagePart::Image(_)) { + ChatMessagePart::Image(BamlMedia::Base64( + BamlMediaType::Image, + MediaBase64 { + base64: base64, + media_type: format!("image/{}", mime_type), + }, + )) + } else { + ChatMessagePart::Audio(BamlMedia::Base64( + BamlMediaType::Audio, + MediaBase64 { + base64: base64, + media_type: format!("audio/{}", mime_type), + }, + )) + }) + } + _ => Ok(part.clone()), + } + }) + .collect::>(); + async move { + let new_parts = futures::stream::iter(new_parts) + .then(|f| f) + .collect::>() + .await; + + let new_parts = new_parts.into_iter().collect::, _>>()?; + + Ok::<_, anyhow::Error>(RenderedChatMessage { + role: p.role.clone(), + parts: new_parts, + }) + } + })) + .then(|f| f) + .collect::>() + .await + .into_iter() + .collect::, _>>(); + + let messages = match messages_result { + Ok(messages) => messages, + Err(e) => { + return LLMResponse::OtherFailure(format!("Error occurred: {}", e)); + } + }; + return self.chat(ctx, &messages).await; + } + } + match prompt { RenderedPrompt::Chat(p) => self.chat(ctx, p).await, RenderedPrompt::Completion(p) => self.completion(ctx, p).await, @@ -55,6 +191,155 @@ where } } +impl WithCurl for T +where + T: WithClient + WithChat + WithCompletion, +{ + #[allow(async_fn_in_trait)] + async fn curl_call( + &self, + ctx: &RuntimeContext, + prompt: &RenderedPrompt, + ) -> Result, LLMResponse> { + if self.model_features().resolve_media_urls { + if let RenderedPrompt::Chat(ref chat) = prompt { + let messages_result = futures::stream::iter(chat.iter().map(|p| { + let new_parts = p + .parts + .iter() + .map(|part| async move { + match part { + ChatMessagePart::Image(BamlMedia::Url(_, media_url)) + | ChatMessagePart::Audio(BamlMedia::Url(_, media_url)) => { + let mut base64 = "".to_string(); + let mut mime_type = "".to_string(); + if media_url.url.starts_with("data:") { + let parts: Vec<&str> = + media_url.url.splitn(2, ',').collect(); + base64 = parts.get(1).unwrap().to_string(); + let prefix = parts.get(0).unwrap(); + mime_type = + prefix.splitn(2, ':').next().unwrap().to_string(); + mime_type = + mime_type.split('/').last().unwrap().to_string(); + } else { + let client = reqwest::Client::new(); + let response = match client.get(&media_url.url).send().await + { + Ok(response) => response, + Err(e) => { + return Err(LLMResponse::OtherFailure( + "Failed to fetch image due to CORS issue" + .to_string(), + )) + } // replace with your error conversion logic + }; + let bytes = match response.bytes().await { + Ok(bytes) => bytes, + Err(e) => { + return Err(LLMResponse::OtherFailure( + e.to_string(), + )) + } // replace with your error conversion logic + }; + base64 = BASE64_STANDARD.encode(&bytes); + let inferred_type = infer::get(&bytes); + mime_type = inferred_type.map_or_else( + || "application/octet-stream".into(), + |t| t.extension().into(), + ); + } + + Ok(if matches!(part, ChatMessagePart::Image(_)) { + ChatMessagePart::Image(BamlMedia::Base64( + BamlMediaType::Image, + MediaBase64 { + base64: base64, + media_type: format!("image/{}", mime_type), + }, + )) + } else { + ChatMessagePart::Audio(BamlMedia::Base64( + BamlMediaType::Audio, + MediaBase64 { + base64: base64, + media_type: format!("audio/{}", mime_type), + }, + )) + }) + } + _ => Ok(part.clone()), + } + }) + .collect::>(); + async move { + let new_parts = futures::stream::iter(new_parts) + .then(|f| f) + .collect::>() + .await; + + let new_parts = new_parts.into_iter().collect::, _>>()?; + + Ok::<_, anyhow::Error>(RenderedChatMessage { + role: p.role.clone(), + parts: new_parts, + }) + } + })) + .then(|f| f) + .collect::>() + .await + .into_iter() + .collect::, _>>(); + + let messages = match messages_result { + Ok(messages) => messages, + Err(e) => { + return Err(LLMResponse::OtherFailure(format!("Error occurred: {}", e))); + } + }; + return Ok(messages); + } + } + + match prompt { + RenderedPrompt::Chat(p) => Ok(p.clone()), + RenderedPrompt::Completion(p) => Err(LLMResponse::OtherFailure( + "Completion prompts are not supported by this provider".to_string(), + )), + } + } +} + +fn escape_single_quotes(s: &str) -> String { + escape(Cow::Borrowed(s)).to_string() +} + +fn to_curl_command( + url: &str, + method: &str, + headers: &reqwest::header::HeaderMap, + body: Vec, +) -> String { + let mut curl_command = format!("curl -X {} '{}'", method, url); + + for (key, value) in headers.iter() { + let header = format!(" -H \"{}: {}\"", key.as_str(), value.to_str().unwrap()); + curl_command.push_str(&header); + } + + let body_json = String::from_utf8_lossy(&body).to_string(); // Convert body to string + let pretty_body_json = match serde_json::from_str::(&body_json) { + Ok(json_value) => serde_json::to_string_pretty(&json_value).unwrap_or(body_json), + Err(_) => body_json, + }; + let fully_escaped_body_json = escape_single_quotes(&pretty_body_json); + let body_part = format!(" -d {}", fully_escaped_body_json); + curl_command.push_str(&body_part); + + curl_command +} + impl<'ir, T> WithPrompt<'ir> for T where T: WithClient + WithChat + WithCompletion, @@ -69,7 +354,6 @@ where let features = self.model_features(); let prompt = renderer.render_prompt(ir, ctx, params, self.context())?; - log::debug!("WithPrompt.render_prompt => {:#?}", prompt); let mut prompt = match (features.completion, features.chat) { (true, false) => { @@ -108,6 +392,53 @@ where } } +impl WithRenderRawCurl for T +where + T: WithClient + WithChat + WithCompletion + RequestBuilder, +{ + async fn render_raw_curl( + &self, + ctx: &RuntimeContext, + prompt: &Vec, + stream: bool, + ) -> Result { + let rendered_prompt = RenderedPrompt::Chat(prompt.clone()); + + let chat_messages = self.curl_call(ctx, &rendered_prompt).await?; + let request_builder = self + .build_request(either::Right(&chat_messages), stream) + .await?; + let mut request = request_builder.build()?; + let url_header_value = { + let headers = request.headers_mut(); + let url_header_value = headers + .get("baml-render-url") + .ok_or(anyhow::anyhow!("Missing header 'baml-render-url'"))?; + url_header_value.to_owned() + }; + + let url_str = url_header_value + .to_str() + .map_err(|_| anyhow::anyhow!("Invalid header 'baml-render-url'"))?; + let new_url = Url::from_str(url_str)?; + *request.url_mut() = new_url; + + { + let headers = request.headers_mut(); + headers.remove("baml-original-url"); + headers.remove("baml-render-url"); + } + + let body = request + .body() + .map(|b| b.as_bytes().unwrap_or_default().to_vec()) + .unwrap_or_default(); // Add this line to handle the Option + let request_str = to_curl_command(url_str, "POST", request.headers(), body); + + Ok(request_str) + } +} + // Stream related pub trait SseResponseTrait { fn response_stream( @@ -134,10 +465,116 @@ pub trait WithStreamable { impl WithStreamable for T where - T: WithStreamChat + WithStreamCompletion, + T: WithClient + WithStreamChat + WithStreamCompletion, { #[allow(async_fn_in_trait)] async fn stream(&self, ctx: &RuntimeContext, prompt: &RenderedPrompt) -> StreamResponse { + if self.model_features().resolve_media_urls { + if let RenderedPrompt::Chat(ref chat) = prompt { + let messages = futures::stream::iter(chat.iter().map(|p| { + let new_parts = p + .parts + .iter() + .map(|part| async move { + match part { + ChatMessagePart::Image(BamlMedia::Url(_, media_url)) + | ChatMessagePart::Audio(BamlMedia::Url(_, media_url)) => { + let mut base64 = "".to_string(); + let mut mime_type = "".to_string(); + if media_url.url.starts_with("data:") { + let parts: Vec<&str> = + media_url.url.splitn(2, ',').collect(); + base64 = parts.get(1).unwrap().to_string(); + let prefix = parts.get(0).unwrap(); + mime_type = prefix + .splitn(2, ':') + .last() + .unwrap() // Get the part after "data:" + .split('/') + .last() + .unwrap() // Get the part after "image/" + .split(';') + .next() + .unwrap() // Get the part before ";base64" + .to_string(); + } else { + let client = reqwest::Client::new(); + let response = match client + .get(&media_url.url) + // NB(sam): this would workaround CORS issues, but https://github.com/seanmonstar/reqwest/issues/1401 + //.fetch_mode_no_cors() + .send() + .await + { + Ok(response) => response, + Err(e) => { + return Err(LLMResponse::OtherFailure( + "Failed to fetch image due to CORS issue" + .to_string(), + )) + } // replace with your error conversion logic + }; + let bytes = match response.bytes().await { + Ok(bytes) => bytes, + Err(e) => { + return Err(LLMResponse::OtherFailure( + e.to_string(), + )) + } // replace with your error conversion logic + }; + base64 = BASE64_STANDARD.encode(&bytes); + let inferred_type = infer::get(&bytes); + mime_type = inferred_type.map_or_else( + || "application/octet-stream".into(), + |t| t.extension().into(), + ); + } + Ok(if matches!(part, ChatMessagePart::Image(_)) { + ChatMessagePart::Image(BamlMedia::Base64( + BamlMediaType::Image, + MediaBase64 { + base64: base64, + media_type: format!("image/{}", mime_type), + }, + )) + } else { + ChatMessagePart::Audio(BamlMedia::Base64( + BamlMediaType::Audio, + MediaBase64 { + base64: base64, + media_type: format!("audio/{}", mime_type), + }, + )) + }) + } + _ => Ok(part.clone()), + } + }) + .collect::>(); + async move { + let new_parts = futures::stream::iter(new_parts) + .then(|f| f) + .collect::>() + .await; + + let new_parts = new_parts.into_iter().collect::, _>>()?; + + Ok(RenderedChatMessage { + role: p.role.clone(), + parts: new_parts, + }) + } + })) + .then(|f| f) + .collect::>() + .await + .into_iter() + .collect::, _>>()?; + + return self.stream_chat(ctx, &messages).await; + } + } + match prompt { RenderedPrompt::Chat(p) => self.stream_chat(ctx, p).await, RenderedPrompt::Completion(p) => self.stream_completion(ctx, p).await, diff --git a/engine/baml-runtime/src/internal/prompt_renderer/mod.rs b/engine/baml-runtime/src/internal/prompt_renderer/mod.rs index a2978daa8..96ff49e2d 100644 --- a/engine/baml-runtime/src/internal/prompt_renderer/mod.rs +++ b/engine/baml-runtime/src/internal/prompt_renderer/mod.rs @@ -71,6 +71,7 @@ impl PromptRenderer { client_ctx: &RenderContext_Client, ) -> Result { let func = ir.find_function(&self.function_name)?; + let Some(func_v2) = func.as_v2() else { error_unsupported!( "function", diff --git a/engine/baml-runtime/src/internal/prompt_renderer/render_output_format.rs b/engine/baml-runtime/src/internal/prompt_renderer/render_output_format.rs index 447a1adfe..8b54c33ae 100644 --- a/engine/baml-runtime/src/internal/prompt_renderer/render_output_format.rs +++ b/engine/baml-runtime/src/internal/prompt_renderer/render_output_format.rs @@ -1,4 +1,4 @@ -use std::collections::{HashMap, HashSet}; +use std::collections::{HashSet}; use anyhow::Result; use baml_types::BamlValue; diff --git a/engine/baml-runtime/src/lib.rs b/engine/baml-runtime/src/lib.rs index a8a149823..940b22a56 100644 --- a/engine/baml-runtime/src/lib.rs +++ b/engine/baml-runtime/src/lib.rs @@ -33,6 +33,7 @@ use baml_types::BamlValue; use client_builder::ClientBuilder; use indexmap::IndexMap; use internal_baml_core::configuration::GeneratorOutputType; +use on_log_event::LogEventCallbackSync; use runtime::InternalBamlRuntime; #[cfg(not(target_arch = "wasm32"))] @@ -51,6 +52,9 @@ pub use internal_baml_jinja::{ChatMessagePart, RenderedPrompt}; #[cfg(feature = "internal")] pub use runtime_interface::InternalRuntimeInterface; +#[cfg(feature = "internal")] +pub use internal_baml_core as internal_core; + #[cfg(not(feature = "internal"))] pub(crate) use internal_baml_jinja::{ChatMessagePart, RenderedPrompt}; #[cfg(not(feature = "internal"))] @@ -82,7 +86,7 @@ impl BamlRuntime { .collect(); Ok(BamlRuntime { inner: InternalBamlRuntime::from_directory(path)?, - tracer: BamlTracer::new(None, env_vars.into_iter()).into(), + tracer: BamlTracer::new(None, env_vars.into_iter())?.into(), env_vars: copy, }) } @@ -98,7 +102,7 @@ impl BamlRuntime { .collect(); Ok(BamlRuntime { inner: InternalBamlRuntime::from_file_content(root_path, files)?, - tracer: BamlTracer::new(None, env_vars.into_iter()).into(), + tracer: BamlTracer::new(None, env_vars.into_iter())?.into(), env_vars: copy, }) } @@ -341,4 +345,14 @@ impl ExperimentalTracingInterface for BamlRuntime { fn flush(&self) -> Result<()> { self.tracer.flush() } + + fn drain_stats(&self) -> InnerTraceStats { + self.tracer.drain_stats() + } + + #[cfg(not(target_arch = "wasm32"))] + fn set_log_event_callback(&self, log_event_callback: LogEventCallbackSync) -> Result<()> { + self.tracer.set_log_event_callback(log_event_callback); + Ok(()) + } } diff --git a/engine/baml-runtime/src/request/mod.rs b/engine/baml-runtime/src/request/mod.rs index dfbd4c49f..3e1d80087 100644 --- a/engine/baml-runtime/src/request/mod.rs +++ b/engine/baml-runtime/src/request/mod.rs @@ -1,15 +1,35 @@ use anyhow::{Context, Result}; -use instant::Duration; +use web_time::Duration; -pub(crate) fn create_client() -> Result { +fn builder() -> reqwest::ClientBuilder { cfg_if::cfg_if! { if #[cfg(target_arch = "wasm32")] { - Ok(reqwest::Client::new()) + reqwest::Client::builder() } else { reqwest::Client::builder() + // NB: we can NOT set a total request timeout here: our users + // regularly have requests that take multiple minutes, due to how + // long LLMs take + .connect_timeout(Duration::from_secs(10)) .http2_keep_alive_interval(Some(Duration::from_secs(10))) - .build() - .context("Failed to create reqwest client") } } } + +pub(crate) fn create_client() -> Result { + builder().build().context("Failed to create reqwest client") +} + +pub(crate) fn create_tracing_client() -> Result { + cfg_if::cfg_if! { + if #[cfg(target_arch = "wasm32")] { + let cb = builder(); + } else { + let cb =builder() + // Wait up to 30s to send traces to the backend + .read_timeout(Duration::from_secs(30)); + } + } + + cb.build().context("Failed to create reqwest client") +} diff --git a/engine/baml-runtime/src/request/no_wasm.rs b/engine/baml-runtime/src/request/no_wasm.rs deleted file mode 100644 index 93be95806..000000000 --- a/engine/baml-runtime/src/request/no_wasm.rs +++ /dev/null @@ -1,59 +0,0 @@ -use std::collections::HashMap; - -use anyhow::Error; - -#[derive(Debug)] -pub enum NoWasmRequestError { - BuildError(Error), - FetchError(Error), - ResponseError(u16, reqwest::Response), - JsonError(Error), - SerdeError(Error), -} - -pub async fn response_text(response: reqwest::Response) -> Result { - let text = response - .text() - .await - .map_err(|e| NoWasmRequestError::JsonError(e.into()))?; - - Ok(text) -} - -pub async fn response_json( - response: reqwest::Response, -) -> Result { - let json = response - .json() - .await - .map_err(|e| NoWasmRequestError::JsonError(e.into()))?; - - serde_json::from_value(json).map_err(|e| NoWasmRequestError::SerdeError(e.into())) -} - -pub async fn call_request_with_json( - url: &str, - body: &Body, - headers: Option>, -) -> Result { - let client = reqwest::Client::new(); - let mut request = client.post(url).json(body); - if let Some(headers) = headers { - for (key, value) in headers { - request = request.header(key, value); - } - } - - let response = request - .send() - .await - .map_err(|e| NoWasmRequestError::FetchError(e.into()))?; - - let status = response.status(); - - if !status.is_success() { - return Err(NoWasmRequestError::ResponseError(status.as_u16(), response)); - } - - response_json(response).await -} diff --git a/engine/baml-runtime/src/request/wasm.rs b/engine/baml-runtime/src/request/wasm.rs deleted file mode 100644 index b682f81e5..000000000 --- a/engine/baml-runtime/src/request/wasm.rs +++ /dev/null @@ -1,89 +0,0 @@ -use std::collections::HashMap; - -use wasm_bindgen::JsCast; - -#[derive(Debug)] -pub enum WasmRequestError { - BuildError(wasm_bindgen::JsValue), - FetchError(wasm_bindgen::JsValue), - ResponseError(u16, web_sys::Response), - JsonError(wasm_bindgen::JsValue), - SerdeError(wasm_bindgen::JsValue), -} - -pub async fn response_text(response: web_sys::Response) -> Result { - let json = wasm_bindgen_futures::JsFuture::from(response.text().map_err(|e| { - WasmRequestError::JsonError(wasm_bindgen::JsValue::from_str(&format!("{:#?}", e))) - })?) - .await - .map_err(|e| WasmRequestError::JsonError(e))?; - - json.as_string().ok_or(WasmRequestError::JsonError(json)) -} - -pub async fn response_json( - response: web_sys::Response, -) -> Result { - let json = wasm_bindgen_futures::JsFuture::from(response.json().map_err(|e| { - WasmRequestError::JsonError(wasm_bindgen::JsValue::from_str(&format!("{:#?}", e))) - })?) - .await - .map_err(|e| WasmRequestError::JsonError(e))?; - - serde_wasm_bindgen::from_value(json).map_err(|e| WasmRequestError::SerdeError(e.into())) -} - -async fn call_request( - window: web_sys::Window, - request: &web_sys::Request, -) -> Result { - let resp_value = wasm_bindgen_futures::JsFuture::from(window.fetch_with_request(request)) - .await - .map_err(|e| WasmRequestError::FetchError(e))?; - - let resp: web_sys::Response = resp_value - .dyn_into() - .map_err(|e| WasmRequestError::FetchError(e))?; - - let status = resp.status(); - if status != 200 { - return Err(WasmRequestError::ResponseError(status, resp)); - } - - response_json(resp).await -} - -pub async fn call_request_with_json( - url: &str, - body: &Body, - pass_headers: Option>, -) -> Result { - let window = web_sys::window().unwrap(); - let mut init = web_sys::RequestInit::new(); - init.method("POST"); - init.mode(web_sys::RequestMode::Cors); - init.body(Some(&wasm_bindgen::JsValue::from_str( - &serde_json::to_string(&body).unwrap_or("{}".to_string()), - ))); - let headers = web_sys::Headers::new().map_err(|e| WasmRequestError::BuildError(e))?; - headers - .set("Content-Type", "application/json") - .map_err(|e| WasmRequestError::BuildError(e))?; - match pass_headers { - Some(pass_headers) => { - for (k, v) in &pass_headers { - headers - .set(k, v) - .map_err(|e| WasmRequestError::BuildError(e))?; - } - } - None => {} - } - - init.headers(&headers); - - let request = web_sys::Request::new_with_str_and_init(url, &init) - .map_err(|e| WasmRequestError::BuildError(e))?; - - call_request(window, &request).await -} diff --git a/engine/baml-runtime/src/runtime/runtime_interface.rs b/engine/baml-runtime/src/runtime/runtime_interface.rs index 776dd7753..b422e6832 100644 --- a/engine/baml-runtime/src/runtime/runtime_interface.rs +++ b/engine/baml-runtime/src/runtime/runtime_interface.rs @@ -1,8 +1,4 @@ -use std::{ - collections::HashMap, - path::PathBuf, - sync::{Arc, Mutex}, -}; +use std::{collections::HashMap, path::PathBuf, sync::Arc}; use crate::{ internal::{ @@ -10,23 +6,20 @@ use crate::{ llm_client::{ llm_provider::LLMProvider, orchestrator::{ - orchestrate_call, IterOrchestrator, LLMPrimitiveProvider, OrchestrationScope, - OrchestratorNode, + orchestrate_call, IterOrchestrator, OrchestrationScope, OrchestratorNode, }, retry_policy::CallablePolicy, - traits::WithPrompt, + traits::{WithPrompt, WithRenderRawCurl}, }, prompt_renderer::PromptRenderer, }, runtime_interface::{InternalClientLookup, RuntimeConstructor}, - tracing::{BamlTracer, TracingSpan}, - type_builder::TypeBuilder, + tracing::BamlTracer, FunctionResult, FunctionResultStream, InternalRuntimeInterface, RuntimeContext, - RuntimeContextManager, RuntimeInterface, TestResponse, + RuntimeInterface, }; use anyhow::{Context, Result}; use baml_types::{BamlMap, BamlValue}; - use internal_baml_core::{ internal_baml_diagnostics::SourceFile, ir::{repr::IntermediateRepr, FunctionWalker, IRHelper}, @@ -157,6 +150,38 @@ impl InternalRuntimeInterface for InternalBamlRuntime { .map(|prompt| (prompt, node.scope)); } + async fn render_raw_curl( + &self, + function_name: &str, + ctx: &RuntimeContext, + prompt: &Vec, + stream: bool, + node_index: Option, + ) -> Result { + let func = self.get_function(function_name, ctx)?; + + let renderer = PromptRenderer::from_function(&func, &self.ir(), ctx)?; + let client_name = renderer.client_name().to_string(); + + let client = self.get_llm_provider(&client_name, ctx)?; + let mut selected = + client.iter_orchestrator(&mut Default::default(), Default::default(), ctx, self); + + let node_index = node_index.unwrap_or(0); + + if node_index >= selected.len() { + return Err(anyhow::anyhow!( + "Execution Node out of bounds: {} >= {} for client {}", + node_index, + selected.len(), + client_name + )); + } + + let node = selected.swap_remove(node_index); + return node.provider.render_raw_curl(ctx, prompt, stream).await; + } + fn get_function<'ir>( &'ir self, function_name: &str, @@ -214,7 +239,7 @@ impl InternalRuntimeInterface for InternalBamlRuntime { pub fn baml_src_files(dir: &std::path::PathBuf) -> Result> { static VALID_EXTENSIONS: [&str; 2] = ["baml", "json"]; - log::info!("Reading files from {:#}", dir.to_string_lossy()); + log::trace!("Reading files from {:#}", dir.to_string_lossy()); if !dir.exists() { anyhow::bail!("{dir:#?} does not exist (expected a directory containing BAML files)",); @@ -281,8 +306,8 @@ impl RuntimeConstructor for InternalBamlRuntime { schema.diagnostics.to_result()?; let ir = IntermediateRepr::from_parser_database(&schema.db, schema.configuration)?; - log::info!("Successfully loaded BAML schema"); - log::info!("Diagnostics: {:#?}", schema.diagnostics); + log::trace!("Successfully loaded BAML schema"); + log::trace!("Diagnostics: {:#?}", schema.diagnostics); Ok(Self { ir: Arc::new(ir), diff --git a/engine/baml-runtime/src/runtime_interface.rs b/engine/baml-runtime/src/runtime_interface.rs index 477996f19..544c8df53 100644 --- a/engine/baml-runtime/src/runtime_interface.rs +++ b/engine/baml-runtime/src/runtime_interface.rs @@ -1,6 +1,5 @@ use anyhow::Result; use baml_types::{BamlMap, BamlValue}; -use cfg_if::cfg_if; use internal_baml_core::internal_baml_diagnostics::Diagnostics; use internal_baml_core::ir::{repr::IntermediateRepr, FunctionWalker}; use internal_baml_jinja::RenderedPrompt; @@ -9,13 +8,13 @@ use std::{collections::HashMap, sync::Arc}; use crate::internal::llm_client::llm_provider::LLMProvider; use crate::internal::llm_client::orchestrator::{OrchestrationScope, OrchestratorNode}; use crate::tracing::{BamlTracer, TracingSpan}; -use crate::type_builder::TypeBuilder; +use crate::types::on_log_event::LogEventCallbackSync; use crate::RuntimeContextManager; use crate::{ internal::{ir_features::IrFeatures, llm_client::retry_policy::CallablePolicy}, runtime::InternalBamlRuntime, types::FunctionResultStream, - FunctionResult, RuntimeContext, TestResponse, + FunctionResult, RuntimeContext, }; pub(crate) trait RuntimeConstructor { @@ -94,6 +93,10 @@ pub trait ExperimentalTracingInterface { ) -> Result>; fn flush(&self) -> Result<()>; + fn drain_stats(&self) -> crate::InnerTraceStats; + + #[cfg(not(target_arch = "wasm32"))] + fn set_log_event_callback(&self, callback: LogEventCallbackSync) -> Result<()>; } pub trait InternalClientLookup<'a> { @@ -134,6 +137,16 @@ pub trait InternalRuntimeInterface { node_index: Option, ) -> Result<(RenderedPrompt, OrchestrationScope)>; + #[warn(async_fn_in_trait)] + async fn render_raw_curl( + &self, + function_name: &str, + ctx: &RuntimeContext, + prompt: &Vec, + stream: bool, + node_index: Option, + ) -> Result; + fn ir(&self) -> &IntermediateRepr; fn get_test_params( diff --git a/engine/baml-runtime/src/tracing/api_wrapper/api_interface.rs b/engine/baml-runtime/src/tracing/api_wrapper/api_interface.rs index 179e7d931..a83fc14d7 100644 --- a/engine/baml-runtime/src/tracing/api_wrapper/api_interface.rs +++ b/engine/baml-runtime/src/tracing/api_wrapper/api_interface.rs @@ -6,6 +6,7 @@ use serde_json::Value; use super::core_types::{LLMOutputModel, LogSchema, Template, TestCaseStatus}; +#[allow(dead_code)] pub(crate) trait BoundaryAPI { async fn check_cache(&self, payload: &CacheRequest) -> Result>; async fn log_schema(&self, payload: &LogSchema) -> Result<()>; @@ -15,6 +16,7 @@ pub(crate) trait BoundaryAPI { // This is a trait that is used to define the API for the BoundaryTestAPI // It assumes the implementor with manage state +#[allow(dead_code)] pub(crate) trait BoundaryTestAPI { async fn register_test_cases>( &self, @@ -38,6 +40,7 @@ pub(crate) struct CreateSessionResponse { } #[derive(Debug, Serialize)] +#[allow(dead_code)] pub(crate) struct UpdateTestCaseRequest { pub test_suite: String, pub test_case: String, @@ -45,6 +48,7 @@ pub(crate) struct UpdateTestCaseRequest { } #[derive(Debug, Serialize)] +#[allow(dead_code)] pub(crate) struct CacheRequest { provider: String, prompt: Template, @@ -53,6 +57,7 @@ pub(crate) struct CacheRequest { } #[derive(Debug, Serialize)] +#[allow(dead_code)] pub(crate) struct CacheResponse { model_name: String, llm_output: LLMOutputModel, diff --git a/engine/baml-runtime/src/tracing/api_wrapper/core_types.rs b/engine/baml-runtime/src/tracing/api_wrapper/core_types.rs index 99bd8a3d2..e15a7ccf2 100644 --- a/engine/baml-runtime/src/tracing/api_wrapper/core_types.rs +++ b/engine/baml-runtime/src/tracing/api_wrapper/core_types.rs @@ -5,6 +5,7 @@ use serde::{Deserialize, Serialize}; use serde_json::Value; #[derive(Serialize, Debug)] +#[allow(dead_code)] pub(crate) struct UpdateTestCase { pub project_id: Option, pub test_cycle_id: String, @@ -15,8 +16,8 @@ pub(crate) struct UpdateTestCase { pub error_data: Option, // Rust doesn't have a direct equivalent of Python's Any type, so we use serde_json::Value } -#[derive(Serialize, Debug)] -pub(crate) struct LogSchema { +#[derive(Serialize, Debug, Clone)] +pub struct LogSchema { pub project_id: Option, pub event_type: EventType, pub root_event_id: String, @@ -29,26 +30,26 @@ pub(crate) struct LogSchema { } #[derive(Serialize, Debug, Clone)] -pub(crate) struct IO { +pub struct IO { pub(crate) input: Option, pub(crate) output: Option, } #[derive(Serialize, Debug, Clone)] -pub(crate) struct IOValue { +pub struct IOValue { pub(crate) value: ValueType, pub(crate) r#override: Option>, pub(crate) r#type: TypeSchema, } #[derive(Serialize, Debug, Clone)] -pub(crate) struct TypeSchema { +pub struct TypeSchema { pub(crate) name: TypeSchemaName, pub(crate) fields: IndexMap, } #[derive(Serialize, Debug, Clone)] -pub(crate) enum TypeSchemaName { +pub enum TypeSchemaName { #[serde(rename = "single")] Single, #[serde(rename = "multi")] @@ -57,7 +58,7 @@ pub(crate) enum TypeSchemaName { #[derive(Serialize, Debug, Clone)] #[serde(untagged)] -pub(crate) enum ValueType { +pub enum ValueType { String(String), // For mutli-args, we use a list of strings List(Vec), @@ -98,7 +99,7 @@ pub enum EventType { } #[derive(Serialize, Debug, Clone)] -pub(crate) struct LogSchemaContext { +pub struct LogSchemaContext { pub hostname: String, pub process_id: String, pub stage: Option, @@ -109,7 +110,7 @@ pub(crate) struct LogSchemaContext { } #[derive(Serialize, Debug, Clone)] -pub(crate) struct EventChain { +pub struct EventChain { pub function_name: String, pub variant_name: Option, } @@ -122,8 +123,8 @@ pub(crate) struct Error { pub r#override: Option>, } -#[derive(Serialize, Debug, Deserialize, Default)] -pub(crate) struct LLMOutputModelMetadata { +#[derive(Serialize, Debug, Deserialize, Default, Clone)] +pub struct LLMOutputModelMetadata { pub logprobs: Option, pub prompt_tokens: Option, pub output_tokens: Option, @@ -131,32 +132,36 @@ pub(crate) struct LLMOutputModelMetadata { pub finish_reason: Option, } -#[derive(Serialize, Debug)] -pub(crate) struct LLMOutputModel { +#[derive(Serialize, Debug, Clone)] +pub struct LLMOutputModel { pub raw_text: String, pub metadata: LLMOutputModelMetadata, pub r#override: Option>, } -#[derive(Serialize, Debug)] +#[derive(Serialize, Debug, Clone)] pub(crate) struct LLMChat { pub role: Role, pub content: Vec, } -#[derive(Serialize, Debug)] -pub(crate) enum ContentPart { +#[derive(Serialize, Debug, Clone)] +pub enum ContentPart { #[serde(rename = "text")] Text(String), #[serde(rename = "url_image")] UrlImage(String), #[serde(rename = "b64_image")] B64Image(String), + #[serde(rename = "url_audio")] + UrlAudio(String), + #[serde(rename = "b64_audio")] + B64Audio(String), } -#[derive(Serialize, Debug, Deserialize)] +#[derive(Serialize, Debug, Deserialize, Clone)] #[serde(untagged)] -pub(crate) enum Role { +pub enum Role { #[serde(rename = "assistant")] Assistant, #[serde(rename = "user")] @@ -166,14 +171,15 @@ pub(crate) enum Role { Other(String), } -#[derive(Serialize, Debug)] +#[derive(Serialize, Debug, Clone)] pub(crate) struct LLMEventInput { pub prompt: LLMEventInputPrompt, - pub invocation_params: HashMap, + #[serde(rename = "invocation_params")] + pub request_options: HashMap, } -#[derive(Serialize, Debug)] -pub(crate) struct LLMEventSchema { +#[derive(Serialize, Debug, Clone)] +pub struct LLMEventSchema { pub model_name: String, pub provider: String, pub input: LLMEventInput, @@ -181,20 +187,21 @@ pub(crate) struct LLMEventSchema { pub error: Option, } -#[derive(Serialize, Debug)] +#[derive(Serialize, Debug, Clone)] #[serde(untagged)] pub(crate) enum MetadataType { + #[allow(dead_code)] Single(LLMEventSchema), Multi(Vec), } -#[derive(Serialize, Debug)] -pub(crate) struct LLMEventInputPrompt { +#[derive(Serialize, Debug, Clone)] +pub struct LLMEventInputPrompt { pub template: Template, pub template_args: HashMap, pub r#override: Option>, } -#[derive(Serialize, Debug)] +#[derive(Serialize, Debug, Clone)] #[serde(untagged)] #[allow(dead_code)] pub enum Template { diff --git a/engine/baml-runtime/src/tracing/api_wrapper/env_setup.rs b/engine/baml-runtime/src/tracing/api_wrapper/env_setup.rs index 0388003af..fbaf88582 100644 --- a/engine/baml-runtime/src/tracing/api_wrapper/env_setup.rs +++ b/engine/baml-runtime/src/tracing/api_wrapper/env_setup.rs @@ -13,12 +13,20 @@ pub struct Config { pub stage: String, #[serde(default = "default_host_name")] pub host_name: String, + #[serde(default)] // default is false + pub log_redaction_enabled: bool, + #[serde(default = "default_redaction_placeholder")] + pub log_redaction_placeholder: String, } fn default_base_url() -> String { "https://app.boundaryml.com/api".to_string() } +fn default_redaction_placeholder() -> String { + "".to_string() +} + fn default_sessions_id() -> String { uuid::Uuid::new_v4().to_string() } diff --git a/engine/baml-runtime/src/tracing/api_wrapper/mod.rs b/engine/baml-runtime/src/tracing/api_wrapper/mod.rs index 7dd70b6e7..665d4714c 100644 --- a/engine/baml-runtime/src/tracing/api_wrapper/mod.rs +++ b/engine/baml-runtime/src/tracing/api_wrapper/mod.rs @@ -2,23 +2,22 @@ mod env_setup; use anyhow::Result; pub(super) mod api_interface; -pub(super) mod core_types; -use instant::Duration; +pub(crate) mod core_types; use serde::{de::DeserializeOwned, Deserialize}; use serde_json::{json, Value}; -use crate::request::create_client; +use crate::request::create_tracing_client; pub(super) use self::api_interface::{BoundaryAPI, BoundaryTestAPI}; use self::core_types::{TestCaseStatus, UpdateTestCase}; #[derive(Debug, Clone)] pub struct APIWrapper { - config: APIConfig, + pub(super) config: APIConfig, } #[derive(Debug, Clone)] -enum APIConfig { +pub(super) enum APIConfig { LocalOnly(PartialAPIConfig), Web(CompleteAPIConfig), } @@ -59,61 +58,17 @@ impl APIConfig { } } - #[allow(dead_code)] - #[allow(clippy::too_many_arguments)] - pub(crate) fn copy_from( - &self, - base_url: Option<&str>, - api_key: Option<&str>, - project_id: Option<&str>, - sessions_id: Option<&str>, - stage: Option<&str>, - host_name: Option<&str>, - _debug_level: Option, - ) -> Self { - let base_url = base_url.unwrap_or(match self { - Self::LocalOnly(config) => config.base_url.as_str(), - Self::Web(config) => config.base_url.as_str(), - }); - let api_key = api_key.or(match self { - Self::LocalOnly(config) => config.api_key.as_deref(), - Self::Web(config) => Some(config.api_key.as_str()), - }); - let project_id = project_id.or(match self { - Self::LocalOnly(config) => config.project_id.as_deref(), - Self::Web(config) => Some(config.project_id.as_str()), - }); - let sessions_id = sessions_id.unwrap_or_else(|| match self { - Self::LocalOnly(config) => &config.sessions_id, - Self::Web(config) => &config.sessions_id, - }); - let stage = stage.unwrap_or_else(|| match self { - Self::LocalOnly(config) => &config.stage, - Self::Web(config) => &config.stage, - }); - let host_name = host_name.unwrap_or_else(|| match self { - Self::LocalOnly(config) => &config.host_name, - Self::Web(config) => &config.host_name, - }); + pub fn log_redaction_enabled(&self) -> bool { + match self { + Self::LocalOnly(config) => config.log_redaction_enabled, + Self::Web(config) => config.log_redaction_enabled, + } + } - match (api_key, project_id) { - (Some(api_key), Some(project_id)) => Self::Web(CompleteAPIConfig { - base_url: base_url.to_string(), - api_key: api_key.to_string(), - project_id: project_id.to_string(), - stage: stage.to_string(), - sessions_id: sessions_id.to_string(), - host_name: host_name.to_string(), - client: create_client().unwrap(), - }), - _ => Self::LocalOnly(PartialAPIConfig { - base_url: base_url.to_string(), - api_key: api_key.map(String::from), - project_id: project_id.map(String::from), - stage: stage.to_string(), - sessions_id: sessions_id.to_string(), - host_name: host_name.to_string(), - }), + pub fn log_redaction_placeholder(&self) -> &str { + match self { + Self::LocalOnly(config) => &config.log_redaction_placeholder, + Self::Web(config) => &config.log_redaction_placeholder, } } } @@ -126,6 +81,8 @@ pub(super) struct CompleteAPIConfig { pub stage: String, pub sessions_id: String, pub host_name: String, + pub log_redaction_enabled: bool, + pub log_redaction_placeholder: String, client: reqwest::Client, } @@ -140,6 +97,8 @@ pub(super) struct PartialAPIConfig { stage: String, sessions_id: String, host_name: String, + log_redaction_enabled: bool, + log_redaction_placeholder: String, } impl CompleteAPIConfig { @@ -169,6 +128,7 @@ impl CompleteAPIConfig { #[derive(Deserialize)] struct LogResponse { + #[allow(dead_code)] status: Option, } @@ -316,9 +276,12 @@ impl BoundaryTestAPI for APIWrapper { } impl APIWrapper { - pub fn from_env_vars>(value: impl Iterator) -> Self { + pub fn from_env_vars>(value: impl Iterator) -> Result { let config = env_setup::Config::from_env_vars(value).unwrap(); - match (&config.secret, &config.project_id) { + if config.log_redaction_enabled { + log::info!("Redaction enabled: {}", config.log_redaction_enabled); + } + Ok(match (&config.secret, &config.project_id) { (Some(api_key), Some(project_id)) => Self { config: APIConfig::Web(CompleteAPIConfig { base_url: config.base_url, @@ -327,7 +290,9 @@ impl APIWrapper { stage: config.stage, sessions_id: config.sessions_id, host_name: config.host_name, - client: create_client().unwrap(), + client: create_tracing_client()?, + log_redaction_enabled: config.log_redaction_enabled, + log_redaction_placeholder: config.log_redaction_placeholder, }), }, _ => Self { @@ -338,9 +303,11 @@ impl APIWrapper { stage: config.stage, sessions_id: config.sessions_id, host_name: config.host_name, + log_redaction_enabled: config.log_redaction_enabled, + log_redaction_placeholder: config.log_redaction_placeholder, }), }, - } + }) } pub fn enabled(&self) -> bool { diff --git a/engine/baml-runtime/src/tracing/mod.rs b/engine/baml-runtime/src/tracing/mod.rs index 4d3983b98..77215ca7a 100644 --- a/engine/baml-runtime/src/tracing/mod.rs +++ b/engine/baml-runtime/src/tracing/mod.rs @@ -1,22 +1,23 @@ -mod api_wrapper; -#[cfg(not(target_arch = "wasm32"))] -mod threaded_tracer; -#[cfg(target_arch = "wasm32")] -mod wasm_tracer; +pub mod api_wrapper; -use anyhow::Result; -use baml_types::{BamlMap, BamlValue}; +use crate::on_log_event::LogEventCallbackSync; +use crate::InnerTraceStats; +use anyhow::{Context, Result}; +use baml_types::{BamlMap, BamlMediaType, BamlValue}; +use cfg_if::cfg_if; use colored::Colorize; use internal_baml_jinja::RenderedPrompt; -use serde_json::json; use std::collections::HashMap; +use std::sync::{Arc, Mutex}; use uuid::Uuid; use crate::{ client_builder::ClientBuilder, internal::llm_client::LLMResponse, - tracing::api_wrapper::core_types::Role, type_builder::TypeBuilder, FunctionResult, - RuntimeContext, RuntimeContextManager, SpanCtx, TestResponse, + internal::llm_client::LLMResponse, tracing::api_wrapper::core_types::Role, + tracing::api_wrapper::core_types::Role, type_builder::TypeBuilder, type_builder::TypeBuilder, + FunctionResult, FunctionResult, RuntimeContext, RuntimeContext, RuntimeContextManager, + RuntimeContextManager, SpanCtx, SpanCtx, TestResponse, TestResponse, TraceStats, }; use self::api_wrapper::{ @@ -27,16 +28,17 @@ use self::api_wrapper::{ }, APIWrapper, }; -#[cfg(not(target_arch = "wasm32"))] -use self::threaded_tracer::ThreadedTracer; -#[cfg(target_arch = "wasm32")] -use self::wasm_tracer::NonThreadedTracer; +cfg_if! { + if #[cfg(target_arch = "wasm32")] { + mod wasm_tracer; + use self::wasm_tracer::NonThreadedTracer as TracerImpl; + } else { + mod threaded_tracer; + use self::threaded_tracer::ThreadedTracer as TracerImpl; + } +} -#[cfg(not(target_arch = "wasm32"))] -type TracerImpl = ThreadedTracer; -#[cfg(target_arch = "wasm32")] -type TracerImpl = NonThreadedTracer; #[derive(Debug)] pub struct TracingSpan { span_id: Uuid, @@ -48,36 +50,54 @@ pub struct BamlTracer { options: APIWrapper, enabled: bool, tracer: Option, + trace_stats: TraceStats, } +#[cfg(not(target_arch = "wasm32"))] +static_assertions::assert_impl_all!(BamlTracer: Send, Sync); + impl BamlTracer { pub fn new>( options: Option, env_vars: impl Iterator, - ) -> Self { - let options = options.unwrap_or_else(|| APIWrapper::from_env_vars(env_vars)); + ) -> Result { + let options = match options { + Some(wrapper) => wrapper, + None => APIWrapper::from_env_vars(env_vars)?, + }; + + let trace_stats = TraceStats::default(); let tracer = BamlTracer { tracer: if options.enabled() { - Some(TracerImpl::new( - &options, - if options.stage() == "test" { 1 } else { 20 }, - )) + Some(TracerImpl::new(&options, 20, trace_stats.clone())) } else { None }, enabled: options.enabled(), options, + trace_stats, }; - tracer + Ok(tracer) } - pub(crate) fn flush(&self) -> Result<()> { + #[cfg(not(target_arch = "wasm32"))] + pub(crate) fn set_log_event_callback(&self, log_event_callback: LogEventCallbackSync) { if let Some(tracer) = &self.tracer { - tracer.flush() - } else { - Ok(()) + tracer.set_log_event_callback(log_event_callback); + } + } + + pub(crate) fn flush(&self) -> Result<()> { + if let Some(ref tracer) = self.tracer { + tracer.flush().context("Failed to flush BAML traces")?; } + + Ok(()) + } + + pub(crate) fn drain_stats(&self) -> InnerTraceStats { + self.trace_stats.drain() } pub(crate) fn start_span( @@ -86,7 +106,9 @@ impl BamlTracer { ctx: &RuntimeContextManager, params: &BamlMap, ) -> Option { + self.trace_stats.guard().start(); let span_id = ctx.enter(function_name); + log::trace!("Entering span {:#?} in {:?}", span_id, function_name); if !self.enabled { return None; } @@ -106,6 +128,8 @@ impl BamlTracer { ctx: &RuntimeContextManager, response: Option, ) -> Result> { + let guard = self.trace_stats.guard(); + let Some((span_id, event_chain, tags)) = ctx.exit() else { anyhow::bail!( "Attempting to finish a span {:#?} without first starting one. Current context {:#?}", @@ -122,8 +146,10 @@ impl BamlTracer { tracer .submit(response.to_log_schema(&self.options, event_chain, tags, span)) .await?; + guard.done(); Ok(Some(span_id)) } else { + guard.done(); Ok(None) } } @@ -135,6 +161,7 @@ impl BamlTracer { ctx: &RuntimeContextManager, response: Option, ) -> Result> { + let guard = self.trace_stats.guard(); let Some((span_id, event_chain, tags)) = ctx.exit() else { anyhow::bail!( "Attempting to finish a span {:#?} without first starting one. Current context {:#?}", @@ -142,6 +169,12 @@ impl BamlTracer { ctx ); }; + log::trace!( + "Finishing span: {:#?} {}\nevent chain {:?}", + span, + span_id, + event_chain + ); if span.span_id != span_id { anyhow::bail!("Span ID mismatch: {} != {}", span.span_id, span_id); @@ -149,8 +182,10 @@ impl BamlTracer { if let Some(tracer) = &self.tracer { tracer.submit(response.to_log_schema(&self.options, event_chain, tags, span))?; + guard.finalize(); Ok(Some(span_id)) } else { + guard.done(); Ok(None) } } @@ -162,6 +197,7 @@ impl BamlTracer { ctx: &RuntimeContextManager, response: &Result, ) -> Result> { + let guard = self.trace_stats.guard(); let Some((span_id, event_chain, tags)) = ctx.exit() else { anyhow::bail!("Attempting to finish a span without first starting one"); }; @@ -186,8 +222,10 @@ impl BamlTracer { tracer .submit(response.to_log_schema(&self.options, event_chain, tags, span)) .await?; + guard.done(); Ok(Some(span_id)) } else { + guard.done(); Ok(None) } } @@ -199,10 +237,18 @@ impl BamlTracer { ctx: &RuntimeContextManager, response: &Result, ) -> Result> { + let guard = self.trace_stats.guard(); let Some((span_id, event_chain, tags)) = ctx.exit() else { anyhow::bail!("Attempting to finish a span without first starting one"); }; + log::trace!( + "Finishing baml span: {:#?} {}\nevent chain {:?}", + span, + span_id, + event_chain + ); + if span.span_id != span_id { anyhow::bail!("Span ID mismatch: {} != {}", span.span_id, span_id); } @@ -221,8 +267,10 @@ impl BamlTracer { if let Some(tracer) = &self.tracer { tracer.submit(response.to_log_schema(&self.options, event_chain, tags, span))?; + guard.finalize(); Ok(Some(span_id)) } else { + guard.done(); Ok(None) } } @@ -508,7 +556,7 @@ impl From<&LLMResponse> for LLMEventSchema { template_args: Default::default(), r#override: None, }, - invocation_params: Default::default(), + request_options: Default::default(), }, output: None, error: Some(s.clone()), @@ -522,7 +570,7 @@ impl From<&LLMResponse> for LLMEventSchema { template_args: Default::default(), r#override: None, }, - invocation_params: s.invocation_params.clone(), + request_options: s.request_options.clone(), }, output: Some(LLMOutputModel { raw_text: s.content.clone(), @@ -546,7 +594,7 @@ impl From<&LLMResponse> for LLMEventSchema { template_args: Default::default(), r#override: None, }, - invocation_params: s.invocation_params.clone(), + request_options: s.request_options.clone(), }, output: None, error: Some(s.message.clone()), @@ -576,12 +624,32 @@ impl From<&RenderedPrompt> for Template { internal_baml_jinja::ChatMessagePart::Text(t) => { ContentPart::Text(t.clone()) } - internal_baml_jinja::ChatMessagePart::Image( - baml_types::BamlImage::Base64(u), - ) => ContentPart::B64Image(u.base64.clone()), - internal_baml_jinja::ChatMessagePart::Image( - baml_types::BamlImage::Url(u), - ) => ContentPart::UrlImage(u.url.clone()), + internal_baml_jinja::ChatMessagePart::Image(media) + | internal_baml_jinja::ChatMessagePart::Audio(media) => match media + { + baml_types::BamlMedia::Base64(media_type, data) => { + match media_type { + BamlMediaType::Image => { + ContentPart::B64Image(data.base64.clone()) + } + BamlMediaType::Audio => { + ContentPart::B64Audio(data.base64.clone()) + } + _ => panic!("Unsupported media type"), + } + } + baml_types::BamlMedia::Url(media_type, data) => { + match media_type { + BamlMediaType::Image => { + ContentPart::UrlImage(data.url.clone()) + } + BamlMediaType::Audio => { + ContentPart::UrlAudio(data.url.clone()) + } + _ => panic!("Unsupported media type"), + } + } + }, }) .collect::>(), }) diff --git a/engine/baml-runtime/src/tracing/threaded_tracer.rs b/engine/baml-runtime/src/tracing/threaded_tracer.rs index 7871cd677..2994266c4 100644 --- a/engine/baml-runtime/src/tracing/threaded_tracer.rs +++ b/engine/baml-runtime/src/tracing/threaded_tracer.rs @@ -1,155 +1,378 @@ -use std::sync::mpsc::{Receiver, Sender, TryRecvError}; - use anyhow::Result; -use web_time::Duration; +use std::sync::{mpsc, Arc, Mutex}; +use tokio::sync::watch; +use web_time::{Duration, Instant}; + +use crate::{ + on_log_event::{LogEvent, LogEventCallbackSync, LogEventMetadata}, + tracing::api_wrapper::core_types::{ContentPart, MetadataType, Template, ValueType}, + TraceStats, +}; + +use super::api_wrapper::{core_types::LogSchema, APIConfig, APIWrapper, BoundaryAPI}; -use super::api_wrapper::{core_types::LogSchema, APIWrapper, BoundaryAPI}; +const MAX_TRACE_SEND_CONCURRENCY: usize = 10; enum TxEventSignal { + #[allow(dead_code)] Stop, - Flush, + Flush(u128), Submit(LogSchema), } -enum RxEventSignal { - Done, +enum ProcessorStatus { + Active, + Done(u128), } -async fn process_batch_async(api_config: &APIWrapper, batch: Vec) { - log::info!("Processing batch of size: {}", batch.len()); - for work in batch { - match api_config.log_schema(&work).await { - Ok(_) => { - log::debug!( - "Successfully sent log schema: {} - {:?}", - work.event_id, - work.context.event_chain.last() - ); - } - Err(e) => { - log::warn!("Unable to emit BAML logs: {}", e); - } +struct DeliveryThread { + api_config: Arc, + span_rx: mpsc::Receiver, + stop_tx: watch::Sender, + rt: tokio::runtime::Runtime, + max_batch_size: usize, + max_concurrency: Arc, + stats: TraceStats, +} + +impl DeliveryThread { + fn new( + api_config: APIWrapper, + span_rx: mpsc::Receiver, + stop_tx: watch::Sender, + max_batch_size: usize, + stats: TraceStats, + ) -> Self { + let rt = tokio::runtime::Runtime::new().unwrap(); + + Self { + api_config: Arc::new(api_config), + span_rx, + stop_tx, + rt, + max_batch_size, + max_concurrency: tokio::sync::Semaphore::new(MAX_TRACE_SEND_CONCURRENCY).into(), + stats, } } -} -fn process_batch(rt: &tokio::runtime::Runtime, api_config: &APIWrapper, batch: Vec) { - rt.block_on(process_batch_async(api_config, batch)); -} + async fn process_batch(&self, batch: Vec) { + let work = batch + .into_iter() + .map(|work| { + let api_config = self.api_config.clone(); + let semaphore = self.max_concurrency.clone(); + let stats = self.stats.clone(); + stats.guard().send(); -fn batch_processor( - api_config: APIWrapper, - rx: Receiver, - tx: Sender, - max_batch_size: usize, -) { - let api_config = &api_config; - let mut batch = Vec::with_capacity(max_batch_size); - let mut now = std::time::Instant::now(); - let rt = tokio::runtime::Runtime::new().unwrap(); - loop { - // Try to fill the batch up to max_batch_size - let (batch_full, flush, exit) = match rx.recv_timeout(Duration::from_millis(100)) { - Ok(TxEventSignal::Submit(work)) => { - batch.push(work); - (batch.len() >= max_batch_size, false, false) - } - Ok(TxEventSignal::Flush) => (false, true, false), - Ok(TxEventSignal::Stop) => (false, false, true), - Err(std::sync::mpsc::RecvTimeoutError::Timeout) => (false, false, false), - Err(std::sync::mpsc::RecvTimeoutError::Disconnected) => (false, false, true), - }; + let stats_clone = stats.clone(); + async move { + let guard = stats_clone.guard(); + let Ok(_acquired) = semaphore.acquire().await else { + log::warn!( + "Failed to acquire semaphore because it was closed - not sending span" + ); + return; + }; + match api_config.log_schema(&work).await { + Ok(_) => { + guard.done(); + log::debug!( + "Successfully sent log schema: {} - {:?}", + work.event_id, + work.context.event_chain.last() + ); + } + Err(e) => { + log::warn!("Unable to emit BAML logs: {}", e); + } + } + } + }) + .collect::>(); - let time_trigger = now.elapsed().as_millis() >= 1000; + // Wait for all the futures to complete + futures::future::join_all(work).await; + } - let should_process_batch = - (batch_full || flush || exit || time_trigger) && !batch.is_empty(); + fn run(&self) { + let mut batch = Vec::with_capacity(self.max_batch_size); + let mut now = Instant::now(); + loop { + // Try to fill the batch up to max_batch_size + let (batch_full, flush, exit) = + match self.span_rx.recv_timeout(Duration::from_millis(100)) { + Ok(TxEventSignal::Submit(work)) => { + self.stats.guard().submit(); + batch.push(work); + (batch.len() >= self.max_batch_size, None, false) + } + Ok(TxEventSignal::Flush(id)) => (false, Some(id), false), + Ok(TxEventSignal::Stop) => (false, None, true), + Err(mpsc::RecvTimeoutError::Timeout) => (false, None, false), + Err(mpsc::RecvTimeoutError::Disconnected) => (false, None, true), + }; - // Send events every 1 second or when the batch is full - if should_process_batch { - process_batch(&rt, api_config, std::mem::take(&mut batch)); - } + let time_trigger = now.elapsed().as_millis() >= 1000; - if should_process_batch || time_trigger { - now = std::time::Instant::now(); - } + let should_process_batch = + (batch_full || flush.is_some() || exit || time_trigger) && !batch.is_empty(); - if flush { - match tx.send(RxEventSignal::Done) { - Ok(_) => {} - Err(e) => { - println!("Error sending flush signal: {:?}", e); + // Send events every 1 second or when the batch is full + if should_process_batch { + self.rt + .block_on(self.process_batch(std::mem::take(&mut batch))); + } + + if should_process_batch || time_trigger { + now = std::time::Instant::now(); + } + + if let Some(id) = flush { + match self.stop_tx.send(ProcessorStatus::Done(id)) { + Ok(_) => {} + Err(e) => { + log::error!("Error sending flush signal: {:?}", e); + } } } - } - if exit { - return; + if exit { + return; + } } } } pub(super) struct ThreadedTracer { - tx: std::sync::Arc>>, - rx: std::sync::Arc>>, + api_config: Arc, + span_tx: mpsc::Sender, + stop_rx: watch::Receiver, #[allow(dead_code)] join_handle: std::thread::JoinHandle<()>, + log_event_callback: Arc>>, + stats: TraceStats, } impl ThreadedTracer { fn start_worker( api_config: APIWrapper, max_batch_size: usize, + stats: TraceStats, ) -> ( - std::sync::mpsc::Sender, - std::sync::mpsc::Receiver, + mpsc::Sender, + watch::Receiver, std::thread::JoinHandle<()>, ) { - let (tx, rx) = std::sync::mpsc::channel(); - let (stop_tx, stop_rx) = std::sync::mpsc::channel(); - let join_handle = - std::thread::spawn(move || batch_processor(api_config, rx, stop_tx, max_batch_size)); + let (span_tx, span_rx) = mpsc::channel(); + let (stop_tx, stop_rx) = watch::channel(ProcessorStatus::Active); + let join_handle = std::thread::spawn(move || { + DeliveryThread::new(api_config, span_rx, stop_tx, max_batch_size, stats).run(); + }); - (tx, stop_rx, join_handle) + (span_tx, stop_rx, join_handle) } - pub fn new(api_config: &APIWrapper, max_batch_size: usize) -> Self { - let (tx, rx, join_handle) = Self::start_worker(api_config.clone(), max_batch_size); + pub fn new(api_config: &APIWrapper, max_batch_size: usize, stats: TraceStats) -> Self { + let (span_tx, stop_rx, join_handle) = + Self::start_worker(api_config.clone(), max_batch_size, stats.clone()); + Self { - tx: std::sync::Arc::new(std::sync::Mutex::new(tx)), - rx: std::sync::Arc::new(std::sync::Mutex::new(rx)), + api_config: Arc::new(api_config.clone()), + span_tx, + stop_rx, join_handle, + log_event_callback: Arc::new(Mutex::new(None)), + stats, } } pub fn flush(&self) -> Result<()> { - self.tx - .lock() - .map_err(|e| anyhow::anyhow!("Error flushing BatchProcessor: {:?}", e))? - .send(TxEventSignal::Flush)?; + let id = std::time::SystemTime::now() + .duration_since(std::time::UNIX_EPOCH) + .unwrap() + .as_millis(); + self.span_tx.send(TxEventSignal::Flush(id))?; - loop { - match self.rx.lock() { - Ok(rx) => match rx.try_recv() { - Ok(RxEventSignal::Done) => return Ok(()), - Err(TryRecvError::Empty) => { - std::thread::sleep(Duration::from_millis(100)); + let flush_start = Instant::now(); + + while flush_start.elapsed() < Duration::from_secs(60) { + { + match *self.stop_rx.borrow() { + ProcessorStatus::Active => {} + ProcessorStatus::Done(r_id) if r_id >= id => { + return Ok(()); } - Err(TryRecvError::Disconnected) => { - return Err(anyhow::anyhow!("BatchProcessor worker thread disconnected")) + ProcessorStatus::Done(id) => { + // Old flush, ignore } - }, - Err(e) => return Err(anyhow::anyhow!("Error flushing BatchProcessor: {:?}", e)), + } } + std::thread::sleep(Duration::from_millis(100)); } + + anyhow::bail!("BatchProcessor worker thread did not finish in time") } - pub fn submit(&self, event: LogSchema) -> Result<()> { - log::info!("Submitting work {}", event.event_id); - let tx = self - .tx - .lock() - .map_err(|e| anyhow::anyhow!("Error submitting work: {:?}", e))?; - tx.send(TxEventSignal::Submit(event))?; + pub fn set_log_event_callback(&self, log_event_callback: LogEventCallbackSync) { + // Get a mutable lock on the log_event_callback + let mut callback_lock = self.log_event_callback.lock().unwrap(); + + *callback_lock = Some(log_event_callback); + } + + pub fn submit(&self, mut event: LogSchema) -> Result<()> { + let callback = self.log_event_callback.lock().unwrap(); + if let Some(ref callback) = *callback { + let event = event.clone(); + let llm_output_model = event.metadata.as_ref().and_then(|m| match m { + MetadataType::Single(llm_event) => Some(llm_event), + // take the last element in the vector + MetadataType::Multi(llm_events) => llm_events.last().clone(), + }); + + let log_event_result = callback(LogEvent { + metadata: LogEventMetadata { + event_id: event.event_id.clone(), + parent_id: event.parent_event_id.clone(), + root_event_id: event.root_event_id.clone(), + }, + prompt: llm_output_model.and_then(|llm_event| { + match llm_event.clone().input.prompt.template { + Template::Single(text) => Some(text), + Template::Multiple(chat_prompt) => { + serde_json::to_string_pretty(&chat_prompt).ok().or_else(|| { + log::debug!( + "Failed to serialize chat prompt for event {}", + event.event_id + ); + None + }) + } + } + }), + raw_output: llm_output_model.and_then(|llm_event| { + llm_event + .clone() + .output + .and_then(|output| Some(output.raw_text)) + }), + parsed_output: event.io.output.and_then(|output| match output.value { + // so the string value looks something like: + // '"[\"d\", \"e\", \"f\"]"' + // so we need to unescape it once and turn it into a normal json + // and then stringify it to get: + // '["d", "e", "f"]' + ValueType::String(value) => serde_json::from_str::(&value) + .ok() + .and_then(|json_value| json_value.as_str().map(|s| s.to_string())) + .or_else(|| Some(value)), + _ => serde_json::to_string_pretty(&output.value) + .ok() + .or_else(|| { + log::debug!( + "Failed to serialize output value for event {}", + event.event_id + ); + None + }), + }), + start_time: event.context.start_time, + }); + + if log_event_result.is_err() { + log::error!( + "Error calling log_event_callback for event id: {}", + event.event_id + ); + } + + log_event_result?; + } + + // TODO: do the redaction + + // Redact the event + event = redact_event(event, &self.api_config.config); + + self.span_tx.send(TxEventSignal::Submit(event))?; Ok(()) } } + +fn redact_event(mut event: LogSchema, api_config: &APIConfig) -> LogSchema { + let redaction_enabled = api_config.log_redaction_enabled(); + let placeholder = api_config.log_redaction_placeholder(); + + if !redaction_enabled { + return event; + } + + let placeholder = placeholder + .replace("{root_event.id}", &event.root_event_id) + .replace("{event.id}", &event.event_id); + + // Redact LLMOutputModel raw_text + if let Some(metadata) = &mut event.metadata { + match metadata { + MetadataType::Single(llm_event) => { + if let Some(output) = &mut llm_event.output { + output.raw_text = placeholder.clone(); + } + } + MetadataType::Multi(llm_events) => { + for llm_event in llm_events { + if let Some(output) = &mut llm_event.output { + output.raw_text = placeholder.clone(); + } + } + } + } + } + + // Redact input IO + if let Some(input) = &mut event.io.input { + match &mut input.value { + ValueType::String(s) => *s = placeholder.clone(), + ValueType::List(v) => v.iter_mut().for_each(|s| *s = placeholder.clone()), + } + } + + // Redact output IO + if let Some(output) = &mut event.io.output { + match &mut output.value { + ValueType::String(s) => *s = placeholder.clone(), + ValueType::List(v) => v.iter_mut().for_each(|s| *s = placeholder.clone()), + } + } + + // Redact LLMEventInput Template + if let Some(metadata) = &mut event.metadata { + match metadata { + MetadataType::Single(llm_event) => { + redact_template(&mut llm_event.input.prompt.template, &placeholder); + } + MetadataType::Multi(llm_events) => { + for llm_event in llm_events { + redact_template(&mut llm_event.input.prompt.template, &placeholder); + } + } + } + } + + event +} + +fn redact_template(template: &mut Template, placeholder: &str) { + match template { + Template::Single(s) => *s = placeholder.to_string(), + Template::Multiple(chats) => { + for chat in chats { + for part in &mut chat.content { + if let ContentPart::Text(s) = part { + *s = placeholder.to_string(); + } + } + } + } + } +} diff --git a/engine/baml-runtime/src/tracing/wasm_tracer.rs b/engine/baml-runtime/src/tracing/wasm_tracer.rs index 3f7c25904..e935bfcc7 100644 --- a/engine/baml-runtime/src/tracing/wasm_tracer.rs +++ b/engine/baml-runtime/src/tracing/wasm_tracer.rs @@ -2,12 +2,14 @@ use anyhow::Result; use super::api_wrapper::{core_types::LogSchema, APIWrapper, BoundaryAPI}; +use crate::TraceStats; + pub(super) struct NonThreadedTracer { options: APIWrapper, } impl NonThreadedTracer { - pub fn new(api_config: &APIWrapper, _max_batch_size: usize) -> Self { + pub fn new(api_config: &APIWrapper, _max_batch_size: usize, _stats: TraceStats) -> Self { Self { options: api_config.clone(), } diff --git a/engine/baml-runtime/src/type_builder/mod.rs b/engine/baml-runtime/src/type_builder/mod.rs index 29d22aec0..aec8acb98 100644 --- a/engine/baml-runtime/src/type_builder/mod.rs +++ b/engine/baml-runtime/src/type_builder/mod.rs @@ -1,11 +1,11 @@ -use std::collections::HashMap; use std::sync::{Arc, Mutex}; use baml_types::{BamlValue, FieldType}; +use indexmap::IndexMap; use crate::runtime_context::{PropertyAttributes, RuntimeClassOverride, RuntimeEnumOverride}; -type MetaData = Arc>>; +type MetaData = Arc>>; trait Meta { fn meta(&self) -> MetaData; @@ -55,7 +55,7 @@ impl From<&Arc>> for PropertyAttributes { } pub struct ClassBuilder { - properties: Arc>>>>, + properties: Arc>>>>, meta: MetaData, } impl_meta!(ClassBuilder); @@ -93,7 +93,7 @@ impl ClassBuilder { } pub struct EnumBuilder { - values: Arc>>>>, + values: Arc>>>>, meta: MetaData, } impl_meta!(EnumBuilder); @@ -121,10 +121,43 @@ impl EnumBuilder { } } +impl std::fmt::Debug for TypeBuilder { + fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { + // Start the debug printout with the struct name + write!(f, "TypeBuilder {{\n")?; + + // Safely attempt to acquire the lock and print classes + write!(f, " classes: ")?; + match self.classes.lock() { + Ok(classes) => { + // We iterate through the keys only to avoid deadlocks and because we might not be able to print the values + // safely without deep control over locking mechanisms + let keys: Vec<_> = classes.keys().collect(); + write!(f, "{:?},\n", keys)? + } + Err(_) => write!(f, "Cannot acquire lock,\n")?, + } + + // Safely attempt to acquire the lock and print enums + write!(f, " enums: ")?; + match self.enums.lock() { + Ok(enums) => { + // Similarly, print only the keys + let keys: Vec<_> = enums.keys().collect(); + write!(f, "{:?}\n", keys)? + } + Err(_) => write!(f, "Cannot acquire lock,\n")?, + } + + // Close the struct printout + write!(f, "}}") + } +} + #[derive(Clone)] pub struct TypeBuilder { - classes: Arc>>>>, - enums: Arc>>>>, + classes: Arc>>>>, + enums: Arc>>>>, } impl TypeBuilder { @@ -158,8 +191,8 @@ impl TypeBuilder { pub fn to_overrides( &self, ) -> ( - HashMap, - HashMap, + IndexMap, + IndexMap, ) { log::debug!("Converting types to overrides"); let cls = self @@ -232,7 +265,11 @@ impl TypeBuilder { ) }) .collect(); - + log::debug!( + "Dynamic types: \n {:#?} \n Dynamic enums\n {:#?} enums", + cls, + enm + ); (cls, enm) } } diff --git a/engine/baml-runtime/src/types/context_manager.rs b/engine/baml-runtime/src/types/context_manager.rs index b9ec40d08..45f310979 100644 --- a/engine/baml-runtime/src/types/context_manager.rs +++ b/engine/baml-runtime/src/types/context_manager.rs @@ -147,7 +147,7 @@ impl RuntimeContextManager { let ctx = self.context.lock().unwrap(); let env_vars = env_vars - .map(|x| (x.as_ref().to_string(), "".to_string())) + .map(|x| (x.as_ref().to_string(), format!("${{{}}}", x.as_ref()))) .chain(self.env_vars.iter().map(|(k, v)| (k.clone(), v.clone()))); RuntimeContext { diff --git a/engine/baml-runtime/src/types/mod.rs b/engine/baml-runtime/src/types/mod.rs index b904ddfdd..33dce094c 100644 --- a/engine/baml-runtime/src/types/mod.rs +++ b/engine/baml-runtime/src/types/mod.rs @@ -1,10 +1,13 @@ mod context_manager; mod expression_helper; +pub mod on_log_event; mod response; pub(crate) mod runtime_context; mod stream; +mod trace_stats; pub use context_manager::RuntimeContextManager; pub use response::{FunctionResult, TestFailReason, TestResponse, TestStatus}; pub use runtime_context::{RuntimeContext, SpanCtx}; pub use stream::FunctionResultStream; +pub use trace_stats::{InnerTraceStats, TraceStats}; diff --git a/engine/baml-runtime/src/types/on_log_event.rs b/engine/baml-runtime/src/types/on_log_event.rs new file mode 100644 index 000000000..2d2bd1b91 --- /dev/null +++ b/engine/baml-runtime/src/types/on_log_event.rs @@ -0,0 +1,22 @@ +use anyhow::Error; +use serde::{Deserialize, Serialize}; + +#[derive(Debug, Serialize, Deserialize, Clone)] +pub struct LogEvent { + pub metadata: LogEventMetadata, + pub prompt: Option, + pub raw_output: Option, + // json structure or a string + pub parsed_output: Option, + pub start_time: String, +} + +#[derive(Debug, Serialize, Deserialize, Clone)] + +pub struct LogEventMetadata { + pub event_id: String, + pub parent_id: Option, + pub root_event_id: String, +} + +pub type LogEventCallbackSync = Box Result<(), Error> + Send + Sync>; diff --git a/engine/baml-runtime/src/types/response.rs b/engine/baml-runtime/src/types/response.rs index 124e0939c..0ea4f033b 100644 --- a/engine/baml-runtime/src/types/response.rs +++ b/engine/baml-runtime/src/types/response.rs @@ -166,7 +166,6 @@ impl TestResponse { } } -use std::any::Any; #[cfg(test)] use std::process::Termination; diff --git a/engine/baml-runtime/src/types/runtime_context.rs b/engine/baml-runtime/src/types/runtime_context.rs index a6273c191..353e05f8f 100644 --- a/engine/baml-runtime/src/types/runtime_context.rs +++ b/engine/baml-runtime/src/types/runtime_context.rs @@ -1,5 +1,6 @@ use anyhow::Result; use baml_types::BamlValue; +use indexmap::IndexMap; use internal_baml_core::ir::{repr::Expression, FieldType}; use serde; use serde_json; @@ -17,20 +18,20 @@ pub struct SpanCtx { pub struct PropertyAttributes { pub(crate) alias: Option, pub(crate) skip: Option, - pub(crate) meta: HashMap, + pub(crate) meta: IndexMap, } #[derive(Debug)] pub struct RuntimeEnumOverride { pub(crate) alias: Option, - pub(crate) values: HashMap, + pub(crate) values: IndexMap, } #[derive(Debug)] pub struct RuntimeClassOverride { pub(crate) alias: Option, - pub(crate) new_fields: HashMap, - pub(crate) update_fields: HashMap, + pub(crate) new_fields: IndexMap, + pub(crate) update_fields: IndexMap, } #[derive(Debug)] diff --git a/engine/baml-runtime/src/types/stream.rs b/engine/baml-runtime/src/types/stream.rs index 1db8e87eb..cceed1c7e 100644 --- a/engine/baml-runtime/src/types/stream.rs +++ b/engine/baml-runtime/src/types/stream.rs @@ -1,30 +1,20 @@ use anyhow::Result; -use futures::{stream::StreamExt, Stream}; use internal_baml_core::ir::repr::IntermediateRepr; -use internal_baml_core::ir::IRHelper; -use internal_baml_jinja::Type; use std::{rc, sync::Arc}; use crate::{ client_builder::ClientBuilder, internal::{ - llm_client::{ - orchestrator::{ - self, orchestrate_stream, LLMPrimitiveProvider, OrchestrationScope, - OrchestratorNodeIterator, - }, - ErrorCode, LLMErrorResponse, - }, + llm_client::orchestrator::{orchestrate_stream, OrchestratorNodeIterator}, prompt_renderer::PromptRenderer, }, tracing::BamlTracer, type_builder::TypeBuilder, - FunctionResult, RuntimeContext, RuntimeContextManager, + FunctionResult, RuntimeContextManager, }; -use super::response::LLMResponse; /// Wrapper that holds a stream of responses from a BAML function call. /// diff --git a/engine/baml-runtime/src/types/trace_stats.rs b/engine/baml-runtime/src/types/trace_stats.rs new file mode 100644 index 000000000..2dd772aed --- /dev/null +++ b/engine/baml-runtime/src/types/trace_stats.rs @@ -0,0 +1,116 @@ +/// Stats about all the spans sent to the tracer. +/// +/// A span has the following lifecycle and can fail at any of these points: +/// +/// ```text +/// start -> finalize (ctx.exit) -> submit -> send +/// ``` +/// +use std::sync::{Arc, Mutex}; + +#[derive(Clone, Default)] +pub struct InnerTraceStats { + // Happen on the main runtime thread. + pub started: u32, + pub finalized: u32, + pub submitted: u32, + + // Happen on the tracer thread. + pub sent: u32, + pub done: u32, + // All errors are counted here. + pub failed: u32, +} + +#[derive(Clone, Default)] +pub struct TraceStats { + inner: Arc>, +} + +impl TraceStats { + pub fn drain(&self) -> InnerTraceStats { + let mut inner = self.inner.lock().unwrap(); + let result = inner.clone(); + *inner = InnerTraceStats::default(); + result + } + + pub fn guard(&self) -> SpanGuard { + SpanGuard::new(self.clone()) + } + + // Add methods to access and modify the inner fields if needed + fn inc_started(&self) { + let mut inner = self.inner.lock().unwrap(); + inner.started += 1; + } + + fn inc_finalized(&self) { + let mut inner = self.inner.lock().unwrap(); + inner.finalized += 1; + } + + fn inc_submitted(&self) { + let mut inner = self.inner.lock().unwrap(); + inner.submitted += 1; + } + + fn inc_sent(&self) { + let mut inner = self.inner.lock().unwrap(); + inner.sent += 1; + } + + fn inc_done(&self) { + let mut inner = self.inner.lock().unwrap(); + inner.done += 1; + } + + fn inc_failed(&self) { + let mut inner = self.inner.lock().unwrap(); + inner.failed += 1; + } +} + +pub struct SpanGuard { + stats: TraceStats, + used: bool, +} + +impl SpanGuard { + pub fn new(stats: TraceStats) -> Self { + Self { stats, used: false } + } + + pub fn start(mut self) { + self.stats.inc_started(); + self.used = true; + } + + pub fn finalize(mut self) { + self.stats.inc_finalized(); + self.used = true; + } + + pub fn submit(mut self) { + self.stats.inc_submitted(); + self.used = true; + } + + pub fn send(mut self) { + self.stats.inc_sent(); + self.used = true; + } + + pub fn done(mut self) { + self.stats.inc_done(); + self.used = true; + } +} + +impl Drop for SpanGuard { + fn drop(&mut self) { + if !self.used { + self.stats.inc_failed(); + } + } +} diff --git a/engine/baml-runtime/tests/test_runtime.rs b/engine/baml-runtime/tests/test_runtime.rs index d6feef72a..f20b70f50 100644 --- a/engine/baml-runtime/tests/test_runtime.rs +++ b/engine/baml-runtime/tests/test_runtime.rs @@ -3,9 +3,9 @@ mod internal_tests { use std::collections::HashMap; use baml_runtime::BamlRuntime; - use baml_runtime::RuntimeContext; + use baml_types::BamlValue; - use indexmap::IndexMap; + use wasm_bindgen_test::*; use wasm_logger; diff --git a/engine/baml-schema-wasm/.gitignore b/engine/baml-schema-wasm/.gitignore index 5dd5b276a..413b5ac36 100644 --- a/engine/baml-schema-wasm/.gitignore +++ b/engine/baml-schema-wasm/.gitignore @@ -1,2 +1,3 @@ +dist/src/* nodejs/src/* web/src/* diff --git a/engine/baml-schema-wasm/Cargo.toml b/engine/baml-schema-wasm/Cargo.toml index 32e0cf61c..a7ffecb09 100644 --- a/engine/baml-schema-wasm/Cargo.toml +++ b/engine/baml-schema-wasm/Cargo.toml @@ -25,11 +25,13 @@ log.workspace = true serde.workspace = true serde_json.workspace = true serde-wasm-bindgen = "0.4" +time.workspace = true uuid = { version = "1.8", features = ["v4", "js"] } wasm-bindgen = "=0.2.92" wasm-bindgen-futures = "0.4.42" wasm-logger = { version = "0.2.0" } web-time.workspace = true +either = "1.8.1" [dependencies.web-sys] version = "0.3.69" diff --git a/engine/baml-schema-wasm/dist/src/baml_schema_build.d.ts b/engine/baml-schema-wasm/dist/src/baml_schema_build.d.ts deleted file mode 100644 index 656836ca6..000000000 --- a/engine/baml-schema-wasm/dist/src/baml_schema_build.d.ts +++ /dev/null @@ -1,26 +0,0 @@ -/* tslint:disable */ -/* eslint-disable */ -/** -* Docs: https://prisma.github.io/prisma-engines/doc/prisma_fmt/fn.get_config.html -* @param {string} input -* @returns {string} -*/ -export function lint(input: string): string; -/** -* @param {string} params -*/ -export function validate(params: string): void; -/** -* The API is modelled on an LSP [completion -* request](https://github.com/microsoft/language-server-protocol/blob/gh-pages/_specifications/specification-3-16.md#textDocument_completion). -* Input and output are both JSON, the request being a `CompletionParams` object and the response -* being a `CompletionList` object. -* This API is modelled on an LSP [code action -* request](https://github.com/microsoft/language-server-protocol/blob/gh-pages/_specifications/specification-3-16.md#textDocument_codeAction=). -* Input and output are both JSON, the request being a -* `CodeActionParams` object and the response being a list of -* `CodeActionOrCommand` objects. -* Trigger a panic inside the wasm module. This is only useful in development for testing panic -* handling. -*/ -export function debug_panic(): void; diff --git a/engine/baml-schema-wasm/dist/src/baml_schema_build.js b/engine/baml-schema-wasm/dist/src/baml_schema_build.js deleted file mode 100644 index 7ea35edf0..000000000 --- a/engine/baml-schema-wasm/dist/src/baml_schema_build.js +++ /dev/null @@ -1,191 +0,0 @@ -let imports = {}; -imports['__wbindgen_placeholder__'] = module.exports; -let wasm; -const { TextDecoder, TextEncoder } = require(`util`); - -let cachedTextDecoder = new TextDecoder('utf-8', { ignoreBOM: true, fatal: true }); - -cachedTextDecoder.decode(); - -let cachedUint8Memory0 = null; - -function getUint8Memory0() { - if (cachedUint8Memory0 === null || cachedUint8Memory0.byteLength === 0) { - cachedUint8Memory0 = new Uint8Array(wasm.memory.buffer); - } - return cachedUint8Memory0; -} - -function getStringFromWasm0(ptr, len) { - ptr = ptr >>> 0; - return cachedTextDecoder.decode(getUint8Memory0().subarray(ptr, ptr + len)); -} - -const heap = new Array(128).fill(undefined); - -heap.push(undefined, null, true, false); - -let heap_next = heap.length; - -function addHeapObject(obj) { - if (heap_next === heap.length) heap.push(heap.length + 1); - const idx = heap_next; - heap_next = heap[idx]; - - heap[idx] = obj; - return idx; -} - -let WASM_VECTOR_LEN = 0; - -let cachedTextEncoder = new TextEncoder('utf-8'); - -const encodeString = (typeof cachedTextEncoder.encodeInto === 'function' - ? function (arg, view) { - return cachedTextEncoder.encodeInto(arg, view); -} - : function (arg, view) { - const buf = cachedTextEncoder.encode(arg); - view.set(buf); - return { - read: arg.length, - written: buf.length - }; -}); - -function passStringToWasm0(arg, malloc, realloc) { - - if (realloc === undefined) { - const buf = cachedTextEncoder.encode(arg); - const ptr = malloc(buf.length, 1) >>> 0; - getUint8Memory0().subarray(ptr, ptr + buf.length).set(buf); - WASM_VECTOR_LEN = buf.length; - return ptr; - } - - let len = arg.length; - let ptr = malloc(len, 1) >>> 0; - - const mem = getUint8Memory0(); - - let offset = 0; - - for (; offset < len; offset++) { - const code = arg.charCodeAt(offset); - if (code > 0x7F) break; - mem[ptr + offset] = code; - } - - if (offset !== len) { - if (offset !== 0) { - arg = arg.slice(offset); - } - ptr = realloc(ptr, len, len = offset + arg.length * 3, 1) >>> 0; - const view = getUint8Memory0().subarray(ptr + offset, ptr + len); - const ret = encodeString(arg, view); - - offset += ret.written; - } - - WASM_VECTOR_LEN = offset; - return ptr; -} - -let cachedInt32Memory0 = null; - -function getInt32Memory0() { - if (cachedInt32Memory0 === null || cachedInt32Memory0.byteLength === 0) { - cachedInt32Memory0 = new Int32Array(wasm.memory.buffer); - } - return cachedInt32Memory0; -} -/** -* Docs: https://prisma.github.io/prisma-engines/doc/prisma_fmt/fn.get_config.html -* @param {string} input -* @returns {string} -*/ -module.exports.lint = function(input) { - let deferred2_0; - let deferred2_1; - try { - const retptr = wasm.__wbindgen_add_to_stack_pointer(-16); - const ptr0 = passStringToWasm0(input, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); - const len0 = WASM_VECTOR_LEN; - wasm.lint(retptr, ptr0, len0); - var r0 = getInt32Memory0()[retptr / 4 + 0]; - var r1 = getInt32Memory0()[retptr / 4 + 1]; - deferred2_0 = r0; - deferred2_1 = r1; - return getStringFromWasm0(r0, r1); - } finally { - wasm.__wbindgen_add_to_stack_pointer(16); - wasm.__wbindgen_free(deferred2_0, deferred2_1, 1); - } -}; - -function getObject(idx) { return heap[idx]; } - -function dropObject(idx) { - if (idx < 132) return; - heap[idx] = heap_next; - heap_next = idx; -} - -function takeObject(idx) { - const ret = getObject(idx); - dropObject(idx); - return ret; -} -/** -* @param {string} params -*/ -module.exports.validate = function(params) { - try { - const retptr = wasm.__wbindgen_add_to_stack_pointer(-16); - const ptr0 = passStringToWasm0(params, wasm.__wbindgen_malloc, wasm.__wbindgen_realloc); - const len0 = WASM_VECTOR_LEN; - wasm.validate(retptr, ptr0, len0); - var r0 = getInt32Memory0()[retptr / 4 + 0]; - var r1 = getInt32Memory0()[retptr / 4 + 1]; - if (r1) { - throw takeObject(r0); - } - } finally { - wasm.__wbindgen_add_to_stack_pointer(16); - } -}; - -/** -* The API is modelled on an LSP [completion -* request](https://github.com/microsoft/language-server-protocol/blob/gh-pages/_specifications/specification-3-16.md#textDocument_completion). -* Input and output are both JSON, the request being a `CompletionParams` object and the response -* being a `CompletionList` object. -* This API is modelled on an LSP [code action -* request](https://github.com/microsoft/language-server-protocol/blob/gh-pages/_specifications/specification-3-16.md#textDocument_codeAction=). -* Input and output are both JSON, the request being a -* `CodeActionParams` object and the response being a list of -* `CodeActionOrCommand` objects. -* Trigger a panic inside the wasm module. This is only useful in development for testing panic -* handling. -*/ -module.exports.debug_panic = function() { - wasm.debug_panic(); -}; - -module.exports.__wbg_setmessage_20c12941eb9d34d6 = function(arg0, arg1) { - global.PRISMA_WASM_PANIC_REGISTRY.set_message(getStringFromWasm0(arg0, arg1)); -}; - -module.exports.__wbindgen_error_new = function(arg0, arg1) { - const ret = new Error(getStringFromWasm0(arg0, arg1)); - return addHeapObject(ret); -}; - -const path = require('path').join(__dirname, 'baml_schema_build_bg.wasm'); -const bytes = require('fs').readFileSync(path); - -const wasmModule = new WebAssembly.Module(bytes); -const wasmInstance = new WebAssembly.Instance(wasmModule, imports); -wasm = wasmInstance.exports; -module.exports.__wasm = wasm; - diff --git a/engine/baml-schema-wasm/dist/src/baml_schema_build_bg.wasm b/engine/baml-schema-wasm/dist/src/baml_schema_build_bg.wasm deleted file mode 100644 index 767d52dbc..000000000 Binary files a/engine/baml-schema-wasm/dist/src/baml_schema_build_bg.wasm and /dev/null differ diff --git a/engine/baml-schema-wasm/dist/src/baml_schema_build_bg.wasm.d.ts b/engine/baml-schema-wasm/dist/src/baml_schema_build_bg.wasm.d.ts deleted file mode 100644 index 9d72fc65f..000000000 --- a/engine/baml-schema-wasm/dist/src/baml_schema_build_bg.wasm.d.ts +++ /dev/null @@ -1,10 +0,0 @@ -/* tslint:disable */ -/* eslint-disable */ -export const memory: WebAssembly.Memory; -export function lint(a: number, b: number, c: number): void; -export function validate(a: number, b: number, c: number): void; -export function debug_panic(): void; -export function __wbindgen_add_to_stack_pointer(a: number): number; -export function __wbindgen_malloc(a: number, b: number): number; -export function __wbindgen_realloc(a: number, b: number, c: number, d: number): number; -export function __wbindgen_free(a: number, b: number, c: number): void; diff --git a/engine/baml-schema-wasm/src/runtime_wasm/mod.rs b/engine/baml-schema-wasm/src/runtime_wasm/mod.rs index c4e91212e..a84141794 100644 --- a/engine/baml-schema-wasm/src/runtime_wasm/mod.rs +++ b/engine/baml-schema-wasm/src/runtime_wasm/mod.rs @@ -8,10 +8,13 @@ use baml_runtime::{ internal::llm_client::LLMResponse, BamlRuntime, DiagnosticsError, IRHelper, RenderedPrompt, }; use baml_types::{BamlMap, BamlValue}; + use serde::{Deserialize, Serialize}; use std::collections::HashMap; use std::path::PathBuf; + use wasm_bindgen::prelude::*; + //Run: wasm-pack test --firefox --headless --features internal,wasm // but for browser we likely need to do wasm_bindgen_test::wasm_bindgen_test_configure!(run_in_browser); // Node is run using: wasm-pack test --node --features internal,wasm @@ -58,14 +61,6 @@ pub struct SymbolLocation { pub end_character: usize, } -// impl std::error::Error for WasmDiagnosticError {} - -// impl std::fmt::Display for WasmDiagnosticError { -// fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { -// write!(f, "{:?}", self.errors) -// } -// } - #[wasm_bindgen] impl WasmDiagnosticError { #[wasm_bindgen] @@ -262,6 +257,8 @@ pub struct WasmFunction { pub test_cases: Vec, #[wasm_bindgen(readonly)] pub test_snippet: String, + #[wasm_bindgen(readonly)] + pub signature: String, } #[wasm_bindgen(getter_with_clone, inspectable)] @@ -273,6 +270,31 @@ pub struct WasmSpan { pub start: usize, #[wasm_bindgen(readonly)] pub end: usize, + #[wasm_bindgen(readonly)] + pub start_line: usize, +} + +impl From<&baml_runtime::internal_core::internal_baml_diagnostics::Span> for WasmSpan { + fn from(span: &baml_runtime::internal_core::internal_baml_diagnostics::Span) -> Self { + let (start, end) = span.line_and_column(); + WasmSpan { + file_path: span.file.path().to_string(), + start: span.start, + end: span.end, + start_line: start.0, + } + } +} + +impl Default for WasmSpan { + fn default() -> Self { + WasmSpan { + file_path: "".to_string(), + start: 0, + end: 0, + start_line: 0, + } + } } #[wasm_bindgen(getter_with_clone, inspectable)] @@ -284,6 +306,8 @@ pub struct WasmTestCase { pub inputs: Vec, #[wasm_bindgen(readonly)] pub error: Option, + #[wasm_bindgen(readonly)] + pub span: WasmSpan, } #[wasm_bindgen(getter_with_clone, inspectable)] @@ -306,6 +330,7 @@ pub struct WasmFunctionResponse { pub struct WasmTestResponse { test_response: anyhow::Result, span: Option, + tracing_project_id: Option, } #[wasm_bindgen] @@ -324,6 +349,9 @@ pub struct WasmLLMResponse { pub content: String, pub start_time_unix_ms: u64, pub latency_ms: u64, + pub input_tokens: Option, + pub output_tokens: Option, + pub total_tokens: Option, } #[wasm_bindgen(getter_with_clone, inspectable)] @@ -450,6 +478,46 @@ impl WasmTestResponse { Err(e) => Some(e.to_string()), } } + + fn _trace_url(&self) -> anyhow::Result { + let test_response = match self.test_response.as_ref() { + Ok(t) => t, + Err(e) => anyhow::bail!("Failed to get test response: {:?}", e), + }; + let start_time = match test_response.function_response.llm_response() { + LLMResponse::Success(s) => s.start_time, + LLMResponse::LLMFailure(f) => f.start_time, + _ => anyhow::bail!("Test has no start time"), + }; + let start_time = time::OffsetDateTime::from_unix_timestamp( + start_time + .duration_since(web_time::UNIX_EPOCH)? + .as_secs() + .try_into()?, + )? + .format(&time::format_description::well_known::Rfc3339)?; + + let event_span_id = self + .span + .as_ref() + .ok_or(anyhow::anyhow!("Test has no span ID"))? + .to_string(); + let subevent_span_id = test_response + .function_span + .as_ref() + .ok_or(anyhow::anyhow!("Function call has no span ID"))? + .to_string(); + + Ok(format!( + "https://app.boundaryml.com/dashboard/projects/{}/drilldown?start_time={start_time}&eid={event_span_id}&s_eid={subevent_span_id}&test=false&onlyRootEvents=true", + self.tracing_project_id.as_ref().ok_or(anyhow::anyhow!("No project ID specified"))? + )) + } + + #[wasm_bindgen] + pub fn trace_url(&self) -> Option { + self._trace_url().ok() + } } fn llm_response_to_wasm_error( @@ -500,6 +568,9 @@ impl IntoWasm .unwrap_or(web_time::Duration::ZERO) .as_millis() as u64, latency_ms: s.latency.as_millis() as u64, + input_tokens: s.metadata.prompt_tokens, + output_tokens: s.metadata.output_tokens, + total_tokens: s.metadata.total_tokens, }), _ => None, } @@ -560,6 +631,9 @@ fn get_dummy_value( baml_runtime::TypeValue::Image => { "{ url \"https://imgs.xkcd.com/comics/standards.png\"}".to_string() } + baml_runtime::TypeValue::Audio => { + "{ url \"https://actions.google.com/sounds/v1/emergency/beeper_emergency_call.ogg\"}".to_string() + } }; Some(dummy) @@ -698,21 +772,27 @@ impl WasmRuntime { ); let wasm_span = match f.span() { - Some(span) => WasmSpan { - file_path: span.file.path().to_string(), - start: span.start, - end: span.end, - }, - None => WasmSpan { - file_path: "".to_string(), - start: 0, - end: 0, - }, + Some(span) => span.into(), + None => WasmSpan::default(), }; WasmFunction { name: f.name().to_string(), span: wasm_span, + signature: { + let inputs = f + .inputs() + .right() + .map(|func_params| { + func_params + .iter() + .map(|(k, t)| format!("{}: {}", k, t)) + .collect::>() + .join(", ") + }) + .unwrap_or_default(); + format!("({}) -> {}", inputs, f.output().to_string()) + }, test_snippet: snippet, test_cases: f .walk_tests() @@ -767,10 +847,16 @@ impl WasmRuntime { } }); + let wasm_span = match tc.span() { + Some(span) => span.into(), + None => WasmSpan::default(), + }; + WasmTestCase { name: tc.test_case().name.clone(), inputs: params, error, + span: wasm_span, } }) .collect(), @@ -809,7 +895,7 @@ impl WasmRuntime { if let Ok(walker) = runtime.find_class(symbol) { let elem = walker.span().unwrap(); - let uri_str = elem.file.path().to_string(); // Store the String in a variable + let _uri_str = elem.file.path().to_string(); // Store the String in a variable let ((s_line, s_character), (e_line, e_character)) = elem.line_and_column(); return Some(SymbolLocation { uri: elem.file.path().to_string(), // Use the variable here @@ -823,7 +909,7 @@ impl WasmRuntime { if let Ok(walker) = runtime.find_function(symbol) { let elem = walker.span().unwrap(); - let uri_str = elem.file.path().to_string(); // Store the String in a variable + let _uri_str = elem.file.path().to_string(); // Store the String in a variable let ((s_line, s_character), (e_line, e_character)) = elem.line_and_column(); return Some(SymbolLocation { uri: elem.file.path().to_string(), // Use the variable here @@ -837,7 +923,7 @@ impl WasmRuntime { if let Ok(walker) = runtime.find_client(symbol) { let elem = walker.span().unwrap(); - let uri_str = elem.file.path().to_string(); // Store the String in a variable + let _uri_str = elem.file.path().to_string(); // Store the String in a variable let ((s_line, s_character), (e_line, e_character)) = elem.line_and_column(); return Some(SymbolLocation { @@ -852,7 +938,7 @@ impl WasmRuntime { if let Ok(walker) = runtime.find_retry_policy(symbol) { let elem = walker.span().unwrap(); - let uri_str = elem.file.path().to_string(); // Store the String in a variable + let _uri_str = elem.file.path().to_string(); // Store the String in a variable let ((s_line, s_character), (e_line, e_character)) = elem.line_and_column(); return Some(SymbolLocation { uri: elem.file.path().to_string(), // Use the variable here @@ -865,7 +951,7 @@ impl WasmRuntime { if let Ok(walker) = runtime.find_template_string(symbol) { let elem = walker.span().unwrap(); - let uri_str = elem.file.path().to_string(); // Store the String in a variable + let _uri_str = elem.file.path().to_string(); // Store the String in a variable let ((s_line, s_character), (e_line, e_character)) = elem.line_and_column(); return Some(SymbolLocation { uri: elem.file.path().to_string(), // Use the variable here @@ -924,6 +1010,41 @@ impl WasmFunction { .map_err(|e| wasm_bindgen::JsError::new(format!("{e:?}").as_str())) } + #[wasm_bindgen] + pub async fn render_raw_curl( + &self, + rt: &WasmRuntime, + params: JsValue, + stream: bool, + ) -> Result { + let params = serde_wasm_bindgen::from_value::>(params)?; + let missing_env_vars = rt.runtime.internal().ir().required_env_vars(); + + let ctx = rt + .runtime + .create_ctx_manager(BamlValue::String("wasm".to_string())) + .create_ctx_with_default(missing_env_vars.iter()); + + let result = rt + .runtime + .internal() + .render_prompt(&self.name, &ctx, ¶ms, None); + + let final_prompt = match result { + Ok((prompt, _)) => match prompt { + RenderedPrompt::Chat(chat_messages) => chat_messages, + RenderedPrompt::Completion(_) => vec![], // or handle this case differently + }, + Err(e) => return Err(wasm_bindgen::JsError::new(format!("{:#?}", e).as_str())), + }; + + rt.runtime + .internal() + .render_raw_curl(&self.name, &ctx, &final_prompt, stream, None) + .await + .map_err(|e| wasm_bindgen::JsError::new(format!("{e:#?}").as_str())) + } + #[wasm_bindgen] pub async fn run_test( &self, @@ -952,6 +1073,7 @@ impl WasmFunction { Ok(WasmTestResponse { test_response, span, + tracing_project_id: rt.env_vars().get("BOUNDARY_PROJECT_ID").cloned(), }) } } diff --git a/engine/baml-schema-wasm/src/runtime_wasm/runtime_prompt.rs b/engine/baml-schema-wasm/src/runtime_wasm/runtime_prompt.rs index 7359e2c7e..2be7177e1 100644 --- a/engine/baml-schema-wasm/src/runtime_wasm/runtime_prompt.rs +++ b/engine/baml-schema-wasm/src/runtime_wasm/runtime_prompt.rs @@ -2,7 +2,7 @@ use baml_runtime::{ internal::llm_client::orchestrator::OrchestrationScope, ChatMessagePart, RenderedPrompt, }; -use baml_types::BamlImage; +use baml_types::{BamlMedia, BamlMediaType, MediaBase64}; use wasm_bindgen::prelude::*; #[wasm_bindgen(getter_with_clone)] @@ -52,6 +52,11 @@ impl WasmChatMessagePart { matches!(self.part, ChatMessagePart::Image(_)) } + #[wasm_bindgen] + pub fn is_audio(&self) -> bool { + matches!(self.part, ChatMessagePart::Audio(_)) + } + #[wasm_bindgen] pub fn as_text(&self) -> Option { if let ChatMessagePart::Text(s) = &self.part { @@ -65,8 +70,24 @@ impl WasmChatMessagePart { pub fn as_image(&self) -> Option { if let ChatMessagePart::Image(s) = &self.part { Some(match s { - BamlImage::Url(u) => u.url.clone(), - BamlImage::Base64(b) => b.base64.clone(), + BamlMedia::Url(BamlMediaType::Image, u) => u.url.clone(), + BamlMedia::Base64(BamlMediaType::Image, b) => b.base64.clone(), + _ => return None, // This will match any other case and return None + }) + } else { + None + } + } + + #[wasm_bindgen] + pub fn as_audio(&self) -> Option { + if let ChatMessagePart::Audio(s) = &self.part { + Some(match s { + BamlMedia::Url(BamlMediaType::Audio, u) => u.url.clone(), + BamlMedia::Base64(_, MediaBase64 { base64, media_type }) => { + format!("data:{};base64,{}", media_type, base64.clone()) + } + _ => return None, // This will match any other case and return None }) } else { None @@ -89,6 +110,10 @@ impl WasmPrompt { #[wasm_bindgen] pub fn as_chat(&self) -> Option> { if let RenderedPrompt::Chat(s) = &self.prompt { + log::info!( + "Chat role: {:?}", + s.iter().map(|m| m.role.clone()).collect::>() + ); Some( s.iter() .map(|m| WasmChatMessage { diff --git a/engine/language-client-codegen/src/python/mod.rs b/engine/language-client-codegen/src/python/mod.rs index 29a850ffd..f6954fa9c 100644 --- a/engine/language-client-codegen/src/python/mod.rs +++ b/engine/language-client-codegen/src/python/mod.rs @@ -4,7 +4,6 @@ mod python_language_features; use std::path::PathBuf; use anyhow::Result; -use askama::Template; use either::Either; use indexmap::IndexMap; use internal_baml_core::ir::{repr::IntermediateRepr, FieldType, IRHelper}; diff --git a/engine/language-client-codegen/src/python/python_language_features.rs b/engine/language-client-codegen/src/python/python_language_features.rs index ce897da9d..ac5b148c6 100644 --- a/engine/language-client-codegen/src/python/python_language_features.rs +++ b/engine/language-client-codegen/src/python/python_language_features.rs @@ -37,6 +37,7 @@ impl ToPython for TypeValue { TypeValue::String => "str".to_string(), TypeValue::Null => "None".to_string(), TypeValue::Image => "baml_py.Image".to_string(), + TypeValue::Audio => "baml_py.Audio".to_string(), } } } diff --git a/engine/language-client-codegen/src/python/templates/globals.py.j2 b/engine/language-client-codegen/src/python/templates/globals.py.j2 index 88b7c7fa6..ea1c16118 100644 --- a/engine/language-client-codegen/src/python/templates/globals.py.j2 +++ b/engine/language-client-codegen/src/python/templates/globals.py.j2 @@ -4,13 +4,13 @@ from baml_py import BamlCtxManager, BamlRuntime from .client import BamlClient from .inlinedbaml import get_baml_files -_DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME = BamlRuntime.from_files( +DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME = BamlRuntime.from_files( "baml_src", get_baml_files(), os.environ.copy() ) -DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX = BamlCtxManager(_DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME) +DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX = BamlCtxManager(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME) -b = BamlClient(_DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME, DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) +b = BamlClient(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME, DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) __all__ = ['b'] diff --git a/engine/language-client-codegen/src/python/templates/tracing.py.j2 b/engine/language-client-codegen/src/python/templates/tracing.py.j2 index 9dba027cf..6c132c8e0 100644 --- a/engine/language-client-codegen/src/python/templates/tracing.py.j2 +++ b/engine/language-client-codegen/src/python/templates/tracing.py.j2 @@ -2,7 +2,9 @@ from .globals import DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX trace = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.trace_fn set_tags = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.upsert_tags -flush = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.flush +def flush(): + DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.flush() +on_log_event = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.on_log_event -__all__ = ['trace', 'set_tags', "flush"] +__all__ = ['trace', 'set_tags', "flush", "on_log_event"] diff --git a/engine/language-client-codegen/src/ruby/expression.rs b/engine/language-client-codegen/src/ruby/expression.rs index 589fec0c6..c8f19356e 100644 --- a/engine/language-client-codegen/src/ruby/expression.rs +++ b/engine/language-client-codegen/src/ruby/expression.rs @@ -48,6 +48,7 @@ impl ToRuby for TypeValue { TypeValue::String => "string".to_string(), TypeValue::Null => "null".to_string(), TypeValue::Image => "Image".to_string(), + TypeValue::Audio => "Audio".to_string(), } } } diff --git a/engine/language-client-codegen/src/ruby/field_type.rs b/engine/language-client-codegen/src/ruby/field_type.rs index 7171fa81b..7525efc05 100644 --- a/engine/language-client-codegen/src/ruby/field_type.rs +++ b/engine/language-client-codegen/src/ruby/field_type.rs @@ -21,6 +21,7 @@ impl ToRuby for FieldType { TypeValue::Null => "NilClass".to_string(), // TODO: Create Baml::Types::Image TypeValue::Image => "Baml::Image".to_string(), + TypeValue::Audio => "Baml::Audio".to_string(), }, FieldType::Union(inner) => format!( // https://sorbet.org/docs/union-types diff --git a/engine/language-client-codegen/src/ruby/mod.rs b/engine/language-client-codegen/src/ruby/mod.rs index a6e85fae5..f7de3bb9d 100644 --- a/engine/language-client-codegen/src/ruby/mod.rs +++ b/engine/language-client-codegen/src/ruby/mod.rs @@ -3,7 +3,7 @@ mod field_type; mod generate_types; mod ruby_language_features; -use std::{collections::BTreeMap, path::PathBuf}; +use std::{path::PathBuf}; use anyhow::Result; use indexmap::IndexMap; diff --git a/engine/language-client-codegen/src/typescript/generate_types.rs b/engine/language-client-codegen/src/typescript/generate_types.rs index 8038be2b9..8f67d1693 100644 --- a/engine/language-client-codegen/src/typescript/generate_types.rs +++ b/engine/language-client-codegen/src/typescript/generate_types.rs @@ -7,14 +7,14 @@ use crate::GeneratorArgs; use super::ToTypeReferenceInClientDefinition; #[derive(askama::Template)] -#[template(path = "type_builder.js.j2", escape = "none")] +#[template(path = "type_builder.ts.j2", escape = "none")] pub(crate) struct TypeBuilder<'ir> { enums: Vec>, classes: Vec>, } #[derive(askama::Template)] -#[template(path = "types.js.j2", escape = "none")] +#[template(path = "types.ts.j2", escape = "none")] pub(crate) struct TypescriptTypes<'ir> { enums: Vec>, classes: Vec>, diff --git a/engine/language-client-codegen/src/typescript/mod.rs b/engine/language-client-codegen/src/typescript/mod.rs index 64da56fa3..00b5226f4 100644 --- a/engine/language-client-codegen/src/typescript/mod.rs +++ b/engine/language-client-codegen/src/typescript/mod.rs @@ -12,7 +12,7 @@ use self::typescript_language_features::{ToTypescript, TypescriptLanguageFeature use crate::dir_writer::FileCollector; #[derive(askama::Template)] -#[template(path = "client.js.j2", escape = "none")] +#[template(path = "client.ts.j2", escape = "none")] struct TypescriptClient { funcs: Vec, types: Vec, diff --git a/engine/language-client-codegen/src/typescript/templates/client.js.j2 b/engine/language-client-codegen/src/typescript/templates/client.ts.j2 similarity index 87% rename from engine/language-client-codegen/src/typescript/templates/client.js.j2 rename to engine/language-client-codegen/src/typescript/templates/client.ts.j2 index c8d66135f..27317e64a 100644 --- a/engine/language-client-codegen/src/typescript/templates/client.js.j2 +++ b/engine/language-client-codegen/src/typescript/templates/client.ts.j2 @@ -11,9 +11,13 @@ export type RecursivePartialNull = T extends object : T | null; export class BamlClient { + private runtime: BamlRuntime + private ctx_manager: BamlCtxManager private stream_client: BamlStreamClient - constructor(private runtime: BamlRuntime, private ctx_manager: BamlCtxManager) { + constructor(runtime: BamlRuntime, ctx_manager: BamlCtxManager) { + this.runtime = runtime + this.ctx_manager = ctx_manager this.stream_client = new BamlStreamClient(runtime, ctx_manager) } @@ -35,7 +39,7 @@ export class BamlClient { "{{name}}": {{name}}{% if optional %}?? null{% endif %}{% if !loop.last %},{% endif %} {%- endfor %} }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -62,7 +66,7 @@ class BamlStreamClient { {%- endfor %} }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -70,7 +74,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull<{{ fn.return_type }}> => a, (a): a is {{ fn.return_type }} => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } diff --git a/engine/language-client-codegen/src/typescript/templates/globals.ts.j2 b/engine/language-client-codegen/src/typescript/templates/globals.ts.j2 index cb68468e4..80bf0ed2d 100644 --- a/engine/language-client-codegen/src/typescript/templates/globals.ts.j2 +++ b/engine/language-client-codegen/src/typescript/templates/globals.ts.j2 @@ -3,10 +3,10 @@ import { BamlClient } from './client' import { getBamlFiles } from './inlinedbaml' -const _DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME = BamlRuntime.fromFiles( +export const DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME = BamlRuntime.fromFiles( 'baml_src', getBamlFiles(), process.env ) -export const DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX = new BamlCtxManager(_DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME) -export const b = new BamlClient(_DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME, DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) +export const DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX = new BamlCtxManager(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME) +export const b = new BamlClient(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME, DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) diff --git a/engine/language-client-codegen/src/typescript/templates/tracing.ts.j2 b/engine/language-client-codegen/src/typescript/templates/tracing.ts.j2 index c60bc422b..c79196ef6 100644 --- a/engine/language-client-codegen/src/typescript/templates/tracing.ts.j2 +++ b/engine/language-client-codegen/src/typescript/templates/tracing.ts.j2 @@ -1,8 +1,16 @@ +import { BamlLogEvent } from '@boundaryml/baml'; import { DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX } from './globals'; -const traceAsync = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.traceFnAync.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) -const traceSync = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.traceFnSync.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) -const setTags = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.upsertTags.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) -const flush = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.flush.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) +const traceAsync = +DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.traceFnAsync.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) +const traceSync = +DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.traceFnSync.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) +const setTags = +DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.upsertTags.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) +const flush = () => { + DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.flush.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX)() +} +const onLogEvent = (callback: (event: BamlLogEvent) => void) => +DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.onLogEvent(callback) -export { traceAsync, traceSync, setTags, flush } \ No newline at end of file +export { traceAsync, traceSync, setTags, flush, onLogEvent } \ No newline at end of file diff --git a/engine/language-client-codegen/src/typescript/templates/type_builder.js.j2 b/engine/language-client-codegen/src/typescript/templates/type_builder.ts.j2 similarity index 96% rename from engine/language-client-codegen/src/typescript/templates/type_builder.js.j2 rename to engine/language-client-codegen/src/typescript/templates/type_builder.ts.j2 index 9e3e243bf..703d0173c 100644 --- a/engine/language-client-codegen/src/typescript/templates/type_builder.js.j2 +++ b/engine/language-client-codegen/src/typescript/templates/type_builder.ts.j2 @@ -58,10 +58,10 @@ export default class TypeBuilder { } addClass(name: Name): ClassBuilder { - this.tb.addClass(name); + return this.tb.addClass(name); } addEnum(name: Name): EnumBuilder { - this.tb.addEnum(name); + return this.tb.addEnum(name); } } diff --git a/engine/language-client-codegen/src/typescript/templates/types.js.j2 b/engine/language-client-codegen/src/typescript/templates/types.ts.j2 similarity index 100% rename from engine/language-client-codegen/src/typescript/templates/types.js.j2 rename to engine/language-client-codegen/src/typescript/templates/types.ts.j2 diff --git a/engine/language-client-codegen/src/typescript/typescript_language_features.rs b/engine/language-client-codegen/src/typescript/typescript_language_features.rs index 97581075c..68c18841c 100644 --- a/engine/language-client-codegen/src/typescript/typescript_language_features.rs +++ b/engine/language-client-codegen/src/typescript/typescript_language_features.rs @@ -39,6 +39,7 @@ impl ToTypescript for TypeValue { TypeValue::String => "string".to_string(), TypeValue::Null => "null".to_string(), TypeValue::Image => "Image".to_string(), + TypeValue::Audio => "Audio".to_string(), } } } diff --git a/engine/language_client_python/Cargo.toml b/engine/language_client_python/Cargo.toml index be4493946..73f343c3e 100644 --- a/engine/language_client_python/Cargo.toml +++ b/engine/language_client_python/Cargo.toml @@ -4,7 +4,7 @@ edition = "2021" version = "0.1.0" authors.workspace = true description = "BAML python bindings (Cargo.toml)" -license-file.workspace = true +license = "Apache-2.0" [lib] name = "baml_py" diff --git a/engine/language_client_python/pyproject.toml b/engine/language_client_python/pyproject.toml index 920d72c6b..7374fcb00 100644 --- a/engine/language_client_python/pyproject.toml +++ b/engine/language_client_python/pyproject.toml @@ -1,6 +1,6 @@ [project] name = "baml-py" -version = "0.40.0" +version = "0.45.0" description = "BAML python bindings (pyproject.toml)" readme = "README.md" authors = [["Boundary", "contact@boundaryml.com"]] diff --git a/engine/language_client_python/python_src/baml_py/__init__.py b/engine/language_client_python/python_src/baml_py/__init__.py index 1b6ff8636..9728149a5 100644 --- a/engine/language_client_python/python_src/baml_py/__init__.py +++ b/engine/language_client_python/python_src/baml_py/__init__.py @@ -6,6 +6,7 @@ FunctionResult, FunctionResultStream, BamlImagePy as Image, + BamlAudioPy as Audio, invoke_runtime_cli, ) from .stream import BamlStream @@ -18,5 +19,6 @@ "FunctionResult", "FunctionResultStream", "Image", + "Audio", "invoke_runtime_cli", ] diff --git a/engine/language_client_python/python_src/baml_py/baml_py.pyi b/engine/language_client_python/python_src/baml_py/baml_py.pyi index 61559e943..8a8dc2641 100644 --- a/engine/language_client_python/python_src/baml_py/baml_py.pyi +++ b/engine/language_client_python/python_src/baml_py/baml_py.pyi @@ -35,7 +35,17 @@ class BamlImagePy: @staticmethod def from_url(url: str) -> BamlImagePy: ... @staticmethod - def from_base64(base64: str, media_type: str) -> BamlImagePy: ... + def from_base64(media_type: str, base64: str) -> BamlImagePy: ... + def is_url(self) -> bool: ... + def is_base64(self) -> bool: ... + def as_url(self) -> str: ... + def as_base64(self) -> Tuple[str, str]: ... + +class BamlAudioPy: + @staticmethod + def from_url(url: str) -> BamlAudioPy: ... + @staticmethod + def from_base64(media_type: str, base64: str) -> BamlAudioPy: ... def is_url(self) -> bool: ... def is_base64(self) -> bool: ... def as_url(self) -> str: ... @@ -71,6 +81,49 @@ class BamlRuntime: ) -> FunctionResultStream: ... def create_context_manager(self) -> RuntimeContextManager: ... def flush(self) -> None: ... + def drain_stats(self) -> TraceStats: ... + def set_log_event_callback( + self, handler: Callable[[BamlLogEvent], None] + ) -> None: ... + +class LogEventMetadata: + event_id: str + parent_id: Optional[str] + root_event_id: str + + def __init__( + self, event_id: str, parent_id: Optional[str], root_event_id: str + ) -> None: ... + +class BamlLogEvent: + metadata: LogEventMetadata + prompt: Optional[str] + raw_output: Optional[str] + parsed_output: Optional[str] + start_time: str + + def __init__( + self, + metadata: LogEventMetadata, + prompt: Optional[str], + raw_output: Optional[str], + parsed_output: Optional[str], + start_time: str, + ) -> None: ... + +class TraceStats: + @property + def failed(self) -> int: ... + @property + def started(self) -> int: ... + @property + def finalized(self) -> int: ... + @property + def submitted(self) -> int: ... + @property + def sent(self) -> int: ... + @property + def done(self) -> int: ... class BamlSpan: @staticmethod diff --git a/engine/language_client_python/python_src/baml_py/ctx_manager.py b/engine/language_client_python/python_src/baml_py/ctx_manager.py index 2230c23e9..cb8049f9a 100644 --- a/engine/language_client_python/python_src/baml_py/ctx_manager.py +++ b/engine/language_client_python/python_src/baml_py/ctx_manager.py @@ -6,7 +6,7 @@ import functools import inspect import typing -from .baml_py import RuntimeContextManager, BamlRuntime, BamlSpan +from .baml_py import BamlLogEvent, RuntimeContextManager, BamlRuntime, BamlSpan import atexit import threading @@ -65,6 +65,9 @@ def end_trace(self, span: BamlSpan, response: typing.Any) -> None: def flush(self) -> None: self.rt.flush() + def on_log_event(self, handler: typing.Callable[[BamlLogEvent], None]) -> None: + self.rt.set_log_event_callback(handler) + def trace_fn(self, func: F) -> F: func_name = func.__name__ signature = inspect.signature(func).parameters diff --git a/engine/language_client_python/python_src/baml_py/stream.py b/engine/language_client_python/python_src/baml_py/stream.py index 3d4a11cc6..b3abfcf13 100644 --- a/engine/language_client_python/python_src/baml_py/stream.py +++ b/engine/language_client_python/python_src/baml_py/stream.py @@ -6,8 +6,11 @@ TypeBuilder, ) from typing import Callable, Generic, Optional, TypeVar - +import threading import asyncio +import concurrent.futures + +import queue PartialOutputType = TypeVar("PartialOutputType") FinalOutputType = TypeVar("FinalOutputType") @@ -18,8 +21,10 @@ class BamlStream(Generic[PartialOutputType, FinalOutputType]): __partial_coerce: Callable[[FunctionResult], PartialOutputType] __final_coerce: Callable[[FunctionResult], FinalOutputType] __ctx_manager: RuntimeContextManager - __task: Optional[asyncio.Task[FunctionResult]] - __event_queue: asyncio.Queue[Optional[FunctionResult]] + __task: Optional[threading.Thread] + __event_queue: queue.Queue[Optional[FunctionResult]] + __tb: Optional[TypeBuilder] + __future: concurrent.futures.Future[FunctionResult] def __init__( self, @@ -34,34 +39,46 @@ def __init__( self.__final_coerce = final_coerce self.__ctx_manager = ctx_manager self.__task = None - self.__event_queue = asyncio.Queue() + self.__event_queue = queue.Queue() + self.__tb = tb + self.__future = concurrent.futures.Future() # Initialize the future here def __enqueue(self, data: FunctionResult) -> None: self.__event_queue.put_nowait(data) async def __drive_to_completion(self) -> FunctionResult: + try: retval = await self.__ffi_stream.done(self.__ctx_manager) + + self.__future.set_result(retval) return retval + except Exception as e: + self.__future.set_exception(e) + raise finally: self.__event_queue.put_nowait(None) - def __drive_to_completion_in_bg(self) -> asyncio.Task[FunctionResult]: - # Doing this without using a compare-and-swap or lock is safe, - # because we don't cross an await point during it + def __drive_to_completion_in_bg(self) -> concurrent.futures.Future[FunctionResult]: if self.__task is None: - self.__task = asyncio.create_task(self.__drive_to_completion()) + self.__task = threading.Thread(target=self.threading_target, daemon=True) + self.__task.start() + return self.__future - return self.__task + def threading_target(self): + asyncio.run(self.__drive_to_completion(), debug=True) async def __aiter__(self): + # TODO: This is deliberately __aiter__ and not __iter__ because we want to + # ensure that the caller is using an async for loop. + # Eventually we do not want to create a new thread for each stream. self.__drive_to_completion_in_bg() while True: - event = await self.__event_queue.get() + event = self.__event_queue.get() if event is None: break yield self.__partial_coerce(event.parsed()) async def get_final_response(self): - final = await self.__drive_to_completion_in_bg() - return self.__final_coerce(final.parsed()) + final = self.__drive_to_completion_in_bg() + return self.__final_coerce((await asyncio.wrap_future(final)).parsed()) diff --git a/engine/language_client_python/src/lib.rs b/engine/language_client_python/src/lib.rs index 0bdab9e40..6582fdaad 100644 --- a/engine/language_client_python/src/lib.rs +++ b/engine/language_client_python/src/lib.rs @@ -1,4 +1,5 @@ mod parse_py_type; +mod runtime; mod types; use pyo3::prelude::{pyfunction, pymodule, PyAnyMethods, PyModule, PyResult}; @@ -33,10 +34,12 @@ fn baml_py(_: Python<'_>, m: Bound<'_, PyModule>) -> PyResult<()> { eprintln!("Failed to initialize BAML logger: {:#}", e); }; - m.add_class::()?; + m.add_class::()?; + m.add_class::()?; m.add_class::()?; m.add_class::()?; + m.add_class::()?; m.add_class::()?; m.add_class::()?; m.add_class::()?; @@ -47,6 +50,9 @@ fn baml_py(_: Python<'_>, m: Bound<'_, PyModule>) -> PyResult<()> { m.add_class::()?; m.add_class::()?; + m.add_class::()?; + m.add_class::()?; + m.add_wrapped(wrap_pyfunction!(invoke_runtime_cli))?; Ok(()) diff --git a/engine/language_client_python/src/parse_py_type.rs b/engine/language_client_python/src/parse_py_type.rs index d2b78412a..e4c0416d1 100644 --- a/engine/language_client_python/src/parse_py_type.rs +++ b/engine/language_client_python/src/parse_py_type.rs @@ -1,15 +1,15 @@ use std::collections::HashMap; use anyhow::{bail, Result}; -use baml_types::{BamlImage, BamlMap, BamlValue}; +use baml_types::{BamlMap, BamlMedia, BamlValue}; use pyo3::{ exceptions::{PyRuntimeError, PyTypeError}, prelude::{PyAnyMethods, PyTypeMethods}, types::{PyBool, PyBoolMethods, PyList}, - PyClass, PyErr, PyObject, PyResult, Python, ToPyObject, + PyErr, PyObject, PyResult, Python, ToPyObject, }; -use crate::types::BamlImagePy; +use crate::types::{BamlAudioPy, BamlImagePy}; struct SerializationError { position: Vec, @@ -59,11 +59,12 @@ enum MappedPyType { Float(f64), Bool(bool), None, - BamlImage(BamlImage), + BamlImage(BamlMedia), + BamlAudio(BamlMedia), Unsupported(String), } -impl TryFrom for BamlImage { +impl TryFrom for BamlMedia { type Error = &'static str; fn try_from(value: BamlImagePy) -> Result { @@ -71,6 +72,14 @@ impl TryFrom for BamlImage { } } +impl TryFrom for BamlMedia { + type Error = &'static str; + + fn try_from(value: BamlAudioPy) -> Result { + Ok(value.inner.clone()) + } +} + enum UnknownTypeHandler { Ignore, SerializeAsStr, @@ -180,7 +189,8 @@ where MappedPyType::Int(v) => BamlValue::Int(v), MappedPyType::Float(v) => BamlValue::Float(v), MappedPyType::Bool(v) => BamlValue::Bool(v), - MappedPyType::BamlImage(v) => BamlValue::Image(v), + MappedPyType::BamlImage(v) => BamlValue::Media(v), + MappedPyType::BamlAudio(v) => BamlValue::Media(v), MappedPyType::None => BamlValue::Null, MappedPyType::Unsupported(r#type) => { return if matches!(handle_unknown_types, UnknownTypeHandler::Ignore) { @@ -284,6 +294,9 @@ pub fn parse_py_type( } else if let Ok(b) = any.downcast_bound::(py) { let b = b.borrow(); Ok(MappedPyType::BamlImage(b.inner.clone())) + } else if let Ok(b) = any.downcast_bound::(py) { + let b = b.borrow(); + Ok(MappedPyType::BamlAudio(b.inner.clone())) } else { if matches!(unknown_type_handler, UnknownTypeHandler::SerializeAsStr) { // Call the __str__ method on the object diff --git a/engine/language_client_python/src/types/runtime.rs b/engine/language_client_python/src/runtime.rs similarity index 54% rename from engine/language_client_python/src/types/runtime.rs rename to engine/language_client_python/src/runtime.rs index 2d4767552..5edb4732b 100644 --- a/engine/language_client_python/src/types/runtime.rs +++ b/engine/language_client_python/src/runtime.rs @@ -1,20 +1,79 @@ use crate::parse_py_type::parse_py_type; use crate::types::function_results::FunctionResult; +use crate::types::trace_stats::TraceStats; use crate::BamlError; use super::function_result_stream::FunctionResultStream; use super::runtime_ctx_manager::RuntimeContextManager; use super::type_builder::TypeBuilder; use super::ClientBuilder; +use crate::types::function_result_stream::FunctionResultStream; +use crate::types::runtime_ctx_manager::RuntimeContextManager; +use crate::types::type_builder::TypeBuilder; use baml_runtime::runtime_interface::ExperimentalTracingInterface; use baml_runtime::BamlRuntime as CoreBamlRuntime; use pyo3::prelude::{pymethods, PyResult}; -use pyo3::{PyObject, Python, ToPyObject}; +use pyo3::{pyclass, PyObject, Python, ToPyObject}; use std::collections::HashMap; use std::path::PathBuf; crate::lang_wrapper!(BamlRuntime, CoreBamlRuntime, clone_safe); +#[derive(Debug, Clone)] +#[pyclass] +pub struct BamlLogEvent { + pub metadata: LogEventMetadata, + pub prompt: Option, + pub raw_output: Option, + // json structure or a string + pub parsed_output: Option, + pub start_time: String, +} + +#[derive(Debug, Clone)] +#[pyclass] +pub struct LogEventMetadata { + pub event_id: String, + pub parent_id: Option, + pub root_event_id: String, +} + +#[pymethods] +impl BamlLogEvent { + fn __repr__(&self) -> String { + format!( + "BamlLogEvent {{\n metadata: {:?},\n prompt: {:?},\n raw_output: {:?},\n parsed_output: {:?},\n start_time: {:?}\n}}", + self.metadata, self.prompt, self.raw_output, self.parsed_output, self.start_time + ) + } + + fn __str__(&self) -> String { + let prompt = self + .prompt + .as_ref() + .map_or("None".to_string(), |p| format!("\"{p}\"")); + let raw_output = self + .raw_output + .as_ref() + .map_or("None".to_string(), |r| format!("\"{r}\"")); + let parsed_output = self + .parsed_output + .as_ref() + .map_or("None".to_string(), |p| format!("\"{p}\"")); + + format!( + "BamlLogEvent {{\n metadata: {{\n event_id: \"{}\",\n parent_id: {},\n root_event_id: \"{}\"\n }},\n prompt: {},\n raw_output: {},\n parsed_output: {},\n start_time: \"{}\"\n}}", + self.metadata.event_id, + self.metadata.parent_id.as_ref().map_or("None".to_string(), |id| format!("\"{}\"", id)), + self.metadata.root_event_id, + prompt, + raw_output, + parsed_output, + self.start_time + ) + } +} + #[pymethods] impl BamlRuntime { #[staticmethod] @@ -128,4 +187,44 @@ impl BamlRuntime { fn flush(&self) -> PyResult<()> { self.inner.flush().map_err(BamlError::from_anyhow) } + + #[pyo3()] + fn drain_stats(&self) -> TraceStats { + self.inner.drain_stats().into() + } + + #[pyo3()] + fn set_log_event_callback(&self, callback: PyObject) -> PyResult<()> { + let callback = callback.clone(); + let baml_runtime = self.inner.clone(); + + let res = baml_runtime + .as_ref() + .set_log_event_callback(Box::new(move |log_event| { + Python::with_gil(|py| { + match callback.call1( + py, + (BamlLogEvent { + metadata: LogEventMetadata { + event_id: log_event.metadata.event_id.clone(), + parent_id: log_event.metadata.parent_id.clone(), + root_event_id: log_event.metadata.root_event_id.clone(), + }, + prompt: log_event.prompt.clone(), + raw_output: log_event.raw_output.clone(), + parsed_output: log_event.parsed_output.clone(), + start_time: log_event.start_time.clone(), + },), + ) { + Ok(_) => Ok(()), + Err(e) => { + log::error!("Error calling log_event_callback: {:?}", e); + Err(anyhow::Error::new(e).into()) // Proper error handling + } + } + }) + })); + + Ok(()) + } } diff --git a/engine/language_client_python/src/types/audio.rs b/engine/language_client_python/src/types/audio.rs new file mode 100644 index 000000000..48790c7b8 --- /dev/null +++ b/engine/language_client_python/src/types/audio.rs @@ -0,0 +1,92 @@ +use baml_types::BamlMediaType; +use pyo3::prelude::{pymethods, PyAnyMethods, PyModule, PyResult}; +use pyo3::types::PyType; +use pyo3::{Bound, Py, PyAny, PyObject, Python, ToPyObject}; +crate::lang_wrapper!(BamlAudioPy, baml_types::BamlMedia); + +#[pymethods] +impl BamlAudioPy { + #[staticmethod] + fn from_url(url: String) -> Self { + BamlAudioPy { + inner: baml_types::BamlMedia::Url( + BamlMediaType::Audio, + baml_types::MediaUrl::new(url, None), + ), + } + } + + #[staticmethod] + fn from_base64(media_type: String, base64: String) -> Self { + BamlAudioPy { + inner: baml_types::BamlMedia::Base64( + BamlMediaType::Audio, + baml_types::MediaBase64::new(base64, media_type), + ), + } + } + + pub fn is_url(&self) -> bool { + matches!(&self.inner, baml_types::BamlMedia::Url(_, _)) + } + + pub fn as_url(&self) -> PyResult { + match &self.inner { + baml_types::BamlMedia::Url(BamlMediaType::Audio, url) => Ok(url.url.clone()), + _ => Err(crate::BamlError::new_err("Audio is not a URL")), + } + } + + pub fn as_base64(&self) -> PyResult> { + match &self.inner { + baml_types::BamlMedia::Base64(BamlMediaType::Audio, base64) => { + Ok(vec![base64.base64.clone(), base64.media_type.clone()]) + } + _ => Err(crate::BamlError::new_err("Audio is not base64")), + } + } + + pub fn __repr__(&self) -> String { + match &self.inner { + baml_types::BamlMedia::Url(BamlMediaType::Audio, url) => { + format!("BamlAudioPy(url={})", url.url) + } + baml_types::BamlMedia::Base64(BamlMediaType::Audio, base64) => { + format!( + "BamlAudioPy(base64={}, media_type={})", + base64.base64, base64.media_type + ) + } + _ => format!("Unknown BamlAudioPy variant"), + } + } + + // Makes it work with Pydantic + #[classmethod] + pub fn __get_pydantic_core_schema__( + _cls: Bound<'_, PyType>, + _source_type: Bound<'_, PyAny>, + _handler: Bound<'_, PyAny>, + ) -> PyResult { + Python::with_gil(|py| { + let code = r#" +from pydantic_core import core_schema + +def get_schema(): + # No validation + return core_schema.any_schema() + +ret = get_schema() + "#; + // py.run(code, None, Some(ret_dict)); + let fun: Py = PyModule::from_code_bound(py, code, "", "")? + .getattr("ret")? + .into(); + Ok(fun.to_object(py)) // Return the PyObject + }) + } + + pub fn __eq__(&self, other: &Self) -> bool { + self.inner == other.inner + } +} diff --git a/engine/language_client_python/src/types/function_result_stream.rs b/engine/language_client_python/src/types/function_result_stream.rs index d5f70cdea..639eecc2e 100644 --- a/engine/language_client_python/src/types/function_result_stream.rs +++ b/engine/language_client_python/src/types/function_result_stream.rs @@ -15,7 +15,7 @@ crate::lang_wrapper!( ); impl FunctionResultStream { - pub(super) fn new( + pub(crate) fn new( inner: baml_runtime::FunctionResultStream, event: Option, tb: Option, diff --git a/engine/language_client_python/src/types/image.rs b/engine/language_client_python/src/types/image.rs index 207fbcf1e..a2b35171c 100644 --- a/engine/language_client_python/src/types/image.rs +++ b/engine/language_client_python/src/types/image.rs @@ -1,39 +1,45 @@ +use baml_types::BamlMediaType; use pyo3::prelude::{pymethods, PyAnyMethods, PyModule, PyResult}; use pyo3::types::PyType; use pyo3::{Bound, Py, PyAny, PyObject, Python, ToPyObject}; - -crate::lang_wrapper!(BamlImagePy, baml_types::BamlImage); +crate::lang_wrapper!(BamlImagePy, baml_types::BamlMedia); #[pymethods] impl BamlImagePy { #[staticmethod] fn from_url(url: String) -> Self { BamlImagePy { - inner: baml_types::BamlImage::Url(baml_types::ImageUrl::new(url)), + inner: baml_types::BamlMedia::Url( + BamlMediaType::Image, + baml_types::MediaUrl::new(url, None), + ), } } #[staticmethod] fn from_base64(media_type: String, base64: String) -> Self { BamlImagePy { - inner: baml_types::BamlImage::Base64(baml_types::ImageBase64::new(base64, media_type)), + inner: baml_types::BamlMedia::Base64( + BamlMediaType::Image, + baml_types::MediaBase64::new(base64, media_type), + ), } } pub fn is_url(&self) -> bool { - matches!(&self.inner, baml_types::BamlImage::Url(_)) + matches!(&self.inner, baml_types::BamlMedia::Url(_, _)) } pub fn as_url(&self) -> PyResult { match &self.inner { - baml_types::BamlImage::Url(url) => Ok(url.url.clone()), + baml_types::BamlMedia::Url(BamlMediaType::Image, url) => Ok(url.url.clone()), _ => Err(crate::BamlError::new_err("Image is not a URL")), } } pub fn as_base64(&self) -> PyResult> { match &self.inner { - baml_types::BamlImage::Base64(base64) => { + baml_types::BamlMedia::Base64(BamlMediaType::Image, base64) => { Ok(vec![base64.base64.clone(), base64.media_type.clone()]) } _ => Err(crate::BamlError::new_err("Image is not base64")), @@ -42,13 +48,16 @@ impl BamlImagePy { pub fn __repr__(&self) -> String { match &self.inner { - baml_types::BamlImage::Url(url) => format!("BamlImagePy(url={})", url.url), - baml_types::BamlImage::Base64(base64) => { + baml_types::BamlMedia::Url(BamlMediaType::Image, url) => { + format!("BamlImagePy(url={})", url.url) + } + baml_types::BamlMedia::Base64(BamlMediaType::Image, base64) => { format!( "BamlImagePy(base64={}, media_type={})", base64.base64, base64.media_type ) } + _ => format!("Unknown BamlImagePy variant"), } } diff --git a/engine/language_client_python/src/types/mod.rs b/engine/language_client_python/src/types/mod.rs index 6d63bf241..885f6b9cc 100644 --- a/engine/language_client_python/src/types/mod.rs +++ b/engine/language_client_python/src/types/mod.rs @@ -10,10 +10,20 @@ mod span; mod type_builder; pub use client_builder::ClientBuilder; +pub(crate) mod audio; +pub(crate) mod function_result_stream; +pub(crate) mod function_results; +pub(crate) mod image; +pub(crate) mod runtime_ctx_manager; +pub(crate) mod span; +pub(crate) mod trace_stats; +pub(crate) mod type_builder; + +pub use audio::BamlAudioPy; pub use function_result_stream::FunctionResultStream; pub use function_results::FunctionResult; pub use image::BamlImagePy; -pub use runtime::BamlRuntime; + pub use runtime_ctx_manager::RuntimeContextManager; pub use span::BamlSpan; pub use type_builder::*; diff --git a/engine/language_client_python/src/types/span.rs b/engine/language_client_python/src/types/span.rs index a6c0255f8..17cd70c3d 100644 --- a/engine/language_client_python/src/types/span.rs +++ b/engine/language_client_python/src/types/span.rs @@ -6,8 +6,8 @@ use pyo3::{PyObject, Python, ToPyObject}; use crate::parse_py_type::parse_py_type; use crate::BamlError; -use super::runtime::BamlRuntime; use super::runtime_ctx_manager::RuntimeContextManager; +use crate::runtime::BamlRuntime; crate::lang_wrapper!(BamlSpan, Option>, @@ -49,7 +49,7 @@ impl BamlSpan { result: PyObject, ctx: &RuntimeContextManager, ) -> PyResult> { - log::info!("Finishing span: {:?}", self.inner); + log::trace!("Finishing span: {:?}", self.inner); let result = parse_py_type(result.into_bound(py).to_object(py), true)?; let span = self diff --git a/engine/language_client_python/src/types/trace_stats.rs b/engine/language_client_python/src/types/trace_stats.rs new file mode 100644 index 000000000..56d9a044f --- /dev/null +++ b/engine/language_client_python/src/types/trace_stats.rs @@ -0,0 +1,48 @@ +use pyo3::pymethods; + +crate::lang_wrapper!(TraceStats, baml_runtime::InnerTraceStats); + +#[pymethods] +impl TraceStats { + #[getter] + pub fn failed(&self) -> u32 { + self.inner.failed + } + + #[getter] + pub fn started(&self) -> u32 { + self.inner.started + } + + #[getter] + pub fn finalized(&self) -> u32 { + self.inner.finalized + } + + #[getter] + pub fn submitted(&self) -> u32 { + self.inner.submitted + } + + #[getter] + pub fn sent(&self) -> u32 { + self.inner.sent + } + + #[getter] + pub fn done(&self) -> u32 { + self.inner.done + } + + pub fn __repr__(&self) -> String { + format!( + "TraceStats(failed={}, started={}, finalized={}, submitted={}, sent={}, done={})", + self.failed(), + self.started(), + self.finalized(), + self.submitted(), + self.sent(), + self.done() + ) + } +} diff --git a/engine/language_client_ruby/baml.gemspec b/engine/language_client_ruby/baml.gemspec index 92496ff43..06753b39e 100644 --- a/engine/language_client_ruby/baml.gemspec +++ b/engine/language_client_ruby/baml.gemspec @@ -2,7 +2,7 @@ Gem::Specification.new do |spec| spec.name = "baml" - spec.version = "0.40.0" + spec.version = "0.45.0" spec.authors = ["BoundaryML"] spec.email = ["contact@boundaryml.com"] diff --git a/engine/language_client_ruby/ext/ruby_ffi/src/lib.rs b/engine/language_client_ruby/ext/ruby_ffi/src/lib.rs index d46254f47..f967e253e 100644 --- a/engine/language_client_ruby/ext/ruby_ffi/src/lib.rs +++ b/engine/language_client_ruby/ext/ruby_ffi/src/lib.rs @@ -34,7 +34,7 @@ impl Drop for BamlRuntimeFfi { fn drop(&mut self) { use baml_runtime::runtime_interface::ExperimentalTracingInterface; match self.inner.flush() { - Ok(_) => log::info!("Flushed BAML log events"), + Ok(_) => log::trace!("Flushed BAML log events"), Err(e) => log::error!("Error while flushing BAML log events: {:?}", e), } } diff --git a/engine/language_client_typescript/async_context_vars.d.ts b/engine/language_client_typescript/async_context_vars.d.ts deleted file mode 100644 index 36f3f1ebb..000000000 --- a/engine/language_client_typescript/async_context_vars.d.ts +++ /dev/null @@ -1,15 +0,0 @@ -import { BamlSpan, RuntimeContextManager, BamlRuntime } from './native'; -export declare class CtxManager { - private rt; - private ctx; - constructor(rt: BamlRuntime); - upsertTags(tags: Record): void; - get(): RuntimeContextManager; - startTraceSync(name: string, args: Record): BamlSpan; - startTraceAsync(name: string, args: Record): BamlSpan; - endTrace(span: BamlSpan, response: any): void; - flush(): void; - traceFnSync ReturnType>(name: string, func: F): F; - traceFnAync Promise>(name: string, func: F): F; -} -//# sourceMappingURL=async_context_vars.d.ts.map \ No newline at end of file diff --git a/engine/language_client_typescript/async_context_vars.d.ts.map b/engine/language_client_typescript/async_context_vars.d.ts.map deleted file mode 100644 index 7642518da..000000000 --- a/engine/language_client_typescript/async_context_vars.d.ts.map +++ /dev/null @@ -1 +0,0 @@ -{"version":3,"file":"async_context_vars.d.ts","sourceRoot":"","sources":["typescript_src/async_context_vars.ts"],"names":[],"mappings":"AAAA,OAAO,EAAE,QAAQ,EAAE,qBAAqB,EAAE,WAAW,EAAE,MAAM,UAAU,CAAA;AAGvE,qBAAa,UAAU;IACrB,OAAO,CAAC,EAAE,CAAa;IACvB,OAAO,CAAC,GAAG,CAA0C;gBAEzC,EAAE,EAAE,WAAW;IAS3B,UAAU,CAAC,IAAI,EAAE,MAAM,CAAC,MAAM,EAAE,MAAM,CAAC,GAAG,IAAI;IAK9C,GAAG,IAAI,qBAAqB;IAS5B,cAAc,CAAC,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,CAAC,MAAM,EAAE,GAAG,CAAC,GAAG,QAAQ;IAOjE,eAAe,CAAC,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,CAAC,MAAM,EAAE,GAAG,CAAC,GAAG,QAAQ;IAOlE,QAAQ,CAAC,IAAI,EAAE,QAAQ,EAAE,QAAQ,EAAE,GAAG,GAAG,IAAI;IAS7C,KAAK,IAAI,IAAI;IAIb,WAAW,CAAC,UAAU,EAAE,CAAC,SAAS,CAAC,GAAG,IAAI,EAAE,GAAG,EAAE,KAAK,UAAU,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,CAAC,GAAG,CAAC;IAsB3F,WAAW,CAAC,UAAU,EAAE,CAAC,SAAS,CAAC,GAAG,IAAI,EAAE,GAAG,EAAE,KAAK,OAAO,CAAC,UAAU,CAAC,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,CAAC,GAAG,CAAC;CAqBrG"} \ No newline at end of file diff --git a/engine/language_client_typescript/async_context_vars.js b/engine/language_client_typescript/async_context_vars.js deleted file mode 100644 index 62cc8a2f1..000000000 --- a/engine/language_client_typescript/async_context_vars.js +++ /dev/null @@ -1,90 +0,0 @@ -"use strict"; -Object.defineProperty(exports, "__esModule", { value: true }); -exports.CtxManager = void 0; -const native_1 = require("./native"); -const async_hooks_1 = require("async_hooks"); -class CtxManager { - rt; - ctx; - constructor(rt) { - this.rt = rt; - this.ctx = new async_hooks_1.AsyncLocalStorage(); - this.ctx.enterWith(rt.createContextManager()); - process.on('exit', () => { - this.rt.flush(); - }); - } - upsertTags(tags) { - const manager = this.ctx.getStore(); - manager.upsertTags(tags); - } - get() { - let store = this.ctx.getStore(); - if (store === undefined) { - store = this.rt.createContextManager(); - this.ctx.enterWith(store); - } - return store; - } - startTraceSync(name, args) { - const mng = this.get(); - // const clone = mng.deepClone() - // this.ctx.enterWith(clone) - return native_1.BamlSpan.new(this.rt, name, args, mng); - } - startTraceAsync(name, args) { - const mng = this.get(); - const clone = mng.deepClone(); - this.ctx.enterWith(clone); - return native_1.BamlSpan.new(this.rt, name, args, clone); - } - endTrace(span, response) { - const manager = this.ctx.getStore(); - if (!manager) { - console.error('Context lost before span could be finished\n'); - return; - } - span.finish(response, manager); - } - flush() { - this.rt.flush(); - } - traceFnSync(name, func) { - return ((...args) => { - const params = args.reduce((acc, arg, i) => ({ - ...acc, - [`arg${i}`]: arg, // generic way to label args - }), {}); - const span = this.startTraceSync(name, params); - try { - const response = func(...args); - this.endTrace(span, response); - return response; - } - catch (e) { - this.endTrace(span, e); - throw e; - } - }); - } - traceFnAync(name, func) { - const funcName = name; - return (async (...args) => { - const params = args.reduce((acc, arg, i) => ({ - ...acc, - [`arg${i}`]: arg, // generic way to label args - }), {}); - const span = this.startTraceAsync(funcName, params); - try { - const response = await func(...args); - this.endTrace(span, response); - return response; - } - catch (e) { - this.endTrace(span, e); - throw e; - } - }); - } -} -exports.CtxManager = CtxManager; diff --git a/engine/language_client_typescript/index.d.ts b/engine/language_client_typescript/index.d.ts deleted file mode 100644 index 5a780b8d3..000000000 --- a/engine/language_client_typescript/index.d.ts +++ /dev/null @@ -1,4 +0,0 @@ -export { BamlRuntime, FunctionResult, FunctionResultStream, BamlImage as Image, invoke_runtime_cli, ClientBuilder, } from './native'; -export { BamlStream } from './stream'; -export { CtxManager as BamlCtxManager } from './async_context_vars'; -//# sourceMappingURL=index.d.ts.map \ No newline at end of file diff --git a/engine/language_client_typescript/index.d.ts.map b/engine/language_client_typescript/index.d.ts.map deleted file mode 100644 index c8fa54ef0..000000000 --- a/engine/language_client_typescript/index.d.ts.map +++ /dev/null @@ -1 +0,0 @@ -{"version":3,"file":"index.d.ts","sourceRoot":"","sources":["typescript_src/index.ts"],"names":[],"mappings":"AAAA,OAAO,EACL,WAAW,EACX,cAAc,EACd,oBAAoB,EACpB,SAAS,IAAI,KAAK,EAClB,kBAAkB,EAClB,aAAa,GACd,MAAM,UAAU,CAAA;AACjB,OAAO,EAAE,UAAU,EAAE,MAAM,UAAU,CAAA;AACrC,OAAO,EAAE,UAAU,IAAI,cAAc,EAAE,MAAM,sBAAsB,CAAA"} \ No newline at end of file diff --git a/engine/language_client_typescript/index.js b/engine/language_client_typescript/index.js deleted file mode 100644 index 0c3f00c73..000000000 --- a/engine/language_client_typescript/index.js +++ /dev/null @@ -1,14 +0,0 @@ -"use strict"; -Object.defineProperty(exports, "__esModule", { value: true }); -exports.BamlCtxManager = exports.BamlStream = exports.ClientBuilder = exports.invoke_runtime_cli = exports.Image = exports.FunctionResultStream = exports.FunctionResult = exports.BamlRuntime = void 0; -var native_1 = require("./native"); -Object.defineProperty(exports, "BamlRuntime", { enumerable: true, get: function () { return native_1.BamlRuntime; } }); -Object.defineProperty(exports, "FunctionResult", { enumerable: true, get: function () { return native_1.FunctionResult; } }); -Object.defineProperty(exports, "FunctionResultStream", { enumerable: true, get: function () { return native_1.FunctionResultStream; } }); -Object.defineProperty(exports, "Image", { enumerable: true, get: function () { return native_1.BamlImage; } }); -Object.defineProperty(exports, "invoke_runtime_cli", { enumerable: true, get: function () { return native_1.invoke_runtime_cli; } }); -Object.defineProperty(exports, "ClientBuilder", { enumerable: true, get: function () { return native_1.ClientBuilder; } }); -var stream_1 = require("./stream"); -Object.defineProperty(exports, "BamlStream", { enumerable: true, get: function () { return stream_1.BamlStream; } }); -var async_context_vars_1 = require("./async_context_vars"); -Object.defineProperty(exports, "BamlCtxManager", { enumerable: true, get: function () { return async_context_vars_1.CtxManager; } }); diff --git a/engine/language_client_typescript/native.d.ts b/engine/language_client_typescript/native.d.ts deleted file mode 100644 index 554976232..000000000 --- a/engine/language_client_typescript/native.d.ts +++ /dev/null @@ -1,88 +0,0 @@ -/* auto-generated by NAPI-RS */ -/* eslint-disable */ -export class BamlImage { - static fromUrl(url: string): BamlImage - static fromBase64(mediaType: string, base64: string): BamlImage - isUrl(): boolean - asUrl(): string - asBase64(): [string, string] - toJSON(): any -} - -export class BamlRuntime { - static fromDirectory(directory: string, envVars: Record): BamlRuntime - static fromFiles(rootPath: string, files: Record, envVars: Record): BamlRuntime - createContextManager(): RuntimeContextManager - callFunction(functionName: string, args: { [string]: any }, ctx: RuntimeContextManager, tb?: TypeBuilder | undefined | null, cb?: ClientBuilder | undefined | null): Promise - streamFunction(functionName: string, args: { [string]: any }, callback: (err: any, param: FunctionResult) => void, ctx: RuntimeContextManager, tb?: TypeBuilder | undefined | null, cb?: ClientBuilder | undefined | null): FunctionResultStream - flush(): void -} - -export class BamlSpan { - static new(runtime: BamlRuntime, functionName: string, args: any, ctx: RuntimeContextManager): BamlSpan - finish(result: any, ctx: RuntimeContextManager): any -} - -export class ClassBuilder { - field(): FieldType - property(name: string): ClassPropertyBuilder -} - -export class ClassPropertyBuilder { - setType(fieldType: FieldType): ClassPropertyBuilder - alias(alias?: string | undefined | null): ClassPropertyBuilder - description(description?: string | undefined | null): ClassPropertyBuilder -} - -export class ClientBuilder { - constructor() - addClient(name: string, provider: string, options: { [string]: any }, retryPolicy?: string | undefined | null): void - setPrimary(primary: string): void -} - -export class EnumBuilder { - value(name: string): EnumValueBuilder - alias(alias?: string | undefined | null): EnumBuilder - field(): FieldType -} - -export class EnumValueBuilder { - alias(alias?: string | undefined | null): EnumValueBuilder - skip(skip?: boolean | undefined | null): EnumValueBuilder - description(description?: string | undefined | null): EnumValueBuilder -} - -export class FieldType { - list(): FieldType - optional(): FieldType -} - -export class FunctionResult { - parsed(): any -} - -export class FunctionResultStream { - onEvent(func: (err: any, param: FunctionResult) => void): void - done(rctx: RuntimeContextManager): Promise -} - -export class RuntimeContextManager { - upsertTags(tags: any): void - deepClone(): RuntimeContextManager -} - -export class TypeBuilder { - constructor() - getEnum(name: string): EnumBuilder - getClass(name: string): ClassBuilder - list(inner: FieldType): FieldType - optional(inner: FieldType): FieldType - string(): FieldType - int(): FieldType - float(): FieldType - bool(): FieldType - null(): FieldType -} - -export function invoke_runtime_cli(params: Array): void - diff --git a/engine/language_client_typescript/native.js b/engine/language_client_typescript/native.js deleted file mode 100644 index a2de0f259..000000000 --- a/engine/language_client_typescript/native.js +++ /dev/null @@ -1,377 +0,0 @@ -// prettier-ignore -/* eslint-disable */ -/* auto-generated by NAPI-RS */ - -const { readFileSync } = require('fs') - -let nativeBinding = null -const loadErrors = [] - -const isMusl = () => { - let musl = false - if (process.platform === 'linux') { - musl = isMuslFromFilesystem() - if (musl === null) { - musl = isMuslFromReport() - } - if (musl === null) { - musl = isMuslFromChildProcess() - } - } - return musl -} - -const isFileMusl = (f) => f.includes('libc.musl-') || f.includes('ld-musl-') - -const isMuslFromFilesystem = () => { - try { - return readFileSync('/usr/bin/ldd', 'utf-8').includes('musl') - } catch { - return null - } -} - -const isMuslFromReport = () => { - const report = typeof process.report.getReport === 'function' ? process.report.getReport() : null - if (!report) { - return null - } - if (report.header && report.header.glibcVersionRuntime) { - return false - } - if (Array.isArray(report.sharedObjects)) { - if (report.sharedObjects.some(isFileMusl)) { - return true - } - } - return false -} - -const isMuslFromChildProcess = () => { - try { - return require('child_process').execSync('ldd --version', { encoding: 'utf8' }).includes('musl') - } catch (e) { - // If we reach this case, we don't know if the system is musl or not, so is better to just fallback to false - return false - } -} - -function requireNative() { - if (process.platform === 'android') { - if (process.arch === 'arm64') { - try { - return require('./baml.android-arm64.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-android-arm64') - } catch (e) { - loadErrors.push(e) - } - - } else if (process.arch === 'arm') { - try { - return require('./baml.android-arm-eabi.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-android-arm-eabi') - } catch (e) { - loadErrors.push(e) - } - - } else { - loadErrors.push(new Error(`Unsupported architecture on Android ${process.arch}`)) - } - } else if (process.platform === 'win32') { - if (process.arch === 'x64') { - try { - return require('./baml.win32-x64-msvc.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-win32-x64-msvc') - } catch (e) { - loadErrors.push(e) - } - - } else if (process.arch === 'ia32') { - try { - return require('./baml.win32-ia32-msvc.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-win32-ia32-msvc') - } catch (e) { - loadErrors.push(e) - } - - } else if (process.arch === 'arm64') { - try { - return require('./baml.win32-arm64-msvc.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-win32-arm64-msvc') - } catch (e) { - loadErrors.push(e) - } - - } else { - loadErrors.push(new Error(`Unsupported architecture on Windows: ${process.arch}`)) - } - } else if (process.platform === 'darwin') { - try { - return require('./baml.darwin-universal.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-darwin-universal') - } catch (e) { - loadErrors.push(e) - } - - if (process.arch === 'x64') { - try { - return require('./baml.darwin-x64.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-darwin-x64') - } catch (e) { - loadErrors.push(e) - } - - } else if (process.arch === 'arm64') { - try { - return require('./baml.darwin-arm64.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-darwin-arm64') - } catch (e) { - loadErrors.push(e) - } - - } else { - loadErrors.push(new Error(`Unsupported architecture on macOS: ${process.arch}`)) - } - } else if (process.platform === 'freebsd') { - if (process.arch === 'x64') { - try { - return require('./baml.freebsd-x64.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-freebsd-x64') - } catch (e) { - loadErrors.push(e) - } - - } else if (process.arch === 'arm64') { - try { - return require('./baml.freebsd-arm64.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-freebsd-arm64') - } catch (e) { - loadErrors.push(e) - } - - } else { - loadErrors.push(new Error(`Unsupported architecture on FreeBSD: ${process.arch}`)) - } - } else if (process.platform === 'linux') { - if (process.arch === 'x64') { - if (isMusl()) { - try { - return require('./baml.linux-x64-musl.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-linux-x64-musl') - } catch (e) { - loadErrors.push(e) - } - - } else { - try { - return require('./baml.linux-x64-gnu.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-linux-x64-gnu') - } catch (e) { - loadErrors.push(e) - } - - } - } else if (process.arch === 'arm64') { - if (isMusl()) { - try { - return require('./baml.linux-arm64-musl.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-linux-arm64-musl') - } catch (e) { - loadErrors.push(e) - } - - } else { - try { - return require('./baml.linux-arm64-gnu.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-linux-arm64-gnu') - } catch (e) { - loadErrors.push(e) - } - - } - } else if (process.arch === 'arm') { - if (isMusl()) { - try { - return require('./baml.linux-arm-musleabihf.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-linux-arm-musleabihf') - } catch (e) { - loadErrors.push(e) - } - - } else { - try { - return require('./baml.linux-arm-gnueabihf.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-linux-arm-gnueabihf') - } catch (e) { - loadErrors.push(e) - } - - } - } else if (process.arch === 'riscv64') { - if (isMusl()) { - try { - return require('./baml.linux-riscv64-musl.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-linux-riscv64-musl') - } catch (e) { - loadErrors.push(e) - } - - } else { - try { - return require('./baml.linux-riscv64-gnu.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-linux-riscv64-gnu') - } catch (e) { - loadErrors.push(e) - } - - } - } else if (process.arch === 'ppc64') { - try { - return require('./baml.linux-ppc64-gnu.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-linux-ppc64-gnu') - } catch (e) { - loadErrors.push(e) - } - - } else if (process.arch === 's390x') { - try { - return require('./baml.linux-s390x-gnu.node') - } catch (e) { - loadErrors.push(e) - } - try { - return require('@boundaryml/baml-linux-s390x-gnu') - } catch (e) { - loadErrors.push(e) - } - - } else { - loadErrors.push(new Error(`Unsupported architecture on Linux: ${process.arch}`)) - } - } else { - loadErrors.push(new Error(`Unsupported OS: ${process.platform}, architecture: ${process.arch}`)) - } -} - -nativeBinding = requireNative() - -if (!nativeBinding || process.env.NAPI_RS_FORCE_WASI) { - try { - nativeBinding = require('./baml.wasi.cjs') - } catch (err) { - if (process.env.NAPI_RS_FORCE_WASI) { - console.error(err) - } - } - if (!nativeBinding) { - try { - nativeBinding = require('@boundaryml/baml-wasm32-wasi') - } catch (err) { - if (process.env.NAPI_RS_FORCE_WASI) { - console.error(err) - } - } - } -} - -if (!nativeBinding) { - if (loadErrors.length > 0) { - // TODO Link to documentation with potential fixes - // - The package owner could build/publish bindings for this arch - // - The user may need to bundle the correct files - // - The user may need to re-install node_modules to get new packages - throw new Error('Failed to load native binding', { cause: loadErrors }) - } - throw new Error(`Failed to load native binding`) -} - -module.exports.BamlImage = nativeBinding.BamlImage -module.exports.BamlRuntime = nativeBinding.BamlRuntime -module.exports.BamlSpan = nativeBinding.BamlSpan -module.exports.ClassBuilder = nativeBinding.ClassBuilder -module.exports.ClassPropertyBuilder = nativeBinding.ClassPropertyBuilder -module.exports.ClientBuilder = nativeBinding.ClientBuilder -module.exports.EnumBuilder = nativeBinding.EnumBuilder -module.exports.EnumValueBuilder = nativeBinding.EnumValueBuilder -module.exports.FieldType = nativeBinding.FieldType -module.exports.FunctionResult = nativeBinding.FunctionResult -module.exports.FunctionResultStream = nativeBinding.FunctionResultStream -module.exports.RuntimeContextManager = nativeBinding.RuntimeContextManager -module.exports.TypeBuilder = nativeBinding.TypeBuilder -module.exports.invoke_runtime_cli = nativeBinding.invoke_runtime_cli diff --git a/engine/language_client_typescript/package.json b/engine/language_client_typescript/package.json index 729fa253a..a4cc8e6d6 100644 --- a/engine/language_client_typescript/package.json +++ b/engine/language_client_typescript/package.json @@ -1,6 +1,6 @@ { "name": "@boundaryml/baml", - "version": "0.40.0", + "version": "0.45.0", "description": "BAML typescript bindings (package.json)", "repository": { "type": "git", @@ -16,7 +16,7 @@ "node-addon-api" ], "bin": { - "baml-cli": "./cli.js" + "baml-cli": "cli.js" }, "files": [ "./cli.js", @@ -61,13 +61,13 @@ "format": "run-p format:biome format:rs format:toml", "format:biome": "biome --write .", "format:rs": "cargo fmt", - "prepublishOnly": "napi prepublish -t npm", + "prepublishOnly": "napi prepublish --no-gh-release", "test": "echo no tests implemented", "version": "napi version" }, "devDependencies": { "@biomejs/biome": "^1.7.3", - "@napi-rs/cli": "^3.0.0-alpha.54", + "@napi-rs/cli": "3.0.0-alpha.54", "@types/node": "^20.12.11", "npm-run-all2": "^6.1.2", "ts-node": "^10.9.2", diff --git a/engine/language_client_typescript/pnpm-lock.yaml b/engine/language_client_typescript/pnpm-lock.yaml index fa68932db..c3d1eb265 100644 --- a/engine/language_client_typescript/pnpm-lock.yaml +++ b/engine/language_client_typescript/pnpm-lock.yaml @@ -9,7 +9,7 @@ devDependencies: specifier: ^1.7.3 version: 1.7.3 '@napi-rs/cli': - specifier: ^3.0.0-alpha.54 + specifier: 3.0.0-alpha.54 version: 3.0.0-alpha.54 '@types/node': specifier: ^20.12.11 @@ -29,7 +29,6 @@ packages: /@biomejs/biome@1.7.3: resolution: {integrity: sha512-ogFQI+fpXftr+tiahA6bIXwZ7CSikygASdqMtH07J2cUzrpjyTMVc9Y97v23c7/tL1xCZhM+W9k4hYIBm7Q6cQ==} engines: {node: '>=14.21.3'} - hasBin: true requiresBuild: true optionalDependencies: '@biomejs/cli-darwin-arm64': 1.7.3 @@ -168,7 +167,6 @@ packages: /@napi-rs/cli@3.0.0-alpha.54: resolution: {integrity: sha512-3xFQ0SFRhxP1WqyR/D3FYze423ToQKtrwd8s3Afl+CQC52wlIprA6/MbHudVMnono82wOKUxt71e39DACotHHg==} engines: {node: '>= 16'} - hasBin: true peerDependencies: '@emnapi/runtime': ^1.1.0 emnapi: ^1.1.0 @@ -823,7 +821,6 @@ packages: /acorn@8.11.3: resolution: {integrity: sha512-Y9rRfJG5jcKOE0CLisYbojUjIrIEE7AGMzA/Sm4BslANhbS+cDMpgBdcPT91oJ7OuJ9hYJBx59RjbhxVnrF8Xg==} engines: {node: '>=0.4.0'} - hasBin: true dev: true /ansi-escapes@4.3.2: @@ -1144,7 +1141,6 @@ packages: /js-yaml@4.1.0: resolution: {integrity: sha512-wpxZs9NoxZaJESJGIZTyDEaYpl0FKSA+FB9aJiyemKhMwkxQg63h4T1KJgUGHpTqPDNRcmmYLugrRjJlBtWvRA==} - hasBin: true dependencies: argparse: 2.0.1 dev: true @@ -1208,7 +1204,6 @@ packages: /npm-run-all2@6.1.2: resolution: {integrity: sha512-WwwnS8Ft+RpXve6T2EIEVpFLSqN+ORHRvgNk3H9N62SZXjmzKoRhMFg3I17TK3oMaAEr+XFbRirWS2Fn3BCPSg==} engines: {node: ^14.18.0 || >=16.0.0, npm: '>= 8'} - hasBin: true dependencies: ansi-styles: 6.2.1 cross-spawn: 7.0.3 @@ -1260,7 +1255,6 @@ packages: /pidtree@0.6.0: resolution: {integrity: sha512-eG2dWTVw5bzqGRztnHExczNxt5VGsE6OwTeCG3fdUf9KBsZzO3R5OIIIzWR+iZA0NtZ+RDVdaoE2dK1cn6jH4g==} engines: {node: '>=0.10'} - hasBin: true dev: true /read-package-json-fast@3.0.2: @@ -1310,7 +1304,6 @@ packages: /semver@7.6.2: resolution: {integrity: sha512-FNAIBWCx9qcRhoHcgcJ0gvU7SN1lYU2ZXuSfl04bSC5OpvDHFyJCjdNHomPXxjQlCBU67YW64PzY7/VIEH7F2w==} engines: {node: '>=10'} - hasBin: true dev: true /set-function-length@1.2.2: @@ -1387,7 +1380,6 @@ packages: /ts-node@10.9.2(@types/node@20.12.11)(typescript@5.4.5): resolution: {integrity: sha512-f0FFpIdcHgn8zcPSbf1dRevwt047YMnaiJM3u2w2RewrB+fob/zePZcrOyQoLMMO7aBIddLcQIEK5dYjkLnGrQ==} - hasBin: true peerDependencies: '@swc/core': '>=1.2.50' '@swc/wasm': '>=1.2.50' @@ -1432,7 +1424,6 @@ packages: /typescript@5.4.5: resolution: {integrity: sha512-vcI4UpRgg81oIRUFwR0WSIHKt11nJ7SAVlYNIu+QpqeyXP+gpQJy/Z4+F0aGxSE4MqwjyXvW/TzgkLAx2AGHwQ==} engines: {node: '>=14.17'} - hasBin: true dev: true /undici-types@5.26.5: @@ -1464,7 +1455,6 @@ packages: /which@2.0.2: resolution: {integrity: sha512-BLI3Tl1TW3Pvl70l3yq3Y64i+awpwXqsGBYWkkqMtnbXgrMD+yj7rhW0kuEDxzJaYXGjEW5ogapKNMEKNMjibA==} engines: {node: '>= 8'} - hasBin: true dependencies: isexe: 2.0.0 dev: true diff --git a/engine/language_client_typescript/src/lib.rs b/engine/language_client_typescript/src/lib.rs index b5f2df72a..f7217a0a6 100644 --- a/engine/language_client_typescript/src/lib.rs +++ b/engine/language_client_typescript/src/lib.rs @@ -2,8 +2,11 @@ use napi::{Env, JsUndefined}; use napi_derive::napi; mod parse_ts_types; +mod runtime; mod types; +pub(crate) use runtime::BamlRuntime; + #[napi(js_name = "invoke_runtime_cli")] pub fn run_cli(env: Env, params: Vec) -> napi::Result { baml_runtime::BamlRuntime::run_cli(params, baml_runtime::CallerType::Typescript)?; diff --git a/engine/language_client_typescript/src/parse_ts_types.rs b/engine/language_client_typescript/src/parse_ts_types.rs index b865727cc..45b119101 100644 --- a/engine/language_client_typescript/src/parse_ts_types.rs +++ b/engine/language_client_typescript/src/parse_ts_types.rs @@ -11,6 +11,7 @@ use napi::JsString; use napi::JsUnknown; use napi::NapiRaw; +use crate::types::audio::BamlAudio; use crate::types::image::BamlImage; struct SerializationError { @@ -193,7 +194,9 @@ pub fn jsunknown_to_baml_value( ValueType::External => { let external = unsafe { item.cast::() }; if let Ok(img) = env.get_value_external::(&external) { - BamlValue::Image(img.inner.clone()) + BamlValue::Media(img.inner.clone()) + } else if let Ok(audio) = env.get_value_external::(&external) { + BamlValue::Media(audio.inner.clone()) } else { if skip_unsupported { return Ok(None); diff --git a/engine/language_client_typescript/src/runtime.rs b/engine/language_client_typescript/src/runtime.rs new file mode 100644 index 000000000..79804bdb6 --- /dev/null +++ b/engine/language_client_typescript/src/runtime.rs @@ -0,0 +1,251 @@ +use crate::parse_ts_types; +use crate::types::function_result_stream::FunctionResultStream; +use crate::types::function_results::FunctionResult; +use crate::types::runtime_ctx_manager::RuntimeContextManager; +use crate::types::trace_stats::TraceStats; +use crate::types::type_builder::TypeBuilder; +use baml_runtime::on_log_event::LogEvent; +use baml_runtime::runtime_interface::ExperimentalTracingInterface; +use baml_runtime::BamlRuntime as CoreRuntime; +use baml_types::BamlValue; +use napi::bindgen_prelude::ObjectFinalize; +use napi::threadsafe_function::{ThreadSafeCallContext, ThreadsafeFunctionCallMode}; +use napi::JsFunction; +use napi::JsObject; +use napi::{Env, JsUndefined}; +use napi_derive::napi; +use serde::{Deserialize, Serialize}; +use std::collections::HashMap; +use std::path::PathBuf; + +crate::lang_wrapper!(BamlRuntime, + CoreRuntime, + clone_safe, + custom_finalize, + callback: Option> = None +); + +#[napi(object)] +#[derive(Debug, Serialize, Deserialize, Clone)] +pub struct LogEventMetadata { + pub event_id: String, + pub parent_id: Option, + pub root_event_id: String, +} + +#[napi(object)] +#[derive(Debug, Serialize, Deserialize, Clone)] +pub struct BamlLogEvent { + pub metadata: LogEventMetadata, + pub prompt: Option, + pub raw_output: Option, + // json structure or a string + pub parsed_output: Option, + pub start_time: String, +} + +#[napi] +impl BamlRuntime { + #[napi(ts_return_type = "BamlRuntime")] + pub fn from_directory( + directory: String, + env_vars: HashMap, + ) -> napi::Result { + let directory = PathBuf::from(directory); + Ok(CoreRuntime::from_directory(&directory, env_vars) + .map_err(|e| napi::Error::new(napi::Status::GenericFailure, e.to_string()))? + .into()) + } + + #[napi(ts_return_type = "BamlRuntime")] + pub fn from_files( + root_path: String, + files: HashMap, + env_vars: HashMap, + ) -> napi::Result { + Ok(CoreRuntime::from_file_content(&root_path, &files, env_vars) + .map_err(|e| napi::Error::new(napi::Status::GenericFailure, e.to_string()))? + .into()) + } + + #[napi] + pub fn create_context_manager(&self) -> RuntimeContextManager { + self.inner + .create_ctx_manager(BamlValue::String("typescript".to_string())) + .into() + } + + #[napi(ts_return_type = "Promise")] + pub fn call_function( + &self, + env: Env, + function_name: String, + #[napi(ts_arg_type = "{ [string]: any }")] args: JsObject, + ctx: &RuntimeContextManager, + tb: Option<&TypeBuilder>, + ) -> napi::Result { + let args = parse_ts_types::js_object_to_baml_value(env, args)?; + + if !args.is_map() { + return Err(napi::Error::new( + napi::Status::GenericFailure, + format!( + "Invalid args: Expected a map of arguments, got: {}", + args.r#type() + ), + )); + } + let args_map = args.as_map_owned().unwrap(); + + let baml_runtime = self.inner.clone(); + let ctx_mng = ctx.inner.clone(); + let tb = tb.map(|tb| tb.inner.clone()); + + let fut = async move { + let result = baml_runtime + .call_function(function_name, &args_map, &ctx_mng, tb.as_ref()) + .await; + + result + .0 + .map(FunctionResult::from) + .map_err(|e| napi::Error::new(napi::Status::GenericFailure, e.to_string())) + }; + + env.execute_tokio_future(fut, |&mut _, data| Ok(data)) + } + + #[napi] + pub fn stream_function( + &self, + env: Env, + function_name: String, + #[napi(ts_arg_type = "{ [string]: any }")] args: JsObject, + #[napi(ts_arg_type = "(err: any, param: FunctionResult) => void")] cb: Option, + ctx: &RuntimeContextManager, + tb: Option<&TypeBuilder>, + ) -> napi::Result { + let args: BamlValue = parse_ts_types::js_object_to_baml_value(env, args)?; + if !args.is_map() { + return Err(napi::Error::new( + napi::Status::GenericFailure, + format!( + "Invalid args: Expected a map of arguments, got: {}", + args.r#type() + ), + )); + } + let args_map = args.as_map_owned().unwrap(); + + let ctx = ctx.inner.clone(); + let tb = tb.map(|tb| tb.inner.clone()); + let stream = self + .inner + .stream_function(function_name, &args_map, &ctx, tb.as_ref()) + .map_err(|e| napi::Error::new(napi::Status::GenericFailure, e.to_string()))?; + + let cb = match cb { + Some(cb) => Some(env.create_reference(cb)?), + None => None, + }; + + Ok(FunctionResultStream::new(stream, cb, tb)) + } + + #[napi] + pub fn set_log_event_callback( + &mut self, + env: Env, + #[napi(ts_arg_type = "(err: any, param: BamlLogEvent) => void")] func: JsFunction, + ) -> napi::Result { + let cb = env.create_reference(func)?; + // let prev = self.callback.take(); + // if let Some(mut old_cb) = prev { + // old_cb.unref(env)?; + // } + self.callback = Some(cb); + + let res = match &self.callback { + Some(callback_ref) => { + let cb = env.get_reference_value::(callback_ref)?; + let mut tsfn = env.create_threadsafe_function( + &cb, + 0, + |ctx: ThreadSafeCallContext| { + Ok(vec![BamlLogEvent::from(ctx.value)]) + }, + )?; + let tsfn_clone = tsfn.clone(); + + let res = self + .inner + .set_log_event_callback(Box::new(move |event: LogEvent| { + // let env = callback.env; + let event = BamlLogEvent { + metadata: LogEventMetadata { + event_id: event.metadata.event_id, + parent_id: event.metadata.parent_id, + root_event_id: event.metadata.root_event_id, + }, + prompt: event.prompt, + raw_output: event.raw_output, + parsed_output: event.parsed_output, + start_time: event.start_time, + }; + + let res = tsfn_clone.call(Ok(event), ThreadsafeFunctionCallMode::Blocking); + if res != napi::Status::Ok { + log::error!("Error calling on_log_event callback: {:?}", res); + } + + Ok(()) + })) + .map_err(|e| napi::Error::new(napi::Status::GenericFailure, e.to_string())); + let _ = tsfn.unref(&env); + + match res { + Ok(_) => Ok(()), + Err(e) => { + log::error!("Error setting log_event_callback: {:?}", e); + Err(e) + } + } + } + None => Ok(()), + }; + + let _ = match res { + Ok(_) => Ok(env.get_undefined()?), + Err(e) => { + log::error!("Error setting log_event_callback: {:?}", e); + Err(e) + } + }; + + env.get_undefined() + } + + #[napi] + pub fn flush(&mut self, env: Env) -> napi::Result<()> { + self.inner + .flush() + .map_err(|e| napi::Error::new(napi::Status::GenericFailure, e.to_string())) + } + + #[napi] + pub fn drain_stats(&self) -> TraceStats { + self.inner.drain_stats().into() + } +} + +impl ObjectFinalize for BamlRuntime { + fn finalize(mut self, env: Env) -> napi::Result<()> { + if let Some(mut cb) = self.callback.take() { + match cb.unref(env) { + Ok(_) => (), + Err(e) => log::error!("Error unrefing callback: {:?}", e), + } + } + Ok(()) + } +} diff --git a/engine/language_client_typescript/src/types/audio.rs b/engine/language_client_typescript/src/types/audio.rs new file mode 100644 index 000000000..6a28c1489 --- /dev/null +++ b/engine/language_client_typescript/src/types/audio.rs @@ -0,0 +1,74 @@ +use baml_types::BamlMediaType; +use napi::bindgen_prelude::External; +use napi_derive::napi; +use serde_json::json; + +crate::lang_wrapper!(BamlAudio, baml_types::BamlMedia); + +#[napi] +impl BamlAudio { + #[napi(ts_return_type = "BamlAudio")] + pub fn from_url(url: String) -> External { + let aud = BamlAudio { + inner: baml_types::BamlMedia::Url( + BamlMediaType::Audio, + baml_types::MediaUrl::new(url, None), + ), + }; + External::new(aud) + } + + #[napi(ts_return_type = "BamlAudio")] + pub fn from_base64(media_type: String, base64: String) -> External { + let aud = BamlAudio { + inner: baml_types::BamlMedia::Base64( + BamlMediaType::Audio, + baml_types::MediaBase64::new(base64, media_type), + ), + }; + External::new(aud) + } + + #[napi(js_name = "isUrl")] + pub fn is_url(&self) -> bool { + matches!(&self.inner, baml_types::BamlMedia::Url(_, _)) + } + + #[napi] + pub fn as_url(&self) -> napi::Result { + match &self.inner { + baml_types::BamlMedia::Url(BamlMediaType::Audio, url) => Ok(url.url.clone()), + _ => Err(napi::Error::new( + napi::Status::GenericFailure, + "Audio is not a URL".to_string(), + )), + } + } + + #[napi(ts_return_type = "[string, string]")] + pub fn as_base64(&self) -> napi::Result> { + match &self.inner { + baml_types::BamlMedia::Base64(BamlMediaType::Audio, base64) => { + Ok(vec![base64.base64.clone(), base64.media_type.clone()]) + } + _ => Err(napi::Error::new( + napi::Status::GenericFailure, + "Audio is not base64".to_string(), + )), + } + } + + #[napi(js_name = "toJSON")] + pub fn to_json(&self) -> napi::Result { + Ok(match &self.inner { + baml_types::BamlMedia::Url(BamlMediaType::Audio, url) => json!({ + "url": url.url + }), + baml_types::BamlMedia::Base64(BamlMediaType::Audio, base64) => json!({ + "base64": base64.base64, + "media_type": base64.media_type + }), + _ => format!("Unknown BamlAudioPy variant").into(), + }) + } +} diff --git a/engine/language_client_typescript/src/types/function_result_stream.rs b/engine/language_client_typescript/src/types/function_result_stream.rs index ae4d79530..916476746 100644 --- a/engine/language_client_typescript/src/types/function_result_stream.rs +++ b/engine/language_client_typescript/src/types/function_result_stream.rs @@ -19,7 +19,7 @@ crate::lang_wrapper!( ); impl FunctionResultStream { - pub(super) fn new( + pub(crate) fn new( inner: baml_runtime::FunctionResultStream, event: Option>, tb: Option, diff --git a/engine/language_client_typescript/src/types/image.rs b/engine/language_client_typescript/src/types/image.rs index 137f5fa9b..5014c1b4e 100644 --- a/engine/language_client_typescript/src/types/image.rs +++ b/engine/language_client_typescript/src/types/image.rs @@ -1,15 +1,18 @@ +use baml_types::BamlMediaType; use napi::bindgen_prelude::External; use napi_derive::napi; use serde_json::json; - -crate::lang_wrapper!(BamlImage, baml_types::BamlImage); +crate::lang_wrapper!(BamlImage, baml_types::BamlMedia); #[napi] impl BamlImage { #[napi(ts_return_type = "BamlImage")] pub fn from_url(url: String) -> External { let img = BamlImage { - inner: baml_types::BamlImage::Url(baml_types::ImageUrl::new(url)), + inner: baml_types::BamlMedia::Url( + BamlMediaType::Image, + baml_types::MediaUrl::new(url, None), + ), }; External::new(img) } @@ -17,20 +20,23 @@ impl BamlImage { #[napi(ts_return_type = "BamlImage")] pub fn from_base64(media_type: String, base64: String) -> External { let img = BamlImage { - inner: baml_types::BamlImage::Base64(baml_types::ImageBase64::new(base64, media_type)), + inner: baml_types::BamlMedia::Base64( + BamlMediaType::Image, + baml_types::MediaBase64::new(base64, media_type), + ), }; External::new(img) } #[napi(js_name = "isUrl")] pub fn is_url(&self) -> bool { - matches!(&self.inner, baml_types::BamlImage::Url(_)) + matches!(&self.inner, baml_types::BamlMedia::Url(_, _)) } #[napi] pub fn as_url(&self) -> napi::Result { match &self.inner { - baml_types::BamlImage::Url(url) => Ok(url.url.clone()), + baml_types::BamlMedia::Url(BamlMediaType::Image, url) => Ok(url.url.clone()), _ => Err(napi::Error::new( napi::Status::GenericFailure, "Image is not a URL".to_string(), @@ -41,7 +47,7 @@ impl BamlImage { #[napi(ts_return_type = "[string, string]")] pub fn as_base64(&self) -> napi::Result> { match &self.inner { - baml_types::BamlImage::Base64(base64) => { + baml_types::BamlMedia::Base64(BamlMediaType::Image, base64) => { Ok(vec![base64.base64.clone(), base64.media_type.clone()]) } _ => Err(napi::Error::new( @@ -54,13 +60,14 @@ impl BamlImage { #[napi(js_name = "toJSON")] pub fn to_json(&self) -> napi::Result { Ok(match &self.inner { - baml_types::BamlImage::Url(url) => json!({ + baml_types::BamlMedia::Url(BamlMediaType::Image, url) => json!({ "url": url.url }), - baml_types::BamlImage::Base64(base64) => json!({ + baml_types::BamlMedia::Base64(BamlMediaType::Image, base64) => json!({ "base64": base64.base64, "media_type": base64.media_type }), + _ => format!("Unknown BamlImagePy variant").into(), }) } } diff --git a/engine/language_client_typescript/src/types/lang_wrappers.rs b/engine/language_client_typescript/src/types/lang_wrappers.rs index 31988fad5..bb99ee41c 100644 --- a/engine/language_client_typescript/src/types/lang_wrappers.rs +++ b/engine/language_client_typescript/src/types/lang_wrappers.rs @@ -17,6 +17,23 @@ macro_rules! lang_wrapper { } }; + ($name:ident, $type:ty, clone_safe, custom_finalize $(, $attr_name:ident : $attr_type:ty = $default:expr)*) => { + #[napi_derive::napi(custom_finalize)] + pub struct $name { + pub(crate) inner: std::sync::Arc<$type>, + $($attr_name: $attr_type),* + } + + impl From<$type> for $name { + fn from(inner: $type) -> Self { + Self { + inner: std::sync::Arc::new(inner), + $($attr_name: $default),* + } + } + } + }; + ($name:ident, $type:ty, sync_thread_safe $(, $attr_name:ident : $attr_type:ty)*) => { #[napi_derive::napi] pub struct $name { diff --git a/engine/language_client_typescript/src/types/mod.rs b/engine/language_client_typescript/src/types/mod.rs index fa84ce923..29605c84b 100644 --- a/engine/language_client_typescript/src/types/mod.rs +++ b/engine/language_client_typescript/src/types/mod.rs @@ -1,10 +1,13 @@ mod lang_wrappers; +pub mod audio; mod client_builder; mod function_result_stream; +pub(crate) mod function_result_stream; mod function_results; +pub(crate) mod function_results; pub mod image; -mod runtime; -mod runtime_ctx_manager; -mod span; -mod type_builder; +pub(crate) mod runtime_ctx_manager; +pub(crate) mod span; +pub(crate) mod trace_stats; +pub(crate) mod type_builder; diff --git a/engine/language_client_typescript/src/types/runtime.rs b/engine/language_client_typescript/src/types/runtime.rs deleted file mode 100644 index 1e477a38b..000000000 --- a/engine/language_client_typescript/src/types/runtime.rs +++ /dev/null @@ -1,157 +0,0 @@ -use super::client_builder::ClientBuilder; -use super::function_result_stream::FunctionResultStream; -use super::runtime_ctx_manager::RuntimeContextManager; -use super::type_builder::TypeBuilder; -use crate::parse_ts_types; -use crate::types::function_results::FunctionResult; -use baml_runtime::runtime_interface::ExperimentalTracingInterface; -use baml_runtime::BamlRuntime as CoreRuntime; -use baml_types::BamlValue; -use napi::Env; -use napi::JsFunction; -use napi::JsObject; -use napi_derive::napi; -use std::collections::HashMap; -use std::path::PathBuf; - -crate::lang_wrapper!(BamlRuntime, CoreRuntime, clone_safe); - -#[napi] -impl BamlRuntime { - #[napi(ts_return_type = "BamlRuntime")] - pub fn from_directory( - directory: String, - env_vars: HashMap, - ) -> napi::Result { - let directory = PathBuf::from(directory); - Ok(CoreRuntime::from_directory(&directory, env_vars) - .map_err(|e| napi::Error::new(napi::Status::GenericFailure, format!("{:?}", e)))? - .into()) - } - - #[napi(ts_return_type = "BamlRuntime")] - pub fn from_files( - root_path: String, - files: HashMap, - env_vars: HashMap, - ) -> napi::Result { - Ok(CoreRuntime::from_file_content(&root_path, &files, env_vars) - .map_err(|e| napi::Error::new(napi::Status::GenericFailure, format!("{:?}", e)))? - .into()) - } - - #[napi] - pub fn create_context_manager(&self) -> RuntimeContextManager { - self.inner - .create_ctx_manager(BamlValue::String("typescript".to_string())) - .into() - } - - #[napi(ts_return_type = "Promise")] - pub fn call_function( - &self, - env: Env, - function_name: String, - #[napi(ts_arg_type = "{ [string]: any }")] args: JsObject, - ctx: &RuntimeContextManager, - tb: Option<&TypeBuilder>, - cb: Option<&ClientBuilder>, - ) -> napi::Result { - let args = parse_ts_types::js_object_to_baml_value(env, args)?; - if !args.is_map() { - return Err(napi::Error::new( - napi::Status::GenericFailure, - format!( - "Invalid args: Expected a map of arguments, got: {}", - args.r#type() - ), - )); - } - let args_map = args.as_map_owned().unwrap(); - - let baml_runtime = self.inner.clone(); - let ctx_mng = ctx.inner.clone(); - let tb = tb.map(|tb| tb.inner.clone()); - let cb = cb.map(|cb| cb.inner.clone()); - - let fut = async move { - let result = baml_runtime - .call_function( - function_name.clone(), - &args_map, - &ctx_mng, - tb.as_ref(), - cb.as_ref(), - ) - .await; - - result.0.map(FunctionResult::from).map_err(|e| { - napi::Error::new( - napi::Status::GenericFailure, - format!("Failed to call function: {function_name}\n{:?}", e), - ) - }) - }; - - env.execute_tokio_future(fut, |&mut _, data| Ok(data)) - } - - #[napi] - pub fn stream_function( - &self, - env: Env, - function_name: String, - #[napi(ts_arg_type = "{ [string]: any }")] args: JsObject, - #[napi(ts_arg_type = "(err: any, param: FunctionResult) => void")] callback: Option< - JsFunction, - >, - ctx: &RuntimeContextManager, - tb: Option<&TypeBuilder>, - cb: Option<&ClientBuilder>, - ) -> napi::Result { - let args: BamlValue = parse_ts_types::js_object_to_baml_value(env, args)?; - if !args.is_map() { - return Err(napi::Error::new( - napi::Status::GenericFailure, - format!( - "Invalid args: Expected a map of arguments, got: {}", - args.r#type() - ), - )); - } - let args_map = args.as_map_owned().unwrap(); - - let ctx = ctx.inner.clone(); - let tb = tb.map(|tb| tb.inner.clone()); - let cb = cb.map(|cb| cb.inner.clone()); - let stream = self - .inner - .stream_function( - function_name.clone(), - &args_map, - &ctx, - tb.as_ref(), - cb.as_ref(), - ) - .map_err(|e| { - napi::Error::new( - napi::Status::GenericFailure, - format!("Failed to create stream for {function_name}\n{:?}", e), - ) - })?; - - let callback = match callback { - Some(cb) => Some(env.create_reference(cb)?), - None => None, - }; - - Ok(FunctionResultStream::new(stream, callback, tb, cb)) - } - - #[napi] - pub fn flush(&self) -> napi::Result<()> { - self.inner - .flush() - .map_err(|e| napi::Error::new(napi::Status::GenericFailure, format!("{:?}", e))) - } -} diff --git a/engine/language_client_typescript/src/types/span.rs b/engine/language_client_typescript/src/types/span.rs index 0173dd0de..10397c14e 100644 --- a/engine/language_client_typescript/src/types/span.rs +++ b/engine/language_client_typescript/src/types/span.rs @@ -1,10 +1,9 @@ use baml_runtime::runtime_interface::ExperimentalTracingInterface; use baml_types::BamlValue; -use futures::executor::block_on; use napi_derive::napi; -use super::runtime::BamlRuntime; use super::runtime_ctx_manager::RuntimeContextManager; +use crate::BamlRuntime; crate::lang_wrapper!(BamlSpan, Option>, @@ -47,7 +46,7 @@ impl BamlSpan { result: serde_json::Value, ctx: &RuntimeContextManager, ) -> napi::Result { - log::info!("Finishing span: {:?}", self.inner); + log::trace!("Finishing span: {:?}", self.inner); let result: BamlValue = serde_json::from_value(result) .map_err(|e| napi::Error::new(napi::Status::GenericFailure, format!("{:?}", e)))?; // log::info!("Finishing span: {:#?}\n", self.inner.lock().await); diff --git a/engine/language_client_typescript/src/types/trace_stats.rs b/engine/language_client_typescript/src/types/trace_stats.rs new file mode 100644 index 000000000..7fac61652 --- /dev/null +++ b/engine/language_client_typescript/src/types/trace_stats.rs @@ -0,0 +1,49 @@ +use napi_derive::napi; + +crate::lang_wrapper!(TraceStats, baml_runtime::InnerTraceStats); + +#[napi] +impl TraceStats { + #[napi(getter)] + pub fn get_failed(&self) -> u32 { + self.inner.failed + } + + #[napi(getter)] + pub fn get_started(&self) -> u32 { + self.inner.started + } + + #[napi(getter)] + pub fn get_finalized(&self) -> u32 { + self.inner.finalized + } + + #[napi(getter)] + pub fn get_submitted(&self) -> u32 { + self.inner.submitted + } + + #[napi(getter)] + pub fn get_sent(&self) -> u32 { + self.inner.sent + } + + #[napi(getter)] + pub fn get_done(&self) -> u32 { + self.inner.done + } + + #[napi] + pub fn to_json(&self) -> String { + serde_json::json!({ + "failed": self.inner.failed, + "started": self.inner.started, + "finalized": self.inner.finalized, + "submitted": self.inner.submitted, + "sent": self.inner.sent, + "done": self.inner.done, + }) + .to_string() + } +} diff --git a/engine/language_client_typescript/stream.d.ts b/engine/language_client_typescript/stream.d.ts deleted file mode 100644 index dd7f000cd..000000000 --- a/engine/language_client_typescript/stream.d.ts +++ /dev/null @@ -1,15 +0,0 @@ -import { FunctionResult, FunctionResultStream, RuntimeContextManager } from './native'; -export declare class BamlStream { - private ffiStream; - private partialCoerce; - private finalCoerce; - private ctxManager; - private task; - private eventQueue; - constructor(ffiStream: FunctionResultStream, partialCoerce: (result: FunctionResult) => PartialOutputType, finalCoerce: (result: FunctionResult) => FinalOutputType, ctxManager: RuntimeContextManager); - private driveToCompletion; - private driveToCompletionInBg; - [Symbol.asyncIterator](): AsyncIterableIterator; - getFinalResponse(): Promise; -} -//# sourceMappingURL=stream.d.ts.map \ No newline at end of file diff --git a/engine/language_client_typescript/stream.d.ts.map b/engine/language_client_typescript/stream.d.ts.map deleted file mode 100644 index 7c571df13..000000000 --- a/engine/language_client_typescript/stream.d.ts.map +++ /dev/null @@ -1 +0,0 @@ -{"version":3,"file":"stream.d.ts","sourceRoot":"","sources":["typescript_src/stream.ts"],"names":[],"mappings":"AAAA,OAAO,EAAE,cAAc,EAAE,oBAAoB,EAAE,qBAAqB,EAAE,MAAM,UAAU,CAAA;AAEtF,qBAAa,UAAU,CAAC,iBAAiB,EAAE,eAAe;IAMtD,OAAO,CAAC,SAAS;IACjB,OAAO,CAAC,aAAa;IACrB,OAAO,CAAC,WAAW;IACnB,OAAO,CAAC,UAAU;IARpB,OAAO,CAAC,IAAI,CAAuC;IAEnD,OAAO,CAAC,UAAU,CAAgC;gBAGxC,SAAS,EAAE,oBAAoB,EAC/B,aAAa,EAAE,CAAC,MAAM,EAAE,cAAc,KAAK,iBAAiB,EAC5D,WAAW,EAAE,CAAC,MAAM,EAAE,cAAc,KAAK,eAAe,EACxD,UAAU,EAAE,qBAAqB;YAG7B,iBAAiB;IAiB/B,OAAO,CAAC,qBAAqB;IAQtB,CAAC,MAAM,CAAC,aAAa,CAAC,IAAI,qBAAqB,CAAC,iBAAiB,CAAC;IAmBnE,gBAAgB,IAAI,OAAO,CAAC,eAAe,CAAC;CAKnD"} \ No newline at end of file diff --git a/engine/language_client_typescript/stream.js b/engine/language_client_typescript/stream.js deleted file mode 100644 index b7d6ae5f1..000000000 --- a/engine/language_client_typescript/stream.js +++ /dev/null @@ -1,59 +0,0 @@ -"use strict"; -Object.defineProperty(exports, "__esModule", { value: true }); -exports.BamlStream = void 0; -class BamlStream { - ffiStream; - partialCoerce; - finalCoerce; - ctxManager; - task = null; - eventQueue = []; - constructor(ffiStream, partialCoerce, finalCoerce, ctxManager) { - this.ffiStream = ffiStream; - this.partialCoerce = partialCoerce; - this.finalCoerce = finalCoerce; - this.ctxManager = ctxManager; - } - async driveToCompletion() { - try { - this.ffiStream.onEvent((err, data) => { - if (err) { - return; - } - else { - this.eventQueue.push(data); - } - }); - const retval = await this.ffiStream.done(this.ctxManager); - return retval; - } - finally { - this.eventQueue.push(null); - } - } - driveToCompletionInBg() { - if (this.task === null) { - this.task = this.driveToCompletion(); - } - return this.task; - } - async *[Symbol.asyncIterator]() { - this.driveToCompletionInBg(); - while (true) { - const event = this.eventQueue.shift(); - if (event === undefined) { - await new Promise((resolve) => setTimeout(resolve, 100)); - continue; - } - if (event === null) { - break; - } - yield this.partialCoerce(event.parsed()); - } - } - async getFinalResponse() { - const final = await this.driveToCompletionInBg(); - return this.finalCoerce(final.parsed()); - } -} -exports.BamlStream = BamlStream; diff --git a/engine/language_client_typescript/type_builder.d.ts b/engine/language_client_typescript/type_builder.d.ts deleted file mode 100644 index 30e8f48f7..000000000 --- a/engine/language_client_typescript/type_builder.d.ts +++ /dev/null @@ -1,48 +0,0 @@ -import { ClassPropertyBuilder as _ClassPropertyBuilder, EnumValueBuilder, FieldType, TypeBuilder as _TypeBuilder } from './native'; -type IsLiteral = string extends T ? false : true; -type NameOf = IsLiteral extends true ? T : 'DynamicType'; -type CheckNever = [T] extends [never] ? `Error: Attempt to add value '${Value}' which is already a part of '${NameOf}'.` : T; -type ExcludeFrom = T extends U ? never : T; -type RestrictNot = IsLiteral extends true ? CheckNever, Name, Value> : Value; -export declare class TypeBuilder { - protected classes: Set; - protected enums: Set; - private tb; - constructor(classes: Set, enums: Set); - _tb(): _TypeBuilder; - string(): FieldType; - int(): FieldType; - float(): FieldType; - bool(): FieldType; - list(type: FieldType): FieldType; - classBuilder(name: Name, properties: Properties[]): ClassBuilder; - enumBuilder(name: Name, values: T[]): EnumBuilder; - addClass(name: Name): ClassBuilder; - addEnum(name: Name): EnumBuilder; -} -export declare class ClassBuilder { - private properties; - private bldr; - constructor(tb: _TypeBuilder, name: ClassName, properties?: Set); - type(): FieldType; - listProperties(): Array<[string, ClassPropertyBuilder]>; - addProperty(name: RestrictNot, type: FieldType): ClassPropertyBuilder; - property(name: string): ClassPropertyBuilder; -} -declare class ClassPropertyBuilder { - private bldr; - constructor(bldr: _ClassPropertyBuilder); - alias(alias: string | null): ClassPropertyBuilder; - description(description: string | null): ClassPropertyBuilder; -} -export declare class EnumBuilder { - private values; - private bldr; - constructor(tb: _TypeBuilder, name: EnumName, values?: Set); - type(): FieldType; - value(name: S | T): EnumValueBuilder; - listValues(): Array<[string, EnumValueBuilder]>; - addValue(name: RestrictNot): EnumValueBuilder; -} -export {}; -//# sourceMappingURL=type_builder.d.ts.map \ No newline at end of file diff --git a/engine/language_client_typescript/type_builder.d.ts.map b/engine/language_client_typescript/type_builder.d.ts.map deleted file mode 100644 index 4fa27ea50..000000000 --- a/engine/language_client_typescript/type_builder.d.ts.map +++ /dev/null @@ -1 +0,0 @@ -{"version":3,"file":"type_builder.d.ts","sourceRoot":"","sources":["typescript_src/type_builder.ts"],"names":[],"mappings":"AAAA,OAAO,EAGL,oBAAoB,IAAI,qBAAqB,EAC7C,gBAAgB,EAChB,SAAS,EACT,WAAW,IAAI,YAAY,EAC5B,MAAM,UAAU,CAAA;AAEjB,KAAK,SAAS,CAAC,CAAC,SAAS,MAAM,IAAI,MAAM,SAAS,CAAC,GAAG,KAAK,GAAG,IAAI,CAAA;AAClE,KAAK,MAAM,CAAC,CAAC,SAAS,MAAM,IAAI,SAAS,CAAC,CAAC,CAAC,SAAS,IAAI,GAAG,CAAC,GAAG,aAAa,CAAA;AAC7E,KAAK,UAAU,CAAC,CAAC,EAAE,QAAQ,SAAS,MAAM,EAAE,KAAK,SAAS,MAAM,IAAI,CAAC,CAAC,CAAC,SAAS,CAAC,KAAK,CAAC,GACnF,gCAAgC,KAAK,iCAAiC,MAAM,CAAC,QAAQ,CAAC,IAAI,GAC1F,CAAC,CAAA;AACL,KAAK,WAAW,CAAC,CAAC,EAAE,CAAC,IAAI,CAAC,SAAS,CAAC,GAAG,KAAK,GAAG,CAAC,CAAA;AAChD,KAAK,WAAW,CAAC,IAAI,SAAS,MAAM,EAAE,KAAK,SAAS,MAAM,EAAE,CAAC,SAAS,MAAM,IAAI,SAAS,CAAC,CAAC,CAAC,SAAS,IAAI,GACrG,UAAU,CAAC,WAAW,CAAC,KAAK,EAAE,CAAC,CAAC,EAAE,IAAI,EAAE,KAAK,CAAC,GAC9C,KAAK,CAAA;AAET,qBAAa,WAAW;IAIpB,SAAS,CAAC,OAAO,EAAE,GAAG,CAAC,MAAM,CAAC;IAC9B,SAAS,CAAC,KAAK,EAAE,GAAG,CAAC,MAAM,CAAC;IAJ9B,OAAO,CAAC,EAAE,CAAc;gBAGZ,OAAO,EAAE,GAAG,CAAC,MAAM,CAAC,EACpB,KAAK,EAAE,GAAG,CAAC,MAAM,CAAC;IAK9B,GAAG,IAAI,YAAY;IAInB,MAAM,IAAI,SAAS;IAInB,GAAG,IAAI,SAAS;IAIhB,KAAK,IAAI,SAAS;IAIlB,IAAI,IAAI,SAAS;IAIjB,IAAI,CAAC,IAAI,EAAE,SAAS,GAAG,SAAS;IAIhC,YAAY,CAAC,IAAI,SAAS,MAAM,EAAE,UAAU,SAAS,MAAM,EACzD,IAAI,EAAE,IAAI,EACV,UAAU,EAAE,UAAU,EAAE,GACvB,YAAY,CAAC,IAAI,EAAE,UAAU,CAAC;IAIjC,WAAW,CAAC,IAAI,SAAS,MAAM,EAAE,CAAC,SAAS,MAAM,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM,EAAE,CAAC,EAAE,GAAG,WAAW,CAAC,IAAI,EAAE,CAAC,CAAC;IAIjG,QAAQ,CAAC,IAAI,SAAS,MAAM,EAAE,IAAI,EAAE,IAAI,GAAG,YAAY,CAAC,IAAI,CAAC;IAW7D,OAAO,CAAC,IAAI,SAAS,MAAM,EAAE,IAAI,EAAE,IAAI,GAAG,WAAW,CAAC,IAAI,CAAC;CAU5D;AAED,qBAAa,YAAY,CAAC,SAAS,SAAS,MAAM,EAAE,UAAU,SAAS,MAAM,GAAG,MAAM;IAMlF,OAAO,CAAC,UAAU;IALpB,OAAO,CAAC,IAAI,CAAe;gBAGzB,EAAE,EAAE,YAAY,EAChB,IAAI,EAAE,SAAS,EACP,UAAU,GAAE,GAAG,CAAC,UAAU,GAAG,MAAM,CAAa;IAK1D,IAAI,IAAI,SAAS;IAIjB,cAAc,IAAI,KAAK,CAAC,CAAC,MAAM,EAAE,oBAAoB,CAAC,CAAC;IAIvD,WAAW,CAAC,CAAC,SAAS,MAAM,EAAE,IAAI,EAAE,WAAW,CAAC,SAAS,EAAE,CAAC,EAAE,UAAU,CAAC,EAAE,IAAI,EAAE,SAAS,GAAG,oBAAoB;IAQjH,QAAQ,CAAC,IAAI,EAAE,MAAM,GAAG,oBAAoB;CAM7C;AAED,cAAM,oBAAoB;IACxB,OAAO,CAAC,IAAI,CAAuB;gBAEvB,IAAI,EAAE,qBAAqB;IAIvC,KAAK,CAAC,KAAK,EAAE,MAAM,GAAG,IAAI,GAAG,oBAAoB;IAKjD,WAAW,CAAC,WAAW,EAAE,MAAM,GAAG,IAAI,GAAG,oBAAoB;CAI9D;AAED,qBAAa,WAAW,CAAC,QAAQ,SAAS,MAAM,EAAE,CAAC,SAAS,MAAM,GAAG,MAAM;IAMvE,OAAO,CAAC,MAAM;IALhB,OAAO,CAAC,IAAI,CAAc;gBAGxB,EAAE,EAAE,YAAY,EAChB,IAAI,EAAE,QAAQ,EACN,MAAM,GAAE,GAAG,CAAC,CAAC,GAAG,MAAM,CAAa;IAK7C,IAAI,IAAI,SAAS;IAIjB,KAAK,CAAC,CAAC,SAAS,MAAM,EAAE,IAAI,EAAE,CAAC,GAAG,CAAC,GAAG,gBAAgB;IAOtD,UAAU,IAAI,KAAK,CAAC,CAAC,MAAM,EAAE,gBAAgB,CAAC,CAAC;IAI/C,QAAQ,CAAC,CAAC,SAAS,MAAM,EAAE,IAAI,EAAE,WAAW,CAAC,QAAQ,EAAE,CAAC,EAAE,CAAC,CAAC,GAAG,gBAAgB;CAOhF"} \ No newline at end of file diff --git a/engine/language_client_typescript/type_builder.js b/engine/language_client_typescript/type_builder.js deleted file mode 100644 index 3bd5d6ffa..000000000 --- a/engine/language_client_typescript/type_builder.js +++ /dev/null @@ -1,129 +0,0 @@ -"use strict"; -Object.defineProperty(exports, "__esModule", { value: true }); -exports.EnumBuilder = exports.ClassBuilder = exports.TypeBuilder = void 0; -const native_1 = require("./native"); -class TypeBuilder { - classes; - enums; - tb; - constructor(classes, enums) { - this.classes = classes; - this.enums = enums; - this.tb = new native_1.TypeBuilder(); - } - _tb() { - return this.tb; - } - string() { - return this.tb.string(); - } - int() { - return this.tb.int(); - } - float() { - return this.tb.float(); - } - bool() { - return this.tb.bool(); - } - list(type) { - return this.tb.list(type); - } - classBuilder(name, properties) { - return new ClassBuilder(this.tb, name, new Set(properties)); - } - enumBuilder(name, values) { - return new EnumBuilder(this.tb, name, new Set(values)); - } - addClass(name) { - if (this.classes.has(name)) { - throw new Error(`Class ${name} already exists`); - } - if (this.enums.has(name)) { - throw new Error(`Enum ${name} already exists`); - } - this.classes.add(name); - return new ClassBuilder(this.tb, name); - } - addEnum(name) { - if (this.classes.has(name)) { - throw new Error(`Class ${name} already exists`); - } - if (this.enums.has(name)) { - throw new Error(`Enum ${name} already exists`); - } - this.enums.add(name); - return new EnumBuilder(this.tb, name); - } -} -exports.TypeBuilder = TypeBuilder; -class ClassBuilder { - properties; - bldr; - constructor(tb, name, properties = new Set()) { - this.properties = properties; - this.bldr = tb.getClass(name); - } - type() { - return this.bldr.field(); - } - listProperties() { - return Array.from(this.properties).map((name) => [name, new ClassPropertyBuilder(this.bldr.property(name))]); - } - addProperty(name, type) { - if (this.properties.has(name)) { - throw new Error(`Property ${name} already exists.`); - } - this.properties.add(name); - return new ClassPropertyBuilder(this.bldr.property(name).setType(type)); - } - property(name) { - if (!this.properties.has(name)) { - throw new Error(`Property ${name} not found.`); - } - return new ClassPropertyBuilder(this.bldr.property(name)); - } -} -exports.ClassBuilder = ClassBuilder; -class ClassPropertyBuilder { - bldr; - constructor(bldr) { - this.bldr = bldr; - } - alias(alias) { - this.bldr.alias(alias); - return this; - } - description(description) { - this.bldr.description(description); - return this; - } -} -class EnumBuilder { - values; - bldr; - constructor(tb, name, values = new Set()) { - this.values = values; - this.bldr = tb.getEnum(name); - } - type() { - return this.bldr.field(); - } - value(name) { - if (!this.values.has(name)) { - throw new Error(`Value ${name} not found.`); - } - return this.bldr.value(name); - } - listValues() { - return Array.from(this.values).map((name) => [name, this.bldr.value(name)]); - } - addValue(name) { - if (this.values.has(name)) { - throw new Error(`Value ${name} already exists.`); - } - this.values.add(name); - return this.bldr.value(name); - } -} -exports.EnumBuilder = EnumBuilder; diff --git a/engine/language_client_typescript/typescript_src/async_context_vars.ts b/engine/language_client_typescript/typescript_src/async_context_vars.ts index c2a31d129..2eb6ccdb4 100644 --- a/engine/language_client_typescript/typescript_src/async_context_vars.ts +++ b/engine/language_client_typescript/typescript_src/async_context_vars.ts @@ -1,7 +1,7 @@ -import { BamlSpan, RuntimeContextManager, BamlRuntime } from './native' +import { BamlSpan, RuntimeContextManager, BamlRuntime, BamlLogEvent } from './native' import { AsyncLocalStorage } from 'async_hooks' -export class CtxManager { +export class BamlCtxManager { private rt: BamlRuntime private ctx: AsyncLocalStorage @@ -19,27 +19,18 @@ export class CtxManager { manager.upsertTags(tags) } - get(): RuntimeContextManager { + cloneContext(): RuntimeContextManager { let store = this.ctx.getStore() if (store === undefined) { store = this.rt.createContextManager() this.ctx.enterWith(store) } - return store + return store.deepClone() } - startTraceSync(name: string, args: Record): BamlSpan { - const mng = this.get() - // const clone = mng.deepClone() - // this.ctx.enterWith(clone) - return BamlSpan.new(this.rt, name, args, mng) - } - - startTraceAsync(name: string, args: Record): BamlSpan { - const mng = this.get() - const clone = mng.deepClone() - this.ctx.enterWith(clone) - return BamlSpan.new(this.rt, name, args, clone) + startTrace(name: string, args: Record): [RuntimeContextManager, BamlSpan] { + const mng = this.cloneContext() + return [mng, BamlSpan.new(this.rt, name, args, mng)] } endTrace(span: BamlSpan, response: any): void { @@ -48,13 +39,25 @@ export class CtxManager { console.error('Context lost before span could be finished\n') return } - span.finish(response, manager) + try { + span.finish(response, manager) + } catch (e) { + console.error('BAML internal error', e) + } } flush(): void { this.rt.flush() } + onLogEvent(callback: (event: BamlLogEvent) => void): void { + this.rt.setLogEventCallback((error: any, param: BamlLogEvent) => { + if (!error) { + callback(param) + } + }) + } + traceFnSync ReturnType>(name: string, func: F): F { return ((...args: any[]) => { const params = args.reduce( @@ -64,20 +67,21 @@ export class CtxManager { }), {}, ) - const span = this.startTraceSync(name, params) - - try { - const response = func(...args) - this.endTrace(span, response) - return response - } catch (e) { - this.endTrace(span, e) - throw e - } + const [mng, span] = this.startTrace(name, params) + this.ctx.run(mng, () => { + try { + const response = func(...args) + this.endTrace(span, response) + return response + } catch (e) { + this.endTrace(span, e) + throw e + } + }) }) } - traceFnAync Promise>(name: string, func: F): F { + traceFnAsync Promise>(name: string, func: F): F { const funcName = name return (async (...args: any[]) => { const params = args.reduce( @@ -87,15 +91,17 @@ export class CtxManager { }), {}, ) - const span = this.startTraceAsync(funcName, params) - try { - const response = await func(...args) - this.endTrace(span, response) - return response - } catch (e) { - this.endTrace(span, e) - throw e - } + const [mng, span] = this.startTrace(name, params) + await this.ctx.run(mng, async () => { + try { + const response = await func(...args) + this.endTrace(span, response) + return response + } catch (e) { + this.endTrace(span, e) + throw e + } + }) }) } } diff --git a/engine/language_client_typescript/typescript_src/index.ts b/engine/language_client_typescript/typescript_src/index.ts index 255b9a60f..813ec79d5 100644 --- a/engine/language_client_typescript/typescript_src/index.ts +++ b/engine/language_client_typescript/typescript_src/index.ts @@ -3,8 +3,9 @@ export { FunctionResult, FunctionResultStream, BamlImage as Image, - invoke_runtime_cli, ClientBuilder, + BamlAudio as Audio, + invoke_runtime_cli, } from './native' export { BamlStream } from './stream' -export { CtxManager as BamlCtxManager } from './async_context_vars' +export { BamlCtxManager } from './async_context_vars' diff --git a/engine/language_client_typescript/typescript_src/type_builder.ts b/engine/language_client_typescript/typescript_src/type_builder.ts index a285898d7..471eada0e 100644 --- a/engine/language_client_typescript/typescript_src/type_builder.ts +++ b/engine/language_client_typescript/typescript_src/type_builder.ts @@ -19,11 +19,12 @@ type RestrictNot = export class TypeBuilder { private tb: _TypeBuilder + protected classes: Set + protected enums: Set - constructor( - protected classes: Set, - protected enums: Set, - ) { + constructor({ classes, enums }: { classes: Set; enums: Set }) { + this.classes = classes + this.enums = enums this.tb = new _TypeBuilder() } diff --git a/integ-tests/baml_src/clients.baml b/integ-tests/baml_src/clients.baml index 8a21b61a3..df695ede8 100644 --- a/integ-tests/baml_src/clients.baml +++ b/integ-tests/baml_src/clients.baml @@ -14,16 +14,16 @@ retry_policy Foo { } client GPT4 { - provider baml-openai-chat + provider openai options { - model gpt-4 + model gpt-4o api_key env.OPENAI_API_KEY } } client GPT4o { - provider baml-openai-chat + provider openai options { model gpt-4o api_key env.OPENAI_API_KEY @@ -33,7 +33,7 @@ client GPT4o { client GPT4Turbo { retry_policy Bar - provider baml-openai-chat + provider openai options { model gpt-4-turbo api_key env.OPENAI_API_KEY @@ -41,13 +41,22 @@ client GPT4Turbo { } client GPT35 { - provider baml-openai-chat + provider openai + options { + model "gpt-3.5-turbo" + api_key env.OPENAI_API_KEY + } +} + +client GPT35LegacyProvider { + provider openai options { model "gpt-3.5-turbo" api_key env.OPENAI_API_KEY } } + client Ollama { provider ollama options { @@ -68,12 +77,24 @@ client GPT35Azure { client Gemini { provider google-ai - options{ + options { model "gemini-1.5-pro-001" api_key env.GOOGLE_API_KEY } } +client AwsBedrock { + provider aws-bedrock + options { + inference_configuration { + max_tokens 100 + } + model_id "anthropic.claude-3-haiku-20240307-v1:0" + // model_id "meta.llama3-8b-instruct-v1:0" + // model_id "mistral.mistral-7b-instruct-v0:2" + api_key "" + } +} client Claude { provider anthropic diff --git a/integ-tests/baml_src/fiddle-examples/extract-receipt-info.baml b/integ-tests/baml_src/fiddle-examples/extract-receipt-info.baml new file mode 100644 index 000000000..58d3ea049 --- /dev/null +++ b/integ-tests/baml_src/fiddle-examples/extract-receipt-info.baml @@ -0,0 +1,25 @@ +class ReceiptItem { + name string + description string? + quantity int + price float +} + +class ReceiptInfo { + items ReceiptItem[] + total_cost float? +} + +function ExtractReceiptInfo(email: string) -> ReceiptInfo { + client GPT4o + prompt #" + Given the receipt below: + + ``` + {{email}} + ``` + + {{ ctx.output_format }} + "# +} + diff --git a/integ-tests/baml_src/fiddle-examples/images/image.baml b/integ-tests/baml_src/fiddle-examples/images/image.baml index 59a0cfc12..3ee59a6a1 100644 --- a/integ-tests/baml_src/fiddle-examples/images/image.baml +++ b/integ-tests/baml_src/fiddle-examples/images/image.baml @@ -1,10 +1,10 @@ function DescribeImage(img: image) -> string { - client GPT4Turbo + client AwsBedrock prompt #" {{ _.role("user") }} - Describe the image below in 5 words: + Describe the image below in 20 words: {{ img }} "# @@ -21,7 +21,7 @@ class ClassWithImage { } // chat role user present -function DescribeImage2(classWithImage: ClassWithImage, img2: image) -> string { +function DescribeImage2(classWithImage: ClassWithImage, img2: image) -> string { client GPT4Turbo prompt #" {{ _.role("user") }} @@ -60,4 +60,11 @@ function DescribeImage4(classWithImage: ClassWithImage, img2: image) -> string { Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}: {{ img2 }} "# -} \ No newline at end of file +} + +test TestName { + functions [DescribeImage] + args { + img { url "https://imgs.xkcd.com/comics/standards.png"} + } +} diff --git a/integ-tests/baml_src/test-files/dynamic/dynamic.baml b/integ-tests/baml_src/test-files/dynamic/dynamic.baml index f2fa932d5..36ad77b5e 100644 --- a/integ-tests/baml_src/test-files/dynamic/dynamic.baml +++ b/integ-tests/baml_src/test-files/dynamic/dynamic.baml @@ -33,12 +33,45 @@ function DynamicFunc(input: DynamicClassOne) -> DynamicClassTwo { "# } +class DynInputOutput { + testKey string + @@dynamic +} + +function DynamicInputOutput(input: DynInputOutput) -> DynInputOutput { + client GPT35 + prompt #" + Here is some input data: + ---- + {{ input }} + ---- + + Extract the information. + {{ ctx.output_format }} + "# +} + +function DynamicListInputOutput(input: DynInputOutput[]) -> DynInputOutput[] { + client GPT35 + prompt #" + Here is some input data: + ---- + {{ input }} + ---- + + Extract the information. + {{ ctx.output_format }} + "# +} + + + class DynamicOutput { @@dynamic } function MyFunc(input: string) -> DynamicOutput { - client GPT4 + client GPT35 prompt #" Given a string, extract info using the schema: @@ -46,4 +79,5 @@ function MyFunc(input: string) -> DynamicOutput { {{ ctx.output_format }} "# -} \ No newline at end of file +} + diff --git a/integ-tests/baml_src/test-files/functions/input/named-args/single/named-audio.baml b/integ-tests/baml_src/test-files/functions/input/named-args/single/named-audio.baml new file mode 100644 index 000000000..69cd1162f --- /dev/null +++ b/integ-tests/baml_src/test-files/functions/input/named-args/single/named-audio.baml @@ -0,0 +1,22 @@ +function AudioInput(aud: audio) -> string{ + client Gemini + prompt #" + {{ _.role("user") }} + + Does this sound like a roar? Yes or no? One word no other characters. + + {{ aud }} + "# +} + + +test TestURLAudioInput{ + functions [AudioInput] + args { + aud{ + url https://actions.google.com/sounds/v1/emergency/beeper_emergency_call.ogg + } + } +} + + diff --git a/integ-tests/baml_src/test-files/functions/input/named-args/single/named-image.baml b/integ-tests/baml_src/test-files/functions/input/named-args/single/named-image.baml index 5adec4d0c..65770d14c 100644 --- a/integ-tests/baml_src/test-files/functions/input/named-args/single/named-image.baml +++ b/integ-tests/baml_src/test-files/functions/input/named-args/single/named-image.baml @@ -1,9 +1,9 @@ function TestImageInput(img: image) -> string{ - client GPT4o + client AwsBedrock prompt #" {{ _.role("user") }} - Describe this in 4 words {{img}} + Describe this in 4 words. One word must be the color {{img}} "# } @@ -26,6 +26,7 @@ test shrek { } + // double check this before adding it. Probably n ot right. // function TestImageInputAnthropic(img: image) -> string{ // client GPT4o @@ -41,7 +42,7 @@ test shrek { // args { // img { // base64 iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAApgAAAKYB3X3/OAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAANCSURBVEiJtZZPbBtFFMZ/M7ubXdtdb1xSFyeilBapySVU8h8OoFaooFSqiihIVIpQBKci6KEg9Q6H9kovIHoCIVQJJCKE1ENFjnAgcaSGC6rEnxBwA04Tx43t2FnvDAfjkNibxgHxnWb2e/u992bee7tCa00YFsffekFY+nUzFtjW0LrvjRXrCDIAaPLlW0nHL0SsZtVoaF98mLrx3pdhOqLtYPHChahZcYYO7KvPFxvRl5XPp1sN3adWiD1ZAqD6XYK1b/dvE5IWryTt2udLFedwc1+9kLp+vbbpoDh+6TklxBeAi9TL0taeWpdmZzQDry0AcO+jQ12RyohqqoYoo8RDwJrU+qXkjWtfi8Xxt58BdQuwQs9qC/afLwCw8tnQbqYAPsgxE1S6F3EAIXux2oQFKm0ihMsOF71dHYx+f3NND68ghCu1YIoePPQN1pGRABkJ6Bus96CutRZMydTl+TvuiRW1m3n0eDl0vRPcEysqdXn+jsQPsrHMquGeXEaY4Yk4wxWcY5V/9scqOMOVUFthatyTy8QyqwZ+kDURKoMWxNKr2EeqVKcTNOajqKoBgOE28U4tdQl5p5bwCw7BWquaZSzAPlwjlithJtp3pTImSqQRrb2Z8PHGigD4RZuNX6JYj6wj7O4TFLbCO/Mn/m8R+h6rYSUb3ekokRY6f/YukArN979jcW+V/S8g0eT/N3VN3kTqWbQ428m9/8k0P/1aIhF36PccEl6EhOcAUCrXKZXXWS3XKd2vc/TRBG9O5ELC17MmWubD2nKhUKZa26Ba2+D3P+4/MNCFwg59oWVeYhkzgN/JDR8deKBoD7Y+ljEjGZ0sosXVTvbc6RHirr2reNy1OXd6pJsQ+gqjk8VWFYmHrwBzW/n+uMPFiRwHB2I7ih8ciHFxIkd/3Omk5tCDV1t+2nNu5sxxpDFNx+huNhVT3/zMDz8usXC3ddaHBj1GHj/As08fwTS7Kt1HBTmyN29vdwAw+/wbwLVOJ3uAD1wi/dUH7Qei66PfyuRj4Ik9is+hglfbkbfR3cnZm7chlUWLdwmprtCohX4HUtlOcQjLYCu+fzGJH2QRKvP3UNz8bWk1qMxjGTOMThZ3kvgLI5AzFfo379UAAAAASUVORK5CYII= -// media_type "png" +// media_type "image/png" // } // } // } \ No newline at end of file diff --git a/integ-tests/baml_src/test-files/functions/input/named-args/single/testcase_audio.baml b/integ-tests/baml_src/test-files/functions/input/named-args/single/testcase_audio.baml new file mode 100644 index 000000000..6857ad133 --- /dev/null +++ b/integ-tests/baml_src/test-files/functions/input/named-args/single/testcase_audio.baml @@ -0,0 +1,18 @@ +test TestAudioInput { + functions [AudioInput] + args { + aud { + media_type "audio/mp3" + base64 #" + //uQZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWGluZwAAAA8AAABRAACbvAACBAgKDQ0QExcZGRweIiQkJyouMTQ0ODs+QkJFSUxPT1NWWl1dYGRna25ucXV4e3t/goaJiYyPkpaWmJyfoqamqq2ws7O3ur3BwcTHy87O0tbZ3eHh5Ofq7e3v8vT29vr7//8AAAA8TEFNRTMuOThyBK8AAAAAAAAAADQgJATvTQABzAAAm7x1lCT3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//twRAAAASMHzuhDEEgnoLnaCGMFC2CpO6wMT2EoDCd1hI00AAAAEQIDYHAsIIQAAEoGVMIIxHu2NU7D//6gx93/////b/rA4AABkADS8C7uaACBBcE4PiDEHG1v///8H4nB8CAgcnAfD/+XeJ//kJECiCQEJfI6HOSeUxLVpnrJo2rNIWOyh0ICisofyinwxQgwhC62QhoOq/VUc83SH50lBBW/zGlu7+rRJASS9aBdydWL4sDQNcGniICjWjQVUyz/r9Svasqk8mh2IEEAAF/3UCwpAWzBRxYSYYCG20kc8DZACBhYYL23pA9szuRYqDCiBhWU248WncakPjwAC//nqPjvVXbWoPCK5RxQpjrEb97tLtAAAAQCp/rY1YKFgEQGMiBKAl8eUUGLqIoKGJ8ymCSMEwbECv/7kGQSAELxHk7rCRtIUwN5zWEjdw641TWtYKfpzSHmqYYV5Tii6JucjDmcIwNidRSd8wROBJyGzaGHgEKFeKnm7nRASdEp9w0vMPKtoFqO0i8msqeRPqJvXWtGr/RegAAAAQf64JA85lKUzT1BLCVKxy3bzsmdNx7sBs/i9VAmPriMqzNVjGmwuiQIBz3xikXxobjFRgiHndkmCCWkzSFpKpQkWj7iK9vZoTq226qlyCgAAAAAK/1mAxhkJhwxggAiPFC86QFrpheGHGVl9CarY31L4s6dty4Uu1ptLBMgt1oI1194JiUBOVS/2DCiqTtsQqB1y7f1e3IvSt7LMcvV1V3nxbVrft1t9tYuR4hXw3i//Y/k/rKdc7774/xl8PzPwUaUb/bAAJf+11ymYAvCQjJBrYY8YCnDgQHRym2vv8v59AIgJeHcj2pdsuqSQRB/XGYAZBZjmcToT75GoqmPEUAc4k3+0t3tqieurldHetVIRirRUdybkWtkvcip8dZb3/jWz7A94WhLxHjLylb6kCt/8D25Xz2hqtgQAAACJ//7oGQDAANlHk1taYAIZgOZray8AQzEeTdZvAABnhJmtzWAAPZIEFDZvQUJMuOAwMwPMyI4BAwqzSXR8EIhNtYNWtp7TH+CgJDcSxKAuSHys6vLviQgE0SzUt/MwOpdg/KWnZpToR+hXxdcxRIW2TD+u8ji46iPZJCHTY6/IMD7TSrE+m7sjEDXs2bAAAAAAn/VwrHMcQxxTHqSGBjZtFl0H0DiVfjo7XX8V8+6fcfQ9DhI2JOQFtnzPpmiHUh6wxrbTfPzPW9PnOs3hbe57ODrvZvT1y765AQ3Ldn1mLQYFlQeKWqb7vfoin7YEY3oFkgQgAYJbTfgAAAAAF7QocrjMWjmvhWQUBEiUwIrMCOTOx0wgJTWHgQRlRgAGJIgGB0uZsK5MYGOIAWsNKa/FUd1lOC1VkM7WoKyNE3Xp2hxCOxV+LFM/UJVxMMikDjPZ3chjr9116cEACAACAALIPwAAAAACJSbr48SeTwAhSRg0hzTjgMBGA40UDARfAoLAIgCjbkv+/g0QDXa112Hf0zRyAKFxWeRa3C8KrdGpQRCl+yKDHem8Got6xG7TTay5czfkMO7J////8v/Wvs7asAAAAA+sjBwaYAQI6mAiwFATV7w2pETXlQyIg0BJhgy4VbIFAdIZ+4sh8kKPinBCNslLIrLvv87MeX4/7aOC48X3Z5jW3E5yL/ruv/7kGQlhEOdHkzXbwAIZaO5muy8AQ1MdzWtPSthgQ7mqMwkfMalWWXs6e/c76CiVNONeXdeTShNm2w+LD3b1Lm9rxUP4FM2YHX//+5UAAAAEfSQJ1u5BM+XAN1Q4DRZJAKDkU90eAug7K0V7OWomGGpQzR2FhQ9Ww1lAptDDLJ4cp1GSnlHG/snkIaFG5SarjEaFuEpE/R0/oiwqboZk0si7dH6ss5bZm8QaagzUYbaVPqgAAAC/1gMOpXWX3AR8u6aAAfRK3QiGGXCoBwqwCPgTA6BMRwB/hmDCE8IKj1Cn2M0Hz1cIaohiEpXR/VT32xIoot89VJd0MLhJ7uXU1IsLZkMjGmb1WPFQM0aEDReiEGT6yVwq5WErD3TToAAF/rAgiMKy4gHC1y0olOVr1QEgpYX2tRNBWlZCRL7MEZYk85Tyz0rCgyacRhAOioFiMG5/8hGxOh2WdL0U3pYox8IqkHxQNrW8qGE0zNsfDaA5a1TFjEFAYShfXV2V1AAAAACB/ZIJBSGoGARQTaeCJc3oDLvgww+hOVYwAcRBWcBZP/7kGQSBGNuG81reEnYZGNpumHpaQ3UbzW1t4Ahd47mtrDwBIAow+wQ4ocu5Sa94y7JMFxouRhUTCImQBWW+kC5dMT3npMnTxzgf8+LQy9YpAAic1oKtYg9lJZ4dnWVoSkeJsXYyqLe60v+n+uswAAAAf7aL1iEwylSsEcaKxP+XTLnFnVDhAOHjYHjGKETkYrIN9VKZdtCXfPFSdKGJo4HqirfSEESQMadz1LQ82UP/paw3WuEFPZcoAoFnvbmTMyQUwVQFxiiinB5DjaDNqj6SkYAAAH1kbghwKOBQ4RAIHNKiTIykQhphYuYQYhQCLrFUhfZFxCUwpPkDKAkCXJihigY1WhyHTKpQqBCTIUTOro3vizPSrdL9+a1nUEDnPUPMJJIi/1m2MoQJZ0udLT7mNRq08YtcOGWOEspV2+/odAA9sDfQhA+feIuAdvjdUAo1RlyAZbsOK7LgypfJ0j/JwrzSXR+oecrKm1yzl1VhYnpqNrl72Y2itMV3+8iXjx4nj7+pwpbPiZiVOgI/EOPYvILYq6eQJ1hj6kKoHKAAP/7oGQBAANzHk1ubwAAc6SZrc3gAA0cezVZvAABnZDmtzWAAAAAAAoD9gagAAAAAKERjdOUDwrIl4QstmvlqCUFcxgyCaibhgKZyLtDMLJDBwAGAIIFAyb7GyhP4BOQ+ghFZnC9QqALnQFJvORIqSORBHCrQV1lyHr/EQWZtHVBD7JWsucivJMZIyWxB37EvZwyAggAAiA8rfQAAAAAZQImH2b4AwOHiUSSzSwExIPNFPgINmPiAhDTASsVFBImCC0GhJedb6xACwuyXpY45cCsHfVHUeaWhEYVjPu0OvNItNOuuRJoH26tanpGBuOjmm7DyFgQqw+LN3+s9///+f//87NLwAAFCa9d+AAAAAACFEyWhHQ0SbKYVNjEyAEE5npCYYAmmiDM27AIhKI0xsJGmAqgT9oaEJB5Ja5mKynicJmj0IMJeK/XPAcN9lyD7TpRt3Ych2AmXEICBTAYDbC5TD3It1JXD7WqbmnRAAAAUQAmQa98AAAAAAUHDlBVpGHHw+QJzzlB0GY8sjmc4qhmTN2sDw4WAjRQKBmaJhl+w5kNFwZS5L6zq9gwjBC4oyB5G25OszkFiBG0gerEezLqzU/ZwQ8XWUKilxrLqOJ3///v5WrEVEgJjEaLqDgAAAAAAChQaqLpglIgnM5INOGLkCE0FSRl15pyysF0eEr3NQIHjbhvnGG5l//7kGQagAL8HlNuawCQbqSZnc3gAA7MdzVdt4Ahig6mt7DwBChprBITCZppqukxkjl4yaDr9tl8pft02TQfq/BMzjHN6vX7eFC/FBRwvvwCgDAAAAAIP+AAAAAAEKiMN7nCIYcsAmASOAgHMSXwSToEDDAkmEAESBQDBA4tIw4NgxQdTtoZhaAINDiECtfRyZSzFBcwQbq/VucbNTv/CEF6WVMsg7UL7CZNcdyAK+daVp3zUs///4X/679uhuAAAAAf6SAIcGQlrg4ICA0NBtB5WMKBhAAu8NBABKDGAcKAaihgQADg4eAkeXEXpYy1SyPMo/Each7TpALQcagTrVGvBbYOG66JktF8aPPM2uFWOG/xWPau8Ji1671OQ1yyVD+84lDCobahNCOVn6K3/2a7a7KVAAAAAAB/rA9LivIDjv+EhdMtmNDBxVkrxUCDjrAJcOS1s/DkSJ0lGfKKlfM5AUSaJZEbBtE2PfcV5FYbR0i56zefDxrTWbI9UN6Pxrz2uNtYbSR7s6kgbbOcWIvG1stdq510AAAAAA/2RhzRhf/7oGQFhWPkL8zrWDn4Z6PJvWXpkwy4dzVNYSfhiw4m6YYZ3IgDEBklMm0+HxJiWUg2ZjgjBj4DFs2B2jNVAE4LLTWBP1mg09VrMZW2zgNTVlbsWrIwrPbWYi544FxEHwKDIQGEUDaigMDg+FhqKCo8/+5iURnop2yvonNlwAPFzSLCyBslQpOfA7e/dw7ugMv9On++yIAAAAAAf2QM5Q8UajjIzTOOZ5OpUjcmdKbl6081lpqIlK/YUn3Qug8L7OFOrkyw6RiI8NENJTKBD2hxHITDYdHSLat9ETZHQyIBftZ5/OFL0IYBSRdQrXbaRnTrt7HWuFJzWrRXhQ3IAABxwEYoMMBwUDMMnNnCNGMByQoeJelYNwSCSHS2fQWWLEf2C0vk90Fl4xGLP67MFS1/nIRXYc06R5yiQCtk4VcRbRrlUjc3ygjH/bIXFtYbemhm5oD1vD5nXk22sTOVcU6VkTniHtlaavByr7NAIQPmU1gJSlFQtygujVInZIjs0EovhKXAlaLpkaDknFpiFBUJ4MCwWeCHhiIkGMpD76khEixY/0Rj7lu9KDAi6EUbX0sQQPOWZLuHe9tss5Gna4lWnQNDmLWEAAAAABb2xhU8QQBYwGsAxIylTOpGo6iHBSgtYJkBjGGcjsXUfAgA9JmqNDzTTadcHyAVpJimLeySXEZhY5NeLLRiUv/7kGQiBGNZHc1rL0rYagPJrWMMHwyEcTWsbSPhcg7maZexXIWnj10Si9ehBqhyw3rJKiz7AmSqVYt09EK5UyTWb4bXpbsUn/6fi7oAAAAAA/sjf9TAqvQFq+FRhH2dChWbycEPPJFY1RQ+sE47LKrbsriD/MgnjA2EtGJR4aCovkxQvMWMgVsKU1ejfTp05m42Jd3f6Hzkz6ouw4LtnyUWjmqT572HWNLtnhx0KLYD7z3X/dVGAgAB/YwJqIFGlxE1X4EwzHCgKByJYUA1DwYBFCYqBMVE1C++4b/q9SdQJOU5TzEaMKgiCIBSQEgSPosu4rwhNpd6TYeJWpCKgaD3rJAodoJxosGylBLGzMKMkxbrbt1L/oZjsAPIwupyKVswiDKmoGOW+uxcjBRAeOdMIcN45SGE9LqnlaLkwsTM8OoLlAjgOHI/jV0bg/2aLl6ZREoYW5QkFUkqI1j/kQ5FnsrOEwi9Yy7voTe3zrUqldu3j9xVvAAAAAAH9tA4PRhMwMNQYTbMpBEY1LlA9QUn4CkaL4fRULbxevIy4aRasf/7kGQVhGL4Hc3rT2IoZiO5rWHsVQyEdzWsPSyhXQ1mtYelHFLnXSyugSEM1XQQRa4s1s7c78eX+t2+xvvO6918hdXX7njnNllKTFJYCqYw+2pVDHIpgSpdkgAAAAf2x45puA+AGOIJhHmfpHQIFgl3QqU4aZfk2TdFkBSYmQ0xFvzaqAyQXB3EVbBLF+YW3dJZ+/Q8U3qseggd+D21GbQzGNOE0rkVMVci04g/UlKYbekiSam6o2R1nkf/7/XEAQABvZI/wYlgwI0wg0CJ7UwMC5Clq+QaYKgViPQJg4SGIk7HFPmir0eiHTwocWAoDZ5qZiGPQMA7rCbqcUXFbE3k58b8lroc0VLXNMyd70XMFH55XT4u7RYy22xtffth/3tlXAEPZJHIBEYC5yyUTFmwUniUIPENIDMrYiIGFAUz1LkpACQOH5HyrkyZkLMKniZvyLwlTJppFvPjB9CP2uLvG1hFw9FVOlVDHcBFdvStL+llHtRstT+ipXAAAAAAB/bAosLGIZJalyyCBON2ioJ538RPIoOa8zvylVQSU5fCZv/7gGQThHLLHc3rDEO4WoOZvWGIaQtUdzesPSqhcg5mkYelFEhEVHeq5yrL5kgMNmMlFHqIbvXSMHoTWS7CTwqhRt/FTSyzXP+n59Y0KgUvlirXP/91TrJIAAAA/tkiTZx0QloANEEBGG8qs3Rs0Ptnai86GE4qHVOQimdryVNjw5dUnril1tdKuhZ6uQrBFSsMIqj1fU8pUducPRC9u0axBy300VJNFrm7EOSTSbs/0VhMABf22GJ4dchKF7CIAXYAlKBoIUI3MWSH2jiYqYcaqYmBFKsuuhF3SY+KiJYgxllDFEtuiZVr/O2fRvR5Abd71Isi7ZKx96VX2aUJYtKepve3OpTfkUsajpiYpQ6suWKn+DlkjkbHQMZTKYeAii+TE6XyQsRMgAcIyJAyxAjXiUJpj0mRGko2hmYTOzW3V7SY2Zpf1Bge4zS9zwhFH2oawi7Hqhaw8oeHL2vbxbV2dWntRdtvm3AQAAAA//ugZAKEQxYczWsPYphmI6mqPwkLDEhzN6xpI2F4D2b1hiWMB/bGYAE2DUgOIquI4JtItJhIrPYIikGPA6UWjSjSpgEFV5CVLki1YXieVqEGmuQrjSUli68YmL+0vdQwf3fG/DN2cHtEZw6xd9dwsmu88lNDHP0mQgmNb1Ftzfp/r8wAAAL/SQ1SsWFTTR3L8kS0qVgxYzqQIpS/7/JkAgJVhICTzJcTQGSdGoSPCh+AqNxOji48SpE4yM4miWNLwkQMhrqQtwx5iYMpSaFkKlh0qZH7HenGyQxIo9AKKW1WoSFvv/rR3xgAABf62BZYYwMMPZMcUAEQeeg4A4ICIL1Qkjwxw1gFbG1ionBQGQwukY0PEJFI0JQoZWaetIshUR1BsnaxlQcI1hUKQ2LfOxe6vuVZh190IVAqZ1t6OBVLxAjYi9SPq7q1RkBgAf6StxJRwCywvI64RV1iECpl2rHRXaVEQeDkSRKK8IZgnQnYOCNkjiPhc3BMkSvyXInLskQIQRMI3SUJDzMHfjR8VLw6jSkpz00qRFDaX/87zn79hV7drW9GxaqIAAAAAAf2MGIYQIHRI4GPCHVHnAHmHJioEaomEChQqj4TA4sr5+lYFtMeiLXWO/YphgEWkQkKEgylZdCyCD1ECsz4iRDAyRBIoCOCrC/psFDo4euoVODbZhGLPCUSmu3N//uAZDCGYzgdTWsaSPhkw9mtZwk5DQh3Naxpg2G2j2a1PCQ8bUJo1/2OcAAAAAAH9sD6tQBIZCSzoatD0JGVUA7AQgLigBeqh6q8CrXXfF1bV6Duti6hdGnN4hJ4WHoowfkjUTNJi4hGFiawphY7JJs9+Z4sLKrehy1OcuZ23OSRAVrBSEFtVFrXUoGj76ZAAPHIb0pDnIId8ROzuvzZai2AybMuOQ2LLlrHIQ7EQlY9COYCAID3eA9pJYuWlg8kepLPlMKYhoJ2qQ1a9hGZlYnlF1YWFy55t/RaE1x1TS5kANLnq9dCrl/6rdeLXLKvCEKfX9WxKHACPbIQoTguo0RLgFmSxsAvZuk/QGUzMFeNyRyeK9HI2vOhDRUYU65YMD4kCpAFRMCYpD4gZQLyRDpMCVIScLjB5c6GA+F2f3HQRYMHi6XNGDD4fqatbGqeXJHbjLshpELybWubMojFieO//jNdAA/sgbOVB7X/+6BkBAdjXRzNG1hJyGajuaMnDA8O5Hc0jHMCoacPJvWEvhTjHDjEoztnzUHyBKDjmMReA6hGptSSWKhS37IGnyRgcXJQuTnAooqIxCLBgVCkvFQbEwuTjBMLB4SBsMp4FAwFwEEDib+A2JwSSpQXcfD+dShLAwUNLYLd9XG1YQMXuatxVaCIAH9kFgO6afg44EVELilQ6ZCtNNTFWoIIvJPaHHbiBABenBJWFtYXRJK4kPGIek0qolLYOCQ27ETSoIZUEcsFYriQXHE5fJBVJL+C2AryRRb0se0wZQ1ROFfgDx7Pih4VEEtY2JnF1QAF5GLRyEYTipFNORYSGBi4DFUIhzkD/C3T0gW+Z1nA4G8WBNYcYIFBCcMPxavMP/EX8iUgdV/pA4jpSd/4nJnDae7cYZJDcSaNBsTb+dht/Je/8amjnDpd4hLtAw4f1rS9ZqbL1NtNkyH3tZNXB8KOFnoQ60P2gAe2BWsAODelflLiNxtUPEGdm1smHYJLOYCRsCZK9bN1lqikpGPCkQkgZeCQJyCxGkJxlWjzWYZyLKuYF0hqHNI6D8VG4ynkL8hrLP7VjAGysm8ReYuGLXuW05UKDVigolLmvN0evWgLqoAAAAA/lgIgkhJAgDBBeY0GGAMgD4QKLmDEBpy2cxzCDyTSGS8Ciar1gi0YhPWEV6OlDmZDWt/pPpr/+5BkHQZzeR7N03l6OGfj2bpjLzkOOHk3TeXqoZ0PJuGNZIRcnmsocpVKXVPEsaSwHNET4txlkgN5SZOpUPnBSIY7ZnX7wfxZ7LYYsQ9H/zS270p/dRzaS3gAAAAf2QQaIyJdig26GI4xYm6aoxwBi8ZMMYRAKHdlPpPOIl2W5iQ8yqMvmRXqxTpNTqC6HrKGMSejF+OckyVMAbgNtJvQci0TIhyo2k2MniNULv9r2aEraZW0yl9s2y19u/m9FWnr0A+sCYqF4CUwYFmNDJ4M4asRmLCRkqecQFHAsJh5AWRASCAk87EeAqapMwgxol3jFaSxJ+G1K1nY2ksBfUPUWWNsQw/iEGahplDlFStoxTKVCqWlcmVmQ910EA0dzqJoVilLJ5Wq1Yr2cgb/e+xNIphukB94DKTmM4MEYzHMRmHJkgJuIHgsOGhQ0WGAygVQDimlNMTGcZ624RSjpZLZg2GX+fKSsAdmG8Ja6LhxtwF6RVkcYThfx/lgHIhuQXpK+SY7I4xR/qFszTvZxvdYdWOu9EgL/obf6cAAAf2AJXD/+6BkA4ZjlB3NuxzQqG9jybpjeiENqHc5TeHqocKPJumsvXQJ5mUS3MBDkxVPTPAvM4jowqlTRQZA3IygMAhAcpEJYzEFMAQBU+wqdEg6VrLl/w47HYbf1t56HI8w1AOt+Vv60drMUfJnjRIcYmsZDjBEANApqsxHnBtP5H3dYulNW00AzGlVsv2+m/VJPskAAAAD+wCqy9SwwfLsm0RyZGYoHmwRGyHAWCVCSOY4EBRI1A8aRxKaGBz/JePPD7vzjc4OkbuuNDL/LQYy/kpZgoLEoEcBpq63/f5Vy831hh8FfxSPx13ncaa/1/w0hjEDCzVrcxu29UVzBP/SJB+AH1AfZxDBhMw9RMBNTQPkyyeBB4aQ7mwiQP6TOCJsIy02AP6AGUhGtQBIGjMubE83JVJlhVCQAzrklhrESprnIT9wL2OtJhmEbHrElHYWJtWlVaAr0KSaJdu8UnJpmMbXIXt7ygFcl71tUwK1+AeyCDmAGGGo6GjOmBUnbxn/BgZ8cBmDYAQzSsMoIEhGHoTHrBjxwqc1BxYo/zsyd3HlZkXfjceZswV+X+f+cUwV87z/s1YsnCMw6GIEiEaU65UbGqFGrVpGf3GhtkayK0LpNVF1o5FKJyl7FqQR2EKAAAAAAAf2AAcqa6IIIRhmZw1oWMnHeJqdObognRUAAiSJyARQZCRhxGZQgl7/+6BkFoZjzB3N61vBSHCjubpreUEOIHc47W8EobOO5umd4JTy/pgMhzf0eQ0uOs8lL+o6LBhY7TWnoaLhXLL4orA1WGndZ4CgKPNJiT/PElSmGxSHY+/7/P/DruWnegPtUkSosm27maRlvoZj1vvavQAAAAP4IEIVYEwlEiasCaYM0HAjAK2Yl6cArKosnMIIK5g8FAOIA0NwYfPKWyB/WeUiUjd0AhaxVJeilxMPGIo5y9VDG6xgWHYu0xdiQ7YXYLYOgsh9F8v8/rrKXLygV/faMbmdc87FN3Z//9WvuZfB9QCIWjebsOYyIfPWFWxpeYa1FmAoJyyyfyfCEZEYjLs3MAhEPw4QKYlE3Fm8tgcgROPAkal82JCJdbkEw0Bi32WQA5L9s1Xqsdmyg0WZ8PCpnXh5uzzw4/tJSsDsek2YcxjNqGdaVhTYcKz2W2q1yEAHsAYtRtLEbAX0NCQyrTMdDwsaGK2htMK0ccQRTMRwd8zlRmMz0WlTq8TLi68H9VucJyRERkaBipouhspWzYZG/zKGqp0sPQdQdaYGUQRtxXwrC68hb+AYfhtwov4qItE2h7D/Y+tlO+7SuyuAAAAAP5AEVjIixMAbfMZ1RpkMPGAp+ZAIJjU4nQzEaGbI8TwgwuuFjUFzBCHTwVYdApgBJrjoKlIyc1gRADAZjjGEEnwkS6AKCDD/+6BkJYZj9x3N01zIuHVDubpnWTMPbHc5TecKIbMO5zWs4JS4gxULjyuGUThikEHIIgVOIjoNBo48Cul83ShtQ934csxCTekUm3ECO4Vrtvr9HfMRRMtVAAAAAH8kDts9TKHZE6DHrTaCkJsx5nJ5kvQGNhw4OrQecNOYqHGFaW4diOMsYQ1tbCc47EymGhGWiusMrwSNCwbtDwj3Q1IzOiIljDCMaNpIgHAhY44j4mAyNpL3tFj73p9NTf2TujsLRzNf/qWmtXmdK0/0YAfWAt6YgJCikZemm0jRp3yao0gwYMJKjPJE0RcCxMFJQoOdEQgQetErgjoHsgjf1d7ilBniCjgEYGqS/B9Udy4iQ5h0QilSVj3TjSxhxF8eKWhTAB0FQF1mRuO/0ub2HJRNNNlv1WKucecfrrBbWhX30OZZbT+vh9a5qAAD6AOclkhNSmMGHBk8iLH5SR80/jeqOIoZSDpmMoCcPuRbPShp6DjgMkU3QpAIxCcGmM9RyL+PUk0r8t+1t/BYWUTTIPbDY9YAdQODI0Fpki4msCkepQ/7S3FV7Aj3P6V/H1z2V5iyl9P9m6qAAAH1kDQWRmHy0YkR6hIsHzCebMUmoeYZvhZH9RmoDBnQGIDXESImFhYMUn3gO6/tJEoyBKRpYBpBA84PKVEBADFL4CRVUZMXGlMbUoMblntLC+n/+6BkKgZj4R3Nu5rCKHLDucpvWDEP/Hc5recKIdYO5umsZUxa2KkVSIKbKwjtP/CoyyZ/FXSf3qEo94LOqVc6x7t+z2Uqoci9Dd31eAAAAB/qBNwQFUICAV0DIpwb6aERGORHPuA14Y8QHJrqQO1RZgIyDfoQDUn4iidBvcmKqso8FpwyqxeKK0FF1Fkt6hJd+Xl9zE8cKgFfQu8bAhoFYVIIOIgwfDiuY6qd2ZjxfM3JxNjyxhKr2WEKU+OlXQAAfSARg6Pph6CYEunBBxnSgbBMhpMZ0NntkRrVmXyOOk92y8htcDjktU6FfL4jxfQqrKgUjAEo5ECi3fHlOAsxB8ttDTF09Xad+LochpAwQScDRQ0mMxVJtFZ3JS7EbcqIyqR+TYrWpYaKJABgoPq1mokePH99qdSX30q0YrSrED2MN0UdWykQYsgbuiagiB6B3ZYCjgy4akGB8m9KoiQBPRk4+MVhgwN3XBFrEd2/HgU5TQOTSewdGESkhBgsRW4pU7q91IFV4aCMUpkQmMXGBqiYidpIy6TFn8f5pbtSaHfJY3zL1LDbL3wwhPSpL31Pp9yqqsAAAAA/tAZkABJmFpgSov8OeIMRBY0GCBGPjakPNrZcc/pYKrQgKKEUSwsDFkjdl+L4Zev5nKtZd9dJahAGAADJxEGB0OAHVeZugKAqgcmXR8aBA4D/+6BkKo9jyB3OU1zRGG8jucpreDMPfHk4DfMmocaPJymNZIw8ySTsqJiwJBDm+0vp26QEx2Mfx9TkobaqQXWm6wIOTwIL7urAAAAAP7QH+ZM9bVg4eMUzL0zXJTDTYzGEMcMCEBNLUxQVBBRDNsrDpAvVa6YAFCpczNUjIDK5GRGuGQi5eBE7J7bCgCkGtBwTcMaEjgATAUKwwtgme2ZVzwyR45LHIRLPak81zmXWrYilPs41f/Y5QKQgYfChccESmSQZp1wHWZm8pmHrsYPAgXBoKahaAHCYwYguOFCgwgWFCAQaERFgZ0EgQ6kkDqGiiVwOREBK1R7IwD4bo2Zg5pYirjnDERYKCAR5QVLAESQgKrKv+NqqP28TMJXLf+QdppRi4eXASyzk0CsSpo7LHsaNgA4sEqf4dDEEzzlcHUTilTgIjI7wRARGGKA0UQBO8gBS0YSsMrYvwu4ayyiiche2JEoxQ6k0xwRwBwrO6CdUSSdU0U+YI4IkISCbhY4iPAoQFDctvGXRBgd2XumlrLf8zQEGumtGn//PzMg66wb3XepVgAAAAAAH+oCzTGBgw8WMaSho3MaoDM6I50lMmWDq1s6oQEj805QA4LGBB6Nhc5LEAgI4CRQV0KBAcevlaYAAjmDvF4y6hjMJuAAnuguLA4rrq9FJlJguodQX+MRFg1osoetzqqv/+6BkMoZj/x3Oa3nCuHkDubovWQUP0Hc3TPMiodKO5yms4US4HmnNaRI/QtzhhnIPmIBQre/MuuG7GrSzSl8AAAAAf2ADgZI+iEYRCDK1gsoOiyNwM5lAYMY8B4HmQiBiQ60USS0YYieEWD0g80YyASCzZRZSmHRwVXsDgIsiLByUgdgdDIokf1wmFg/yc5olg5IvAEeKAjIaiT/P+0yIrbLrpSPn7lRKUJxO1KViuftdTCKv7vrdAB5ABJ0LpmPSdjhmUZA6RmRBUEes0gMzNFFDhSN0ooHbhU4xEzVZLrkRxAaCsQdsaAZUQCQ3FZADsF9pmqiAy4OgEYhkAMckAFbMgMehTfM1NIpO9FEuAW6CGhJZbQ6FOsrbDDr+JymAHSv7DoNoi7j59Re28/RH7E9aql5NOAHsgbi3BwBkshCa4qF6hqxJo0ph2h+w7XzvgDKTVEjasTTS0I68IGQDLnInj7H9SfHBQ4NHXiFADRmhA7ddbCSAFGPNd9CSYwFEDG5DRuAdUt8o+o7DqwLQptPVxU9ZC/tfHdArEca5zX8WtXaz09fV1J2MwAAAAD+wBlwGEEGJmXBkMMUTEziOzeZaLpmRh+fCRxFAtIu0BrTVUXUXSmFNSjUzOTdFDzhwYlCHgVgU0lVWml9RKIs8IUbLWwUir5p0YdUISVGnK8o0eWjQtY00WWP/+6BkL4ZjxR5OUzzIqH3jucpneSUO+Hc47fMoIdsO5ym8aVRZeOVytKdRR2OcuiLNR0DIvGGPyC9NuyyvVgAAAAH9kDQo6+YyIc6oB0MPID6wkyg6BC+baBgo6PYkKAAqk0SAglT8qJTxEUBBhhQ2VTfBaUrhP12CI9iQw8zgxoRoSLpOFzh5IhCXgFWgQqbAJdgoREQqAlmS2E+p6DIlI2Qpquk+hnpuqKRbxk7htDJO56mdOMavd+q+iD2wNxZiKmIhRDVTU4jCD14y4cOdSjRVUFqwtyah4JTK2wQAJJv4IAWUFtwrgAYwCgOHqKIGlwkA6RCjoMAInmcqyOez1S9f8dcMlRKOgEw9pMe1xHlZz1QTTr6kzurZkY8Czl/0czaF5pdpNBDZtb5D6rP0rpmaoAPbBJJlXC8iIdMJFjAVs5dAOBizSRc3slLPm+xjMg0SFRIZqj8zEFZQRJmAcmmwl+YgCnKjeTDlVTAqBY4gTdK4vcsgy5OV9UiS8Szy844EX8XSaE/yll7B+EEb8NTTwaz6XL3RSQe/1WofQNvl3MrZLanJ/4+QAAAAP7IC9VgLB0BE4w6MBDfDBhkM5Dc18xTVAEB70JgIWAZhxAK8kAQYMBw52FDgEeGTg9YOIcMAIViJlGAgxFPFRY30Lxl3GbR5fbBUngUNPxNIJshJQ0eMVmRHXKn/+6BEMAf0RB3N05rCuIVDqbpzOIUPwHc2rm8kofUO5sG+ZQS/Fs6ZzZYz5KpyWJP4ys4+giUMXqJiwwlXeJgCooMJVjqRUVIu2ev+mAAAAAP7IB4BNBJBSChWZpLwXrhiU9HJyqYcNsAnUDGzowmFxgMrUQ2L5qqJ3y1JIEEIDbl4WYkozqoMCgZGA8JrpicRhhMfpy8wjHYWAlAKafKIcHYMoBCw6BJqJOTcDymSwOsRNJkjOhkSIx54/xcYIxV1qVh44wOCpmRZGCwuYxT7f74IIiAMApMPjKQSMjwA5SCODATOGY3p8McnQuHKDGeUDjSQhnqZiBlUFIDBASoFJTJPCP0NlniAloDACssIeTycilTNMEgEkxtkbMToBJXRokEgDS4JFLSNZifwBVijBoCGgI27wiemX13EKYVMnZKKKMpo4+o0XZciT30Waq2zuEAA0aVhr0BPMD0U/O8MQzwWCnA0fSAwoeQDjgAAMxmseuV/U3Sx0MlBq404DRA4JRUKFoyqqGBGZwgJBAIFIMGgoEus1mUDRYgPL/ApAhBvApBWFYIupTXq8CNegJy9O8LnoEfFkuJzcWNnpCKrMJo42s0XbeiQ3U266sAAAAA/sgStNNQwMDvMM0j0yKhTfhYNBEgqMgxogzpJ0GA8WQShFkgNCmDBBgJmqLANCBSALUGBDwkmRO//+6BkHoZkHR3OUzzQuHajucpjeSUPUHU5rHMhIdgO5ym84VwKhQALbgQBhoqUeBIomHDqJyJhQLZRF30IVCHFOhejY1qPTKF/zlNWTDbG3CC73tMsZemLpnBcgKLT0CuOD9nqXFHp372fZYAAAAH9oDsqdg1hg2W0MMTBSMF/5r5gcGTGdtokPgQsILeUCCyJdaPkOF7woaVQDnCEYrOGgg0Feyq5KGigDpggNXEvC4oiOQ6NifZhwHfIAy9YkKoSCngUqwhoV+5NooKeR+Utom8zdPV4QpQhGlP0I0ouobrgAA+oA8Y02BheMBgcxCCDEN/M4LYw+kTDsYMEk02kLjFQHQVgQW0AhhcYCrqEkzAjDJfDWDd0UGD21axAmqup8kGIvBlFOZLlmzI1Hos7VZrhh0rtKDFfovs6gHNtrN2AFyMieps7vmBR2scFTlTxA66fdLLGnnXP9SoAPbA30AKBMSAAOYkmmKPpvjgZLpmFkpvJsUB7Fi3qfYVOQAmAMqRVd91DBNwQripijRQI2GElQEo2VFQekaXrbo6a1GEPpplYbmChqYFQisHzR6ICLPw+uCjtEWQr+/7bbEtENCkmENGivuX1ZqqhqXIf0fUhgAAAAD+wAIEqPBgEhCwRMmEEwhfx53G/14ZPB5p06HIjmYCAY81UNLwg4cAhgMLFQIAho8YBrY7/+6BkHAZj8R1OU5rKuHuDubpvOlsQPHc5THNBIdcOpx284OwIcy5NDuEZx6scBHgy3yhhFaAZkwgIFJEJpYMVhf9pIODL4qjUgFBCsBERpEPsdos4kyNkV5cZ/paxeev1XITfaTG/b96UQAAAAB/YBONTUMRUQsBpuDlc7rRMElzbBM7oAIAIQBg5xFMrHR3CG1E3aQdJMheUyjklhJ4eEMNZdT+wwY4KuxgGAWKBAKQQUEtlh0tAI5Q8MdZHUiHgrsoeQglfUWEYMIGfweAtKt/JIYM2oUXcl1qlij1Tp6nzEZurfgB9YDnUOMCCwLAAxqODGk3I1ccoIJmRzmUwSHn8BBAEiTCHWAA5RLAKgVih4xpgyZMP7jxBL4ONPEIw7N03i5hoAhgCLIlsM1R3QTBAa9QIaCEkX/aSxpSxDq/LVWCRSvHGANehl/u+8/e9zT8uqLoCSdg0iWAynoW9rn9oy2rd/pw9kFmyIQRmYFCo6DY0NEzQOM2wyNVNi7w4gYohqBJdJHkRwQaDhgZcJjmqg7RRkDjovreLrusBmHQibqjws1H8PeEOoVlCw1ByOLiKWIOlgT/QevCvQXxo63HDab+9jEJQosuFxqxJmlQkkKf9d3bdUxqCC0oVgAAAAD+RgtkqoYBKxioLmTyyYUYJ1sbG4x+ZSU5olDnFhSIQSbUYND0Lldj/+6BkFgbkOh1N05rC2HfjqcpvOFcPhHU3rmsqobIOZs284VwwOKAB5+OAgYOGhJwHgJzGPGmDShwcBAFiqrhQADoYgDl3guDg9YMyiBxZmHzMQwGEttPEIFeC64wyFGuE6iTxQtiryu8gKNTLOI2LOtT7W7OxPNERRCXM+7nK4AAAAA/1gY6udDx/zDBOBgdDmgDojbDkC4XSiINXYRJAlAEkixgEIQwBJBeAyHhXwKCh6ohUTCWWn0y9qYU6YQCMI0kiGQzgoODbZmwkRLZokyy8wJZpORGWwf1uENtATihfqUAypWXe33zqc/OX16sqTQPoZbjFQAAetgmDpgsXg0gGARWZAGw6gTaI0BknMvsI1W0jKjgDAKVhjBDBLWVRScsNGTCgIWgEMfONog1zAccAt0LgaMBCQyd/DIjDuUEAKDXGXFCoiErruBGRiBq8h5cSDi6oDhhakOdjzT4fUjIfTA74ZOJRS3H2nhnd/+z/an0AJnwLdR6ASgYOZnBgZwICbSWGVxZrRwDAdEsu4ieBnAgBsJEUgDSRTpANKIoCiUGWWMVIABVa3wYc12NIwlBRAUeZSpzXH9MfQEdFJPFMIHbEYp+OBgm2uwwaiuG/jfWxtY7WPWTFxCZF/6mAAAAAP9YChgigC+Q/0YPx4aGxjWcAdRkFKHhAOaXAhMvQ4GigwMNgQqD/+6BkFQ9j1R1OUzzBOHZDqbpjeB0O7Hc4DfMmYcuOZs284VxUmXYR1Y0k0aamHI0ZFUosyIYmWtOiYEK4GZr1KTaUsKn8iLUf8RTI2qEP5XYqmqllDTTncwj0OxaIxT5s3SotQtelvQKIC1xLZZqemz93p24AAAAB/Ywn05RAMVYmUF3MeljoEEyUKMtWAJNhUCQAKGoXNLaSX0BQAm8leYIdq9RnIyAZQjE6L/opQeFHCEqcaABkwYsLuRRkDvmACewQ6HJsYKqRSdM4C3o67rFIDXrPfQXLsYo4eF5Hex3mZZsZZsezVTpSpECiJCRAKmMqUzIvI65MOOpApHSQpmCWWYWEKhwysrSbJKCRH8gEpioUfxRwumGIBnwCIHIqlSrW+RJmA4ICFBmZiMlAar5j1eSpKpVID4cZlI5x2MX5ltJE2bs+lr23vak48ghDPFqJ7AdMKmaNUpVc4giY1ft8jGUkU7ZeDQAxonNkUDWzciEQntMjRQc9LlQTtEGQiYRkwsKXDh0RBrNAWwLQNMZ1E+1KBJJoGedEpACFYEFABtQcoiNDjgqTYGSkiEiESGaE3qZgrJoJdlna93j+42LCoFSVEEycWXa1lZ/q+Q+qj9n2qoAAAf2wE4wQhlxlkOCExEFWOGE8yisRBZzUoINsE0DJNW0R6IegwkDICzbTFrgAIkINLs3/+6BkGgZjvB3OOxzISHUDqcpneRcPoHk5Tmsq4ecO5ym9ZOw2zBmEJAO0d5gkLDkDJiGmUjnPaEZABMPAtSMImk1rKItMJfP2/PaarAEZcty6Ol75uo0LMKjp9UjmmWf1dlFur60epwAAAAP7AJe0dqB7hJtGHLxxCecsOGZjAeChSuMBBJlVZwKJNCIp0kJrBSBQ6MiywYeYupdYISV+rCnUaMZjEiT7QEJgNGX1K0i2kEQqOyvH8jAjAL+swh+Nv7HXdCBGxLegd/0n7grCSXPeHhbpl9lv5luinAD2ADQCFhuOhEITRh8bgWbG3g0Dv4YPf5mUaG0YwRA0eDhUmNDUTU01E0agqFQBFxQJOMOfHgAVOjwCsCVS8EzDHpESg8AIThEqJPAJeSTsiYUsC3CBoqjYgKQvfxgMZghYBOp1JXIr/+fsPqIQYAq6j7BRd9TiKfYP7zKIAPrAmstxLdPFDMLwB6RUAgc0aI0QsyqsBFF1GEEKkS3Ys6aDIWLF5hZQCwQKImpDmiNg6dM9BlnpACZEZkmswRfAoAUGAoDAw4ZQdkgQioFAkOjQSA0oQfmApmVp3vK3KA3mv/m2WXlQ0XrcRNIWL4lOLqLdgrzvxSqAAAAAAAf6AKtNShwGgJPGBA4CI8bOE51FWmC2aZjF5lCQjQgYgYUj+GMMs0aPQBilCwg+8a//+6BkGw5jzB1OaxzISIBDubpvWTsQAHU4bPNC4aoO52msMlx5wwngUdUBYMHkY2siwahQKSf0qtw8nGpKFzz0JdL2TlU5qjoyh6Fy8muv7KodYJWzaZ/61raZTrvZcVchqhjcpoGhHAAAAAP7GGoF0lVWmpWjsMdUFGEMxsUZtJxtiygqXYBIF8U0gMIf0IBCxsUKBgg8E8yRU04IZRGKUpk0FDui+YeQULG2EIFdBBKlrJShlBwhAQxiS/IdAB6RLOWxLyJg4bTbCG2bROUY+3c5hAelCn7QP41orPm01NQmxOt3p9ev2AGgGY4g4SHzgUcmBKUZ0Ap0q+GIkyZPARm+RIq3gcPGQ40VTJBxRAEFmrEA7MaagYMGCxphQQsrIlKDCZCsAOjGDQFAMYHO8PBlYXPhhsKfieZghTnxVaSKqZjprAxV92QP4ymNO673taFlEJ4BABgqDByDl6doHlXbtTChBqIAPhRchLltcRuEGg+Qs2N8EPzqCTcvUOw8Pcthq53FlTtpcjBRrpxYxgBoQ7AB0NTFlV0j2apvl9RMrAl9j0XcZbZaECEIdQwb20ipmcDR27vCsaUwKPOWnIsr86A6NDrdbfrojv/6EpV6KsAAAAA/sABgLGAMQgMIOY4KDAmiMJBg5jdQKVQdZzIEnEQJf4wAJCyGH9UbTOACQwRwDBzq0zD/+6BkG45j+x3OU5rCuHiDqcpvWTsP3Hc4bmNKoc2O5ynNYOxBw8CZ4IFXD3FIImP8Yj0EST3QcJtl4oNeBiCZwk5NOH80yUPSIr+yVvIbhptYw/0Da9u43eFhwjabUwuhblrPISq6udpXeEVQAAAAB/ZA9VtVNgaH45CGyEZqU8agAco6bSMIQQ0OWS7YkqmIeQ2d4gQItHeoiEmPUwIgLzyhgKpxoQwIKdgqf4gLB5IykJDqhZah8HJqBw7Kxg+XjyUZm3Vp03kY4tSNWf0UDiqjtqnypQViCKXJIbVi6Lf7/V/R7IGzLvBoVDkGYJIIN5BlwNG+rQYvPZtMAmM20Dg0/5rmOCWEbsXtHznUpk0fUHAaEAc6AcFNwYJDAgOEqqJxGVCIDkrEhFGk8zBAVtww0klAjwIvA879IyKCjxCVwavxwIcXDEp6f/1JAPWjnXpaSetK4yMFlKpr4Se9X3ewUsA+kEqrigXFhMg4FkUZyKxoCFiys5w8GxRCGX9ElFxIE+Cjq73DBihdhn4hVAkIUCpX9eVVZ/QgAk1WUIQuwd2iiu8adA0WHAE70LpbD5IRJVp0vfGlf1kStcZjje4eS19yEqsvvuDChswkdo+z/VsSxkjVwAAAAD+wAeEYOCg6MR5TGIA8Dd4Z4EZyWlmFiGEbYw0zRIPOEcDwMARYJQWQkVZpKIz/+6BkGQ1j+h1OU5nSqHljucpvOjkPJHM2bmsK4cEO5zW9YLQmAGd0QYoMcoGPMVBkhEf3MWDCwNcawSdTgIBhAOXigqpYpSmAx6PO0v9uY8VhmVqcO/C2gU1PFn+hxodSYat6CaRSMZ2BYa9lLR0ZaogAAAAP7YOYiMLKCMCjQxHHFB5uewfYacBscDJz8lzWfkwa+34Ig1Agt4YAIArhdCNHTFHk31OA4i7jFGFK3goo7ZCRBQskAOwp5+FjgqMySKNff9kicEZfeEy5yFNLMFXf8YsCpSNFKpM8rK70arCReM4EIvqT/r9IAGJhUYvA5KRx5DGHx2Yl3yAE4dSgsFDdpLMwPYw2Gg5IaUaX4WHWEbgnkYccWlEII7jsEHAdZDr7dSaCo0m0xDHAv4DpGQrIgqAANiJZWFsLImt5KJc+61CIs5LlOHVcmLx+VnPe/MOStQSdOYr7FrxirWwQVFn3MOAA4kGtgQvNhDxCJjEQPaTqVTDvzZjjJsywMHgidqAceNsASeSCHEY6ifwK0CwZEpBlwJbxWBahQQHHLyF3lkI4KzpNheKwjTVzqrpSOvDEOPyFBJwytx7My84sXCYg/vmwTqN5bbcR//Z5db//9unAAAAAP7IHsBwxFB+YtDhlYRmM28CoGdJS5iRUGjj8aFTQOaJmlmNGOlkZ1JOyiOOcB1TIkGD/+6BkGwdz7x3OU5nCiGijqcdvGUsO5HU4rXMkodMOpyG84RxC5CPBkItBUAgEX+AEyiZnelUKod5gIcyTvKuZprqvPcXy/rgQ7I5Ep54nfcyZkcm5995AUcAvSh2vJVqyahp2kq5l9X007jUAAAP7ILdZO1b5CBiO2MeFTZwQyRVNzSTd0O0EKjxZuAmrqmWIj4DrDDCRqBpKcwNNpS8BpAkaanFriMkoGSFYqx4HGLEeKA4YQJMUuooUrMJLDM/neWEfS5Zo/T21Lqj1etPy/9H//sgaCUEwRVM2IDtZidBuc9nAiEaReQMRJ3h7mEgyFYBSwRDiXy9SBlAEXuAiAHcEsxIk5Az/nDKRCYjensneG3CsQUNTxZamWoExtckNAo99nkqqUoVtEaHDsKe1o8ReaxCoO+GRkl+zWxW8U5a6hXFS7E13XK6/dABXtM+bsRFpkcwPdZkByBjcwWFN3pOw02xotFoIbUFcMIBROVVMqQ9vC6x/xkKI1FzCsqVaDg00GhhJCciI01TNLluF4a6UNlMGsOVgL5IE37eWD7i6mH/Sxd3rT7ioq2TDK1gKoWHIEWuLtY6jrc5ztWL9KsAAAAA+sYL3lA0ZumFBGQOiso7WAjRJqMJIg34iDG5oMGgUzCzA/CqoVCQ4F7EqwuqVBmlmHyBBS9xnHLULeFlYaBhgBaI6BAr/+6BEJIZz6hzN01zJKILDqbpzGlMOnHM3rmsmYeoO5tGuaIzD6aRgkIOFn2ZTqA8HCwLJWvKWorIXR+lkU64MPSyj+iSTSe1KsNKbWhNwLnV77EP2VP6acAAAAA/sYQDhwVMAl0BB4yMDTBgwA4rEvcY9JR8IGmlxkHG8lMZHmYYWMPAMZhwMYhklccVQQNSgqClDVjDgg4YVSoQNHERMEBrUwIIdDgEFDYBCq+cJRVOZVSLR1goVFv4vdx41DsOPcw2afqW+m5J9YBH0uc6pqdfMIs/q81+jfc2AAD2ADQKEiOOmMeNaB5maQHcRQcYHJv/R5hwgAmonmAcPnGeuClggVQ1UQO8LdDrQCiWESLEVAMCdkwhnXXgBqAqCoOXHMYAKDKHo+LrcFyk0ZZXUeS0TWjU271x/ndkkeo/3EH1Lsrt0E0865wvWrXTvYp9AABmQgO3gzeRhwdTMVWNolk6UMAcjjT58B9wx7ckBi3cVUqHmCCuOOBDCCZMIA5o0I8JaIaYsChygQgDhBYw4QzA49JooCJhEhkt+JHn5EQRKlSLIF+RNiQ4H606KwJdd5knONtFbHmaNrmUu8olFDmqmXKv1vQPe0vWAAAAAP7IB4qKGzEKTawzIoIILocpORqlHGMD4NKcDZADHQtCJACpAqkHFjIiVy0hUsIQA3aUKPZ6WhUNOaAX/+6BEH4d0JhzN01zIuInDqbNzeTUQIHM3DesIojiXpqHMqewCi7QtONOAI4YWi7NVqpbsHVCjgqnFqduiGokfLJmC4ruG6axLPuAbg0UcNSZAwNLkRPNpKmgyMQcLuY2VWZoGv23d3U+sAD+yBLEhA5gAZmUSaZLH5hBPGfw8dNFhvFcbccHHFhmQWaQEmbAAKITJUS6YAtJuKExSAInU6DAgFedToYAZ4qA12CyZFINPGcUm+oEl+TGF5HTLYo/oUU0BwEnzCJU7NWPxWMPFDT7u6IKoeHTTDIYBg6wePOFHPDIBNNAsOKXnST5gnrp6PIbMADHAElCCqQBzmaYcHp2J48Md1bmqhR8Uqcu2ZpoZsCPnh4kYBSJH0foUXjGgH5IQ0mGw46UGhB6U9Ek1DyosQsMKEh1AWfJvNGDnsUaC38LtINJms8lt14d0rAobXNSgx4sFgnHtQLk2OGAcqeaMZHRmLFS7bGKAEg+e92cqKx74ADDwBGAMBDELHIzUdgFKwYjTnhrM7qI2QoTIQqMcE0xSGjBpCHgqYVIYYDQcUouKjAkEFQCMIEhpvGYQZLIOSCoZFkbwolMCRwrMgHQ4MtHBh4NGpxn8cN7byVDTmh3qB94bbIsK4YA8TRDr/0PU1N1TZVVkvdHPLAytArS0u2ppwI1Kkj6kSvoym08kmsAAAAA/sgT/+6BkA4Zz0R3OU3nCmHoDqbNreUMPuHc3rPMDIaKOpyG9YNRaMHGhDGAxELBCZBmm6yhvsgbcBHtsITIi1sA3zoPB2g+EPGhAkMAA4VMfBnbQyIeMslHEGHTmLjoZmeAPoskWLBLfIPytZXons8X9TNbSGj/LiwTvv9EYaf3GW1nffjI5yaLzIvmWO2rdpH+Y11X67djHgAf2MbiakRI+FiphnIhaHhkDzE3xo48lNdCjAkgwoFFjYAHDywFOpigVV7rgHQOnMoY1BiKtroGGBzhEOqmGjAYoaMVaW9f9k7Ji8Ccivmkv4OAorQ3zWchcd3YbikHxZvUhFCRGE0teNBIGmFbD70shtIpz2mRTQ7TAAB62DdNMcAjnEAoKBBpU7mzz0dQlpoARGexQcKJoGpZksRGWQOFQydaBV4hFDCYadqHMI8JOAUjBawAmopv+xUXKNcMEwCAaWriHFFC/sSTQZBHrLgvvDHZh33/j8FR1wopNw3/U0MjoSLC7Qm58MmQ1tc4U/us+3v1sc5+AC7ZgKiL/puGUMocXnotZpVAKnHpqGDBGJejykwYiBEHHti6RzjjyXVhgUOhNQcTaA2ETlMgCcKDRWMZUzEtGHF2C9iqbGYlA6nl8LyjWqkrh2ijDsunJ5r6n70HVld0PN1sT3L7szqrAAAAAPrGF3FzjARRKp7MpoYz/+6BkCQ5j/B3N05vBuG/jucpjeCcNEHc4bXMkocQPJumN4JwC+DYMSOinY11WNyED+Ig3RINAMwQVmgDZlgMOhEXIgsdTWLjqGISl8KxDxi2445CSIDHUgFmjoDwI+BzGBO0hKZW0hdryT+TXqLk0/sbhpnsJgOQSONP5x9plZPxSpECpUuES/fs0LQrR3e+2jAAAAAP7IF2rKM3jSYdEYdmGDZs0YYSPGIjoiGzIgAHQoMEDDwgecmanHZVmSIQkiF4jSGPNFRw5M1ty8axBgo6cu0b3LQJnpStsvZNaHZQ/kCqry6L8uRH6WK0EkpX9kPvV77zbMZ+/db9evvSvpT6AAwCMGjYVjBKTBOgKYB0iNfFpAMYukZmpGmFBGCozV3IFTVVSLASDbuyj83UEClukVkgFgYwPEIPMzIA2QpzKWBcJbikH/htyVg3GpYXE4DgT9RKfj87Jo/8di/3Ntri6nOxXI2UI04gexhe46AziORwFIDpMpBjBI0wILMLBTNzUcRTDCRwzAA4HLFlDNGQrbR4ASxxwimg6pgH2ZypFxF7nNbqiFY8MxjQeac/qk3bfkOG0h/4FZE/d+5LI1EK0rfSVyCUc6m7xT62uRt/GM9+xNrPTamvTwAAAAD+wAFBdnJlcfBC5MIog4yFQYjG0hx4Qua2EnmYJ+YkZKTGBFBswoNfA3j3/+6BkF47j1x5N05vBOHJjycprDHkOTHc4beWNYakO5w28JXStkBZZhzjgdKvR1BuQD0qGBAUThQQNKNGRxEJXFUwbxYFbinKEhcEfhUOv48l6vKOxiVRWQRaJym31orY+WqY1gvXNBtKUitDtbNXVAAAAAH+oDYHJEIktYjIWlPOxDuo8mMTTADw7Ikw6YRq0wA6SMEjIDydQoNrSAYzIaGj0FkoaCzhwSsMDIQl6GaqgSYL1xkQIa0xMaezqFMfKw8lr8u0ZHDZ+NxrKv+1dm6r1OJqFxZw6hZczUlAqEaNqvoAWoBByYrGmZGZp4mehqg6rNcLThUYxSbO6FQcsGDmZkjea4Fm2WlWBSx8wviyZWYOjVmMMUx3iuhpDngZcGgkTZEOUEJ2NgJFXribzO2aILiszjy4SiLfizx1y2JeEwDH910OzeKxuUdKPpJyQ4/6Yp7IJE3WTIYmMhhNGhVBONRR4cMjBzWygUGjo0/bFDLONMC6gME6T+l7yE8QUOBLhKChCggBXDQyImcGNImqSb5SQqqFqOFJVIJSsSYCw5l4mIRAMggJ2QDHPfCWx/oUFLtnvf4tyXorZs9rAAAAAP7AFAx0PNEKTBQ04BMNPxzR0ojCBUQMwZzrConqTqbHKTKCNkQxLwuiZwSIrwhAIeEHKgwYQKmoIZIisSl4JAGIEcjUQSTX/+6BEJYd0BjHN03k6+H4HOadvLW0PQMU2jeDvIeAO5oHM4UwsFDEouiAhQcDFP9UThp2s0urlX7EekoAgPRsAst/R0W6mLbZTWRKW5WepZLUTcq95lD79yaYAAAf2ALTKgGZ4VJjnALwKejIpwisghgMPtzpgc1QDRdM2QzFAALxg7daCkRg9DBf5CQDCFhgQxJEFAUfDgcEIBQhgt+DzxwA2gVn0suJDRhBXaaNPSwtoFu5P/T0to2GQIGKJe/qrVZSSr7qRZSqrfTXVq32foGF5tLr9yaYAAGwgAYT2MKPjS0EXhQdlCy6BTwyzJMAXjLycWkDCwFKswggMOAAMMmMQqt1CYgcH0FAo4wITxe8iGwE3oIoJ2oAAwYWCt9nCwTuJUsDarA5QF4TnxlBsUHwBBoNAYf/dD0Zj1Vmom1U9qmSy0+k4uLcKlxGTF1tOJlbRAQGTDgqMjhc2kRDJoXNdDYyGMhDZzNDsMWigBEDyBMme0xhnGWe6ZGcPICxqblyWQEtD0BDuk1KRElFkwgPYggYCOI1tTWyl4jaDQrYS7b6PvizSe/WqszFpVTtBb45xwVNDkvFrhbcJu/wLatuhgQDQ9oqWvoAAAAA/sYQmsGM/TzAUE3x9MA5TCiIzK1HRU/8TPSNASrGFmg9OBnGb3YMXGQTjVC7DSUKYhSKHA14c0ZCr4ub/+6BEIA5kHh5M03nDGIBDybpvKWsPHHk2bWHw4fWPJqm84UyDUMCfUgOZjBFwgBdJiCa7AQuhVicykMHRYZjux8zUoncZZLH8nvEwjPQSFngU5dCgtaGGIw6XMmUbDUacqY1SEo/bvgAAAAD+yBHmDzOTsZOTejsyt9D4g2cYMeRhtfPIUzFB8w47MOTASEGHQAXQsCCQnzGA0eS87QiQAEHgUVNaBVY6KAA7tAaELqqjYUQVpac6lxnak5VJCBTVv+xRGwFA8GmegTCY5Ea4EPPcoIC1pJqXQ8XNGkbTEceqY1aUp/Zv9kEDKlVETgDkgCB6cSMRUiBqbFubd+IKx4ZYdZMWKCHBkRpqihxwJjCqrEy1BlMFMAIBSDzB7E+X5aQF3DAmzt0TuWHdVLSDDAFrRa+V3wLTE8XECE9bka0HZE6QCFCccGXqFROZrOl13DV9rKaIEeyKPLo9ytCqVYAexhoZghGYeFmXCJz7UYAVCFuBKuIFg3vJP/eyZgPJIASmE6aBJs+Ar07WFcjBA5JFxoBYcRPLnAhAOoqcOYyo1vIhhCmHBlWhrGWEZZA0rUDZr8fZda/9443H/kUAtBs9AECZKNI1iwjNVHFruGL7WUUQHbF3FU+5WlVK6oAAAf2QZEICZibiI9NYgThmc4YCMaHREfAy7AxSZKGmlHpjg2HFK6TRQAr/+6BEFYZz1R7Nu3h7WHrjybpvWEUQFHs1TW8oIfOPZpW9ZKSGpJ5loSKAk1hSrBAlLozPZSqFn6qy0liBAxlhhGW8UhLH2LpM9ZRWfwJFj78+Ib43x9szh+IAoSZkbVqCCCYAFRwkHtFZSF2K9bdX3e+zRAAAAAH9kEaZ6wcwAhNsoTmkUGAp0bUEU5xHyeYuW2EyhgKY8GMEAMEuNHiQ2KMo+o3DKGVpjNdVOwBHyhVE8w0JW8OGBoBag10Omne+tPKqWmyiL7f//z7kBrmSMZJY5QEo3U4exoiIDTQQICofFlNnirXt8V7fR6K++AD2MKkAAQ4C0xYYZiGrHmwegb2dJAegCYRTGqhhn0A0Q1jyMYQjhNIhKFkw583BRtIRFqgBDiecDLRnYfEgUJAGaYAIwTBIMAFdKP0DOTD0FQHavylqH5fjqtjDbG5mTf5wqtYuF1rXU01B+eEaSg8TLEhWWYymYW5oS9LkqZXKwRAUDgC9mEFhUeDi0A590/ccwT45R89Wg9LU8rQHITQnUwEJxi85vwOOPDMCDFVIDrChqKRa5K2pIx40PKBRY8YMFHEMgULBJrrrf9kEpeXt6JY/r9/Wuu1AbDb3+dLLiEIqUqNYbg1PCIwXHidYmKy7WUzQx7R3oelbK5WAAAH9gC6SwSGTrBlBYYNBmpkh5CuaQonrGnk7GIX/+6BEDwZDxh7NO3rByHQj2bdvDWsPHLc3TWFPIfSPJum8JeSgUOBMxiGYuXMskVhHTxnEQINmpDQekWDkjKx0A4xExIOauGUwWKLPSMBC2yAd4tdSyec5OVWJmNLnHWrf/5fhlKXpzov9IArVHsBh5AMlGMn3zCssvxQzFBEiAAAH9gDukAEYmSAI8MChTaToyI7OUgCwJGuDBiDQY0VGuHpCPgkYJ4DQRPJwWBXwYXLXOGNGQiITlpv3IecovEJTBwAWhgQyF/AYBnr8yNgi/KczMil+kPwdRilA/9AFqHxjBM4gHyjGTrphTpRfixiKiBMAHsgcpbBIwBaUwiIGoD8FDHWTo+z9bjX1jDWTAkjG3QksZQSCWCqCl5pOTka4X4WqGQTCQwXdCLtK3ECnSyS3Ejlmw4o8py45Aq2HIcIwqFCFL5UfwnEYU5v9c21n7+yHvLSEXeZWGB8dWDx/tdRPTuUvF+KjHvcnAACD/WBL4iADFFgOmQIvAEOM7DSH9ONpTOi85MoMKOQcvm3iojCDIBMwNAMVIEU0U0gXFM3TAwCXIjAw5eyBq9KqoQAGoEhS/gFMZQpvKGZRJdEpULRmlmP/6hKwTCrXKTrjFOND9T1kUOExpqWRIBupO8vL84hbNZIglF2AAAH9jCOQsMGAiJsQOTMBjCAcEYhtWYYJmEXQWZzcxA7/+6BEEIdT3h5NO3hLyIJDyaprmScPnLM0DeVPIi2XZqnMteQ+mShBy2YQMGAo5ADmcCXq2QAUdSH1R6CPkjiJco5WYipu2inCUCwRLyPPM+kSQ1R/esjRIWf/+EuKgbOt9Dws8VLCr2mErhpIAbDBTumWdB8gMssQmKxep12uAAAAAP7GCyRnARsa55BBukZMCMAlM3G0jBBnMQ0owEhzFJXMLKxL4xGNwTSOvnmenUZ0apizBUBBoSbhE2CKGnxSdrIcw6UiNS0TuBQIcDDqABN5oSGDPHqjEUv/////uC2qsCz6XBBwupj2GUrhlIHbDBTumGdDiY+2xCIpF63XaoMEAcAJc0QoMBKTIGEz89NqNjMXsyMfOeNTq4oMSBARmirgXNw53GIAa4bobaqqhoHJaGoAIQQVWRBkwuHsWNuMmRsJ0DRAFha2Xpa4g4o8xEIiD8hKH+iSgHArE3+yrddaX0XYuA2lgO8BnklXriUHk0MSlDAJIiqz32MVgABh3QMJEYwMrTLg4Ag8M8IkyUWQWOTKZhM+tczkhzBpcMRokKDcKDYwGNTEZKM/Bw/FDaTLRC1pgEmUwqmIDRGQPdy3KnYWPnnUWagwKbBSxlhHIQguoIhZEh1kOcBXjgX458wUakcEhb/dSrK1Vnm1q3sgo6UAQ4AnEF3riIGU0NSlECSSln/sYpX/+6BkAA3TiR5OU3k7WG3jybdrJ2sMlHc4beTtYagPJs2sHeTAAAAGP7YAglAJcYGNnOC4onm3N5h6eRK4Z0mw1RpSAa40gAzAWgX7EQR+HhjqlZxloAUTRYcHRLdZsKGp1sVv7dAlaRYCEC+jiBAjps+SZf9WJkScoljUef5qBYAgIm+u6xaY6LuEIt1ntVnXWurq9MAACP7IHyUdCwox4kygoOtiJec8inKbO6Y56dIybK6YV8FR4w0PhGIeHUHIegaOkPqQmiyKda+l6JmX6chAFqgNiXGTshsLlA4ZM5qMSLxqPRMTlHO/UVgeN267WE3WOlwnoOHaL5rb1U/u9vTqAQ4kBGAiIcGGEIJjAKYqIkCUYPDiMAMYpTbCkgHgE0mgGhjYaCjgkYyJEzwwVB5kT0IrhQgVJRAVWhyWzBUDQpJhAx9cNSCyI1S9CS/qaqfUeER/9TgEgf7q97ltHWsMEKSdPGAA+UxQYEFohIeDTRqAImlMeDMCWOAsBMkxrQ2bYyBEGIxKkFwacbEiAqXrjpUsWLysuRPXDSzCWoMWKUTpDIDhx05M4xLV/FEm04RY4kV/wNBEl6R9LT4ZXGlKTA9zOK+7Y3uTZVXrr7y6gAAAAABH9oAsHEQqYcnmampoMKZMOHNh54JuL0Jhk8c52GWn5gpKYq5F9TalCxgOzBVZuNrJXYP/+6BkHARTjx3Oa3k7WGxjubprCnkPYHc27XNIIZqPJvWsNhzUFgUiLDmQJIHPSGYkMlAT6CYQoK2voXpIgo4sCTFpfryS5GF/4XACAc/0dEkxx1A7au/TvG921U7RAAAAAH9kEO5L3MGGMEaHlxvwByYJjQJqV6CAIdmQIlDYxxsDRhksnAEfCugYgGJVAtA5vTpHlDy7FJApVcKnGxQyCoDxE6EVV2Bhk4YZV+GMGhp/+xUFPx826wrJ0j3OaNpp1Id92n4v2XX7oAEP7IHxKpweMmOZG4Zha4QNTIGgmketqZVoZm0JGDfHXYmSDC2EGnzngAEJMSHFQwEEsmUPMMDBwY0JIrTyyaf9fIjClgSGJE0gCQe9MtIVHley7GQNipL/P////+CW0sO9DTp6cO2Jm075cRk4oqh17suvPJJJfYb6zAAAGP9cEIyh4ZkqDTwGBGmRGaZmsIHqAmIumzNmeHmMQo8FUK2hgRy7wMiB0BN9kQVeBDmfprJT0ENovJ7BRbglrDdsrsk8kkqs9INRJxpJOY1f+YB7Dib6NbqWBeOWx1Nuj/kfGcAAAAI/tAa6Cg4zNBMYPDIloaajDIA3hjNjNzDkAy1oMAAz3xJhyNAeCEPQNPREUmaSTI58cFBJpfxGkHLRHb3MrailiiuvgeEcBk8RYayRUEUaaOJ/2EkCvllvG7f/+4BkLwZTPh5OU3k66GPDucNnCnkNhHk27eVvIYgPJymsHTygv2ddrR6/qW2gBD+2DCSTiHEuikEZ7x6nH0eDdzopOMwKDK+DzTHHNupKpeTK0qmPphKXrHT7Dmg5SSEvfp0kqgNgdK8BnKhkmI8cSUmp9esOkBT76GAYCy7veXQKedvQKt19NiP/LV7F0zduqDSAOyIw8ZVB0jBSIDuwwg0MKbTCQc4hnMW5TXjQxQ7FGo1lBMLEDA0MAiiB6u1NQqGEOv6ApDPHEKiARlElig6SJjCEVg40QWnAX7M2drdfiOtQXoxnf6N+RAGhqZ1lLlXv+2Xs1eldPnNgtwAAR6BF4xQMLGB5+hoXeBg07o8xDIJ2FoAWRusRoHonkod9WlSIAGslN5vVPhBDMIDrTfqxSH0EabhneDjA4h0G/Sh0Ct+wtDF/DEbxS+JgCQDCHpQUZTHlhA64TpTpnFSCwAAABD+2BGEEJxElM//7oGQGhEOVHk5TXMIYccPJumsNeQ+AeTdN4RDhuQ8nKawh5LBEHUzA4BbzXGiRufzAYXhRlIBg4WmPxsMiBPkCFLgqXAggISCBrACFA8gHCC9gc1W1h8vUNFyCKo+CMIyg5Slq+2gRYWG0mHcu///9bv/G2bPde+hDfVaYvJet6a0/3LYu3u6vRIAAAAH9gGKqwjRByk2YEcUGYqGxEmdMGIumCbmIGGstGXmmJSGCBmgVr3Aa1mgVpacFPXi94RMGIKDGMCpHVaYD1FnFgUAJCwLuMY051eyEs63NqDo/H56JSBLArZryi9tCKDCbksPlj67V71PXlqdlMAAEH9kCdJKSkRABQI7YLN5pDGjU4nCN+mzaNQ6qBN9ODThs3NUMyByoSI6AQkA0AYORmDgaPJjaFBhtgfgwnLBkVwsCRx4iMDmwaRfEZwrBB12ZDNqwqbxc9yf6AZD4ZAiJX+OeI5eLDLVuQvZW1aGvzDEpJsEFDv168bAAAx/hBUZQDUQCGGUeGpNmVlDKk2Ag9is2BwARzINgFnGhJnyoCQiUYFKHYlk1AlsKZF0QYB8XSDqJbxgYYX/EbgSECJdwGhXiueBcWJvA0E4an+ShbCGANIndoDJ9abHe9s8q7POas4d//+hXXcAAAAA/sgBoCoUIIgIPjD8wy4lEYeY/8nmOp8Iof2NGaApgR//7oGQSBkPQHk3TeVvIb0O5ymsPdw60eTmt8yghkA9naawdrOegQhlIEFRp42KKRsLqcIADEaLOJfGGGFSDL1Hkw4pmb8o7jzxqpiWo0eXPHtFMX8kNyaf91zdv/3azxsAZBAM/jiZBXXZuRGUeNY9mdagLrTFv9DORgAAABj/WCQwwVE6QhoyoNVnKEEAUgZnuemMKkSswiIFrjKgjRHjhCTHiX8L2FsnLAgEAC/SBJs6dCA5K8sBGJSAGSDCFwxLhQiAHNFqKgnj91Gm//kmeXjmIdzPGCnGJ7/KOkDau7pUx9TP/YpljIAAPrAu8RCRjNYacUhYMMiHR6vOKXzfRIxgwOZNEwMMgduZCrNCJ4ffAqY82OjgwElFFo38XciqZj5WC/yKL/pkvelC2jvGmEYIyfEOSbNrzyyLHP///mPo8YecZ/LD/1MRGHlGgsw4A1dK5FfyO5Oarr+KW2MAAIf2gV3fAC8LmQs1B0k5c43esaxEC4xbQO0mJDnBFhwkiyaDsiBwC6oQEMODGiEKsQZB/xNhQNHqimSwY0DgZoReVZpKBpk7NL7cCRKnxXHhqNgiACFv/V7U6nVL+j8c2HiKAAAAAP7YFMgARGSBxzAMZGgmRoQQ6mUDRrIMLVplNocargoOAwKOhg0fmGEARQH8YOm2pxAlIZ0iTAggR8s8/xZ9ccIOZif/7kGQjjWO6Hk5TeFvIZOPJ2mcPdw8AeThtc0ThnI8nDay9rISmJKxDmreGNfflWaUUrFrGf7mHFCUDwIZZ9aQHqDFwoNUFTe9rnVKvTqaM/xb/ajAAAAAP9AIGRfL1EAaT4xCZ44eqhicm4e8iwfqocmGfIbHeIZMCYLPA7UjISozmUAOUqVTdeBciKOkl6XjZkAxo4A4wWho6hmGTSZ3H//8GdjgPydE1r1V/Vtc02lRlJPa1fT/0AEceEhcUYMMf48cw0BrRm8KGhQ2Y1G5iIomzIyaDCJs8nAxEmICAEDAaSN28NSSCwI2AEEjy0o8NBIYoUnEQA4KmCnsp9VBVMvUYMKkMYIgZciLBGSfQF/SgJIqGf7//+dnsQiqvNUXoY4qhSdTFXNVpoLVWu6LV+0DrdRCJAoNYAQ2geQGkACPG6JmTOGoCGKnhKgSZs5HDjiVT3ATgQogqh4g+KhmsGETD1xQGqOQxYZSBoKfIcWY+QClROk1q6yEGiKQWqf/+m04plK0Don6brq7Ncah+8lWbSvZ5auqAAAAAAAfyQP/7oGQEBmPEHk5rHMjIcUO5zW8rXQ7gdzlN6e0huI7nKZ3kpEtwYw6PAbDEpLNHnIxGODBioMPF8y+GjRcuM+hgxkEzI5JAwrNYcyhhO80jkAaOYKSFRg4AsBmOEus1T0+oAl0iJwxCELIo5hwAFOU1g/GswYVAWu0zff//u8oI48Usfqd6VCtWowiiTd+7/7/6+764gAAAAAB/YAvpKsvSDicsDRhSsaWKgQZQlmhGZgEwbEPDzRukKMAIMsACTgZCjmXnMNQwxBpAWHBsZgFmgEPBA4dv7IXAOWseXM1QO2YepwRD9qP6iChACc6v9SyekcEhC/T7exiWUBIypcZsPOpR16cAPZACk8RDyDISUFgmNfFDlgEyUeNsZjKks0s8AHIdwcGCnhqzE0QIijtc9woaIgIqAn6wZh3YCGAo2RFDggmuAQaxZQ0eIGCAhFgxh4CFAUYAWBwrICEFcSIjMb///w3MsCIR7fqXHsHMeD6VenfbMK/ubb//pwA9EDTYBFHAEOCqjWwMNjjATIZDjgQoy9bNFISdJMrKDHUoMBgCqAwyBRqdxoHCMcGEggceGL4nfygoLAARiBqFDZPINTQfHlw0AxgWuZ3H/TgVIv+xz//+/M2KR25N98z9cXcNEvsbqt//+2/dgAAAAAAH+sABDzYzGZrNdAcHCoxqKTRQxMRHsx1AjP/7oGQPh2Q8Hs5rm8o4bEPJw28vaw4QeTsNcyahsA8m3Z3k3PRbPSPTB50Co5zE2aa2GPDBh5qcMZBF6Dg8xMoBg8ZIIMBNoczXjo1PkYSRC6i4oyKimqOA5SwgOMA0dtVYa02leqoo02aRZ9///Gkiepe/8j/03qVnoDQhLRWmr7u+aJzzLPirVxaioAD8UD4ohOLhmKCCuB6AEQeYSIHMmCEwyYaIC40QNMaFQUaGWn74pMx1RwYu24pnvGSov8wCQamVqLAPYyMgGHiAF2Ym5sjDzkPv/YiaM5dVwBGp77//6kbWdfQy30FgkhKCqsYfOf/149FWTgAJgIJJhTCZyWaEYc2mb5WbFsAhwapLZmllHHxsYXF5l0bgoTmCcY5AdsHcpGggkDXjjZIKdYIJADuyJuG0GqR3CyCRpkIg1gQnj2aSMVtTKwqey+IE1h3///ziNaAKeT9bbCjn3f5CgrZ3etbepfpg9gEibgiap9C089ztFFFgFBD3oYeXGqTYOBDMwcFCpihaaIFmXl6dBEgRHGQGPEmEEcghjGml6AqyINX7+rHVnqmeAOhDxZYhApzjcsperXUXiF6Md///79DSP4l9IPqXWYcq1rm3Nkr3fspVgAAAAD+xhBcdDwQlhxSa6IGbzpgAsYkHgwiP6YjmaM5lSLxHRln1onpHGAvmTJqwMLTyB//7oEQaBsQqHk1TesqYgcWZo28teQ9ceTZt6ypiCpimzcy15DoBocQIMMsE58wQ0W1XpK2XlugAAOAlh82wxJteCcFeVJ6oQwcqepBVj///syl/4KZ9OP1CAXU4UWUcUG0MPuQgLj1GTDz6Bbehx1RLTs2d2sAD+xhg5CHlhHEiw2VIM2HTFXg+J9OjLjXhMDfxltgZinGtvZoa+EZ5o4aERw0sjykkfppkjiEkQOAowmBNSIwAiJBgBZxEw31DRVQXS4Z+BSWBSyA1UmAuSOYvv/NE3MxTb9a0VKqepOui+i6z8YWTcVJNJGjBeptE2VcKGfXr6ez2gOQSBZmLeYSRmcKZm02csWmOKZmEOfevHPURjy6amUaKyes6bFUIAB506oiCAVaM94YoM2sLBFVM6FRik5A3gctb44SniTcB1RiRmCol0lBZ4WAC3KXa5MonZ///8o5clDzyZ+hSXB6IUqaOqFjg/epy1adzJJTmY9YFH9oEBDARMalUhDZh4kmKFGZGMZmdGgkQnHz4AoYZcUpjAPmiEGZ3AZg8AmOR+YOI41cX5G1xjYmqXUfxA0+HIgtIFGK7aI086SxhRo7CBAWdxoABQXpdAoQFJuqJcXxlmf0SYo4CsCKb9+7U31J2rVdU7WtaMxVvW5a9G5kip7cctcAAAAA+sADg0Gg5pTCDyI2aYNBBjf/7oGQKjnO6Hk3TeVvIfoPJumd5KQ8oeTZt5S8hro9nIbzhjHpUyy8NRwj7L48tZBh2c1mmSupp4SOihZ4e/DjCZEYrRAQsECqwOcKFkAhznw0l9IU9yIAwRguoY7wNHM41Q2HLsEL/QAFrAcmRS//8lHycHo95Rq4so5osXNoTuw6S/s678AAAAA/sgmBGGPOkUQ7AZ7R2RaBUNbxusIbUgmNgxiYsYqUFQULUiJOIEAH9FpS7hCCZEhihnMwIThHGbYxhjOmvlQwhGMMhB4RElxAghItVsOQalSvRnDNJZM5////3JHaWBirO5yhZSRVplZSeXTJuDI9hByXJvNfvGfRsu9gBiYmDiccMTZwM496NBlzZUA+99NciztLM0vjGTww9ON8ojhyww4PESQZe+GAweLQAGNxgwJjRcI5DEgMN80SYep2CtMHlC8hqNJ1Dy5niJWRfB3FUVMIdHVCj///zrAyFM+Bo96hdw4YcNq4EH0sMEFXurYgh4sqACDaVpr0A0fMJEjQUsFLJhBoYClGbFRhJQcE8mGhxhASgMMdY1fzPiBW5iQFxgRYYohLG/ARIl8kALTZ6NINNGfiSjG89EWKJcLw08DNdFSi3IpL6l////+5yhZ7b5xFaeRu6PR/V//2ez1KAAAH9jBECgoATDqfFk6Y8KZgeMmx0MZAFZtccmMAia//7sEQQDuRZME07mVPIhybZunMnaw9BCTZt5O1h7w8mjby1rFqRjVfG6xkbNURlUDGCC4YsKhjIMHI6URAIc43SkMxHDGPawaywsujcJHMCGgUJgyUFuS6YIMKFkSCsCF0CAYgEJRQgH4+f8w4QA2E9v7TnWzTnNMPszK5ZiA18uEFq0JX2Cgo/irlx39P3YAAAAB/ZANCIwAETGbFBQ5MIEUGKcwUHDQBtMeo8yuYzLF4MFGoW0ZplrGIxEZoYBFPGk0CRYw5UjHQIYBGQeKZoxAkwbUYOtN3QCkAwWSIDwiAFfGCsLNKD1GX+6qP46LT/5qjwBIIP/eeyWd3ZDD7M6vdj2lShq0r9ijm6li6esnOIb/f6PZAmAIA8yVnMiLzG1wFPJgCIZHKGXL5rzOEOZvziI6AxIVGnEG2lBpkjCVYsMTZDNyGCAwlQBB4pQEMuCIQJGxRQUDQJBoqigI0i9ielyZVkSiTKCQl/43Fgu/rnsY6Iy+17lqqbaZe6efpc+jHKze/VlKs+H/9+bZq9jBawkLwQ6mdJoBjhYAMJXjO5Iw/DGSU3q2P4NzARo1FFNwMhsYQ0mloQ0nACa44RcIbDRqJWidNCUTes3JEVjgx4yDTJSEBYKPCJgsACkmUU7SiQAElMmHYPE//3FMbeqHgyLj9z3LESCyUslbB6wERfRUMS+Gf92YbrgAAAAH+yAFDhiAwTRBroGHEwVZDNSg01MCpaaA6G7DQrSjqyZJMGqHaZYNEggFD8jMXcU2ghFkNSiQSHI00h4gt6j+qZD5OoRhgwUeEV4NOrASWKVYNXwgJdicw/////92H6PdAG//uQRDMAA9MdzdVvIAh248m3reQBDVBxPnm9AAHpEmbPOaAAZAK0RztWo/c1OUa/svtnB7P9vYLQAAA/sAQoMCIhY9B32YiNGHERhjQac0GxHpkn0cA1mKpBg7WY0xEScYQIA5pMIDC26AIFpG4er+Gxw4IUYCTKMTHBn+WorsEEEgZcN+i7aVzRIcXqspJtTqVxe///////Qv7O/HioRnW3Gq0J3SDNyXM8DgLdct1ccAAAAAACgxmpSCScxszHB84ULA8CZKimDHxmCAeIummyRmZoZuFGgEKVJqjSCoA48wzAcDDDGBQSLQhLvlBFtQCeIirnmKFAI6iOi205q0EKHpLy2GQsAfSD3+c3/1SqnnuVnWYNKv+5gfcAAAAAAlIhpMpGCQSZ1AEHGxXIbWk5ihmmfTkZ1U50qYmp50ZkBBIKDNiiMyFQ7oRzUAjOHMNDJJiYIBG9SmJLmxbh6FuIUEhJVTQBRApDRaK1asDNFhTEHUiHJL7KAkBWyFgRMH7/vo1L/+bTP//pJz///z///6PAAAABP7AErgAHmtHx//ugRAaFU+wdzddvIAiAo8m97mQBDqR3N1W8gCHdC+bqt5AEvYcYOfmNgR/AeaMoGBwJgJADJs4eUMNIjjS00YGFWEwNFMaMQKQZy5cAHKtiG9hBIAtQAOcbZhhK9ccwzlWLIHxwG64YVCR4op66/qzx41wop3H////96e8BdThyb1smRGZaLFsMsdO3sRp0h1aFptgAAAAAAf9gBhMDDoyMrEozyDjIJVMbgcy2KDP4DMlhYzCljAx7MkpI5GnTAxUMBjIwqKQYAzDZpCLgdAbQQLSZODaBDUcgZEWa5iDqayFShxEaoqeYipTpDhhQ5iMij0PDASN4se/2Xf////13Gyd1uF5KpPRahA+8iukVCimfCEAAAfU1CokYy2GHNxmwmbCTm/PBkugcYKmKDYMmjVTk2vMNOODKAUxkMMkJwEmA5UyESLVR81UUVgiIMQLDRpCJFrUacDRg4xxAbcVVE9IfLmv/F5h2IcLUxtzLH/////rktP+w0NFFqzW5iKtDmBwON1qZUnAAAfq0mAlhj78Y0zGhQJmqWbRLGmzxqheZSnBEuFF8+wiByIYqFrAhhoa4SnVAIqQIqYDgKOHnx09yT0NATKsawDkCAJlZCSbAhnBA4ZIlYEIEjWMGrQCR2VSIMfLEmWPWvW9RQuh8S3jkMQTCj2gW+l4nGrj5OpwAEAEr4AAA//ugRAQAAwIc0lZrAABXI4q9zWAAD5B3Nn28gCIbDCXPu6AEAAAAFfEKogDhZ6KNxVWLUTp1zlJTEHTGHD7hzSiyzwCGgxWUKAckLPQSlM3wOmjg4KhDwglbTn6T4Wu/iu2JTz5hYL7Tr+KoM9hKsw8Dn/aFQ02P2ShV++3ooAEEDY3XgAAAAAABGswSQRGTDMyGedYODogluGloEHgA8DvSYycgiDoikIRtHLn+uQ57WFPMv0y2B5WAHoBIJHAKX3YjBEQ7MqpNk1abN//7UP//ZqAL/Yw00YBTKW8043NAQTKsU9Q8MyGDMCQUZzTi0zmYErUyIuB04Yk2jyEZoTDgxmvGyEShgkkepNSMV1UsNU8DTKTf9I8DFBQIErJzrOBo7gLEnqB+lADMEHQn+nvx////3jS/Hl1kjJsUF0IWo2YdtuFKGo36wjLxrv8eAPq0AiiMA6YcnSZfD6Y+DODj9M4DqMTg3AhUGK0UmcBmmlhhGfh8mMwFGYRVmHA9mAwZmNIdGWoHoDghcKoDPmhHEM3bQeM9AGSJuggKgjwpMMBygayNy9FSxnz40vMsWHismjrSRAOMuZHjL/4g15pNVAGBgeERZ8+sn3+faO23XJUfqY1NgAAP/IA4pgAaCGMyosNaFDUgsXjDqb0DIJtdkZ60GxxxhbQa88hBgSqnimbzRjEAHUwm//ugZBmOY6IYTTt50yhxowmja3lFDqxhNG3zROGwC+adreUUTPpBQQJeCwpMKYYcdgIHK2dKDISy/AEOHDnN0HQqG4FAq+/ctW8W2RPo6TybH6nvJy8g62pmG07kvfFtKkLMF3vAH/sYqRNgRiygiKGUugrYcAmcWCcMSQWwc8mKWIMXx6HNTWDFTMmEUNTVQDPjJBKBzLcEYAGhARQF2SNAAKpC5yFKGgcIUBiIgOCEaJfi9gz9MSMp6sUp2868bZsTQxwlV21qa0emfUkImD5H3J/Z5RWjAbGUDwVSz0RY61BMrKThxbDk6IxaaXHZ2kKmJCiLSgWmJiYxnADnbDmGmm0DmQYmIEkIoIPGGumXSmjeP+ZsYFTgCEDR4ChxwmRBjgswqVWeXfAINYkg7BSP77Ikxed8IXkUDhdoaUfJe9lnWYrw+l9/2tvg8gD8NYMsYEYwx48xPE4gAFAzEpQewOOlTU0UgKjBRxJ8ZRCEVBRQjybhw6wHRmqFLUhTrILXgX0WfX4gARyNIUcSOJk501SMwBw7FopnAIwcggYM6wf6rmil7kuTY17VvuQ+++5Hx2qxqkrVgAAPtGARAaOGFEoDj8GVAyhCTuQWMtkI08DDGRvORp81ACTiZ7M6JswApDAK9MHjkzSLQUkM2aPuJECMHOgxsPOzCWSk4IExoh5jBzkmBAma//ugRCiEZB0YTDuaw7iC5tmtbyJ7D80JM03hVGoOlKZdzQm0UIymTxGISIKmAo30unB2U6g8DnM1Gg0/tchSlppaMB0jygDUeDEedNKc6fS3fUHjQ5tkAAAAAAH/sAMpCi8ppDYa+QEV4ZBLmQJRs42RQps1Sa1EnWSJxLccqHmYNBp7iZEYmhjo0ay0xYhcGIJaEZI8mdX50RArUzHA4ohJGAgAeeGQgVDExkIWEW/jyVVxkhTYaGbTn////1v0JNo62Q5lbquzHVDSPup7tFuiXj9OJTZsXqgAAE+sAig6DmKRBmYkaejmG14wmA04NWEwKxnGFhnaeZgNms8poaeF4gyFoIE8xQSMDOTLkQKARjhC10aNDCQc0E+K0IxQzRXWqGGGDlxGXHw5KVM8I0tidrMIMDQMgDwAIoqGv+Z/pY/dX7r0vRrN17z+2v13t/NqUlc9eXcGjAjad4ILxkkNGSSKYgJZgk1GCAyZmG5nEUHBHuZ/FJo5EmhWSYxC53kRogYxHCAIyVMEGC5AAEiEKa0CMGwaiMXDCFSQw0QJAYAAgiMNOTNJg6MaA0CQDXb9SAA4GMgVyrUfWkxw5//QlUkJWtzbI3cRtcRS+y87crFbnc+wg9wYIJWAAAAAv7IHBU3EEAaiGGOSAUnTFCgwdzLIG0JpqH0THh7sOHpoCrjQG8zucHrk//ugRBcN09kdzdN6U8iF40m6b5pDDsh5Nm5rKmG4jSbNvLHkyog0Y8HSDOAwMWHAYGzg4+hKNDMATQte6K5h4MVA6KoRUHE7jmcBLlt+o0qoPBw0BtEW5RCT6Ev4vDplFkvW2tmXvCfQQz5kv//oNrbAAAAA39kCuUAYUkDiRo1pMM5lz7hU05rMDCzZjkG0AyAFzm4yMEI0wIDjPwQtyBLEyZUqCR4qFzYoWBpUEygEEBSU2ighDhzRdJUBg5kXGAQdAKYEWEKFyIVYdn1gwgIlUrAq+H8aaQdV1Kgm6deYHNaLuj2MMJARcuh7ntyw6fPj1XdH6wAOxBqBg04BhmMqgIwk+TSw6MXi0weHTLApMNQsyMXTwHj1ljukj+2jgqQr1CqxnkFVA21jFCLghgg5SIBhwMW5TCcFKUAAvaShCqYoSsGGVA4C/7Rmlg5RlbSX9sUEsu////0f/Hxbu9ah7Ng0zCpzpU2kO0KAH72MdMDjCJSOVMDMIUdHTCgsKCZI2mDRJjE2eAgmrrRl6EyYxJFMzJDbQIRjDDK4wu0mADIU0xRUk2RuSOYsmSDoQpGDigRAt1WBIYHD51Y0w4KEgoJRKJr5UW7zn2s7GuAElc9X0v2ocllz/UqAAAAAP7IIPTgBQsZ8EGSJpihqZBMgI5MNIDDw4xayIoI+Qkzw85aM2zMw08zc//ugRBcMQ+gdzdN6yph8A0mqb1lTDvh3NnW9ACHbDWbet5AEwgRWkDEBwYEFmCENVGGQYIQEvCCVL39RVQBjoYOjDj0HQdklYibzCVNyMINrKKz+XZJFZP////LPWTYasetcVND6nr0IaxHObyRr2vTRl8AAAAH/sYgYxAAMhFBo2NmgzSQ84J7NkDgIfm8jh0IIaWRH3zFhuZuCYGIYj2apycJBxAlqyUYhYOEUzyAQGYAgExDj1etpKTBTQ1NBdL8MIDiQ4EHBW7jQWfDSTbQPArpUkto5dKxGOK7XrWL80hhStWS0VrXz+6z+r+kAL6wBCeYiNmAxJFXmnpYWKTISQwxANFdzsGAmszMtgxoTIqULBxlhMFxowUHOWTEnJewaVJrGUMBUAY8GJFjRpwiOgpRoMIWsIlhqQ5ihjtBC5ByHJRVaRFVgFL4rIpJI5rDn/36/lnVJV79lDmsbe17/Y6Dz1FIAAfrAFUzAwcwmXMZOjWTMdKTizQ1MjM/PzvBY3gONkMjmn8xBOMYDjGEEyMiMcHRT4ADhigdQIijsFCxlMDyGumMoOEv+/6QiAY3ETROCU0Ja8l1xu07z+uW/rdHUieL/P5w4GPlhYhSSV6kRRSWASES66VfQuo8wQAKiAxf8AAAAAAACWsAzkibJhSs1ZzJxNi5R0dIASRZ1BhOpL1Ncv+yh//uQRBYAAqodVm5nAAJi47pKzWAADkh3Nv28gCHkDWbPuZAEQt9yBQ8jjPrMGZSGT8dmD7LkV5BqAovzsDRKniEFQHh+m5U/623kT0UDACAADs4AAAAAAAIT4gHkpsx44QTTPrwrlFMgqZMrsNiYBv8J1GVKGhAGJEAKK4rQ0Qg5a+k1kTmkOW09CUHCcNq7An0UPeOT3InC8403AeDGWIqhaO8vPa5GYp3x5xgC/tJAAAH+wBqRggiBVMfFgQKGcHhzBaaPKkTSCCMzt7GCM0MiQQjQIccSGLjQ4SQ8FCWFmGQYqiKRZMHVqohbJGJ+FGEjxElFDAZHtFrImgJgaCyzeqhwe1pT7LWf6LSypcv5XdUvyI2et06gCL73GJvbss0AC/2AOcYAA4VH5lUNGHiAY0A5hQ+mK0CYvKpjIwme3qYpeByAIGFTWFxyieIR6KEwjDELI0C/oVKcQwxkHQqGDFDtER+JgX2M8QGjAwUBXpvpeg4lyJFLo9IXSduZXfHH8XjRyk8CqP2P0lRQADVBU3yVrlCIUv+tFYAABf2A//ugZAKEQ74dzbt5fDh0o7m6b1lTELh3N03zKOHUjWbpneSkNwBAkZVWnTmxlJUZonGOroLRzD08x4rM5DzBJM+OLMRTgdKm9gZjQ4d0gGjiQMFEeE0jcCNpsxwgSoMBnJkOHKGrrlLxIhFgwBaq8biTDp2yPUtjaYK2bqjTI4URFZvvz7n/FlWuZiioslCePo891h+drYAAAAL+yCOxYygtBQsCA8rBzdBkGH5jColgYcyHWBhp8ZhzxjA5q45k2oKNGSGFmzFNHpk1TWTGBGxjBAaM8pqCSCIN3T1BgjUwhVu5f1Uk7ZnWsNMUtf2dkEhhL2Vu9+1lf8J8rU8xsZ13JoM3+nPy39e9eAAAH9kCPJMFmM44YzmW0ZjwQfWnHSAxtZ+cMQmSpgbtGRrhMGZ2gYyF491TFYdM1EE1qGzDApThUkFkxo8WLAboimTXLJhYArHQvYOASwqWLOmEbDAOSbu9+ptprQ49HJDF3KlE/S0XfvVMvDetQjYne8qofv4VJ7HzjVsSrU7PRbklNvXgAAB/YxJWBmOcbg5vIBSw0kzOHKx7iFCkFmRhEEbrGmUoYyCGHtBKRi2iOtj4hqjmESWHxaooIMIoFJhHB2RmgCv1IKWqWJYBSgerSvCBguVAmGTNnekyxU9px/rMhfxKC3si9lrLWJcPvIHEtRl29WzJf/oVwAAA//uwRAGGREEdzVNc0TiHg6mqa5kpEAB3NUzvJSISDuadrmSkAD+xgtaOETcczTyjpWzhsDW4iDkSaKBRpwBAKkHNSWHGAmgpjklGlQmLIGLGnTDmIECgkiaJiCIoOABqiZMQZ+ICz8BMMHgDLBCHMIUGjJYEysHAS0DyZVZhplJSqlVLQtOfualP6zpb3iCXDAMiqAE84x+Qaoy97lvae9cgTYx3+vXcpMAAAAA/2MJWipczns6sI9Uk5YUycuDL4VM/Lcy2IjAI+P4m00mKjPhwCAkZJAhgAlGZxGbCwgAGuQQobMqwKthEYDkwjgkKlz7RMCADoJnRGEqukGLjQBYdJi8biwVqndiGVcxGBKa7j+8LL+s9CoaCjQOHyoonWMkTaUSayn2qGj1J/7dibXQAeyBiIhDC75xzEooFmAqUaCLmmkhisQRFR3oqcKjm6GpqwMYyDGYoJpwcexIjLQiI4At0MQkNBxDms4MHpwIGo7ixZfdB9K41DHdPoBRYiHbWftsxiO5c77UJHA7vRXDDnyf/PTKBgxhYwBxRgLJZP21dLtT6wa5HsI0HRSP4pAAB/ZA+INIgDCcE8aeCYcWYDDh19BGc1KcLGxoEJHBzMY3TpnIcjgUMemswWGjBRJMqULJk0APFLooliMccALSFDokqOlxOVhVAUOEijsnR2aYpYPGFZd6nYHT6l6hk5Eo9K4tfzz+j/z80l4xhYwGhaCxNk/ZX0O1PrBrke0hQdFY/iyqAAAH9gDXQuGTAw9QkGWjSZEWhkdSG/IOZ/PR0NTHMpJoBSYitGGkoMFzZ6xehIJm7EhhwMZcBjwmfJ5n/+6BkHg5D9h1OO5vKOHgDicpneTcQdHc2bm8q4i6Opg3N6OzBD0wCQBxZ9jhcxoqHYOMUXDAgViYxIiaUwCw6qjT56WKdU+c/A7+uLItVYvz9yz8fbDa3ixdV50VsYlF98500oK5CAAAABP9YKzFgZUaQwJUMT49NTNMOBXRKAMOSzSDc3cwApGNUpzqaQjRlI0WhAgBR6nSYTICYV6WWM6EzoA44NEgR2QsArGvgYKDwQUgNUKpqWy7cu1UpYEllFAkYfmBNUiPnqVo0uu9CMYNWUPi0f0k6uptrt7+v2MPqMAFeBsoLGTi+VGEY/b5owEmTbaaEYBNvziQUMykwweBb6cAnnXFpkQmb7HmAngNGC3hIgmPgZh6OYAHg+UG3A2kLqEwxdwxpCywOtEJ5MeEHhh48a52EWZjfo4ZWRDyk0wIvJYY1zV3/QCVwq1ceRuwNSyG5VCwJ1LVYkl9fu31gD7NoZrAjggBTDMKgceLZq9YHCBcZ+CGf1RuSeekyGRHxk4KbkLmzApl6oZe+G6pooHmOoKLBkSIY2IAGsGT8lAH5oGkOlheFxpow5hVRhBBhFRlAB7CRg1I9GM0raHGIfdOLPJTN3W7VWmzkqjZupLHuu0jBRby+JCJGdt7npY9CGXSH3V/5zUdvmsAAAAE/sAMCAQwMAAoLTNAHCw0IA+ZeUphqFGH/+6BEDgAEFB1OVXMgCIHjqbqt6AEOQHdPWc0CQfgPKbc5skCgyYsNBpctGiTWY8QhgQimUxoZsIJiAVhBKNp4z2zcLQFhRM4YjHjNw9Fc1DzJyGi03hYQgEV8YzBgNBMqao6MLGIS4Eksnh+N+4KjT/LAT7E2aW6X6b+1s89JW883jnJzTiX1zNTsAAAAE/sYAwQ2gygnJHIyMiy4bPVmnTBh9OQNRwMAR5ZKnD3qZ23GUrJiQaY9QG4nGAcAY8EXjGWTQoR6uODE1IbBg8SUhAVuBAMTTN2YC8E4rcxw0IMkI9x77oxfUDXlcuE/5EHh5YklwtfTfkkFEDsdncu95umLXH32ruW64uK9yQAEEAFSH4AAAAACfxgwQgUGGPkksABSOYODRhgLGXEYYwUglSjDgDMViMMFBpAdLiOPAUw6ZkrR4MIxxgyoHhwIgDV215kJNHRSM2FIry22hymdviMSVnIBtAwmGMGhO40qtZ7xh1O6MU3POIv2HWadAEAAAAAAAZf/AAAAAAC7zJSNMCh0ysmBAITEhINLD44YcDNDAADMMaiUQlQw2GgYGRg6GPRGFA0AQUcAegpANEFTQydeoYAmMiokzBgyLBYNB0ATSplWYLBxo4Y06suUmR2a0wwCBAHnOOU/r34ZusFwCVSuYdMlB0hm2qvzNcAAAAA/sYBQeMCjAUH/+7BkBo50lB1N13NgCIlDubrt6AEQJHc4bmsOofKPJxGt6YQBpgNmPhya9KxhK1Gg0iC4iPE460ZDf7PNWt8x+STQJWOFCEzYZjcLKM7rAVdCIRckyoBGhUBHxnIyLBRggyYKLmakZbAaRgCLmFhpmBMFwASKgCGkIYKAhgIIqxE+HYxYiTUFJyks4pCJTlb9VD39sWGhwJJNrNuIipeKCkzcU7HxR3/+vAAAAAP7GEwkJwUFAMdmDI5p4AZVhhwKHS5ig2FhYzB+B0EAB42fDO6ojI1Q2eXPGkNsGCFhlEgJPmUTBHwGtzEoTYEGFmwGCSoLATNBiaCdkaZdGZZKY4SCnxlQ5gQSMMTfjdDq5E0QgaPfRJpGqls9r4/EinmSd/RPo4aUP4GKOrPIpcytEtQj2QL4EYDSpEkuYFDRjkaELxMLT84eQjo6kNpUQxvBjh4pEYZNAKM0e+wEPgonjYzzhHjakgcvAS1QMx7ECBlUTUolBhIqZcOMPD4Hf5nmLlfNurOAURMZKFSh7605XIhxhRgY6uClgTX/QTnpetSa7W1JTelefE7q19q0b93+7LORGABeGEgVWA6WIDRnVZ1/xlOhoqgNonLKGhtHDanAiDMo1eXMpOAKTla1AeasgTRTBlh0gbYQ4RkxJmxAIKExoSQGrIB05iYNBmqtk18w5oaUmIMIbIwxiH8dTbQnYbouSRA0DA83/JLA/eq2hj4am1FB5FXRMdP1qYSsHqXAAAAAP7IGWjIGIFwbchCRmgIxxkyZW4nEmxwxcYWNjhOFRIzgfHEs2y4M9WwQDmZkDSjaVHYDxKNuo26TqHCBQv/7oGQghuQ7Hc5TedOofEO5ymd5KQ/4dztObych7g7mzZ3ojJWEHCSxjiMkQDGGBj5SeFB4wOQMHlzB2grBv5a5HVINLLeqryqDmzW+5yS772vSqLqoGjVJFE2z1Th0h01pNJsVY9j/Jbm4AAAAB/YBHxkBxwMYIewRKb8KmOnJ9zWaOVmAG5hxgb+bg4zNHRjidgwcsISk0yUrwQKLHiq4DfCMQo8FCTCjBko8qZoawxZEgQBgwF1DUhbZRgiMf9xYs/nfiL+v+sEoBMP4hfVosYLak/paoiKsE6Uv1CrDXi0z+jFMdAB9YEkRCEwMHwwqGHwoZqARla4GY3EfV5DfKZJ5GZGxgR2a0DmCBhtN2Iy8xdIIh8AgAtMjxS/gASCpYQ6PEHOiQBoeqrjq6AYIcLBAOeLyBCwXBRoh6jlEO4fcf1wVAmmxCAIrel/cpG/sWPudDYDYLn3X73aWmfXya0f27606xiaQRqKICgrmaI4iRTWoU12aMuBjDFzc1TaqDJyh0iZf6cEiNgzEDhrSYg8Z8MZQKERR4KNBDKAzHCTYnhGgBYA1xpBoUDuKYE+c86kilaiusHG3Dabh+ClkVcNxn8cFST8P/GHhgb29hpehi7VI2LPoCYvDKOqz1M/cgAAB/Iw1AwAA8wyBExgAUwzVkwOCcw8E0yZiM0MHUylEswBYY0UCE//7oGQUBmScRE27uzr4e8O5ymd6JRDEdzdNcyNh3I7m6c1lTMRdM4PThgsG/pjqKauBm3ggNKjIQxM1CoqDQGCzZwMwsYBhKZ2LDAELMbJFDAYBAUiBIENBIWA1+l+mRKrq5ZP35JgofI3RcCNv+/gkuFwmf/rdj9t0m60rsq7f/t1v9K+eqmVL26KWWp8argAAAAP7YIfFASwEZaRlOADEylaMsojT6A1Y9NZmSd+EQk3gU4Z48/g2sUeBAI+hihiAUCNtGAgBUFgYiSDykuZMAzEwxkxA60sOW4NucCxpuKpWRDIBTaF/uggN9oZbvLFjKIRWIxeCaju9jl3c172u/XX1DYgGXfRvcvAD2MDgMCwFVjnKANKDFobMXLc3l1TIAYM5hsz2BzfhPOatoxKGh0vGESeaDKZmkpHrSE1nCeSxHRIYRBhFD/ZjpmkGTDKDICjcgMBQPkHYQV0ZgQNaAzo4PFnATqfT/uYkALMZJI2l0D9TeoNlnm0XNoSga5LalRVRQgJ0pIP9goS/nPq9MAHsAqSmCzEIOUYBA6NZMcy6vzDylMcCIzZCTKobMx7DXycQG5Cbs6JsowM9Y4xioiYJhdgcpByRESBBjTWMooySh5M4mwx1wRzQ02BxYHmgoQVIUOht7s/mo1H3ejmkLVLH/ZM/1eTO7XNSJPtK2JDXoXKov9i6gP/7sGQAh2RKHc3rmsqYdMO5s2t5Uw/kdzcNcyNh3Y7m6b1hXAAAAAAH9jAGCxALzIIgMtBs0avjEgmMthwIJQ+1hZNmlhqAiWbTmV2jZgzXwT63DtYTdyFvxk02j0aQckDlDPNCwghyNMRQgIKbqf5aNJjnGmacpws2RhA96GnvHjX9wqbtuyosz6GJPFY6/s5HYQ7xpNiZlwWxcUYBoyVVz8UWhXcLOoIVN3tAA/kAm9oCyQKSmQKDPmuB+UwS09Y8HOyDUZ6uHEFRjBsZGvBJGYWGITD1DAU4jDS8VEjOOHhw5jnCYxIOtsw0xOBVMelGXjcjAzaP6EqHy4C9IO7cvUkph5624KcuVG3dYrQ3fUUP60UlWKehtd35ztigdhjAAIHGGLmuZnACGDo6YcHARACGFmS2GcyVJmgomzigcCMJjIgmGiKMGYxSRjGpMQdGIwYADhgdCTCBiRzrDRRmHD6KWzATDOHBoZBWwVDDiYZHnxZaNvy3Rxt1qeakkejdR4Iw/sXk3Ir9DcMCtd/P2tlkMTN6+BqXPWLU7LbXYAexiNIc0bSYJCw0EEoWIjq4A3EpIX44ciAQ8ZrCdw8NPji3jLjjXhDAHkgB5kgCBSpNAQAytCFSjTS/qwSK5WcznDPCXALZgIhGA1AZ4UCiEqB/79yjx03RwJE2d54ce2fobnuqeRpHVWrMrr1T+udxldf/i/6agAAAAD+wBM4ChxiR8jSAHw2hONqJTfJkzFAOALwpBHug5sSYRLIw/gVMBggSUaHwuYRrCOtlESTQwxOAZTSQ5YAhR4xxIxpoCVokszoGVGh8Gy13lpqwf1z9//ugRC0GY+0yTNN4O9h647mXbyxrDhR3NO3nCmHBDuaprDIcW2CsRikkdyJAFAwxv/WjsphymPduyp+iZc9UICkeljuK2UdUAAAP7AGDGAixkwoUAQ5CGsARhhMIUU1QeNTwDF2M1E5OOFzPgIO/hTUwTQXWIpjnJSeMg0UkMNohoXkLjA94ECp7iCZTIkONRdCALIokoZKXpwspVmXXFZNiwY2dFQ4J1ZkYvtFH7SA4HxE9FArxBL4udPoYNT1MXv7IPYxacgWLjGw8ytDNAajMwsz+AMPTgAGAGaDn08SgOyZTR2CmjOESMOMxA46joFCDQB1AccHUJFhU4iqHKQxdFVhe5gaOD/JWV4lVdF+b0y81eYa7As9GMpFTVK3PqY1I8fqTDsMRndp/nX0RcC/WtWAHsYd0AFjQjA52YX6Yxkbaga0KeKOHMTOLD+Vz9qgaSM0WrgsILHjWCxoGs1k4HWXoADDegSUIrnBDvIpO6twFLTgeA+hLepmwOtrUiZjelII/hcAK0YHy5pZeP6mC6B491aIZgtd3aP51/FgN9alVjAAAAAAH9gAcRLTgE+ARxwEBkSZf8zZUZQm1dGIyxpiqacGEQSOIgPPM0cEnl2FFE9V5MPWBESRVNEA0OtLQ5Ewi20QRodInIuwrxSMocOlaQ0+XxO9PU0dlETk9mxaiv/dY5qbj//uQZDMGc64dTetbyhh2Y3m9Z3kzDaxzN01l7KGnjubRrCV0kSpOJS4RMZipZTOm0EvJKMAAAAAAH9jEy2MRSAAYFQC44FDMO04IpZGYKOGgmQUaN4o2Dzo1EAAwGaoadYwMPBBQ5SlZIGEHlknkMkBSMCsrLYm1dpqwi91LmpQxA6vZFOx2mh2SYxGVu9L6wNivtxUutq4xqWqvHvyg5q0CXWx2qwqnr/RIB7GG5P0CkgKBGNaCQY0cAyusxs81LoKTj4QDn/h5WcEovoRtntkFJAhBC2DhJdPtFYaEUQgSccRrhhTIQ9aScgM6tbzlTpxr25lSyKZUqrTg1+8Qh7j+XGUDRHMPanHpa8UhNSHpujaXRzf49UACPOSCCIY0A0ceKBRGapGdhSYZQYxOCwYRY7JUrYOIoJWmmZEgIKyFayKqwZEcHSkrJlsxlZqDqnSt1MkPFH+fx/1MYnG6UUoDY0CY0FwSF0MSJJ/paohZiybvfY9EYrvLXVbW0VIT/WrwAAAAPrGGIjxoOvMhEhpNpc6Bg7i830w2ik1EQ2S8//ugZA+Gc1obzdM6eXhpo5m9aw8/DGhtN03ph6GejabhrD1k3sEIphcyb8mgqcAEpuXhUXTDU2TCUWIR6SrDHXWUharRZxJVOqwcoRydmOdRRFteiuoCegMvVz+ICRHxij9WhH+u9ZYoXart0o/TWgRAAAAAA/2MZ5gpWg+PWWUhQAbSAe2Bcp9aPIN3gNAkyeBmcWClIKy5Dc3BcZOVMxIUQCYbKlqJ1F1ZlVrGFeAsmxhQ0WZDlQpVLCc2JTMkdnfz0ghD31LetFtaMPpbdowP77UDfbV+BNlAHsAbhJgUFg0WBSIFxYIBSpSGTVGYHj2ExRk0sASzFCkwgYqoDDjgwgClqaihZblWxBYFDi7skeFkUVFQHBHE4sgCCKPikSTZ9BxGuVtNIVG3xY4zrF7CaF+ZFx2X2lbf+zdYBIW6qDJFg4UYUQaYWZOgvwarGFUGWgHMCmgFEdxGNwAqnwl4ocX+SOHlqaLMDER9/HYZKfwLssAqTlJEApqlVTqxSqN4q1Cx97EYlPBCILHfGF9i68GUlFQGZGHC6vfa/f9CK6P1PrAAAAA/ogThYmNGGHIHZGdQeShmoGT2DExicHYny0brRhkHOOrCaj45Etx0oedhvYuHGVWf1djsyZksbft+I7GQpSnxXNzsluLCa3FU1pAm+DSX6smSe1ab3VxFWxthj//p92SU//uAZDKEUycczdM4ZChko7m6Zwk/C+hxOaxp5WFoDub1jJmswAAAAP9jELlD+IUAhMeFPVgKqm0SSCT5dUvsBum8Svh6hdBGwOK0JeTPUHFgEdmVRB+3Hbxdi5FmrdXm4ERMOBUXR0sbYFJO8iLIoCVqpv8HFLtGTeK3mBfI1zm9ui7n026vutcAAAD/sAT5GTj4AQMZaVDHDQmGmhUubcmFoY4PC0lGIqDxk6kkWTUkPCVevotDkAZjoWSiHGX5nUaGKxOp06TcLWquZ1A3xpnB69gv/tqkiFD/2e3yc8JffeTa74rdqFAAAC9bJKRTEuU9pkEbGGMJbszIbiGmTIN4DIuER5btwJSj47eKhr/rBo1tFf1njS2uw+vSvBavUtofzkU3OU9UAjSKZOfTQjAHX3diEaPe7IrGz2ha97RBqnAAAAAAB/YwNFtFMGdX5UgBx4UEFWjaBjJnqZjiZjVgQBTAMYFCDQOUw+v/+4BkFY1DFhzN6zoaeFwDebpnBk8LBHc2bWGJIWAOJumXmeThWyD0gFb0xmStrTv62lM40akEReOQryZJjIbVL9qiFZW1RxBJ+xsyWsXFtLWNPlqrvU7Vq00KrlAAAAH+RifqUyCFnAJANRszdBCYgKBAEegIoeWCzJpLzHnP4yJ/FE5IiwtlwX+lzvRNwk538fRvnpRVZNGuxW/OSOv+A8TE0aQwk72GF7Itqoo/3/r31zvtt2ZoAPkxNBswiVIUVUtAEpJiTQggAQeCcmYYie2hNUtmaYj0lgHiTVYZL3/WMrETiWCAj8aCVgkB2blgSaLrZ/3p8GV6YPRbsf51bl29mRZruiSr8s5RhabPL2AABf2AVqjbIMiIfE0WBzwGoBxyFYMSS+LPiB1PQRKJBJ8+1QJIL4Xw/ytE6QiVFHUq1TES6lLeLOq7N07cyS/LrZbYYJDb+tRxZNG161BXS3I0d6F9d1F9AgAAAP/7kGQChFKFGU5rOEsoW8OZvWcJPQr4bzmssTBhZI4m9Yel3Ff0AEw8gPZHg9yIijjJNWJE9C4kHEI4eCqYwBF3Fu01RYsbf5hLFHQhpH8TIgSEblh9KBCCaJTC326JovS2DTjj/SvYulqal9XKb1isAAAAAP+wD8hEcYo4RCImRgQcyGmFzC1IOiT8W+i4ACg6hCJkDO3cXnJI4lKyVxoGiLuq/CgJBuyIEsF9IomWcRitkVfygr14N9M+KsaxZ6jvZx9159WhGUA9LwAAQP9sCSTiBYo2YAqxIjKOa0DMVnsjLVL9Fky65bNJODHEcCJrxBEDZ4JSIrGIk7ISiQKiImVg5B9fXZmm38bSiY+i6nm2LQxCbuRbt/cIWE64t/Wrir4AAAXd2DC+Z7khIL/GZK6wM1nbD0+S8piAOHA9R4IVCLW/Q9FFMwktJgtj+ThTHQplSfbG1HUNBhgkYVus+PjWT3GWu6rpB1FQso44iKWuxcgwqKalrtt6VXCAAAAAF/bALAfwc6qAtcMADHkRVKYQkGW+TrHipFEF2/0Wzv/7gGQSBEK5HM5rDEO4WAOJvRsMDwo4bTms4SVhVY4m/ZwkfAmEEDYdMiUsPkASCeyVyy/CSgUizjK2Z1VW9G6MJenMMXWD4QoJMTW8Zi2T9zr01/+21xiAAAAAB+sAG2nuXQKFmcjYBJw1l2h2qK8OhQioC/K8BAFWJwX9UoJNx7EgKERBWoB0dloqkgSTomoyXzzlSwhNR6p12XWCDvmCl7v7KFqCTq17dYsvufXM0AAT/qAJWqFjUR4jHA6Y4IwMdkCUAoiIKD0NhxkvkL3mXK97+SSeFQmiCA4JR0PgkPsiX8sTzetirvRaf2UMSTd9WKPVmMm9xAcyssnd3bfQUIIAAX9ZBAuJmOBJJ4IEMU2U4XJEX/BRnDbcQDnkIHBglnlJJnciL8uCTgkFBcZBEWIFVAbOm5GrhbcWkT8Tt8sIgI71IHGpD1s6URayju9Ow/u/+tVyAAAAAB/WQM7YMUPBSlDDqsQsFXCY//uAZAsEUtMdTesPQlhaI3m9YelzCSR3Oaw8x6E9Dib1hI4U0BIOZOmsY4ZxIxSgqRaU+zNCeVSvNRUNqhVSkdsh0BcKR10MC596i7KMpWHO9zUxZm2xlOtL20AuwsMRSh9Cf1Ofdd0rUAAAAAr+yCKwE1UxcEjBgEzU2kwQCFuBhCvN309RILJWAiREQqVyhqlQ86SYdExMcCp0cQQGCVsShXWNQtoUEVYbBjAST9uwXvUYYLIwHZFT6Kk/5CxDvrmZkgAnP6AAF8OOLDIrkSyiKbxWNpLErk8olSLWoI5fSwvG5DlAxMw2mxUoZBYwrTEbHHEVH/bfpVW+HIZrIz9670dBew4+yrssQ80AAX3ci4kQwTTpLtga670+UvEZ3UUHQtBolD1b2Sv66sBv7wUEolHwNvYVPiKjKNwSOEZmZIJjmheGv94xCXTiblroP0+S67qlfq+xlF55AAAC/7IHIgcLRZOVWCPJlIP/+6BECQRDQB3M0wk0mGfDuZph6VcMTLEzrDCvIY0O5nWGGhxPfVPoWgWCuELQQBJ9tOVsTUg5xHEZZGnCYqJhFKZQcJ3quN2lpy5qi8uTzc2pLgNHnTx0JnCgeKCwDKPKEmtU4ISIjGBuIlOIqGre2BQyiLlKMgxGB7QAAAD/sgcBcYwsOOt85MI1r7FTgx7ThCYfI4A/iXAMh/HWvHCYSiO5VNY0C7xkjGSViiMPDqBgQzuMqxmK8K32nLTHnzxwVOlg4XFjCXoIsZcFJMSjw7BtbyKhy3MgUPoi5SjItRgcwgAAz+xhflIM3U7AoWiiI6GC8SYgMQjuWsfhNJkDMVVhWeHZZNhJeEkSxHiEj1NS68io/2uPUq6cejiKSmKYwIHf+kqPWcllYp0KIRILjlJNEY5Z4Pa3petfBJ7klv3rvtQoAAAb/YwqCoMbM4I6QiNK4MTyS0ZjJnyZMPXR1AoFYVBYZo5AWOEoYCMgOricSisXlBTLRIfVLH6Y+IWjzUioi7okE+oSE1FgmOAIWDCwqRY02tyYgLuycxYzLhlF576LE1X1VQAAAAJ39gCpV5jARUqNpKUFCATwCxeTDWQP9EYZUeV07QFCaT6NsFqOzhWeo5NbOnzj0NIe/UkuQBIIAvGamqr637rlv5KlFNCbqqrxAABL/rgv5PxpF0dYFwjTFisya2n/+2BkMQBCZh3N6wwbuEwjWbphiHUJoHc3rLzHYUaO5vWEmdze0lii8RI7arzNicXyaTC4XgqEnNYfSHZSQgMhmEd2ma+0GEpnxru+0y8IDcVd96nLNf/u/f4uqxAAAQVf7IHRqhhpyJmGMJVg0x/QD9AIkeJkmul1g/BXi+sNmJRTRGC6oHQCbu5aF/G+PkVf0pmeMNQ/cxyd9jmLmO7dWhP6r6I7e56zAAJ/9kFaFhVx6EuwROWgWmVUcJE5MdFRIl3kx3ciJkRMjgiOic/NZx0PP4zeMjiPdo7Kj+bq2srUTvoSODgBMtc5tiX0nWdSnga/fot/u3aldQAAABLv9kBQMl3/+6BkBYACfR3N7WUgCFHiub+ssAEURMc1+byAAasOJn81kACKgAiMuaSilvWSBBjtP8ie802154KkSHiM7NGjVGBeaFNaGqT88qN0Vz2vkvsbnI7EEEZ/3ZSMr1upuz3S7f/9OuuuvMFCgoAAAAKv9ED8YmMsbM7PTHBM8AOEEIwQSxBD7MQhqDO88S3RUsUEgyxS27dUnd6CF1M6rayWqtJCZgkExcFfEOhZTcrfal7mVDosz//9HM6DYxRAFoQ0VUM56LxIGgEABpbCB44cXNIFWGGJjRhQCYKKmNChiKYYSLmJj2lNjAQdE8BHTBgDEZBwlAtiqykvQwWJiQyRScRIEwWBqBSmag18mIQqYiDsxyG85imhFp34Nwl8NyKEu87U3////nbw5zrdIg972M5dL////+c3//nQ3bFumpbnpdMRGCIMhI//6QEFQgaCX//ak8x6m////+laKgmgABQaMiGV7AoEDAAAAoCMkDSRNrZEQUyyNaBUCGTWoUmcDggKiShNMQBLvNZYiHMO+YFDCmUu6RFMhdcEsKVI0o2u8uWFMOnJtgzuyakk1LS0sW5jWrS5zJVG5L4lLfh8yFf4oaATfWoJt2XX3/2gAf1VeSJHQUAkcatdmY/jARAQEKq7AS7M2oCAmFAVjagJ7ER4Gnwad5LBV4Ablu3/AAAA//yOCjvCjQr/+xBkIQ/xkRtK7xhgCBdgCW3gAAFAAAGkAAAAIAAANIAAAAR8UXFFZBXAqkxBTUUzLjk4LjKqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqg== + + + + "# + + } + } +} + + + \ No newline at end of file diff --git a/integ-tests/baml_src/test-files/functions/input/named-args/single/testcase_image.baml b/integ-tests/baml_src/test-files/functions/input/named-args/single/testcase_image.baml new file mode 100644 index 000000000..90739a956 --- /dev/null +++ b/integ-tests/baml_src/test-files/functions/input/named-args/single/testcase_image.baml @@ -0,0 +1,19 @@ +test TestImageInputBase64 { + functions [TestImageInput] + args { + img { + media_type "image/png" + + base64 iVBORw0KGgoAAAANSUhEUgAACgAAAAOxCAYAAAA5Wv7bAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0QA/wD/AP+gvaeTAACAAElEQVR42uzdebzcVX0//veZe7OzyQ4ugIobikKCQEDFDRIWW1vB9tfqt60KtUoEBLKBjrKEPZCACtrN1rZCba24L4XKDmEXXHABgRBQkD3LvfM5vz/CkpC7zMydufczd57PxwNNZs45n8/nfM585jMzr5wTAQAAAAAAAIxItXrHRL0AAACMtoouAAAAAAAAgJHZ5LHHNtILAADAaBMABAAAAAAAgBFaM3GiACAAADDqBAABAAAAAABghHor/QKAAADAqBMABAAAAAAAgBHK0buxXgAAAEabACAAAAAAAACMUJEKMwACAACjTgAQAAAAAAAARqhSSwKAAADA6H8W0QUAAAAAAAAwUtkSwAAAwKgTAAQAAAAAAIARKlLFDIAAAMCoEwAEAAAAAACAEUqpEAAEAABGnQAgAAAAAAAAjFDKaQe9AAAAjDYBQAAAAAAAABiplHfWCQAAwGgTAAQAAAAAAIARyjntnCMnPQEAAIwmAUAAAAAAAAAYue3OOP6qjXQDAAAwmgQAAQAAAAAAYASq1csmR8SUnglTN9cbAADAaBIABAAAAAAAgBHYpG/SFpEiUq0mAAgAAIwqAUAAAAAAAAAYgVqetEVERBGxhd4AAABGkwAgAAAAAAAAjEAReW3wL2czAAIAAKNKABAAAAAAAABGIq8NABapIgAIAACMKgFAAAAAAAAAGImctoyISDm21BkAAMBoEgAEAAAAAACAEUip2CEiInryS/UGAAAwmgQAAQAAAAAAYARypB0jIlLOO+gNAABgNAkAAgAAAAAAwAiknHeMiMiRBAABAIBRJQAIAAAAAAAAI5HWzgAYETvkyEmHAAAAo0UAEAAAAAAAAJp0ztFXT4mIbZ7565RF82/eUq8AAACjRQAQAAAAAAAAmtQ3YdKOEfHcrH89lT7LAAMAAKNGABAAAAAAAACalHuLHdf9e6pVBAABAIBRIwAIAAAAAAAAzcppx3X/mlISAAQAAEaNACAAAAAAAAA0KaW8XuCviEIAEAAAGDUCgAAAAAAAANCkFPGavN7f06v0CgAAMFoEAAEAAAAAAKBJOceuL3jo9XoFAAAYLQKAAAAAAAAA0ITTj79y44jY8QUPv+Sc6tWb6x0AAGA0CAACAAAAAABAEyo9E14fEemFj69ZOfF1egcAABiVzyW6AAAAAAAAABpXi8pzy//mdR5PyTLAAADA6BAABAAAAAAAgCZUIt4w0OMpZQFAAABgtD6XAAAAAAAAAI3KaeAAYIQZAAEAgNEhAAgAAAAAAADNyIMG/d6gcwAAgNEgAAgAAAAAAAANOnvh9S+NiM3XfSw//8fNFy9Ytp1eAgAA2k0AEAAAAAAAABpUK3reOOTzkd+klwAAgHYTAAQAAAAAAICG1fYZ6tkip730EQAA0G4CgAAAAAAAANCgnNK+w5SYqZcAAIB2EwAEAAAAAACABiw58q5JkWPGQM/l5/+458WHXtyjtwAAgHYSAAQAAAAAAIAGrNro0RkRMXmYYhvfs/MrdtFbAABAOwkAAgAAAAAAQANyHm7537WKwjLAAABAewkAAgAAAAAAQANS5H3qLLe33gIAANpJABAAAAAAAADqlCOnnGLm0GWelQQAAQCAthIABAAAAAAAgDqdPf/m10bEFnUVTnnnUxZcu41eAwAA2kUAEAAAAAAAAOpU5LxvI+Un1nr20msAAEC7CAACAAAAAABAnYpKnhWR6i6fK/FuvQYAALSLACAAAAAAAADU4cLDl01IOd7RYLUD9RwAANAuAoAAAAAAAABQh0e3rLw1Ijatp2x+/o87LZp34yv1HgAA0A4CgAAAAAAAAFCPopjdTLVKFLN0HgAA0A4CgAAAAAAAAFCPyrrL+aa6q6WUD9B5AABAOyRdAAAAAAAAAEM7be6yl6VK3LP+o3nIOuv8EPfU5Cc322LO0p1X60kAAKCVzAAIAAAAAAAAw0gpDs4N1lmn/LSVG/9hX70IAAC0mgAgAAAAAAAADKNIMXsk9StFsgwwAADQcgKAAAAAAAAAMIRzjr56Sop4x4bPpLrbyCMMEAIAAAxEABAAAAAAAACGsHrSxIMjYuoIm3n96cff+Fq9CQAAtJIAIAAAAAAAAAwhVeLPn/1zbrDuuuVTT+1QvQkAALSSACAAAAAAAAAMolq9dpPIMas1rSUBQAAAoKUEAAEAAAAAAGAQk9ZM+JOImDJ4idRIc68/a/61r9OrAABAqwgAAgAAAAAAwCBSzn/eyvZqqecwvQoAALSKACAAAAAAAAAM4NT5N20VEe944eO5wXbWLZ9yvF/PAgAArSIACAAAAAAAAAOopHxYRPS2uNnXnLnghtfrXQAAoCWfW3QBAAAAAAAAbKj+5X9TQ+0WkS0DDAAAtIQAIAAAAAAAALzAonk375gjZral8ZzenyMnvQwAAIyUACAAAAAAAAC8UKX4cDQ6td8Q8jp/ThGvOnP+TfvqZAAAYMQfXXQBAAAAAAAAPK9avaw35fzXQ5XJI9xGiuIjehoAABgpAUAAAAAAAABYx6RVG783IrZv5zZyxPsWzbvtRXobAAAYCQFAAAAAAAAAWEdK+YgmajVaYUpPZc1f6m0AAGAkBAABAAAAAADgGWecsOwVEekd7Wh7g2WDc7YMMAAAMCICgAAAAAAAAPCM3B8fjTqn88sj39wbzpy/bE+9DgAANEsAEAAAAAAAACJiyZF3TcopPjia2ywKswACAADNEwAEAAAAAACAiHh640ffHxFbNd9CarxGJf5sSfXaTfQ+AADQDAFAAAAAAAAAiIhcpI+2fRsbPjRt5aqeD+p9AACgGUkXAAAAAAAA0O1Om7ts31yJKyIa/wFt/fK5wfIRUcRvnp7y5Kuq1bf3OxMAAEAjzAAIAAAAAAAAlfjkmG07xU5TV210qJMAAAA0/lEGAAAAAAAAutgZJ9y8c454T2taS01VSZHm5shW7wIAABoiAAgAAAAAAEBXqxW1Y2IUfzfLAz6W33jmvBvf7WwAAACNEAAEAAAAAACga506/7otIscH1n0sN9hGbtneFHOdEQAAoBECgAAAAAAAAHStlCpHRsS0kuzNO04//sa9nBUAAKBeAoAAAAAAAAB0pWr1ssmRe/629S2npqtUUvFJZwYAAKiXACAAAAAAAABdadKqTT4YkbcZi20PtmxwTvHeM467dmdnBwAAqIcAIAAAAAAAAF3nwsOXTYgUcwd7PjfYXm7drvWknp4TnSEAAKAeAoAAAAAAAAB0nUc2T38dES8v477liL84c8GNuzpLAADAcAQAAQAAAAAA6CoXHr5sQkp53vOPpDZsZURtVnJRfMqZAgAAhv3woAsAAAAAAADoJo9sHh/JkXYq3Y6tnxn8k9OPv+HNzhYAADAUAUAAAAAAAAC6RrV62eRIMb8dbefWlk9RiaozBgAADEUAEAAAAAAAgK4xec3GR0Skl9RTNo/xvqaI2WfMv/5tzhoAADAYAUAAAAAAAAC6QrV62eSc03EDP5vasMWRt5lyOtmZAwAABiMACAAAAAAAQFeYsGbjj0XEi0u9ky/IDOaIfU8//oZ3O3sAAMBABAABAAAAAAAY96rVmzdLOc1t93ZyO8pX4vSLD724x1kEAAA2/LgAAAAAAAAA49ykVfmEiNiqLQG9NksRu939ip0+5CwCAAADfF4AAAAAAACA8eukE5a9oqeW7oiISRHD/UC2YeSv0R/UUh1tDll+4OK/mzC591VHV3d71BkFAACeZQZAAAAAAAAAxrVKEWfHM+G/jjBw4nCrvlX9n3I2AQCA4T8+AAAAAAAAwDhwyoJlb085/e+6j7V7BsAN6+QGyw9apT9VYrfjTt3jJ84sAAAQYQZAAAAAAAAAxqmLD724J+V07gsfzw22k8tzSL25iMXOLAAA8CwBQAAAAAAAAMalX77yFR+OiF0bq1X6BbTedcb8Gw92dgEAgI74BAMAAAAAAACNOv34Kzeu9Uz5RURsO9Dz7V4GONXR5rDt50EL/2ryk5vtMmfpzqudaQAA6G5mAAQAAAAAAGDcKSpTTopBwn+joa3LDOd4xaqpjx3nLAMAAGYABAAAAAAAYFxZNO/mPXIqromInqHKDf5DWW6wfD3t5wbLD1tldSXVdj920V53OuMAANC9zAAIAAAAAADAuFGtXtabe4oLY5jw39A6Yg6NSTlXvlStZr/3AQBAF/OBAAAAAAAAgHFj4uqNj40cu5Vvz1IbqqS9p6684QhnHQAAupclgAEAAAAAABgXFs27ecdcKX4SEdMiYthVd4f+oSw3WL6e9lu+DHCkyI9XeuL1nzzlzfcaAQAA0H3MAAgAAAAAAMC4kCv5ong2/NeO9ttcvkmbFLX8BWcfAAC6kwAgAAAAAAAAHe/U+cv+X4787kbqDB3Q66SFtNKBZ8y7/v1GAQAAdB9LAAMAAAAAANDRTp1/01Y55TsjYsv1fvyqYwq+si0DnOrbjReUzxERD/Wl/LoFi/Z82IgAAIDuYQZAAAAAAAAAOluKCyJiywEe7zgjWGZ46wk5fdFgAACA7iIACAAAAAAAQMc6df7NH8kRh47W9nKby4/Qe8+cf92HjAoAAOgelgAGAAAAAACgI510wrJXVIp0c0TaeO0ja+N2rVsGODdYvp72c+P7k4crv16Bp4oiTZ97xh4/N0IAAGD8MwMgAAAAAAAAHadavay3UlT+9fnwXzukcrSZGiowrVKJr1Srd0w0SgAAYPwTAAQAAAAAAKDj9PZt+umI2GvYgh24HtbIlxnO06eufvLTRgkAAIx/lgAGAAAAAACgo5y88OaZKecfR0TP+s8MsATw8w8PaugfzDpyGeCIiKKoFO+ae+pelxkxAAAwfgkAAgAAAAAA0DGq1Ts2mrBm9U0RsfPAJQYIAdYxpd7gP5p1bAAwIuK+ntX9bzxm8cxHjBwAABifLAEMAAAAAABAx5i4evVFMWj4rx1SOdpsbjdeUpvU+6Uc2aQgAAAwTgkAAgAAAAAA0BFOWXDzJ3KKP2+4YhfE3/LgB/neM+feMNfoAQCA8cm/9gEAAAAAAKD0Tp1/0945xeURMXHokgMsAfz8w4NKdbRZf/l6tjFqywBHRBQ54qDjT3vzd40kAAAYXwQAAQAAAAAAKLVTFty+TUTfjRHx4vpqDBACHD5vN8QPZ7nB8vW0P6oBwIgUj0RPnnHcyXv+xogCAIDxwxLAAAAAAAAAlFa1ellvEX1fzXWH/9ohdUibQ8ixefSl/zrn6KunGFUAADB+CAACAAAAAABQWhPWbHZGinjbiBsaD+tiDXMMebgCKd5Um9RzoVEFAADjhyWAAQAAAAAAKKWTF9743sjpa/HMb1r1/7A1wBLAzz88qFRHm/WXr2cbo7wM8HNl0hHHnrbHRUYYAAB0PgFAAAAAAAAASueUBTfumiNdFREbPftYYz9sDRACHD4bN8Q2coPl62l/bAKAEbE6p/TO4xftcZWRBgAAnc0SwAAAAAAAAJTKKQuWbVdEujTWCf9FRH3RtrZJHdJmXSalnP/n7PnXvcpoAwCAziYACAAAAAAAQGlUq8um5qh8PUW8rOWNj4e1sYY5hlz/QW5Ry+k7Zx571dZGHQAAdC4BQAAAAAAAAErh4kMv7uldU/m3iHjzeD3G3ObyjUgRL08TJlxarS6bavQBAEBnEgAEAAAAAACgFO7a+ZWLI+KPxnIfyhTQG5XjzfHmjVblf6pWs98NAQCgA7mRBwAAAAAAYMydtODGo3PEkcOVqz9wlxosX3+bUfo2G5UP3Wj1DacYhQAA0HmSLgAAAAAAAGAsnbLg5oNy5P+JiJ56ytf/A1ceuHweSft5BPszWPnc+P4Mewy5mX362LGnvflzRiQAAHQOAUAAAAAAAADGzMkLb9k3cv5eRJ5ab51ODwBuWCc3fsztCQD255zed9zpe/yPkQkAAJ3BEsAAAAAAAACMiVMW3PymnPM3ImJqmeatyG0uX2K9KeWLz5p7w2yjEwAAOoMAIAAAAAAAAKPulAW3vr6I+GFEvKjRuvUH7lKD5etvM0rfZtMmppT/85z517/NKAUAgPITAAQAAAAAAGBUVefd+Moiiu9HxBYRYzCDXhoHnTjMMeQGDzKv/+epRY5vnDXv+j2MVgAAKDcBQAAAAAAAAEZN9fhbX9JbqfwgIrbr5n7ogGWGN4kc3z973g27GbUAAFBeAoAAAAAAAACMimr11q0rvfkHOWLHsu9rBwT02i/FZkXk7y0+/prXGr0AAFBOAoAAAAAAAAC0XbW6bMueNcWPUuTXDF6q/mVr6w/cpQbL199mN0gRW9UqPd8784TrdjKKAQCgfAQAAQAAAAAAaKtTFty+Tc+anh9FxOsHK5O7vpdSG6o01uYQ5+ClqT9ddc7c63cxmgEAoFwEAAEAAAAAAGib6txlLyui/4qI2LVUO9aBk/iN8bLE2xUp/vfsude90agGAIDyEAAEAAAAAACgLU464dadent6LouInbvheMc4oDcats6pctnZx1+7l9ENAADlIAAIAAAAAABAy510wo2vjaK4Mke8vLGa7Ziab22brQ3opS49s/lFuZJ+cOa8695hlAMAwNgTAAQAAAAAAKClqgtu3T0XlR/niO0bqdcFM+gNI7WhSmpDn6aNKhGXnjX3ugOMdgAAGFsCgAAAAAAAALTMyQtv2bcSxf9GxJal39kOnMSvLCHJHDE1UnzjrPnX/4lRDwAAY0cAEAAAAAAAgJb4zMJb3lvk/L2I2LRb+6DLZjGcGDl/9ax51x5u9AMAwNhIugAAAAAAAICROmnBzZ/IEefECyagaPTHqOfL5wbL1yNvWCePZBu5Bfv0wvK58f3Jw5XPI9if4Y99bfm85InJex5drabCqwEAAEaPACAAAAAAAABNu/jQi3t+uvOrFqfIRw70fDM/Rj0TKGuwfD1aHQAcuIGRBQCH36lU32403Z/1HUMeoHz6Wlrd/4FjFs9c6ZUBAACjQwAQAAAAAACAppx57K3TVk4s/i0i3jNUueYCcaMUAKxjU2ULADZ3DKMxC2BERFxb9Pf/0XFn7fOQVwgAALSfACAAAAAAAAANq1bv2Db19V+acp6x9pHBA2bdFgBs/pjr3KEodQAwIuLXPUXlwKPO2OPnXikAANBeFV0AAAAAAABAIz574i27VPr6rk3xbPivHVLb2swN1spOeaNeXusprj5r7vVv1RUAANBeAoAAAAAAAADU7TMLbz0kirgyInZo1zY6K6CXytFmam2bIz4HOTZPKX//rLnXfsKrBgAAOusTCQAAAAAAAOPMxYde3PPTV+98YuR0YkRUnvuRKW/whwF12zLAI1sCuL5jL/kywOs+/i+xunbEMYtnrvRKAgCA1hIABAAAAAAAYEinzr9ui/7KpH/LEfs/+9h6PzLVEQLstgBg88dc5w5F5wQAn3Fz0Rt/etzJe/7GKwoAAFrHEsAAAAAAAAAM6rMn3rJbX2XSDeuG/0ZP+5bX7axlhseF3VJ/3HDW8de+W1cAAEDrCAACAAAAAAAwoM8uuOUvcxFXRsROo73tzgropQ5pc2zPWYrYIlXSd86ed101R7ZSGQAAdOUnBwAAAAAAANrqnKOvnvLElKmLI8URQ5V77oemOpYAXq98nTp9GeCRLQHcZH+WexngdVv+Wl+ufGje6TMe84oDAIDmCQACAAAAAADwnM+eeMsuuYivRMQbhyu73g9N+bn/qa98HbotALhhndz4MXdMADAiIn7bk9MHjjr9zT/2ygMAgOYIAAIAAAAAABA5cjpp4a0fyRGLI2JqPXU2DACu94ehyzfUfo6G96eOIx78GJrZRm7xMde3Qx0eAIwUUUTk8x+fvPFx1eoua7wSAQBgJJ8hAAAAAAAA6DrV6q1bR1/+hxRxUCP12h0AfL7OKM0CmEfafgmWAR7jAGCzx5wjbuit5b/4xJl73eUVCQAA9avoAgAAAAAAgO71mQW3HBB9+ZZoMPwXEQ1GyRovP+rGw9QZabhzkNpwzlIrdnuPWk+65Zy5137CqxIAALrrYwwAAAAAAAANqlaXTY01E86KlP821vnNaEQz1uXn/qe+8nW3P0ozANaxqXbPALhhna5YBviFf79kVaw5Yv5pb/mDVyoAALTqMxAAAAAAAADjwmfn3/qWohJfjIhXt2L51ue0YRngFMO32Xz7rV4GOLf4mOvbofEWAHymuQdzxPGfPH3PL3vFAgBAqz4DAQAAAAAA0LGq1Zs3i750ekT6SDz3O1G5A4DP1xmlWQDzSNsf+SyAqY42hyw/xgHA1hxzROQckfI3e4v00Tln7HWfVzAAALTmMxYAAAAAAAAd5jMLbz0k5/hcpHjJ+s+MbgCw+W10zzLAIw4ADlOl0f6s/xhaPQvgc+09FhGffnzKnkur1VR4NQMAQPOfNwAAAAAAAOgg1eod28aa/qWR4n2Dl2p1CFAAcCTHu2Gdrl0GeP0DSXFFkYrDj10082de2QAA0PznDQAAAAAAAEquWs2V6Lv9wzny6Slis6FLl3sZ4BTDt9lc+80FAIfeRm7xMde3Q10RAFxrZYpUfWzK0+dUq2/v90oHAKDbCQACAAAAAACMM9WFt8/IUTsvIs2MqOcHofEVAGxsG3mIY2i2/RIsA9xhAcBB6+RB9/MXuRJHf3LRXt/2igcAoJsJAAIAAAAAAIwTCxYs225C6q1GpA9HROXZx8sWAGx+G92zDPCIA4DDVGm0P+s/hlbPAjhskPSHkfOco8/Y+6euAAAAdCMBQAAAAAAAgA5Xrd4xsejv/2jK6bMReZMXPt9ocKv+OoOUH3jp1ha03z0BwA3rWAZ4iPJ9OcXneyfHiXOqez3uigAAQDcRAAQAAAAAAOhgn1p46yEp4tyIePlQ5bptGeB2BwCH3kZu8THXt0NdHAB81gORovriX/327w+75LCaqwMAAN1AABAAAAAAAKADnXjibdN7inx6jnhnPeW7LQDY2DbyEMfQbPslWAa4wwKAg9bJjY6jfEMu8nHHnDnz/1wpAAAY7wQAAQAAAAAAOsgJJ9z+2kouPlOJeF9u4LeesgUAm99G9ywDPOIA4DBVGu3P+o+h1bMANhkkzXFVzmn+MWfueYUrBwAA45UAIAAAAAAAQAdYuPDOHXqjf0GO+FBE9LR79rb66wxSfoilW0fWfvcEADesYxngJvv0h0Uqjv/kaTNvdiUBAGC8EQAEAAAAAAAosWr11pfkvjguRzoiIiY9/0xuTbhqPZ2wDHDnBgBH3KcCgCPpzyIivlZU0gmfXLTnL1xZAAAYLwQAAQAAAAAASmjBgtu36Y08N1J8NCImb1iiWwOAQ7fZfPt5iGNodhutXgZ4/AcAB62TWzaO+is5/VNPrf/kj5+9zz2uNAAAdDoBQAAAAAAAgBI54YRbd+rJcVSO9OGImDp4yc4PADa/jVGaBbB0AcAm+zO3rj9HfRw912TLg6RFpPztoqh85pgz9lzmygMAQKcSAAQAAAAAACiBE0/8yRtTrn0yIv155Oitp05qc3CrvjpDlB9i6daRtd+5ywC3OwDY3DF0zTLAA5TPETmuKlKcfszpe1/qSgQAQKcRAAQAAAAAABhDCxfesm8lpbkR6aDU8Cq33boMcOcGAEfcpwKAI+7P9eus1+ZNEfm87X9931cOu+SwmqsTAACdQAAQAAAAAABglB1++LIJ22wz6b2R8/ERMX3d55778UYAcJjyuUXHu+EOl3sZ4PEfABy0Th61cfSzyPmsoi/+7ZjFM1e6YgEAUGYCgAAAAAAAAKPkhBNu3rkSPR/KEX8VEdsMVKbbAoDNb2OUZgEsXQCwyf7MrevPUR9HzzU5ukHSFPFYkfNXeyrxhTmnzbzZFQwAgDISAAQAAAAAAGijI4+8a9KLNln5npzS4RH5nTHM7zONBQDbMXtbCwNr4yEAWMemyhYAbO4YumsZ4CZmVbwxUrpoVdH/73PP2PcJVzYAAMpCABAAAAAAAKAN5s+/7TU9PZW/SpE/FBFbrn20weCWZYCHKN+5AcAR96kA4Ij7c/06DS0nvSpFujRSvmjOaXv/0JUOAICxJgAIAAAAAADQIgsX3v7SlNL7Ior3R6Q9n328yaCRAOCw5XOLjnfDHW7dMsACgCM/3nWbK9U4uj1H/EeR8sXHnDbzl66AAACMBQFAAAAAAACAEahWf75lrbb6T3JOH4yImTHA7y8CgEMfTPOzt43SLIB5pO2P/jLAqb7daLo/R30cPddkaYOkd0aKS3pS5d8+vmjPX7gyAgAwWgQAAQAAAAAAGrQ29Nd3YM750IiYFRG9Q5Vveva2Dg0ADnwMeYT7NFD5zl0GuN0BwOaOobuWAW7jTJJ3RiouiVrPVz5x5l53uWICANBOAoAAAAAAAADDqFZzpVa7fbeiSAdEitlp7Ux/lXrrtzcA2Hhwa8N9GkgnLAPcuQHAEfepAOCo92fj28g5RdyYU3wncnx3u1/fd91hlxxWc0UFAKCVBAABAAAAAAAGUK3+fMu+vtVvj6i8K1I+KCJe/OxzI5oRzzLATe5Pi/oz6uvPwY+hmW0IAI78eNdtrnPG0QvKP5lTXB4Rl0YuvvuJ0/f9rSstAAAjJQAIAAAAAAAQEdXqsqmraxP3qETP/pHjgIi8W0QedJa/UQsaCQAOU2eUZgHMI21/9JcBTvXtxjrl2xsAbM0xR0Tu2ADgC7vlJxHpe5GL769M+Zq5Z+z7hCsxAADNfS4CAAAAAADoMsdXf7b9hL7+6TnFPhGxb4qYERGTNiw5xrO3dWgAcOBjyCPcp4HKd+4ywGULAK6t063LAI9JAHBdtUjx88hxYyXiykjFVR87fZ87U6QcAADQws9RAAAAAAAAHefYY2+dNmFK7+srRd47p7R3RJ4ZES9Zt0xpl2/N9bbfeE5ofCwD3D0BwBGNo7qPoVsDgPWPpZaEAHNd7T+Uc1yTKunqXNSuiVW9t85ZutfjrugAAIz0cwUAAAAAAEApVauX9a6KLV7WU1R2yZGnR06vi4hdIqdXR+Seoeq2OwC4fh3LALeiT9s9e9vgxzB240gAMIYMAJZxHKXGhsRw7T8Qqbgj5XRnRLojpeLO3imTbzqiOuNp7wAAAN1JABAAAAAAAOgoRx5516SNtujfIffnl6VK7BA5vyxyvDoidokUr47IEyIan0FvvTrrKUHQSABwmDqjNAtgHmn75V8GuN0BwNYcc0Tkrg0ADtSftYj4ZUTcHil+ETndk3L8NlK6Z3VfvvuYxTNXeucAABi/BAABAAAAAIBSmDv3V5umKU9tEbXKFjnF5ili81ykLVMlXhpFvCwqsUPKsUNEbDd0Sy+YbWzEAcDBGynXMsCdHwBsfhvdswxwuwOAa+t0wiyAAoAN1HkoIn4bKd+TIn6bc7o7RX44pXgk5crDRSUembQ6Hvnw4pmPeCcCAOg8AoAAAAAAAEBLHXvsrdN6e9PEYvLEKZVabZuISqVIaZNK1LaMiChy2qqSY+Ncie1SzjtHxKsiYqeI6Bmu7aaCRl0TAGw8uFXfMbQ6BCgAOJLjHdE4qvsYOnsZ4FFfVrmOY298JsZ2jKM83CynOXK6JyLflSJ+ESnujZyfTjk/mFMlR44/RI4/FJWcJ6XaQ32V3qcmFan/Q2fs+4R3PgCAsSMACAAAAAAAjLlq9bLeNWu23KK/EpunXNkiemKLSsTmuchbp0rlpTnnHSNipxSxY0RMHbq18RMAXK+OZYCHKT9Ks7flzhtH3RYA7IhxNMzmWvy6XBUR90QUd6ec7o6U7o3IK3KRH4meysMR+eEJPcUjL5q4xcOHVXdZ4x0JAKCzCAACAAAAAAAd5djqrVtP6uvdMVdix8hph0jFjjnSqyNi14jYasCgUd0z6A2mBEEjAcCW9Gdj28hDHEOz7ZdgGeAxDgC25pjDMsDrl/9DjrgtRfw8It+dcuXunPPdEybW7j7i1Lc+4J0DAGD8EgAEAAAAAADGjXnzbntR7unZpScV0yOl1+WIXVLEbpGHmzXweZ29DHDnBwCb30b3LAM84gBgXcfQCbMAdmUAsD8ifhuR74yIGyOnO1KluPNjp+9zZ4rU+BrgAAB0PAFAAAAAAABgXKtWL+vt799y5yJVdstF3ruS4i050usjcs9A5Ts7ANh4cKu+Y2h1CFAAcCTHO6JxVPcxdPYywKO+rHIdx95oEDOtrfTTyOmqFHFVkfpveWTK5j+tWqYXAIARfp4AAAAAAADoaNXqHRv19cWbcsr7pIh9c8S+EbFZRPkCgOvVsQzwMOVbPXtbcwHAMo6jbgsAlmscDfO6fH5z/RFxa0S6KuV85cRi4mVHnD3j967YAAC07r4UAAAAAABgHKpWL+tdVdtqt0qOfVPErIh4a0RMXr9UCYJGAoAt6c/GtpGHOIZm2y/BMsBjHABszTFHpy8D3B8prko5vhtFuiKv+sOyOUsPXO2KDABA6+/FAQAAAAAAusjRR189Zdq0zfbJKR8SOf9RROyw9plOWAa48wOAzW+je5YBHnEAsK5j6IRZADsuAPi7iLg8Ir5ZW736G0ef+/ZHXXEBABgJAUAAAAAAAIBhzKve9vLe/nRIjjg41s4OOHHd58sVAOyA2dvy8AcjANjGcVT3MXT2MsCjvqzywIqIuDnn+GFK6Zt/mLLn1dVqKlxVAQBoFQFAAAAAAACABsydu2zTnokT35uK9GeR4p0R0TuqQSPLAA9TvtWztzUXABx6GyUJrAkAtmscFRHpyhT5P6LS959zFr31d66cAAC0iwAgAAAAAABAk6rVOzZfU8sHV3L+QES8IyIq9dZtOmgkANiS/mxsG3mIY2i2/VYvAzz+A4CD1inPMsB3RopLiuj98tGn7fFrV0gAAEaDACAAAAAAAEALVKu3vqS/v/KnEXFoRMyMYX6HEQAc/mBKvQxw6QKATfZnbl1/1n8MrZ4FcEwDgD+NFBfnovbvR52x789dCQEAGG0CgAAAAAAAAC02f/5tr+npicMj0v+LiM0HKtP07G115rHaPXtb/XUGKZ+HP5hSBwDr2FS7A4AjGkd1H0N3LQNcZ38+GZG+kot80dFn7n2TKx4AAGNJABAAAAAAAKBNjjzyrkmbbLLyPSmlwyPiXes+N6LglmWAhymfW3S867fXaHhu6G2MamBt8PYFABsZRz+LFP80Mfov+rvT3vIHVzgAAMpAABAAAAAAAGAUnHDC7a9dOyNgPjwiXhRhGeDhDqbdAcDGttEJywCP/wDgoHXatwzw6oj0jZzyRUeftvcPXckAACgbAUAAAAAAAIBRdPzxP9t44sS+v4yIv0sRr1/7qABg8/s0UPluDQA22Z+5df1Z/zG0ehbAlgcAf50iPt/X3/tPx5494/euXAAAlJUAIAAAAAAAwBhZuPCOfSupmBsRB0XkYX+3aSwA2I7Z21ocWMvDH0ypA4B1bKrdAcAN61gGeIR9emOKtOTRKU//W7X69n5XKQAAyk4AEAAAAAAAYIxVF9y+ay3lj0WKD0bE5MHKNTr7XPcuA1yeAODQ28gtPOb6d0gAcANFTvnbKeI8y/wCANBpBAABAAAAAABKYsGC27fprRQfzZGOjIjNByrTbcsAN99+btHxbrjDrVsGWABw5Me7bpONjqO0OlK+uJaKU49dNPNnrkAAAHQiAUAAAAAAAICSOf74n208acLqD0VKx0bEi9d9rtsCgM1vY5RmAcwjbb/Fyyo325+5df056uPouSbrDgA+nCKf21upfP7ji/Z82BUHAIBOJgAIAAAAAABQUtXqHRNrtdpfRY5PR8T2EY0GANsxe1sLA2vjIQBYx6bKFgBs7hjGxTLAT0ROn1udehbNO33GY64wAACMBwKAAAAAAAAAJXfkkXdN2myzlf8vclRTxHbPPWEZ4CHKd24AcMR9KgD4Qk+mnC6INRNPO/rc3R51RQEAYDwRAAQAAAAAAOgQxx5767TJk+PDlUjzI2IbAcDhyucWHe+GO9y6ZYAFAEd+vOs2t95+PpVyOj/31c44ZvHMR1xBAAAYjwQAAQAAAAAAOszxx/9s48kTV8+JnI6NiM2GLt19AcDn64zSLIB5pO2P/jLAqb7daLo/R30cPddkjoh4Okc+P/dPOPPYs2f83hUDAIDxTAAQAAAAAACgQ1Wrd2xe9NeOjxxHR8TEwcqlkgW31qtTRwCwmW10+jLA7Q4ANncMpZ8FMKcc/xmpOP7o0/a+2xUCAIBuIAAIAAAAAADQ4U444dZXpxxnpUgHD/R8o8GttXWG0wnLAHduAHDEfdplAcAccUMlVY4+etEeV7kiAADQTQQAAQAAAAAAxonqCbe9q8ixOCJev/4z3bcMcIrh22y+/VYvAywAOILjvS/nWHjM6W/+lxQpuwoAANBtKroAAAAAAABgfKievOsPKxMe3i1HHBERv+vmvshtLt9aqUPaLNU5ezpHnD5p8tOv/eTpe35Z+A8AgG5lBkAAAAAAAIBxqFq9Y/Pc139KjnR4RK6UbQbA9erUMQNgM9vo9GWAR37OmujPzpgF8N/7i75j556x73KvdAAAup0AIAAAAAAAwDhWXXj7zCLyRSnyLo3WHf1lgAUAR3K8G9YZb8sAp+Up8sePOW3P//bKBgCAtSwBDAAAAAAAMI5VT3nD1St+t2a3nNO8FLG63HubOqrNdi8zbE3b5xQp0kX9xZrXCP8BAED7P/EAAAAAAABQQtV5d7wy9/RfGBHvqKf86M8AuGGbI2n/+TqjNAtgHmn7JVgGeIxnAHxhnRRxWy0Vhx+3aO/rvIIBAKA1n5MAAAAAAADoWDlVF9z2gUhxTo7YYqiS7Q4ArlenjgBgM9votmWARxwArOsYRmUZ4JURccYTkzc6tVrdZY3XLQAAtOYzEgAAAAAAAOPAggXLtpuYJvx9jpg9VLnRnwVQAHAkx7thndz4MY/9LIDXVKL2wWNOm/lLr1QAAGjVZxgAAAAAAADGmZyqC2//SEQ+J0dMG6hEpy8DnGL4Nptvv9XLAOcWH3N9O1SiAGB/ijh7o0d6Tjziohl9Xp8AANDqzzAAAAAAAACMO9X5t70mV/JXImL3Fz7X6QHA5+uM0iyAeaTtl2AZ4LEJAN4dOX/g2NP3utIrEgAA6lfRBQAAAAAAAN2tumjXn6UJj+yZUnwmRdRGc9u5zeVH3XiYfiMNdw5Si89Z/pcpkzd6g/AfAAB050cQAAAAAAAAWuTE+bftXankf42Ilz/72OjPAtjgjHV1tT9KMwDWsal2zwC4YZ2SLgOc49Ec6aPHnb7Hf3jlAQBAc8wACAAAAAAAwHNOWrTrNWlCMT1y/OfY7UXqkDabM+5mPWzO//b0VF4n/AcAAOPlkw4AAAAAAAClUl142+ER+fyImDB0yVbPALhhm61pf5RmAcwjbT+38Jjr26lRnAEwp4ilGz1SOfaIi2b0eZUBAMDICAACAAAAAAAwqBPn3/qWnkr6akTebvBSoxsAbH4b3bMM8IgDgHUdQ8MhwCcipb85dtEe/+mVBQAArWEJYAAAAAAAAAZ10qI3XhET+mdEiqsGL7V+fGxES9yavqIlSrjM8M8iFXsJ/wEAQGsJAAIAAAAAADCkanX35dH7yH6R8umjt9XUIW02p4QBvXaeyv+I/kkzjl20151eTQAAMF4/5QAAAAAAAFB6n1l465/niC9GxLT1nxndZYCbb3+UlgHOI22/BMsAj3wJ4P6IfMJxp+15ulcOAAC0hwAgAAAAAAAADfnsibfsVtTSNyPF9s8/OroBwOa3MUoBwDo2VfoA4DBVhuzPHI9Gyn963Gl7/q9XDAAAtI8lgAEAAAAAAGjIp056080xsbZHRNz0/KPrx8dGtMStKSxaIo9V+Ry/KXJtpvAfAAC0nwAgAAAAAAAADatWd18eE3rfFhHfbN9WJAHXlTtgH1OK6yf0FHvPPWPvnzpjAADQfgKAAAAAAAAANKVa3eXJ1/3i538cOV/QOXud2tZma2fc68jw438/Oany9qNO3etBrw4AAOjcTzgAAAAAAAB0mc+ccOsncs7nxDoTUDT6Q9R65fMGfxi+Tt3byM3t05DyEMfQbPu5Rcdb/06l+nZjoP5c8tTkPY6uVlPh1QAAAKNHABAAAAAAAICW+MzCW96bI/41IqY++9jIQ4AdHACsY1NlCwA2cQy1yPGJ40/f4wKvAAAAGH0CgAAAAAAAALTMZ+ff+paikr8ZEZtEtH8WwG4LAI64T1sbAFyTU/zF3EV7/KeRDwAAY6OiCwAAAAAAAGiVTy164xWVSuUdEfH78u5lalubucFaedT3s2VW5xSHCv8BAMDYEgAEAAAAAACgpT510q43RlG8LXIsb/e2csnKl19qRZWnUsTBcxft8Q2jHQAAxpYAIAAAAAAAAC1XXbT7nT2V9I4ccW8j9dYL3KVx0BEdeAx56CcfTal493Gn7fFDoxwAAMaeACAAAAAAAABtceLJb/x5bxRviYhfjqylpDPXMXazGOaHoie//bhFe17jLAAAQDkIAAIAAAAAANA2J5yy+z15woS3RMTt5dqz1LY2WxvQK034cUWqpHcef+qbbzGqAQCgPAQAAQAAAAAAaKtqdZcVeUJ6V0TcWYb9GbsZ9Mqi0VBhuj96077HnbrHT4xmAADo7Lt7AAAAAAAAaMopC27fpj/V/i8iXj1c2ed+xMob/GHo8nVqdK6++tvPA5fPI2k/t+h4G9ih5+v8rhK1/Y5dtNedRjAAAJSPGQABAAAAAAAYFQtPfcODPdHz7oi4p+5KaYM/EKM2i+FjlVyZLfwHAADlJQAIAAAAAADAqDnhlDfcW0n53RHxwNjvTWpbm+NgmeGniiIdfOxp0280agEAoLwEAAEAAAAAABhVJ568212pUjkgIj08VvvQWQG9NNptrixyHDzv9BlXGq0AAFBuAoAAAAAAAACMuk+dtOvtORfviohHB3p+HMygt77OWcF4TU7p0Pmn7XG5UQoAAOUnAAgAAAAAAMCYqJ662y2pSO+JiKeHLJg2+APRlpBkfyUXfzbv1Bnf0rsAANAZBAABAAAAAAAYM59a9MYrcor3R0RtbPagfcvrdtoshjnFUcedtud/G5UAANA5BAABAAAAAAAYU9WT3/TNyDF3tLfbWQG91NY2U8QZ807d4wKjEQAAOosAIAAAAAAAAGPu06e+6ewccf66j3XaDHrDKu8Kxv/59KQZ841CAADoPAKAAAAAAAAAlMLrfvGLo1LO3xjwyaR/WiFv2K03rJyU/l+1mgq9AwAAncdHJQAAAAAAAEqjWr1jo9TXd0VEvCniBT9m5Q3+sIFGf/xKMXybzbefY/BjaGYbucXHHL+u9E3Y+7iz3viQkQcAAJ3JDIAAAAAAAACURrW6y5N5QnFQRNw7GtvrrGWGWzq3x8PRkw8U/gMAgM4mAAgAAAAAAECpVKu7L0+V4pCIeLKzAnp1KMf6XGtyEX889+Q9fm60AQBAZxMABAAAAAAAoHQ+ddLut0bEh9d7MOmXVsiR58w7fcaVegIAADqfACAAAAAAAACl9OlT3vTVHOncDZ9pRxKwPG22c9bDHOlf5i3a40KjCwAAxgcBQAAAAAAAAMprwiPH5cg/LtMuje2yxCMKKt4yadXqIwwqAAAYP0yUDgAAAAAAQKmdsuD2bWqpdmNEvPj5NN3QsbpGfwRLdbTZXPt54PJ5JO3nZvbnkZ6e2ozjTt7zN0YUAACMH2YABAAAAAAAoNQWnvqGB6MoDo2INaa3aEqRc/oL4T8AABh/BAABAAAAAAAovU8t2v2aiDz3+UfakQQsT7qwxcsML5x/2vTvGkUAADD++DdSAAAAAAAAdIzPnnDLv0cRf7b2b4PH3ppbAnjoNpvfxgDLAOeRtl/3MsBfn7to+p+kSNnoAQCA8ccMgAAAAAAAAHSMonfCRyLil8OVa/EMeq03OtN03D9x0poPCf8BAMD4JQAIAAAAAABAx6hWd3kycv6riKjpjSEVOacPHlOd+YiuAACA8UsAEAAAAAAAgI7yqUW7XZUjndaeafRSaY5zhLMYnjH/tOn/a7QAAMD4JgAIAAAAAABAx8kTH6lGxHVjug91l0wNlq+/zUHctGrSlE8bJQAAMP4lXQAAAAAAAEAnOumE21+Ri/5bImKjwco0+mNYo1G9+tvPG5bPI20/D1T+qdSTp889eY+fGyEAADD+mQEQAAAAAACAjnTiyW/4Vcrp2I49gLZM1ZGOFv4DAIDuYQZAAAAAAAAAOtpnF9z8PxHxnoGea24GwIh6ZwEc0QyAdW4mDdPmOuW+Pm/RjPcaEQAA0D3MAAgAAAAAAEBHKyZWPhIRD5d7LxtdXLj+Np/xUO+a+IjRAAAA3UUAEAAAAAAAgI5Wrb7xoZzTcQM912jgrt3l2ybno449e8bvjQYAAOgulgAGAAAAAACg4+XI6aT5t3w/Urzrhc81twxwbrB8fXs5YPk8kvZzRE7fmX/a9AONAgAA6D5mAAQAAAAAAKDjpUi5yMVHI2Jllx36E7We2hFGAAAAdCcBQAAAAAAAAMaF6mnTf5kiTmpNa+1YSKvRuQVj+PI55p1wypvvdfYBAKA7CQACAAAAAAAwbtQmPnpmpLh53cdaGrhrQfmWyXHt6snTv+CsAwBA9xIABAAAAAAAYNyoVt/eH7U4IiJqHbPTzU02uDqn9KFqNRXOOgAAdC8BQAAAAAAAAMaVT5222w2R0wXj+iBzPmXBot3vdLYBAKC7CQACAAAAAAAw7kyqTT4hUloxslZSG/ZsbZsjWWY4R/xq2lObnuEsAwAAAoAAAAAAAACMO3PPeM0TqYhqs/Vzm8uP0FFzlu682lkGAAAEAAEAAAAAABiXXv3LX3wpRdwWMeoBvcbVP9ngDxcsmv5NZxcAAIgQAAQAAAAAAGCcOuySw2pFpKPG0SH1F6k42pkFAACeJQAIAAAAAADAuPXpU990WUR8o/kWUhv2am2bDc9KmGPpwlP3+ImzCgAAPEsAEAAAAAAAgHEtVWrHRMTqRuvlNpdv8CgeWT159cnOJgAAsC4BQAAAAAAAAMa1E0+e8avI+YJc9h0dYrLBlPP8anXmI84mAACwLgFAAAAAAAAAxr1iUjopIn7fobt/6yt+9au/dxYBAIAXEgAEAAAAAABg3KtWd3s0cpzeXO3Uhj1a22Y9sxLmFHMPu+SwmrMIAAC8kAAgAAAAAAAAXaGY9Oj5EbG8kTqNLhvc+mWG01ULT53+PWcPAAAYiAAgAAAAAAAAXaFaffuqnOLMUu/kCyYbTLl2gjMHAAAMRgAQAAAAAACArlFMePQLEXFfh+zud+eftsflzhoAADAYAUAAAAAAAAC6RrX69lURcVrjNdNo72ouKsWnnTEAAGAoAoAAAAAAAAB0ldrEiV9MEXe3q/1cd8k0VPn/PuGUPa53tgAAgKEIAAIAAAAAANBVqtVd1uSc6p4FMI/2DqYocorPOFMAAMBwBAABAAAAAADoOls/3P8PKeLXpdy5FF9ZeOr025wlAABgOAKAAAAAAAAAdJ0jLprRl3M6o7FaaTR2rYii52RnCAAAqEevLgDK5NDqHRMf3WLjLStpwot6a8WmOdImuZI3jSJtGim/KCJtknPeNCJNqqTYNIroiRSb5IgJEbFRREyMiGnrNPmiQa59xTP/xQu+sHns+cdjdUQ8nSOvrkQ8HZFWR4qnI6fVOeLpSspPRMTjEfnxIiqPR+THK1F5tFYUj0UUj0+M3kcnbb/17y85LNWcWQAAAACA8pm26ukvPzVlykkRsVWr285Rb1wwRUR+rnyO+O+Fi970C2cHAACo9xMFQFtNvzBP2KJ/+bYT+uOlRapsn1J+cc6xdUTaNiK2zJG3TBFbRsS2EbHJkI3lsb0cNnPRzBEPp4jfR06/j1T8PkV6OEd+KHI8lFLlgVoU96XU88DKjZ++//K/3mmVEQMAAAAAMHpOWnDzpyOiWk/Ztd8R1/9Fdf3fKefnyqei8ub5p+12gzMDAAC09nMHwCD2u+ChjSb3rX55JVV2Kirp5SnSTpFjh4i8fUS8OCK2iVYtOd6BAcAGPRIRyyPivhSxvIi4O0W+u4j4TW+t9ptvHv2S5ZFSNuoAAAAAAFrj1Pk3bVVL6Z6ImDJc2VEIAF624NTp73BWAACA1n/uALra/meumJamFK9ORX51JdLrckqvjMg7RY6XRxuWRhjU+A8ADmd1RNwTke6OHL/Jke+qVOJn/f09P1/9+FZ3X15N/UYrAAAAAEBjTlpw0xci0hHDlXv+O+L6vqxuNABYKWL2/NOmf9cZAQAA6iUACKznjxf/ZrOVPZPeUIn0+kjx2ijyayLFqyPiZaXYwTEOAJb8wrkmIn4dKf0scv5FyukXtci3FX3pzu8ft+1TRjcAAAAAwMBOnX/Lq2op/zSGWc2m0QDg+nWGllO+deEpu++WwiowRJz1yWVb9kxcvXOl1vPKVMnb54gpkWNK5LxZpDQ1RZoUEStzLlblSH9IEStTJVYVOT+QIn45sZZ/+dGz9nlITwIA3eKyarV3k3sf27HWG69MueeVKRXTipw3q6SYknNMiUgviohIKR4tcqxMOa9MKR7NkVZFyr+JVPvVk6s2/+Xb/6m6qtOOXQAQulS1mivXb3n/K4vc88ZKzrvmSLtG5F0jYsfS77xZABtVpBy/zhG35YifRI7bU1G7bdpLX/yrSw5LNa8GAAAAAICIzy64+esp4o+GK9e+ZYCLv1h46ox/cya6z5LjrnpFrSe9LSK9NeV4XUTaOSJv1vgYWjs21yn/RET8MkX6ec75qpTi/x6esvcd1Woq9DoA0MnuOvLISX9YM3HPKGK/lOLNOeJVsTbvMqH+e/Y80L17joj7IudfRSVuTUX6v5wqV8y46Ozfl7k/BAChSxxwwb2vTLXKHhFpRiVijxyxe0RM68iDEQBsVZ89nSNujRzLKpW4sb8WyzZ5ybY/EwoEAAAAALrRZ+ff+paUih8PV65NAcC7+yY+tnO1+vZ+Z2L8O23usk0npb73ppzeGZH3i4iXtGAMPSMPXmftUw9HjitTxGU5Vb4254y97nNGAIBOcO2Hj921pxLvzTn2ixR7RcTkwe7L65u5Ow9z35XX/cMdOeL/IufvT330Rd/d5ZLqmjL1jQAgjEPvPP++LSYWaWaktGfk2CMi9oiIF42bAxQAbGefPZUibs4535gjbqhEzzXfOnqbX3tVAQAAAADd4KQFN18XEW8eqkybAoBzFp66+1JnYPyqVi/r3XTl1AMi5w9EivekiCnRwFgawSyA6z78QkXkuDwi/UusSv81Z+lejztTAECZLDv8qO2K6Pn/UqQP5ohdB7v3ae6+venw4MOR8leLIn9ljy8uuSa1McXS4s8cQJnNXvLgKyKKfSLyvhGxT0S8dly/vsc4ANixF8/m++2BiLgmcr6qEj3XTHns9zdeUt1ljVceAAAAADDefHbBTR9Mkf55qDL1zSYyWJ0BPdVTK1487/QZjzkD48/S46/cvj/1Hh0RH4yIrZsdRy0JAA6xuRSxMnL8dyXymR87c59bnDkAYCxd95G5B0SldnTk9K4UuWe4e5/B75+aWga4jvu0/OzTv8opX7S6f/Ln9/2HM54Yq/4SAIQOdNDi5a/NlfSOnPJ+sTbwt13XdYJZAMeyz1ZFpBtz5CtTypc/3dt75eUf2/pJr0wAAAAAoNOdc/TVU56aMuW+iNh8qHKtnAUwp/SPJ5yy29/o/fFl8bxrdoxcOT5F/uscMXnwMVGaAODzQzLHNyOnUz5+1t7XOZMAwGjJEem6I459T8ppYaxd6bLOe++xCAA+8/zzRR6JiPN6+tKS3f7p3EdHu+8EAKEDHHj+8h0i53dEkd6RU7wzujHwV+cH1NG6LCZ9tq6+iHxDTpXLKkW6vDK1dvWlR2z/tFcuAAAAANCJTlpw8zkRcfRQZVoZAEw5Zi5YtPs1en58WBv8S5+OiL+IiAn1jYk8ojG0oTx4ndzANlJ8P9XSpwQBAYB2u+7w4w5NESfmiDc0fu/d9FK+MXQAsI66eYN6j0fOS/um5DP2Wrr08dHqPwFAKKH3nP67jfum9r0zImZHjndGxCv0Sv0fUEfjsigAOKQ1keK6HPGDnlp8b8bj2y6rVlNh0AIAAAAAneCkE259dRTFT2OIr4JbFwDMP1l46vQ36PXOd+HhyyY89aL+T6aIEyNiamPjYhRnAcwNt1/knC+cVJk0/wjLVAMALXbtEcftHLnyuRT5XUPdqKQmAoD13bePMDyYB72fuj9yMWf6l5b+12j0owAglMRBix98eVGpvSsiHxIpvTsiJumVpq7fo3ZZFAKse5MPp4j/TSn/sEjFt78z5yX3GcAAAAAAQJmdNP+mH0VK7xjs+VYFt3KKT5xwyu5L9HhnO2vutfumnD9fSen1jdQr8TLAA1mRc8ydc+bMLzvjAMBILTv88Am1tNkxkaMaEZOHuydKTSzl+/z9TbuWAR4yAPhs3W+movbx3f/+gnva2Z8CgDBG9vvH30ye9MTkd/ZU8iG5iNkR8TK90tDn1jG/NAoANrsH6dYc+XuRi0v3fGz7a8wOCAAAAACUzckLbz4057h4qDItmAVwVd/ESS+uVnd5RI93pjOPvXVapbLq3JTyhyIiNfq7QYcFAJ+t+M3cU/ubOYve+jsjAABoxnVHHLt35Mo/R8TOdd2kxEhn8mtXAPCZ5/Ng91PPPfFkpHzs9IuWXtiuPhUAhFG0/5krpvVMqr0jRzo0pfijiNikwe8HqO/aPyqXRgHAluzOwynHt1OKS3tW9373G3O3esLABgAAAADG2oWHL5vw0JY9d0fE9oOVGXkAMP3rwlN3+4De7kznHn/Dq4tUuyQi3jD4OW5kTOQmxtBQGg8ADr+N5yrelyMfOueMfa81EgCARlx7xPGHpxxLI2JiIzcpbV/Kt6l6zzw/fADwWV/JadXhMy666OlW96sAILTZu5f+dvveNOGPIuc/joi3R8SERj9s0fgH1NG4NAoAttzKHPGDSqRv9PXFpd8/btuHDHIAAAAAYKx8duHNp6QcCwZ7fqQBwJzibSecsvuP9XTnOXvutX+ZIr4QEdOGOseNjYlRnAUwj6T95yqvzimOnHP6Pl80IgCA4dz8V0dttnripH+MyH9c5z84GOA+JTdZb7h7rRGGB4dfBnjdv92Saz1/usc/LP51K/tXABDaYP/Pr9i60p/flyK/PyL2jYhK/Z+XaOBza5uM4wBg54y1WkT8X6R8Sf+ayn8JAwIAAAAAo6067+Ydeyrx6xjk6+ARLt9614JTd3t1iuTXgQ6y5Mi7JvVPfXhpRHykzvPcwLjoqGWAn1OJ9Pe1lY9+bM7SA1cbIQDAQK7+23m7VYr8nxHx8iHvT4a5J0pNLOX7/P1Nu5YBbiwA+Mzzj+RK/MX0C5d8t1V9LAAILXLQ5+55UdE/8ZBIxaER6YAYbKa/xq9hjEmfmQWwRIqIdE2kuCR6K1/99se2XmHwAwAAAACj4aQFN18ZEfsM9nyzswDmFJ894ZTdP62HO8eZx946rad31X9FxP6R87DnuNEx0akBwGdeA99d01f5k2MWz1xppAAA67r28OPfHpG+HhGbPH//MBYz+bUrAPjM8/UvA/ysWsr5b3b/0tIvt6KfBQBhBA49594pT/RW/riS0l/kiP2j0dBffdcwxqTfBABLqhYpXxaR/i2niV/7zpwtHvciAAAAAADa5aQFN38sIs4f7PlmA4C1nmLXT50043Y93BmWzL9pq/7o+3bkmPH8KR9uqbjGxkTUOZbaHQAcfhuD/Die0+Vp2upDPlZ9+5NGDAAQEXHtEce/L+X0rzli0vr3DiVdyrepes8833gAMCKiFrn4yPQvnf+PI+1rAUBowkHnLZ+ee+KDOcdfRMQWLWtYCLBEfSYA2AFWRcQPU8SXV0zZ9us3HpH6vCAAAAAAgFY6df5NW9VSWh4RvQM932QA8GcLT939tXq3M5w3d9nLaqn2/Yh49XMPjmEAsPFtDBICzCNpPw9WftmavnTAMYtnPmLkAEB3u+Yj8/4qpfzFge+j27UM8BiGB/NQ91JD1s058tEzvnj+eSPpbwFAqNPsJb99RUTPB1OKD+RIO7VlIwKAJeqzcRwAHJ9j7aGI/B9FpH/97lHb3eCFAQAAAAC0ykkLb/5e5Nh/oOeaW741f2bhqdOrerb8zp5/3atSjh9FxEvWeyIPfc67cxng5/52Y6VSe/ffnfaWPxhBANCdrjli3tyU82lN3Z/EcPdZjS/lu859eMN1mwkAbnh/NGzwMEfKn5x+0fmLm+1zAUAYwn7/+JvJk5+c9L4U+SMR8ZbnXzNteukIAJasz8wC2KF+miP+Pirx5e/M2e53XiQAAAAAwEh8dsHNf5UiBl2Wq9FZAIueyus/ddKb7tCz5XbOwqtfnGs9V0XEDgPPoCcAOET5K9f0pf2PWTxzpZEEAN3lmsPnfjRF+txw9zVjM5NfuwKAzzzf1DLA+fk/5PyhZpcDFgCEAcw69/5Xp0r8dUR8KFJsOWovHQHAkvWbAGCHWxMR308RX566/bb/dclhqebFAgAAAAA0qlq9dpOeNZNWRMSUgZ5vLACYf3LCqdPfoFfL7bS5yzadkGr/FxFvfP4cv/BUDn7eOz0AOPw2cj3lv/n7qWveW62+vd+IAoDucN3h8/84R/7PiOgZ7majtEv5Nn2f1mwAcL3na5HjsOlfWvpfjfa9ACA8Y/aSuyblNOU9lUiH54h3Dv36EAAsFQFAY234s3R/jvyvOccXvnv0dnd70QAAAAAAjfjsgpv/K0W8d6DnGgkApohPLTx195P0aHmdc/TVU/Kknu9HxL7rn+MXaEsAsKGx1IA8xDE0035dAcBIOf71786c+cEUyS9gADDOXXv4grenKL6TIybVd1/TrmWAxzA8OPIAYKSIlTnHAdO/tPSKRvq/YgjS7Q48f/kOs86//4ycpj6QIl2cI941/OemNn1OEclltHTdWMsvThFzKyl+eeDi5V8/6NzlB1Sr2XsgAAAAAFCn9B/DPF9fK7m4RF+WV7WaK8Wknq/GOuG/ZuQ2l2/dsG5vxZziLz93/NUCrwAwzl374QW7RhRfXz/813E3OC2Vm9ynHDElpfifZYd//DWdd9QwBmYtvXe/iHRkRPqjeG760UZeFGYBLI229plZAMfxwLkrcnyhlmv/9L1jXvqIFxIAAAAAMJhqddnUnjU9v4uIqQM9X9csgDnuOGHR7q/Xm+V11tzrFqQUpwx+jl94ToebYaZ+ZVsGONXRZp3lcyXFIX93+j7fMsIAYPy58m+O37i3t7IsIl5V943Gc/cPzc7kV/+Meg3fs49kGeA81P1R/ceaIiKn+Mnqab1vnrl48cp6zoPZj+gqs5fcNWn2kvs+OGvp/bdEVC6LSH8S64T/6FCizDQ3cHaOlM7uqUxYfuC5D148e/GD++gTAAAAAGAg1eqMp3PEZSNqpJK/oyfL6+zjr90rpag2Vmv8/kDRwlkMU5Hjy+d/8qodjDIAGH8qvZULYsDwXzvvldIY1W1X0xtWTDleP+nJ/vPqPg+GIt3gkAuXbzlr6f3VHFPvyyn9c0S8Ua8Aa+VJEfnQlPKVB5674poDz3vgsP2quVe/AAAAAADrSfHtkVTPKX1PJ5bT+fOv2yJV0iURMaEMA62u8dRgm2O8KNDmqSf+pVq9zHfvADCOXP2RBX+TIj7Q7H3GcPMDtuY+aOT1Gr1Pa+Fd4Udu+vCRf15PWQFAxrWDPvfgy2ctuf/8vjX5noj4dKTYsnWt57a9gqFE3yF0m70ip69O3ezBuw5c/OAxs5c8vIkuAQAAAAAiIlKqDDOD35Bfuj616WMbX6EXy2l1jn/KES9pZZu5zeVbN7BHp2KOeMuWKyd+2mgDgPHh2iPmvy6lvLScwYPW7lNrAoepqXo5xYU3fujvXjlcHQFAxqUDL7jvTbOW3PflWq3/55HiYxExtfQfsCipbNx0px0j5bNT0XffgeeuOG/W4gd21CUAAAAA0N1OPPmNv4mInw703LDfEad02ZylO6/Wi+Vz1rzr/jwiDh6u3IDn2D+0b0yOeZ879tpddQQAdPpbeqSc43PRQBZnkJvkEh5duZYXThEbp9TzheHKCQAyrsxeet87Zi29/0dFkW6OlD4QEaYS7xY+ZNMeG0fEnEpKdx147or/OHDxQ2/SJQAAAADQzVJTywDnnL+v78rnguplG6WIM0c4JnTks+N8+CK9RSrOy5F1GgB0sOs+Mv8vI+JtY3uvVK6g3sibTkM99c6bPvLxPx2qtgAg48KsC5bvO2vp/T/KkX4UEe/QI0Bjhv1aojci3h+puPnAc1dcOeu8Fe/UZwAAAADQfYoovtNUxUr6rt4rn1Urp54YES8u356ltrRZimWJU97vgrlXv9/oA4DOdOXfHL9xTnFaq+4bcpP3RO3Z3ljdp9W12cW3fuDYaYN+3DA06WQHLLn/XQcsXX5tFPmKGJPgX27XCxc69zuE8W+fShE/PHDxiitnn7PikMj+pSIAAAAAdIs8cdIVEfHE4CUG/LrwNyeevNtdeq9czjju2p0jxSdKNb7aXL6xYdvGijkvXnLktZsYhQDQeXp6K5+JiO1bdDPRRq3dp9YEDlPz28vx0trklfMGKy8ASAd+us5p9pL73jdr6f23pBQ/SJH3HOsPWGDcdKV9UopvHHjug9fPXvzgHwsCAgAAAMD4V63usiZH/LCxWvk7eq58enrSmRExqaEzOdCDqcHyRETaNk3pO0Y/AEBnue7DJ+wUkT7e4vuCMt6rlHSf0rE3/c3Htx/oWQFAOsr+59938AHnL78pp3RJRLxRjzA612Af0RnSjBT5v2ef+9CyA89dcbDuAAAAAIDxLeX0vYEeH+yb5JwrP9Br5bL4+GtemyPe49v/1qu3T1Okj5957Pem6TEA6By1Su2TETGhRHfmZfy00M7ZlSfn3nzUQE8IANIRZl2wfN9ZS++7vJLTpSniTXoEaL0GvupJAz2Ud48clx64eMW1s89ZcYj+BAAAAIDxqSeKKxoonnsiX6XXyqWWeo6Llv5i3I4fn9vzg/aYLTO8oS2mpY3+xmgEgM5w3cfmb5Ei/qq5+4Y0VvcbbbrXGrvgYcrpiJv/6qjNXvi4ACClduD59+45e+n9l0aRr4hIbyvnXrbpUmQxUTrhfY2B7JlSfGP24hVXzzpvxTt1BwAAAACML/MX7fbTiPjd4CXW+9L1lwsW7f47vVYepx9/0/aR8l+Udf/aG9BLTT3VdJvD7XvKx1Srl/UalQBQfkVfOjIiprXjnqDZe43cZN1mUz6tqZdGur1N8oS+I174oAAgpTR7yQOvm3X+/d8ocuXaHDEmS2qa9h3jhhHehuxdKeKHBy5e8YNDFi/fXY8AAAAAwPiQIuUc+do6C1+rx8qlJ9U+ERETm62fBz7PjZUnIlLkiB23XjnhMH0BAOW27PDq1Ij4WDvvC8p4r1LefUpz7jryyEnrPiMASKnMXvLAVrPOv/+8nIpbI4clNCnRNdhHdJr2rlpUlh24+MGLZy958BW6AwAAAAA6X4rKgMv6vvCb5FxY/rdMqtXLeiPlv1r3xwTf/rdeQ31axEf0GACUW39e/acRsaWgXgP71N7Zlbd/fGUctO4DAoCUwv5nrpg2+/z75+ZK8avIMSciTPcNjIEGvpZo7A07ReRDUy3/dPbiFRfuf+aKrfU1AAAAAHSunPOV9ZSrpLhGb5XHRiunvjMi2vT9bOqQNtu9zHCDbad46+ePvvrFRicAlFeR0vtHft+Qxux+oz33WmMbPKykWO+cCAAypvar5t7Z59/30Z7JtV/lHKdFjo31SmmuFxhrtN6EFHF4b2/62YHnPnDcftXfTNYlAAAAANB5Nntyo2URsXrwEiki8hM73/WrO/RWmdT/4/VYam9ALzX1VNNtDq9Sm5D/1NgEgHK6+kPVzVPEu8f4Hm4E90GpJfdbra2XRry9HPngWz9w7LTnbqgMVcbK7KX3vWPKFvffnHP6XI7YprM/YJkgHqOBhkbJiyKnM6ZuOvWu2ec++EH9AQAAAACdZc7SnVdHxA1Dl0rXHnbJYTW9VQ7V6h0ToxJ/1Iq2BvwdIDVYnuf6JkXxfj0BAOWUetb8SURMrLP0SLZUxqMv8z5NrU1eecizfxEAZNTNXvLbV8xacv/Xc6Qf5Uiv1yN0zjXYR3RaPqZeknL+5wMXr/j+7CUPvE5/AAAAAEDnyCkNuAxwfv7/r9VL5TFt5VMHRI7Nn38kbXDOGG3PnoO094Vzr3yZ/gCAMt70xmEDv3+X8Z6iZPuU2n1qnp/dWgCQUbPfBQ9tNGvp/Yty6rkjUmv+hRVAO94mx+A+4t2plm45aPGKxX+8+A+bOQcAAAAAUH6VSFcP/Xxco5fKI1XigFHYSoe02e5lhhsun/rzWC8tCAC80NVHHz0lUryt7Pc13btP+Z0XH3pozzOfPaDNck6zL7jvg5Nz388jYl5ETNIpHX6tAdphQkQc1R+rf37g4hUfrlaz92gAAAAAKLH+vrh5qOf7+uNWvVQiRezTSbvb3sBd+YKKOfI+BikAlOx+5Ompe0Tdy/82fx9TX700yturp14awfbSiPczRdr45S/a+o0RAoC02YHn3/eqWRcs/0HO6Z8jYvuOvKC1/dLAuHwj7MSdFjYtxbjJEVuniC/esOlD1x903vLpegUAAAAAyql6xhvvi4iHB3n6D9Uzdl+ul8phSfXaTSLFG1rZ5oC/A6QGy5fRGPxWkCMiRWVfIxUAyqWSiyben0dyM9GuG5Ey7lNrjqeS0z4RAoC0ySEXLp86a+n91SLS7RHxzlK/Lhif2jbWBD0ZLXl6FJVrDz5nxXmHXvDQRvoDAAAAAErpjoEezBG365ryWLMy7R0RPUOV8e3/WHn2B5288wXHXbat/gCAEsmVfYZ+/y7jPUXJ9im1fRMCgLTH7AvuP6SvL98ZKT4dTUwFClCCO5my3Ef05hRznl5d3DZ78QOznRcAAAAAKJeU822DPCUAWCI5pVH88bpT2mz3MsNNhCrThJlGKwCU5P4pIuWU9+qU+5qu3accb4kQAKSFZn3+gR1nn3//pTnHNyJiBz0yzq81wGheA3aqRPr2gYtX/MeBZzzkX0ACAAAAQEkUlcrAQb+c79A75ZEi3tSJ+93ewF0pg4pvMloBoByu//AJO0bE5s3OktyeemmUt1dPvTSC7aVW7Of2t/7t324tAEgLPn3kNPv85YdHrbgtRxw8Lg+x7ZcGunvclIiwadlPz/vThOKnBy1+8HC9AQAAAAAlUBQDBgBz9PxE55TKK9rR6IC/A6QGy5fRGPxW8EzfvNxQBYCS3Oamkdw/jeRmol03ImXcp9YcT3//hJcLADIiB1xw7ytnnX//ZTnyhRGxcce+LmDkH+lhtEbXZhH5woMXP/jt2Uvue4keAwAAAICxU0yadHsM8LVeManXDIAlkSOnFLFjfWUZG8/9eCgACABluYeq5JfX+f5dxnuKcu1Tm3erUskCgDRnv2runX3+/XNTrvwkUnqbHqHcnxdh/I21HHl2pdb7E7MBAgAAAMDYqVZ3eTJF/OYFD99fre7yiN4phzOOv3m7HDF18BKlXAq3tNq7LLEAIACU6E1/p/Y1LjzYyn3KOQkA0rhZFzywx+Qtl9+YI06LiEl6pIuvNTDO72g6wKYR+cKDz1lx6XuW/m575wwAAAAARl8Rsd4ywCmy5X9LJPXUdhonR1JXqdxgm3mM9nMQ21xQvWwjoxYAynDrkV7+7Pt6s/cL7amXRnl79dQb2+WFUzIDIA04tHrHxNnn33dK5OLqiNi1244/t/3SAB31HQJluj6lOLjWX7v9wHMf/FO9AQAAAACjK0X+2bp/z1H5hV4pj0rOO5Zpf9o8g14rB/aY9E1eOWEHoxYAynDTUozwPdksf62+v8uDHE/OsYMAIHXZ//MrXv/EVptdmyMtiIjecfKagrZfksVBGcU3/M1Tzv958OIHvnzoBQ/5F5IAAAAAMFpy3LP+A8U9OqU8ihybNHY6Gz39A/A7WBPWdlolx8b6AgBK8d686VjfF4x+3TbuUzvvD3NsIgDIkPar5t7Z598/t1KrLYscu+kROvTzInTNWMuRPvD0muL22Ysf3MdJAQAAAID2q6S4e70HNggEMrYnKKYNX6gdX/CO3x8o2jmLYRHFNIMWAMogTW3v/Y4ZAlu2TymmCQAyqNlLfvuKyVsuvyxHnBYRk/SIaw10n46dw3HHSuTLD1r84GnTL8wTnEcAAAAAaJ+iku9e9+85JwHAEqkUMXX8HE19PxTlBtvMY7SfA56vqAgAAkAp5Gnrvq+3btnaVtRLo7y9euqNaaBHAJCBRmdOs5fef2Su9NweEfvqkNG8NEBHfYdAufVG5LnbPr3if2cvue8lugMAAAAA2mPaU6vvjnV+GCgmVwQASySnVLoAYG5z+ZYZg98Kaik2MmoBoBRacA9llr/67u9Sk/WeqZsFAHmB2Use2GrWBcv/J6dYEhFTuuA11RkfsOjoEWHcMLbXm7RvpdZ78+zFD8zWqwAAAADQescsnrkyIh565q8rP13d9Xd6pTxSyg0HyloS0PMP7Zs5W5HG1YyNANCZcrVaiYjJY31fMDZ1O22fwhLArG/W0uUH5EpxW0QcojcYZ58XodvH2paVSN88aPGKkw+9OPc4UQAAAADQauk3z/zhtymSfxdeIjmiUt8JaccXvGk892t7ylfSBKMWAMbWjcuX99R/I1PSUFwZ9ym1rWKvACAx/cJlE2Ytvb8aKX87IrbVIwDrGjff1VUiYuHT9z/0v+9Z+rvtnVcAAAAAaKm7IyJS5Lt1RbnkHE+PryNqT1CxNN+E5+JJoxYAxtaMiy7qi4i+Dd6mm317b0u91PLtlfM+rS5PCQB2uf2XLn/Nln3bXR8pPh1rwyG07hPKOLte0HWMtfF6bXprrb920+zFK96hLwAAAACgNXJaGwDMKf1Wb5RMiqdKOWZKVn6I/hvViinSUwYtAJTCky24IYhOmuVvbAOOaSTbe1Lgq4vNWrr8Lysp35Ai3lSy11S5P8QbOhg3dP642aYS8b2DFz94jF4GAAAAgJFLRfHbtf8vAFg+ualAWUsCd/6hfcOKVBEABIAOvodq8V12Ge/8y7hPT/UasN1nv3/8zeTJT008PSLP0Rt0jRRtSlNln+DpVL058tkHnbtij8qU4kOXHrH907oEAAAAAJqTKvFQzhE54nd6o2SKylORcp3f5rftxwSizl9UimQJYAAoxft2err+JEQZ76FGsk/tOp4UkXKTTQ+5T2YA7DazPnf/qyc/NfG6iBD+A2jg9qah993OOrQ/K57uueKQ85a/zHkGAAAAgObUcuWRiIic4g96o2yKJ8Z2+6lj2hyzZYbX0ZPTE8YsAIy9FPF4K9//c5P3NbnJe6I8lj032nIWAOwmsy5Y/idRpOsiYle9MWqvsnFzvaB739XpimvV7kVRueng81a8U18AAAAAQON6o/ZwRESO4mG9US65J99b2n0rWflBpdGruLp/pWW0AaAMUtzbohuC6KSlfFsfcGykXmquXkr3CAB2gUOrd0w84Pzln4ucvxaRN+2Q11S5PywaVhg3jL9xs0Uu4rsHLX7wo3odAAAAABqTU8/DERGpWDsTICU6N7XeXzVdtxXl/UP7Rjxy9Llvf1Q3AEAp/Kocu9E54cGx+yySfi0AOM69e+lvt39iy80uT5EFOqBt12DRPsaN3oj8uYPPWXHeoRfnHt0BAAAAAPXpn/CHhyMiitxvBsCSWTVl+n0RsTqi3m/zJfbaKQ/95K/0EACUQ8rp1w3WKONRjFHdYdpt8ezKKcevBADHsdlL79+nJ3qXRcTeegNgpBoIenb490M5xZynl6/45uwlD2/ivAMAAADA8KrVt6+KiKdjyhQzAJbu3KQiIu4e271IHdPmmC0zvHbzAoAAUBLFEDMAtn6Z3DSC+w0zBKYQABy3Djj//o/llC6LlLfTG2Mtt+0VDOPwvYnSXLrSrEqt/7L3LP3d9joDAAAAAIaXIpZXq7s8qSdKeXZ+WdY9yyUrP9QAb3fFFAKAAFAiv2rhDUGMRfAgN7lPuW3bq6dearhe34R+SwCPN7OX3DXpgPPv//sUcX5EnqBHyvOBDIwbOm/c5N1r/bUbDlm8fHdnAQAAAACGVkTcpRdK65bR2tCA3+f6h/b1vYZy3KwXAKAcZm7f+5uIeLQce2OWvyFuPle8+XOfWyEAOI4c/Pl7X5wrU69MEX/TcTvvgw8dP9ZE+xi3ti+icvlBix98l64AAAAAgMGlEs8y1/XnJhdXPPvnXOfZbKw8jRisT2sTeq7UOwBQkvunarVIOa5u9I64jHfppdynFs2unFL8OCJCAHCcmHXBA3v01yrXR8QMvQGDejQi/jDAf4/rGurTwFc94yvYvHFE/taB5zxwmDEAAAAAAANLOf9WL5TTxCn5moiojfEI6ZA2x2aZ4RRx11Gn7vWg0QoA5ZEjX9nq9//c5H3N2PyjjPIveZwjXRkR0Wu4dr5Z59//Z5GLf4iIKXqj275NiPH8T89Wxdpw3iNr/z89Ein/IRXxSK6kP6QiHilS8Uglpz/UUnpkQu7/Qy4m1iIi+vOaR3snFzki4lsffdmjkVJDvVSt5soNW/920740acKEVWmjqNRelHNMK1LaqBKxUY68WeS0cUrFxhGxVY60XURstfa/tE1E3sxYYxyamFL69wMXP7DVt4/e7gLdAQAAAADrKyr5Sb1QTnOqez1+5rzrb4uI3cbD8eRo7CflxsoP8YNA078VDF8xp7jCSAWAkt3f5nxlJaVW3RC00eD7NPx90MB1G73fam29+vu4VmQBwM6/u89p9vkPfCZHPiEsolvyD1jZKXrB+0REWhER9+Qo7k2R7s0Rv00pfpsi7uut9dz7jaO2ac2/8vq7xqtUq6mIteHDiIiHGq1/aPWOiSs32WSrvtSzTaWn8uIcsVPkvEOK2CFy7JBT7JDWBgah7TcKLVZJkc4/6JwHtv7WMdt92lkBAAAAgHXkigBguV0RoxQAHPD73CF+x/UrUkTOYflfACiZx6c8ef1mqzdZHRGTWtPiSMKDnRU8HCWP/ebxFbdFCAB2rP3PXDGt54L7/zmn9Kfj5qDMMDbeFJHi7ijynRGVO1Ol+FlRpLsqPXHvgxO2W37jEalvvB74JdVd1kTE/c/8d9Ngr+HUk3es9KaXp8ivSTleU6R4bcrxmoh4keFDua/X6VMHLV6xzdQXb/OxSw5LNR0CAAAAABGVlJ/QC+WVcvpuTnlORL2Bu+d/uBLQa70X9GnR25e+r1cAoFwOXLp09dWHL7wsImY1cNcVgnp17lPKI9qtHPGDwy65pBYhANiZL7ALHto2575v5kjT9QYl0B8Rv0oRd+SIn6UUd+Scf7pRf/GzS4556UrdM7DvH7ftUxFxxzP/XfrC13jqr702R351SmmXXKTdUspvzBEb6bkyaOCrnvEdbD7iqfsf3Gy/av7Ly6up37gAAAAAoNvVsiWAy2zjP6QfPr55fjgithi7vWjHl8bt+SK6vcsMb1D3io8unnm/UQoA5ZMi/iMPEgBs/TK54y082K7jWdtuJcdXn31EALDDzF7ywOuK3PetiNhRbzAG17++iLgtIq5PKd9Q1IobN3708Z89M+MdLfLtj229IiJWRMRlzz526MW558kVK15dKfLuRVSmp5R3j7VLFWysxxjDy8/7p2324MRDq3f8mesAAAAAAN0u5R4BwBI74qIZfWfMu/5rKeLw8XA87Q3oDfHjU9O/Sw1eMaXnf7wGAMplQvR/fU30roqIyS24IWjj/c/g+zT8fdDAdVsfcGyk3rB9/MSqjXu/9exfBAA7yKyl9+6XU/FfYXnQDv2A1XETxOeIuCsibsgR10eluGHVtL6bL//rnVY566PvmWVW73zmv3+NiKhWc+XGLR54Va1Ie0fEWyJin4h4Vdt2wjLdHXS9GdWdeu/Tm27xX/tVf/O+y6uuDwAAAAB0sV4zAJZdrhT/kYrKqAQAB/w+d4jv2bt4meH+nlp8zegEgHKacdHpj119xMLvRI73tqbFMs6oN1bHMyLfmLl48XOrcgoAdojZFyz/i5zz30fEpHF9oAJGY+mpiLgyR1yZIq6v9Pbd8K2/2+EPuqW8qtVURMTPnvnvHyPWLh8cff37RIq3RKR9I+JNEdGjt2izg6ZtOuXSQy5c/keXHrH907oDAAAAgG5UKQoBwJLb6a7f/vieV+z4QERsN5pL3DKkyz561j4P6QYAKK9U5P/IKTUQABTUq3ufUm5ut4r1Z1AWAOwAB5y/fEHO+WSfK2ixvoi4LuX8o1pKP9rkkT9cZwnPzvfM8sFfe+a/eM/pv9u4b0ptv0rk/XPOB0SknfVSKzTwVU/3BJvfVXu68u33nP67Q74xd6snjBEAAAAAuk2l6BMALLnDLjmsdua8678UESfWV6MdX/B2SpuNayZUGTkuNDIBoNz+MPmJ/9ls9SYrImLb9m9NeLAOv809q7+77gMCgCV26MW55/GHHliaIn9Ub9CCa00REbekyD+KnP63f03liu8ft+1TOm98eyaIdekz/8VBix98ea7U9o9UOSByfkdEbKKXaOGl6G21ibXvHHrBQ7Mu+djWvuwEAAAAoKusmbSRfxjbCfr7zo/eCcdGxJRuO/TGAnopcuQWz06ywQ9adz08beZ/G5QAUG4HLl26+uqPLFgSKZ36wvf1ZmdJbk+9wcMzY7efjYUH19/eIHVzXjzjixf1vfDIKaHZS+6alHum/UvkfGjXHXyHzpSV2lByxP2W4v4o4tKc4ge5v3b594556SNeXTxrv2runbrZAzMjxayIyuyI/Ma6Bqhluht/Lecx2epYds1lU4u+gy455qUrjRMAAAAAoGzOmHfD51Pkv63v+9bnv+Bt9PvZQcvn3HidYcvnke3TIMeehu+WBtt/vmJO6W/nnD7TDIAA0AGu+Oi8F/XUeu6JiI1f+L6eGrlZqOc+Y8i6w/0DhaHus4bfp8Hvbxqvm+o8nhc+nYZoN0U8MmlC/w67fO5zT47kHpJRsP+ZK6ZVptS+FhEHdG0ndGDAqDQBwBS/Tjm+WeS45LtztrsqUhLXor5rz+dXbD1hdX5bTnFIRDokIm82Xl6fY/2qb3Wfdcib9w+eemzley6v7rTKWAEAAAAAymTxvBte3h/5FxHR0+i/im9JCFAAMCLiob6+tOMxi2f6h+QA0CGuPnzBORHp6Be+r7c+yJeHuZ/Jdd+7bXif0njd9gYAn3k+D3Y/lV/YayfP+OJ5J470HpI2m73kga1ypfh2RMzo6o4QAGxELSKuTEV8I6ee//nOnG1+5ZXESE2/ME/Y7ukV+xQpDkyVeG/O8cpOfn2W4ZXfdbMArj3kS6c99vD7LqnussZYAQAAAADK5My5110SKb1vTGYBzOu3OWz5utvPze3PEMfdaABw+G2srZhzXjjnzH1PNRIBoHNcefjcl1Wi966ImLju+3q5ZvJrVwCw8bptCAA+3ZfTy/f60nkPjvQekjY68PzlOxSRvxcRr+76zhAAHM7KiPyjSOnSlHq/8e2Pbb3CK4h2OuCcB3bp6YlDI+LQyPE6PdLE67kLA4DP7Ox/P/XoNoddXk39xgsAAAAAUBZnHLfsFamnuCNFTBq+9PgJADa+jTzEMTTbfr5vVfHka44764CnjEQA6CxXHb7w9BRx/AtvChpfBlh4cL269SwDnKM6/UtLPtOKe0ja5KALlr+2losfRKQX643o2BnG2hwC7IvI38spvrLxmuJ/LjnmpaZEZ0zMXvLA6yLHn6Yi/2mk9Mbu7g0BwDp9ZY/HtvlgtZoKryAAAAAAoCzOmn/9osgxb/iSoxcAHNk2OmQZ4Fz82ZFn7vtVIxAAOs+Vf3P8xpXeCT+PiO3WvSFoPAA4zH3GmAQAB6/b3mWA6woA3rN6o57Xzly8eGUr7h9pgwMvuO9NRY7vR8RWTkkD14ESak8AMF8bOb4SUfnqd+Zs9zsDg1Jdv86+71Wp0vOXOcVfRsRO3dcDYxMA7MQ38Bxx3reP3vYorxoAAAAAoCwuqN6x0dOrnvp5ith+6JLrf8HbmhBg1wYAf/zxM/beL0XKRiAAdKarj1jwwcjpn9e9IWh9kC8Pcz8zFjP5tSsA+MzzQywDnFM6bMZF513SqvtHWmz/zy2fXimK70XEFk5LQ6/lUmphAPC3kdO/p0rtH7798Zf8wmCgExx03vLpOccHI9L/FxFbds+RmwWwgX1e8M2jt13k1QIAAAAAlMVZ82/4QOT85eFLjp9lgNsdABxiG7WcatPnnP6WW408AOhcOSJdffjCH6eIfS3lO3TdFgUAr9z9i0vemoZoRNJsDB2wZPlbUqX2zYi0idPS4DWgpEYUAMzx+xz5q1HJX/nux19yjQFAp9rvH38zedpjkw/JKT4QOWZHRO/4PmIBwIau7Ck+8q2jtv17rxQAAAAAoAxy5HT23Bt+ECneOVzJZ3V6ALDxbeQhjqH+9nPkc+acsc8njToA6HxXfWTBm1JK10bEpOaXARYeXK/uwAHAlalSzNj9wqV3tu7ejpbZ//z7312J/PWImOq0NPE6LqnUTOkcV+ZKvmDj3z/6X5dUd1njxDOevGfp77av1fo/nCM+HBEvHZ9HKQDYoP6c433fPmbb//EKAQAAAADK4PTjb9q+p9J/awy5us3oBQBHto3SLgN8c1756N5zlh642ogDgPHhmiMWHpNznN18AHCY+4wxCQAOXnc0A4DP1kuRP7r7F5d8obX3drTE/uffd3Al4pKImOy0NPWaKrU6z97TEekrRS4u+N6cl5jmnHHv0Itzz9PLHzwoIh+RI2ZFRGX8HN3YBAA7/N1iZY7KzG8fvfUtXh0AAAAAQBmcPf+G9+Scvx6DfvW6/he8rQkBdk0A8KnoiRlHLpr5MyMNAMaPHJGuOWLhdyLnAwa/v2hXAHAkM/m1KwA48PN136flDe43vz79i+e9t55zUTEcR9es8+89sBLxtRg0/Mc498sc+ZhJ/Wte/J0jtz9c+I9ucclhqfato7b9xreO2u6gIscrUuRTI+LBrusI+e5n/e+0x353p24AAAAAAMrik4v2+EZEfH7wEu34gnf8fmm87s/XKaejhP8AYPxJEbm3Z8JfReSH2nO/k9q352W8f1u/6fv7J/Z/2F1lCc2+YPn+ORf/E3WF/5yaDT4ddM4F7oWKiPh2qqQL3vy77b5frabCiYWI2UvumlQpNv7LiHx0jtil429txuC61qHvFD946rGV77m8utMqrwIAAAAAoEzOOfrqKcWk3msi4o0Dlxi9ZYBH1v4ozgKYh2s/f/XIM/b5M6MLAMavq484YVbk4psR0dP4LIB5mPuSsVgGeLhZmtu+DHB/zunde3zp3MtHdK9J683+/H3vyLX4ZkRMcWoa+izRcdLzf3giIl1UqfR87lt/t82vnUwY7HWe04FLHjggchwTkd7VmRdAAcA6D/3/eqYWB156xPZPG/gAAAAAQBmdvfD6l+ZaXBsR22/47OgFAEe2jZIsA5ziur418fZjFs9caWQBwPh21eEL56TI543uMsDtCgAOXnc0AoAp4vDpXzzviyO+16S1Zi+9f59cyd+NHBs5NU3ovBDg4ynH54v+4ozvHfPSR5xAqN+scx/cNeX8sZTyB6LuwHQZjE0AsJPeLVKKayure/b/xtytnjDSAQAAAIAyO3PBDa9PRb4yIjZd/5n1v+BtTQhw3AYAf1P0VvY+6tS9HjSiAKA7XH3EgnNTjk/Ue7NQ133GMHWbn8mvXQHAgZ+v+z4tF4tmfHHJgkb7Xsqszfa/4P6ZlcjfjYiNGwt9ODUNfkYpgxUp4uyVlQlfuPxjWz/pxEHzDj7n3hcXlZ7jI9JHoiOCgA1es7tvFsBlq1dPfNcP523+mNENAAAAAHSCs+beMDtS/kZE9K7/TCcsAzzmAcBHUk/sc+SimT8zkgCge+RqtXLd8jVfyxF/XM8NQ133GcPULe1Svk3UyxFfnXHRuX+emkgUSJm10f6fWz69kosfxbr/OkgIsIkrROn38J6IOGPVRmv+4fK/3mmVEwatc+AFD20b/bXjIsffRsTUcu+tZYAHcWt/7nuHGVEBAAAAgE5z1rwbDo/IX4j1vorthADg4G2ObBt5iGN4zqrIMWvOmTP/zwgCgO6z7PDq1L605keRY6+o+94kD3Nf0gXhwRRXPLF6s/3f/k/VpnJHEmZt8u4v3Ltzby1dkSO2aeJe2+lpus9Gdcd+naOypJKf+sJ35uy82omC9jnkrOVb1nrSx6MSR0V+4ZILZSEAuOG+pZ8XfWm/bx+/9QqjGAAAAADoRGfNv+F9kfO/RMTktY+MXgBwZNsYk1kAHy1S/qOjTt/nx0YOAHSvWz9w7LSnp0z894g4JOq+N8klCwAOXrfVAcAU8cOV/RP/ZN9/OOOJZvtcwqwN3nXh8pf19hdXRsRLGxqTTk/jr+OxcUdE/sxeD7/4a9VqKpwgGD2HnLV8y1pvfDIizYnSzQg4NgHA8r5b5F/0R+9+3zt6qweMXAAAAACgk5019/q3RiX+O3JsPsAPtg0ZOAQ4LgKAy4uiMvuos/a6zYgBAC4+9NCel26+85LI8Xf13Zs0GwAcyUx+7QoADvz8QPdpKeJfcjz9oRkXXdQ3kv6WMGux2Use2Cr31H4cEa9pYkw6Pc29lkfL/Smlz678/Xb/cHk19TspMLbX2lTkEyLS30VEbzn2SgBwHb/NteKt3z52+3uMVgAAAABgPDhn3o2vLP5/9u47Xorq/v/4+zN7L03BRhN7wRJbTNQYTdHEhgK2gC2xJAqKgqAoYl1FUZCi2LGXWCCxgIg1mnxNNImxJSZRbAlIRwULcO/d+Xz/QKMCt+zuzO7M7uv5ePj7/qK7M7Ofcz7nnNn93DPKTZO0VfS7AKa+APCdjOmAU6/Y4216CgAA+LoXTzr3dDeNkxQUvpNfXAWAzR27gEf5NvHfVn2fTfhut7WGWDZb9OZjVJhFaJ+b3lmrpqH1s5J2bmZtTBPly8t66o9NNqp9fe7qyWdstJTGAJKj1zWzt8nl7DJJhyZjwOQxwJL+m5P/+PEh679PDwUAAAAAAABQSa4c+sfOlqm9V+Y//fLfxf0Y4OKO74VdT5NW+XH+dwoajhx0+Y8W0EMAAMDq/Knf8ENMdpvk6zS1xmh6bRJ98WD5CgBV5wrP3HXi1ddGFWOqyyLSZ9zMtp+01hOS/bAF62KaKP97iXJYLrfr6oNw5DOnbbiIRgCSq8eEubtb6KMk/ai8V1L1BYCzMx78eMoZnfkrTwAAAAAAAAAVKZv1YM3lfxkq1whJreIuAGz0PS06R6y7AOYkXdL13VmX9Z3cN0fPAAAATXm+37CNa5S52+U/asE6o7EFUwHva26dFddjgBt7n78TmB35nZvGvxRlfKkui0CfSZ75ZMGs30p2cAvXxTRRvkpbABjK/ddBEFzw2Gk8vhJIk4Oumttb8rEubVmeK6jexwCbNN8V7jVtSLd/0RMBAAAAAAAAVLpxZ/95lzDQryVtVYWPAZ6tUEcPunKP39MTAABAS03q0yez0bpbDpfrIkk1jawzGl2DNL2eKfQxwHEVAK763800qaFVw0m7X3PNkqhjS3VZBHpcN+sGl07OY11MExXCS3KOx11+zhODNnyNgAMpHZMnzGhtufZnyPw8SWuU9uxVWwC4yF17P3ZG17/TAwEAAAAAAABUi+uyz675+fJ2owNXP0mZlr4vzQWALn8wCBpO5pG/AACgUH/sP/z75rrZpO1WXmmUvgCwuWNHUgD4sbudvdvN426OK6ZUlxVp/2tnnWumy/J+I0WAijdmeafCOyYbOH3g+tMJNFAZekyYtaGFwWjJjiztQFp1jwH+OFD406lDur1MrwMAAAAAAABQjcae89edpXCCpB+05PX5Pga4uB0GvbDrWfVVb5pp0KArdn+SFgcAAMV6NputaTN7+QCTLnZp7a+vW6J/DHBcBYDNvjeU7I5WQTB8pxvHzI8znlSWFWH/62cebW73FBRHCgAVb8xaHNt6dx+3vH1d9rkTNltGkIHK03PcnN3CjK6Ra7fSnLGqCgA/k4c9pp3R7f/oaQAAAAAAAACq3bhhf+nl5tdI2qSp18VdAPjN9xS9C+DnMl1pn310+aBrDlxOKwMAgCj96VfZdS2z/CJJp0rKFL4LoDezZir5Y4BfdtfA3W4e96dSxJHKsgL1uG72fq7wUUm1BR2AAsCYY9YiT+TCcOBTp280g+ACla3PJM98PmfeAHe/VFKHxEyt6X4MMMV/AAAAAAAAALCSK4e+tobVLOtn0mBJGzf2uhQ8BniJu93kNTXjh4zcZQ4tCwAA4vSnfsN2MNnZko6wRmux4noMcKQFgK/IffQuG6w1ybLZsFTxo7KsAD1u+GBnD/33ktoXfBAKAEsQt0Z9IPmQxwduOJmAAtWl9zULujXkGq6S1CcRU2t6CwCXWqBej57e9Rl6FQAAAAAAAACs6qZ+L9V+uk54hMyHStpp5f+e3AJAn2NmV7f22hv7j9plMS0JAABK6fl+wzbOyAabdKJWqcuKqwCwuWO3pADQnpZp9K43jX2qHHGjsixP+17z326ZIPizpA2LPhhFgDHHbBUNcpvQamltdsqwTp8QTKB69Rg/p4eZrpO0Wdmn1/Q9Bnh5KD90+pD1p9OTAAAAAAAAAKBpLrexZ/95nyCwX7h0sL54Sk3cjwG2VQ/clHpJT0t+f/D5xw/wqF8AAFBu/3fKOevU5uw4mR8h1/e+Wt4UupNfLAWAc+T6jTJ++643jnulnPGiqiwPfcbNbPtJK3tOpt0iWvHTVLHG7BteCmSnPDaw20sEEcCXY/pnVjNMpnMktS7b9JquAsB6d/V57Iyuj9CDAAAAAAAAACA/EwbOaN3Q7qP9ZN5H0qGS1vzGCyIsAPzme1Z7zFCuF8xssmd0/+CRu8+jhQAAQBL9ZcB5G4X1DYdJ1kfmezb+Sm9mzRRJ8eCHLk0zs8mfrb/m9L2z2YYkxIiqshbKZj14ofMHk8x1eGQHpQAw5phJkj5309lPnNrtepk5AQSwsv3Hzdkuk9Ft8oiKu/Mds9PzGOCczI+aNnh9Hp8OAAAAAAAAAEUaN+RPbYNWNbuG0o+++CF7D0kdYnwM8DIz/6sUPB+6/VHLP//jkKv2/piWAAAAafLiiWdvaJnghy79QO4/lLSdpOCr9U+huwA2+t8+kPx5N/0xMH/+vUUzX+87eXIuaXGhqqyF9r9+1mVynRtpwCgAjDdupj+5hcc9cepGbxM0AE3ZK+s1a6w1Z5ibXSipVUmn13QUAIYyO27a4C730FsAAAAAAAAAIHqT+kzKfNB90x08F27j7lvIbHMz20LuW0jqIqm2Bd//1klaINO7kr9rbu9KeleBz/i4dYdXstnt6og0AACoJP93yjnr1DTou4H5Fi7fIpBt7vItJG0sad1vvrrRH+c/MWmmLHxXbu/K/V0F9m7Oav7+/RuveD8NcaCqrAX2v27WsZLujCVgFAHGEbPlLl3YoUu3sZP7Wo6AAWipA66at2Mgv1Pyb5d0ik32Y4BdppOmDe56Kz0EAAAAAAAAAMpjUp9JmYVbrN9haab1mgq9bY17e8vlPm5oZcva5HKfz2/zg8XZrIVECgAA4Cuv/WLoGss61LYJQl+rPudrSFJtxj6zXP2ST2raL9v7+uynlfA5qShrxr7XfLBnEPgzklrHEjAKAKOO2cthmDnuydO7/oNAASjEd2/y2q6fz73ATcMl1ZRkik1uAaDL/bRpZ6x/PT0DAAAAAAAAAAAAAIDkoaKsCT1vmLlBfRi8JHnX2IJGAWBEMbN6yUcuaDXnsr/136WeIAEo1oHjZu+iwO6U9K3Yp9iEPgbYZGc+OqTLOHoDAAAAAAAAAAAAAADJREVZI/a6/b02rT+r/b1Mu8UaNAoAo4jbPwPZcY8N7PYSgQEQ9VzQbnHrUZINinWKTWYB4PnThnS9jF4AAAAAAAAAAAAAAEByBYRg9Vp/XnvD6or/ystpmJUD4jZu2Zp136X4D0Acnjths2WPDe52usuOlGlxbGN20uq73S+h+A8AAAAAAAAAAAAAgORjS7nVOODamYPc7OqSBY1dAAuJ2RJz/9X0QRv+hmAAKIUDr529iRp0r2R7xDJmR1jjbcW9efy0wV3PoMUBAAAAAAAAAAAAAEg+qslWcsB1s3/gHj4jU6uSBY4CwHy9bGGu7/RBG79DKACU0l5Zr2m31tzzZbpALdpFN3UFgNdMG9J1EC0NAAAAAAAAAAAAAEA6UE32Nftd98FGJv+bpE4lDRwFgC3/9K5r5Z8PnT6o+3J6LIByOWj8nIPc7B7J145szI74Ke8FzBY3TRvc5RSZ8bx5AAAAAAAAAAAAAABSIiAEK3z3ppdqA/P71ILiP5TFJ5KOmj5wg4EU/wEot2lD1p+WC4NdJf2j6VfmUUtX1vpuu3PXxV0GUPwHAAAAAAAAAAAAAEC6UAD4hY4NXa90155lOXleRR9VWZvxTwuD3R8/bYP76akAkuKJMzq//Xlt5vtm+k26P4n95rPFnU/MZi2kVQEAAAAAAAAAAAAASBceASxp/2s/OFjmD+UbDx4DXAp+d21tcPLU/t0+p6cCSOYw5XbQ1XPPdmmkVltYX57HAFvLXvTQZx936ftc1hpoSAAAAAAAAAAAAAAA0qfqCwD3vXFm9yCnlyTrUNbgUQC4smVm3n/6qRveRZoCSIODxs85yM3ukXztgsfsiDd5berM5nq07ZJFh0/ObldH6wEAAAAAAAAAAAAAkE5VXQDYZ9zMtkva2Aty7VT24FEA+PVPN8/lhz5+2oYvkKIA0uSAqz7YOlAwTdIWBY/ZJdgF0KUnP1+89ODnspsto9UAAAAAAAAAAAAAAEivoJo//JLWurbQ4r/I5VUf4hXcKvZ3k32P4j8AafT44A3ebKi3PST9OcFj9nOZduGhFP8BAAAAAAAAAAAAAJB+VVsAeMD1s/pI9ku6QKI83lC79IePndbtP4QCQFo9eVbX+Z+vtWwvSQ8k8PJeyNRlek/t3+1zWgoAAAAAAAAAAAAAgPSrykcA73P9fzbPeOZlSWslKoDV/RjgCe07dztjcl/LkZYAKoK79bh67uUmDctrzI54w8Avz2zmr3irup9OG7DJRzQOAAAAAAAAAAAAAACVoeoKAPfKek3rTh/8QdL3ExfA6iwAbHBp8BOnbXAd6QigEh149dzT5Rqnlu66G0MBoEuvt65t+MlDp224iBYBAAAAAAAAAAAAAKByVN0jgNt0mj1CERX/RS6vmj6vhOb4UB7uS/EfgEr22Oldrzb5kZLqop8LWuQNz/g+FP8BAAAAAAAAAAAAAFB5qmoHwP2v/2AfuT+hCAsfIw9g9ewC+KZb2POJUzd6mzQEUA0OuHrOgYHbbyS1jXYuaPJAb6k+8+PHzu48lxYAAAAAAAAAAAAAAKDyVE0BYI8JczqFmdxrktZPdBCrogDQ/1pbGxw4tX+3haQggGrSc/ycvUKzKZLaRzcXNOpdzzT8ePqgDWcReQAAAAAAAAAAAAAAKlPVPALYM7nrFUPxH/JtCP+9hW33ofgPQDV6dMj6zykMf+JS3I/jnZmp0T4U/wEAAAAAAAAAAAAAUNmqogDwgOtmHe/Sz1JxsXlt6udpa4qp7eu9x/RB6y0h9QBUq8fO6PaSAv+RS7OjmQtWMS+TC/ebOrDre0QbAAAAAAAAAAAAAIDKVvGPAD7w2oRJjIIAAIAASURBVNmb5Cx8TdJaqQliZT4G+I5lC7ud9FzWGkg7AJAOuOqDrQNlnlVju9MWVuM9L5ML95o6tNu/iTAAAAAAAAAAAAAAAJWvoncAzGY9yFl4u2Is/pNSuA9fiZnr2t0XdvsVxX8A8JXHB2/wpnKZvSTNjeiQH3sY9KD4DwAAAAAAAAAAAACA6lHROwDud92sISaNS10gK2gHQJdGPXHaBueQagCwegeOm7uDB3rWpPUKnwu0WB7u89gZ3V4iogAAAAAAAAAAAAAAVI+KLQDc57rZ2wYK/2ZS21QGMv1FgG6yM6af1u0q0gwAmnbg+PnfloXPSFq3gLlgiUz7PTa465+JJAAAAAAAAAAAAAAA1aUiHwHcZ5JnMgrvLFXxH1Zm9e72c4r/AKBlHhvS+dXAraekT/J862dhEBxE8R8AAAAAAAAAAAAAANWpIgsAlyyYfaakXUt5TqcvfanOXH2fGNjtXkIBAC336JAuL0hhT0mft/AtS13q/fjpnZ8negAAAAAAAAAAAAAAVKeKewTwgdfO2qrB9Go5dv+LNJjpfATwcpeOeOK0DR4htQCgMAdcPefAwO0RSTVNzAV1Jj9s2pD1pxExAAAAAAAAAAAAAACqV0XtAJjNepAzv6UiHv2bV01fIvYf/DyUelH8BwDFefz09R8z6eQm5oJ6M/Wh+A8AAAAAAAAAAAAAAFRUAeCLHWedJtkPadaS+1QeHvTkaRs8RSgAoHjTBne9VWbZ1fynBpcfPW1w1ylECQAAAAAAAAAAAAAAVMwjgA+4Yc6mHub+LmnNigloOh4DvNTND3ri1A2fJZ0AIFoHXj3vWoV+6hf/MzSz46YN7nIPkQEAAAAAAAAAAAAAAFKl7ADobh7mblGZi/+q0DIzO4TiPwCIx+cfdR4saZokd+kkiv8AAAAAAAAAAAAAAMDXVcQOgPtfO+sXMt1VcQH1RDdnXSg//MnTNnyUNAKA+Ox35dw1amrtgMcGd/kt0QAAAAAAAAAAAAAAAF+X+gLA/W+Zua6W278kda7IgCbzMcANMjvi8VO7PUgKAQAAAAAAAAAAAAAAAEB5pP8RwHXBKCWk+E8qYNO+9HGT+lP8BwAAAAAAAAAAAAAAAADlleodAPe7dub3zOxPSlghY/keA1yK5vQzHz9tw3GkDgAAAAAAAAAAAAAAAACUV2p3ANwr6zUW2E2qhF0MIxPv/oPmNoLiPwAAAAAAAAAAAAAAAABIhtQWz7XqNGuoXDtVfAslZI9GM7tx+sBuF5IyAAAAAAAAAAAAAAAAAJAMqSwA3O+6DzYy2QVJvT6vtF7i/uD3Fqx/KukCAAAAAAAAAAAAAAAAAMmRygJAk4+V1I7mKwX/a7is5ths1kJiAQAAAAAAAAAAAAAAAADJYWm74AOum/0DV/iHpF97pBfnZTv7e/UNNd9/ZnCXeaQKAAAAAAAAAAAAAAAAACRLqnYA7DPJM67wOqWwcLEo5fm0HypQD4r/AAAAAAAAAAAAAAAAACCZUlUA+Mn8WadK2jEN1+rp7hfLZXbw4wM2eJMUAQAAAAAAAAAAAAAAAIBkSs1Oej+9dtZ6NaY3Ja1XlcH10p3ZzPpNP7XbzaQHAAAAAAAAAAAAAAAAACRXanYArDG7XCkq/ksrk42l+A8AAAAAAAAAAAAAAAAAki8VBYAHXD9zR8l/WdUtldemfgU/gPiJNTuvP4y0AAAAAAAAAAAAAAAAAIDkS8cOgK4rJWXSFlxP1+X+u0193ZGT+1qOtAAAAAAAAAAAAAAAAACA5LOkX+B+18/sYW6PEWDlWVGY15k/yZh9b9qp3f5FSgAAAAAAAAAAAAAAAABAOiR6B8A+kzwjt1E0U6zc3U6g+A8AAAAAAAAAAAAAAAAA0iXRBYCLF37wK5N2oJm+kNemft7CQ/rlTwzs9luCCwAAAAAAAAAAAAAAAADpktgCwL2um7+mubI0Uax+t2bnDS4kDAAAAAAAAAAAAAAAAACQPoktAGyj5UMlrZ/2AHtyL22mhcGRk/tajjQAAAAAAAAAAAAAAAAAgPSxJF5Ur5tmd6xrCN+V1J4gr8QjOXODzPZ+/NRuz5MCAAAAAAAAAAAAAAAAAJBOidwBsC4XnqcKKf6LXF7VhN7Iv7WLKP4DAAAAAAAAAAAAAAAAgHRLXAFgzxtmbuCu/jRNXOzZDp3XH0UcAAAAAAAAAAAAAAAAACDdElcAWB/qEpPaVlKQPTmXMt9r646Z3NdydH0AAAAAAAAAAAAAAAAASDdL0sUccP0HW7v7PyTVEOgmeEFn9lDa/8nTNniKbg8AAAAAAAAAAAAAAAAA6ZesHQDdL1UFFv9FLq9qwhXVgmY+geI/AAAAAAAAAAAAAAAAAKgciSkA7HHDBzu7dDhNEot/rrnchxMGAAAAAAAAAAAAAAAAAKgciSkADMPwIiXskcRR8vKdul4WHD/5jI2W0t0BAAAAAAAAAAAAAAAAoHIkogBw3+tmfVuy3jRH9Ex+weOnrv9XIgEAAAAAAAAAAAAAAAAAlSVIyEVcoAre/S8WLYvWC2t23nAMwQIAAAAAAAAAAAAAAACAylP2orsDrp+5o7u9qiooAIz8Azb9XOGlCmznxwds8CbdHAAAAEiu3qMWtG8wX6OVfI36IFg7CLVmYFb75X8PPbeWyf73x1tuMvNv3g2EZssysqVf/u9cqCXy3HJ3fdKqxj+tybVaPvmcdRcTbQAA8uRu/S6es15dK3X0hvo1MoHaymvaSFKDhe0DWU0QysLgm3NzYP6pwqDe5WHoucUZq/k0yPlnn7fOfXbvORt/LDMnuAD69PHMFlv8vUPYxtcIVNNGuWAtD30NM7VaMZiEa+nr9wIuM/tqvHHZ5xZq+f8OaPaRJAWZMBc0ZBY3NNR9fMUVO3wsMeYAAIB0e+TsW9trediuoS6zRk1NZi25t3ML28qVMVmHr7/WPDQ396/uz2xxThZKUsZzDRboky9eudwtt6TBWi059KoTPibKANKs/AWAN8ya7K6fyQl43pqImbmdNX3gBuz+BwAAAJRQ71EL2rsHGyvQBh6EnQJ5R4VBRzfvJFcXmTpK6ihpLUlrSOoQ533Banz+xT+LJP9Qbh+a+SJ3+9DNF5kHH5qFCySfHeTCD5av8emc6YO6L6dlAQCV6Kjs7I41NQ2bmgebmtmm8nBTyTYyeUdJ67m0nknrqZmv9Jr/vs+/8X++eP2nkuZLWiDZQjdfaKEWynyWPJhpGc3MWG7mxHM3mUuxIJAuw4fP6BTWLO8mCzZ0tw1M4QYu6yjXembWacX44ut+Mb60a3xsyS/1mxmLPpG0WPLFblpsriUmfeyy+eY+291nWyaY7fWa07p1q1nZbPcltCQAAIjbE0PvWmPp8mATV8OGLtvQLNzYXV1NQSd372imjnKtpxX3aBlr7F5rtWsib/kay//3/3wsaYlJi01a4tJiyZbIw3kKfLa7zTGFs3OB5tQ0hHN63jDgI1oRQFKUtQBwvxv+u7158JqkgALAAnij//7F9l02+MHkvpajiwMAAADR6XPd/DWXfWZbubx7IN9EgW3sbhtL2kTSRpLWKcuFxXs/Nc+kOS7NkjRb8v+Y2btu9k5NXat3Hzq3wyJ6BgAgyY7Nzt7YasMdzH0Hd9tJ0rckbS5pzdVNqoV8f2ctmai9pa//hjqTZkqaIbc3LfA3PfS3wkzNW7efv8FMWhcovWz2vTaf6PPNM8psaTnf0mVbmHxLl28uaUNJbfIfJxp7vef5+vxuHqzxU3wu0yy5zzXpHVcww9zfCoLwrUym/YxsdrNl9AQAANASDw2+fe2cZ7YOQttS8q0k7y7ZlpJvqa99l9ro2uer4rxG1jveyJqo8WIKa+Icqz9PY4WGvlTSHH35nanbDMnfUqAZdTWt32ZXQQClVNYCwP2vn3W/pCPyvI8l4E3PNctCD3Z+cmC3f9O9AQAAgML0GLVowyDTsF3gtrVk28i1lcy30ooivyTdVikB91Mfr/hR0N51C98OFPxTQfjGkk8++9dz/DAIACix47NzNvWahj1d2t1cO7lsB0lr51sYU1ihTjMTdWEFgI283iVpsVyvuenVwO3VnIevfarP/jE5u10dPQEoXp8+ntlou39vUSPbUaFv79L2knbUigLizKrFc17EONHYeyLdBXCV67Q87yW+OH4oaabc3pJ8hpn9O2cNr+aWt3519OhtPqHnAABQnbLZbLD9wq22UpDb0Vw7SdpB8h214g+nV1qnFLQ7X8wFgE2dp9ECwCbXXCZfIGmGZG+ZbEYY5v5Ra/7K/tefyh9zAYhc2X6p2v+6mVvK7N+SMi24Nybgzd+rf/k/z3vitA1H0rUBAACA5mWzHvyl/cItg5zvbKadpf/90ykFt1WN3hckRE7SuzL/u0J7Q4H/IxfYq4+d0XEGjzIEAESh300v1dYt6Ppdd33fpT204p9uxc/WHnEB4BeTdfQFgKtTJ+lvgfuLkv5oNfrTxPM2nUNvAZp3TvatzRtyDbuZ2W4u39Vk31ETj+iVJMujALCw3E9kAWBjxwxlesvcXg7lLwfS3+rrl78yatQui+ldAABUnkdOv7dLg3Lf85zvJrPdA2lXlzo0ue5oZt3U6NqnySLAfAsAV3Mez/968y40/OY5Fkp6RdIrgekVhf7Kn7vMn5HNZkN6FoBCle2Xqv2um3Wjmfq3YJwn6C27V5dkb7Rf+PF3+CtfAAAAYPV6jZnd0ax2Dw99D5P28BXFfmum9LYqrfdSiyX9TeZ/9VAv1YS5lx4evv779E4AQEscN+K/W4TKHBC49nfTTyRfI/rZOqYCwK/9n2geM9zi3cbec+n3kj9lmfCZW87bfB49CdUum3225pNct50DhT8OpR+baXdJHQvK/Rh3ASxJAWAe9xOW5w2JSe6ud8z0JzN/NpPJPZfN7szaHwCAFJo05M4NgjCzt9z3krSXZFt8tQzwSHbnK+wxwPkX5zW302B+5ymoAHB15/lU8lfN9H+h+x8alrX548G3/YrdlQFEfD8Ysf1ven995WreldSmBfeIBL1l9+ouC370+KndnqdbAwAAACv0GrNwG3m4p6Q9tWJXoK0r5LaqqXuDNFoo6UV3/cEU/N/6a6/7t4n9rZ4eDADol53dblkm/IkHdoBc+8u15Tdn35ZNgHEXADZ/jtgeA5zv9bjM/+6up83t8aDrgucm9t+FORdVwO2s7L929jDYV9KPJf1A8vbFruzjLwDMb6Gf7+POV/8ZCj2Ht/T1/5H8OffgWSl47rLLvvUf+icAAMnzyNm3tl++rPU+gewASXtL6t5UcV5+BYCrXzsUVgDY1HnyfQxwtAWAqxwnv50GGyS9Yqb/U6jfW12r5w+49cQP6ZkAorrfjMT+139wheTDWnh/SNBbcJ/ubjc/MXCDfnRpAAAAVLNDr5zbuUGZfWS+r1z7Stqggm+tKvl+6jNJL7rp/4JQf2hdu+zFyWdstJQeDgDVoU92/ppta+oPCs1+Zu4H6stHcK62eC6+wphodwFMTAHgyj6W+XSFwSNtffn0a7Ldl9ADUSnOOef1dRpqW+3rgfUw9wMkdW0uh9JeANjyc5S1AHBl77nriUzGHg4CezbLE44AACib3wy5dzvPWQ9Z2EOuH0hq1ey6JMICwBWvKWcBYFPnybcAcDXnKeBRw1+LSSi3v1sQPu5uj36yoNMLfSf3zdFrARR6v1m0fW56Z61MrtV/JevQwvtDgt7c8VzzgiC37bQBm3xElwYAAEA16ZP1VsvXnP9jebCv5Pu6tJPKUo1HAWDMlkn+Bzd7wnLBE1PPWe8Nej8AVJZjsos6ZGqX9wzdf2bSAZLaNjfXJW0XwJQWAH5dncmfdtl9rcK2D1+f7fwpPRNpMyz7xsa5XOaw0HSYSXuYlMlnAR13AWBh56j4AsCvWyJpeuD2SFBbPz2b3fljejUAAPH6zWn37aLAD3e3n8l8y6bXSY0sGrxlxXkFFwD+7+UtK85ryb3iKucpoDgvigLAllxvI+dZJGm6mU/N1Nc+se/E/ovpzUB1K/mvVAdcP2u4SyPzvEck8E3fqx//+Gkb3kl3BgAAQDU4ZPxHa+dyDT0kP1iuHpI6VOGtVbXfS82S7Em38ImwodVT04avzR9DAUAK9ZnkmTZvztrfg8wJcu9pUpt85rp0FQB+7Tq98NVD3EWAX/th6TOXHglc96rrwid5TDCSbEj2rc0zYXi4Sz+TtOvKXb9FxbnF5I3HnZclKADM434i5gLAr7+nXu7PKfCHGxpyky+//DsL6O0AAETj/tPv39VCHWEWHi5p06J3u2vhLoAtKwBs5L/lUQDYkvvF5nYaLPp6V3df2WwBYJ7X+9Xr62X6v8Dt0VwmN/nAawbNopcD1aekv1Ltdft7bVp/Xvu+TF3yvEck8I3H6y+7L9zg+9mshXRnAAAAVKqDxy7aKJfL9TbpYJn2klRbxbdW4n7qG+olf05uD9a00iMPDuk0h4wBgGQ7esTM7iY7wcyOlbRBXrNpEY8BjrsAsPlzJH8XwEZ+vJon9zssyNw88YKN36EHIwmGZN9YN8jVHCnTLyTfvei8LDZvEvQY4IIfd170LoAe8Wf+xjHrZXrMXXfMn183beJEipIBAMjXpNMnbezK/dxcv5C0zcrzd8t2u2tkzo/wMcDJLQDM83obu68s7jHAza/rXKGk35vrniCs/S07AwLVo6S/Uu1//QcnSH5bnvfbBL6paLn2fPy0DV+gKwMAAKDSHDpy1nr1rWr7BG5Hu/QDJabKLhG3V9xPrV4osxcV+sOBhQ8+fHYXihQAICF+ceXcNVTnfTz0X8p8tfN63AWA+c3WXtDsXqEFgF87mT/tFkwMOi94hF0BUWr9+r1Uu2a3NXtYzo6T+UGSWkeWl8XmTYIKAFt+jsQ+Bri5H8EXyPw+ye8YMeLbr5AZAAA0btKQSW09533Nw+Nl+pGkoMn1QIvWSfEWAK54Tb4FgE2dp/DivOILAFdznrgLAL95jmUmTfXAfr1k/sLpfSdn68gKoHKVuABw1muSdszzfpvAN3YMt3unn7bBMXRjAAAAVIo+42a2XZ5rc7CbHy33/SVrxe1VHrifWtnf3HRPzv3+x87uPJcMA4DS+8WI2duGppNNOk7SWs1NWM2O8al+DHDyCwBXvMdbEprZZn5Npja46Ybhm3xET0ecTs++s3EmrO8n6VeSusaSlyoyL/MoACzsHBQANnK21yVNrKnJ3JnNbvcp2QIAwAq/Oe3ebXKZoL9W3IetI8/38bxNrZMaewxwy4rziip2y2MXwJbcK65yngKK86IoAGzJ9Ta30+A3jrH6c3xorvul8Ib9bzz9H2QJUHlK9gvVfjfM+om5nsnjnpPgN+1zy2nr6YM25PntAAAASL1eY+b/QNKJkg6T1D6d9wYUACY40jmZPe2hft1mafjQ5GxnfhwEgBj1u8lrP18491B3P8WkH686dFdrAeDXrtMLXz2UeRfAlU/7qaTba9yuuiG7ybv0fkQlm/Xgk/Df+7qCUyT1lJQpNC+bz4MIigA97rwsQQFgHvcTcRcAFjC+fxSYbm4I7drLLtthJhkEAKhGz2afrZn30bxDTTpF0l7fnE692fm7+ALAptZq+RYANvLfPMLrVSGPAS6sOC+/AsCmzpNvAeDqz2PSc6Hr2tZdFz2ydzbbQPYAlaFkv1AdcP2sKS71yvO+k+A3/u7s46ducDFdGAAAAGm1/7jF69bk6o4NLDxJsm+l/76AAsCURPtzSQ8FplseHtrx9zJzshHV6uDLF402adMoBxrL821BbJ8uLGisWPl6QtMnvxne+Vf0lpb5RXZu57Amd6pk/SR1bbwNiigAXOntSSsAbP4cqX8M8Cqn/eL4OZcmeaARt1yw6b/IBhRqyJCZbbXm0uNkOsPk3RvreGnfBTDuxwAX/LjzoncB9Ig/c97je73JfhuajRsxYvu/klGIyqiz/7qbBRoa/zo2LCpvVntNHt0tb0uvx+U+ZNT3j6DnrN51w36/Ryb0wc3OSS38g5FgpX7T0rlo9e3b+LGCQvpzuLrzeLP92E2PHD/2wF/TW1rmnoH3dKgNak9y84Hm2qSx7tBc8diq/c3zm58jfAxwtAWAjedD/gWAeV5vY/eVcT8G2FsSe5dcsxT4jQpb3bz/jafMJ5sQtef7X3ChmbZv0boibGoe+qovF7YGa/64ha1/wmbWZfnNxe7hY7vdPO6OQuNdU4pG3ffGmd091EF074gW2K7/1tTalUQCAAAAaXTgmPk/CuT9FC4/XKY2iSici4Sr7J/FVFVFgAVqJ+mY0HVM7ysXvqkrF0zM1Le+86FzOywiNKg6pn3d9e3mhpW4R854ChqKuZ6vnS/UQjpK835++cwtPZc5M1R4nGRtkzxh5TtbJ2B2T4uMSUdZqCNOuvj9BygERL5OHf6v9VrX2gDp89MkdSYiaR3r4hjf8zpmrbsfae5HXnj+a3+Ua9Qll+00lR6BYgVBuIEr6PP1fxcqjt05i8shz/OYxeV9kwW/Ib2mif6Us43dvE/+beB5tkRTbe0tf/M3+nzTV1D8XOIrOo8bO0u3wH2D79s08GCQS79yqYO5Nd4rChpeVn1Tqe6PCjtP/h+y8fNEuaYxeYF/XBb78sm0odwuldVf8MQpV08O5Vf2uGHw62QXIuyKP5brJ6ubMwodT7yA/9L0HNVcwhQ2FnghrwhsdjHxLkkBYJDTIFmMf9RddTfvNmxq/26fEwkAAACkRY8JM1oH9WsdY64hkrZv0a0dxWyI39Zyjc1lll/We9SC38p94pRzOv+BsAAxKNOYTrFXvI65ZM6uyvjZntNhimgjnMLbrOxFJxWjyLwJviwE7Jd9//6M7AIeDYymDDnvzQ2sVsMU6peS1iDPmJ8iG7rd9pQ05cLzXn9R7udfMnKnZwgOgEq8cSpVAVNBx1rt2/jCr1i/HvSb7hkLz5X7zz2Peo/Y1xNfNO3qzxNRu5skX3GsaD5P89eVrKLH4uPYyD10a8l+HsiOeWLANQ8HoY/Y98ZBr5BtSMI8t/J7iykcjP59jX+ectzDxV4AuNf499aW2fF05Iga3PTHxwd0e0CnET8AAAAkX48JczrV1NWc4nU+QFIXIoJEMrWR6xiZHdN71MK/m8LxdW0X3zt9UPflBAdYNWHKWWRFAUQy/HzEnL3c/ELJ926u6Wiz8udQbG3Q9GkDmY7OyX/W7+L3r8t55tJbsxt9SPvjS4PP/ef6VhucI6mfu9pYwnKoagv0UlyT0UQb7C6zpy8877VnAwXnZy/b4U9kIFDlY12CBtzqLGBCoe4ffP+2Cu08WXikpEwyFwDVXOAZfxxLsDOiyf3Q0PyQJ0+5+tHAfMQ+1w/+K9kH8jMd1xR7AWDrVjXHSVqTeSESYZALB8uM6AAAACDRDhq/cNsglxvsdfYLlzf5KEC+HEQh4us3voPLbqtduvblvUctuK4+13Dj9HPXX0DEQa4l4/Utx5dLcThq5KzvW5gZ4fKflvVCKqF5v/YZkvnje2RBbiVpSMZyx/e7+P3LWq9Tf+01FNhXtdPPfbdL0Kp+mKST5Wpb6HESmTffSJu07EpaugG1/G1me4fyP1543uvTPAgvGDHi2+xqg+pYi7Msroj1Yun6W1ILmKrb/Wfcv1WYs4vl1re4py5GWSxa/CPLy7jbXZGnjeDRyP87RGIHaZPUK3Tr9eSAqx8ztxH73jDoRbIR8c971VGoF5d4H8vrbjLrT0+NbOV192MDN36JQAAAACCpeo6dt1PPK+f/xnLhP1zWTyr8R720LtoTcT+KKHSRdEltpuY/vUctuOnQUQu3JSQAqtXRl8z+7tGXzp5mYfAnlbv4rwyzddyvrxLrSBqz/KOav/fLvrsf4ag+Q4e+tsbgC9+8KGhV/45cQ1Yu/nPWsBU0NsbRmJEe8yALg79deN6rtw0f/nInWh7F5Y3FkGeJzyGUbXy26PuE0b+S7L7T7ut2/+mTb/Rc8IbJjlQztR3N9hWLuk/GO0Z5ifpjqdY08d8n2jfPYxG1ietAl7/wxMlXP/xk/6u7k5lILivTe5MzR8a6A+B+N36wtyR+JIlGfeg1FxMGAAAAJNFBYxZ8V6YL5N77iz8Xju7+iF/RUV5tJfXLyU/sPWrhbxXkLp1yVpfXCQtQuWM6O1J85aiRs7dRGIyU/JDoy3Ma7xCF73aT7t2x0iyPNususyf6Z9+bZDU1Z9x4/kYfEL3Kls168LHePL7BbYRJ3UinKMY65rNoBvfghNaBHXLh+a+d968335w4eXLfHGEBWCOlNbaNj/nR7ujneZe9Ku+nj9KvpF+f8ut1glathkka6FK7VPXHJl8e/Q6T6Xm8dcs+e5J3RjTTwTL1ePKUq6+tbR2O2PuqIR8zXqPYfMg/t4rL/XjeF933W8WKdQdAc51M543MbU8O7PoeYQAAAECS9By3cLeeY+ZPNflfzf1g8RsT0qr5nhtI3kdh8GrvK+Y/2Pvy+TsTNJAw5Tkmu7HFr0925rpHXzr7agvtdZMfunID0Qbpy6HY2qzAj+Kmvp5r+NfJF783pM8kz9AnKtOQ7Fv7LPYZr5jbrSZ1S1sOVe1Yl+I7unx3vAmldcx1/XZbbf3nCy547XtkLaoR67ryD7ge4bGS0Hbl2+ky/Z7NPltz3+DfnBq0ajVD0jA1W/yX1N3uLN7+Zkk+YPzHKvPOiK0kP6N+uc14YsBVA57NZmvIXHCjk5xriq0AcN9r/ttN0iHVeJMZw0J5eSi7jIQEAABAUvQaN2e7nmPmT1UY/llSz2JX8HyBjFR9U2B2qILgb71GL5zSe9SCXQgJKl16H5fKj0r56neT1x41Yu7A2pqaGZINklSb4NG4EmaUBOZN3EH+xjHbuzRu3X+9/3y/7HvbkIGV47Tsv7sNzs64X66nJO2Y1vmp+C5uaczLVK8piriu7wah/pQ977WJw4f/az2yGBW3FmdZXBHrxdL1t6QWMFW2+wZN/uncjxe8IvdrJa23ujhSLFrseSzCMBX/xyNfHSJtg7RJUkdzXVc/b+1XnxwwYT8yGNF2r8ov1ItLbAWAQSZzopL8JWGqVvc28clTN5hJIAAAAFBuPcct3KDnmPm3eph5TSsK/7DqAp770eqItJmrl2R/6T1q4W97j1qwNX0fQJodc9mcHp8tmPuamU+QtG6lTy7pLWytSLub6ZX+l7w7lN0A0y2bfbZmcHbG4BoP/iX3I/LOGwpUKmhsTGWhYuDSSa2Cun9kz3/9QHoDWp4HFkOepbvYF3GOzzEU5xn9q5zuOm3SZveePvlBD+xpKdg+9r5iUfbJit/tLvK+Hf994krFohZ7Xm9nYfjEkydfdd9jAyd0IqNRflam9yZjjoylAHCvrNfI/CQ6VySWem395YQBAAAA5bTPFR+u1XPs/JHy8C1Jv5RUuh9n+Q4RyWaSDpPsH71GL7rxsMsWrE9IgPSP6dVUvHVMdtaGR1029yF3PebStknpEIUXofCDeVryZqXXt5Hblev96/0/nJR9ZyuimT6nX/DW9z7WBi/JfbykDkSkJHnDfBbP+N5V7o9mz339xqFDX1uDGAGskdIS20QXMBn9amUrHvc7eWimJviHzA6tqP5opWrfKHdGLMW6yiI8T5l2RmzkUkw6srY+fOPJ/uOPYvxGvvngJc7JeN5nkZ+vELEUALbqNLuHXBvSaSPp9tc/0X/TOUQCAAAA5bBX1mt6XTl/UJuahrflGi5XO6KCSr4BK+KWv8bc+zfU2IzeVywc0WPCIn74BgkT4zEpgCheNuvBUSPmDgxrMm/I/RDFHFPaoPw5FFubRfhRXNojsOCV/he/O1DOfnBp0C87u93gi2aMtYz+KNdOSZwzijlm1Y51Kc6+fHe88dX/O3Pz/mu21isXXPDa98h0VDrWdeUfcNPzaNdkFTCl1a8HPfTdOR8t+ovLrjR99V1rZe12Z/GOFZbkA1bDzoir1cnM7n36lPFTnjl53AaM70jmAFDZjxeO6xHAJ1T7TWZEA+enuaBmNAkMAACAcug1bsGP26+54GU3XS2pIxEBWmQNmc6vXepvH3zFgv7ZrAeEBNUoOT8iUj+0OkdcMW+nN2vmvqAVj/vtEG8boKVdNJk/vpelcKudZBP6j3j/6VMvfXcTOklyDc7O2KudPn1d8jPkSsXjm73kacOupMldI7To3N2DUM9fdN7rF2ezz9aQ9Uh13rAsroj1YjpPSuf70l1D71rj3sEPjrUg/LNMO+cXrrQVi0Y5vpVptzvL/wVeNXnSxG5nrl6h7I0nTxl/oos/6kKh3auyC/XiEvkPEfvdMLezmfekV0bSga598pSu84kDAAAASqn3qAXdeo6d92sP/VmXdijVeSk8qLr70UrvN53c7MaX2y36S88rF32fDglyDUlwfPa9NkddOmdUkAtfkmk35rp484C8KTrgP2nI2ev9Ln7vOIKRLGef/e/2p1/01g2S/06uLSLNGyPPyj2gRjfWVcwNSY3kF6ph3T9ksy93o69g9XlgEeVNFd7Uo4B+E0NxXhF/lMI9ZsvcO+TBA2oa1viH5GdITf3hRAly35J6sKTudhfjY7Qtvgb2SM5RcLHoWua6+elTrn7siZOv7MwIjnLd21TbNUVeABh4w88l1dKpih76l3jr8EriAAAAgFL57k1e23PM/NPDjP9LbkeLb5uLWc8TAnzZFb4bhP7Hg0ctvOvA0fO7EhCAkbxcjrhs7vbLa9u+INPZkgrcxSjZO1nl+6Mos3Uq8qyDSXf0v+T9ycdn31ubiJXfwOyM3evaBX8z6eS8K15Qlvmpssa68s1D7vq+6jOvZs9/ZS96IcihuI+JQmNb3uI9o6usxqQhk9b99eDf3uTu013atLTtE29xnhfc3tW8w2SyHqMdWV+xRhdQBwSq+fuTA8btx5iOpjqOF92Ho3qfpfreKvICwNB0PB01gonZddUTJ270IZEAAABAKRw0dt4eXT+Z/6qkq/TFowATei8IJKivtfiW31z6RY0H/+41atHgvbLO48NQjQkT+ZjObmwt02eSZ44aOfecQP43yb9dzmtJd5tV5w/mnudHia3N3H/W2vSXftn3v8PYWx7Z7ButBmVnjAzkz8vVnRxifkrF2GXRtoFLndyDJ7LnvXoyUQZ5hnTNZxZh2yWrgCnJ7hny4HH1nnlLUr+WfvbK2u3O4h0rIt+5MspHI1Pk+DWdLbTHnjp5fHZSn0kZxnyUPy+s5NfkJbqmSAsA973xv7uYR/yIsOp8bNXiXG3dOJIWAAAAcdvvyrlr9Bw7/2pz+z+TfYuIALFay+TjO7T98K8HX7nwe4QDla6wAgh2JYnSL0bM3axmxtzn5H65pFbxtBmi7KLFt0Ecf62emLzsbuZ/6n/xuwPpNKU1MDvjWx+p9kVzHy5X6n+08zz7phfdxVM6t1m52iDx800rl92QPe+1mycMnNGaEQKpGuuMdV1q56cWj8lJLTqqrnuyu4Y+2PnXgx982Fx3SLZe1HFMXrFbKdYFZdrtzvJ/QbIfo122YtGMSRetu96sp588bVQ3Rny0rKtW76N8CxVpAaB5cAI9MZLh+uan+2+xmDgAAAAgTgddOW+fVhb8Xa5BimF38IJWwjRLNd2PVnG/8W97qD/1Hr3w2j5XfLgWHRXkGuJw1Mg5xzUEek3SDyp6nrBk5wF5E7nWJptwcva9X/fLzm5HOOJ3+oVvnhTIX5Jr55LljZFn5R5QoxvrKvqG5MQPO3z+XDb7Mj9ic39dUH/3mPMSlX5PFkNxXuS7qVXnHH7vkId7ZRr0uqSDE32PY0k9WDXsjLjSeSy+OHokh450Z8S9Mg21rz518lX7M6IjRYNcaq4psh/5ekyY0dpcR9GRilZvObuaMAAAACAuh4z/aO2eY+bfamZPStqMiMSFr+fRzP2469TlFv6r9+hFfQgHgKj0GTez7ZGXzb3V3e5wqX30Z0j2Tlb5/ijKbJ2+FZOvaN6jzZb/8cQR77OWjcmwYe+sNfiiNx+Q2US52pI3FZA3FSMZ89AXMd1d9ZnnR5z/Snd6JZwcQkLaq7zFe1a1XWXSgElr/nrwgze7h1MkdSmufcq0210B11X4zpU8IjeaXE5QX7GWncelTqZw2tP9x53OGI8o/tgh+vdZLOcrhcgKAL22zYGS1qGDFu2B6YM2nEUYAAAAEIeeY+cf2JCrf0PSL5W2b0f4PhmJ7GtF3/KvL/dJvUYtmnbYqEUbEnxUeMJEPqZ7wl5fbkePmN8983ntC1/M84mU7jaozh/MPc+P4qVrjW/XhP7SgOy7+zEWR2tI9s3dlrUNX3FZX3KoGse6ypDvjjdFtMFmOQ+ez5772neIOqo2z5C6ezeP8FjF95H0f+F39xkP7lRX2+qvLp0YRRwra7c7i3esiHznykh3u6uq+8Y8rzcj01VPnTLuhmez2RrGZ5Q+L6zk1+QluKboCgDdjkpku6VsoRxIY0lUAAAARK33qAXte46dN1GuRyXxiCIgYUx+YIP8771HLTyOaKCSFFYAwa4khThy5JyfhUH4kkw7lb7NEGUXLb4N4vhr9cTm0Lqh2WOnXPz+qXSiaJyefWtQqOB5eWXvFO559ncvOm1SOrdZudogdfNNZ5k9e/G5r+7NKILEj3XGui7Ji8HCd1OLa/Cu5gKmlvn14IdOsVzwosy3abwNrbR9JcI2SdbjoMu0210Bj4BP9mO0k1Msaq6Tc3PXeuzZwePXZh6o/DmusLdV56N8CxVJAWDvWxe0d6knHbdoTz926oavEgYAAABEqde4BT8OM/6a3E5SCr5t4wvnqrkfpd+sam1Jd/QavXDKgaPnd6XzglxDS+yV9ZqjLpt7ldwmS+qwaptVwWO4LNl5QN7E3nAZl1978sXvXdVnkmeIa2GGDn1tjdMvmvFruV0tV23Z88bIs3LnZXRjXbVs5e4d3Gx69vxXD6MfVfPUZRHlTTR5iUq/J4uhOC/y3dQqdw6fNGzSWvcMfnCyS9fLvE3kbVKK6dOSerCk7owYY9+3+OKY/J0Rfd9wmb/wTL/RWzDCI8GDXCquKZICwOXLlh9qUls6UJFNHYZjiAIAAACi0mfczLYHjZk3zkP/nVTZO3gkF1/Po4B7Q1evjAdv9Bq94CiiAaApR1/+n3W61s573KXTSzxSpeSYzNaVumJq5PWnd/zX+w8NyL6xJhHNz5Ds21vWr9nuBUlHkzdVlzdpXTEn9Zit5TYpe+5rJ9JDyUtyCNXQFwva7a4Cusq9pz+yY93y2pck+1l87VOm3e4KuK7Cd66suMfaJvtYCQi3N/7vt/Gg5sWn+o35ASN4NSr+jx080fleOtE8AtiMHyWKH+z+/vhpGz1JJAAAABCF3lfO23FprvXfTDYksnV/su4FgQT1tVi+YljX3O7tPWrBA4eM/2htGgQVOTiXaUyvlAKII0Yu2CoMW70o6adpu3Yv2evT8uO2VU6bWXnzzKVeobV77uTs250Zm1tm4IVvHRTKX3LXDunt75buvKmw+SnNS5WI2iwj08Tsua8fT+BRDRi7Eny/VbXHitfdgx85Jgz8BUlbxvnZ0/5o15KOFV97TGjyd7tL5hgb2T20FfXZO1oQPPF0/3EHMO5DCc8xL/Ca4s7pon8I7DFhTifJ90nV2iaZ/XKszFgnAwAAoGg9x847NgzsBZm2JRpA6m8W+4Z1udd6XfEhfwGLqrHiyxHL8/UtyqeKidFRl87/gXnuecm2iq8N4ns9ou+inufBvNQXWNpR5Luy4IV+I2bwCKlmDLrwrdMtsEfctVb1zjct7+9eziRP6dhUxfOTyfyW7LmvHclIg0TmjbGuS/KASwFTMj2bfbbm7iEPXyHzeyS1yz8sSX20a3IWE4neGdGS0Peroli0ncwfeerksYczJ1TmHJesexEr03ubEpTx3ZLCmrCvpBo6bFFmr9Vx8X2EAQAAAMU46PKP1+k5dv6DcrtTrnZp/ix84Zyge1n6TRJsbBY+e/Cohef1meQZOjTSlmuM6dE6YuS8/qGFv5PUqeVtUPmP4Ur6ZyBvStlwJkmbB2Hw+1MvmbEdo8aqBg6c0XrgRTPulNlVciV2beFWAXljqc0hxrriZWS6K3v+qz0Zdapt6rIY8sCqJW/Qwq4Q647XFuc4HWUBU+nce+bUjrOWLH5G0rCWfEaPN1wln/fL80d31fF4YF/tIZJaLBplX2lSK5Puf+qUcUcz6KP4nLAK+zxNCyK4tr50uOK4/JrJfberIxIAAAAoVO/R8/a0VstfletQopG8FT8QgRqXLl3+3qKneo5buAHhAKpPNuvBESPnjJX7jZJqy39FlfUYT4pW0rdiav71tkHOM384OfvubkT3K6ef+24XradnTTqWvCHPStdmVfs46Vq5Jl987ms/pfeRZ8lTPY9kpy/G235eyLFS1FXuOfPhb+XC8M9y/aj07VOC3e4smlz3gj+GxdyvC/uQpdntrgzHSkDuNf/UB5OkGnO/+6mTx57EaF4tkvjHDulb1xRVALjfDXM7y31POmNRPq218CbCAAAAgMLumN16Xjl/eBjYc3LbuMruBYEkJWOpTrR3UO+v9h61aF9iDsb0FGRsRPqMm9n2X7VzJ8vtjGodNQt/fdUWnZSvzSxRebauTE+ekn1vdwZcafD5b23rteGL5vp+y9uYHKqksZE1RznawNq4+SOXDH+F39LA3TASMs9Vw7GicfeQRw7wUH+SfPNV+3z8n73CHu0a71hhX10vj9Eu9jwWYeiKOlZg0k3PnDJ2MHMAWtLpvMQ55gXmfZw5XVQBoIX1B0slfERABf7QZ657pw3Y5COSEgAAAPnqMWFRh4PGLXxIppGSaogIUC33oNZR8um9Ry0cLndKYlGRCZPvDyqe/sRu1C+yczsHS2ufleywUp6XIpT0pZLneTBPQK6XyFpu/kT/S97/fjV3rdOzb/0orLE/Sr4pidbSPLCi88YrI4cSddkpnZ/WCAObOuL817Ym65CYvDHWdUkecClgKr+7Bj98qqRHJVsrurAk9dGuyVlMJGZnxIhOm+zHaCe3WPQbB3aN/93JYwcxP1TOHJese5HKerxwcY8AtuAwOmlxwiCYSBQAAACQr96jFmwd1DW8YO4HV+pn5AvnBN3L0m+SKCNpZO/Ri6YcMv6jtengSHquMaYXps/l87esq9Xzkr5XfBtUzmO40voZyJtSNtwqx+wQePjUKZe89+NqHEtOv/Ctw93tCbnWSd18YxWQN1YROcRYV7x1cu7Ts9mXOrLCqYapy8gbxDd2r7LbcrwTTbILmOL4vG53n/FI1syuVcEbIVl0n8eS0R/L80d3VhV57as9RFKLRa3kY4av+Oeq35089pfMHcyblTOWxHNNBRcA7nPTO2tJ/hM6WlH+9uSAbn8jDAAAAMhHz7Hzjwgz/pLJvkU00oKv5xHfkBDW5f7c64pF2xEKoLIceem8PYIw/LOk7sm9ysp6jCc/vqdvxeT5vXYNd59yyiVvf7eaYnr6hW+f6YFNltSGvEF524zHSUvaTPU1k27q91ItPZE8I4eQzL5oBTWjF9IXEthVbup3U+3dQx65010XJad9SrDbnUWT616i9q6s3e7KcKzE5J7l89/MpZue6T+uFyN7Jc9DlsD7xnStawouAAzCVj0ltaLLFtHZTez+BwAAgBbbK+s1Pa+cN1au+yWtWdXB4Ptk4Ou2MvMXD75y4aGEAozpLZfkIpSjLpu3r5s/KWldOkjhbRbvrihGG6QzzzrIg8cHjHh/28pvLLfTsjNGhuZjmt8CtLk2I4fIM9YcxbXBN06895xONdfSGABjfXkHsWrepW31Jg2YtGa7Nbo8KtkvkhTH8he7laLvs9td8s5jEYbOovo8NTJ/4Jn+Y37ELIKocz+e91nJc7rwRwCHweF0oqJ8mmloez9hAAAAQEv0HrWg/ZprLnhIZmcQDaCE8vq+q6w/v67poX7be9SCLI2GlCRMCzPK0pGBETpi5NyeoTRF0hppu3aKViLKIYuyDaw8bZDs34E7eph76rQR729WsV3J3QZd/M54k4YzD0V/TI85L6sqvAmdb0owP/W7+PzXTmfeA+s6NDXgJq+AyUrQp8oz2UwaNmmtZa3bPuGy/fJeD1j0bVK5C4CYj2XJDIeXKI6VVizaiLYym/q7U8ZU1a7u3LNV4zUVpqACwD7jZrY18/2JfVEf5L7pg9ZbQoIDAACgOT1Gz9siDPzPknpW22fnC2TQb/K9Y7aLeo1aeFufrLNjPxKXazy+o3lHXDrvGLk9JKlNHNdZFT/kGnmTziCX+pi2QS4Mnzjxsne7VNrYnM2+0WrgxW/f5/KqLS5KZJ5ZdeUlhUMt+dA+Nnv+awewokz33VeUOVSWwlY2Y03vmspWbtd4G9NL9NnLMR/ce+bUjsvq2vxO8j3i+aO2OLtKNReLRtk+CStytIReVx7niLkNO7jbY0+fNHYr5pFqmzIrrXgw+s9TUAHgkjb2E0nt6GWFC0PdSRQAAADQnINGz/9hJrAXZdqWaKRdAn7W4sv9qmDSCcvbLnry0JFL1iMaQHocMXJefzfdJakmvpnFYpgnKuvRoBStVP4K62uv717boCn9srMr5nvugRNmtP5QrX4r6Ygkr//ybjPWsBU01vE46a/JmPuvs+e8sik9krwhh5C4bxUi6xrJ7l93D/7t+g2hPyfpO9HncMs+e6l2Rmy22C2ipkp2sWiUu91FW5xX8qJHS0peF5wnnS3j054+dSTffVbgGirWua3C10oFFQC66UC6aVH9452nTuv2JwIBAACApvQaO/94C/xpSR2JRqrvu4By+HEuU/dCz9HzuxMKMKY3LinFW0eMnNffXTeowO/qqknhP77zg3n62qwkdssEy+/OZj31uXd89r02+tAeclnPlftmNG1gMbQZOZTSvKmCNUccj8NbbV6ua4FNmjBwRmsaBizuGevjim2iC5jK2FXuHvzb9d1qnpO0XXL6e3mL3WI/hxW21iz0upK3M2IpxowSFIsWFDoreu20Gltarva3k/pkeQpKha4hvMS5H8/74riPblxBX2yY6yA6XhGDptvdMuOeHAAAAI0uGHuOnT/SXbdLxg0sUG55fd+VqFu97oEHzx9y+YLv0ohIaMK0MKMsnRnYQn1Hzj/OXderQn4ppWglohyy0uVlbG2Wlh7tftg8vXdlmnvNkHEz27ZX+IikHuRQaYp9q3asS1Bee8JeX0RMd/2ww2djyF2wrsPqBlwKmOJx7+mPdHGr/Z1kWxUTx8J3U7OU5XxSH0Vr5QmtFRrbyikWTc54bz9eb901b2TO4KaiMq8pf3kXAO53w3+3l7QJsS987gyt4W6SGgAAAKvz3Zu8tueYBXfINZxofLGAJgSg3xSjcxjYswdfuXAfQoEk5FqCviROxFUccdncI+V+qxr9js5os/Q2b4W3mVXWMU1nnHzxe/3T2D/6ZWe3a1iyfIrk+zErJTxvrIJzqFrnm+iifNol577al8ytxDWHJSpvvArWTVW1cF1lN7V4GzPZBUwtd9fQBzvXB8EzLm1TivnUY+8qSS0WtWTErcXnSViRo6V1kLYStuH//njuhKdPHnM280m1TJmVVjwY7efJuwDQ3Nj9rzh/fHrAJu8SBgAAAKysz3Xz1+y2ZMEUmY4lGpUqAT9r8eV+NWrvoab1umIRPyoCSZr3L513qMvulpQpZqYo9JEo0c4TlfV43YrZVYoVVl6vN/mEky95e880fe6BE2a0bq2lD0naJ23rv7zbjDVs6sa6apkzImsP0y3Z4a9uRc8kb8ghJEOUu1Inp3/dMuTxdZWrfVotfOyvl+izJ+bRrhE1lcfVHyM5T4U9RruAz+6RXH7pCya96SNc/vQpYw5h7K6cNVSsc1sFr5WCAj7XgXTPorrFPUQBAAAAK+sxYU6npUv1OzcdQDQq7r4LSIJWZn7fwVcsPJVQgDH9m8rxJWSfy+cfYKb7JdXQ8PG3Wby7orAYibfNSjxXevCb07L/7ZaGmPa76aVafWgPNL7zn8XQBhZDm5FDKc8bFiZ5tUGTedneAp88bsif2hJ7gLG+dONTAgqYSrQUuGvoE2vUqn6aSzvE8dnjPlZy53kr6OVeojjyGO1iz2MRhs6KXjs1ITDpnmcHjP42M0tlrcO9xLkfz/viuI9uJBHyefFB1/9nHbn2oMMVrMFymQcJAwAAAL6xzh4/b/NMQ/BHSbsSDSCh8vq+K7FfywZuurbX6IXn0qBIUMK0MKMs/Rn4hSMvXbCLhT5ZUqtK7QEUrUSUQ1a6vIytzdJX29U1Zw2/HThhRuskX2SfSZ5pNWftuyUdTL6UquNZ6fKmGsNb6vnGktpmtuMnbdteTg6DdR2+PlhVZwFTEOk5b+r3Uq1yy38jaffY1gMWfZuUY9IuVbForMdKZmgT/hhtiymXSzphrRGGwW+eHTx+beYPbioq55ryk9fsmVNmHyXlL5PTGftnpw9afwHJDAAAgC/1GjdnOwv1R7m6y/iatPH7dwCR3U67Lus9akGWSKBcY3RyxvTSf7nUZ8TczUILH5W0Jm1Wcc1bhW1WsTsq7t7wUc345HYGt87/fOcWSUcwA6Uwb6wqcoj7vqKa0AZefO6rexMIlHSsYzPW9C5cLWXX28JjRTkfZLPZoM2ac+5w2QHlmnc89tBXc7FolOdJWJGjpXWQtnKea4twWXiby5nZKnrKpHiwMXkVAIYe/pTbsGJmD59EEAAAAPCl3mPn7+wePCepK9FAFd6Pxn8LRks31QkuOviKhZcRB6B0Dh05az0LbLqkLvmNX3H8AGMxzBPV/f06u+MkuQ0K+WHZTxmQffdnSfycp138zmiTjq/KvOFnvLLfPHjMeclNjiQpkOn2bPbFDvS9yri/9jz7pldXf0fkc2oMBUwWxRq2fH12s0++e4Wko8t3vZao3PcSffTq2e3OYsrleCctj+Tyo/yuIso88UOfPXnsYGYGpGcNFd015VUAaGb70CEKVt8ge4gwAAAAQJIOHLdgl9D9KUkdiUYF3rM1iZ/8kZCeaDq396hFY4gEEL8+42a2rfXaRyRtTTTKM8nn+6Mos3X5V0DlbgM33XzaiPc3S1IMT714xqmShhaUQxZVmxl5U0F5Q5tFPw95nsds5PWbWH2bq4g/d/RpXXehFH2qwgqYYup+d57x6C/ldlYxJ/aKzaEy7nZnCb2uss8PSS0WtQg/lhW9dmrhtY/63cmj92SGSfN8Z0XnVvTvsyLOV5r76BYXAB5ww3ubStqCblnwyPbMM6dtuIg4AAAA4MAx838UePg7mdYjGkCabuui+aogWfzMXlcsGEfjoswJ08K3WWwZGGvGupsta3WnJL58Tkublaq/l/yYZWqD9NYTrJ0Lw/v63fRSbRIuZuDF7xxjbtdUTt6kMYesdHmD+Mc6S3ybnZA9/7XetBhYp3FfVcqYJquAqTh3Dnl0H5du/N91WbRtEu/nqYbd7izefmBRt09SCxPLe6wEj/e1UnDf06eO5PeXFMxxyTpuuv8gouU7AIY1P62a/hDPpf6GBAYAAECvcfP2C8ynS2q/+oUjX5M2hsgAMd2vmg3pNXrh5UQCSR7T45sD4v9yqe/l84a7q0+1tUEi5u1K2MjGomyD9BZZldH3MnPWzZb7Ik69+N193f02sT1Tiuebxrp4SnPIqqzNyjUFuE8cOfzlTmQySpI3zDAVsV4s3eCd7F3a7hr86LZumiypNur8KfSjeFSf3Zr+D6UqdktWUWqZdruz/F/gBTdFHI+Tr5Sb8UYLZjeyXKu7Xc4MV5HzXmU/yrdQLS4A9EA/rZ7bqsiFgeqmEQYAAIDqdtD4efu46xFJ7YgGuB8tDe5cW9gdXOf0HrVwOJEAuRatvpfN29/dLik+pnH8AGMxzBNGHpA3CW2DInZRMZ0zIPvOD8r1mQaMeGtb83CSpFbkjfj5LgE3Dx5zXnKT8w1d6jIBu3VXwP21x1K4wYBYVZ0or34TQ3FeJLuplabP3nr2I+3DQL+RtHZy5hRLV+5HdAovURx5jHZhn90jufzSP0Y7z/j0+N3JY05ljimnIIHXVLnFgy2LtrvJtTeds2AvPnbqZnMJAwAAQPXqNWb+DyzUw5LaEA3wkz8SamTvKxadQRiAaBwxcsFWLt0vKcPIX4zovpjN90dR2qz8K6CEtEHgZrcMGTezbalP3C/7ZscgF0xVUT9gW1HplO9uNeRN+vKGNot+HvI8j9nU683184vPfe2ntAN39Glbd6EUfarCCpgsivO6Zeozt0n6VpQn9grLoViLRSN5ebJ3mIx3fkhWsWhkfaWZHbA93s8y6umTxm7FTJPG+c6Kzq3o32dFnC/+++gWFQAeeO2s7SV1pTsWvNiYShQAAACqV+/x8/b0FY/9XYNoxITvqJHIvpbCn4XMx/QavfB4GhplHZwj+iGgnAUQx2QXdQg994iK3nWiuqS7aKUydrKKrQ3Sv1bbetmSupGlPOGQcTPbtlJmqqQtKjdvKiOHKLhL8XxjKWkz8+smDJzRmpZDmtZpiH4+89S0dfn+2OauM6cPl+lnqz+PJeoR9oXGsbKKRS3efm1Rt081PEbbEtD3I+8I7SwT3japz6QM80m13AcWe9z0foHRogLAhoz2qrr+EKFMpmYKiQsAAFCdDrxy7vfCUI9JWrPla1y+VgVQvrtsc93Sa/SiwwkF4pacgonov1yqa5W7XbJtqr0NErGiqYQ/ErAo2yAtRVYJbDizQSV7FLC71S9Zfruk3ZktkjbWWQxdPKU5ZGlps4qw9UftPzubbEbsecMfV1bEerF0g3eyjnXHGdN/6u6XlKaAyQr6Tx7VZ7em/0Opit2SVZRapt3uLP8XlOox2uVfH1mSzrVnx47/4aknFTfvVe6jfAvVogJAc/9B1d5WFe/t6Sev/0/CAAAAUH0OHD//20Fgj0nqQDSiwR1IRd2P0m+SK2Pu9/a6fOFPCAXItfz97PJ5AyQdVo5B26M+Jj8Cx54H5E35Fz55tEHgslsGToh/F66BF789XNIR5E0jr2dsKnsORTfW0Zh5hP+87PBXeXxdqu+v4yjcIIeqrBPl0W9iKM6LfDe16Nw28LFOUni3pEzS2iS1+WrpimP5d0aMcX1s8TVwWotFCzmeu0Y81W/cDsw1qR9QuKYmBC07j/2ATllwGz1KEAAAAKpPrzELtwlCf0rSukQDq8dP/ki0Vgo0+dBRC7clFEDL9bli7g7mNkbSar+3q47isGTvZJXvj6LM1ulbMcX8GLGtcx9lhsZ5itMufruHy0bElkMWVRsYeUPeMA9FeMwWtEFrCzSB3k2epTOHEF8fSUkBU0uvt6B1iltQ63dJWj/Ofs9ud4Vdlxf8MdI2FqV8d00rQV+xlvRJizMurYMgd/tL/W6qZcZJ03xX+B8hxfc+S+yar9kCwH2u/8/mkrrRDQscx3Lh40QBAACguvQct3ADt9zjkjoSjVIuvgkBktjXPM0fc92c9NiBo+d3pdFR8sE5ojG9lD/M9srObqfQ7pfUlnZPR5ulYzFildNmlvaZ8Yvrd503IPv2lnEce0D27S3d7ddq6R/uV0TeVGcOsVto+rpdQtps/+z5r/2MRgOQ/Hm4dH9sc/sZ086UdECLzxP7I+yrYbe7aD+jx96tk7rbnUXQ39Jz31jeNfr/zvfdJbZkqMC8lsBrimKMavaLhIxnfkC7FTzoLm1fb38gsQAAAKrHQZd/vI4897ikTYgGgAqwaY2CR/tk569JKBCHwn5MT2aBSOtWmask+1aUx6ycNkOUXbT4Nojjr9Wr6i8x2krBdVEfdED2jTUD2UOS1iFvkj7WWTR5YxWQQ5aWNquc+ck8vCKbfaMVWYrY8sYqL28qaTFY+G5q+b2wVAVMxR7r1jOm7mSyy5S06807j6y0fUXl6CulmOfLtDNiAY+AT1bcio9jaYpFI7pu0/nPnDqG324q4abC4uxjVqb3Fqf5vyQM/AeVeZtUgm5q9ofJZ2y0lEgAAABUhz7jZra1VsunSNq++MUk62zuQJJ9f02/qaqk++7ytjapzyTPEAyQa6vXd+S8Q0x2UhIG7fwLIKJ/DFe1z3UUSSa54SyqNtvvlOy7vaO9sjY3eRT3EdUy3xh5Vu4cim6sM9osvzbYwhoaTiEOaU07iyhvoslLVObYHeujXYv4o5SoTcpOahVYcIekVlHEsVS73aXqHseSerDyHqssxXsW32dPa7FoEY91bWc5v5r5phLuTSrxmopT0+wrQv2QR2kVOHi4P0EUAAAAqsNeWa9Z6vPvl/QDooEW+lTyeZLmS7bQzRaYhwvc9Km5fSrTpxb6YkmfmAUNX91n5JbmgmCZma2dCVfcrYWeW8tkgSS5qYOZZdzVTq513HzdwG0dN60j93Vlto6kdSSt26J7QkCSZD2WvbvwSklnEAvgm/pkF6/rWn7D6lNHq3wr7crvK8Z8X5+QMUPRf70f3TGrow0qS6La7IuuaNKYPtk3Hp+c3a6u2EMOuPjt/nIdXbIciuzwjR+IPCNvmIfyP2aL28B1QTb7yp3Z7M4f09PJs/TkEFoS48L6SP7tVaq+uPrzNHO9Lfw4ny1Z83xJ35Y8os/T/InLG7fo8/Sr80SZ86seq8nP0+Sp87uu8o+x8cYx9mM18bLI+kozb19xnqZeFFlcDn725NE9977x7EeZj9Kwhvqq3QvN8+jf13RfLNd41OSPPT0mzOkUWsPWdL/CZDIZCgABAACqRPsO869zV28iUWbJ+o66QdJ7kv1THr4t2X/c7P1MJvd+XU3tf6YPWm9JOS+uzyTPfPreh+vXWsMmbsEmCm0jBeHGcttY8k1ltqlcPPY1kr5WGT+nmtmQ3qMWvjZlWMc76QAoyeAc0Zge9w+zYau6qwKpK+0cnTzaYJ5cb3tgc8x9tsvmyX2OzJYE7ovN7aN6yy1RTauclks1reoXN1gulKQ2y9uss+IQyxRmgox7poN72EEZ6+DyDhbaWhb42u7W2d27mamr5N0kW19Sm9IuRpL/I3yL2+yLj1IhhUbdO6rNaZLGFXOQAdn3vm0eXpXgPCvxaibROfSxpHfNNctNcyTNNfkCKZgfBp6TfIlLdcrZZzUKl1mmdmlQt/yzMPS6ZUFNmzatatp+daPQ0C7MZdqa59aywNaSq73JO7iCtWXe2VwbyNRZ7l0l6yqpHUWS5e92yckbX0/1NlzSMBoPQHLn4ZYdq5Cx8o4zH/2uXMPzudJvnCfG5XXzBUzRxLH8xaKrHGupXO/K/AOT5rk0z2VzAoWLQmlJ4PZJzuyjQFpiGeVWHDxcumx5sEwy1Vpd60zrVu3+d3TPtbYw065BvraF3t4Cb++htw9WrJs6u6zTivszdf7in05Nf+wV15u8YtHi+so3z5O24u1SX+8qf3hx9Z+GjHtmj/Fn8ERP5rWKuaYmCwDDmtxu4o9RCjVr+snr/5OEAgAAqHwHjZt3prv6EYmqNl/S3yS9bK7Xchb+q91nXd6anLW6pF7w5L6WkzTri3/+uMoL3O2gK+ZvlgmC7SXbLpTvaGbbSb6NpFqavGrd1GvUojenDlvvRUKBqBT2Y3oyCkT6XLbgIJf/IspjVm6bFXW69116XbK/Bwpfz5lm1Ne3entytvOnRXyMjwp94/HZ97oqaN3dzbc09y3d1F2yb0m+teLcXfdr3an4Nojjr9Wrb7cgk10wcOSMu685t/uCQt4/MDujQ07hJK2mqJQd9Mo6xv3XpDfc9He5/UOuf7dqCN+9/PJtF5Xrms499+9d6jI1m2cUbuEebBHIt/BA28q1naS2ZU6ExKR+NeWNSYMuPe/l68+/7Dv/IWsRed60aBcolGvArbQCpnxls8/WhEuW3mwFr7tLVOSYdx5Ff12x9BXXTJnekPnfFfo/FdjbDTl796hrj5pdzux4bOCE1p97+80yCjbzwDc3980l21zStyRtISmT/7iYR5s0+9I8d0Ys4/qo0P5Y6E5p5VuY2ubLluaGS7qQ+SU5c1xhb4urjxVz3PLcJDU5MZr7rm7xDRsVvmB+jigAAABUvl5j5h3irtHx3PP4FzcvSNgdSINkf5OHzyvQ84HV/O2RM9ebWXn33ObTpHe14p8pX/7rfjd57QdLPto6UMP35MEPJN9TUnf6TdVobfIHe45buOujZ3T8gHCgmnOtzxUfruVhw01lGKAV9aOpXCaL4DFcEfnc5S9K9qfA7YVluYYXJ2c3+jBJbX9HdrO5kuZK+r+v//vjs++1ydVkts+47Syzb8v1Pcm/rRb82MQcVcrOF80uKl+8fu2GuuBcSUMKuZJQwQ2WknVUIucbW3HLVOT8tFTSizJ7wc3/nKur//PVI3eYl7TPOnLFNc2T9MI35qI+ntls6ze3DILcju62o8t2Mfn3Ja1VihyKruAuyt2NqkabBgsulfQLQpG2qSuOR1oW/2g8VMj6Z5XdlmModivij1Ki+Owbf7JsoEk7xxHH0hQwRXis+O/TFsrsz+7+58DtzzWZpX859KoTPk5i1hx4zaDlkv79xT/fcPvxt7fpsIZ/KxME2yv07RXoO3LtKqlD9H0lxu9X/neZKSkWLUHcInis69m/7z/67h/fdPYM5h7m3ErQ9A6A0q4sEgvsJu6/JwoAAACVrdf4Bd/xMLxHUkA0Kloo6W/mesLMf79U/sKTZ3X9rFqDMbG/1Uv6xxf/3CpJvS+b10U1mT1d/kOZ9pD0XeXxl7VInfWDBj20V/a9Hz2X3WwZ4UDVTg65+tFmtkGzL1zNd4nVsUNRi79EdV8xzz4VKHh64Vqf/HH6oO7L09gn7lgxJr70xT+SpF+OWtA+rFu2p8l+4PIfSdpd7KRbkETlzde6t8lOHnDp2+OuP3/LvP4gZMDF7xwj19ER5FChFx777xwJHetCyf9qsicV+O/WVJsXsylez0yebDlJb37xz2RJymY9qNO/vhXmbA+X72nSTyRtWLnzTZlyKKZj5tMG5jr6kgteH33hiB3/zizB/JSOHEJLYlz+3bpKkSOF9a+bz35sQ2vwi1d3rLQWMBV3nuLzdKVi0Y/N9Ht3/527/e6ICUe8YXn9uUUynXDHCcskvfzFP5KkSX0mZVp1+exbZtrd3b4vhXtKtlWyxs4yHKsUO8A2cynNP/Uh0vmpdS6wKyQdzpxU+nkvvz5V/B87RP++5K2Vmt4B0LQrnbDgvvscQQAAAKhcPUYt2tDDhqmS1iAaib6PLNQiyaa76fFcXcOT089dfwGBbdyU87rMk/TgF//o0JFL1qvPLD/ATL0k7S9pbaJUYfswuHbt0LbDBInHnyMVY3rkGXv4pQt2MfMTKzTDS6FB0nNyezhjDQ/fdf5GFbuj6G3DOn0i6fEv/lG/K95Zq76+9b6hdKDJe0jqWnUz3So706ReG28ILpR0UkvfcHL2vU3Nw+vStjqJ/3F1sR1zmaQnXJqaa6h/NIk7/EUpm7VQX/3BzkRJOjf7z+095/u5bH+tKEZuw1RUWLdLWLFX4GF4nqQjaUAAyZyHo53Ta+r9apm1T/q9ZvMFTNFcbETFou+4+yOBB1M0157vO7lv7sv/cGQFTy9ffM6/f/HPzZL08IDbNlKgfaT//dO5mA5Uqsdol/6+KrljREHncx367Cljd9/7hjNfZPxnXivd/XY819RoAeB+17y/maROtFtBZj1x6kZvk0gAAACVab8r566RsYapkroRjYoyR9JDHoQPfvpJl98/l7UGQlKYh87tsEjSryX9ut9NXjtnyaIfyr2nTL3k2pLvDiqFn9T7ioV/mHJOx3vo9Sh1wuT7g0qkX7y7W3DFgmvcq3sH4IIKINxekPTrMOcP3JfttrAa4zbxnC0WS/qNpN/I3Y69bNauQehHyaxv02vLVR+5VnybNX2wUu0+UyEj3PH9R7wz+qYLtmj20VF9Jnkm+Oe7d+l/j2iNOM+YcL5UL9dTZrq/LggeuSbbfUk1B2Nk9ltfFgSOGzr0tTVq2tX2lHsfSQdKaltJ6+IqzJs+2eGvZ7OX7/hv0h6R5k0pdoFCwQNu8na7i7+A6bahj/1EoQ6Lpq+XqIAp79OUrLDqHTPd66FPOnLCkf8gr1Y45PpfzpR0u6TbXW5TBt76bVNwSOh+mEnbx9F8pXqMdvl3Fk30faK5h1dI2ossSMYcl6x7kXR9x9FoAaDV1Owq90jSufq6pfH4XwAAgErlbq3GLbhV8m+X6PZTctbZMd6BfGRuD0jhPd/5vPMLX+yWgQh98cjg333xzxm9Ry3YJQz8OHM7WtK6Ke03+OoG+MaDxyx6+ZGh6/2TYKCYXEtTbvYZueA4N+2eT6KUY3es/NvAZPF8qTnfXbdmanK33TOcP5j9ZjOa3yX9RdJfslk/81374MeZjB8tV19JHZjTyptDeY5dNZmcLpT0i+be0/lf754t6YckQETzjWnlB9P926VbGuqDu665vDu7eK/GmDE7fSbpAUkPfFUMqJ9rxa6kmbhziMLWyAVBJjyvJeMPkjR15ZdD5E1lyUkt+EuiItYqq+y2HG/xQjwFTN+UzWYDfRKMlcKokzGPzxNtcZ7LS/g4VUnShya7J5Tde9TVP/szmdhcWM11jV6R9Iqki6YOur17GPqhkveRtEvZ7kH+d4joi0WT9XjrYo7Xstis9L4f/+6UKw/6yQ1nTaP3V+P3BnHNk6UvHmy8ANB9V6eXFDjIhBQAAgAAVKhe4+af6dIRRCLVGmR63KU7c60WT50+qPtySZpCXEpiyrBOL0l6qceEGUNrlnXoKQXHSerR1P0pEm0Nz/mk/a6c+70nz+r6GeFApetzxYdredhwRd5vXO1TZlL2Q26+31u6/dECu/7D9p/89su5Fo374o8QnpX07IDs/CHLgrqj3fxkSTsTncKVNs/syFOyb110Q3ardxt7xcnZt7eX66L4Ei/PY5bg94gStUG9mX4r03Vjs1s/T89vua8XA5533psbNAS5E1z+y0DarPTzUyoeJ12SxMk7b1xHZs/528XZK75LoX1VzDeV1d+RthgXtiv16vt8yw+y0eLvnSBr6o+xk7ozYinGlmav94+STVy6+NNJJ9xxwjJyrjC9JpwwQ9JoSaMfHnjbtyQdKw9/brIN4s3rCItFSzIslWoXy+jHTne/PJvNTs9ms2wQUMIOlt94+tV7k/PHDsmaxxv9gSWUduWvQwodHcI/EQQAAIDK03Ps3J+6dAWRSN195Jdmm/xmhcHEKcM6zSZI5fVFMchvJf2292XzuoQ1wbGBaZBLG1bwzaIqdB+G7drkaq6XdBw9GyUc00uTsabWP7t8fp///buw/mDJulRVhucndNkjCuzK+87t8gLhKMz12c6fSpooaeIJl8z8nkynS+qrFu/MlYKZbpWdaVI4k646NtWYMmdJOmV1L89mn62ZL7tdUus0r06K/QE/4sH/Q0kTa4LgutHZ7rMYPYpz2WVbfyDp0mzWR9aFb+zrbkMl7cOaI668iTSHaoJMZrikX9GTgWr+9iC5u93lfyzf5vYzpvf52r8Y4XGsOWK811wR2/jj2Egb1rl0fxCG44685sjXyKhoHXLNL/8p6ZxJfSad17brJz8NQ51k5odoNbU3SXqMdhQdPrKdRb/x9lWPFe993+qv3WQ7/GhOu59LuoteXrkL/UL7Vjzvi34SWv253G3/G2Z9KGntKA5XllVR+Sz+/oIN1uXRYQAAAJXlwDGzNwks85KkjqVf31JOUNAdyFf3Bc+56bpu7Ts98sXjaJFQ/W7y2jkfLzpSgZ8p105l6Tex34NWdD4fP2VYxzvpyelx8BWLXpHr26XNNS92TF/NezyGDPSCMtaaOp4XPyJYnoNP/sf3vMa7rx0/59I9YZAb+cC5G75FdkXvuBH/3SIwO1vux0lq/fUN3IrPTY+4H7UwL/P6DB5R3jT/ufM6vq+Sl8saajObTzxv0zkrv/SUi98Zbq6R+beZR/iZV/PZPaqYesR9qMljzpfbmOVB/Q3XZ7f7lBEiPudm3/i2N2ioTH0l1Tabl56AvGx5P1r96z0BeVlY3tSHOd8qe8XO79Nzo3flOX8+NLTgwbza2ItcdxWUBzHMl17Q+B4OGbV7hp6zetcO+8ORQWj3NT/2eQH3K97IOssL6Ive9H2I5zPmeovWD9bEOZpfZ3qL17rW7H2aF5Bj3vi62POdSzyve0D7Kk8XS7oxE/g1fcf3/YBsK52HB9y2URD4AMlPkmu9vNswn/zxlqwdvKB8X/16yPNcYzXft62Zc7TsvjK/fGzhdz7/WVbbeusDrxnEUwwi8nz/i56R9JP81r0FtrsX3O4t6jP53sO07L5hpViYrt7tpisHFxrv1e4AeMCN72/iqlk7/8Pxt84m/zPFfwAAAJWlz7iZbZd65kGVo/hPkswpAsz/DiQ06UG3YPTUoR3/SqTS4YsCzbvlfk+vKz/cV8oNlWzfEvYbFBfYCb2u/PgPU89a+z2CgUJyrbJzMx2PZCugzUJzTQoUZu+5YIM36fXxufOCjd+R1P/YS2dekgl1tuQnS2pVPXNacnNopTZoU1PfcIaks77+mlMvmbGdhyse/cs6pCjz5bris6D9TRMv7vY54YjfyOx2r0r6+TnZf51vDeGFMh2r/+1GWngOsUaIRa0FdoakQYQiDjWS8vzpr9kUyS+H4s4b8iyJ90pFrFVW2W053m3Vo+8/ee12F3kcS7UzYlSPdnXTJwptQk0mHNd3fN8PybDSO+T6X86UNHzSkEmXtK1bcoxLwyRtGUsf+t8hot9hMlmPty7meC2LzWquY5PW9cuPlXQzvbravjeIa54s7WNNgtV29FxmJzpHwXi8CQAAQIVZ6rXXSvoOkUgDr5N8oofaZspZnftQ/JfWe3XzqWev9+TUszvvl5PvLNlvlfevLSh9u6mDhfV395nk7PQArD5HVp218p3lYn59s1/B2zf+v8+EYfCdey9Y/yiK/0rnrvM3+uD2Czc6PTR9S6YHVO5noaRhdRh73qycJHbSL0f9u/2X/yab9cDDzM0q+NG/cfwEZ/EePvo2+NRMF9cu9S3HX7L1+IlZiv9K7Yrstu9fful2v1Qmt71Jk9Xsni0RTpZVc8zi88ZMx2ezL3agx1bDfFNZ/R2Wzuu1KPq8RRgaizC3rEw5nPd5lprZqPr6zGZHT/jZ+RT/lV/f8X2X9rruxFuWzV9rG3P/uaR/RdEfvUxpXv4xzUo+dpp09qQ+k/hus4QdrNA9kT2hn6ecgtX/W6MAsPBJ+EWiAAAAUDl6jpl3jGS/JBKJVy/plpxyW00d2qX/o2d3nkFIKsNjZ3d+derZHX8WWmYnSQ8o9YWAlV6nYXsuf3/RcHouou9a6cjYKqnEelOy3veev/4+D1zY5TU6Z3ncecHG79x+wcZHuvQ9uZ5P80yX6jxb/di0VutlrY798n/M07v9JP9+Ja1OontIa3PxtZyb3xTW1245Lrt1dvTobT4h+8vr8uyO/x45Yru+rmBXVepmCFbKvIk8h9oH9a35/gKoEIWteSzC85SqiKfMN4cWdxvG8tldpnssqNn6qPGHn3PcdYctImOSpe/kvrle1/f79cudPtg+NOtr8n8mY8ywCM9jEeaeFfh5Ykn8LTut958+9OLKXeh7rDmW7/uinYSCRv79jjR+YW23vK6BAkAAAIAKceDYBVvJdAORSLScue7KhL7t1KGdT3psaLf/EJLKNO2sdf8x9exORwZBsIOkeyXlEvbdAf53Z6wLe12+cFcCgdIljOXRPVFElD836Zz2nbrucN/5XacSkWS448KN/3rbhRv9SG4nSvowjhzyNA0HSckX94FytwHZ97qadHnxU2u8r0/ooPOCy3a7KrvNyVeP3Hwe2Z4sV4zY9m+Xj/jWnib/lWQLkpjXVVzEf1o26wG9FEnMM0S5DqrK3e5iOE+JChMt0rP80Uy7HT3+Z784atwhM0mmZMtms+HB1544eY1Os3dyt5MlzWu8T8bfH8tfWJya+e0cl/ONb3onySq5plU1dhOwU1HpUL2xf/u5IZt9TEICAACk317Z99oEHj4gqX0y7i/4WnU1dx5PhUG485SzOh/38Nld3iEi1eGRoev9c+rZnY4J3XaQNLWI/oP41Fqgu3tlZ7cjFEjvTmDV+whCX/2/fCwMtN29560/amJ/q6dnJ4yZ33bRRrfWh3XbyuzuZMyB1ZVDq4np1gMufmd/Vzhe0tqsQ/JqkkUynTA+233Pq7LdXyYgiW4sHzlih9u8Pre1zG/Kt2uzy25s7bJFpuH1nsQhIXNbmX8rjiTPKH9IX79b6a2lLaqrhgImK0GervYcH0o66cirDv/hUeN/9hK5kS57Z7MNva8/8aZwadBdCi6V9Hk06ZHSR4gn/ly+07OnjDmQnpvG7lXdxYOrFAD2vnVBe0mb0zsKwhcSAAAAFWLN9u3GyPRtIpFI/3a3ntOGdt7vsTO6/p1wVKdpwzr+a+rZnXqb6ycm/Y2IJM7W1rZ2BGEAohd/wcQ3vphcZLKj7jt//YPuH77++0Q/2e7Objn/tgs2OtY87KlGdpYgb+LKm9XlUHCdSUdG8wli/sEgKb+RmD1Qo+BbV2W3uoO/gEqPK67Y8aPLL9nhZJnvL2lmMjtkdVQwfZk07j6InpmWNrOC2pgcqs71SbLa0SI8pKW2r3qJrtelu2tyuW2OvurwW4w1UqodfNuvPul13YkXqMa3lXxqssaMlXYWtXj7tkefJxHmsUnuw+mx1XATGtU1JePzrFIAWFe/fHs1vjMgmm5UCgABAAAqQK+x8w6XdCqRSJxP3G3InPaddpx2VqdphAOSNGVYp2e/83nH3czsF5L+S0QSdY98+sFXLvwecUB0XSodl+l5foYE/3oztaE2s/2953W9n86XLrdetOm0+rBuR8keTcs1p3onsEbHJk/4H9lbDG1ghY6Nc9zs4Kuy3Y8ck91yPlmcTiMv2eGpXN2yHeS6g4VJoWNXcXn5NT/Jnvva9vTK5M9nQHNjSmXtdmeFfR4rVy4mojBxjrv1Ouaqw4/te03fBeRJ5eh1df//9rquf29zO1zSB1H1oVIVikf2GG1r+ro81s/S7Hv3fKb/mB/RW5O4hrIixnsrap6I533RzTerFPqFHm5L9yp4jKAAEAAAIOV6jlu4gUsTiUTSltp6MJfLfGvaWZ2u+huPHsRKslkLp5zV8Z42Ncu2MdfFkpaXo5PG/1VB6mQ81K19st6KXooiEibyY/LIwWZ9JtMv7ztv/d6Tz+48l/6aTit2A9ywt5sGtGxetPLkDRsKMXaZP5KR73h1tvsUWjn9Ro3aZfHIy7Y/wdyPlPRJavPMUp9nZgoH0CORxPkJUa6DLMI2sMS0dVkKmCy+Ri14NzXX/bWW2/7nVx/2KMlSuXpef9KD4dLMtjJdu6K7VMNjtNMjsHAwvTS1k2SVXNNKfXbVTLRtKmK5V47YtwopAAQAAEgzd5PnbpO0bjLvearva1WX3ne3nlOHdj58+rD1ZtFJ0ZTJZ2y0dMqwTllz7STp2RTcuVaD7Za1WXgeYajy6TVhr89j4q3GY75uFu5y37nr307PrQBmfvsFG99ggf1IK+0qUZo5sLpyiOLivMP+mbv3uyq79SFjs1svJGEry2WX7fCA58LdXHojTWuKypoC7KhxQ/7Ult6YhnkoBWtxCvbT2++sHP2NAqYiz/OJmx9zzNWHH9V3fN8P6f+V7+DbfvVJr2v7DVSg/dSi3QBX7tJpG6QtNedyqdezJ47akF6atu5VvcWDwar/wrehVxTk/SdO3IhJGAAAIMV6jlswQNJ+RCIR3OQTMznjcb/I25Rhnd6celbHn5rb8ZL4QbnMzOycg6/4cAciAUQ4Scbyer+xTf3S7913brd/E+HKcuv5G/0lDHO7mPR/5E18r19p9otjRo15wi7p6uAty9n3rr5k65vJ0Mp1+eU7/rt+We57ku7NP88s7Z08CWPd2p+0W+MQemISboiaazMrtI0rax5ifVKi88RQnGdJ619W0sT2KK/X7RWF4Xd/Pv7we8mO6tPzmn5P17QKdpR8UvnGjJV2FrV4c9EjzutoH89qklTjNepH76yIm9ASXFP5P0+wmoUmBYCFDQuvEgMAAID0OnDsgq0kH00kEmGWy3tMHdql/5RhnT4hHCjsftt8yrCOd9Y0tN7G5HcRkLJq5UF4azbrAaFA8bmdjsv0PD9DmXco+lxmx95/3vqn3JHdbBmdrDLdkd1sbqbL/J+a/JZU5o0SlzepHJuau/Bo2sCaeb09nDPtOn5E9zfIzMo3ZsxOn428dLufS5ZVRW7IF8duUsXl5TeP5CfQC5M/nwHNjSnl3+0u2uI8L83HKdmjkaM6lrtdX7fOx3scM+FnM8iF6nXA+BM/7HndyUe4+3GSPiukP5blMdqRpYYVvXaKPsftpEl9sq3onUlbQxVTiG1FzRPxvC+a+eYbX773mDCjtaTN6FoFNJbZP4gCAABAOu2V9ZqMhXdJakc0ys3ursnU7jBtaJcniAWi8NC5HRZNObvzcVL4M8kXxdt9S/FVQVpvmrXry20X8hezKDRhIj8mjxD8n3c8Y3vcf26Xu+mTlW9i/13qb71wk5PkfnEhORRb3rChUHWMXaacuZ971cVbHnZNtvsSWrOq5nwfeel2F8t0vKS61OSZpTDPVvXT7LCXNqYPImnzEzIRroMswjawxLR1WQqYIluTWr5zy1KTH/vzqw899YTsCfxBFiRJva4/+S4zfV+uGXHkdaU9RjtmXTut2+5QemV8c0u6vixI9hcY3ygADINWW0qqqZjlXgljH4TGXywCAACkVPsO88911/fScb9UmV+rmrTY3I55dGinYx8ess7H9EpEberZXX5rbjua2RMJu3OtGi67rNeYJR2JRLW2f7Jen9cMlYpjFmRaECzf9YFzurxGD60ut120SdbMT3YpV5JVXhUdk+LiRi1UqB5XXbL15RV7Q4NmjRyx/V0KdIBki8mzkgmCoOZYel/FruVKmzcU7Ke331k5+lv8O+dVRAGT6b1MEOx5zFWH8wdZWMVB1/b/e+sG7SrZI8136bQN0paqc7n5AHpk2rpXdRYPfvPxO5mAx/8WKMzk2AEQAAAghQ4cN3cHd51HJMrqT/Jw56lndbqXUCBOU4Z1mj1l6Ho9zG2gpKVEpLRMWtdyy68gEkA0fOUMa/nrQ8my29R36X3v8E0+IpLV6dYLNrlJbn2Ugt244sub6F+vPPMyGceMfQXwkizz3asv2eopMg8jL9n+2dB8X0kfNZ9n5FA0H9mPdzmlWwm4GWp6vsmviZz+XtXrk+LPE0NxnpUgUdKW2M17Ilfnux417uBXyAI0Zt+J/RcfdN1Jh5r8gi/T2EvUtz2Srh7lzqJRPgK5pe/78pz2o2dPvnJ7emQix1LuGb7mGwWAHjoFgIWpX2u9T94iDAAAAOnSZ5JnArdbJLUiGmXhkq749NNOP556Vtf3CAdKc/9uPmVYx2tDy+xmLu7jSt8AJ/QatWh34oBqmeQaT4U8Xx+dxYF5r/vP63JxNmshrVTdbrtoo4dkOkJSfSryRmXLmxZOcamdm4v6DE3+UGaattTW+PHV2S3+S8bhS1eM2P6vodlPJS2qkPVtDGOdRTc2mm1x2Xl//yE9rzgNaZ6fmOwqIsbl3+0u2rb32D9OUh+NbJLk5j6y1Qf1Bx133WGL6PNovteYH3TdyZdKdrRky6PLsYgfox1jmnkJPkvznzU8id6YtO8ErOi1V/Tvs7KuEYNv3gcEW9ClChqR3prcd7s64gAAAJAuS2fOP13SbkSiLD52s0MeHdp5+HNZayAcKLVpZ637j/q2wa6SHo729jCarwoqWGDy6/pM8gy9EAV/QWvRHLMKHyE422Q/uvfc9R+j7+FLt16w8cNmdqRaWAQYW95QTxCbso11ptvX0QeHTMx2+5xWwMquGLHdKwr9J5ItSHTeWInzJiY5D/vS65C0+QbFFeCv7liemraOcheviAuYLPa4feLSYcdcfdh5fSf3zZEHyEfP6/rd7659lPcfUcT/SO7YxsdSj8dNv+7IZ7PZGnpiGto07muyxMYpWGnq2Yy+VNCU/QZJCwAAkC4HjZ+3uaRL0rnGTf3Xqq8FgXaddmanKfRElNP0QestmXpWx8Pkdq4kvngtne8sf28hfzWLZiWnQK8SHkFob1rge953XpfX6VlY2S0XbPSgmR8tqSE9/b1yKgYrsRjZTZdfne3+q2x2b/7QB40aOXKH1xXaAZItJm9iXgVIh2WzHtDrqnseiiRvKNivgi6b1EIhS1X+NHK98yzwvX9x1aEP0yFRqF7X93/eFOwh6d1i86T8RcOlzOtIztXZ57Tbj16YkjWXJXXhEu81rbzg37zc02FKvUniAQAApIi7WaiJktYgGCW/vZlsnzbsMeWMzm8TDSSjU5pPGdbxcjM7QNJCAlKywF/cY8KiDsShyqZfQhBzTBv9EvHFoD73g/uHr/8+EUNjbrlgk9+4dFJ1p2o0j9xrYV5WqtDdBk3Idj+3Ev5qCfEbOfJbL7vlDnbZ0nzyMo5cr3Dr19T//Qf0uEROM1+bP+Io3KBir7LulRL0uM7VXZeV/t6vVI9GjuBYb+dqfM9jxh76N3o7inXQdf3earD6H0r2r/iG+pV2FrV488QjzrloH+v6jR1bf04PLMMiiWtqsf8VAPaZ9EYrSRvQuQoaCWYQBAAAgBTdJI9bcIKknxKJ0q6aXX7J1DM7HTGVx4AhgR45q+PTyvn3ZaI4tTQ6t/rchxEGVPzk19R/tDxfX9j5p7VqpX3uy3ajwBnNuu3Cje9waWhF5Zniz7Pm8jodJynuMYS+4n3L5TpywiVbXkM2IR+Xj9jx9+Z+hKQU7xhpheVNHscsaqwzKefhz+htFTTfpKy/I5oYl6rYrVS7dXkh57D8P7uXqN83cZ6XPBPuefyVh75D30ZUDr524GwLan8s1yvFzUMJKiy2gnOslPPTwc//clR7emCS1lxW9Nor+vdZ2daI/ysA/PjDDptIytCdCghiQAEgAABAWhx67az1zH00kSippTIdNW1ol4tk7ASC5JoyvPPb9fUNe5j8haIOlNf3TdWbEm4acvDYRRvR86qdxfA2iy0D05Wxdsf8+i6H3H1W18/oZ2ip2y7ceJzcL4t0vM8zr1ksxjDnxj/WLQul3ldf0n0y0UYhLrts+6kmOy2ReWOx5U2pV1yH8xhgJG2+QXofkeslut6yFDBFGEozPdF6ed3ex445bD79HVE78JpfLqhr1fonJr2QtDEibWNaHudrV1drh9L70tCmcV9TXJ8niObdGffN6UuFqQspAAQAAEiL+uW1l8u0XvrXuKn5WnWhWfiTR8/s/AC9D2kw/dz1F7SqWf5TmT9INGLX1uv9UsKApiSnQC9djyA0+Y0PnNv5l89lrYFehHzdetGm57v5fdHmGY/xTMdYV5A6d//ZNdnuT5I9KMall253k6SbqyRvyqFbTf1rexCG6p6HIskbNgBMdHfySM6R1MJES1X+mHT3Z5/O69X3+r6f0sERl0OvOuFjBXUHmPRyIXlSaTuLlmIMMR4DnJ5J0pK6cInvmv5XAOgebJaM6TB1q+UPnzltw0UkHQAAQPL1HDdnN0m/IhKlWirr/SBnP5h6ZtcXiQbSZPIZGy39zmed+rjbBKIRM9PPe41e8B0CUVVzA2KNqcmk27ap73oqu+6iGDW5VidK9lo1TkxRjF3egmNWSLjqA7Mjrrlkq2lkDaKwZHHrgZK/qGrJoRLLufMY4GROM1+bP+Io3CCHKuteKUGP61zddVnp7/3K/8cpqx7Lza85ZvzBx/Wf2L+eno24HXjNoCX1tZkD5Yr4MdMrPUbbos2TwnPZYhwbmn88uUs/efK0Ud3oeSVeJHFNLfJVAaAqeAfAOBcVpreIAgAAQPJlsx6Y23Uqdg9ttNRrDRnbY8qwTm8SCqRzzLBw6rCOp7vbZUQjVkHgxmPZUb1W812iF3e4e7ap73JSNmshwUUxJma7fW4WHiopFX/4XH07gcW8o6K16OU5ST+/Krvlw2QMonLNNd2X19bUHi5pbqpzKIljnUkmO4RexnyTlv4Oi7BPWex9Pdqcsgg/jkX4eVpawOTX/2Lcwaeb+IMslM7BV580z2psf0nzyjGmJ6fgtyTzUybTYAfT65K05rKi+2L07yvPWulrP37aRnSjQgJo7xAFAACA5Ptb+/knuWwXIlESzy9rqPnxE0M6zSEUSLupwzqeL1M27zfmdY9f3d8Ju/TTQy5fsBe9rZpZSd9WbAYm9Ydfk0/Kde98PMV/iMotF2z6npsdLSksWZ5ZBcyMFVIT0UwbhCYdPyHbfRKZgqhls9vM9tB+maihwCLJmwJeH/mAssmI8/+2Lb0MYOGQjOuNcheviAuYCj/cxJ+PP/g0iv9QDgde0/+d0OxAlz4tdG1S9jHCyjk+Wh6vpACwcua88lxTXLkZfPWxfAP6UgENY/4fEhUAACDZeo2Z3dFd7OJVmoX3M3UeHvD0OesuJhaoFFPO6nSxmZ9PJOITBhpBFNCYwn5MT+fOPkV4uEPHLj+f3Ndy9BhE6bYLNn5S8quKzcsU5FBKx7r4Xt9EM7qbTro62/0eWg1xGTlyu+kun5i2PEvHwjtzAD0MReeBVVnelIpFc4DS7nZXiWvAgq/31nfXeuUUiv9QTr2u6/+yTCfl07fLv7NoGu8Tfa/HBk7oQI9LwdhsCbymGC/sawWAirEAsHLnOZcoAAQAAEj8vUHmEpnWq7zPlax1tknTPv30055PntX1MzodKs0jZ3W+TLJhRCK2EeQHB1+xaH/iUB34NWSl2bP4eE4P6xceMbG/1RNPxCEX+nmS3qjUHGrpMYsrHKqc4keTzr8m2/02MgNxa1UTDJX0TpR5CclNFACWex6yaI+Z7+5o5E0l3CtZ0V3W41yjWJzjdEILmNzueHetV/pls1l2Y0fZ9bzulPvN7aoocy55hcWF5mwxO49+472t29QvZ01Vyeu1lN7LrygAdDeXutHwBQQwF1IACAAAkGAHj5nzLVdjf/WGyG6mzR5p82mnw57LbraMaKBSTTm742i5LiYSMY0jgY+QO9tDofqspte39Etvd72ieus7ObtdHYFEXO7IbrYsDP1YSYkuMq2+nb1iLn5c3eHN77w6230kWYFSyGa3+1TuxyqCx5CXJYeSONaZJNePstmX2tHDmJ/S0N9R3uJnL1Gf8EKOZflfV1wFTCbd0+aDZSdS/Ick6ZyzsyX9X+T5m4Chv/mnPpTqIr03PS3q+cSKmIeK/2OHUhWtxymQpF4T56wnqQ1dL3+haigABAAASPJ6LbDRkmqIRKymt/ukY9/JWaP4ABVvyrBOWUk3Rn+Pzz4Mcu3ae/TCXgSiWiXxUR7RZWxMGf6BlOk1Odv5U/oP4nZ7dtOXJV1akryxCpgZK6QmYqU2+MO6qu9HNqCULrtshz/JdUua8jr6NULkA0qbzPLMXvSu0q0DgWQsHIxj5ZvfLTicu01pPWvZ8X0n983Rj5Eku0zsX59pCI6QNL/0RcMWYSqX+sYqr/Md+FK/m2rpbZVws2wR9f3yrykDSarzcAP6UmFtslZ9jgJAAACAhDpo/Lx93O0gIhHrrf3v2gbLD6f4D9Wk9aYdT5PZb4hEHIJL2AUQkcxOkvL5IqjQv0Yuo89MQe/J53f8gNZGqbRbu26UpBn5500icyjBY1dyXv+1ZpuRq2s4LMtuoyiDMMycK+nDtORZKmJqxiPrUHweWHXlTclYNAdI3uM6y1NcEXNDvGQ1rY6m+A9JdcDE/nNC08kt6dtlf4x2Ou8T11kcLPkhPS0Fk6Ql8JpiurBgxWG9BAWAFbncmz/5jI2WkmgAAADJk816YKHGVP49T/nW2W76Y517b9bEqDaT+1quvvVHP5f0LNGIfGTZqdfoRQcThypo6Zhfn7LJPN83hOZ+zAPndXqZnoRSumZQ9+XufnoF5FDBx6zSsevDnIKe112+7SKyAOVw+eXbLpL5eeV+FGaFrTwoACz3PGTRHtPzPCl5Uwn3SlZ0l41st65mLq9Uj1QscQHT+7maTK9jx+z/GT0WSdbrulMecunXUeRc8gqLCx1TrcD3re69PAa4otdrsX7nEI9AkjynDWjwgvBX1gAAAAn11/YLjpe0E5GIzT9qg9qeT57VlS+6UJWmD+q+vL5NcIjJ/0E0omXSeUQB1djxV9bEl95nP3B+10cIGsrhtos2nS5pSlKvL9kFepa+Y5rq5Paz67JbvEXvRzm99e9/3Sz5y9WblxGOdSsur3t22Esb07OYn9LQ32Gp6ruFXq8XcizL/7oiKmD6OAjCg0648qC59E+kQc3y2kGSZkeWvwkY+pt/6kNpLtJc+9DDop5PrIh5qPg/dihV0XpcghX/r3elyxVkDiEAAABInl43zW5n8hFEIrY72//mcpkeDw9Z52OCgWo2fdB6S0ILe0taGM09PvswfGGXXld82IMwVOUEU9K3FascP+SaNHHSeV3G0ldQ1kw1HyxpWax5YxUwM1ZETYSfNeGSLdnxGGU3eXLfnAfB2WnJ6+jXCDE8HiyT+QE9q3TrQCAZfTDKsaRyj+VNH67O3A//+dhD/kkvRFoccOuJH4bu/Uo7NlmEqVzqGyvL56XfenbAaGqtKuJmuTyPqo96TbmiADC0znSygjrBbGIAAACQPP5J5jRJ3YhELLdBi4NQvaYPW28W0QCkqWd1fc9DP1RSHdGIcqwJLyQKKHo98OXMldfrWzgbluXz+Eth/cKBtCzK7ZYLNn3PpBvzy5vy51Blj3XRv96kR6+5qPs1RBhJMfKS7Z6R9FyS8yZlYwcFgEDC7oKjWyol9XGd5SmuiPCzu2T9jr2q9+/or0ibnjcMmCbZw03lYokfo10p94kW5rQ3PaysYzPX9DUrHgFs1rFktxQVFXtna18AAICE6TFhUQdJZ1fVh7aSrbOXh6F6TTmry+v0NOArU8/p/Ly7DSESkdq956iFPyUMlY0f378xmTf3go/DwI6YnN2OYmMkQyZ3haTPUpRDZTtmOsc6e7++datjZcYmV0iU0Fb/RyJ01PwFsh8ShTLPGRbtMeOeb7xU0y/yaB8rust6iRqzVI9UjLOAyd1GHje+5530TqR2HeXhmSpwJ/doC4tLP2Z4pBOYrfw/f0LvSstSLcJ2T9j3Dl+t8SWZeSdavICBwnkEMAAAQNJk6huGyLQekYjhVsR08rSzO/8fkQBWNXVYx+tduolIRDXgSOY6n0Cg2vr9yvyr/8+Jvx3e5V2ChKS45bzN50m6rhI+S2kL9JJbqPg19UEQHnnD8E0+oqcjaS4fsdP/yfVUwnMoFWOdS9tls2+sS6+q1Pkm1fMQUh9jK+iyPfbPXlQB09PtPvj8Ivoi0qznDQPelWtc+YelpD5CvLC52EQBYPRrG4tkTZScPxIq3TwefPHJKQAsKHoBBYAAAAAJcui1s9aTdAaRiOUmZfTUMzvfQRyAxrX5vOMgSX8t7ijsX/K/UUfaq9eoRbsTCbS0w5RDKX7INfNrJ53f5bc0MpImE9ZeKemTpOVNombSFNZEmPycqy/c6s/0cCRYNvl5HeXj8FZ/TC/+M1hmeQOPAebODVXXB5P6uE6L8G2RL8Bm5RoyR/ed3DdHr0PatbXwckmz47yBiWxnUWv6urywASKOMWnzZ0++fFN6V1Julotv91IXHEa5pgy++L8UABYgo5BHAAMAACRIw/LasyR1IBJR8ym7fNpxOHEAmjY5a3W5XHikpI+/8R/YEKFg5n4mUai6Vo92BsvzmAn8IfflJWt+MpR+gSSamO22UK7rY/vxmfkztrGriR/yp064aMvxRBRJdtllO/xJ0ovJyZvUrClWEZooAAQSNXdbhOugKB/XaQV+nugXeKV//KjVB2ZH/PKaAxfQa1EJ9r7+1E/d/fxyPEY7beuk/D5Phl0AS8q4pkYEcjdJHcu9pEll7BtCJnsAAICEOHD0/K4uDazee57Y1tlv5lrV/CKbtZBeBjRv2vAu77rCE4lEZA7tdeXHmxGGypXeH9NL8vi0JQrsiOmDui+npyC5S9DMtZLqqygvK3asc+mDGrU6XmZsaoU0LCCuSu4aIVWB/CExKPOcYdEesyyFrRTsl/leyYrusl6ixvQS5VykBUzmZ/1iXM8/0RtRSdp1mX+3XO8k436r8XNEPWZ4jJ/HXXvTs9KyVKvs4sHgoBv+u7akWlo7f0tzuUVEAQAAIBkygQ+V1I5IROpTC3KHTx+03hJCAbTc1LO7/NZk1xCJIq347iNjuYbTCQaqrN9Lktw1YPLwzm8TFCTZLdkNZ0k2Oe2fo7QFesksVDTzU8ZnN/qQXo00qK1d+FuT/pukHErjWGfSd7LZN1rRoyp1vknXPIRKi7FFeNnRP2q4hbk1+bixva6m76HS7J3NNrj8sqLnMktWXpd27raV7qX0fXpW1Gsbi2RNFO1ayhLbT78U1AVBR7pZQeqfG7zpYsIAAABQfvuPm7mum/oRiYiZTpx6xvpvEAggf3VtPjpLrleIRCR+dcj4j9YmDGjBvFUW8fyQa1N/c36XX9OoSINAq+7EVZ68Kfz1lTg25XeJfu81F3WfSm9GWmSzezeE0rXJzus4HocXzQ+hXztUK9U1bE+PKt06EEhGH4xyfIq2iMdL83GaP6T5mw01uV/Rw1Cpmt4FsPikimxnUWv6ujzWASKv927+bL8x1F0l5ma5+HYvdcFhVGvKQPK16FgF+ZDHIQAAACRDrWoHSGpPJCJ19aNndn6AMACFmT6o+/JckDlW0opHd+b1vQO3mitZM1yeo8i7qkT7BaDnecwEZOBieXAK/QBpcfOFG//VpT+mYDioaEUUSS6oVchuu0idVjXBrZKWlSlvKmZVH0jfoTcBSZq7LcJ1UHFFDPkuyjzCYxV/nqLOUZ/L6ehfjT74E3opKtWKXQB1WXTrF4spl1PD3MLd6FklDTnXtLq1vXnQISlLmlTF3p3H/wIAACRAr5tmt5PbQCIhKaq/TzG9nGu1eBgBBYoz7ax1/2GyLJGIxMC9sl5DGCpTen9Mj+fxaS4fOvn8jh/QM5CyTL4+KTlUrWNjEREbNDa79UL6MNImm93uQ5OmJHONkKaxJqQAsMrnoUjW4hTsl7mvWGq6rJcojkUVMJku/+VVvV6mj6LSdcll7pGUwO8eLJXncnMKAFcrSGD3qtziwSBgB8ACE9gWEAUAAIDyCz+p+ZWkzkQiMp+ZB8dMH9R9OaEAirfz5+uNlul5IlGgr7772LB96w8PJiCoAs/+5twutxIGpM2SNTMPSfo4zZ8h30fbFVcwkYziR5M/OiG75f30YKQ4c+8sZw5VxlhnO9OPEnPP00ibWZFtXKr+ThVgadcncZ0nhsJES1H/Mr3arv3nl9HzUA12mdi/3kw3FpKLHklqln5n0Wgfz/rNcwYSBYBVsbawRH+eQCEFgIU1jX9EFAAAAMprr6zXmPkQIhHhOtd02tShHf9NJIBoZLMWKtSJkpYSjWLHJz+ZKKD5jpKOy2zkS+fPQvMTZcYGRkidyWdstNRNk8uQN5G9vgrHpo9D5frTe5Fmb7757ydcPruSFiae5zG9yMszaads9ll22q7W+QkVcbNT/sd1WllzKv9LaPTRyHVmueP6ZvvW0ddQLYKcTZS0PI68jqyw2Jq+Lo92gCji89puLqcaPsa1kBfYcTzR1xntGrFGgXVgtVnAOOO2mCgA6dYn+0arzzuvuQaRAFASeawcPlseLn0uu9kygta89h3m9XW3zYhEZDdekx49s/MdnsplTwAAgABJREFURAKI1pRhnd7sPWrBRTKNbvn9t4sdFFbx00NHLtjqoXM7vUUoqoEp+p9HW37MfDMwiox12fm/Hd75XdoeaRWY3+FuJ0WeN3EMB5CZzrnmom1mEwmk2eTJfXPnXfD6PXKdXcL75q+eHOZ5vD652qpu3W0k/YMeBZTe6seIrw0wRa+DVhwgmrGo+Ysp/jwt+8AtO09+wTOzi48bc/Dr9EpUk/1vPGX+9FOun+SmXxSfy/kPWMlfJ+X1mdb7Xb8rN9dEvUPPirffxP9lQRKvqWVqXL5W1f6oUETs3fwTkhFIt0/WW/dga/BJFXe3GOugGdWrqiluaZsYyxOzqliJtGl53NZsbVdKpfvyOuXjHrv/rZJQrgL/0Gxuq7q6AQQQiEfXtTteNW/xgmNdtj3RKHyEawh0sqQzCEUlTunxFtzF96VyZF/svbR9XccJv6ErIMVuPm+TF04c8Z+3JNuqDDkU8zErbWz01+Zuu+Ut9FpURJ7k/G4L7OzkrRHSI5C+IwoAq3oeiiRvKNgvc18p4lglbrsV/Sf+z55nv/7Lxu3bjqZPojqHIr9Gsl9U71wa4blMu0kUACZ+bWT64jc0T2CcilzXm1uH8i0nU3xT6UYBIIBkzp8AUs8VbkEUmnfQ2Hl7uGwXIhFRvzPr/9C5Gy4iEkA8Jva3ekkDxE8iRa1xTXZ8n3Ez2xIUVNzyL9CQbNZCQoF0j9fmMrs33cnYgsmoRa9vyfHj+BKnpce0Myb3tRydFpVg5Mid/iGzt0qbQ2lfeKz8v/3b9KTk3POsvs2sqDYuXX/nB4rSrk/iOo9F3ycs0f1rWRD68Xtn926gt6Ea9bj+1L9K9nK+ueiRpGbzb/aIx4hoH89qK/0v25keVQ1rC0vs5wnctBadppB28SUEAQBQtV8l8F1O3AsNCgBb1A1tEFGILP3vmnZmpykEAojXI2d3/j9zu5NIFGWduvp2RxIGVMJa1b+63N9MPqfz8zQcKkHgwYMJuWst6PXVMDaZ9Mi12S1/R29FRU39rocqaWHieR6z2KeDmmlbelEVz0+oiJsdj/BYhfVdK2tO5X8JXxUwmXTFsVf1/Bd9C9U9soT3xJHXkRUWW9PX5dEOEMUsSrejN8W7FvICO44n+jq/UuxfBgcWqh3dq4DctYAdAAGgsu+ZgXKiALAZPUYt2tDkhxGJSMytqak9nTAApVEX1p/t0ofxflVQ2dz9RKLAQr0UxyzRD7nLAsudTVujUky8cKO/S3o78rzhvj2ypYhl7CzCgIpbMZiVtAAw3x1vEr+qd21NLwLKmYLNLH6KXgdZScei4s8T5S5ezR7r3bb+GY/+RdULpfskRbBDeBx/+FD2lWY+L96e3lSafhP/lwXJ3eWvKYGb2tKXChkF2QEQANK5UAP9JhXrjjX3u3JuZ3pGE6GsqR8QSrVEorEA5bWj5+CHh6zzMUEDSmP6uesvMPNLiERR9ug1cuE2hIE1YXJ2WrFiPvO4+4ev/z6tjwq77XmwVDlU2mNWxNg4YcIFW8ygl6LSjBjxrb9Impm8NUJqbJLNvsRmIVU+D0WSNxTsl7mvWAneaqn67N7su3xI3/F9l9IPUe0Ouv7UuZKeSdb6yNJ4ro0eGzihAz0qBYsEq8yFS+CuNulZTiapP/inJCmA6po/+SoMKKXawLYkCqvXZ9zMtiY7iUhEYvqjZ3Z+gDAApdX68043SHqHSBS+xg0C/YKgoALMrcvYFYQBlcaD8KFUX39LJ6NmX9+S45eu+NGkhTXKXEYPRYUuFl1uj8SZQxU3Vq+8vF4adKcfJeueZ9U2s2LauKr7ewXmbAnOE0NxnkXxeaK7LndNP35czyn0LuB/q6m7881FjyQ1m3+zR3isYsYgb/6c1rZh6bfoTSVeJHFNXy3qrdp3ACw0uQOrIwoAgKr+KoHvh2Jea/AY4MYsVesjJXUkEkXfn3xuHp5KIIDSm5y1OrnOJxJFzJOmX2SzHhAJpHsq1vlThnX6hEig0txy3qZ/ljQnhXe5JUn88sXBL7oqu9nH9FBU7Lxq/kSiZ/3Ixy6LbqwzyWsCdtgu8XxTuX9uz5fG5Yqxl6i9Ev0o4ZZ/nOVWE55OXwK+0sb8YUmfRz2mR1ZYbC09T5nnpzDYjt4U73ziBXYcT8x1xtcXAxcFgAXlrQf1RAEAKv6eGSibIAwpAGx00ez9iUIUC1pdOvWsru8RCKA8pgzr+IBMfy3mq4Iqnww2eqX1op8QCBbqca/v4/oh16TXtqvrdDvti8pMW3NJT0WeZ8bMWIT/1K2/+GbCgEpWV1f7e0kl+90m3x1vkj52BW4UAAKVci+UgOv1En32gne6dI094cpeM+hjwFf2vv7UT2V6mvGxuPO5OQWAFTPnWeo+T2AUABYU+0AhBYAAUNRNF1Cl/aalXwybUQC4Gr2vnLejXN9jvCm6G76Ta714HJEAypmI5nINIxBFrR2OJwoorECvdI/cbPzlfnE2ayEtiIrNTc/3hyP+Ki/6se4b8b1iYv9d+D4bFW306G0+Mekv0eVNtQ004db0ojKvDytlfmJKL6iveOzdyZof66wcfbssx5qZyWRG0u+A1d7IPVr8+ijKnUVLOalE9pekFACmZc1llbdwCVT2AkBPaRdiB0AAlTfPVeqYDaQUBYCrEQbqRxRaOhc0PmaHZmdMH9R9OUECymvKsE7Puuk5IlHwmvfQHtlFHQhEZamSO47XJ5/T+WFaGxWdy27PlD+lS1fsW1yhUew/OMyydUN2HEW1eJoQFDhuB+wAmJB7nEjntnx3R+Pb/0q4V0rQ4zpXd11W+nu/lc/jZsOOHbP/Z/QoYFVBQ82jLU9PizCXLe9cLnYcjPaxrvb1/y8FgLHMUZW2Q2BMOSx2ACzwZihXRxQAANX8VUJi11uVswymAHAlvW6a3c6lY4hE0Z3ryf9n777j7SqrhI+vtc+9KZCElpseigoWLCDgax1RkfSAMwadsY8OkQTSqPYzVlIIJCQglrGPSlQgPcESR1RAigoIiICQ5Ca5NwmQntx79nr/INSUe/Y+uzzP3r/v5+M78zrn7rP32utZz3rOebLPkgtbFhIIwJFZ1/TLRCF233FIU087i8DAw1T+0t6fSAUK63+qR7eqyP0ernJjvb7B+SzVN1GR6Vfzj39QEjUNf+XuQE3/mA3WupeQQe7PN/40kHxonFeM839aVxZjSuNfjslfH+9920/JH2D/hn9j/DoRuSNWjdB6xnKD84M2WpsymZ8G/eaj1R5kU7rzicVMHHPmPNPJxUBMu5FWcQLHEwABoCRrZiCvprfl9OqjLBKeJ9zeNE5EDicSDem0IJhCGAB3LL60769E7Na4HxWUvn0L5RyiQKOedn+f7Bezet+Je1p+wT1FSdY0v0x8nCkzY0StW6XyLcKAsti0oeNWEdnhaqvi+Gavwy6/9I7DyCKgIGshB87XMrr2KE9GVNXPVavVkLwCDjpeFlEfG3o/tZ49jyGPijLn+TUPB6JWIZGi37ea1NgACAANL7qAkuZNfX2HHnrYIYPIiucniJ1LvWk09+w7S6b2vZ9AAI6VN9WvEIXYc+qZZ1/5xOEEgh4y+utzerKPyZerVeULJ5Sk9bRVaSyUqHX1v95EZ363etwuooey+MY3Tu1Q0Tuz7SmKY0+3bkeTRTn0h0Wcn5jS06lBmkw+WiLvoY6Ok4M+guy2j84ewa+iAF3VokCXNd7vJPlk0SwnlWTeS0M9jkzypOfSNHMs+4YoEBEHNgD6t0xqqgX8BDCAkn62wFYbILNGraZsANxr1JWtrxSRNxOJqHOBPX9e2CFa+W+CArhn0cV9l4jIn4lELN1qu2pnE4ZiKfCK4wE9vu8C7jDKosPsjw40xJkds7GNQ6l8iLOhW59u15GJKGEncWsJeop0IlersQHQBdrwC2LMT0k+tQ1p9iyW4LHqe58UNudp9mu/p/9hRPBZ8gzo2vYNR94tIk9FGdfJjGWtaywnXRuS+7vnzj8UO5ZMSmOO4gmBXXFkA6B/Oq2JJwACAAosQtvLv+hMTS2osQHw2YwMPkSuNRzEuYun9V1LIAAXPydQM7U5BCJe36Fq/Aww/JiKzb6y4BytEQmUxXerx60Xkcc8XOXGen2j81kK73HFldOG7iQTUUK3ujtQ0z9mI7UuCAI2AHow37BBD13VlPyf1pXFmNKol/Ob/7xy+C/JGaBr5yw4p2Yit8SqEVrPWG6wH9J6aobmuhhT5QmAWcwnFjNxzJnzTD4Xg73/QUQV62QDIAAASHeRYDwBUESkWrVATT9AJBpaQm1uqjRPJw6Au7bu2P4TEdkY56MC6BnjZj91JHHA/tMjp5l33//qkeD4fj/mhqCEY/DWBsbNQcc1M+NBbWu2yjcJA8qoqan51lzeuM6ew+XNXmbGBkAAji3CkjoWT/8Doo08W1W+epPk+/EEQH/uqa/ndIDZzngCYKz7tidsZgMgAHTV3tBXoCx5k1KuqbIBUETkT73Xv11E+BC6oXGlV9w49YgniQTgrlXV43ap2LeJRCzNuzo630MYaJ6i95wa8fXxz1NF5/P0P5S0Eb01z7Fe3vWyfueq6nH0/yilavUVrSryePrjLN7r3W63lM9ekMm4QdRYaoKtkqs/16mp5aCaLPnP2cP+QHYBkUb3bxuv80k+WVQ9ix9PAMwtczP8MwcOvo9AndkA6Fd72KPbrj0MIABFnedY0gOOdEdmbAB8uph9kKrUUCZtqtT0auIAeFDtwtrXRYQNQvEmzbMIQsFuabFWKNs79jT9D3cVpRSEt+Z/Etn9jKcjtSs0CeeSfCizUOx2Pi+I01LzBEBn5iFN9pj8zHCxcsXSyrsX/WliP9eZeb696HzVvkxuAdFsbW+5S0S2RBlz+f4seJLHa6QWPxuLY8mirNfoeZ6TO9cTCE8AjGW79eQJgACAgovQRvOQhrT6zdJvABw3e3VPUX0vydBAGqldufDSlq1EAnDfjZ8a+E8RWUIkovcdKnLGmGrrIQQHbnbV+v0bqzyJF+XUs0/n3SLS6eEqN9brE5/g4l3l4muqL/sH2YdSt4sm97g1LtM+ZjK1TnkCYMnnJz7gLcwC2eHcffZ8NYn30Xre6taPzR55K3kCRHPOgnNqIi9+mrtGGub51zTNs3a2LDq3yueUqcwn2sA8pDmt9bObx4O9/0FEPWtPsQEQAACk3PbxE8A7pPksEemT3bqscDZ3Njfz9D/AI2Z6kKeE8RyGgy3TtWfzGYQBB2iq8hnPe/9HIME8bgLK6upJx+9Wkb9HHDd1j2uvZ8aUapOpXEXmAXqPy+M6+c1eCRUUs37kTqJ9IOBZDma18SbLYxl9ERB35KncmV5tarBG6MFrRLrzcH3n3rPSfQBZ5NhiOYFzsoZzP10BfWi8XNrZu4mvnwHAoQmt8H0FStl3mPATwCbBf5AoDS3S5yybdNQWIgH4o8euo5aJ2CYiEWvSGEsQSt48xVqraMTXRztPFf3Vgk8f9TfuHUpdnjXqk7hYlDfgL9d84WW/IQxgLSx/bbxHSO/1Li9Hpl/yQG8yCFmMG0SNpSbYKiX5c52aYG5osnEze/zxPj1/TkYBcQeV3dF4ndfGx7Kn68SKBPzDinxWApn+mQMHf4FARGq0h9F129iTn04GwDIUILvS1vuMyzcfVtaLP+PyzYep2JnkTWzbm7p1zCcMgF8WVHWPivyUSMSho6pV41cOStwTOtoL8CReIK8ncb3wHJw9ZpK1znjKDSAiIk1Nr35URLbxeUF0e7p18GW1K/OQJnvMEm9sLWSuWFp596I/TexpXZnnm4oFOq9afUcnOQXEE6rdGWXMZTl3WOrHa6QW741FGPQni7Jeo+d5Tm5cj2MbAP3R48gKXyoAYP5ECRi5lrPuTbteVtZr79a9Y6yIdCcLYo/f79xw/hCeIgZ4KJTKD4hCrL5jwJ09N7+B4MAhj5y4p+9iwoDSd6Wh/dXr80/59cktrHVT5Uj7MRkHiFSrGprYfWk2nu4dM5napRa2kEFlmG/yy00U775Z3PPVJN7ngAfZ3qOp9i1yA4hv1PzzHxORjbHqTUNlKaufEE+5dgbGBsDU5hNtYB7SlHupfHOeDYAxbdmyjScAAgCA9Ns+DUq7AVBF3pvHuqwgahrKbMIA+GnRJUfeJiIP7f//ynMYDiYwG0MU4Er/YGLXVasaEnyUXbOF90QbO9HGtddPNEq0NtlPrp50/G4yDtg7vCynp4/WOa6Tr13JFJSaCBsAM7tngFs5m3xzkt+xVOS7H7h89BNkAdBwIbkz+UMmVCP04DUi3Xm4jnM3ZQOgO4vlRM/JGs799LABMGYuVZqb2QAIAA5NaKXoK1DKvsNESrkBcMTcTX3EZBgJEjuxfrbo4gGPEgfA1yGsJiI/IRCx+s4ziULJm6dYaxWN+Pq6zrNWCSs/4n4BIl//wrGPyfN+ipNFeUpzYCDfIwrA88aE2j8a7xHSe72znZYZGwCR2bhB1Fhqgq1Skj/XqQnmhiYRt1CCYA5ZBCTST93deJ3XuGPZ63WiivQjg3KMfoZ/5sDBnxWIiGP/EtmP9rBbyE8AAwBLepBdWXRrWsoNgFrrPEti/PwvefNMHGwuUQB8r//hzwhCLK8fM2tLX8JQ3p7QlV5AxX694LN913IHARFRNRV92IWR6eoxE6h1f7vm8y/9E8kGPK+dlsrDfF4Qq6qxAdCleUiTPSZPMSxwrqRxrH2etpzu5oXk8s1WfWzmmQ+RR0AiFeR+V8/Nsrj6xs6QJwDmskYv4jlFWQPxBMB4t72yiycAAmD+BMi1DIQvK2kqvZd7Hzt29yy5sP8fiATgt4UX9/+riDxIJCL3HYF0dryT4CD3Dk6CHxAF4PljorEnceUt2w0TGuMvjKf/AS+uO6EkWHfK8YGXiUgYsAGwPPNNufO9ePni233TBE/7hQcxU/oiILmRen/UsWiJlKXsN0In+7OuKsYGwJR7Ic2gJ8oyb5PJeTYAxs687t0JAgCAdgvph18Hl+2Sz5y5/lCxLn7Ckc8iDxabrxMEoCgzsPIUwFh1MHw3QUDO/cP2yp7wBgIOvGBS+0e6h/d4ldt4baqJdPshSQa8UGdn5WG3zzDJn8Pb/zHj1LrAlKdpF3W+ATmbS31KdhNPHdeztTnQn3PngYRqSKX24L5DvPFxndiTRfXg5xW1d0qyVpoo/6jCgz7cYv5tshtGkxOYSAc3OLowsB5EAQBKM/8DeRooZqXKxu5N+m4RodeKZ2tnUxNf/gEFUdED/QwwXyMdTBAqGwBp1COxiMe0rk/vhgXVftu4T8ALxs3D0ccl6/Y6g3DzvOrRrcQBeKEZM16xVUQ2NN4jxHi9pnP8bOq19SF7AGf6p4M3Pw33QY1tYojalGVU83724VnDtpM9QDJGXj1pi4i0Nj6W0/iHD46v0kToqTKYW/z6sCD9cwpUZJcvLY1LsbdONgACQJSazdfU8LQjcKHv6DHq8scPL9N9D0MbQ97ETqUfLpt01BaqB1AMN17S788i+k8iEXEeUDlm9Iy244lEeXvCvHuBMAy+z10DXigILMaTuNL4cNzdY8avdSE/cwcc2MN8XhBZL0KQJs3kT8rci5c6V9I4lmZ7X63B8zXR75I7QOL16IHi1sdU36s3ueNBo7Pf0/H3XxoGIrKTpIoRuCbpSRQAMH8C5FomfUf3boPKcq3VqgWiOpK7HnP4hfz8L1DAgb2EIETvO9QCngKIvFKyten4I39NJIAXrWlqtX/4fg3ZboCoe2G9vVuf7jeRYcCBRlKS/5imHB94GV9We3jPNOo9Jt+LNWYzvm8pbEzUpI5lj3z8ijN/R1YACY96tQeijuuoT0WOW28swWM1soY7wBNbe1Wr1YAMSnPtXbSn/DV+PWwAjJt0NZ4ACACg3UI2Qg0GluVa7zx8/SkiMsDb3j7fUfr7hRf3/yuRAApnMSGITs3eThSQR/9gIj9ZcI7WCDTwQk+86iVrRaSW8vjzd5UbvzatvHLaUD7fBw40ztUc/3nsNH4OTxutdTwBkPkJJc/B5OtTspsGD/g+FnxfRRlCQMLCUB5JY1xbUsfSg59X1N4pwVoZnPF4z0PJoKTngaTmO21gntSGerY0J6pAlA2AsQpdhScAAgA9CZANE2spTY9VC8Zwx2Pj6X9AAW3ZsX2ViGzb3+yAgzZxbyUGNOppHvNAI9AC40lcwH4sOEdrJrIh2jqIdXvX107NAQ4q1LWNHiL25i1N5/gZYAOgf/cMpcs3TbAP0gTzWvMcPxYG8n0yBkhhyaH2eDJjOY1/+OC2HYfwZOUs5ha/PixI95wCMVc3AJrTsQ9C4QmAABCxZvPhCDztCPLv+ULtU57FpIwmb2J5ImzesoCKARTPqupxu0TlV0QiskFnz9jwUsJQ3p4wnyet2KbKS1p+z90CDjjQYjyJK9/NvlkfM2ItqklzB08KBg42poJ9nwDI55NdYgNg6jSTP/GpF0cWN14b/lPLNN806jne+V+zhj1KzgDJC8Lg8WLXx/Teq6nGBkAvGp39no6f/9KQnwCO3XwoiyAAzJ8AMhq7YSk2AI6d3j7IRE7ihsdKkp8vm3T8buIAFHUa0JuJQvQet1arvI3gIONkXMrP/wIHrddrfb+EbDdAdPUhjt0y/9Ov3ERiAQfro4OEfwK4FB+u8kW1l/OTRnw9+e5bT5HVsbKvhZrIIc2EpyIDaQmD1XHGddSnIsetN5bgsRqpqfv7u1ArfUqfPl7NSf6fU2Ciu6hacSKnfQgCAKBcIrS9fD6UbKto5fjwNWwKz4icPeTa3tFZ+1+iABS4PoY8ATDW/KnCBkBkPB/bQqIAHGyQWGv64zDd16c7cUWe6PiiG+hCrbnW6v5ZpvFzeNpIret+3bl3NJM9zE/wdiWcYE4lWZ801TEVhnYD9x5Ix7BvnLteRHanMa4tqWPpwc8rau+UYDfKQ8VixjjJjZj1nFM275f+fBmo2Q6SLU56GhsAAYCeBMgmBVUPK8lYO4O7HUvraVsH/JYwAMW16NN9HxDb31OT+FqoC2wApFGP8Wf1H/NFI3BPzz2VldwT4KDDqzW1DRAlXLdXgpBNx0AXekjv1jya5qhPvHGtq998ZDe+rPbsnqHkayFN5ljmzfjZZ5Pzw+deOfw+cgJIq9qoicmaxGtXYebcA19TUAvYU5RT3qT/YYGL5yQSSCBbSZgYsTeeAAgA+SzuQN6Ur+8wLUHfYaYmyW4AtNKkjV5frWooAIpeKHkKYHTHj5zRNoAw0ENm0zvYqh9Vj9pC1IGDivkkrjQ+HPd+x+C9V3/u+IdJKeDgqtXjdons+x0YT2M7uN09Kt3JnrT5Nw/xuX5+uWJepaxm/qaqxlORgfStdm9eUOffywLrRur43Kr5168FYvIU7WR0IU8ABOD1hMVHAIBXzHoU/RJHzd1woogM5GbHSA+t/ZgoAGXo4YJfE4ToPW7FgjcSnALNeW6P0UXcIaDLxrW92LUomZ/cszqOqSJLSCig7tqzOZPGs1A6m0gcf9Y8z80fafy0Hj+N48v6Jqv7aankhu5zyCixCVRuJJuA1K2PM66jPhU5bu2yBI/VSH22fd5Nm0mdLOYoF/uVfM4pEDX+dXI8bAAEANCm+dZveUrFir9I6Gzg6X/lzrV/LJ428HZGCVACYfh7ghAnbnIqQUAmXXKtwgZAoOu+fXMm4zHl16ccozrP2VaRUEC948o2e3CSKdQ6jV/rdoVsAGR+gudNV3I5lWR90uTHlEr7of/c8gfuOZB6P7UxrXGd2MZirfd9sqlRIiISGj1VAzFOaiNmveeUzful2+sFYvoUiRanxrEBEADoSYBsmJbgXwmpvJs7HSs5fkIQgHJY+Kl+/xCRDdl8VFAcgcppRIFGPfqf1X/MvSPw4V989ojHuBdAF8Nu7yac1DZAlGfd3rmrZyf/MACoXy4bAKM+8catrp4NgP7dM5R+LaTJHMu8GT97L9h08TkLzqmRC0Dag7aS4NPcs1i4Zb041AP91/RU3t7TtM8pnesJVNgAGCf2GshRBAYA8lrcgbwpWd9hxd4AeMp11iyi/0LeRFcRfv4XKNnS9I9EIZpQ5FQx459y0EOm2juY6P8RaaAOQdjAJpw0Srmf04OK3PU/l75iKwkF1G1TXj2CvwuPZr6szqqiF7y3RnK5Yl6lrGb2pipyM/kBZDD8VTbmOS9k9WTRpGsbPwHsec+l/vVrgWjo+E8Au9lOmrEBEED55jk+AgDy6oaK/RPAA7evP1lEenGnI7vvposG/o0wAOURmvC0n+ht75Fnz2x7CZEoUl/k4kmFbAAE6hD03bxZCvLBQdQvoBrbaPTCY4aivyWbgCjjKUjhCYAF//clys/VubzAOXi+p/HTevx7Kl/WN1ndT0slN3SfQ9ZzPVYR+iIgk2IVtscd11Gfihy3dlmCx2qkPhs9VU5zVNGeEBhPoBbwBMB4WggBAIA2zcN+y0/FXiRY8FYP+2gXlg6LGRpA2ca93U4Uos8FYRjwM8BIN/UCYwMgUIdvjD+1Q0QyeXKd10/26mpto8YX3UAEQU4/AZz84I9TuzRWrQsqxtNqmJ9Q0AWyJXiseLmb6Ie4D358xpmt3GsgAxVtlxTHdWIbi7Xe98mkRomEARsAG4xxIhsxI5xTNu+XXq8XdFgnGwDjOWLc9VYhDABATwKkzQqefabyVu5ynJoULCMIQLl0l6a/7P9zAb4W6gIbAGnU0+zvV//8U/0f4R4AdYu1EceyHdcuq9W6yy2kERChfpjl/ytYddYmd7p6nlaT+PwEuLYWKsSVB/yjCCCrRUinbPSv3mju7xdKyD+qKPyc59Y5Bd3EniBRYt23YNv69UcSGACIhw9HQN7U33cEIrXi3lRTkXQ3ABY0b57cuqUvPwUKlMyCy458SkQeJRKRJ9aTiUH9fQc95DOvrzswPP0PiFZytsbv0flXeSLy529c9lL+QT8QpXKobM+3p/BQJxsAmYfg5bpGk8lxy2i8NPpznaHYKrICyEZzED6VbL/j7JNFkz1vFXoq3/s4TTPHkj9usKP92I3ur0PcPL2OivVloAAo2zzna80GfGYiYVGvbcwVm14uIi3c5chFfMWqqnYSB6CEo9/0bqIQeSZ9DTEoXG/kzphUNgACkcav6Xa3zkgzO2ZjG4f0mf+XJ90A0cfkjmR/CrP4wiDg169cnoc02WNaxDdl3OS1vtHMj3WwP03s5zr3d3Ct73qCCn0RkJUO022NjGv3NhYnWZ8P/HeBKD2VE2v08lxPsPeLQ54CGENFhQ2AAICSitD28o9jEwi3FfYJgKadb2NdECtySxkYQEmnhCD8M1GIOhdo37HT2wcRHKTUzLABEIg0ZGxHAVa5sV6fxNomFLmTLAKiCTXcnulAdfyYbN4q/nzDPUZXNSX/p3Ulcm0PfnzGma3cYyAbA2qVbYnUCM2gZmg9tUkz6cdCVb4h3e89TuMfKzTa9zb+jx2y/rv9Cfb+z3bSLc6IDQcSBAAAkDrVAm8A1Ldwg6N3obXmcBlhAEo6JZg8cICKSnAOGreApwAW/y5n+md7bf75p456kNgDkcTeAGgRx3URZ8ZQ+IcAQFSBiRsbj+vsOdjs5R/uAbxdC3l8vjwVGcjWqd8Y3yEiu7OpN+rosYpYj5nzinZOezcAKhsA4903niAAAA3w8sMRejfyJodcM5FagS/zjeRNxJip/GnZpIH070BZ58HA/k4UYsTNwlcThXL3uPG+TO8yMH8WVb7zBSIInrcBMKunzxTIjs2vehmbjoHolSfRDYBs0KNxBpxe12gyOe7ez3W++KlO4R/IBiDzKXB7sv1Okk8W1UwDgZL1cZrmfU/2uIGIiJl58AWig8skNZ4ACKCU85yXNRvwmRVzA+AZl28+zESO5wZHE5osIQpAeXWv7HlIREIiEbnx5QmAhWuPnDiHP3MngIi9rNp2984qu5/xbGzjkP51wTnFfTo8kNp8bbojyXEJODEPabLHtIhvyrhxO1csrbx70Z9aEseq4/T2dz2mlbvJByBz2xoZ0O5tLE5yjqTHdH+NXo7r2fsEQGsjieLcpmAwUQAAlFeE9pV/ENNYz6FWyI0ezd33nPJcP8q6oO4G3sLljAqgvBZMG7pTRB8nEhHnAhU2ACKFdlj/QhCAiCXagu1OD+uUX9/g2VFzgDgjx2op/gSwenLMPGsX8phvuMfFz4lGa0r+T+tq6D12h1sOv5+sATK3LZEa4cB3OF3/6gNfaqY/36XxjxX2PW60eajxf+yQ94bRp79w1YCfEIu3cuQJgAAAIAPaWcSrCsLgNO5t9EX21m0D+BeuQOmnBXvkAItUYnNgrxp3vVUIQ+EHR6Z/JpUam3GA6HY18scWcVx7PTO+uDZpwDoAiFM3LOh0dlw3Wuvqfj1fYqeeZ4QAmS1CijLOGzrfe8d/49QOcgjIeNSa7MxuPm2wpmme9ZG+q5wxduOceAJgA/fNVAYREABIqpmjrwAOlGsqtruQl6fGBsDoNfOPq6rF3BAKIILQ1hCEyHrseuypowkDPW70tcoBA7O75Yh+fyNKQNRxZZ2NfyZQzoKlys+OA/EkvwGQp7EByH+dkmar5OrPdT57LP5RBJBP7ek42LjO/8mifLCFdHIu/fRK7uCBiEhgsrYgLU3W+AlgAPCnZoPs8vh6dVdB7+Np5E3E5l3lFioAANNgNVGIobN2PEEod0+YcC/wt2+MV546AUSkZjVHz8zZY+6tXbWOsPs9ZBAQXaXSWatznAF+zRma7DHZ2Fqs/LO0c3mfpy2nu/HmhddjbAAE8mDSwFouyY3F2c9RlkkvAPdjrM5fTyAiEnqzAdA5vd81b81RhAEA8yfK3PGTa5kM051Fu6axV23oLyI8iSmqmrEBEICo8ATAOH2HBnYCgUGCSfZnYgDEKc/Fe5p1RhsmHv1GddAOMgiIMUat0nnQJjGNxtPJYyZSi1D8+Sb33OQec9+e97M4+/+/aoUNgEA+Q7Mz6WGef01T5jyP5juLeV8tZk742C8HIiKVUNkAGFMlCI4lCgAAIE2hFe8JgDWRk1JciBZ0fS0d0ie8lREBwFQOsgGQr/IOWEdN2ACIxPoHtfAvBA2IIWj8CYDm2Oszqk2PkjxAPM3NHW49ebTOniP52sWX2Kmv03yeb+DHIiTnnI17zgn/XGetWWp/JXeA7IVSzwbAxutaYk8W1YOfV7rzMH1X+nFy9wmB6W9wPLBARGTn5sHrRaRGgkXPJa3VjiUgAJDHQrPUa3OUrO9QDQu3AdBCeS03N3Iu3LVoPE/9ACBiGmwiCnHiZvwEcCl63GQvwg50TJWHSBggzpja9wmAqX35XKh1uz1C9gDx7NnTnMp3X2z2ApBvT9VF89NwH5Tkz3VqzOvZ77Ee/vCsYdvJACB7gUmXT1X2dGMxUqWcU4bnFIiIrKpqp4hs8Lmlya/S6bEMWgDwpGaD7PL2WrVwPwGsks8GQJ/zJjT5HSMfgIhIc0fIBsBYk4CyAZCeMMFeIGAzDhBv0Dr8j9Bd/hlPag4Qu+zYrrp+ro5PMeHlnKHJHpONrcXKP0s7l/XF75Puhgp7+i3+wf0HcuqpVBv8CeAkNxZnP0dZJr0AnI6xNnpO6V9P8Lz/nZ8BjjfUjyUGAJg/UfK5kFxLe4ia7CrgZb2aOxuxcVe7hSgAeFp3NgDG6zuOHVe1bgQGSTTAQY+djxEGIM7qsdEvjbxfFcd6PU8ABBrRM+yqSUyj8XTzmGC+ITeLdo+Le990v6etpo+SJUBuFaozjWGef01jXvNpvrOY9zXPn+XNUtPz/ve1InIaqRa5IBxHDAAAQLqNcLGeAHh61ZpE2l6ZbosmhftnyGGou0bNaj+FEQH4oznJg3U8b14I9lT2Vjk90MzBh1f7VenstvFYEfk7oUCD/cO6BdOG7iRgQIxhpmJJ9OlRZ7q0X592bVLjCYBASXuOhGvjC9+YVUMe94CVGzIqCKnmYPRzPvD7RDuWiT1MzgC5VauwvprReF177n0aPNYL/nzfY0XtnaK/OdKdB9OaQxs/p7g9XtjgmTc9L7vXkIOxvIQQAAA9CZCmIJBtRbqe3n3WvzyUoDt3NmLJUVneePvf1cqaBUGs5boV6mqyUZL5M9ERW3l+3GhAYt8T1aOFDYAl6HGTvYinP7R73jFN2IgDpNAapPLlc0HW7c08ARAoRO1icxiA9GvQ85qfhvugxjYxRG3K6nkfU9ZigDv2P65921iM/HKFc0r+nJ77CeDA/ulXS+NA7J8+lZc+/RQbAEAjNZtWDJ52BJkI1Z4q0vXUVF9L3ri6DiM65A3Im6LfEz2aKDDWGh6bARtxgAI3xC4ec/NV1eOe5N4A9O9gzmDcIJ1cUW9SViXkCYAACt4LwOkYq9v3PXjuPJUPL+Pd4G7dW9YcSyAAMH8C5Fp6wi1FuprAgldxT4E8OfQPqoDMcy1kAyASaM30UYIAoNEOq/7XU3MAPxYkLHLgZjpbxNw08t27niKrY9X3PilsTHzukNZNhL4IKMCkZYmUjK7/2BI8VpY1lfmuyP15uuf07AbAGh9exr9FJicQBQAAbRrSC2/TlmJlS5hN78RnkSjGmg1AknOQ8gRANF7TjX9EC5Ri1erOKtfWc/cAGpPkapc6WuuYn/ybn5DnWE/yfSyjc7bGj7X+w7OGbSdfAB/mLU3wfRo8lh78vCyDa0GyMbZUc3ffc7KY15NHz/bsBsCm2k4+vIwpVH05UQAAehIgvTSzLQW7Iv7xBACk3nfwtdABQngMUShLj5vek30qgT1OkgDJS20DhHofmE1kB1DAWqcRX4/CzmdA8vmmCfZBSW5iaPBpXSbsZQCc4+rGYpQ9B8vxYcG+nt0AuGzS8VtEfPowwZ2frVLhCYAAkETNplGDpx1B+g1brVacDYBmKiIvI29cXi8RHfIG5E2h8QRAxlrDr1cL2og44EzzWvhjqko79xkoTk8B5qF8jsm6l/xL8ViZPcDQ1nHPAbg3l/KkmPTjpA5eipv3PXjR//9hEi/WDX4FQQBAPwSQa2npse2JwmwAHHH15sEi0ou7CuTNnX9QBWSca0P3bkYHYtttnTyNC0AiHVY9rzeVzUQW8GVBQpsJN9PZUvlpPfLdpZ4iq2PV9z4pbExUEVOeigwUadKK+lTkuHORJXisLGsq812R+/P0zulFGwD1UVIsVlaeSBAAAKDtTakP3LWgeuKewlxPreOEjOMHkGsAnq/7e7629UjCgAZqum3p6McXT0BJVq1urHJ1I3cOoDFJtnapg7WO+cm/+QlFqin5/1xn18cKTHkqMuDVvKUJvk+Dx9KDn5dlcC1INsaWau7ue04W83qy7tmCF15s+AiJFUvLyPmPDiAMAEBPAqSwkirUF8wV0xO4qQCQVd/B10L7E0pHf6LAgGngmE+tqmonsQXSWv6k9HqP1+0ahmwABIpa6zTi61HY+QxopFmxro6nyZybZXSddsC1vNETAR7Vr/w3FoM5tOAfFuzHi54AGDxICx0vHzqk+2sZWADQeM2mUYOnHUGaNhbsXp1A3viwXiI65A1Q4HFcCdkAWNdcUPwaHfP1fOkElKJgqUNXxxMAgaL1FGAeKmIzzjgoQv6p4ykb0BMBhZvvinK+PCkm/Tipg5fi3n1vesH/r2IPSI20i9VySPgaEVlJJAB/9N60+aYd/Xrx819AxmxP94ki8iVR4ZOh+nrIov3E3DHcVcCZipz/IrUkc4EDkcbzc82EDYBoJJf40glAzHl//41PV31Cp1SoO0DG45JFDrxf8+x3HKhohNysbx1LvvvyWUJWn0s89z5J5sbTx6oEIT8BDBRs0nq2ZjRUMrr+4/prYH0nwme97s53/vQr6ZzTCzYA7tnR+WD37k1kWJzbY/IaogD4ZUH1xD0isodIANkaeeWG3jxdLFLjW6wve1SOybzP5rNIAMALBGwARPy2wtgACJRwTZbrlzsVCTdzF4DSdyAS9YONrmvXC4/JF9n+zTfcMyRdU+LlVJL16eDH4h9FAD7OW41/OZPYxuIuN8pH652Qf88btxeK9nfPnVM279eYF/wE8Kqpxz0pIutJrBg3TdkACABAnY0OX7pHane1vWAJwBMAUez1KeBcrvHB1L4hMXoRBkzsPzMRnjoBuLfGjDSufZsZu4ns4i4DBa5dGvH1cH++4Z4h67VLJsfT3Mdbc62TtRhQmvrF+aII9zT7cwr289/dT3LEum+vOuW6O5oJBgAAXUybKv2y+lCgCKxAT3sYc13rISLS16344sCDlegAKOwang2A9ceq8CJ/kauyhcQA0i0ulsIxfS6CO6Q7v14B+NAjEDLmNppxxkGO+WcZpZMl8h7xTmbnrm5PcK8Bv+a7rNZ25sRcyqZCf+PUyD8edut69rMBUB+gnYylR79w4KsZsAAAdDlz86V7lHipFuanDcIdPP0PhaljKPqan7wp+s3oRxAYaw0ULTbiAEi88TlY7RokD1J3gFR7BL6sRXnW15bKxg3GkC/rm6zup6WSGypNnb13kxFA8SatqE9Fjlu7LMFjJV2fkey98adfSf6c9tkAqGoPkDjxhLXwFKIAAEBX7czzfnaPz4fqaDBkY3FufuXoAvXRQEHwUQVK1YQ88z+PJBiI35sZG3EAOqYsO6xatfqOTu4A4Gvjme8xLeIxWR2Wer4BdaqBnNLUc11EwvHfOLWD+wb4OG85tLFYG70evmhKP5eyeMpk1L/TjN8vvn02ANZCNgDGTkrVU4kCAAAHmyxNRaSFQERoK83WFaiD5wmAKMGgJQRwMdf4WuhFDicEDJi4f6aB8tQJwMmlRrRx7dHMyKZjoAy1SyO+Hu7PN9wzZL12yeR4mun1Gz0RUPL6xfmiCPc023PaZwNg0BTeQ2LEu28qwgZAAAAOYtiVa44QkW5pHb+IH6rVKmFrYS4mlCEunhYfxh6sxyU6AArpCEIQZS4o/iVapNfyBEAgi+KS1dNnPCiCbDoGPOkR4tcu0DiXvBlHYrliGaWTJfIekU+GnggoST8Vt2CZE3Mp87a/cWrkHw+7cz37bABcMf7YdSLSVoaykcJpvGbE3Ie6M2ABADhA49HUNIAoRNO7uXltgXp67j8Kgy92SrDmJ2+K7HBCwFiLXa6MJwACSKfxOUDtYtMxkEmPwJe1KNP6Oo2f1mv8p/GQzfrGu5/rfA7rMMCZ+SX5J4tasieYQD2t7xqZ85xsdFKd39y6nn0F+38P+yuJE+vedOvU7q8hEAAA7F+lJv286LfcsXXBxH7binIxJprvBkByDTjg6ARKtG4XEenJP95D/BziCYAAHVN2HZaxARDwvvHM+5gW8ZisDos/33CP81dzvE7l/7Su/aInAryet+qsEVrP+zTYY2myvRPSyKU0/rFCo3+nGb9fPMEB/uu/kF4x60VF30QUAADYv5pqf6IQpZ3U1mJdj3H/UZbBCziYa3zN84LQ7TqMnwFmwMT8M+WLJ8BRFnFc+zAzqkgHdxagVaGrL8n8BDS6dsnseDlcv7IBEIAP9Rbc03zP6QAbAIUNgDHvm5q+hUAAAHDAqTL1DWDF+lDN1hbqakQHMgoAAC6odAaHE4VoTRyeaWiMn54CMiouWT19xvllFIBCD1oGedHuMY0zHK9BDadoTj/XafwEMODzGi//J4syP/v2eYBX5+TQpex3A6CaebgB0JllEhsAAQA4cA/EE+CidTfrinMxpirWj07Sx4FLdMibEq/5yZvCCkQOIwqMtVivN6sRXYAmJa1j0icAefYIjEsUaB7SZI8Z9ecdGTdu54qllXcv+tPEfq7z6UN0cn8Bl8qMJn7QzDcWp9ZbstnQzzV6nueU3PXsdwNg775bHuBRurENGTmv9RjCAADAfnuYY7zp1RxgooV5AuCwK9ccISLduauAuxUHKFE/IlaxQwgEACDtjokOC6Dx9OOYYH5Cee+ZehUHACXoixxodazLE6EfS39eSOMfK+x7XIuZw9bw9aVjvxsAF5xz4h4RuZ/0iqcW1HgKIAAA+2tsTF5KFCK1kv8syrU0aaW/K0EFyDWUN9f4aP15oWADIAOGmg4UsrxHG9fMjAB8bFWS3zhEs+PM/MTKDY6MS8v9nKlLQJHnucbfp8EaodQb5tBinlNwwMFjcgeJEe++mSkbAAEA2L9MNgAW5UOyUMJ/FuXGB7Wmo0h/AIAzS3cNehKFqEEjBACSWONEKy75f/kMANGx2avs95h5CC7mpyaYon7/XCeAtGmuaztjfvY+V7w8J0cu5YAbAAPVPxV/WZVaSvwLgxUAgBcaMXdTHxFpIRIRVOSxolxKTcPD6SR9XocRHfKmxGt+8qagN4GfAGasMTYB5N2kJPnFGAB6BDAPRf2TNH5aj80VvuRK6vdzn6ctkxtA8cpM8k/99HVjsTEfFmSNnuc5JXM9wYEPr7eTl7Gd+K6rNvQnDAAAPK+3qNVe4l2vlrPabi3MBsBA9EjuKOA6vtZCqfKdJwACADLpmOiwAJ9oiY8J5ieU9575+HPDAArdaznQ6liXJ0I/ltbNtIbuWfRzspjX4+L8dcANgG3BuntNZCcJGS+LK82dpxMGAACePzvaSwlCpBaybeXFA7YX6P4f4fF6AyDXUCB8tC4iIkHAEwBBTQfKPtMpMyMAf3uO5DcO0ey4thJjfoKfG/O0MNcPwM15K7Eniyr1ptjzoLtPCExzrBxwA+Cd40/tUJE/k1Rx75u9g0AAAPC8plzDTDcA+v4hmYn8s2AJcASjAADSXIMi2rzETwCXN9cYMIADa51I49IY6wAKUeuSfT1cv8fMQ3AxPzXBFPX75zoBpE1zXdsZ87P3ueLlOTlwKUEX//fbi7+sSi0l3slgBQDgeXOj6UuIQqSIPVakq7FAD6OT9H4QEwPyBuRNceJv0oMoMNYYmwAiNsSeHBMAPQKYh+r9E2UclDhXLK28e9GfJva0LgAOlhl/n/ppqR+PmufnGt3vcwq6SNI/kZexHT9yXusxhAEAgGdbnpd52avlxMT+UbDrOZK7CvgxWlm3oySNSYUgAABc7bDYYAEUbUHCIgdlmm/Idz97BO4bgIMLs66LDZUlfo7crXkuyac4JvV3mvH7ZZNrB98AqD4+AdChIqghPwMMAMBzTRBPAIzSpJk9VLDVYR+nzoc1G8g1oOyDs4kYgJoOFHr96dTrASD5niONL1Jpdnyfn8AiJO+cTb4+UZeA4s1zmuD7NHgsPfh50Tv5Pg+qs+eUVo930A2AN48f8g8RaSOpYhee4UQBAACRU66zZhEZSiTqV9Pg7wXr0Q/hrgJAqnU22mq19EKeAJhJrnERAOqdiTSfmYtyACDTWpfv65H/PQbyz09NsA9KchMDTRlQPJrg3JndE+QAn+el4ODXpCYmt9Byx86HM0+vGk8VAACUXt/t7ceISOZzotcNfiUs1AZA9WgDIAvDg91IokPegLwpSvCVDYCMNcYmUPzmtcTHBECPAOahev9EGQfkX3rH0hfnDX0PULwyo76eeAZzWkCepD5nqYOXkt85dZlxpnoLc3FsR/RoWfdGwgAAKLtAwlf62qvl1CE+sWzSwPZCXZLxBEDApwHr9ZofqC/H2AAIAHC6w2KDBVC0BQmLHJRpviHffblnxn0D4NQa5UVPFtXGj5XlvMYa7mBxye4pjhbzvrpx/4J0/zoIw1tIyQaSWcMRRAEAUHaq8mqiEKmD+HsBr8m9DYB8pgVyDSgzntaPeNg6ChR3FZby6wEg+XVkGl+ksoBlvoGnBcGZnE2+PlGXgOLNc5rg+zR4LD34edE7+T4PaurnZDH/No0er8sNgLvah94tIttIqtiVZyRBAADQm4VsAIzU+hVxA6DyBEAASH8CibRYLXmw2MaVWa5xEQCSGZepbZigHABIkTn2euR/j4H881MT7IOS3MRAUwaUZY2X/8ZioJjzUpcbAFdVtVPEbqXljp0Prxt97erBDA4AQMmbpNw2APrY4IeqBdwA6NdPALMwPNhwJjrkDcibIsQ95JsFxhpjEyjFHKglPiYAegTkz5E5Q5M9JuOgjPmnDf+ppTouAORbZtTXE2dOK8ScpQ5eSj7nFNR3fvp75uL4t7czDM4iDACAsjrlOmsWkVcQiQgNWqj3FfCyeAIgAK/X7ShaeukuogAAyBobjYCyL0hY5KAY8xOKdc+4/wDcqhkverKoNn6sLPs4aurB4qLO5ltR1LUB0EL9LSnZSDLb2UQBAFBWfbevP0FEukVq08r+eWhF7y3gVXV38qz47B3kWm5LayDnQbmTGAAAGu2A6JgA+LjYpHYxP8H/e5x1Tcn/5zr5EBfwqe+wBI9V3/togpelMa6HGuVaz2sN51S0c8rm/bpW1wbA3Yd0/NFE+HA8vtNHXfPYEYQBAFBGTYGdTBQi2dlzYMsjBbyuCrcWADIQ6bOQ8n4tZBbyGQeED2gB/8ZlahsgKAcAXOpVI9YmNns5dM9YicHBtYt1dTxN5tzIawDpL7b4hw/IOgfVg3HxnLo2AK762HG7VOz3JEbs+9Zck2AUwQAAlFEowSl5n4NnDf59C87RWpFyYNz15uXmPxaGB+txiQ55A/gt4AmACcwFxa/R1HSgKL0TP+MJgJ4CRWucmYeQR65oBn9KbgP+lplsntDGXMqc5cX91HzOKah/AOqv+NmqBs7E9D0MWABAKds1tVOIQqSIFe/nf//2N57+B6AQ6/bir1zLwwI2AAIAXJv3+QIKKMe4ZKx7qQifbGlX48C3jRswR49V3/tQCwHqT9eTVtSnIsftvSzBYzFHdhUXdTbfiqD+DYBqvyQlGzJszHWthxAGAECZVKsWiMnrYrVp5f0M4L7CXVGfPm5/TMrnTSDXcltaA7kJwx0EAQCQRAdExwTAx8UmtYv5Cf7f46xriiV4LHIXKH7fYQkeq7730QQvS2NcD180udbzWsM5Fe2csnm/g6t7A+DhRw69W0Q2k1SxHbqnIxxNGAAAZXLnUetOEJE+RCJCo2fFewLg7o4eTdxZAMhQpM9CyvnRuom2kSiIMWAAOFHDU3o95QCAi7VOI74exZufgNSaFU3w0EpeA8iofrGxGFnnoHowLp5W9wbABedoTUxWkRjx75upvp9gAADKpBYGr3flXHxp8Jua9a9Fy4OgW5O3P5TCwvBgPS7RIW8Aj+emiqwnCknMBdR0AGmMM19+cpMdgwC1i54CzEPwI//Mq2FAbgP+TnO+/Zw89aYcPVOel5Lt9QSRzi+wXxV/GZZqezXijOsePoxBCwAoCwvtjUQhknULL2hpLVy73ry9wq0FwJrfl5VrOXRohQ2AZe1PCQEAp2sRX0AB5RiXjHXWpm5eg3m3cQOW+bEc+rlOAIWpPwerN1Gfihy3dlmCx2KO7CouaT3F0cWn/GUr0gZAq+lK5uKG9Gjq7P4ewgAAKAtVeXNDbW/J+g41ubOI17Vjj7m/1qHHBRpaWgO+JbZ128gGQABAYh0QHROA/PFzeMxP3OMy3uOsa4oleCxyFyh+3+HdxmI9+HlZBteCZGNsDedUtHPK5v0OLNIGwBUTh/5DTP5OUjVQfPgZYABASZw5c/2hIvI6IlG/UPWOIl5Xbc+hNe4uwGcAcDnXSvfR+uZlk47fTZKA4gyUR90zHeUAgMetChtmPJpvuGfQzP+Q5geAr4UPKHAOJntOQYwTWExiNHDfzN515rXr+xEQAEDRdWuy00SkyaVzcv1DtcDsriLmQlDZ0+nz+fNhLAAUDk//S1IJPr+lFwDyGGeawrjkCycAfvUU9CA0zsxtyLQGaTL5aIm8B7kNUJuSrRFGvSl5z5TTOWm21xN5A6AGsrQsZSMlTRJ2foBBCwAouprqm4lC5DahkBsA92zfyRMAC7sO4+sIL1YgrPnJG7w4oTYRA2o0ALjbpPAFFOBej5DkT2GCsu/6NWTz03rIen1T0J/rBOBO/dE0xnUdG4sTnMSTntNCUsSzZs3/OSnyBsDeRz71O1HZQuI0lDYfJQoAgKILxN6SSBtdls8AVNYvntZ3bREvbevAY2ue3AMAjdZswAvhDmIAAMi7Y6LDAsqODcRwc75hfvLvHmddp/J/WheA4vUy2vDLEttYrPXUJqUfa3iea2ReyOYfK1jMxMnm/fYv8gbABeecuEdEbiYtG/LaYfNaX08YAABFdXrVmkzkrUQiUmd3Z1Evbcw64QmAAJ8BwPlcK9FH66Y7SQ5QnIEyLrmilQO+dAbgY6vCZi+P5hvuATTzP2QtBCDnedG3ekN9ZPL165yCeIPUlpIYjd03U/sIAQEAFNUhh284RUT6uL/YcMofi5oP1aqG4vnnmXwYCwDFYYGwATBpJfg8lF4AyGOcaQrjki9wAHoVv3oKehCSEci0BmkyOW6JvAfjBaA2JVsjjHpDz5THOWl21xNrA2BTWFsq3v1ktTmWGvaBcdff142BCwAoZltmpxOFaMICbwDcq5O7XNQBz9cRfqxAWPOTN3iubBkbAMFYA+B4k8IXUIB7PUKSP4UJ5DxnaLLHZBz4sr7RzI9V3/vQ9wCFqT+axriuY2NxgnMmc1rZ1+h+z0mxNgAunXjcelG5jcRpyFFPtR82ljAAAIooFHlHxGVBkfutetR6dQtuL/g17in8ugAoND76QJHwE8AAADc6JjosoPR9qSfHhGshNsdej/zvcdYJn//TugAUb1LUhl9mGZ2Kdfki+rH66nsj80I2/1jBYiZOXvNXEDvnTW4gLRuuG+OJAgCgaE65zppV5K1EIpJ7Fkzst63g17iD2wzwGQBcz7VyfLRuKttIDFCcgXKqe6bTMs2MAIrWqrDZy6P5hnsAzfwPWQsByHlezKLeqKPHKqPAwXPSwp5T/A2AFfsFydrwfXvXyHlrTiAoAIAi6b9z3ZtE5FAiEWn588cSXCQbAAEAbizLzR4jCmkElhAASGBlFLG4ZPX0GQD0KunWumRfj+TVaJxR6H4r6RTN9uc6AZSkNiVUI4x6QwOfxzlldCmxNwAuG3/0wyLylzKUjTSzI1T5JAMXAFAwI+gIovZ9we9LsHzz/ucW+cD9YElMdMibEq/5yRsPS1bwKFFAnLHG2ASQbZPCF1AAPQKQ4pyhyR6TcVCsXLG08u5Ff2pJHAuAW72TpjGuk9xYzJzGfFfccwoa/GueAtho8TD5yLjZq3sSCQBAcQTDU2mjC/wZQK0itxa/19btjA3A+9ULIUAxOpUwZAMgAIAOC2CcxeDLZl820qROiz8OmJ+4Z64kPLkIMCkm+5ZZ/Tww/Vh99T3Jpzgm9XfawPtprvNXQxsAzfgZ4ARqwpFbu+v7CAQAoAiGXdk+UMReRyQiWbdsUv+HS3Cd/jwBkHUZyDWUWuE/Wg939XqSnwAGAGa6uns1NkwA8HEdSe0q/kqMewY/N+bxYRjgr8aeLZb6k0X3eZ8Gj6UHPy/mYd/nwWI+IbCpkT9eed7R9w67ZvXfReQEkivifXvhc1Anish3CQwAwHeVoHO4GKv4SG2Bym9KcaGhbCczImXGn8zsW+VZbBVbQNiSxacrGQzPAgfZdPeyScfvJilSzDXjIgA0PtVrhHFpsVoqxjpAr+JarUv29XD9njEPId902H9+Pu9EGj6npw+QTO1ivABlKXxZre0O/D7UG/cmOhfvScxzyuBSmho9gIn9XEU/VdwWPYszslOHzV/zjhUTh/yGwQ8A8JrJCDqCyFaVpL/fUYwUzyZvVGzT4ov6f4OiAgCAW3N7jZABOEgXn/yn+Wz3AXzpEdigBy/noS7/JNoxGQfFypX67mcD/c/eP33ufdh4AxSvzCQ5rpPcWMycxnxXzHMKGj1AU0V/TOIk4mJCAADw2Yi5D3UXkeHx2ugIfVHh+s9gVUlSZDujJNK46EsMAAAAgJJ0/4QA8GicpfHhlC/HhO8h5meGuWfUFABp1QjL/i0dqWnUx8bnOY35d2nOq9rA+2luvVTDGwCXjh96j4jcS2o2bMS75685iTAAAHwV1HqdISK9iUQkrYsn93uoHF28PeHZejVXoSgbAAEAAIC0licR1wVsmADglDo/s6B2FXh+4p4hakFwJGfjnjO5DhSj5lgG7/HC99EEL1epTYXLyeJt3gwSCipPAUwglwKVaQQGAOArC+xsohB5FfLr8vQ+nm0AzL9VZAMgAMDbSYyLAND4UinauDTGOgAPhz6bvYowP3HP4G9tsq5ORJO5KMYBUM45MG7hy39jMetE9yY6Lc71pHwpiWwArITBj/yav83V03r/yHmtxzD4AQC+qVYtENPRLFgivr/Kb8uzOtTCbADMKG96jZu9uifVBQCA4veEAIqEL4uAMvcI9BTIf87QFP5EGQclzr/Un9a1z9OW6aWA4pWZ5H9uN6u5hjmNfsu3c0pkA+DS8wc9JiJ/JHka1hxqOJkwAAB8c9thrW8SkQGl7dViX4ryBEAc0LaOQ44iCgAAAEA58OUS4NM4c2TjFvKnjBu4dw+MhAdQljlDc/tj6mPieZPdz8Nbge9rkOBN+QmpmUgcz33XvDV82QsA8IqKjvNsWeCCfyyZ2v+R8jQ5Hj4BMOfevrmp1kJ1AQAAABxZ0rDKBeCd7L5IBfMT/BrreeagC+cMIL9alPqTRfd5H03wspR5tcTzoMU8pyxzJLENgLXmjutFpJPkatihTSLjCQMAwBfVqgWmjW4ALGM7qivKdL1WCZ9kKRQ1aNaXIAAAPG10uAgAmY/L1DZAUA4AepU0l/5xX6/pHB9dJ45ldY9BbcqtBmmC56TkNVAgcZ/UFrXwZbWxmNpU4iY8kXNy73oS2wD4q/96yQYR8eiLbHM3l1Qmj5u9uicFAADgg9sO23C6igzye8GSw/uqrSxVW6/B5uItdNN+DzYAAgBQ9J4QQN7jkp/xBMoh/rhk8xZKMQ8xdZF/eR5LqZ9A8cuM+nriKMQ9UQcvJZ1zChI9T5P/IfES0W9rd/0wYQAA+CBQeT+9d2Qdld2V35QpTyq7KpsZLdGEErABEAAAACgRvvgGfBpnbCBGeW6bRbxI5rP8a5fl+N4MKoB6lUWNiPpU5Lj1xhI8FrqKc3ZPcSzqfU10A2Dvli2LRaSd9EwkwS8cd71ViAQAwGXjqvd1M7F/82VZ4NA8/4eFl7ZsLVOurD28b7uIhN6duOb61v2oMgAAAIBTazlWuQA8w5fRzE/MT+6ppHAPshrr+f5cJ4Bi9B2W4LHqex9N8LKUebXEPa/FPKesciTRDYALzjlxj4j9iORKxPFbNrbyFEAAgNO29TlqmIgcSSQitqEmK8t2zXeO1w4R2cRSKEKeqB1LFAAA/k5kXASA7MdlahsgKAcAvYpDoj7xhk9ikk+ctDfccc+oTbnUlAOdiOYzbgCUpVjlu7GY2kQTXqSfFw6SD41+x8Nlkpu5ZPb5cdff140iAABwtk0L7KNFuI6sO4JAw+UlTZn1RbqYtPMmFDmOKgMAKF4nRCQAuDYu+RlPoByyG5ds9gLzEMqZf0rKAqzRDjK+fRvoFKZi3RN18FKSP6fENwAunzD0r6J2F8mXiGOfajvs44QBAOCi98xbc5SIjKL3jmztoikD7y5pb76ekRMpxdkACAAAAJQMG4EA98aZHWzlnsanAfCPFv8ajNwsUO1ytz+xQg0qgHqV9qQV9anIcSdxS/BY6CrO6my++SBIKQDfIT0TiqTK58Zc13oIkQAAuGZ3remDItLdt2WBA5P7TaJayu90TGydn/cst3ceeHr10R5UGwAAAMCldQ2rXAC+4cto5ifmJxfHpXl87snlFPUJKGvfYQkeq7730VQvi3nVv57XGs6paOeURY6ksgGwycIfmchOEiwRA/d0hucRBgCAc0w+ShBihC3URWW99sCCDSyFoq0MevfqfSxhAAAg1+mYEADeLVVTej3lAICLtU4jvh7Fm5/AEiS1ZkUTPLSS1wDFysNjsTgsT/yKcU9T2QC4ZMIxT6joT0jcxHLp0rHfbu9NoAAArhgxd+3JInZSka4pow8ftlrTU78pbeJY8X4COP28CfkZYACAvzMan4cCSKDiWCbFhZ/xBEopxWHKZq/iJ445n4zMQ6g/V8ydoQWggGu6uAPdcr8eClOpGvisz0mTv54gtUu08Nqil6cMtezZuXsygxkA4IogrPB02lj9ka1cNun43aVdFKq1kgVRB5uxARAAgCz7FUIAgFoEFFj8n+DK9othvmz2PL0Kew1Gbpa6p/Du5zoBuFN/UhnOL9qQr40fK5l6Su1qPG+0sXxL5d74cV9T2wC4fOLRf1KTO0jRhBJd5aJh31p9JJEAAOTtjMs3H2Zi/5HRsqBQfXSowU0lb2ge9/bcc8q10IQNgAAAAIBrS5uUXw8AyePLaOYn5icXx6W/90wTPD/qE1DWvsO7jcWaxPXApZ7XGs6paOeUdo4EaR48DOxaEiwxh9kuvYgwAADy1q3Hno+IyKFEIrLO7s0dS8scgEpn8E+WQpGXKmwABADAhRkZgFdS+zKdcgDAxVqnEV+P4s1PYAmSWrOiCR5ayWuAYlWgxRaLw+LFz/97muoGwMN26o9FZDPJm0wuqcqkd121oT/BAgDkO2XZuUW9tpQ/fPjNDecP2VTm3Fl4Sd91IrKbvImEDYAAAL9nND4PBZBAxbFMigs/4wmUUorDlM1exU8ccz4ZmYdQf66YO0MLQAHXdHEHelZPFjUKEw18HuekyV5PqhsAF0wbulPEvl/k8pSxQ5ua93yWAQ0AyMvwOevfZSInEolYXdzPCIGaiKwmFyI5vlq1gDAAAJAdvnwHAKDI4v8EV7ZfDPNls+fpVdhrMHKz1Osb736uE4A79SeV4fyiDfna+LGSqafUrsbzJq0Yak5/m43Uv0xUqXxd+Ow0yYh+cti8x9h4AQDIp3Ewm5LDsqAIfXRnWAlvIINEROSf/rZhubxr77v6tL+EtAEAAAD8xpPAAOSPL6OZb5hvXByX/t4zTfD8qE9AWfsO7zYWaxLXg3R7oCyeMhn17zSTHEl9A+DyCYMfFJHlpFtimlQqcwkDACBrw69a+3IRGUkkYlm1bNLAdsIgIiKPsRSKuIgwex1RAAAgb3whBRS+745YDljNAHCqdmnE18P9+YZ7Bs38DzM4HusqgGJVpBpBTSte/Py+p5n8nFhodhXJm1wumco7z7ym9WwCBgDIUkUqF2bVO+QpnQ/VdAEZ9Ewo9DHyJjI2AAIAPJ//CQGANHpuTaFHp2AB9Cqu1Tq4njhW1GQE/VaKKUqtA4rRMGU1lrNa2xnzMw18HuekyV1PJl/i3zxh6M0icp/nLY1jqRPOGjH3oe4MbABAFkbMXddiYh8kErHw878v7GMfIQqRu1Q2AAIAspt1QCQAxlnyqyAAzo7L5J7GluRPYQI5z0OawjFRmFxJ/ec693naMvkGFGbdp2mM6yQ35Gu06wFrdMdk8xQfVRORq0ikRCvlS2uVHlMJBAAgk6ncZIKI9MxxWeBvr2byW37+9zmh1R5kXRAZGwABAACAAuBnHwFEo54cE66F2Bx7PYp8z5Lc/Ex9ApgUEziWM/MwNa2R+SduDONuHreYeWgxcziteTmzn/ELOnf9QEw3kOJJljj9zLuvfnwQkQAApOnMmesPFZPziUTc+dp+RBSe09TR/OALe1s+MqzD0aO+9uQRhAEAgPw7OwDFVvfqRFnNAPC3VaF2eTTfcM8YvM4ck7UQgPRqRPY/JawJXi71sXjzi7/3NLMNgMsmHb/bVL5JAieaS72CIPgaQQMApKm52c4Xkb5luubEFhsqu3bt6f4Lsug5Cy9t2Soi64lEtEwKune8ljAAAPyezQgBgMbrgUU8GE+fAeDj0GdzmH+JY0VNRpSyNlnq55TGuAGQV1GyDN4jy7WdMT8zSeZxTgldSpDppVY6rxGRPe4miJetxofOnLf6/zG4AQBpGHNd6yEmwk/Ox3fjLy878inCsI8Hi3hRqXaSZvwMMACgCDMakQBQ0nHGl0WAy+MyuQ13SX5hDeQ8D2kKx0RhcsXSyrsX/elz7xNwa4CirPs0jXkkyY3FGu164Ol6uJjnlOlsuWL8sevE5IckeLJZoKrzq1Wj8wEAJC7cIeeKSH9HlgXe9Wpasx+QRfu9Vw8ShKgjIWQDIAAAAFCI3h4AolBPjgnfQ8yTJ4t/DyzjhCdHACQ/KWr2b9lQTWcLTyPzgcW8mXF/6tli5qHFzOE05snMM86aKjNFJCTNE3XKrS1rP0wYAABJOv07j/YwDS4iErGXIW3btg5YSST20w/aizcAmnc3N4c3PYXMAQDABRVCADTE/S9A6l6dqJerGQBFV+dnFtQu/7BBj8Gb/zHV0zgA8KGOZTVvWULn+8I/p3aRz27I/BOXleMHPSAiN5IwyeaSicw889r1/QgeACAphzzZfYKIDS7r9VvjB/jJqqp2kkn7aUDNeAJgdK8Z9bUnjyAMAACv8XkogATqgUU8mGV9ggDoVRLAZi//EifZe8Y8hHzTwVI/pyR/rhOAb31L3MKX1drOmJ89mugK9FO+CVxKkNP1Ti9TecpIXw07rqI4AACSMHZ6e29R/RSRiC+UkJ//PVAr2GT3stCN3rdr911vJXsAAN7PaEQCQGnHGV8WAUUal2zQQynyXdMbQ/A/VyytvHvRn1I/gQKuazSNeSTbjcXUpiKsh108pyDHv45pxXlDb1eRX5PkiSfovw+bt/Ys4gAAaFRnj85pItLXjbOJ0Ea706vds3TaoDvIpP1bNHnQ46L6BJGIKNS3EQQAAAAAAJKX3Je4PvyMZ1rHhO8hZmMr94yaAiCtGmHZvyU1rQC9tsW8H5b6eWrG71efIK8bXDObTpqnUcjsmtOvfPRwAgEAiOs989YcJSbTiEQDjazKt4hCFzEy+6vn69U83vPtZA4AAACQwXrFsdcDQCR8Z838xHzj7eDN6mc0Xc1ZihjAPJdFjbCkjqXUrmI3xurgOR1cbhsAb5549EpRu4uES9yg7t2av0YYAABx7e5s+oyI9CESsfu2XbWw44cEossm9C9xlnYl9/px89t6EQYAgOe9EgAKQcP1wCIWl9S+fKamAfQqKWIzsn+Jwz1AkWqTdXUims+4AeCmuE9qi1r4stpYbCwCPZro+HnhZwS5XnKoX3G5PHmcD+OHz1vzLooEACCqEXM3vFTEJhCJ+B2BivxixbShm4lel7H9K3kTWdOu3fZmsgcA4P2MRiQAlHac8WURUKRxyWYv+DdnaAp/wtxW5vxL/WldSv0ECjtHaRrzSLZzErWpCOvhYvUxuW4AXD5hyA2yz9NfkESWmsq142av7kkoAACRhOFsEenu3olFaKNz7tVqJt8mkeq5oyE9YJwhavovRAEAAAAAgOQl9yWuIxu3kD8t/jhg8wP3jDoFoN4akdWcYYmUJWqaK7123KdLWurnqRm/X9eCfMe4mqh8iVRPxfFbuwefJwwAgHqNmrPuHSoylkg01L0++v+e6r+KQHTtUKndJyKdnq9X81giv53sAQAAALJY3rn1egCIRBN7EUo2PyH/wWv5FARncpb6BLgpdKpmaILv0+CxlNpVkMY44/koneMGeYd6xSeH/MJU7iHp0iiOdtGIa9eeTCQAAF0Zd71VLLQriUSD7ZrKN6tVDYlE1xZMG7pTRP4eZ2lXcqfxlGcAgP9NEyEAoA3XA4tYXFL78pmaBtCrpIjNyP4lDvcARapN1tWJaD7jBoCb4j6pLWrhy2pjMbXJp4mOnxcWcWADoKhaYOrgUwCtCPnQFIb27VOuu6OZYgEAOJjtazd8TFRfRyQa6AhUdtUq9i0iFqkPvL30eRNd913S7W0kDwDA+xmNSAAo7ThjxyBQpHHJZi/4N2doCn/C3Fbm/Ev9aV2kF1DcOUrTGOia6bXT2xWhqBdnoglcOInl5w3+GU8BTM3JLZ0Dv0gYAAAHMnZ6e29R82CuiNBG5/OvIX+8bNLAdjIqglBuJwhxck1HEgUAAAAAANJYcyfFkY1byJ8Wfxyw+YF7Rp0CUG+NyGrOsETKEjXNlV477tMlLfXz1Izf7+ACN8a5mop+mXRPaxDZJWdeu+adRAIAsD+dPTo+JSIDiURjKhbOIwoRG9GgdlsB1qs5NHc2iuwBAAAA3MOGCQD+4Ytt5ie4OC6NHKQ+ASWeT1J/sug+79PgsZTaRc/rxjkFrlzamzYM/pmI/JnES0UgoXx/zHWtfQkFAOD5hl+57lgxnUokGl4m3LJo6qC7iEM0rYcMvEdEduSzhPTay0Ze0X4CYQAAAIDfsn86Vmob9PiOB6BEOSTqE2/4JCb5xEl7Qzj3jNqUZVGzro6n+YwbAGVppDTBuTC7J8ihSE24enM9zmwArFY1NNXPObpM8j6/VWTwns7aNykYAIAXNAIqV4hIDyLRWEegqjz9L4Y7x2uHiNxd1rxpRMVqPAUQAOD3jKZEAsC+9cDNDRD8jCdQumLkWE9BD0JuMg+hGPlH3gFlqBEW+xDq/bXD53tSjPsZuHQyK88bslhU/o/ETC3hzx4+f8144gAAEBEZdeW6USLyr/R5DWtd17P/L8ioeEztNqIQJ276HqIAAAAAAEAKa+7EXs/GLRTotmlX44DcLE7tSv+9AVCvspi0oj4VOe4kTg2Mev+1gbxRZ/PNBYFrNzsw+Twpn2oxnX3G/NZXEgkAKLex09t7m8rXWRYkckrz9z7JDvHi5/8GwHx6+7eMnNE2gAQCAAAA/F618mUR4N64LB82bjEOGDcujkvz+NyTyynqE1C8vkoTfB9N8Ho0wcuidhWh57VMxogm2ns5twFw2YShvxWR5SRfag6pSPi/I+Y+1J1QAEB51bp3flVEhhCJhm3rlI6vE4YGFldNtT+ksYQsgUArxlMAAQAA4Lnsn46V2gYIvuMBKFEOifrEGz6JST5x0t5wxz2jNmVZ1Kyr42k+4wZAWRqpfI9FbaIJ9+XnhQMXb6dJ+FnGUar5cJJVen6NwAJAOY2eve4NJnIekWi8wTeRb6+YNnQz0Ylv2aQha0TkkTLlTYIt4r+RQQAAr2c0NssA2E89cHMDBD/jCSDf7oovzArbETMPwa9GjbwDUMe4ttiHyOYJbdQ05qyi3k8nNwCunHDMnSLyM1r6VK9qyrD5q4dTAACgXE65zprDinxLRCpEo2GdodhVhCGRxmQVQYjl7e+Zub4fYQAANPDZAAAAAJ4V/ye4rI5jpnGe8DK9CnsNRm6Wek3I+hKAWzXjRU8W1caPRQ1M8v5rA3mjzuZb3gKH7/inRWQPqZ9mBur3Rsxdw88/AkCJ9N+x4SIxeU1plgVp9lsqP1s+deA/yaokYmn/V4TOKgdNnUHwfhIIAAAA8HbVGuv1ANIfl+XDxi3GAePGxXHp7z3TBM+P+gQUr6/SBN9HE7weTfCyqF1F6HktkzGiiY0tZzcArpg49B8idg0JmKp+YUUWjpu9uiehAIDiGza77WWi9jkikVCLGNqVRCEZNZXfprGELMlC+4NEAQAAAJ6vrnzou4tyKQBKJOoTb/gkxqP5hnsGzfwPMzgejRRAsaJGwOX77X4OBk6fXTf9kog8QXKnmksnb+ku8wgwABScmTYFta+LCJu+Gwnjc/PybxZPG3g7EUnG3icpPlb4vEnn6KeNmbXxFWQRAMDbGY3PbwHspx40vgFCU6ho/IwnUPbalHd3xWYvnzpiTeGeMQ8h32JoGaUTtQ4oRsOU1VjOam1nzKU08B6ck9MbAFd8YuhmFfuyTy29pwPgP8+ct+Y8CgEAFNfIq9ZPMJF3EYmkWgP9KkFIuvUtwM8A5yTUkKcAAgDitzWEAAAA4Hni/wQXXwwjQnoV+BrI9zKvCa00AwFgIku8Zmga75HkhnyNdj2oI15F26iX//UErt907dw9X0UeIf1TT+Or3n312rcQCQAonhFz171KVGYWrS3Mq99SlVuXTO3/SzIr4Tuquoq1b9yctI+Mu94qZBEAAABQilUuAMaZ8DQ4ZDUOeFJl8e9Z1nXKnScxA/Chl0l0Y7HW8z6axWVxnxueFxt5iqPG/Ls05+Nk4uT8BsBlk47fbaqfYmCkPu66BYH9fPS1qwcTDAAojlOus2YN5bvCT/8m11iaC08nLmArYk0r9u2H+ciwzlXEkJ1rNowkEAAAAPB4ReBB2x3tUljNAHCqdmnE18P9+YZ7Ro+kKRyzoH0cgDznq+Sf6AfmQM5p/wIfbuuKTw5eICJ/IL9Tf4f+HaEuGHf9fd0oJgBQDP13rv+KiJxGJJKai+3uJVMGLCUQyVs8re9aEbmXxXDcNwjOJYsAAN7OaHx+C2A/9aDxDRCaQkWjYAFlr015d1ds9vKpI9YU7hlPfkS+xdBST6c0xg2AbKYLza1vyWptZ8ylNPCOn1Pgx71Rk7BygYjUfGjpPfemp9oPm0tBAAD/jZrd+jYRmUYkEmxJLPiyqPL5Q2rtlq0gCLGDN3LkrNZjiAMAINYsQggAIM+VJiEAHB6XyW3QY6yjQKmgZbhI1oTpHoscAbCfmqFp1IgkNxZrtOtBHfEq2ka9fK8n8OXGrzh/0F2i8j8MgUzSefyw+av/i0gAgL9GXfPYERboj0SkUpJlQer9lorcd9pT/W4ku9LsQXR5ERqpvPr6QJo+QRYBAAAApVjlAmCcCU+DQ1bjgCdVFv+eZV2nyBGA/iO3Y2k9tVPduSxy5iD3qpGnOGrMv0tzPm48ToFPaRF0NH1GRJ5ggGQyCK9+99Vr30IcAMDTDwT2dLtWRIYSiUS7yS9XqxoSiPTUmrfeIiLbk2mry9i+2fjTq4/2IBAAAADwtKH1YFkY7VJYzQCgzCLV+Sbm6+HbPdYUxnXSBYECA1DL0qsRRr2hgeWc6uLVBsBlkwa2q0qV/M5E9yCwm0bOW3MCRQUA/DLiqnUfFpH3EYlE3Xvalv7XE4a0e73jd4vIKhbDsbX07tXzg2QSAMBLfH4LYD/1oPENEJpCj07BAuhV8sXmMJ/ugaZwD3jyIxzPf00mH6ldgI/9kObWh2S1tjPmUhp4h88p8O0W7dow5BpTucePZZX3jqqpLBr2rdVHUhwAwA9jrm59hYrMIxJJdwD6OZ7+l1Xra8uJQgO5qjpZzFhpAgBi9DvJvxIAUP9KCEBxxiUb9MAQQdlvvJFEAOL2QppGjUhyY7FGux54Oh/4OUd5twFwVVU7A5FJDILMnCC7gxtGzH2oO6EAALeNnd7eu1bTX4hI75IuC9Lq1e5YNqXfTWRYRi11xRayPmrIq8de0XYGYQAAAAAKv8oFkNE4S25c8uQ2+HvbmJ+KX7uMhAeQy7jO4ViUpUL0GBbzZlrq56kNvF9jW/gCHxNg+XlDV4nKjxkKmQ25f6lVen6Lp8kAgMul2rSze+d3ROSVBCPp2AafE1U+48rIosmDHhfRu1n7xhcG+mkyCQAAADTTKS0RI14Ki0kAlFk4NT/FfD3yvmfF20BMDgJlq2Wa0fskdT0N1kh6Lg8CooW7wYGv6dHZ1DFVRJ5gbGT2lh8cNr/1axQmAHDTyLkbLhWRfyMSifv90mn9+Ena7BuPG/NZ2hVlxW2nj5nV9lYCAQDwsAcAgIbrgUU8mGV9ggDoVZJY+qf8eiSfOMneM+Yh5JsO1tWJaD7jBoCbNccyOoms1nbG/OzRRFeunxf2dgPgr/7rJRtM7TPuL6uKNK7s0jPnr5lKgQEAtwyfs/5dYvZlIpFGo2SfJQo5dFtmNxb22rJ6Hw0/RSYBANKbp/gaBkB2PXF5Kg5fFgFFGpfUOuazUuQ7Uxe1seExQhIB9E/7qRmaRo3IdmMxvV0Rmgr/5qjA5xR484ah14nIbQyGTFP8imHXrP4PIgEAbhgzp/XowOzHIlIpbxQitNHRerUli6cOXEWWZW/ptAH3iMg/iERDXduIMVe2v544AAAAAIVe5QLIaJwlNy6L9zOeKM9tY34qfu0yEh5ALuM6h2OpK+eLRuYfi3k/LPXz1Fx6KK83AFarGlZq8l8i0sGQyLCSm3532PzVwwkFAORrxNyHutdMfyYiLUQjcTUN5DLCkGe37/lTANWBM7DaF0kkAAAAIIXlSsR1ARsmADiF76yZn2K+Hnnfs+JtICYHgbLVMs3ofZK6Hpqm4jehxfp54cD3FFl6wdB7xHQuYyNTzSL6s+HzW99KkQKAHKcCO3S+iJxGJFLp7r+7ZPKAewlEfsIguDGfpV2B0th01JhZbfRrAADPmlxCAEAbrgcWsbhYI+cJgF4lr3V/yq9H8omT7D1jHkK+6WBdnYjmM24AuFlzLKOTyGptZ8zPHk105fl54aAIt3q3dKuKyOPuLqsK6VCTcOmIa9a8kVAAQPZGXLXuQhH9OJFIxfam5srnCUO+/t9T/f5oIquLeG2ZdpJqXyGbgHI564pNQ8dcvulEIoH05yk+GwGQXU9cnorDl0VAkcYltY75rBT5ztRFbWx4jJBEAP3TwQ6R/M8DZzV/hyRCAZoKv+aoQmwAXDWx3zYT+SQDInO9Q5Pl77768VMJBQBkZ9RV68apygwikVKvZnLlwgtaWglUvqpVDdXsp0SiMSbyL2NmtY0gEkCJxn2tNkeC8J4xM9pvPGvmxv9HRAAAAIADrplTff2BFe9nPFGe28ZGVWoddQpAOuNas59j1JVrRyPzj8W8H5b6eWrmPVRQlGRYOWHoMhX7HsMic4cFGqx49/w1JxEKAEjfqLmtbzOV7xdpDs+3LdzHhqaOCpsrHREE9mPWvgmMDrUZp1etiYwCim/MjE1nmuh79lags0KzW8fOaP/12Omb3k10AADwa9XKBgsAqeI7a+Yb5htP75lm9jOaruYsgGLMP+m+jyb4PjRNxW9Ci/PzwoXaPNBZ6ZhsImsZNJmPhyMDkZvPvPbxVxMMAEjPsNltLzPTn4tID/rOlKY0lc8svLRlK5Fww6Kpg+4Skb9lv4QsnFf37tN2LmEAim1c1bqJhHP28396h2i4cuyM9rvPmrHxw+OutwrRgvtNGSEAoCnUg4MfLLUNE9Q0gF4lRWz28i9xuGcoUm2yrk5E8xk3ANysOXGf1Bb1JCyjC6I2lbgJd/R6CrUB8JfjX/qUWHCem8uqwud3Xw2DX434+rpXUXgAIHkj5q5raWqqLRORFqKR1rxqd5/2ZP/vEAi3mOr1hbyurN/P5EvvmbfmKDIKKK7dh2yaIiKvOEi9OcnEvrf7nxsfHDujbfKIuQ91J2pofJ7io04A7vbQ2VQofsYTKIf445LNXsxPpZiHmLqojfQ/ANIY1+prjaCmuRc7LcX9LNzPB66cOHiRmF3PwMhFv7BWu/ndX199PKEAgOScOXP9oRrKUjN5GdFIrc+zUCuTqlUNCY5jzWqg/0sUEnFk5+5unyUMQDGNnd4+yMTqHeMvFdGrmncd/vcxM9ouGFNtPYQIAgDywCYXAD7WouRqFxuI4e9tYw6n1sU/FnUKYCLLe4550ZNF1Z1rR/z7H/fpkpb6eWqm+R0UMimCbheIyEaGRy4GBTX91ZlXrz+OUABA406vWlNTN/upqJxKNFJcFqj8ePnkfrcQQ/csntzvIRG5g7VvEiPEzh87c8NrySqggFRmiEjviH91tIrO1UOaHx0zo+3TZ1/5xOEEEgAAt1atbLAAADDfcM/29yFA8vdMvcpZAHkIMhjL9dUiS/BY9b0PG/2KNOf4c05pjFIPrTxvQJuZnc/Ayc1QDTp/PWz+ap5UBQANdZamhx6x/joRGVWCniRP2y3ovJQwuLwUsO8luYQssaYwkGvFjKoBFMiYy9veaiL/0cAh+qnoV8KOzsfOmtl2+divbOhPVOFIAwCAQpBCPTj4wVLbMEFNA+hVUhS7dlGbckscNuihSLXJujoR9fCiAKQ2PC3xca0Jzp3ZPUEORZoT3Pl54aCot33lxKN/Kio/dmtZVZL8ftqxInrLsHmtr6cIAUCcKcZ05Nz115jIfxKM1OfSy5dNGrKGQLirQzr/V0R2FW6Y5/O2bx5zxYaPk1VAMZx7nTVLRed1tTKss970MdNLpTn451kz2+aPmclT3eH4jAaAiuNMheJnPIFyiD8u2ezF/FSKeYipi9pI/wMgjXGtvtYIapp7sdPC38+gyGmxe1fnBBFZzQDJTX/R8LfDr358GKEAgGhGzlk/XUQ+SSTS7R9V5B87ntw5i2C4bcW0oZtF5EYikQxTnT5i7roWIgH4b/2TGz8jJq9L+LA9zHSCWuUfY2e0Lxozo51/1FXW+YIQAKDWAKAWpVy72EAMbhvKUOtefCwSHiheHdGM3ifZiTeZpyJT01z5nCDu0yUt9fPMLkcKvQFw1dTjngzNPiF8lpSnXqbBwjPnr30foQCA+oyYs26mqFxMJNJvC011wqrqcbuImwdUv+3vuTt3RkdWOoMrSCrAbyNntJ1kKp9O+fOC0Spyx9gZ7TeeNXPj/yPqAABkvWoFAMDN+Yn5LO97oCncA/UqBwHkQTMYy/XVIkvwWPW9Dxv9ijTn5HlOac53QdHT5uaJR68UkWsYQLmOk24q9uNh89dcSDAA4OBGzFn/ZRW5qBB9kvt+vHRK/5sJgx+WTOn3KxF5JP32uCRMPjRm1oazCQTgp9Or1lQR/baINGeyohM5y8xuHTuj/ZazZraPETM6DwBARrKfclLbAMHsCcCpjwWoTb7NbWzQg8PtU9cnooW5KABOFqt8j8WcW9qJLqFzSu56gjLc/m6VyiUi8iD5nftZzjpz/to5fFkEAPs3cs66qop9hkhkYktTpXIRYfCp31Ez1e8X7bJyXRiqXDPqa08eQXIB/undc+PnRSSPn+Z9i5ksHDtz411nzdj44XHXW4W7gVRnND49ALCfetD4BghffnKTIgj4VJvy7q744tm/jticT0bmIdSfK9QggH4oygssvTdzrD8KyI8yNfAOKEXGLRo/aIeF8hER6cy/pS99CzjpzGvWfPP0qjURDQB4zoir1n9aRL5AJLJhYp9ZeEFLK5HwSyWofUdEQiKRWBc7ULrtmUkkAL+MmdH+elG5LOeV60lm9r1dj268Z+z0jR859zpr5s4Udq4AAGoNADxLY9cuq+OYaZwnvEwvrgGF7NOMJAIKXhc0vfdJpTToC99HGz8Wkrz/jTwxOa2nOKrzOVKaLacrzx96m4p+nqHiQv+vH+/ed+3Px81e3ZNoAMDTm/9U7StEIrOPEu7oNWjAtcTJP4smD3rcRJZ42gA5elr2n6NmbRhGdgGe9AxzH+ouYt+TbH76t57S9koR++6GJzc+NGZG2wVjqq2HcJcAAEhg1QqAcQl4MA4YN/mvyv29Z0pOAcwnkWtEvPfRBK+HjX5ZzAU+nZPlNkb2r1TPnHxj2+DpKvJrBpIT42bslu76yzOvXd+PYAAobwdsOuKq9VcmtvmPvrMenRYE5y44R2uEwk8V0Xnptsfl68pU5X/eM2/NUYQCcF/TriM+L6KvdmRN91xLI3KMms7Vns2PjpnR9umzr3zicO4WACCVSSer5Xpar2fdDsAhyTzxBlnObWzQK9G4zK190vRynVoDsD4r8LGYc4v/OUG655TM9ZRqA2C1qmGtZh8SkXby2wlv1lrnn949f81JFCgAZXPKddY8cu7676naFKKR6Xw5c9mkfncTCH8tmtrvZhV9sEjX5MDCcFDH7ubryC7AbaNmtL1NxC5x/DT7qelXwt2dj42Z0fa1sV/Z0J87VyYpzWh8SQRgP/Wg8Q0QvvzkJkUQ8Kk25d1d8cWzfx2xOZ+MzEOoP1eoQQD9UJQXWHpvRn9UlmaZ/mYfQdnS6+YLjm41kY8kO9YpGw2MraMDkT+eOX/1BwgGgLIYMfeh7v13rv+JiHyIaGQ66Ty4o8/OLxIH32+jmqnNJxCJ+7cxV7R9lDAAbnrPzPX9AtEfi0iTFytXlT5qepk0BY+fNb39+6NntB3PXfQXn3gAoNYAwAub3bi1y+o4ZhrnCS/Ti2tAIfs0I4mAgtcFTe99UikN+sL30caPheTmEWvoiclpPcVRnc6RoIwJtnLC0GWiMpeh5oweKvqD4fNXV8WMygig0EZd89gRGvb+laj8K9HItJ0MQ9VPrPrYcbuIjf/CSvP3RGSrdyeuro8amzPqyg0vIcMAt1SrFnRY5UciMtjD0+9mIh8KTP921vSN3x9z+aYTuaMAABxg1QqAcQl4OA4YN3lTj++ZklMA80nkGhHvfTTB62E7SxZzgU/nZLmNkX0FZU2joGPXpSLCTwA6NIpM9AvDr1l7/Zkz1x9KOAAU0dir2wdZR7ffitpbStUnudGqXbN8cr9biEQxLJt01BYR+R4fByWuTxDaT0fMfag7oQDccVfPjZ9XkTNcnWDr1GRiH1K1e8bO2HjjWTM3/j/uLADA9cVual+ms24H4JBknnhTBhX37llKr4d/9zj5niPpgqD0QQDrs5IfC0X5nMD1cyrtBsBlk47fLSbniMhT5LdTTe179ZDOW864rvVoChaAIhk2u+1lnWHnLSLyGqKR+eTyWGV35dMEoliCMJwvBfoM05w5Dz210tF7FhkGuOGsmRvPMJXPFeiSVEzOslBuHTtj46/GTt/0bu4y6swcANinHjS+AYKf3ARQvKHPZi+f7oGmcM+Yh0ANAuBqP6S51YyivQ/NMud0IEGZ02zFxKH/ULEPJzMWGc4JOqnSGd45/OrVpxMKAEUwfE7rWytB7fcichzRyFxoIv+58NKWrYSiWBZdNOgBE1lMJFJZZJw/Zvb6/yAOQL5GzmgbEJr9IOl1uzMrV5N3itjKsdM33X3WjI0fHne9Vbjr7jL/MgxAoWsNAOS+bo5du6yOY1Ib4Wq+p/knKEKf5tbPdQIoxvrN9lsakn/SnyV4LCSZL0XbqJfu9QRlT7TlE45eqGpXMeSc09dUVwybt/oThAKAz0bOaf1kIPprUelHNHJoJ02uXjZ1wK+JRUHvsOp0705avQnuNWNnt72MLAPycXrVmppErxeRASWo5ieZyfd2PbrpnrHTN37k3OusmQwAAABAbt1poa6GL6G5bdmMAzaqcs+STnhyCmAiy+1YynxXhN7cYuaPxcw9y/j6DiQgZUTag7ZLReQPRMK5uaGbqH5z2Pw13ztz5vpDCQgAn5xynTWPnLNuvoheKyLZfpHNZ3vPuP9Q6/gUYSiuZVP7/17Efk8kUllUHRaa3TBuflsvogFkr/chGy83kbd5sm6LVl0OfJhXish3Nzy56aExMzZeMKbaegiZAADwbbFrES+FL5AAUGYJUKrzTczXw7d7rCmkrRZ2/ADIblxbgseq/33UiWtHVvHk54Wfjw2AInLn+FM7gk59n4i0s/5w0of1kM47h81d8zqyFYAPhs1efeSAXeuXicgEopGbziCUjy6YNnQnoSg4kxnFuRTnvHrnLvuBmLGaBTI0dkbbf4rIheUt63KMmszVns2PjZ3eXh31tSePICsgIny2CmC/9aDxDRCaQo9OwQLoVXLvqVN9PZKMqaZwD5iH4Hj+k6JAifshza0PyWptR1/lU/Ev3oTEBsC9lk0asiY0+6CIhFmXDdTl5VaRPw6bv/q/CAUAlw2bve7ESqXpdhN5F9HItWf78uJpA28nEMW3ZFr/RSLyNyKRmrNHz26/jDAA2Rg9feO7TPTrab+PHytX7SuiX6ho5z/HzNj4tbFf2dCfDMmXFSzDAPheawAgUm+Z6jGT23DHT2GiTGMIxezTNPNjASj++s32WxqS/3lgS/BYKHof4uZ9ZgPg89w88eiVKvpZIuHssO4pot8YNn/1/479dntvIgLANSOvWj+6UpE/iMhLiUauE8btO54Y8BUCUZb7raais1irpLq8/vKome2jSDYgXaOmb3ylqv1MRJqJxgtqZh81uUyaKo+eNX3j/DEznzyOoAAAACDSqjbl17veUIPbxrih1rl9z9j8DDCROXYsZb5zYZ5K5u8aeYqjpnSemlpOsQHwRZafN/hyEVlAJJyeMP59967dd464du3JxAKAC6pVC0bOWfcFUbtJRPoQkVxtNQ3+Y1VVOwlFefTc0v4jE11NJFITaBD+eOSVbScRCiAdI766riVQWywih/u5RIvy4tgfafQ0kQkadv79rOkbvz/m8k0nkjkAUEbub2SxiJfCF0gAKLMEKNX5ptGVGDy5x5pC2mphxw+A7Ma1JXgst+Y5alqyYdKC3Yt8zokNgPvcB7U+u+QjonYX6w+nHR+G9sdh81dPJmkB5GnMrNa+tx25fqmIVJ2aV0vad6rYhGWT+j9MZpbLguqJewKxrxbhWhz+MLZ3ENqSs65YO5SMA5J1evXRHpXm5htF5CVEoy5NJvIhVbtn7PSNi0bP3PQmQlKqZg8AGq4HFvFglvUJAqBXSQCbw3y6B5rCPWAeguP5T4oCJe6HNIM+JMknizbyBDm4X/yLNSGxAXA/FkwburNmNk5ENgvD2WXdVfSq4fPXLBh1zWNHEA4AWRs1t/Vttebgz2oyjGg44ftLpgz6IWEop55bNv6PiDxGJFI1qCZNN42b39aLUAAJMdNePXt9R83enPlb+x89FZHRQWh/GDtj46/GTt/0bhLKpbzhsxEA2c1RVBwA9beP6R0zudrFT2EWZX5iDIFcSWJMkXcA8+N+3kfTqBFJbsindpWjD3HvnNgAeAC/nHDMI6HZv4tIjWg47701q9w77Jo1owgFgGy6TNMRc9ZdYqa/FrHBBMSJm/LQjubKROJQXguqJ+4Rla8SidSdvHO3XX/KddZMKIDGjZ7V/hVVeT+RaLQNkHeK2MqxMzbePnb6xn+tVo3POgAAANBgi1kkfAnNbWPccIOTuWdGwgPIZVyr36ePhueRxv5OHTxPTWV+5UPxg7h54tErzewyIuGFQWqyePj8Nd8547qHDyMcANIybPbqI0fOXb9QRaaLSBMRccIeVfn3VRP7bSMU5bb+kH7fEZF/lm7tm/0KbcTAbW3fZYMN0JgxMzZepqafKufVW1qHPU1Efn5Xz43/J2Z8TAcAcH+m01RnRgDpd6BAoccB48a3e6aZ/YwmtRtAlDqRy1MCU6xr5kiNLGMu+XVO2V8PX9p1YeXEo2eJ6ncZG940vh9t6ux+7/CrH+fnOAEkbvTcdW+oVJruEpHRzAUOXabZpUsmD7qTDMWd47VDxL5MJDLxH3f03nAlYQDiGTOzbZKIfa1YE7JD60STG0WV7wkK2/wRAgDacD2wiMXFGjlPAPQqefXFKb+em5z8MblnKFJtsq5OhFYJKG4hiTG+4z6pLepJZLW2Y47Oeg7ya6NeWtgAWIc+Rz01XlT+j+HsjSESBMuGzV/7jRFzN/UhHAAadXrVmkbMWfe50OQWETmGiDjl50umDJxDGPCM9Yf2/76IPOLzNfjTSeqkUVds+BxZB0Qzemb7f4npVdSb1KzeumvbPDLNhbzhsxEA2c1RVBwAda5jnTomtY75qUz5Dupt/DFC3gH0ZAc7RPKbBum5XL33WsxcThAbAOuw4JwT90izvEdEHiIa/lQOFfsvq+z867Br1p5BOADENWLuhpf2PGL9b0TkiyLSTERcYg/t2dX94zzhB89353jtMDE2pWW3tPni6CvaPkUkgPqMnbnxg2rydeHT6/S6A5XPr6oet4tIAAAAoOHeMuXXH3S1ncYKHv7R4o8bbnCZax11Cih+z5Ts5rzM5xjN7Y/psRP/O3XwPDXx+ZUNgHVa8Ymhm1WCMSLyBNHwyjFqtnL4vDXXjf12e2/CAaD+2dl0xJzWc8XCv4jIWwmIc3ZZYO/75WVHPkUo8GJLp/b/sYj83vkTLcz6z7466oq2S8k84OBGz9z4HjP7DuvwZ2tHGke8f+uOo35IbAEAPs50bJgAfOxAAeYnuHbP0tggo17lLIA8qDNjOasni5ojNbKMueTXOWV7PXzxEMHyCYMfFAnOEZEOxoZXja+Kyrl7du3+67B5a88ikwF0ZeS81mOGz13/KxG9TkQO9XqhWdC5QFU+uWzS4LvJVhwgQSxUuVT4fCjDUmNfGz277XwiAezfmBnto9XsJyLSVPBikKvA7NJVVe0k40ox8QCgEDRcDyxicbFGzpOaBtCr5ITNXj7dZOWelUStRLXJujoR+iCguPNfjPEd90ltUU/C0r525BS+ov28cHRsAIxoxYTBvzTROr7cpOV20LGqduPw+WsWj7rmsZcQDgD7M2Lu+v+0mv5VRd5BNFztEfWbSyYP/B6RwMEsm9r/96LyM1/P33wcmmZzx1zRNonsA15ozIz20SKyQES6UW9SLUO/u+mylkVknGt5w2cjALKbo6g4AOpdvrp0TGod81OZ8h3U2/hjhLwD6MkOdojkNw3Sc7l677WYuZwQNgDGsHLCkG+I2FeJhLdG1axy3/D5a79w+nce7UE4AIg8/dS/EXPWLRKzb4tIHyLirNvCYOsFhAF1ukxEdhOG7FY5JjZn9BVtnyIUwNNGT2//gIj8QkRYd6QrNA2nEAYAAAAkLb/NXmzcgr+3jU0T/t1gdza2UqeA4vVMyW7Oy3yOoSw51Ss09nfq4Hkmm2BsAIxpxXlDPyuq3yUS3uohYtUeO5vvHXbNmlGEAyiv06vWNHJO62Sr6T0iMpqIOG29BbX3Lpt0PBu6UJclU/s/IiZXO32ShVw82lfHXLHhcjIQZTd2xsbzVOX7ItJMNFIvpt9adEnLXcQBAOB9J00IAMYZwLhBw/cgjQ0y7IAB4M98ktWTRY0amRKe8hcXGwBj31+1jcH6c8X0ZoLh8WRh8lI1WTxs/uobRs5rPYZIAuUybG7r23oese5uE7lKRHrTJzltd2DBvy6bNGQNmYsomoNuX1GRNiKReW926egr1l9drRrrDZTS2JntnzOxa0q55o7UdyTysd9TlaDjc2RdCfHZKoAcno6V2tNxqGkAJcohHdy93OehtJ/Gxoa+/FmR0jbWtSp9EFCGeVETPFbChc9yPy9SpDxNeHbnxBdyDbhz/Kkd3Xt0/zcRudvZFpoaVGeY9OxQw/uHz19dHTH3oe5EBCi2Udc8dsTIq1rnBCarROTVUWo2H47kw8QuWDy1/x+JBKK6ceoRT4roZX7mvfcd1vl39G77+bjZq3uSiSjPhGU6Zkb7TDP5IvUmo0qj+t83XDyAjd5kGIAy0/gVx7I+QQDuFQ4PxzqbvfzrcI18B/UWQGHmvnQ351nsQ1BvmB/yPCc3rocNgA1a+PGWrVKpjRKRx4iG93qK6Bes0vPeEVevfZ+YMUsAhetOTUfOaf1E2NH8kKlMYh70pgecv2zKoG8SCMS1eGrLd0Xk90QiF2fvtG4rh81efSShQNGdXrWmMTM3/Y+IXEQ0MvNg/8OOnEcYcmqtCQGAGEJqDQD6pAivZ+MWuG3wsXaxvgSoI+lOZOnXjBc9kZd52Il557m/0wbeT53NtySw8SEBK8Yfu65mtREispFoFMLLLLCfDJ/fevvweWveRTiAYhh+1brThs9dd4uJfFNEjiIi3vjNhh4DphIGNNY7q6nJRBHpdPP8Cn8H3tps3W8ZM3P9cSQjimrc7NU9ex+ycYGIfZRoZFrfp3xjvPILZQCAQuELcMC9cca4BBgHKS9uU7gHmsI9U6fiAaCs80mSNVMTvB5qV/HnAs0416NjA2BCfjnx2PtD03eLyJNEoyiLDztVRH45fP6am4fNa309EQb8NGZO69Ej5rRep2q3qsib6ZO88qB22/Nvd/LFPhKw+ML+f1Gxa4hEbp3aK031T6OuWPcOYoGiGTu9fdCuzh6/FZGziUacviP2v/W8fuElRy0n2OQaAApB1sdMbeMQNQ2gRIGb/Lxjpr1RlQ19+bMipW2sa1XqJcC8mOuxLPfzIkXK04Rnc05sAEzQzROH/FlV3iMiu5xqoalBjXYo1+TNAAA/rElEQVSlZ6iEdwyfv+b6YfNXv4yAAH4YNnv1kSOuWnd5p8iDInJufXOe1VkWkMEHApsCrYxZMuGYJ4gGklJrav6ciKzzbCwUaWF3lEqwcvQVbRPJRhTFyBltJ5nKH0XktALMvT6d7JawWaeRgWQYADyv14xdcSzrEwTgXuHwcKyz2cu/DtfId1BvARRm7tMES4A2Pmcq9Yb5wYVzyv962ACYsOXnDV0lob1fXP2JOcQfrSbj1PS+4fPWzh0xd10LIQHcdPp3Hu0xfO66i4NK5R+idqmI9CAq3tltamcvntzvIUKBJC2bdNQWMbmESOSqScTmjb5i/ZzTq9ZEOOCz0TPa3lcR/YOIHE00smUqn1o8re9aIuHAvSAEADKoHdQaAOWudWzcArcN5ejT6PmAotcRzeh9kp14jXm4QUEq99Fi3hCLeTOzyrd0o41YVpx/9E1i+nF6lUIuprqJ2AUW1B4ePn/tF86+8tHDCRTghmrVguFXtX6w55buD6jZDBE5gqh4ujZQ/c/lkwfdQiiQhiUX9v+hmKzwpO8ocqM1qVfvtt+Mnd4+iKyEfzOV6Zjp7V9U0R+LSE8CknmncNspO4/6OoEAABR7ugPg2jhjXAKMg3RpCvdAPb5n7LQBmE+yqpma4PVQu4o/F2jGuR4NGwBTsmLikO+ryhQiUVi9xay6q7npseFXr/3au67a0J+QAPmoVi0YMXfde28/Yt1dqvIDETmGqPi7ZlaR6tLJA/6Xm4VUF5dWGy8i24hE7t4aNoV3jZm5/p2EAr4YU209ZOysTdeLyueET3QS7Dvq/iikM5Ta+GpVQwIMAEh3savJzFxRX093AVCiwE1+3jHT3qjKhr78mXdpqwlfq1IvAebFXI9luZ8XKVKeJjz9c2IDYIqWnzd0roh+hkVmkRtl7SNqlzU3dTw64uq1V58xp5Wf/wIyMu56q4yc0/oftx2x7h4xW2AiryvFwrzQ/Z5+c8mUgV8kEkjb0osGPSaqn6a/cUJ/C3Tl6NnrPzvuequQnXDZmMs3Hy2HNP/OzN5LNHJrFmYvvqz/XwgEK/YX5QUA7FMP3NwAQcECnC4cJeiu+DyzsB1xjvnO3AZyBSjvXKYJlgBNcM6k3jA/lHfOYgNgylZMGPJVEWMzQ/H1NJXzmyryj+Hz1nx/1PzWVxISIB3VqgXDr143btv6dfeZyI9E5FVpta7I1OLtT/afQBiQldOeapkvKvzUtBsqYvqlnavbbhl15YaXEA64aPTM9jES1O4WkdcX+Tqd7oJUHujetLNKNpI3AMpZO6g1APyhKdQ6Nm7RC3PbUI5xQM8HFL0uaHrvk8oc+aIn8jIPOzWPWMwbYqneTM3pb5/GBsAMrJgw9Asi8lUi4fVavc5SYc0i+qGa2b0j5q1dNHz+utMIIpCMU66z5hFz1334tiPXPaBm14vIy4lKYdzW2aHvX1XVTkKBrFSrGtY0+ISI7PKz7yikNwah3DV61oYPkKFwxelVaxo7s72qIjeKyJFEJDe1wOQjC6YN3UkoAAAAkBQ2IwPpjxtEkc5mX39rHR+WAmi8RliCx6rvfahdycbXnXjGvcdZzqtsAMzIiglDPiMis4lEaQQmMlosvG34vNYlw+aveQchAeI547rNhw2/unVqv93rHhax74nI8USlUGvm+2th58iVFw/Yzs1B1pZPaXlQxL5EJNxhIoeJyg9Hz97w/VFfe/IIIoI8jbpyw0t6H7rxDybyBdbOWfQdB/23wbNuvLTv7QQUAFiY+rTYrX+m2/+lsMECAMo+t6U838R8PQp0z9SVfGezDFDGedESPBb1htbJn/ud7jnxJUaGVpw3+CIVvZr1h1uNcvpRt5Fq+uvh89beO2LemvPGfru9N6MB6NrIeWtOGDF33dXNu3etVpPZIjKUelO47m5tRW34imlDNxML5GX7lv4zROQ2+hvnLvhDQbfd942ZteFsshR5GD2r7b1BZ3CXiPBE7/zrwd/29HziCwSCFXtXK28AeHE9aPzLdE2holGwAKcLh4dvwWavInfEmsI94+ekkW+9NdIJKNhcplFKQOQXWObXw/xX2H68JPeXDYCZ5oja8vMGTRaRrxOMUjrRRK/Zs3PPmuHz1s498+rWVxAS4MUdlunIOa3DR8xtXWph8ICInS8ivbOfe/koLAPtFtiZiyYPepxQIE+rqtqpFf2QiPAUSvc+RBhoKjeMntX24zGzWvsSEWTh9OqjPcbMbJuvpgtE5LACrPl974I6A5WPLZt0/G6yk7wBQO2g1gDwh6ZQ6/iSmV6YVEA5xgE9H1D0uqDpvY+m8R4v2pDPPOzUPGIxb0i6c00jSdLYFj42AGbemKutOG/wBDGbRzC8W6snVSr6iMgFgdrfhs9fe/OIq1vPHne9VQg0yuz0+W29hl+9bsKIq9fdbyrLRGQELVSh6+pTFbPhyyYN/BvBgAsWT+73kIpc5F/fUZaaYe83qTwwZtb6T1SrxvoFqRlz+aYT+xza648iOoFouMK+xk//AgAAINWOM+XXO77gJgGQybhB3uNSPa511CkAjdcIS/BY9b0PtSvZ+Koz5xT3Hmc1r/IFWi65rbZiwpBJIjKbYJS8ypmcYWo3bGtrfWT4vNZPjZi7roWwoEyGzV3zuhFzWq/qWetco2bzReTlRKXwa+btFoajFk0ddBc3Ai5ZPLXfdSK2lEg4W7eOMtVv3tGr7ZaRV7adRECQpGrVgtEz26dJJbzDRMivXPuOF3yE8sctO/t+kQACABOEL4vdaDOd95cCAHC4ePOUXf/kds/UlXyn+QHKOC9agsei3tA6+XO/0zunJrIqr3uqtkLkwuHz1+4xtcsyzaUSdPLmWek2kaNF7KsW2BeGz1t7Uyj2g03N61fcOf7UDgYLiuZd89Yc1RwGH1CRj4rIyb73Wb7Vm5ztFgnes2zqwN8TCrjYm9mMto9rk90jIk7+3Cz1RkRU3hSEdsfoK9Zf29y9s3rD+UM2kbxoxNlfW3fsnU0bv6sibycaThW8LWGl6QOrqtpJMFixR5gj+OYSwD71IGrF2ff1By8u8SoaBQtwunB4+BaN1zq42xE/nTjJ3rM0kpG5DfXninX1g42kE+DZXBZh0Hb50n1fkFXfwtquBP14Ce4vTwDM2fKJgz8lYjzVAM/oLiLnBKKLWjoGrhkxf81VZ17Tegphge/GXW+VYXPXjRoxp/Vn3cKgVUXmiMjJic29qbV6SFCnqL5v6ZT+NxMKuGrpJf3Wq8i5RMJ5FRE9v2N380Ojr9gwbVz1vm6EBHF6k7Gz2ibXmpr+KlE2/5XkW7LcuyC1CYsuPvxRMpW8AQBqDQB/aezaZWVfkDA/AYwpQgAwluO+j6bRNym1yZO+u+znxAZAB6yYMPQLZvJZIlGUmpFY6e9nppOD0O4YPm/tfSPmrb10xNw1Q7gZ8MmoK1tfOWLOuunb1q9bHYgtFpV/ExE2apRPp6h8YOnkATcRCrhu8bT+N4jINUTCC0eIyBU7e/e9b8wVG/5NzPgmBHUZM6P99bse23irmV4lIr2JiHNLrx8svLTlR0QCAMqBL1AA+FiLilW7WEpz21CWG2yOvZ6EB6hz3h6LspRKfOPOI439nTbwfprJeUbBTwA7YuXEIV8ZNn/1NlG9kpKB/XiViVwugX51+Py1v1axH+yUbr9YNbHfNkID14y6svWVYZO+V0zeG4q9lo/zS6+mqh9aMnnA9YQCvti+ZceFvfoc8iZL6kmlcdZAlM4oXmYiPxt9RfufddaG/150Yb+bRJUIYh/jLt982K6g9gVRuYC1sLN17eE9PfV8AgYATBBFbqbr/mkp1gUAABfnp5ivR973wIe+i+YHKOOar/5a1liNyP6nhKlpyd7WosUznevhSw+HrJg4dM6w+WueEJVvp3pvSlJrCrr4CMTkDBM9o4d0XDN8futSC+XGWredS345/qVPMYqQl1Fz1r/apPZeU31vKHKiWLkaGi/rTTZzQU1MP7RkyoCfMErgk1XV43aNntP2PqnZncLTwXxykoneMPqK9rt15vr/XnRR/4VsBISIyOlVa+rVa+MndlntiyLSQkSctctUzlk26agthAKO97gACl4P9l3jH/xg8T4ToGAB1KZ8sXnLp5v89DGT3RzGPIR806HLfCZFAS/E2uwWY3wn37fs/yRY2xV1QmrkuH7dX34C2DErJg75vpn+q4nsJBrowqFiNk7VftTU0WPT8Hlrbxl2devk0deuHkxokIVh89adOHLO2uqIq1v/Fmp4j6l+QUROzK0fSK11RUw1UfvY0qkDfkwo4KPFk/s9ZKKfcHFBjQPNBc9G52TT4MYxV7T/ZdQVbeP4aeByO2vmxjN6H7rxTjW5VpLa/FeSjLLs33DSokta7iJry5I3zGgAspujqDgA8mv0NYXapdQ65qcSjSGUud5S14Cy1vp472H7PUTyPw9MbaIPcfmceAKgg1ZOHLxo2Pw1o0TlJuGpM26Nz7oreub/fq4iIm9Rtbd01oLZw69ee7uJ3FBRu3Hp+UP+zs1DEkZd89gRtc7md6jIGSJypoT2UlOl08H+1FTso0smD/ohoYDPlk7rd/2o2RveJSLnEg3/mMhr1OT60Ve03ykz2/978UV9F/NEwPIYM6vtrWL6pVDsdKLhw4C17y+8rN83CQQAlLZvY8sAAO9qUbFqF0+u4bahLDc47VqXXm3kmUZA8XqsJOtcDsdiHk4lvnHnkcb+LvrNjPtTz2mvIdgA6KgVE4f8Zvj8x99lGiwVkb5EBJG6YJU3qsgbQ9Hpw+et/ZuK3SimS3duGnTbqqp2EiLUY1z1vm7bjjzyTaL2bhE5I+yUU/XpzabAwXSI6UeWTB3Ik/9QCIfInik7pNsbROQkh9ZAiOYUUVs46oq2v+msDVfvMfvByosHbCcsxTTmik1vlLD232J6JtFwzAHrmt5juzrOI0AAwARRpma67g/92RkJAHBxfor5euR9D8rZdwFwf81Xfy1rrOZkNW8xP/r0+UGxrocNgA5bPvHoP50xv/VfKhouFZFjGRsU15heZaKvEpVP9+jbunXEvLW/DU1/aU3Br1aeN+BewoNnjLveKtvXrn1N2BS8Q0XO2GbydhE7lLVbgetN8nPBbhU9Z8nUAQvJCBTFgmlDd46Zuf5fw4r+SUSOIiI+L6X0VSJybTfVr46a2f7t5qbO+TdOHfhPIlMMY2dterdZ7SIJwzNZAXjVQG2phPbeG6qDdhAMONzjAihhPdh3jZ/GUwooWAC1Ke92nNWTPzf56WMmuzmMeQj5psP+8/N5J0KKAl6I9SS0GOM7+b5l/yfB2i7vOSitWDZyXH/uLxsAHffLiYPuH3bdP98staYlInIyEUGDepvIaFUbrbWaDJ+3dr2I/ErUfqk1+eWySUPWEKLyOH1+W68enXv+nwSVt6rZm7etX/dGqQR9vP1xxNTmXj4Kq9N2keA9S6b0v5lQoGgWXTzg0VFXbni/mCwXB56ESlU62FxgItZldI5QtYs6a5Wpo69oWyihzl18ccsqguefc6+z5nVbN71fzC40C1+X6cjgH1Qlcnit6EdvuKzv38nmsuYNMxqA7OYoKg6A/Br9+Mek1jE/MYZQ9npLXQOoEbHn4WcPkfzPA1Ob6ENcPSc2AHpgxfhj1439dvvb9+ze9TMTfsqquEu9XAwQkQ+I6QcsEBk+b+2DIvJLNfmdqt669PxBj3Efi2PE3DVDRPUtIsFbxOwtUut8rWjQJMaCHA33Lk+FYqOXT+5/C8FAUS2Z2v+Xo67ccJmYzCQahVERk/eI2ntGz2r7q4nOb640XX/j1COeJDRuGz1742Cp2SfWbdn4XyIymIh42j6oVG+6uO8NRAIAIMKXuwDKUbuSq3X8jCe4bdzgMtQ6AEWpTQeuC8lvzmMe9j+H4s4jjf1dknmd3zzJBkBPLPx4y9ZTrrtjdEttwDdN5CNEhMVUSl4uIi83lYkm9swTAm830dtUwts07PmnZZOO2kIiuO/Mq9cfF1h4cvD0k0NPNpHXi8jAp/OXTgSJLv43BWLDlk8edCfRQNEtmdLvilFXtp8iYu+n7yic16rYdZ21jjmjZ7UtVgt/2GN7/2ULqrqH0LihWrXgrkPazzTR8VILR4soa1m/F1YLbrr4qC/JJUQCAFDexpcvxwHGJVCEccC48e2eqZhYJj+jCQBR6kRW80l979N4XWN+LNPnB+78vDBfmnjkzvGndojZx4Z9fe0aMfkMEaG4ZmCAiIxVsbEiKhbsCofPW3u/itwuoreGYXjb7s2D71tV1U5ClY/Tq9Z06GHrjrcmOdnEThaT14voyWLhEcKSC+n3FY8HZsOXTBl0P4FEOcaLWsfM9Z9orugrReR1BKSQeojIe02D9+7s1b5p1Ky2n4raj5ZM6/dHUWVazcHYmRteG2rwgTut/d9FZCjdTSH6jrtt556PMqbgcI8LoEiFoIF6sO9nimk8pYCCBdCr5IvvT3y6yfF+dpB77J/c7lkOtWn/1/q8E6FVAopbt2KM77hPaot6EqztijoHubNRLy1sAPQu8dVWiHx22DWr/ymi14hIcxEWmfBGICInmsiJIvYxDVR69G3dPWze2vvV5H5TvVdVHggsvHfHxsGPsDEwOWOnt/fuPKTj5aHIK9TklWLyclF5hci640ORbk+PZZbxebeuJfsw5V4LaiOWThqyhvxAmay8eMD24VeuO7tiwa0i0t+rBXVp+mUTsUSic5SKTBDTCWOuaH/YZm74YSDyi4UX9/8rQU7X6Bltxwcq7zWR/zCRV6uxaHG/C6rbBrPK2YuqLTuILHnDjAYg6zmKigOgzkWluPTzutQ65qcy5Tuot9Q1gD4q0WM9ewjPf2qYPPL8/mR3TmwA9NSKCUO/dea1ax5Rk5+JyBFEBDnqriInicpJKiZiIqE8vTFw+Ly1D4jI/Wp2r1lwf6jytz29dv9z1ceO20XY9jVi7roWVTsmNDlaAznaQntZIPpyE3lFh3QMeeYfrj87T4CeK78w3yLd9oxdOuGYJ4gGymj51IH/HHnV+rM01N+ISE8iUnwm8lJR/UIo8oXRV2x4XCxYqipLZGvHrxdVB7GRqeEAm46esek0CcKzVewsEXmVFx//0ndEtUvD8F8XXtbyOKEAADg6uwNA6rUruVrHxi1w21CGWgegKJPPgetCspvzkv+Z8y6uh3n4oMKY9z3uPNLY3yWZ1/nMk2wA9NjK84b8euS8NW+sBbJYRI4nIi7OZ6VucbvL0z+P+DrTp4MWiEiPbd1k+NVr20TkcRFZrWKPiwb/DE1Wa6CPB1JZvXRiv/VFCkS1asFdh7e17G4K+6pJS6A21EyOFpGjReSYvf/zWBHraSKiz/xKjarwwBs4uNBfeGjY+f4FE47ZSTRQZkunDLht9JVtHzazn8rTT8h1ZR2N1AuhHi1inzSTT0qvpl2jZ7X9RlSWaBguXXTxgEcJUH3+9cr2gR218Aw1PcNmtb9bAhn4XNKjgEIV++hNl/X/A6EAAND4vmCNTfcDMC4B78cB4yb/HinaPUhjgwwfYgJovE5kNZ/U9z6N17WQm16izw/ceGohGwA9t/T8IX8f9q3Vb5Q9+jMReQcRYfHhiX57/3OqiYrY3oVGaBJKKMOvXrtLRB4XkzZR2SwqmyXUzarh0/+76eaaymYV3aQdulkr3TYvm3TUlrRP+uwrHz18d6W5V02DXk0ivWpmhweqvUykl6r2FpEWMen79LVZfxFpEZGW22RdXxEJgr11m0198LZPUvvWzicGnreMn/cGRERk8dR+Pxt1RdunRe1yolFaPURkhJiMMA1k9My2+1Xtd6HoHyo1vXXhpS0PEqKnnXXFpqG1Wu3NqvJmUX1XR6ed+PQHzijJguyymy7t91MCASd7XADFLwQN1IN9P1NM5ykFAOhV8m3XqV3+3OSnj8kGvTIso3O6ZznUpv1f6/NOhLUdwFS5T81I/yd949VhCpb7c1Cx7xEbAAtgxSeGbj7lujuG9a0NvEbEPkF+owAFu4eInCAqJzw3w+7990h7j/H0ZjoTaTIx2SXDr14rIrJLRJ55Ktl2Eduz9823qkqniIiF8uSLvmvuriqHPDuZm/QQsZ7PnbYeIiK9RKTX7r3/XWXvAjvQp89BhXHEktuBhXnaF6/66aWTB7LJCXiRJRf2mz5qdtvxIvZxN6tSWfsOE7EcoqPyShN9pYqcG1ZMRs9q2ygifxSTP4Yqv69s67yjDD8ZfPaVTxze2dl5koqcJGpvVJO3hGFtiOpzDReK2AUdYFioXXPTJf1mEkXyhhkNgAtzlJsVhw9oASnFuIx/TDZ7MT/5me8AfRBQzrkv/c158Q5BvSnP/JDWvXbxnF6IDYAFcef4UztE5L+GXbPmPhGZyb1FSfXY+x8RkSOev8h89nvm/aw79/0OmsUp60U8zy5R+cjSyQOuJxTA/q0/tOW8/tvbhqrImUQDL9JXRMaIyphARKRXU8foWW33itr9Kvo3EXsgsKb7u2078h8LqrrHt4sbO729d60iJ1RMjjcLXykavE7UXlfr7Dj22W7K0pyWHfhai76jqzu0qPsxLZOIBADAo9kdAFKvXcnVOjZuZaUmIoHLJ8jaFIWudfyMJlCUyefAdSHZTYPJ/8z5/s/32ethHk7lvsedRxr7uyTzOrt58hlsEiuYFROGXDVs/pq/iMr18vQXjsh9PuOjS7Bwh7faAgvOXjyl/x8JBXBgd47XjnHz2/5tx277lYi8gbkAB+kKm0XkZDE92fbe3JrUZGev9s7Rs9oeEZX7xORBNfmHBLohNFmnga5fd+hRbXeO146sz3fU1548ItCdg6SpcrSIDpYwHCqBHi0ix4jJCSY2OHhmg5/uTVRyFc/l++27tfbvi87RGtEAAND4Asi5N+UJegDjpvA9UrR7kMYGGXo5oMhCSWIzfNd1Iqv5pL73oa7x+UFW55TM9bABsIBWTBzym5HzWk+tBeENInIyEQFcXA4DzvckD6gFoxZP7f8IwQG6tmBiv21jZrWOCoPgdyL6CiKCGOuyE8TkBJG9v15sez+EDU0Gbm230bPa2lSkzURaxWSDBPKkiuyU0PaEottFtVNEtgYiYaj21P7eJAilT6haCcS6i8khonK4qBwiJoeIyRGicpSY9BV55j97mkQqe+cHe3qTH593oD5/k6Bj1MqLBm0nFAAA1xa7aR+TDRMAci1RKM08xHxTfLndsxxq0/6v9XknQvICSLVYuXosbitNeDRsACyopecPemzc7NVv2do9+KapfYAaxOKmPAWbvEH+GeF73pjIiu626/03Tj3uSe45UL9FFw3aOGZO67BarekWFRvKPJV332F7d9IVpovqbyL9ReQ18vyH7anuzQF7LicO0G+ZPvPvu/c+sE+e15uRSEjOo2GTnrl42qCNhAK5z2h85gpgP/XAzQ0TFCzA6cJRgu6KzxfKfg+Yh0C9BZDk3BdhXHf50n1fEHnOfPYQ0eoN/RHzQ7LnlP71BCRNcS2YNnTn8omDP6giF4pIJxEBUKp+AHFjN7vXoAGj2PwHxLNo8qDHVTuHicgmogHQdxSJ1feidYGE7148re9aEgN15w0ANFg7qDUAfFw8JFfr0liQNHOrfJxv+EwcjBsAHkw+WfU0ltG1G/NwqvfdYr+fNnCe6mC+1YcNgCWwfMKQ2YHYGSKyjmjkNZ/R4gJw3i5V+ejSyQMvXHCO1ggHEN+SqYPut8BGici2HNfRQElyjT7boTuxuRZUzrzxkv4PEw0AAI0vAN9XDmxGBlihF79HUmodACdrQOPvowm+D2vUcs2N2Z5T0mOKDYAlsWzC0N9WrOP1IrKKaACetT30FUjfOjE9fcnkgd8jFEAylk4ZcJsFOkpEthMNACWwtWI6YsnFR95LKAAA7tHMj8mX6QByLVEozTzExtbiy+2eafb5bhRJgHmRY3HPMwufFnJssAGwRJZOPG59n76DzzCRr+3TR/GzVfB5rUvegLxpxG1BrfO0pVMG3MZdAxLuvab0+79QbayI7KTe5NV3EB3yBhn099sstJE3Xtr3doIBJysTn7kC2E89cHMDBAULcLpwlKC7Yp1Y9nvAPATyD0CSc58mWAK08TlT49Ub+iPmh2TPKd3rYQNgySw4R2srJwz5tIiMEZHNRAQA/UD81tX/Jly/cegTm/9l8bSha0kYIB3Lpg74tYVylojsIhoAfYf/vcM+dgQiYxZd1u8WkgDF754BuFw7qDUAfFw8JFfr2DhDb0sqgHEDwJ/JJ6uexjK6dmMeTvV+xP87beD91MF86xobAEtqxYQhSyph8HoR4YlPmc1ntLgAnLFdRD+wbPKA8QuqJ+4hHEC6ll7U/+ZQ9V9FZHfG62igJLlGn51TnmxTseE3XtyyimAAAACgiCsHNiMDrNBdW4incUxqHYD6ZLu1qPFaowm+D1/OuDu/+f+EQPN2lMIpS88f9NjGyvq37f1J4JCIAA4vb+krkJwHazX5f0snD/hfQgFkZ9nUfstUbJyIsOkWQBFsF7VRN13S73eEAgCQPPXkmAfHl+kAABfnNuYn/+R2z9SVfOcLMsDnmpT+uC7DsUrYC6mD5+QBNgCW3J3jT+1YOWHIp03l3aZSip+AZLEC8galzRuVBU27mk5bMW3gfdwdIHuLpw1YFKqeLSI7macAeGy7iYxaeFG//yMU8KaD5jNXAPupB41/mV6MjYoAHBiXKb4Fm72K3xGbb/kOHCT/qEFA0eYyjVICIr/AMr8eFLYfL0jPxAZAiIjIyvOG/Lp7JThJTBYSDZS0HoJcK3Krt0tEpyydNPCchZe2bCUxgPwsm9pvmYgOE5EtRCOruYDleWFmM3pcFzwpEg5bdEnLb7nhoN4AcK12UGsA+Lh4SK7W8aE78xOpANaEAPLvbVyrC7bf00z+SX/UuXTve/y/K9fmQTYA4lmLxg/auOL8IWeJyEdEZAcRSWN8UvoBZO6BQIM3Lp08YA6hANywZFq/30kYvFNENjm0LgBK+tEBImirib1j4SX9f08oAAAAwEqDlQnAOMiDOnHPuMcANciP98jhWHyHk8O9Sj7oFvO4FvOckppX2QCIfayYOOT7QaVymojcSTSAkvVUKJofdO7RUxdP6v8XQgG4ZclFLXcGEr5dRNYRDdB3wAOP1yrytqWX9PszoQAA+NuMuN/g8GU6wDgDc5uL44BxU/R7pimkLR8sAdSkxuuEJXis+t+H+lWu1qlY95sNgNivZZ8c+LeNTevfJCJfEZFOJiUgSt6QYcg9G7aI6AeWTh744ZUXD9jOXQDctGjawPuCsPJOE11NfwPAVWrydwkrb1t6YcvfiQb8TmZCAGDfetD4l+maQo9OwQLoVVB2UTc8GMlY4HtMbAD4PpYjzCsa/QW5/JRw3diOlVyPUa6f8o2LjMMB3Tn+1I4VE4d8NlB5m4jwZQ+KXg9BrhVjGWr6ew2Dk5dOHvC/3HzAfYsu6vuANVXeLCL3EI005wI+OvRsNqPvcOdy/iyd4b8suuzIx7m5yK7eUJkAxK8IVBAA/jT6mkKtU2oj81Mh16Yo07gheYEy9Uu5bN7TNOqNZno9ZeujGs+X8mweZAMgurRswpBb++y2k8R0uoiERKTR8UnpB5CKThH570MH9X/7kqn9HyEcgEe91qSj1lQ6greYyEpv1yqA1x8d4AB+1T2snL7wM/03EAoAAACw0mBlAsAV6Xw4SK0DUMw6l8Ox+A4nh3ulic9XFvOcLOb1JDGvsgEQdVkwbejOFecPvsxMh4vIP4kIUKh1HXxPC5X7TMM3LJ08sLrgHK0REcA/Cy9t2WpNW8aa6k+JBug7kP+tt+8PPKzviAWXHfkU0QAAFKsZcb/B4ct0gHEG5jYXxwHjpuj3TFNIWz5YAoo5jSX5tLuu64QleKz634f6Va7WqTj3mw2AiGTl+YNv7tYUnLj3aYBebzJhsYJ084YMQybZYCb6jaC7vWHZpMF3E2nAb8smHb976ZSWf1eT/6a/AZBf46JzF17c8tFvjNcOgoHC4fNbAPupB41/ma4p9OgULIBeBaVfmkVMHCMZC3yPiQ0A38dyhHlFo78gl58SRg49Rnl+yjcuNgAiskXjB+1Ycf7gy1SC00XkQSIC1pAob67l2uo9HITyzmWTB4xfNH7QDm4yUJR6pbb4wv5VM50snv9jC/diy/LcydmMvsMlNVH55KJL+04WZcAg73pDCgKIXxGoIAD8afQ1hVqn1EbmJ8DzccOXh0CZ+qVcNu9pGvVGM72esvVRjedLOTYPsgEQsS2fOOiW3Yd0nKSil4tIJxFhqQcgE6GIzan0sNcunjpwFeEAimnphf3mSiCjRORJogHQZ2dgq4icvejilusIBQCA2RoAqHUoAPZQcYMzqF3UOgB+1LkcjsU87PX89sK/y25ja9jgdbIBEA1Z9bHjdi2fOPhTpsEbReQuahFAriFVD1oQ/svSyYOm8NQ/oPiWTOm/IggrbxKRh5gLQN+BFD0aauXNiy5pWUwoAAA0I27gy3TAvXHGuAQYB8WvXek+6RRAkZZoST7trus6YQkei3mu8MlZ6nNiAyASsXLCoDv7tAx+g5pNFrEtLFbAAosMQ6LZUBOTmYfWOk9edsHg3xNNoDwWXdT3gU7Z80YR+RXRAJBCg/J/EnS8YcnFR95LMFAafP8E4JlC0EA9sIjFxRo5TwD0KuAm13nMZDeHkYzZLMupTd7HBkCdYzlCIdFG3ifdwkdtymFS0SwmJM3pb5PFBkAkZsE5Wlt+/tC5YWivFJEFRASe1UPA1WXonyqhvWHplIGXLJg2dCfxBspnxbShm7dv6TdcVK51oip53XcQHfKGHvd5vtVjZ993L7po0EZuGNysN1QmANn1NlQcAPk1+vGPSa0r/nzDPQP1FgBSqhGaRr1J8smI9FHlmFuSPacm0gpJu/mCo1tF5Jxh81cPF9V5YvJSonKgkkYDC2Q6f/rVcT1lJp/tNWjAtQvO0Ro3ECi3VVXtFJEJo2e3/cnE5otIT6IC0GfH1KliFy28pN8cQgEA8GW2ZnYHQK2Lwr8PQpESUoEb7GDtoq8DqE3114Uk65yKiWVbf3gcWyo5FHceaezvksxrUg4eWjFx6PI+u+w1IvIlEdlVmloEkGto3PVNQdOrlk0ZOI/NfwCeb/G0ft8x1TeLyCPMBaDvQAxtanImm/8AADQj7mO/BuDeOGNcAoyD4tcut550CsDlJVqST7vruk5Ygsdq/H2oa44nZ2nPiQ2ASNWCaUN3rpg45PMWNr3KRG9gsYLyLbDIMETKhodFbMTSyQPft/CCllYiBmB/lk7t9+dm7XaKiS4iGgAidCJ/7LTglIWXtvyGWKD0+JwWwDOFoIF6YBGLizVyngDoVcBNrvOYyW4OIxkzWa1Tm/yPDYA6x3KEQqKNvE+6hY/alMOkog6ek4M9ExsAkYmVFwx4dOXEwf8qIu80kXuICFhDgiX6C+wQkf/e0WfXq5dOHrSceALoyo1Tj3hy6dSWs9Rsioh0sgCN0ncQndRmM7jc436jx46W05ddetQabgz8qjdUJgDZ9TZUHAD5Nfrxj0mtK/58wz0D9RYAUqoRmka9SfLJiPRRyd/7Yj8hkA2AyNSKiUN+s6d98OtFbIqIPElEKP1AydeLZiI/Ma29fOnkgdVVHztuFzcJQP01TW3xRQPmiIRnishaAgLQZ+/HDlX90KJLWsYvqOoewgEA8Hm2ZnYHQK2Lgo0zIBW4wfR1APypTZZJnVPqT0FyKO59bOzvNLP3i4sNgMjcqqp2rpg4dE5Qq5wgKtfKfp5aQ68NkGsl8FcxO33Z5IH/vmzSEJ7GAyC2JRcO/E237h2vE5GbiAboO/A89wdh7Y0LL+77Q0IBAKAZAYD9Y9MKkP64gW/3TDP7GU0AxVinWYLHcmH+sYTOF/nmZRnPiQ2AyM2ySQPbV0wYMsHC4DUilusX1ixWQIYhQxtE7LxDBw54/dIpg/6PcABIwg3nD9m05ML+Z4vKRBHZSUSA0ref396ttdNuumzAPQQDOAA+pwXwTCHQFI55wCk6mpCbBNCrgJsc45hsbPVxGe/JPVP3YwOgQPUgxntY4ien1CZXbrAWJbHTwwZA5G7lBYMeWDFx6NmByptU5fdEhPpe1AUZSr9E3yEm0027nbB08qCvLzhHa8QMQNKWTOt/jQS1U0TkL8xTB+s7iA79TWFtMZMPLrq05RMrLx6wnXCAygQA6VYcKhRQ2kWlU8ekdjHf+JfvAPkHlHfuS39zXrxDUG/KMz9oYc+JDYBwxrIJQ25dft7gt5no+0XsUSICoCDrxVBEvlOpdZ6wbMrAy5ZNOmoLNwFAmpZMHXT/IbrnTSo2V3hoCErNga+1su07bg9r4cmLL235EfcejFAARa0FbHIBQK1zd0HCPXYYqYBC1zoARZl8LKOJzBy89jLnQdz7bhnff0s8r5PHBkA4Nv7VVk4c/NM+LVteIaIXiMi64s9ntLigfyjwgne5WXDysskD/3PxtKFriQiArCyYNnTn4gsHTFYN3ikijxAR0HcUWmgiMwYe1vetSz7Vn/EOAKAZAYCI2LQC5iGUITct4jGNMQQgwtjOqj+yhM43mfehrtG3uXVObACEkxacc+KeFRMHz+vWFLxMxKaIyAb3JwuADMOzbpVA37V88sARy6f0/yvhAJCXRdNafqu9aq9RkenC0wCBInrMVN61+JKWS78xXjsIBxARn9MCeKYQaArHPAA+IQJAr4J0b3K8jRhshM2fN/dA3Y8NgIwGv7r8Hun/1DC1KYdJRR08J4ewARBOWzR+0I4VE4fO2S3dXiZql4nIk0SF+u7zggyFX6LfaybnLJs88E3LLhjwa+IBwJV+atGF/S9T07eLyD+IyDN9B7M4/Y33vfMP1OQ1iy9uWUUwQGUCgPwqDhUK8KN5LvoxqV3MN/6NIYD8A8o796W7Oc9iH4J6U575QQt5TmwAhBdWTey3bcWEodM7TV4mYjNEZBtRAeDKnK4iD6jo+5ZNGvja5VMGLiDAAFy06KJ+t9Sam04Rk68LTwNEaTjwtVbynyWsF5Exiy5u+fDCS1u2co/BCAVQtlrAJhcA1Lp8FyTwdL4hFVDoWgegKJOPZTSRmYPXXuY8iHvfLeP7b4nndbLYAAiv/Or8IZtWTBx6abem4DhR+aqIbSnGfEaLC/oHT90vKh88dODAVy+dPPB6UR4nBcBtyyYdtWXxRf3PM5G3ici9RAT0HZ6FX/VnEnS8ZtElLYuJBgCAZgQAksOmFTAPoQy5aRGPaYwhABHGdlb9kSV0vsm8D3WNvs2dc2IDILy0aPygjSsmDPlMUDtk6N6fBn7CjckCIMNK4l4x/UivgQNfs2zSoB8tOEdrhASAT5Zc2P8P27b2O1nMpghPVgZ8aCPXmdm4hRf3HbfookEbCQiQID6nBZDDz3jyCREAehVkMQ/xlF0fl/+e3ANqE8CclVo9UK+OxVyYw31SB8/JEU0kE3y2bNJRW0Rk+hnXPfz1po7uF5jKFBE5ish4Xt89mymNtU6Z8vMuqcmXlk0ZeBNP+wPgu1VV7RSROSNmbFhcqcg1InJm+eq6iRizOJwWqti1HT0rn9679gFKjJUXgNTX/M9+JhW14lChAM8GudPHpLuCq/fM73xHEWo4gGLNZRHmlS5fuu8L4s+ZzHf0+P6eExsAUQi/HP/Sp0Tky6fPb7uqu+z+uIhOFZFjiAyAROZelVWiOmPZ+QOWi6rJVMIHoDiWXdL/YREZNmr2+verBTNEbChRAV8EObHmvy8Iw3Nvuqz/HwggqDcA0FjtoNYA8HHxkFyt44ts5idSAawJAeQ1XqNPPln1NC94H+bI3JuQuPNB/L/TWD92//T7JZnXL45TfPwEMApl1cR+21ZMHDpnd/vgl5nYB0Xkz7nXsUhDHoBDQhH5mZm+YdmkQe9YdsHAZTz1D0CRLZk24Cfaq/MVZvJFEdlJRFAc3k3fO1Xl8z129H09m/8AAMzWAFCc2kWt8xw7lOB8QqVzTGodABcnSsvofM3Baye3fG/g0jsnngCIQtr7k3Y/EpEfDZ/f+lbT8FIxGUX1Rf5S+rdM/KuEJO0xkZ+GgXx15QWDHiAcAMpk0fhBO0TkCyOmb/pmpbnzq2LyQfon0HdkanGl1nnBjZ8a+E9CAQBAls1I9g0OT7sB3MO4RJnmoaTGAePGv3uQ2D2LnbZ8sAQUeWpMpsYkWSdcPRYaim0mt8K/+80GQBTe8omDbhGRW4bNa329SjjJVN4vIt1ZrCDPBRmctN5Ev97Ngq8vnNJ/A+EAUGbLLj1qjYh8ePTMdf8jQXCViLyuuOtKEzFmceTeTN4dqk1eckm/3xEMIIeVF5/fAthPPWj8y3SKC+D0IPepkUjxLfhcu8gd8dOJk+w9Zm4jlADQeAF7bm6KcKwuX7rvC+LPgdGukX6KSdWVc+IngFEaK84fdNfy84d81IKmo0XtMhFZTVQcrtFAVrmmcpeIjO9Vq71k+eSB/83mPwB4zuKLB646dWu/15voOSryMBEpFz6HzqLHtU0qNqXHcX1PY/MfqDcAkG7toNYA8HHxkFyt40N35idSAawJAeQ1XjXB99H0roc5MvcmxDLNSxGLedMt8bxOBk8AROmsPG9Am4hMH3f9fVc+1d5nnIpOFpHTUq1jFmXIM7MAGeg0sV+oytxlFwz+PeEAgAOrVjUUkQXjqvfdtLPXUeeJ6mdEpIXI/P/27j24ruq64/hvnXMl+SUZbEm2hR2iALEnDmagwaQuST1MApbBTsPETmca0vaPhDYOCjiAIdOZinQ6GXscd+LEJDhQCg0ZWoWJQTHC1EyUAIGKAdxgHh3LdbH8tiWwJctGuues/oEajJ+674e+nxn9I13pnrv23muvfc7WOSgtRVdnD8j8h2OixPda75p0mPYBAICzYgBGR+4i15U47tqGou9QufmbnuIWCXIdQF4rp+MdWU6jSCjevjV67hDIBkCMWq1LZw9KekTSI0337vp07LpZ0lJJ44gOcovHVhVwLt1tsd/v5vc/1Tx9FwEBgBRqp5bZg5J+sHjlwX+OE/FySd+WVE1kWG8jJYNuvj52/eOTd9TvIxwAABRTMZL/AoeL40DxYVxiNM1D2RoHjJvSa4OstVna3ZYTS0A5T43ZyTHnzhMjf59s5hzyV9HUV3lpitJqbzYAApLavzH9RUkvfu6+7beG0ZivuPxr5rqMyCCXCzLkTezS04H7TwZ6GzZ2tFiSkABA+p5YUdcn6Z6mtXvvDYaCO036G0kTSntd6ZIziyOnIpn9a5gcumfD3dP+l3AARbjy4vwtgNPkg8wvppNcgGIb1yW7cSuHb8F57XKuiN/vONltY+Y2QgkAmSewD+amFP7WOV966gvSnwNT+4zUU0yqxXBMbAAETrD55osOS1onad11P+6ea7G+LtmXVeoXtcnRGJ32uenBWMFPn75l6g7CAQDZ1d487aCkOxat3rMytsStJr9FUg2RKS+cuMhYLLPH4kh/v3FF7ZuEAyDfAChs7iDXACgdH5wgz16u46Q78xPAmhBA4WubYssLH3ofyqWC94P8zwfl0+hsAATOYNPfzuiU1Nm0tme5h8eXSPFfSnZ1WvkmpZxBiQtkYFCuNpk/dKy3oZ27/QFA7rXd3nBI0t9d/713v2+V7zVLapY0icig+OS1zh6S2SNxpFVs/AMAoEhnawAoUO4i15W4crhGzOaGMm+M3DQwuQ5A8YzvYn2kLxNsIds93X6Z2e9lsrE1+/2FDYDAObQ3Tz4i6QFJD1z7w32NYRjd5O43SbqY6ICFe9F4We4PDYb+82e+Ob2HjgAA+bfx7vPekXTP4pUH10QJ/4bJmyU1EBnqjlFmQLL7FQXfb7tr0k7CAQBAqRUjFDhAOWLTCpiHGDfkukxff5a+mXa3pe4CynNqzObj57N5t7jMcg7zXKmXY5m0f+nMV2wABFIw/BjR78r9H5p+tGeem3/VTUtNOo/oILXJnzIhC3aa/N/Mw4c3fmvqVsIBAMXhiRV1fZJWLml5/Z8GqmuXmnSbpCuIDMrcO+a2big5tLb9O9MOEg6gRHH9CUAW8sGpZ3xyc5cCAJmM6xKd9KlVkNb8kc2NGHTGfI5ragQA5V6YpHUntHO+9NQXZD+fnv4gyNuF7lfFWJ/k95jYAAikNU7N26XnJT3ftHZbs8Jx17r5Erl/QbIaAsQaEjnT69JGlz+86ZaGZ2RGDwGAItXaMntQ0s8k/WzR6gNXy7zZpRslhcVZd/jwfyfiZJy4OKv/NvMfV43VA63L6voJB5CvfENmApC/2oaMA2CEi0rl8m5w2ctdXLBmvgEAoHTqpXzNjx96nz8cJpsVclMPZfPOjsVcy+cfGwCBDLU3X/KepDZJbUvWdI89UuELLbAvS7pe0rj0cgZLPeAE75p8Q2z26PGeac90tFhSktRMYACgVLTdXv+cpOduWHXgEiW0TO5flXQ+kUGxnHJIUdJkG2L5ul/dUddBTAEAKOxszVk0AOQu5L2Ny+EaMXsayrwxctPAuc515EagfGuf4s6dxfq3kGp80+2Xmf1eJhtbs9tf2AAIZFHr8hnHJD0m6bH56w5MGONDN8j8RkkLJFUTIbBwH7F9Jj0em35Z3fPOr4fvIgUAKHG/urN+m6Rbl6zpvntAVUvN/euS5hEZ6o6S4Npvsp8Oud3XvmLyLhofAIByLUa4YAOUZznPJhSwKGbckOsyez11F4CRDutsPn4+m3eLyyznMM+VejlWbo8XPhUbAIEc6VhW3y/pUUmPNq3dVhUnxn3GXIsk/5KkBiLEAosy4RRvm/R4JG97r7eh4w93+gMAlJ3hf5p4SNJDi1YfmiWL/sqlr0maRHRQZCKXfh24r586sW7D+pttiJAAZY7rTwCykA9OPeOTm7sUAMhkXJfopE+twgSU1vyRzY0YdMZ8NnnJ1Ah0B4AElqa07oSWxttmP5+e/iBY2xW6XxXjhJS/Y2IDIJAHw48J3ixpc0uL3/a7uj2fDjz+M8kWS5pJhFg0jFKRpBfctFFR9ORTt874PSEBgNGn7fbatyTdtei+Pd/1vvCLZvqKS5+XFOa/7vDh/07EyUbbiQuTtsj8X4YGo5+3f2faQXoAynh0PyazzmLLN8V8EIHFXfQbIJPhZa+5+foRzMWpzt3ZrwZOyAfp1EKeYoY7/d/3Q/QaIDNDQ4PHrbJy/emHoqc4jguRu05zgnyEB3bm3GVn/bwVFdpHzzkpNu47ZLY+nbkgyGQeykGR6ym+jaU4SkySe8BVHZ1tTRFsj6X1J3WyHCxnPCe9zQozCHfTc4DCMvP/iD04eGo+8LNmo+zkDEsx45mkOOX89aF520byW36u779CDaWNLu9Kpx46cx01kpbMVoU/0nk39WOy0/zMZC/kYqQAyJPr7337Y5EnFph7k0vXSBrHEM15Hs59EVToNFy8MTtkrqdi+UaP4qc3LZ/RSwcHAJxs4aoDUy2M/9xkN0m6Ir91B/VXylWLl8enMWmXu1oj+cNP3lm/hRYHAAAAAAAAAAClgKtbQBGZ/+COMWMHqj7rcbxApibJZhEVsQGwtOP2nqQXXdpsCjZPmDrlpdalFtGpAQAj9YXVez8RB+FfuPuXJH0893UHS6S0qhYv2U/TLdcvgjD+xePL61+QGXcpAAAAAAAAAAAAJYWrW0ARW7juwNQ4HvyMTJ+T7FpJHx2VgSjRy7Cj9i6Apv+RtNllm80rN7U3Tz7CaAYAZMOiNXtnxx7eIPkik+blZBJlA2B6FUtp1WvdUvBLWdza9u2659n0BwAAAAAAAAAAShlXt4AS8vkfdF8SJuwauV0jab6k+lHz4bkLYLHGLCnpVXM954F+O2jxs898c3oPoxUAkGuL1xy4OI79Rpm+KGmupCB7cyjLpJSrluKu1SJJL5q0Melq5/G+AAAAAAAAAACgnHBlCyhhC+7dPdMjzZPp6uG74JTvI4PZAFgsMRuQ9JJcv7XQnx2wihc6ltX3MxoBAIW0aPWeWgXBtS5bINd1yvSfJNgAmHrVUny12iHJnpLpycGgctOm5RN7aT0AAAAAAAAAAFCOuLIFlJGmtXvr4iCeZ9KfSPpjSZdLGl8WH44NgIWIWyTpLbl1uvl/mrzzWG/Dax0tlmS0AQCKVUuLB501h64IFC2Q23UmXeVSRWrzJ8uktKqWwtZrRyQ96/LfmIUdf9Q/+eWWFotpMQAAAAAAAAAAUO64sgWUsSX/7uHR/bs+ESn4lMyuNPmVkuZIqiy5D+Ol2QYldBfAWNI2ybbI4ldcQWflQOLlJ1bU9TGSAAClbNF9e8bFA+G8INZnXZqv9x8XXHX2+ZNlUloVS37rtcMyPavYf2MedFQ11r7autQiWggAAAAAAAAAAIw2XNkCRpklLa9X9tVNuszcL3f5HJculTTHpPOK/uC5C2C2YnZM0uuSXnWzLWEcbzmaqPg9j/IFAIyKWmhN99hjUeIqBcGfynSVYs2VafKpcyhLpZSrltzVakmTtrp7p8w6gzDurJw+5Q02/AEAAAAAAAAAALABEMCwhT/ac2FS8aWmYI7JL5M0c/hrTNEcJBsAU33zPsV6y+Svu+lNud6UEm9c1Vu/g0fiAQDwgaZV+y9KBD43DuxKueaadLncxhGZFKuW7NRqSUnbXPovM+uU/CX1J19pa2kYIPIAAAAAAAAAAACnYgMggDNqafHgd5P3X2hBPDNwzXJplqSPyzVL5tPyfkBsADydY5K2S+qSvMvduhTEXRVRsK3tWw076cUAAKRufosnqmv2zXQPP2muOS7/pGSXSvooa6hsPgbYd0q2VdJrJt+adNs6fqDujdYWG6QXAgAAAAAAAAAAjAwbAAGkZcma7rH9iURjFEQfC90aXdbogTeaq1FSo6SarL9pWW8APOOrj0p62107zdTtrp0m2ynpbSna3n7LBbtl5vRIAAByb/HKg9WeiGYrDma76WLpQ18TWESepl5z7ZepS1KXm7oCty432x6G4bYNt53/Lr0KAAAAAAAAAAAgM2wABJAT89cdmDBeyRlxHE9ToOnuwQWST5P0EbmmyDRFUp1SvVheLpsATX1y7TVpf+zaGwTaJ9m+WLbHXAc8TO7249q1afmMXnoTAADFb+GqA1NNuiQIdZHLLpTiC8ytQdJHXH6BZJPKcCHZJ9cuN9sduO9xqdtde4PQupOR70y4bX9iRV0fvQMAAAAAAAAAACB32AAIoKDmP7hjzNi+ilrJ6uLQplisWjPVuvlEudXIfKJkNZKfL7caafj78jGSTZC8ogCHPaj378zXL6lPsn7Jj5j8sCvol3u/zI+4q0dmvaGpNzbrsch6LQx79yd29rx886eGaH0AAEaPJWu6xx71MTPkPtXktVJQK3mtuU82s8mSal2aLOk8ycZKXmPSBJdyWuuYNORSv8z75Hb8/dpGfXL1uPxQYNbjZj3u3mNuvR7EPWEy6Kma4Ltbl9X307IAAAAAAAAAAACFxQZAACVv8cqD1VH1QMLjihoLwjBOJidGbsH//zwRRokoDqrPmgwDPxpHweCJ3wst+W6QqPI4GfcFicHk0bHxsY6/bjxOxAEAQL7Mb/HE+KrD1YnKaIJbVBXFNvHEn7t8vLlXnvx7gcI4Nj984vcSCo4lw+TxeDAxGMTh0XEXTTzSutQiogwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArt/wBQqoPCJ89/4AAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyNC0wMi0yMlQwNzo0Nzo1NSswMDowMEK7CccAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjQtMDItMjJUMDc6NDc6NTUrMDA6MDAz5rF7AAAAAElFTkSuQmCC + } + } +} + +test TestBase64URLEscape{ + functions [TestImageInput] + args{ + img{ + url "" + } + } +} diff --git a/integ-tests/baml_src/test-files/functions/prompts/no-chat-messages.baml b/integ-tests/baml_src/test-files/functions/prompts/no-chat-messages.baml index 47bc019ed..836a92fae 100644 --- a/integ-tests/baml_src/test-files/functions/prompts/no-chat-messages.baml +++ b/integ-tests/baml_src/test-files/functions/prompts/no-chat-messages.baml @@ -7,9 +7,19 @@ function PromptTestClaude(input: string) -> string { "# } -function PromptTestOpenAI(input: string) -> string { + +function PromptTestStreaming(input: string) -> string { client GPT35 prompt #" - Tell me a haiku about {{ input }} + Tell me a short story about {{ input }} "# -} \ No newline at end of file +} + +test TestName { + functions [PromptTestStreaming] + args { + input #" + hello world + "# + } +} diff --git a/integ-tests/baml_src/test-files/functions/prompts/with-chat-messages.baml b/integ-tests/baml_src/test-files/functions/prompts/with-chat-messages.baml index a83bc2702..1455ff3aa 100644 --- a/integ-tests/baml_src/test-files/functions/prompts/with-chat-messages.baml +++ b/integ-tests/baml_src/test-files/functions/prompts/with-chat-messages.baml @@ -41,15 +41,15 @@ function PromptTestClaudeChatNoSystem(input: string) -> string { "# } -test PromptTestOpenAIChat { +test TestSystemAndNonSystemChat1 { functions [PromptTestClaude, PromptTestOpenAI, PromptTestOpenAIChat, PromptTestOpenAIChatNoSystem, PromptTestClaudeChat, PromptTestClaudeChatNoSystem] args { input "cats" } } -test TestClaude { - functions [PromptTestClaudeChatNoSystem] +test TestSystemAndNonSystemChat2 { + functions [PromptTestClaude, PromptTestOpenAI, PromptTestOpenAIChat, PromptTestOpenAIChatNoSystem, PromptTestClaudeChat, PromptTestClaudeChatNoSystem] args { input "lion" } diff --git a/integ-tests/baml_src/test-files/providers/providers.baml b/integ-tests/baml_src/test-files/providers/providers.baml index 81466a2ab..ddb8b47df 100644 --- a/integ-tests/baml_src/test-files/providers/providers.baml +++ b/integ-tests/baml_src/test-files/providers/providers.baml @@ -12,6 +12,13 @@ function TestOpenAI(input: string) -> string { "# } +function TestOpenAILegacyProvider(input: string) -> string { + client GPT35LegacyProvider + prompt #" + Write a nice haiku about {{ input }} + "# +} + function TestAzure(input: string) -> string { client GPT35Azure prompt #" @@ -33,9 +40,16 @@ function TestGemini(input: string) -> string { "# } +function TestAws(input: string) -> string { + client AwsBedrock + prompt #" + Write a nice short story about {{ input }} + "# +} + test TestProvider { - functions [TestAnthropic, TestOpenAI, TestAzure, TestOllama, TestGemini] + functions [TestAnthropic, TestOpenAI, TestAzure, TestOllama, TestGemini, TestAws] args { input "Donkey kong and peanut butter" } diff --git a/integ-tests/python/README.md b/integ-tests/python/README.md index 9a89befd3..de458c20b 100644 --- a/integ-tests/python/README.md +++ b/integ-tests/python/README.md @@ -7,4 +7,3 @@ env -u CONDA_PREFIX poetry run maturin develop --manifest-path ../../engine/lang BAML_LOG=baml_events infisical run --env=dev -- poetry run pytest app/test_functions.py -s ``` - diff --git a/integ-tests/python/__init__.py b/integ-tests/python/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/integ-tests/python/baml_client/client.py b/integ-tests/python/baml_client/client.py index 1bf92fd1f..35af6a690 100644 --- a/integ-tests/python/baml_client/client.py +++ b/integ-tests/python/baml_client/client.py @@ -56,6 +56,28 @@ def stream(self): return self.__stream_client + async def AudioInput( + self, + aud: baml_py.Audio, + baml_options: BamlCallOptions = {}, + ) -> str: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = await self.__runtime.call_function( + "AudioInput", + { + "aud": aud, + }, + self.__ctx_manager.get(), + tb, + ) + mdl = create_model("AudioInputReturnType", inner=(str, ...)) + return coerce(mdl, raw.parsed()) + async def ClassifyMessage( self, input: str, @@ -248,6 +270,50 @@ async def DynamicFunc( mdl = create_model("DynamicFuncReturnType", inner=(types.DynamicClassTwo, ...)) return coerce(mdl, raw.parsed()) + async def DynamicInputOutput( + self, + input: types.DynInputOutput, + baml_options: BamlCallOptions = {}, + ) -> types.DynInputOutput: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = await self.__runtime.call_function( + "DynamicInputOutput", + { + "input": input, + }, + self.__ctx_manager.get(), + tb, + ) + mdl = create_model("DynamicInputOutputReturnType", inner=(types.DynInputOutput, ...)) + return coerce(mdl, raw.parsed()) + + async def DynamicListInputOutput( + self, + input: List[types.DynInputOutput], + baml_options: BamlCallOptions = {}, + ) -> List[types.DynInputOutput]: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = await self.__runtime.call_function( + "DynamicListInputOutput", + { + "input": input, + }, + self.__ctx_manager.get(), + tb, + ) + mdl = create_model("DynamicListInputOutputReturnType", inner=(List[types.DynInputOutput], ...)) + return coerce(mdl, raw.parsed()) + async def ExtractNames( self, input: str, @@ -296,6 +362,28 @@ async def ExtractPeople( mdl = create_model("ExtractPeopleReturnType", inner=(List[types.Person], ...)) return coerce(mdl, raw.parsed()) + async def ExtractReceiptInfo( + self, + email: str, + baml_options: BamlCallOptions = {}, + ) -> types.ReceiptInfo: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = await self.__runtime.call_function( + "ExtractReceiptInfo", + { + "email": email, + }, + self.__ctx_manager.get(), + tb, + ) + mdl = create_model("ExtractReceiptInfoReturnType", inner=(types.ReceiptInfo, ...)) + return coerce(mdl, raw.parsed()) + async def ExtractResume( self, resume: str,img: Optional[baml_py.Image], @@ -872,6 +960,7 @@ async def PromptTestClaudeChatNoSystem( mdl = create_model("PromptTestClaudeChatNoSystemReturnType", inner=(str, ...)) return coerce(mdl, raw.parsed()) +<<<<<<< HEAD async def PromptTestOpenAI( self, input: str, @@ -896,6 +985,8 @@ async def PromptTestOpenAI( mdl = create_model("PromptTestOpenAIReturnType", inner=(str, ...)) return coerce(mdl, raw.parsed()) +======= +>>>>>>> canary async def PromptTestOpenAIChat( self, input: str, @@ -944,6 +1035,28 @@ async def PromptTestOpenAIChatNoSystem( mdl = create_model("PromptTestOpenAIChatNoSystemReturnType", inner=(str, ...)) return coerce(mdl, raw.parsed()) + async def PromptTestStreaming( + self, + input: str, + baml_options: BamlCallOptions = {}, + ) -> str: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = await self.__runtime.call_function( + "PromptTestStreaming", + { + "input": input, + }, + self.__ctx_manager.get(), + tb, + ) + mdl = create_model("PromptTestStreamingReturnType", inner=(str, ...)) + return coerce(mdl, raw.parsed()) + async def TestAnthropic( self, input: str, @@ -968,6 +1081,28 @@ async def TestAnthropic( mdl = create_model("TestAnthropicReturnType", inner=(str, ...)) return coerce(mdl, raw.parsed()) + async def TestAws( + self, + input: str, + baml_options: BamlCallOptions = {}, + ) -> str: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = await self.__runtime.call_function( + "TestAws", + { + "input": input, + }, + self.__ctx_manager.get(), + tb, + ) + mdl = create_model("TestAwsReturnType", inner=(str, ...)) + return coerce(mdl, raw.parsed()) + async def TestAzure( self, input: str, @@ -1328,6 +1463,28 @@ async def TestOpenAI( mdl = create_model("TestOpenAIReturnType", inner=(str, ...)) return coerce(mdl, raw.parsed()) + async def TestOpenAILegacyProvider( + self, + input: str, + baml_options: BamlCallOptions = {}, + ) -> str: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = await self.__runtime.call_function( + "TestOpenAILegacyProvider", + { + "input": input, + }, + self.__ctx_manager.get(), + tb, + ) + mdl = create_model("TestOpenAILegacyProviderReturnType", inner=(str, ...)) + return coerce(mdl, raw.parsed()) + async def TestRetryConstant( self, @@ -1410,6 +1567,38 @@ def __init__(self, runtime: baml_py.BamlRuntime, ctx_manager: baml_py.BamlCtxMan self.__ctx_manager = ctx_manager + def AudioInput( + self, + aud: baml_py.Audio, + baml_options: BamlCallOptions = {}, + ) -> baml_py.BamlStream[Optional[str], str]: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = self.__runtime.stream_function( + "AudioInput", + { + "aud": aud, + }, + None, + self.__ctx_manager.get(), + tb, + ) + + mdl = create_model("AudioInputReturnType", inner=(str, ...)) + partial_mdl = create_model("AudioInputPartialReturnType", inner=(Optional[str], ...)) + + return baml_py.BamlStream[Optional[str], str]( + raw, + lambda x: coerce(partial_mdl, x), + lambda x: coerce(mdl, x), + self.__ctx_manager.get(), + tb, + ) + def ClassifyMessage( self, input: str, @@ -1677,6 +1866,70 @@ def DynamicFunc( self.__ctx_manager.get(), ) + def DynamicInputOutput( + self, + input: types.DynInputOutput, + baml_options: BamlCallOptions = {}, + ) -> baml_py.BamlStream[partial_types.DynInputOutput, types.DynInputOutput]: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = self.__runtime.stream_function( + "DynamicInputOutput", + { + "input": input, + }, + None, + self.__ctx_manager.get(), + tb, + ) + + mdl = create_model("DynamicInputOutputReturnType", inner=(types.DynInputOutput, ...)) + partial_mdl = create_model("DynamicInputOutputPartialReturnType", inner=(partial_types.DynInputOutput, ...)) + + return baml_py.BamlStream[partial_types.DynInputOutput, types.DynInputOutput]( + raw, + lambda x: coerce(partial_mdl, x), + lambda x: coerce(mdl, x), + self.__ctx_manager.get(), + tb, + ) + + def DynamicListInputOutput( + self, + input: List[types.DynInputOutput], + baml_options: BamlCallOptions = {}, + ) -> baml_py.BamlStream[List[partial_types.DynInputOutput], List[types.DynInputOutput]]: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = self.__runtime.stream_function( + "DynamicListInputOutput", + { + "input": input, + }, + None, + self.__ctx_manager.get(), + tb, + ) + + mdl = create_model("DynamicListInputOutputReturnType", inner=(List[types.DynInputOutput], ...)) + partial_mdl = create_model("DynamicListInputOutputPartialReturnType", inner=(List[partial_types.DynInputOutput], ...)) + + return baml_py.BamlStream[List[partial_types.DynInputOutput], List[types.DynInputOutput]]( + raw, + lambda x: coerce(partial_mdl, x), + lambda x: coerce(mdl, x), + self.__ctx_manager.get(), + tb, + ) + def ExtractNames( self, input: str, @@ -1743,6 +1996,38 @@ def ExtractPeople( self.__ctx_manager.get(), ) + def ExtractReceiptInfo( + self, + email: str, + baml_options: BamlCallOptions = {}, + ) -> baml_py.BamlStream[partial_types.ReceiptInfo, types.ReceiptInfo]: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = self.__runtime.stream_function( + "ExtractReceiptInfo", + { + "email": email, + }, + None, + self.__ctx_manager.get(), + tb, + ) + + mdl = create_model("ExtractReceiptInfoReturnType", inner=(types.ReceiptInfo, ...)) + partial_mdl = create_model("ExtractReceiptInfoPartialReturnType", inner=(partial_types.ReceiptInfo, ...)) + + return baml_py.BamlStream[partial_types.ReceiptInfo, types.ReceiptInfo]( + raw, + lambda x: coerce(partial_mdl, x), + lambda x: coerce(mdl, x), + self.__ctx_manager.get(), + tb, + ) + def ExtractResume( self, resume: str,img: Optional[baml_py.Image], @@ -2536,6 +2821,7 @@ def PromptTestClaudeChatNoSystem( self.__ctx_manager.get(), ) +<<<<<<< HEAD def PromptTestOpenAI( self, input: str, @@ -2569,6 +2855,8 @@ def PromptTestOpenAI( self.__ctx_manager.get(), ) +======= +>>>>>>> canary def PromptTestOpenAIChat( self, input: str, @@ -2635,6 +2923,38 @@ def PromptTestOpenAIChatNoSystem( self.__ctx_manager.get(), ) + def PromptTestStreaming( + self, + input: str, + baml_options: BamlCallOptions = {}, + ) -> baml_py.BamlStream[Optional[str], str]: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = self.__runtime.stream_function( + "PromptTestStreaming", + { + "input": input, + }, + None, + self.__ctx_manager.get(), + tb, + ) + + mdl = create_model("PromptTestStreamingReturnType", inner=(str, ...)) + partial_mdl = create_model("PromptTestStreamingPartialReturnType", inner=(Optional[str], ...)) + + return baml_py.BamlStream[Optional[str], str]( + raw, + lambda x: coerce(partial_mdl, x), + lambda x: coerce(mdl, x), + self.__ctx_manager.get(), + tb, + ) + def TestAnthropic( self, input: str, @@ -2668,6 +2988,38 @@ def TestAnthropic( self.__ctx_manager.get(), ) + def TestAws( + self, + input: str, + baml_options: BamlCallOptions = {}, + ) -> baml_py.BamlStream[Optional[str], str]: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = self.__runtime.stream_function( + "TestAws", + { + "input": input, + }, + None, + self.__ctx_manager.get(), + tb, + ) + + mdl = create_model("TestAwsReturnType", inner=(str, ...)) + partial_mdl = create_model("TestAwsPartialReturnType", inner=(Optional[str], ...)) + + return baml_py.BamlStream[Optional[str], str]( + raw, + lambda x: coerce(partial_mdl, x), + lambda x: coerce(mdl, x), + self.__ctx_manager.get(), + tb, + ) + def TestAzure( self, input: str, @@ -3163,6 +3515,38 @@ def TestOpenAI( self.__ctx_manager.get(), ) + def TestOpenAILegacyProvider( + self, + input: str, + baml_options: BamlCallOptions = {}, + ) -> baml_py.BamlStream[Optional[str], str]: + __tb__ = baml_options.get("tb", None) + if __tb__ is not None: + tb = __tb__._tb + else: + tb = None + + raw = self.__runtime.stream_function( + "TestOpenAILegacyProvider", + { + "input": input, + }, + None, + self.__ctx_manager.get(), + tb, + ) + + mdl = create_model("TestOpenAILegacyProviderReturnType", inner=(str, ...)) + partial_mdl = create_model("TestOpenAILegacyProviderPartialReturnType", inner=(Optional[str], ...)) + + return baml_py.BamlStream[Optional[str], str]( + raw, + lambda x: coerce(partial_mdl, x), + lambda x: coerce(mdl, x), + self.__ctx_manager.get(), + tb, + ) + def TestRetryConstant( self, diff --git a/integ-tests/python/baml_client/globals.py b/integ-tests/python/baml_client/globals.py index bf4341dec..4db980cea 100644 --- a/integ-tests/python/baml_client/globals.py +++ b/integ-tests/python/baml_client/globals.py @@ -19,13 +19,13 @@ from .client import BamlClient from .inlinedbaml import get_baml_files -_DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME = BamlRuntime.from_files( +DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME = BamlRuntime.from_files( "baml_src", get_baml_files(), os.environ.copy() ) -DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX = BamlCtxManager(_DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME) +DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX = BamlCtxManager(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME) -b = BamlClient(_DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME, DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) +b = BamlClient(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME, DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) __all__ = ['b'] \ No newline at end of file diff --git a/integ-tests/python/baml_client/inlinedbaml.py b/integ-tests/python/baml_client/inlinedbaml.py index eb654c367..9a28553f2 100644 --- a/integ-tests/python/baml_client/inlinedbaml.py +++ b/integ-tests/python/baml_client/inlinedbaml.py @@ -16,29 +16,33 @@ file_map = { - "clients.baml": "retry_policy Bar {\n max_retries 3\n strategy {\n type exponential_backoff\n }\n}\n\nretry_policy Foo {\n max_retries 3\n strategy {\n type constant_delay\n delay_ms 100\n }\n}\n\nclient GPT4 {\n provider baml-openai-chat\n options {\n model gpt-4\n api_key env.OPENAI_API_KEY\n }\n} \n\n\nclient GPT4o {\n provider baml-openai-chat\n options {\n model gpt-4o\n api_key env.OPENAI_API_KEY\n }\n} \n\n\nclient GPT4Turbo {\n retry_policy Bar\n provider baml-openai-chat\n options {\n model gpt-4-turbo\n api_key env.OPENAI_API_KEY\n }\n} \n\nclient GPT35 {\n provider baml-openai-chat\n options {\n model \"gpt-3.5-turbo\"\n api_key env.OPENAI_API_KEY\n }\n}\n\nclient Ollama {\n provider ollama\n options {\n model llama2\n }\n}\n\nclient GPT35Azure {\n provider azure-openai\n options {\n resource_name \"west-us-azure-baml\"\n deployment_id \"gpt-35-turbo-default\"\n // base_url \"https://west-us-azure-baml.openai.azure.com/openai/deployments/gpt-35-turbo-default\"\n api_version \"2024-02-01\"\n api_key env.AZURE_OPENAI_API_KEY\n }\n}\n\nclient Gemini {\n provider google-ai\n options{\n model \"gemini-1.5-pro-001\"\n api_key env.GOOGLE_API_KEY\n }\n}\n\n\nclient Claude {\n provider anthropic\n options {\n model claude-3-haiku-20240307\n api_key env.ANTHROPIC_API_KEY\n max_tokens 1000\n }\n}\n\nclient Resilient_SimpleSyntax {\n retry_policy Foo\n provider baml-fallback\n options {\n strategy [\n GPT4Turbo\n GPT35\n Lottery_SimpleSyntax\n ]\n }\n} \n \nclient Lottery_SimpleSyntax {\n provider baml-round-robin\n options {\n start 0\n strategy [\n GPT35\n Claude\n ]\n }\n}\n", + "clients.baml": "retry_policy Bar {\n max_retries 3\n strategy {\n type exponential_backoff\n }\n}\n\nretry_policy Foo {\n max_retries 3\n strategy {\n type constant_delay\n delay_ms 100\n }\n}\n\nclient GPT4 {\n provider openai\n options {\n model gpt-4o\n api_key env.OPENAI_API_KEY\n }\n} \n\n\nclient GPT4o {\n provider openai\n options {\n model gpt-4o\n api_key env.OPENAI_API_KEY\n }\n} \n\n\nclient GPT4Turbo {\n retry_policy Bar\n provider openai\n options {\n model gpt-4-turbo\n api_key env.OPENAI_API_KEY\n }\n} \n\nclient GPT35 {\n provider openai\n options {\n model \"gpt-3.5-turbo\"\n api_key env.OPENAI_API_KEY\n }\n}\n\nclient GPT35LegacyProvider {\n provider openai\n options {\n model \"gpt-3.5-turbo\"\n api_key env.OPENAI_API_KEY\n }\n}\n\n\nclient Ollama {\n provider ollama\n options {\n model llama2\n }\n}\n\nclient GPT35Azure {\n provider azure-openai\n options {\n resource_name \"west-us-azure-baml\"\n deployment_id \"gpt-35-turbo-default\"\n // base_url \"https://west-us-azure-baml.openai.azure.com/openai/deployments/gpt-35-turbo-default\"\n api_version \"2024-02-01\"\n api_key env.AZURE_OPENAI_API_KEY\n }\n}\n\nclient Gemini {\n provider google-ai\n options {\n model \"gemini-1.5-pro-001\"\n api_key env.GOOGLE_API_KEY\n }\n}\n\nclient AwsBedrock {\n provider aws-bedrock\n options {\n inference_configuration {\n max_tokens 100\n }\n model_id \"anthropic.claude-3-haiku-20240307-v1:0\"\n // model_id \"meta.llama3-8b-instruct-v1:0\"\n // model_id \"mistral.mistral-7b-instruct-v0:2\"\n api_key \"\"\n }\n}\n\nclient Claude {\n provider anthropic\n options {\n model claude-3-haiku-20240307\n api_key env.ANTHROPIC_API_KEY\n max_tokens 1000\n }\n}\n\nclient Resilient_SimpleSyntax {\n retry_policy Foo\n provider baml-fallback\n options {\n strategy [\n GPT4Turbo\n GPT35\n Lottery_SimpleSyntax\n ]\n }\n} \n \nclient Lottery_SimpleSyntax {\n provider baml-round-robin\n options {\n start 0\n strategy [\n GPT35\n Claude\n ]\n }\n}\n", "fiddle-examples/chain-of-thought.baml": "class Email {\n subject string\n body string\n from_address string\n}\n\nenum OrderStatus {\n ORDERED\n SHIPPED\n DELIVERED\n CANCELLED\n}\n\nclass OrderInfo {\n order_status OrderStatus\n tracking_number string?\n estimated_arrival_date string?\n}\n\nfunction GetOrderInfo(email: Email) -> OrderInfo {\n client GPT4\n prompt #\"\n Given the email below:\n\n ```\n from: {{email.from_address}}\n Email Subject: {{email.subject}}\n Email Body: {{email.body}}\n ```\n\n Extract this info from the email in JSON format:\n {{ ctx.output_format }}\n\n Before you output the JSON, please explain your\n reasoning step-by-step. Here is an example on how to do this:\n 'If we think step by step we can see that ...\n therefore the output JSON is:\n {\n ... the json schema ...\n }'\n \"#\n}", "fiddle-examples/chat-roles.baml": "// This will be available as an enum in your Python and Typescript code.\nenum Category2 {\n Refund\n CancelOrder\n TechnicalSupport\n AccountIssue\n Question\n}\n\nfunction ClassifyMessage2(input: string) -> Category {\n client GPT4\n\n prompt #\"\n {{ _.role(\"system\") }}\n // You can use _.role(\"system\") to indicate that this text should be a system message\n\n Classify the following INPUT into ONE\n of the following categories:\n\n {{ ctx.output_format }}\n\n {{ _.role(\"user\") }}\n // And _.role(\"user\") to indicate that this text should be a user message\n\n INPUT: {{ input }}\n\n Response:\n \"#\n}", "fiddle-examples/classify-message.baml": "// This will be available as an enum in your Python and Typescript code.\nenum Category {\n Refund\n CancelOrder\n TechnicalSupport\n AccountIssue\n Question\n}\n\nfunction ClassifyMessage(input: string) -> Category {\n client GPT4\n\n prompt #\"\n Classify the following INPUT into ONE\n of the following categories:\n\n INPUT: {{ input }}\n\n {{ ctx.output_format }}\n\n Response:\n \"#\n}", "fiddle-examples/extract-names.baml": "function ExtractNames(input: string) -> string[] {\n client GPT4\n prompt #\"\n Extract the names from this INPUT:\n \n INPUT:\n ---\n {{ input }}\n ---\n\n {{ ctx.output_format }}\n\n Response:\n \"#\n}\n", - "fiddle-examples/images/image.baml": "function DescribeImage(img: image) -> string {\n client GPT4Turbo\n prompt #\"\n {{ _.role(\"user\") }}\n\n\n Describe the image below in 5 words:\n {{ img }}\n \"#\n\n}\n\nclass FakeImage {\n url string\n}\n\nclass ClassWithImage {\n myImage image\n param2 string\n fake_image FakeImage\n}\n\n// chat role user present\nfunction DescribeImage2(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n {{ _.role(\"user\") }}\n You should return 2 answers that answer the following commands.\n\n 1. Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n 2. Also tell me what's happening here in one sentence:\n {{ img2 }}\n \"#\n}\n\n// no chat role\nfunction DescribeImage3(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}:\n {{ img2 }}\n \"#\n}\n\n\n// system prompt and chat prompt\nfunction DescribeImage4(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n {{ _.role(\"system\")}}\n\n Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}:\n {{ img2 }}\n \"#\n}", + "fiddle-examples/extract-receipt-info.baml": "class ReceiptItem {\n name string\n description string?\n quantity int\n price float\n}\n\nclass ReceiptInfo {\n items ReceiptItem[]\n total_cost float?\n}\n\nfunction ExtractReceiptInfo(email: string) -> ReceiptInfo {\n client GPT4o\n prompt #\"\n Given the receipt below:\n\n ```\n {{email}}\n ```\n\n {{ ctx.output_format }}\n \"#\n}\n\n", + "fiddle-examples/images/image.baml": "function DescribeImage(img: image) -> string {\n client AwsBedrock\n prompt #\"\n {{ _.role(\"user\") }}\n\n\n Describe the image below in 20 words:\n {{ img }}\n \"#\n\n}\n\nclass FakeImage {\n url string\n}\n\nclass ClassWithImage {\n myImage image\n param2 string\n fake_image FakeImage\n}\n\n// chat role user present\nfunction DescribeImage2(classWithImage: ClassWithImage, img2: image) -> string { \n client GPT4Turbo\n prompt #\"\n {{ _.role(\"user\") }}\n You should return 2 answers that answer the following commands.\n\n 1. Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n 2. Also tell me what's happening here in one sentence:\n {{ img2 }}\n \"#\n}\n\n// no chat role\nfunction DescribeImage3(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}:\n {{ img2 }}\n \"#\n}\n\n\n// system prompt and chat prompt\nfunction DescribeImage4(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n {{ _.role(\"system\")}}\n\n Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}:\n {{ img2 }}\n \"#\n}\n\ntest TestName {\n functions [DescribeImage]\n args {\n img { url \"https://imgs.xkcd.com/comics/standards.png\"}\n }\n}\n", "fiddle-examples/symbol-tuning.baml": "enum Category3 {\n Refund @alias(\"k1\")\n @description(\"Customer wants to refund a product\")\n\n CancelOrder @alias(\"k2\")\n @description(\"Customer wants to cancel an order\")\n\n TechnicalSupport @alias(\"k3\")\n @description(\"Customer needs help with a technical issue unrelated to account creation or login\")\n\n AccountIssue @alias(\"k4\")\n @description(\"Specifically relates to account-login or account-creation\")\n\n Question @alias(\"k5\")\n @description(\"Customer has a question\")\n}\n\nfunction ClassifyMessage3(input: string) -> Category {\n client GPT4\n\n prompt #\"\n Classify the following INPUT into ONE\n of the following categories:\n\n INPUT: {{ input }}\n\n {{ ctx.output_format }}\n\n Response:\n \"#\n}", "main.baml": "generator lang_python {\n output_type python/pydantic\n output_dir \"../python\"\n}\n\ngenerator lang_typescript {\n output_type typescript\n output_dir \"../typescript\"\n}\n\ngenerator lang_ruby {\n output_type ruby/sorbet\n output_dir \"../ruby\"\n}\n", "test-files/aliases/classes.baml": "class TestClassAlias {\n key string @alias(\"key-dash\") @description(#\"\n This is a description for key\n af asdf\n \"#)\n key2 string @alias(\"key21\")\n key3 string @alias(\"key with space\")\n key4 string //unaliased\n key5 string @alias(\"key.with.punctuation/123\")\n}\n\nfunction FnTestClassAlias(input: string) -> TestClassAlias {\n client GPT35\n prompt #\"\n {{ctx.output_format}}\n \"#\n}\n\ntest FnTestClassAlias {\n functions [FnTestClassAlias]\n args {\n input \"example input\"\n }\n}\n", "test-files/aliases/enums.baml": "enum TestEnum {\n A @alias(\"k1\") @description(#\"\n User is angry\n \"#)\n B @alias(\"k22\") @description(#\"\n User is happy\n \"#)\n // tests whether k1 doesnt incorrectly get matched with k11\n C @alias(\"k11\") @description(#\"\n User is sad\n \"#)\n D @alias(\"k44\") @description(\n User is confused\n )\n E @description(\n User is excited\n )\n F @alias(\"k5\") // only alias\n \n G @alias(\"k6\") @description(#\"\n User is bored\n With a long description\n \"#)\n \n @@alias(\"Category\")\n}\n\nfunction FnTestAliasedEnumOutput(input: string) -> TestEnum {\n client GPT35\n prompt #\"\n Classify the user input into the following category\n \n {{ ctx.output_format }}\n\n {{ _.role('user') }}\n {{input}}\n\n {{ _.role('assistant') }}\n Category ID:\n \"#\n}\n\ntest FnTestAliasedEnumOutput {\n functions [FnTestAliasedEnumOutput]\n args {\n input \"mehhhhh\"\n }\n}", "test-files/comments/comments.baml": "// add some functions, classes, enums etc with comments all over.", - "test-files/dynamic/dynamic.baml": "class DynamicClassOne {\n @@dynamic\n}\n\nenum DynEnumOne {\n @@dynamic\n}\n\nenum DynEnumTwo {\n @@dynamic\n}\n\nclass SomeClassNestedDynamic {\n hi string\n @@dynamic\n\n}\n\nclass DynamicClassTwo {\n hi string\n some_class SomeClassNestedDynamic\n status DynEnumOne\n @@dynamic\n}\n\nfunction DynamicFunc(input: DynamicClassOne) -> DynamicClassTwo {\n client GPT35\n prompt #\"\n Please extract the schema from \n {{ input }}\n\n {{ ctx.output_format }}\n \"#\n}\n\nclass DynamicOutput {\n @@dynamic\n}\n \nfunction MyFunc(input: string) -> DynamicOutput {\n client GPT4\n prompt #\"\n Given a string, extract info using the schema:\n\n {{ input}}\n\n {{ ctx.output_format }}\n \"#\n}", + "test-files/dynamic/dynamic.baml": "class DynamicClassOne {\n @@dynamic\n}\n\nenum DynEnumOne {\n @@dynamic\n}\n\nenum DynEnumTwo {\n @@dynamic\n}\n\nclass SomeClassNestedDynamic {\n hi string\n @@dynamic\n\n}\n\nclass DynamicClassTwo {\n hi string\n some_class SomeClassNestedDynamic\n status DynEnumOne\n @@dynamic\n}\n\nfunction DynamicFunc(input: DynamicClassOne) -> DynamicClassTwo {\n client GPT35\n prompt #\"\n Please extract the schema from \n {{ input }}\n\n {{ ctx.output_format }}\n \"#\n}\n\nclass DynInputOutput {\n testKey string\n @@dynamic\n}\n\nfunction DynamicInputOutput(input: DynInputOutput) -> DynInputOutput {\n client GPT35\n prompt #\"\n Here is some input data:\n ----\n {{ input }}\n ----\n\n Extract the information.\n {{ ctx.output_format }}\n \"#\n}\n\nfunction DynamicListInputOutput(input: DynInputOutput[]) -> DynInputOutput[] {\n client GPT35\n prompt #\"\n Here is some input data:\n ----\n {{ input }}\n ----\n\n Extract the information.\n {{ ctx.output_format }}\n \"#\n}\n\n\n\nclass DynamicOutput {\n @@dynamic\n}\n \nfunction MyFunc(input: string) -> DynamicOutput {\n client GPT35\n prompt #\"\n Given a string, extract info using the schema:\n\n {{ input}}\n\n {{ ctx.output_format }}\n \"#\n}\n\n", + "test-files/functions/input/named-args/single/named-audio.baml": "function AudioInput(aud: audio) -> string{\n client Gemini\n prompt #\"\n {{ _.role(\"user\") }}\n\n Does this sound like a roar? Yes or no? One word no other characters.\n \n {{ aud }}\n \"#\n}\n\n\ntest TestURLAudioInput{\n functions [AudioInput]\n args {\n aud{ \n url https://actions.google.com/sounds/v1/emergency/beeper_emergency_call.ogg\n }\n } \n}\n\n\n", "test-files/functions/input/named-args/single/named-boolean.baml": "\n\nfunction TestFnNamedArgsSingleBool(myBool: bool) -> string{\n client GPT35\n prompt #\"\n Return this value back to me: {{myBool}}\n \"#\n}\n\ntest TestFnNamedArgsSingleBool {\n functions [TestFnNamedArgsSingleBool]\n args {\n myBool true\n }\n}", "test-files/functions/input/named-args/single/named-class-list.baml": "\n\n\nfunction TestFnNamedArgsSingleStringList(myArg: string[]) -> string{\n client GPT35\n prompt #\"\n Return this value back to me: {{myArg}}\n \"#\n}\n\ntest TestFnNamedArgsSingleStringList {\n functions [TestFnNamedArgsSingleStringList]\n args {\n myArg [\"hello\", \"world\"]\n }\n}", "test-files/functions/input/named-args/single/named-class.baml": "class NamedArgsSingleClass {\n key string\n key_two bool\n key_three int\n // TODO: doesn't work with keys with numbers\n // key2 bool\n // key3 int\n}\n\nfunction TestFnNamedArgsSingleClass(myArg: NamedArgsSingleClass) -> string {\n client GPT35\n prompt #\"\n Print these values back to me:\n {{myArg.key}}\n {{myArg.key_two}}\n {{myArg.key_three}}\n \"#\n}\n\ntest TestFnNamedArgsSingleClass {\n functions [TestFnNamedArgsSingleClass]\n args {\n myArg {\n key \"example\",\n key_two true,\n key_three 42\n }\n }\n}\n\nfunction TestMulticlassNamedArgs(myArg: NamedArgsSingleClass, myArg2: NamedArgsSingleClass) -> string {\n client GPT35\n prompt #\"\n Print these values back to me:\n {{myArg.key}}\n {{myArg.key_two}}\n {{myArg.key_three}}\n {{myArg2.key}}\n {{myArg2.key_two}}\n {{myArg2.key_three}}\n \"#\n}", "test-files/functions/input/named-args/single/named-enum-list.baml": "enum NamedArgsSingleEnumList {\n ONE\n TWO\n}\n\nfunction TestFnNamedArgsSingleEnumList(myArg: NamedArgsSingleEnumList[]) -> string {\n client GPT35\n prompt #\"\n Print these values back to me:\n {{myArg}}\n \"#\n}\n\ntest TestFnNamedArgsSingleEnumList {\n functions [TestFnNamedArgsSingleEnumList]\n args {\n myArg [ONE, TWO]\n }\n}", "test-files/functions/input/named-args/single/named-enum.baml": "enum NamedArgsSingleEnum {\n ONE\n TWO\n}\n\nfunction FnTestNamedArgsSingleEnum(myArg: NamedArgsSingleEnum) -> string {\n client GPT35\n prompt #\"\n Print these values back to me:\n {{myArg}}\n \"#\n}\n\ntest FnTestNamedArgsSingleEnum {\n functions [FnTestNamedArgsSingleEnum]\n args {\n myArg ONE\n }\n}", "test-files/functions/input/named-args/single/named-float.baml": "function TestFnNamedArgsSingleFloat(myFloat: float) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myFloat}}\n \"#\n}\n\ntest TestFnNamedArgsSingleFloat {\n functions [TestFnNamedArgsSingleFloat]\n args {\n myFloat 3.14\n }\n}\n", - "test-files/functions/input/named-args/single/named-image.baml": "function TestImageInput(img: image) -> string{\n client GPT4o\n prompt #\"\n {{ _.role(\"user\") }}\n\n Describe this in 4 words {{img}}\n \"#\n}\n\ntest TestImageInput {\n functions [TestImageInput]\n args {\n img {\n url \"https://www.google.com/images/branding/googlelogo/2x/googlelogo_color_92x30dp.png\"\n }\n }\n}\n\ntest shrek {\n functions [TestImageInput]\n args {\n img {\n url \"https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png\"\n }\n }\n}\n\n\n// double check this before adding it. Probably n ot right.\n// function TestImageInputAnthropic(img: image) -> string{\n// client GPT4o\n// prompt #\"\n// {{ _.role(\"user\") }}\n\n// Describe this in 4 words {{img}}\n// \"#\n// }\n\n// test TestImageInputAnthropic {\n// functions [TestImageInputAnthropic]\n// args {\n// img {\n// base64 iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAApgAAAKYB3X3/OAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAANCSURBVEiJtZZPbBtFFMZ/M7ubXdtdb1xSFyeilBapySVU8h8OoFaooFSqiihIVIpQBKci6KEg9Q6H9kovIHoCIVQJJCKE1ENFjnAgcaSGC6rEnxBwA04Tx43t2FnvDAfjkNibxgHxnWb2e/u992bee7tCa00YFsffekFY+nUzFtjW0LrvjRXrCDIAaPLlW0nHL0SsZtVoaF98mLrx3pdhOqLtYPHChahZcYYO7KvPFxvRl5XPp1sN3adWiD1ZAqD6XYK1b/dvE5IWryTt2udLFedwc1+9kLp+vbbpoDh+6TklxBeAi9TL0taeWpdmZzQDry0AcO+jQ12RyohqqoYoo8RDwJrU+qXkjWtfi8Xxt58BdQuwQs9qC/afLwCw8tnQbqYAPsgxE1S6F3EAIXux2oQFKm0ihMsOF71dHYx+f3NND68ghCu1YIoePPQN1pGRABkJ6Bus96CutRZMydTl+TvuiRW1m3n0eDl0vRPcEysqdXn+jsQPsrHMquGeXEaY4Yk4wxWcY5V/9scqOMOVUFthatyTy8QyqwZ+kDURKoMWxNKr2EeqVKcTNOajqKoBgOE28U4tdQl5p5bwCw7BWquaZSzAPlwjlithJtp3pTImSqQRrb2Z8PHGigD4RZuNX6JYj6wj7O4TFLbCO/Mn/m8R+h6rYSUb3ekokRY6f/YukArN979jcW+V/S8g0eT/N3VN3kTqWbQ428m9/8k0P/1aIhF36PccEl6EhOcAUCrXKZXXWS3XKd2vc/TRBG9O5ELC17MmWubD2nKhUKZa26Ba2+D3P+4/MNCFwg59oWVeYhkzgN/JDR8deKBoD7Y+ljEjGZ0sosXVTvbc6RHirr2reNy1OXd6pJsQ+gqjk8VWFYmHrwBzW/n+uMPFiRwHB2I7ih8ciHFxIkd/3Omk5tCDV1t+2nNu5sxxpDFNx+huNhVT3/zMDz8usXC3ddaHBj1GHj/As08fwTS7Kt1HBTmyN29vdwAw+/wbwLVOJ3uAD1wi/dUH7Qei66PfyuRj4Ik9is+hglfbkbfR3cnZm7chlUWLdwmprtCohX4HUtlOcQjLYCu+fzGJH2QRKvP3UNz8bWk1qMxjGTOMThZ3kvgLI5AzFfo379UAAAAASUVORK5CYII=\n// media_type \"png\"\n// }\n// }\n// }", + "test-files/functions/input/named-args/single/named-image.baml": "function TestImageInput(img: image) -> string{\n client AwsBedrock\n prompt #\"\n {{ _.role(\"user\") }}\n\n Describe this in 4 words. One word must be the color {{img}}\n \"#\n}\n\ntest TestImageInput {\n functions [TestImageInput]\n args {\n img {\n url \"https://www.google.com/images/branding/googlelogo/2x/googlelogo_color_92x30dp.png\"\n }\n }\n}\n\ntest shrek {\n functions [TestImageInput]\n args {\n img {\n url \"https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png\"\n }\n }\n}\n\n\n\n// double check this before adding it. Probably n ot right.\n// function TestImageInputAnthropic(img: image) -> string{\n// client GPT4o\n// prompt #\"\n// {{ _.role(\"user\") }}\n\n// Describe this in 4 words {{img}}\n// \"#\n// }\n\n// test TestImageInputAnthropic {\n// functions [TestImageInputAnthropic]\n// args {\n// img {\n// base64 iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAApgAAAKYB3X3/OAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAANCSURBVEiJtZZPbBtFFMZ/M7ubXdtdb1xSFyeilBapySVU8h8OoFaooFSqiihIVIpQBKci6KEg9Q6H9kovIHoCIVQJJCKE1ENFjnAgcaSGC6rEnxBwA04Tx43t2FnvDAfjkNibxgHxnWb2e/u992bee7tCa00YFsffekFY+nUzFtjW0LrvjRXrCDIAaPLlW0nHL0SsZtVoaF98mLrx3pdhOqLtYPHChahZcYYO7KvPFxvRl5XPp1sN3adWiD1ZAqD6XYK1b/dvE5IWryTt2udLFedwc1+9kLp+vbbpoDh+6TklxBeAi9TL0taeWpdmZzQDry0AcO+jQ12RyohqqoYoo8RDwJrU+qXkjWtfi8Xxt58BdQuwQs9qC/afLwCw8tnQbqYAPsgxE1S6F3EAIXux2oQFKm0ihMsOF71dHYx+f3NND68ghCu1YIoePPQN1pGRABkJ6Bus96CutRZMydTl+TvuiRW1m3n0eDl0vRPcEysqdXn+jsQPsrHMquGeXEaY4Yk4wxWcY5V/9scqOMOVUFthatyTy8QyqwZ+kDURKoMWxNKr2EeqVKcTNOajqKoBgOE28U4tdQl5p5bwCw7BWquaZSzAPlwjlithJtp3pTImSqQRrb2Z8PHGigD4RZuNX6JYj6wj7O4TFLbCO/Mn/m8R+h6rYSUb3ekokRY6f/YukArN979jcW+V/S8g0eT/N3VN3kTqWbQ428m9/8k0P/1aIhF36PccEl6EhOcAUCrXKZXXWS3XKd2vc/TRBG9O5ELC17MmWubD2nKhUKZa26Ba2+D3P+4/MNCFwg59oWVeYhkzgN/JDR8deKBoD7Y+ljEjGZ0sosXVTvbc6RHirr2reNy1OXd6pJsQ+gqjk8VWFYmHrwBzW/n+uMPFiRwHB2I7ih8ciHFxIkd/3Omk5tCDV1t+2nNu5sxxpDFNx+huNhVT3/zMDz8usXC3ddaHBj1GHj/As08fwTS7Kt1HBTmyN29vdwAw+/wbwLVOJ3uAD1wi/dUH7Qei66PfyuRj4Ik9is+hglfbkbfR3cnZm7chlUWLdwmprtCohX4HUtlOcQjLYCu+fzGJH2QRKvP3UNz8bWk1qMxjGTOMThZ3kvgLI5AzFfo379UAAAAASUVORK5CYII=\n// media_type \"image/png\"\n// }\n// }\n// }", "test-files/functions/input/named-args/single/named-int.baml": "// test for int\nfunction TestFnNamedArgsSingleInt(myInt: int) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myInt}}\n \"#\n}\n\ntest TestFnNamedArgsSingleInt {\n functions [TestFnNamedArgsSingleInt]\n args {\n myInt 42\n }\n}\n", "test-files/functions/input/named-args/single/named-string-list.baml": "// string[]\nfunction TestFnNamedArgsSingleStringArray(myStringArray: string[]) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myStringArray}}\n \"#\n}\n\ntest TestFnNamedArgsSingleStringArray {\n functions [TestFnNamedArgsSingleStringArray]\n args {\n myStringArray [\"example1\", \"example2\", \"example3\"]\n }\n}\n", "test-files/functions/input/named-args/single/named-string-optional.baml": "\n\n // string[]\nfunction FnNamedArgsSingleStringOptional(myString: string?) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myString}}\n \"#\n}\n\ntest FnNamedArgsSingleStringOptional {\n functions [FnNamedArgsSingleStringOptional]\n args {\n myString \"example string\"\n }\n}\n\ntest FnNamedArgsSingleStringOptional2 {\n functions [FnNamedArgsSingleStringOptional]\n args {\n \n }\n}\n", "test-files/functions/input/named-args/single/named-string.baml": "// test string\nfunction TestFnNamedArgsSingleString(myString: string) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myString}}\n \"#\n}\n\ntest TestFnNamedArgsSingleString {\n functions [TestFnNamedArgsSingleString]\n args {\n myString \"example string\"\n }\n}\n", + "test-files/functions/input/named-args/single/testcase_audio.baml": "test TestAudioInput {\n functions [AudioInput]\n args {\n aud {\n media_type \"audio/mp3\"\n base64 #\"\n //uQZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWGluZwAAAA8AAABRAACbvAACBAgKDQ0QExcZGRweIiQkJyouMTQ0ODs+QkJFSUxPT1NWWl1dYGRna25ucXV4e3t/goaJiYyPkpaWmJyfoqamqq2ws7O3ur3BwcTHy87O0tbZ3eHh5Ofq7e3v8vT29vr7//8AAAA8TEFNRTMuOThyBK8AAAAAAAAAADQgJATvTQABzAAAm7x1lCT3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//twRAAAASMHzuhDEEgnoLnaCGMFC2CpO6wMT2EoDCd1hI00AAAAEQIDYHAsIIQAAEoGVMIIxHu2NU7D//6gx93/////b/rA4AABkADS8C7uaACBBcE4PiDEHG1v///8H4nB8CAgcnAfD/+XeJ//kJECiCQEJfI6HOSeUxLVpnrJo2rNIWOyh0ICisofyinwxQgwhC62QhoOq/VUc83SH50lBBW/zGlu7+rRJASS9aBdydWL4sDQNcGniICjWjQVUyz/r9Svasqk8mh2IEEAAF/3UCwpAWzBRxYSYYCG20kc8DZACBhYYL23pA9szuRYqDCiBhWU248WncakPjwAC//nqPjvVXbWoPCK5RxQpjrEb97tLtAAAAQCp/rY1YKFgEQGMiBKAl8eUUGLqIoKGJ8ymCSMEwbECv/7kGQSAELxHk7rCRtIUwN5zWEjdw641TWtYKfpzSHmqYYV5Tii6JucjDmcIwNidRSd8wROBJyGzaGHgEKFeKnm7nRASdEp9w0vMPKtoFqO0i8msqeRPqJvXWtGr/RegAAAAQf64JA85lKUzT1BLCVKxy3bzsmdNx7sBs/i9VAmPriMqzNVjGmwuiQIBz3xikXxobjFRgiHndkmCCWkzSFpKpQkWj7iK9vZoTq226qlyCgAAAAAK/1mAxhkJhwxggAiPFC86QFrpheGHGVl9CarY31L4s6dty4Uu1ptLBMgt1oI1194JiUBOVS/2DCiqTtsQqB1y7f1e3IvSt7LMcvV1V3nxbVrft1t9tYuR4hXw3i//Y/k/rKdc7774/xl8PzPwUaUb/bAAJf+11ymYAvCQjJBrYY8YCnDgQHRym2vv8v59AIgJeHcj2pdsuqSQRB/XGYAZBZjmcToT75GoqmPEUAc4k3+0t3tqieurldHetVIRirRUdybkWtkvcip8dZb3/jWz7A94WhLxHjLylb6kCt/8D25Xz2hqtgQAAACJ//7oGQDAANlHk1taYAIZgOZray8AQzEeTdZvAABnhJmtzWAAPZIEFDZvQUJMuOAwMwPMyI4BAwqzSXR8EIhNtYNWtp7TH+CgJDcSxKAuSHys6vLviQgE0SzUt/MwOpdg/KWnZpToR+hXxdcxRIW2TD+u8ji46iPZJCHTY6/IMD7TSrE+m7sjEDXs2bAAAAAAn/VwrHMcQxxTHqSGBjZtFl0H0DiVfjo7XX8V8+6fcfQ9DhI2JOQFtnzPpmiHUh6wxrbTfPzPW9PnOs3hbe57ODrvZvT1y765AQ3Ldn1mLQYFlQeKWqb7vfoin7YEY3oFkgQgAYJbTfgAAAAAF7QocrjMWjmvhWQUBEiUwIrMCOTOx0wgJTWHgQRlRgAGJIgGB0uZsK5MYGOIAWsNKa/FUd1lOC1VkM7WoKyNE3Xp2hxCOxV+LFM/UJVxMMikDjPZ3chjr9116cEACAACAALIPwAAAAACJSbr48SeTwAhSRg0hzTjgMBGA40UDARfAoLAIgCjbkv+/g0QDXa112Hf0zRyAKFxWeRa3C8KrdGpQRCl+yKDHem8Got6xG7TTay5czfkMO7J////8v/Wvs7asAAAAA+sjBwaYAQI6mAiwFATV7w2pETXlQyIg0BJhgy4VbIFAdIZ+4sh8kKPinBCNslLIrLvv87MeX4/7aOC48X3Z5jW3E5yL/ruv/7kGQlhEOdHkzXbwAIZaO5muy8AQ1MdzWtPSthgQ7mqMwkfMalWWXs6e/c76CiVNONeXdeTShNm2w+LD3b1Lm9rxUP4FM2YHX//+5UAAAAEfSQJ1u5BM+XAN1Q4DRZJAKDkU90eAug7K0V7OWomGGpQzR2FhQ9Ww1lAptDDLJ4cp1GSnlHG/snkIaFG5SarjEaFuEpE/R0/oiwqboZk0si7dH6ss5bZm8QaagzUYbaVPqgAAAC/1gMOpXWX3AR8u6aAAfRK3QiGGXCoBwqwCPgTA6BMRwB/hmDCE8IKj1Cn2M0Hz1cIaohiEpXR/VT32xIoot89VJd0MLhJ7uXU1IsLZkMjGmb1WPFQM0aEDReiEGT6yVwq5WErD3TToAAF/rAgiMKy4gHC1y0olOVr1QEgpYX2tRNBWlZCRL7MEZYk85Tyz0rCgyacRhAOioFiMG5/8hGxOh2WdL0U3pYox8IqkHxQNrW8qGE0zNsfDaA5a1TFjEFAYShfXV2V1AAAAACB/ZIJBSGoGARQTaeCJc3oDLvgww+hOVYwAcRBWcBZP/7kGQSBGNuG81reEnYZGNpumHpaQ3UbzW1t4Ahd47mtrDwBIAow+wQ4ocu5Sa94y7JMFxouRhUTCImQBWW+kC5dMT3npMnTxzgf8+LQy9YpAAic1oKtYg9lJZ4dnWVoSkeJsXYyqLe60v+n+uswAAAAf7aL1iEwylSsEcaKxP+XTLnFnVDhAOHjYHjGKETkYrIN9VKZdtCXfPFSdKGJo4HqirfSEESQMadz1LQ82UP/paw3WuEFPZcoAoFnvbmTMyQUwVQFxiiinB5DjaDNqj6SkYAAAH1kbghwKOBQ4RAIHNKiTIykQhphYuYQYhQCLrFUhfZFxCUwpPkDKAkCXJihigY1WhyHTKpQqBCTIUTOro3vizPSrdL9+a1nUEDnPUPMJJIi/1m2MoQJZ0udLT7mNRq08YtcOGWOEspV2+/odAA9sDfQhA+feIuAdvjdUAo1RlyAZbsOK7LgypfJ0j/JwrzSXR+oecrKm1yzl1VhYnpqNrl72Y2itMV3+8iXjx4nj7+pwpbPiZiVOgI/EOPYvILYq6eQJ1hj6kKoHKAAP/7oGQBAANzHk1ubwAAc6SZrc3gAA0cezVZvAABnZDmtzWAAAAAAAoD9gagAAAAAKERjdOUDwrIl4QstmvlqCUFcxgyCaibhgKZyLtDMLJDBwAGAIIFAyb7GyhP4BOQ+ghFZnC9QqALnQFJvORIqSORBHCrQV1lyHr/EQWZtHVBD7JWsucivJMZIyWxB37EvZwyAggAAiA8rfQAAAAAZQImH2b4AwOHiUSSzSwExIPNFPgINmPiAhDTASsVFBImCC0GhJedb6xACwuyXpY45cCsHfVHUeaWhEYVjPu0OvNItNOuuRJoH26tanpGBuOjmm7DyFgQqw+LN3+s9///+f//87NLwAAFCa9d+AAAAAACFEyWhHQ0SbKYVNjEyAEE5npCYYAmmiDM27AIhKI0xsJGmAqgT9oaEJB5Ja5mKynicJmj0IMJeK/XPAcN9lyD7TpRt3Ych2AmXEICBTAYDbC5TD3It1JXD7WqbmnRAAAAUQAmQa98AAAAAAUHDlBVpGHHw+QJzzlB0GY8sjmc4qhmTN2sDw4WAjRQKBmaJhl+w5kNFwZS5L6zq9gwjBC4oyB5G25OszkFiBG0gerEezLqzU/ZwQ8XWUKilxrLqOJ3///v5WrEVEgJjEaLqDgAAAAAAChQaqLpglIgnM5INOGLkCE0FSRl15pyysF0eEr3NQIHjbhvnGG5l//7kGQagAL8HlNuawCQbqSZnc3gAA7MdzVdt4Ahig6mt7DwBChprBITCZppqukxkjl4yaDr9tl8pft02TQfq/BMzjHN6vX7eFC/FBRwvvwCgDAAAAAIP+AAAAAAEKiMN7nCIYcsAmASOAgHMSXwSToEDDAkmEAESBQDBA4tIw4NgxQdTtoZhaAINDiECtfRyZSzFBcwQbq/VucbNTv/CEF6WVMsg7UL7CZNcdyAK+daVp3zUs///4X/679uhuAAAAAf6SAIcGQlrg4ICA0NBtB5WMKBhAAu8NBABKDGAcKAaihgQADg4eAkeXEXpYy1SyPMo/Each7TpALQcagTrVGvBbYOG66JktF8aPPM2uFWOG/xWPau8Ji1671OQ1yyVD+84lDCobahNCOVn6K3/2a7a7KVAAAAAAB/rA9LivIDjv+EhdMtmNDBxVkrxUCDjrAJcOS1s/DkSJ0lGfKKlfM5AUSaJZEbBtE2PfcV5FYbR0i56zefDxrTWbI9UN6Pxrz2uNtYbSR7s6kgbbOcWIvG1stdq510AAAAAA/2RhzRhf/7oGQFhWPkL8zrWDn4Z6PJvWXpkwy4dzVNYSfhiw4m6YYZ3IgDEBklMm0+HxJiWUg2ZjgjBj4DFs2B2jNVAE4LLTWBP1mg09VrMZW2zgNTVlbsWrIwrPbWYi544FxEHwKDIQGEUDaigMDg+FhqKCo8/+5iURnop2yvonNlwAPFzSLCyBslQpOfA7e/dw7ugMv9On++yIAAAAAAf2QM5Q8UajjIzTOOZ5OpUjcmdKbl6081lpqIlK/YUn3Qug8L7OFOrkyw6RiI8NENJTKBD2hxHITDYdHSLat9ETZHQyIBftZ5/OFL0IYBSRdQrXbaRnTrt7HWuFJzWrRXhQ3IAABxwEYoMMBwUDMMnNnCNGMByQoeJelYNwSCSHS2fQWWLEf2C0vk90Fl4xGLP67MFS1/nIRXYc06R5yiQCtk4VcRbRrlUjc3ygjH/bIXFtYbemhm5oD1vD5nXk22sTOVcU6VkTniHtlaavByr7NAIQPmU1gJSlFQtygujVInZIjs0EovhKXAlaLpkaDknFpiFBUJ4MCwWeCHhiIkGMpD76khEixY/0Rj7lu9KDAi6EUbX0sQQPOWZLuHe9tss5Gna4lWnQNDmLWEAAAAABb2xhU8QQBYwGsAxIylTOpGo6iHBSgtYJkBjGGcjsXUfAgA9JmqNDzTTadcHyAVpJimLeySXEZhY5NeLLRiUv/7kGQiBGNZHc1rL0rYagPJrWMMHwyEcTWsbSPhcg7maZexXIWnj10Si9ehBqhyw3rJKiz7AmSqVYt09EK5UyTWb4bXpbsUn/6fi7oAAAAAA/sjf9TAqvQFq+FRhH2dChWbycEPPJFY1RQ+sE47LKrbsriD/MgnjA2EtGJR4aCovkxQvMWMgVsKU1ejfTp05m42Jd3f6Hzkz6ouw4LtnyUWjmqT572HWNLtnhx0KLYD7z3X/dVGAgAB/YwJqIFGlxE1X4EwzHCgKByJYUA1DwYBFCYqBMVE1C++4b/q9SdQJOU5TzEaMKgiCIBSQEgSPosu4rwhNpd6TYeJWpCKgaD3rJAodoJxosGylBLGzMKMkxbrbt1L/oZjsAPIwupyKVswiDKmoGOW+uxcjBRAeOdMIcN45SGE9LqnlaLkwsTM8OoLlAjgOHI/jV0bg/2aLl6ZREoYW5QkFUkqI1j/kQ5FnsrOEwi9Yy7voTe3zrUqldu3j9xVvAAAAAAH9tA4PRhMwMNQYTbMpBEY1LlA9QUn4CkaL4fRULbxevIy4aRasf/7kGQVhGL4Hc3rT2IoZiO5rWHsVQyEdzWsPSyhXQ1mtYelHFLnXSyugSEM1XQQRa4s1s7c78eX+t2+xvvO6918hdXX7njnNllKTFJYCqYw+2pVDHIpgSpdkgAAAAf2x45puA+AGOIJhHmfpHQIFgl3QqU4aZfk2TdFkBSYmQ0xFvzaqAyQXB3EVbBLF+YW3dJZ+/Q8U3qseggd+D21GbQzGNOE0rkVMVci04g/UlKYbekiSam6o2R1nkf/7/XEAQABvZI/wYlgwI0wg0CJ7UwMC5Clq+QaYKgViPQJg4SGIk7HFPmir0eiHTwocWAoDZ5qZiGPQMA7rCbqcUXFbE3k58b8lroc0VLXNMyd70XMFH55XT4u7RYy22xtffth/3tlXAEPZJHIBEYC5yyUTFmwUniUIPENIDMrYiIGFAUz1LkpACQOH5HyrkyZkLMKniZvyLwlTJppFvPjB9CP2uLvG1hFw9FVOlVDHcBFdvStL+llHtRstT+ipXAAAAAAB/bAosLGIZJalyyCBON2ioJ538RPIoOa8zvylVQSU5fCZv/7gGQThHLLHc3rDEO4WoOZvWGIaQtUdzesPSqhcg5mkYelFEhEVHeq5yrL5kgMNmMlFHqIbvXSMHoTWS7CTwqhRt/FTSyzXP+n59Y0KgUvlirXP/91TrJIAAAA/tkiTZx0QloANEEBGG8qs3Rs0Ptnai86GE4qHVOQimdryVNjw5dUnril1tdKuhZ6uQrBFSsMIqj1fU8pUducPRC9u0axBy300VJNFrm7EOSTSbs/0VhMABf22GJ4dchKF7CIAXYAlKBoIUI3MWSH2jiYqYcaqYmBFKsuuhF3SY+KiJYgxllDFEtuiZVr/O2fRvR5Abd71Isi7ZKx96VX2aUJYtKepve3OpTfkUsajpiYpQ6suWKn+DlkjkbHQMZTKYeAii+TE6XyQsRMgAcIyJAyxAjXiUJpj0mRGko2hmYTOzW3V7SY2Zpf1Bge4zS9zwhFH2oawi7Hqhaw8oeHL2vbxbV2dWntRdtvm3AQAAAA//ugZAKEQxYczWsPYphmI6mqPwkLDEhzN6xpI2F4D2b1hiWMB/bGYAE2DUgOIquI4JtItJhIrPYIikGPA6UWjSjSpgEFV5CVLki1YXieVqEGmuQrjSUli68YmL+0vdQwf3fG/DN2cHtEZw6xd9dwsmu88lNDHP0mQgmNb1Ftzfp/r8wAAAL/SQ1SsWFTTR3L8kS0qVgxYzqQIpS/7/JkAgJVhICTzJcTQGSdGoSPCh+AqNxOji48SpE4yM4miWNLwkQMhrqQtwx5iYMpSaFkKlh0qZH7HenGyQxIo9AKKW1WoSFvv/rR3xgAABf62BZYYwMMPZMcUAEQeeg4A4ICIL1Qkjwxw1gFbG1ionBQGQwukY0PEJFI0JQoZWaetIshUR1BsnaxlQcI1hUKQ2LfOxe6vuVZh190IVAqZ1t6OBVLxAjYi9SPq7q1RkBgAf6StxJRwCywvI64RV1iECpl2rHRXaVEQeDkSRKK8IZgnQnYOCNkjiPhc3BMkSvyXInLskQIQRMI3SUJDzMHfjR8VLw6jSkpz00qRFDaX/87zn79hV7drW9GxaqIAAAAAAf2MGIYQIHRI4GPCHVHnAHmHJioEaomEChQqj4TA4sr5+lYFtMeiLXWO/YphgEWkQkKEgylZdCyCD1ECsz4iRDAyRBIoCOCrC/psFDo4euoVODbZhGLPCUSmu3N//uAZDCGYzgdTWsaSPhkw9mtZwk5DQh3Naxpg2G2j2a1PCQ8bUJo1/2OcAAAAAAH9sD6tQBIZCSzoatD0JGVUA7AQgLigBeqh6q8CrXXfF1bV6Duti6hdGnN4hJ4WHoowfkjUTNJi4hGFiawphY7JJs9+Z4sLKrehy1OcuZ23OSRAVrBSEFtVFrXUoGj76ZAAPHIb0pDnIId8ROzuvzZai2AybMuOQ2LLlrHIQ7EQlY9COYCAID3eA9pJYuWlg8kepLPlMKYhoJ2qQ1a9hGZlYnlF1YWFy55t/RaE1x1TS5kANLnq9dCrl/6rdeLXLKvCEKfX9WxKHACPbIQoTguo0RLgFmSxsAvZuk/QGUzMFeNyRyeK9HI2vOhDRUYU65YMD4kCpAFRMCYpD4gZQLyRDpMCVIScLjB5c6GA+F2f3HQRYMHi6XNGDD4fqatbGqeXJHbjLshpELybWubMojFieO//jNdAA/sgbOVB7X/+6BkBAdjXRzNG1hJyGajuaMnDA8O5Hc0jHMCoacPJvWEvhTjHDjEoztnzUHyBKDjmMReA6hGptSSWKhS37IGnyRgcXJQuTnAooqIxCLBgVCkvFQbEwuTjBMLB4SBsMp4FAwFwEEDib+A2JwSSpQXcfD+dShLAwUNLYLd9XG1YQMXuatxVaCIAH9kFgO6afg44EVELilQ6ZCtNNTFWoIIvJPaHHbiBABenBJWFtYXRJK4kPGIek0qolLYOCQ27ETSoIZUEcsFYriQXHE5fJBVJL+C2AryRRb0se0wZQ1ROFfgDx7Pih4VEEtY2JnF1QAF5GLRyEYTipFNORYSGBi4DFUIhzkD/C3T0gW+Z1nA4G8WBNYcYIFBCcMPxavMP/EX8iUgdV/pA4jpSd/4nJnDae7cYZJDcSaNBsTb+dht/Je/8amjnDpd4hLtAw4f1rS9ZqbL1NtNkyH3tZNXB8KOFnoQ60P2gAe2BWsAODelflLiNxtUPEGdm1smHYJLOYCRsCZK9bN1lqikpGPCkQkgZeCQJyCxGkJxlWjzWYZyLKuYF0hqHNI6D8VG4ynkL8hrLP7VjAGysm8ReYuGLXuW05UKDVigolLmvN0evWgLqoAAAAA/lgIgkhJAgDBBeY0GGAMgD4QKLmDEBpy2cxzCDyTSGS8Ciar1gi0YhPWEV6OlDmZDWt/pPpr/+5BkHQZzeR7N03l6OGfj2bpjLzkOOHk3TeXqoZ0PJuGNZIRcnmsocpVKXVPEsaSwHNET4txlkgN5SZOpUPnBSIY7ZnX7wfxZ7LYYsQ9H/zS270p/dRzaS3gAAAAf2QQaIyJdig26GI4xYm6aoxwBi8ZMMYRAKHdlPpPOIl2W5iQ8yqMvmRXqxTpNTqC6HrKGMSejF+OckyVMAbgNtJvQci0TIhyo2k2MniNULv9r2aEraZW0yl9s2y19u/m9FWnr0A+sCYqF4CUwYFmNDJ4M4asRmLCRkqecQFHAsJh5AWRASCAk87EeAqapMwgxol3jFaSxJ+G1K1nY2ksBfUPUWWNsQw/iEGahplDlFStoxTKVCqWlcmVmQ910EA0dzqJoVilLJ5Wq1Yr2cgb/e+xNIphukB94DKTmM4MEYzHMRmHJkgJuIHgsOGhQ0WGAygVQDimlNMTGcZ624RSjpZLZg2GX+fKSsAdmG8Ja6LhxtwF6RVkcYThfx/lgHIhuQXpK+SY7I4xR/qFszTvZxvdYdWOu9EgL/obf6cAAAf2AJXD/+6BkA4ZjlB3NuxzQqG9jybpjeiENqHc5TeHqocKPJumsvXQJ5mUS3MBDkxVPTPAvM4jowqlTRQZA3IygMAhAcpEJYzEFMAQBU+wqdEg6VrLl/w47HYbf1t56HI8w1AOt+Vv60drMUfJnjRIcYmsZDjBEANApqsxHnBtP5H3dYulNW00AzGlVsv2+m/VJPskAAAAD+wCqy9SwwfLsm0RyZGYoHmwRGyHAWCVCSOY4EBRI1A8aRxKaGBz/JePPD7vzjc4OkbuuNDL/LQYy/kpZgoLEoEcBpq63/f5Vy831hh8FfxSPx13ncaa/1/w0hjEDCzVrcxu29UVzBP/SJB+AH1AfZxDBhMw9RMBNTQPkyyeBB4aQ7mwiQP6TOCJsIy02AP6AGUhGtQBIGjMubE83JVJlhVCQAzrklhrESprnIT9wL2OtJhmEbHrElHYWJtWlVaAr0KSaJdu8UnJpmMbXIXt7ygFcl71tUwK1+AeyCDmAGGGo6GjOmBUnbxn/BgZ8cBmDYAQzSsMoIEhGHoTHrBjxwqc1BxYo/zsyd3HlZkXfjceZswV+X+f+cUwV87z/s1YsnCMw6GIEiEaU65UbGqFGrVpGf3GhtkayK0LpNVF1o5FKJyl7FqQR2EKAAAAAAAf2AAcqa6IIIRhmZw1oWMnHeJqdObognRUAAiSJyARQZCRhxGZQgl7/+6BkFoZjzB3N61vBSHCjubpreUEOIHc47W8EobOO5umd4JTy/pgMhzf0eQ0uOs8lL+o6LBhY7TWnoaLhXLL4orA1WGndZ4CgKPNJiT/PElSmGxSHY+/7/P/DruWnegPtUkSosm27maRlvoZj1vvavQAAAAP4IEIVYEwlEiasCaYM0HAjAK2Yl6cArKosnMIIK5g8FAOIA0NwYfPKWyB/WeUiUjd0AhaxVJeilxMPGIo5y9VDG6xgWHYu0xdiQ7YXYLYOgsh9F8v8/rrKXLygV/faMbmdc87FN3Z//9WvuZfB9QCIWjebsOYyIfPWFWxpeYa1FmAoJyyyfyfCEZEYjLs3MAhEPw4QKYlE3Fm8tgcgROPAkal82JCJdbkEw0Bi32WQA5L9s1Xqsdmyg0WZ8PCpnXh5uzzw4/tJSsDsek2YcxjNqGdaVhTYcKz2W2q1yEAHsAYtRtLEbAX0NCQyrTMdDwsaGK2htMK0ccQRTMRwd8zlRmMz0WlTq8TLi68H9VucJyRERkaBipouhspWzYZG/zKGqp0sPQdQdaYGUQRtxXwrC68hb+AYfhtwov4qItE2h7D/Y+tlO+7SuyuAAAAAP5AEVjIixMAbfMZ1RpkMPGAp+ZAIJjU4nQzEaGbI8TwgwuuFjUFzBCHTwVYdApgBJrjoKlIyc1gRADAZjjGEEnwkS6AKCDD/+6BkJYZj9x3N01zIuHVDubpnWTMPbHc5TecKIbMO5zWs4JS4gxULjyuGUThikEHIIgVOIjoNBo48Cul83ShtQ934csxCTekUm3ECO4Vrtvr9HfMRRMtVAAAAAH8kDts9TKHZE6DHrTaCkJsx5nJ5kvQGNhw4OrQecNOYqHGFaW4diOMsYQ1tbCc47EymGhGWiusMrwSNCwbtDwj3Q1IzOiIljDCMaNpIgHAhY44j4mAyNpL3tFj73p9NTf2TujsLRzNf/qWmtXmdK0/0YAfWAt6YgJCikZemm0jRp3yao0gwYMJKjPJE0RcCxMFJQoOdEQgQetErgjoHsgjf1d7ilBniCjgEYGqS/B9Udy4iQ5h0QilSVj3TjSxhxF8eKWhTAB0FQF1mRuO/0ub2HJRNNNlv1WKucecfrrBbWhX30OZZbT+vh9a5qAAD6AOclkhNSmMGHBk8iLH5SR80/jeqOIoZSDpmMoCcPuRbPShp6DjgMkU3QpAIxCcGmM9RyL+PUk0r8t+1t/BYWUTTIPbDY9YAdQODI0Fpki4msCkepQ/7S3FV7Aj3P6V/H1z2V5iyl9P9m6qAAAH1kDQWRmHy0YkR6hIsHzCebMUmoeYZvhZH9RmoDBnQGIDXESImFhYMUn3gO6/tJEoyBKRpYBpBA84PKVEBADFL4CRVUZMXGlMbUoMblntLC+n/+6BkKgZj4R3Nu5rCKHLDucpvWDEP/Hc5recKIdYO5umsZUxa2KkVSIKbKwjtP/CoyyZ/FXSf3qEo94LOqVc6x7t+z2Uqoci9Dd31eAAAAB/qBNwQFUICAV0DIpwb6aERGORHPuA14Y8QHJrqQO1RZgIyDfoQDUn4iidBvcmKqso8FpwyqxeKK0FF1Fkt6hJd+Xl9zE8cKgFfQu8bAhoFYVIIOIgwfDiuY6qd2ZjxfM3JxNjyxhKr2WEKU+OlXQAAfSARg6Pph6CYEunBBxnSgbBMhpMZ0NntkRrVmXyOOk92y8htcDjktU6FfL4jxfQqrKgUjAEo5ECi3fHlOAsxB8ttDTF09Xad+LochpAwQScDRQ0mMxVJtFZ3JS7EbcqIyqR+TYrWpYaKJABgoPq1mokePH99qdSX30q0YrSrED2MN0UdWykQYsgbuiagiB6B3ZYCjgy4akGB8m9KoiQBPRk4+MVhgwN3XBFrEd2/HgU5TQOTSewdGESkhBgsRW4pU7q91IFV4aCMUpkQmMXGBqiYidpIy6TFn8f5pbtSaHfJY3zL1LDbL3wwhPSpL31Pp9yqqsAAAAA/tAZkABJmFpgSov8OeIMRBY0GCBGPjakPNrZcc/pYKrQgKKEUSwsDFkjdl+L4Zev5nKtZd9dJahAGAADJxEGB0OAHVeZugKAqgcmXR8aBA4D/+6BkKo9jyB3OU1zRGG8jucpreDMPfHk4DfMmocaPJymNZIw8ySTsqJiwJBDm+0vp26QEx2Mfx9TkobaqQXWm6wIOTwIL7urAAAAAP7QH+ZM9bVg4eMUzL0zXJTDTYzGEMcMCEBNLUxQVBBRDNsrDpAvVa6YAFCpczNUjIDK5GRGuGQi5eBE7J7bCgCkGtBwTcMaEjgATAUKwwtgme2ZVzwyR45LHIRLPak81zmXWrYilPs41f/Y5QKQgYfChccESmSQZp1wHWZm8pmHrsYPAgXBoKahaAHCYwYguOFCgwgWFCAQaERFgZ0EgQ6kkDqGiiVwOREBK1R7IwD4bo2Zg5pYirjnDERYKCAR5QVLAESQgKrKv+NqqP28TMJXLf+QdppRi4eXASyzk0CsSpo7LHsaNgA4sEqf4dDEEzzlcHUTilTgIjI7wRARGGKA0UQBO8gBS0YSsMrYvwu4ayyiiche2JEoxQ6k0xwRwBwrO6CdUSSdU0U+YI4IkISCbhY4iPAoQFDctvGXRBgd2XumlrLf8zQEGumtGn//PzMg66wb3XepVgAAAAAAH+oCzTGBgw8WMaSho3MaoDM6I50lMmWDq1s6oQEj805QA4LGBB6Nhc5LEAgI4CRQV0KBAcevlaYAAjmDvF4y6hjMJuAAnuguLA4rrq9FJlJguodQX+MRFg1osoetzqqv/+6BkMoZj/x3Oa3nCuHkDubovWQUP0Hc3TPMiodKO5yms4US4HmnNaRI/QtzhhnIPmIBQre/MuuG7GrSzSl8AAAAAf2ADgZI+iEYRCDK1gsoOiyNwM5lAYMY8B4HmQiBiQ60USS0YYieEWD0g80YyASCzZRZSmHRwVXsDgIsiLByUgdgdDIokf1wmFg/yc5olg5IvAEeKAjIaiT/P+0yIrbLrpSPn7lRKUJxO1KViuftdTCKv7vrdAB5ABJ0LpmPSdjhmUZA6RmRBUEes0gMzNFFDhSN0ooHbhU4xEzVZLrkRxAaCsQdsaAZUQCQ3FZADsF9pmqiAy4OgEYhkAMckAFbMgMehTfM1NIpO9FEuAW6CGhJZbQ6FOsrbDDr+JymAHSv7DoNoi7j59Re28/RH7E9aql5NOAHsgbi3BwBkshCa4qF6hqxJo0ph2h+w7XzvgDKTVEjasTTS0I68IGQDLnInj7H9SfHBQ4NHXiFADRmhA7ddbCSAFGPNd9CSYwFEDG5DRuAdUt8o+o7DqwLQptPVxU9ZC/tfHdArEca5zX8WtXaz09fV1J2MwAAAAD+wBlwGEEGJmXBkMMUTEziOzeZaLpmRh+fCRxFAtIu0BrTVUXUXSmFNSjUzOTdFDzhwYlCHgVgU0lVWml9RKIs8IUbLWwUir5p0YdUISVGnK8o0eWjQtY00WWP/+6BkL4ZjxR5OUzzIqH3jucpneSUO+Hc47fMoIdsO5ym8aVRZeOVytKdRR2OcuiLNR0DIvGGPyC9NuyyvVgAAAAH9kDQo6+YyIc6oB0MPID6wkyg6BC+baBgo6PYkKAAqk0SAglT8qJTxEUBBhhQ2VTfBaUrhP12CI9iQw8zgxoRoSLpOFzh5IhCXgFWgQqbAJdgoREQqAlmS2E+p6DIlI2Qpquk+hnpuqKRbxk7htDJO56mdOMavd+q+iD2wNxZiKmIhRDVTU4jCD14y4cOdSjRVUFqwtyah4JTK2wQAJJv4IAWUFtwrgAYwCgOHqKIGlwkA6RCjoMAInmcqyOez1S9f8dcMlRKOgEw9pMe1xHlZz1QTTr6kzurZkY8Czl/0czaF5pdpNBDZtb5D6rP0rpmaoAPbBJJlXC8iIdMJFjAVs5dAOBizSRc3slLPm+xjMg0SFRIZqj8zEFZQRJmAcmmwl+YgCnKjeTDlVTAqBY4gTdK4vcsgy5OV9UiS8Szy844EX8XSaE/yll7B+EEb8NTTwaz6XL3RSQe/1WofQNvl3MrZLanJ/4+QAAAAP7IC9VgLB0BE4w6MBDfDBhkM5Dc18xTVAEB70JgIWAZhxAK8kAQYMBw52FDgEeGTg9YOIcMAIViJlGAgxFPFRY30Lxl3GbR5fbBUngUNPxNIJshJQ0eMVmRHXKn/+6BEMAf0RB3N05rCuIVDqbpzOIUPwHc2rm8kofUO5sG+ZQS/Fs6ZzZYz5KpyWJP4ys4+giUMXqJiwwlXeJgCooMJVjqRUVIu2ev+mAAAAAP7IB4BNBJBSChWZpLwXrhiU9HJyqYcNsAnUDGzowmFxgMrUQ2L5qqJ3y1JIEEIDbl4WYkozqoMCgZGA8JrpicRhhMfpy8wjHYWAlAKafKIcHYMoBCw6BJqJOTcDymSwOsRNJkjOhkSIx54/xcYIxV1qVh44wOCpmRZGCwuYxT7f74IIiAMApMPjKQSMjwA5SCODATOGY3p8McnQuHKDGeUDjSQhnqZiBlUFIDBASoFJTJPCP0NlniAloDACssIeTycilTNMEgEkxtkbMToBJXRokEgDS4JFLSNZifwBVijBoCGgI27wiemX13EKYVMnZKKKMpo4+o0XZciT30Waq2zuEAA0aVhr0BPMD0U/O8MQzwWCnA0fSAwoeQDjgAAMxmseuV/U3Sx0MlBq404DRA4JRUKFoyqqGBGZwgJBAIFIMGgoEus1mUDRYgPL/ApAhBvApBWFYIupTXq8CNegJy9O8LnoEfFkuJzcWNnpCKrMJo42s0XbeiQ3U266sAAAAA/sgStNNQwMDvMM0j0yKhTfhYNBEgqMgxogzpJ0GA8WQShFkgNCmDBBgJmqLANCBSALUGBDwkmRO//+6BkHoZkHR3OUzzQuHajucpjeSUPUHU5rHMhIdgO5ym84VwKhQALbgQBhoqUeBIomHDqJyJhQLZRF30IVCHFOhejY1qPTKF/zlNWTDbG3CC73tMsZemLpnBcgKLT0CuOD9nqXFHp372fZYAAAAH9oDsqdg1hg2W0MMTBSMF/5r5gcGTGdtokPgQsILeUCCyJdaPkOF7woaVQDnCEYrOGgg0Feyq5KGigDpggNXEvC4oiOQ6NifZhwHfIAy9YkKoSCngUqwhoV+5NooKeR+Utom8zdPV4QpQhGlP0I0ouobrgAA+oA8Y02BheMBgcxCCDEN/M4LYw+kTDsYMEk02kLjFQHQVgQW0AhhcYCrqEkzAjDJfDWDd0UGD21axAmqup8kGIvBlFOZLlmzI1Hos7VZrhh0rtKDFfovs6gHNtrN2AFyMieps7vmBR2scFTlTxA66fdLLGnnXP9SoAPbA30AKBMSAAOYkmmKPpvjgZLpmFkpvJsUB7Fi3qfYVOQAmAMqRVd91DBNwQripijRQI2GElQEo2VFQekaXrbo6a1GEPpplYbmChqYFQisHzR6ICLPw+uCjtEWQr+/7bbEtENCkmENGivuX1ZqqhqXIf0fUhgAAAAD+wAIEqPBgEhCwRMmEEwhfx53G/14ZPB5p06HIjmYCAY81UNLwg4cAhgMLFQIAho8YBrY7/+6BkHAZj8R1OU5rKuHuDubpvOlsQPHc5THNBIdcOpx284OwIcy5NDuEZx6scBHgy3yhhFaAZkwgIFJEJpYMVhf9pIODL4qjUgFBCsBERpEPsdos4kyNkV5cZ/paxeev1XITfaTG/b96UQAAAAB/YBONTUMRUQsBpuDlc7rRMElzbBM7oAIAIQBg5xFMrHR3CG1E3aQdJMheUyjklhJ4eEMNZdT+wwY4KuxgGAWKBAKQQUEtlh0tAI5Q8MdZHUiHgrsoeQglfUWEYMIGfweAtKt/JIYM2oUXcl1qlij1Tp6nzEZurfgB9YDnUOMCCwLAAxqODGk3I1ccoIJmRzmUwSHn8BBAEiTCHWAA5RLAKgVih4xpgyZMP7jxBL4ONPEIw7N03i5hoAhgCLIlsM1R3QTBAa9QIaCEkX/aSxpSxDq/LVWCRSvHGANehl/u+8/e9zT8uqLoCSdg0iWAynoW9rn9oy2rd/pw9kFmyIQRmYFCo6DY0NEzQOM2wyNVNi7w4gYohqBJdJHkRwQaDhgZcJjmqg7RRkDjovreLrusBmHQibqjws1H8PeEOoVlCw1ByOLiKWIOlgT/QevCvQXxo63HDab+9jEJQosuFxqxJmlQkkKf9d3bdUxqCC0oVgAAAAD+RgtkqoYBKxioLmTyyYUYJ1sbG4x+ZSU5olDnFhSIQSbUYND0Lldj/+6BkFgbkOh1N05rC2HfjqcpvOFcPhHU3rmsqobIOZs284VwwOKAB5+OAgYOGhJwHgJzGPGmDShwcBAFiqrhQADoYgDl3guDg9YMyiBxZmHzMQwGEttPEIFeC64wyFGuE6iTxQtiryu8gKNTLOI2LOtT7W7OxPNERRCXM+7nK4AAAAA/1gY6udDx/zDBOBgdDmgDojbDkC4XSiINXYRJAlAEkixgEIQwBJBeAyHhXwKCh6ohUTCWWn0y9qYU6YQCMI0kiGQzgoODbZmwkRLZokyy8wJZpORGWwf1uENtATihfqUAypWXe33zqc/OX16sqTQPoZbjFQAAetgmDpgsXg0gGARWZAGw6gTaI0BknMvsI1W0jKjgDAKVhjBDBLWVRScsNGTCgIWgEMfONog1zAccAt0LgaMBCQyd/DIjDuUEAKDXGXFCoiErruBGRiBq8h5cSDi6oDhhakOdjzT4fUjIfTA74ZOJRS3H2nhnd/+z/an0AJnwLdR6ASgYOZnBgZwICbSWGVxZrRwDAdEsu4ieBnAgBsJEUgDSRTpANKIoCiUGWWMVIABVa3wYc12NIwlBRAUeZSpzXH9MfQEdFJPFMIHbEYp+OBgm2uwwaiuG/jfWxtY7WPWTFxCZF/6mAAAAAP9YChgigC+Q/0YPx4aGxjWcAdRkFKHhAOaXAhMvQ4GigwMNgQqD/+6BkFQ9j1R1OUzzBOHZDqbpjeB0O7Hc4DfMmYcuOZs284VxUmXYR1Y0k0aamHI0ZFUosyIYmWtOiYEK4GZr1KTaUsKn8iLUf8RTI2qEP5XYqmqllDTTncwj0OxaIxT5s3SotQtelvQKIC1xLZZqemz93p24AAAAB/Ywn05RAMVYmUF3MeljoEEyUKMtWAJNhUCQAKGoXNLaSX0BQAm8leYIdq9RnIyAZQjE6L/opQeFHCEqcaABkwYsLuRRkDvmACewQ6HJsYKqRSdM4C3o67rFIDXrPfQXLsYo4eF5Hex3mZZsZZsezVTpSpECiJCRAKmMqUzIvI65MOOpApHSQpmCWWYWEKhwysrSbJKCRH8gEpioUfxRwumGIBnwCIHIqlSrW+RJmA4ICFBmZiMlAar5j1eSpKpVID4cZlI5x2MX5ltJE2bs+lr23vak48ghDPFqJ7AdMKmaNUpVc4giY1ft8jGUkU7ZeDQAxonNkUDWzciEQntMjRQc9LlQTtEGQiYRkwsKXDh0RBrNAWwLQNMZ1E+1KBJJoGedEpACFYEFABtQcoiNDjgqTYGSkiEiESGaE3qZgrJoJdlna93j+42LCoFSVEEycWXa1lZ/q+Q+qj9n2qoAAAf2wE4wQhlxlkOCExEFWOGE8yisRBZzUoINsE0DJNW0R6IegwkDICzbTFrgAIkINLs3/+6BkGgZjvB3OOxzISHUDqcpneRcPoHk5Tmsq4ecO5ym9ZOw2zBmEJAO0d5gkLDkDJiGmUjnPaEZABMPAtSMImk1rKItMJfP2/PaarAEZcty6Ol75uo0LMKjp9UjmmWf1dlFur60epwAAAAP7AJe0dqB7hJtGHLxxCecsOGZjAeChSuMBBJlVZwKJNCIp0kJrBSBQ6MiywYeYupdYISV+rCnUaMZjEiT7QEJgNGX1K0i2kEQqOyvH8jAjAL+swh+Nv7HXdCBGxLegd/0n7grCSXPeHhbpl9lv5luinAD2ADQCFhuOhEITRh8bgWbG3g0Dv4YPf5mUaG0YwRA0eDhUmNDUTU01E0agqFQBFxQJOMOfHgAVOjwCsCVS8EzDHpESg8AIThEqJPAJeSTsiYUsC3CBoqjYgKQvfxgMZghYBOp1JXIr/+fsPqIQYAq6j7BRd9TiKfYP7zKIAPrAmstxLdPFDMLwB6RUAgc0aI0QsyqsBFF1GEEKkS3Ys6aDIWLF5hZQCwQKImpDmiNg6dM9BlnpACZEZkmswRfAoAUGAoDAw4ZQdkgQioFAkOjQSA0oQfmApmVp3vK3KA3mv/m2WXlQ0XrcRNIWL4lOLqLdgrzvxSqAAAAAAAf6AKtNShwGgJPGBA4CI8bOE51FWmC2aZjF5lCQjQgYgYUj+GMMs0aPQBilCwg+8a//+6BkGw5jzB1OaxzISIBDubpvWTsQAHU4bPNC4aoO52msMlx5wwngUdUBYMHkY2siwahQKSf0qtw8nGpKFzz0JdL2TlU5qjoyh6Fy8muv7KodYJWzaZ/61raZTrvZcVchqhjcpoGhHAAAAAP7GGoF0lVWmpWjsMdUFGEMxsUZtJxtiygqXYBIF8U0gMIf0IBCxsUKBgg8E8yRU04IZRGKUpk0FDui+YeQULG2EIFdBBKlrJShlBwhAQxiS/IdAB6RLOWxLyJg4bTbCG2bROUY+3c5hAelCn7QP41orPm01NQmxOt3p9ev2AGgGY4g4SHzgUcmBKUZ0Ap0q+GIkyZPARm+RIq3gcPGQ40VTJBxRAEFmrEA7MaagYMGCxphQQsrIlKDCZCsAOjGDQFAMYHO8PBlYXPhhsKfieZghTnxVaSKqZjprAxV92QP4ymNO673taFlEJ4BABgqDByDl6doHlXbtTChBqIAPhRchLltcRuEGg+Qs2N8EPzqCTcvUOw8Pcthq53FlTtpcjBRrpxYxgBoQ7AB0NTFlV0j2apvl9RMrAl9j0XcZbZaECEIdQwb20ipmcDR27vCsaUwKPOWnIsr86A6NDrdbfrojv/6EpV6KsAAAAA/sABgLGAMQgMIOY4KDAmiMJBg5jdQKVQdZzIEnEQJf4wAJCyGH9UbTOACQwRwDBzq0zD/+6BkG45j+x3OU5rCuHiDqcpvWTsP3Hc4bmNKoc2O5ynNYOxBw8CZ4IFXD3FIImP8Yj0EST3QcJtl4oNeBiCZwk5NOH80yUPSIr+yVvIbhptYw/0Da9u43eFhwjabUwuhblrPISq6udpXeEVQAAAAB/ZA9VtVNgaH45CGyEZqU8agAco6bSMIQQ0OWS7YkqmIeQ2d4gQItHeoiEmPUwIgLzyhgKpxoQwIKdgqf4gLB5IykJDqhZah8HJqBw7Kxg+XjyUZm3Vp03kY4tSNWf0UDiqjtqnypQViCKXJIbVi6Lf7/V/R7IGzLvBoVDkGYJIIN5BlwNG+rQYvPZtMAmM20Dg0/5rmOCWEbsXtHznUpk0fUHAaEAc6AcFNwYJDAgOEqqJxGVCIDkrEhFGk8zBAVtww0klAjwIvA879IyKCjxCVwavxwIcXDEp6f/1JAPWjnXpaSetK4yMFlKpr4Se9X3ewUsA+kEqrigXFhMg4FkUZyKxoCFiys5w8GxRCGX9ElFxIE+Cjq73DBihdhn4hVAkIUCpX9eVVZ/QgAk1WUIQuwd2iiu8adA0WHAE70LpbD5IRJVp0vfGlf1kStcZjje4eS19yEqsvvuDChswkdo+z/VsSxkjVwAAAAD+wAeEYOCg6MR5TGIA8Dd4Z4EZyWlmFiGEbYw0zRIPOEcDwMARYJQWQkVZpKIz/+6BkGQ1j+h1OU5nSqHljucpvOjkPJHM2bmsK4cEO5zW9YLQmAGd0QYoMcoGPMVBkhEf3MWDCwNcawSdTgIBhAOXigqpYpSmAx6PO0v9uY8VhmVqcO/C2gU1PFn+hxodSYat6CaRSMZ2BYa9lLR0ZaogAAAAP7YOYiMLKCMCjQxHHFB5uewfYacBscDJz8lzWfkwa+34Ig1Agt4YAIArhdCNHTFHk31OA4i7jFGFK3goo7ZCRBQskAOwp5+FjgqMySKNff9kicEZfeEy5yFNLMFXf8YsCpSNFKpM8rK70arCReM4EIvqT/r9IAGJhUYvA5KRx5DGHx2Yl3yAE4dSgsFDdpLMwPYw2Gg5IaUaX4WHWEbgnkYccWlEII7jsEHAdZDr7dSaCo0m0xDHAv4DpGQrIgqAANiJZWFsLImt5KJc+61CIs5LlOHVcmLx+VnPe/MOStQSdOYr7FrxirWwQVFn3MOAA4kGtgQvNhDxCJjEQPaTqVTDvzZjjJsywMHgidqAceNsASeSCHEY6ifwK0CwZEpBlwJbxWBahQQHHLyF3lkI4KzpNheKwjTVzqrpSOvDEOPyFBJwytx7My84sXCYg/vmwTqN5bbcR//Z5db//9unAAAAAP7IHsBwxFB+YtDhlYRmM28CoGdJS5iRUGjj8aFTQOaJmlmNGOlkZ1JOyiOOcB1TIkGD/+6BkGwdz7x3OU5nCiGijqcdvGUsO5HU4rXMkodMOpyG84RxC5CPBkItBUAgEX+AEyiZnelUKod5gIcyTvKuZprqvPcXy/rgQ7I5Ep54nfcyZkcm5995AUcAvSh2vJVqyahp2kq5l9X007jUAAAP7ILdZO1b5CBiO2MeFTZwQyRVNzSTd0O0EKjxZuAmrqmWIj4DrDDCRqBpKcwNNpS8BpAkaanFriMkoGSFYqx4HGLEeKA4YQJMUuooUrMJLDM/neWEfS5Zo/T21Lqj1etPy/9H//sgaCUEwRVM2IDtZidBuc9nAiEaReQMRJ3h7mEgyFYBSwRDiXy9SBlAEXuAiAHcEsxIk5Az/nDKRCYjensneG3CsQUNTxZamWoExtckNAo99nkqqUoVtEaHDsKe1o8ReaxCoO+GRkl+zWxW8U5a6hXFS7E13XK6/dABXtM+bsRFpkcwPdZkByBjcwWFN3pOw02xotFoIbUFcMIBROVVMqQ9vC6x/xkKI1FzCsqVaDg00GhhJCciI01TNLluF4a6UNlMGsOVgL5IE37eWD7i6mH/Sxd3rT7ioq2TDK1gKoWHIEWuLtY6jrc5ztWL9KsAAAAA+sYL3lA0ZumFBGQOiso7WAjRJqMJIg34iDG5oMGgUzCzA/CqoVCQ4F7EqwuqVBmlmHyBBS9xnHLULeFlYaBhgBaI6BAr/+6BEJIZz6hzN01zJKILDqbpzGlMOnHM3rmsmYeoO5tGuaIzD6aRgkIOFn2ZTqA8HCwLJWvKWorIXR+lkU64MPSyj+iSTSe1KsNKbWhNwLnV77EP2VP6acAAAAA/sYQDhwVMAl0BB4yMDTBgwA4rEvcY9JR8IGmlxkHG8lMZHmYYWMPAMZhwMYhklccVQQNSgqClDVjDgg4YVSoQNHERMEBrUwIIdDgEFDYBCq+cJRVOZVSLR1goVFv4vdx41DsOPcw2afqW+m5J9YBH0uc6pqdfMIs/q81+jfc2AAD2ADQKEiOOmMeNaB5maQHcRQcYHJv/R5hwgAmonmAcPnGeuClggVQ1UQO8LdDrQCiWESLEVAMCdkwhnXXgBqAqCoOXHMYAKDKHo+LrcFyk0ZZXUeS0TWjU271x/ndkkeo/3EH1Lsrt0E0865wvWrXTvYp9AABmQgO3gzeRhwdTMVWNolk6UMAcjjT58B9wx7ckBi3cVUqHmCCuOOBDCCZMIA5o0I8JaIaYsChygQgDhBYw4QzA49JooCJhEhkt+JHn5EQRKlSLIF+RNiQ4H606KwJdd5knONtFbHmaNrmUu8olFDmqmXKv1vQPe0vWAAAAAP7IB4qKGzEKTawzIoIILocpORqlHGMD4NKcDZADHQtCJACpAqkHFjIiVy0hUsIQA3aUKPZ6WhUNOaAX/+6BEH4d0JhzN01zIuInDqbNzeTUQIHM3DesIojiXpqHMqewCi7QtONOAI4YWi7NVqpbsHVCjgqnFqduiGokfLJmC4ruG6axLPuAbg0UcNSZAwNLkRPNpKmgyMQcLuY2VWZoGv23d3U+sAD+yBLEhA5gAZmUSaZLH5hBPGfw8dNFhvFcbccHHFhmQWaQEmbAAKITJUS6YAtJuKExSAInU6DAgFedToYAZ4qA12CyZFINPGcUm+oEl+TGF5HTLYo/oUU0BwEnzCJU7NWPxWMPFDT7u6IKoeHTTDIYBg6wePOFHPDIBNNAsOKXnST5gnrp6PIbMADHAElCCqQBzmaYcHp2J48Md1bmqhR8Uqcu2ZpoZsCPnh4kYBSJH0foUXjGgH5IQ0mGw46UGhB6U9Ek1DyosQsMKEh1AWfJvNGDnsUaC38LtINJms8lt14d0rAobXNSgx4sFgnHtQLk2OGAcqeaMZHRmLFS7bGKAEg+e92cqKx74ADDwBGAMBDELHIzUdgFKwYjTnhrM7qI2QoTIQqMcE0xSGjBpCHgqYVIYYDQcUouKjAkEFQCMIEhpvGYQZLIOSCoZFkbwolMCRwrMgHQ4MtHBh4NGpxn8cN7byVDTmh3qB94bbIsK4YA8TRDr/0PU1N1TZVVkvdHPLAytArS0u2ppwI1Kkj6kSvoym08kmsAAAAA/sgT/+6BkA4Zz0R3OU3nCmHoDqbNreUMPuHc3rPMDIaKOpyG9YNRaMHGhDGAxELBCZBmm6yhvsgbcBHtsITIi1sA3zoPB2g+EPGhAkMAA4VMfBnbQyIeMslHEGHTmLjoZmeAPoskWLBLfIPytZXons8X9TNbSGj/LiwTvv9EYaf3GW1nffjI5yaLzIvmWO2rdpH+Y11X67djHgAf2MbiakRI+FiphnIhaHhkDzE3xo48lNdCjAkgwoFFjYAHDywFOpigVV7rgHQOnMoY1BiKtroGGBzhEOqmGjAYoaMVaW9f9k7Ji8Ccivmkv4OAorQ3zWchcd3YbikHxZvUhFCRGE0teNBIGmFbD70shtIpz2mRTQ7TAAB62DdNMcAjnEAoKBBpU7mzz0dQlpoARGexQcKJoGpZksRGWQOFQydaBV4hFDCYadqHMI8JOAUjBawAmopv+xUXKNcMEwCAaWriHFFC/sSTQZBHrLgvvDHZh33/j8FR1wopNw3/U0MjoSLC7Qm58MmQ1tc4U/us+3v1sc5+AC7ZgKiL/puGUMocXnotZpVAKnHpqGDBGJejykwYiBEHHti6RzjjyXVhgUOhNQcTaA2ETlMgCcKDRWMZUzEtGHF2C9iqbGYlA6nl8LyjWqkrh2ijDsunJ5r6n70HVld0PN1sT3L7szqrAAAAAPrGF3FzjARRKp7MpoYz/+6BkCQ5j/B3N05vBuG/jucpjeCcNEHc4bXMkocQPJumN4JwC+DYMSOinY11WNyED+Ig3RINAMwQVmgDZlgMOhEXIgsdTWLjqGISl8KxDxi2445CSIDHUgFmjoDwI+BzGBO0hKZW0hdryT+TXqLk0/sbhpnsJgOQSONP5x9plZPxSpECpUuES/fs0LQrR3e+2jAAAAAP7IF2rKM3jSYdEYdmGDZs0YYSPGIjoiGzIgAHQoMEDDwgecmanHZVmSIQkiF4jSGPNFRw5M1ty8axBgo6cu0b3LQJnpStsvZNaHZQ/kCqry6L8uRH6WK0EkpX9kPvV77zbMZ+/db9evvSvpT6AAwCMGjYVjBKTBOgKYB0iNfFpAMYukZmpGmFBGCozV3IFTVVSLASDbuyj83UEClukVkgFgYwPEIPMzIA2QpzKWBcJbikH/htyVg3GpYXE4DgT9RKfj87Jo/8di/3Ntri6nOxXI2UI04gexhe46AziORwFIDpMpBjBI0wILMLBTNzUcRTDCRwzAA4HLFlDNGQrbR4ASxxwimg6pgH2ZypFxF7nNbqiFY8MxjQeac/qk3bfkOG0h/4FZE/d+5LI1EK0rfSVyCUc6m7xT62uRt/GM9+xNrPTamvTwAAAAD+wAFBdnJlcfBC5MIog4yFQYjG0hx4Qua2EnmYJ+YkZKTGBFBswoNfA3j3/+6BkF47j1x5N05vBOHJjycprDHkOTHc4beWNYakO5w28JXStkBZZhzjgdKvR1BuQD0qGBAUThQQNKNGRxEJXFUwbxYFbinKEhcEfhUOv48l6vKOxiVRWQRaJym31orY+WqY1gvXNBtKUitDtbNXVAAAAAH+oDYHJEIktYjIWlPOxDuo8mMTTADw7Ikw6YRq0wA6SMEjIDydQoNrSAYzIaGj0FkoaCzhwSsMDIQl6GaqgSYL1xkQIa0xMaezqFMfKw8lr8u0ZHDZ+NxrKv+1dm6r1OJqFxZw6hZczUlAqEaNqvoAWoBByYrGmZGZp4mehqg6rNcLThUYxSbO6FQcsGDmZkjea4Fm2WlWBSx8wviyZWYOjVmMMUx3iuhpDngZcGgkTZEOUEJ2NgJFXribzO2aILiszjy4SiLfizx1y2JeEwDH910OzeKxuUdKPpJyQ4/6Yp7IJE3WTIYmMhhNGhVBONRR4cMjBzWygUGjo0/bFDLONMC6gME6T+l7yE8QUOBLhKChCggBXDQyImcGNImqSb5SQqqFqOFJVIJSsSYCw5l4mIRAMggJ2QDHPfCWx/oUFLtnvf4tyXorZs9rAAAAAP7AFAx0PNEKTBQ04BMNPxzR0ojCBUQMwZzrConqTqbHKTKCNkQxLwuiZwSIrwhAIeEHKgwYQKmoIZIisSl4JAGIEcjUQSTX/+6BEJYd0BjHN03k6+H4HOadvLW0PQMU2jeDvIeAO5oHM4UwsFDEouiAhQcDFP9UThp2s0urlX7EekoAgPRsAst/R0W6mLbZTWRKW5WepZLUTcq95lD79yaYAAAf2ALTKgGZ4VJjnALwKejIpwisghgMPtzpgc1QDRdM2QzFAALxg7daCkRg9DBf5CQDCFhgQxJEFAUfDgcEIBQhgt+DzxwA2gVn0suJDRhBXaaNPSwtoFu5P/T0to2GQIGKJe/qrVZSSr7qRZSqrfTXVq32foGF5tLr9yaYAAGwgAYT2MKPjS0EXhQdlCy6BTwyzJMAXjLycWkDCwFKswggMOAAMMmMQqt1CYgcH0FAo4wITxe8iGwE3oIoJ2oAAwYWCt9nCwTuJUsDarA5QF4TnxlBsUHwBBoNAYf/dD0Zj1Vmom1U9qmSy0+k4uLcKlxGTF1tOJlbRAQGTDgqMjhc2kRDJoXNdDYyGMhDZzNDsMWigBEDyBMme0xhnGWe6ZGcPICxqblyWQEtD0BDuk1KRElFkwgPYggYCOI1tTWyl4jaDQrYS7b6PvizSe/WqszFpVTtBb45xwVNDkvFrhbcJu/wLatuhgQDQ9oqWvoAAAAA/sYQmsGM/TzAUE3x9MA5TCiIzK1HRU/8TPSNASrGFmg9OBnGb3YMXGQTjVC7DSUKYhSKHA14c0ZCr4ub/+6BEIA5kHh5M03nDGIBDybpvKWsPHHk2bWHw4fWPJqm84UyDUMCfUgOZjBFwgBdJiCa7AQuhVicykMHRYZjux8zUoncZZLH8nvEwjPQSFngU5dCgtaGGIw6XMmUbDUacqY1SEo/bvgAAAAD+yBHmDzOTsZOTejsyt9D4g2cYMeRhtfPIUzFB8w47MOTASEGHQAXQsCCQnzGA0eS87QiQAEHgUVNaBVY6KAA7tAaELqqjYUQVpac6lxnak5VJCBTVv+xRGwFA8GmegTCY5Ea4EPPcoIC1pJqXQ8XNGkbTEceqY1aUp/Zv9kEDKlVETgDkgCB6cSMRUiBqbFubd+IKx4ZYdZMWKCHBkRpqihxwJjCqrEy1BlMFMAIBSDzB7E+X5aQF3DAmzt0TuWHdVLSDDAFrRa+V3wLTE8XECE9bka0HZE6QCFCccGXqFROZrOl13DV9rKaIEeyKPLo9ytCqVYAexhoZghGYeFmXCJz7UYAVCFuBKuIFg3vJP/eyZgPJIASmE6aBJs+Ar07WFcjBA5JFxoBYcRPLnAhAOoqcOYyo1vIhhCmHBlWhrGWEZZA0rUDZr8fZda/9443H/kUAtBs9AECZKNI1iwjNVHFruGL7WUUQHbF3FU+5WlVK6oAAAf2QZEICZibiI9NYgThmc4YCMaHREfAy7AxSZKGmlHpjg2HFK6TRQAr/+6BEFYZz1R7Nu3h7WHrjybpvWEUQFHs1TW8oIfOPZpW9ZKSGpJ5loSKAk1hSrBAlLozPZSqFn6qy0liBAxlhhGW8UhLH2LpM9ZRWfwJFj78+Ib43x9szh+IAoSZkbVqCCCYAFRwkHtFZSF2K9bdX3e+zRAAAAAH9kEaZ6wcwAhNsoTmkUGAp0bUEU5xHyeYuW2EyhgKY8GMEAMEuNHiQ2KMo+o3DKGVpjNdVOwBHyhVE8w0JW8OGBoBag10Omne+tPKqWmyiL7f//z7kBrmSMZJY5QEo3U4exoiIDTQQICofFlNnirXt8V7fR6K++AD2MKkAAQ4C0xYYZiGrHmwegb2dJAegCYRTGqhhn0A0Q1jyMYQjhNIhKFkw583BRtIRFqgBDiecDLRnYfEgUJAGaYAIwTBIMAFdKP0DOTD0FQHavylqH5fjqtjDbG5mTf5wqtYuF1rXU01B+eEaSg8TLEhWWYymYW5oS9LkqZXKwRAUDgC9mEFhUeDi0A590/ccwT45R89Wg9LU8rQHITQnUwEJxi85vwOOPDMCDFVIDrChqKRa5K2pIx40PKBRY8YMFHEMgULBJrrrf9kEpeXt6JY/r9/Wuu1AbDb3+dLLiEIqUqNYbg1PCIwXHidYmKy7WUzQx7R3oelbK5WAAAH9gC6SwSGTrBlBYYNBmpkh5CuaQonrGnk7GIX/+6BEDwZDxh7NO3rByHQj2bdvDWsPHLc3TWFPIfSPJum8JeSgUOBMxiGYuXMskVhHTxnEQINmpDQekWDkjKx0A4xExIOauGUwWKLPSMBC2yAd4tdSyec5OVWJmNLnHWrf/5fhlKXpzov9IArVHsBh5AMlGMn3zCssvxQzFBEiAAAH9gDukAEYmSAI8MChTaToyI7OUgCwJGuDBiDQY0VGuHpCPgkYJ4DQRPJwWBXwYXLXOGNGQiITlpv3IecovEJTBwAWhgQyF/AYBnr8yNgi/KczMil+kPwdRilA/9AFqHxjBM4gHyjGTrphTpRfixiKiBMAHsgcpbBIwBaUwiIGoD8FDHWTo+z9bjX1jDWTAkjG3QksZQSCWCqCl5pOTka4X4WqGQTCQwXdCLtK3ECnSyS3Ejlmw4o8py45Aq2HIcIwqFCFL5UfwnEYU5v9c21n7+yHvLSEXeZWGB8dWDx/tdRPTuUvF+KjHvcnAACD/WBL4iADFFgOmQIvAEOM7DSH9ONpTOi85MoMKOQcvm3iojCDIBMwNAMVIEU0U0gXFM3TAwCXIjAw5eyBq9KqoQAGoEhS/gFMZQpvKGZRJdEpULRmlmP/6hKwTCrXKTrjFOND9T1kUOExpqWRIBupO8vL84hbNZIglF2AAAH9jCOQsMGAiJsQOTMBjCAcEYhtWYYJmEXQWZzcxA7/+6BEEIdT3h5NO3hLyIJDyaprmScPnLM0DeVPIi2XZqnMteQ+mShBy2YQMGAo5ADmcCXq2QAUdSH1R6CPkjiJco5WYipu2inCUCwRLyPPM+kSQ1R/esjRIWf/+EuKgbOt9Dws8VLCr2mErhpIAbDBTumWdB8gMssQmKxep12uAAAAAP7GCyRnARsa55BBukZMCMAlM3G0jBBnMQ0owEhzFJXMLKxL4xGNwTSOvnmenUZ0apizBUBBoSbhE2CKGnxSdrIcw6UiNS0TuBQIcDDqABN5oSGDPHqjEUv/////uC2qsCz6XBBwupj2GUrhlIHbDBTumGdDiY+2xCIpF63XaoMEAcAJc0QoMBKTIGEz89NqNjMXsyMfOeNTq4oMSBARmirgXNw53GIAa4bobaqqhoHJaGoAIQQVWRBkwuHsWNuMmRsJ0DRAFha2Xpa4g4o8xEIiD8hKH+iSgHArE3+yrddaX0XYuA2lgO8BnklXriUHk0MSlDAJIiqz32MVgABh3QMJEYwMrTLg4Ag8M8IkyUWQWOTKZhM+tczkhzBpcMRokKDcKDYwGNTEZKM/Bw/FDaTLRC1pgEmUwqmIDRGQPdy3KnYWPnnUWagwKbBSxlhHIQguoIhZEh1kOcBXjgX458wUakcEhb/dSrK1Vnm1q3sgo6UAQ4AnEF3riIGU0NSlECSSln/sYpX/+6BkAA3TiR5OU3k7WG3jybdrJ2sMlHc4beTtYagPJs2sHeTAAAAGP7YAglAJcYGNnOC4onm3N5h6eRK4Z0mw1RpSAa40gAzAWgX7EQR+HhjqlZxloAUTRYcHRLdZsKGp1sVv7dAlaRYCEC+jiBAjps+SZf9WJkScoljUef5qBYAgIm+u6xaY6LuEIt1ntVnXWurq9MAACP7IHyUdCwox4kygoOtiJec8inKbO6Y56dIybK6YV8FR4w0PhGIeHUHIegaOkPqQmiyKda+l6JmX6chAFqgNiXGTshsLlA4ZM5qMSLxqPRMTlHO/UVgeN267WE3WOlwnoOHaL5rb1U/u9vTqAQ4kBGAiIcGGEIJjAKYqIkCUYPDiMAMYpTbCkgHgE0mgGhjYaCjgkYyJEzwwVB5kT0IrhQgVJRAVWhyWzBUDQpJhAx9cNSCyI1S9CS/qaqfUeER/9TgEgf7q97ltHWsMEKSdPGAA+UxQYEFohIeDTRqAImlMeDMCWOAsBMkxrQ2bYyBEGIxKkFwacbEiAqXrjpUsWLysuRPXDSzCWoMWKUTpDIDhx05M4xLV/FEm04RY4kV/wNBEl6R9LT4ZXGlKTA9zOK+7Y3uTZVXrr7y6gAAAAABH9oAsHEQqYcnmampoMKZMOHNh54JuL0Jhk8c52GWn5gpKYq5F9TalCxgOzBVZuNrJXYP/+6BkHARTjx3Oa3k7WGxjubprCnkPYHc27XNIIZqPJvWsNhzUFgUiLDmQJIHPSGYkMlAT6CYQoK2voXpIgo4sCTFpfryS5GF/4XACAc/0dEkxx1A7au/TvG921U7RAAAAAH9kEO5L3MGGMEaHlxvwByYJjQJqV6CAIdmQIlDYxxsDRhksnAEfCugYgGJVAtA5vTpHlDy7FJApVcKnGxQyCoDxE6EVV2Bhk4YZV+GMGhp/+xUFPx826wrJ0j3OaNpp1Id92n4v2XX7oAEP7IHxKpweMmOZG4Zha4QNTIGgmketqZVoZm0JGDfHXYmSDC2EGnzngAEJMSHFQwEEsmUPMMDBwY0JIrTyyaf9fIjClgSGJE0gCQe9MtIVHley7GQNipL/P////+CW0sO9DTp6cO2Jm075cRk4oqh17suvPJJJfYb6zAAAGP9cEIyh4ZkqDTwGBGmRGaZmsIHqAmIumzNmeHmMQo8FUK2hgRy7wMiB0BN9kQVeBDmfprJT0ENovJ7BRbglrDdsrsk8kkqs9INRJxpJOY1f+YB7Dib6NbqWBeOWx1Nuj/kfGcAAAAI/tAa6Cg4zNBMYPDIloaajDIA3hjNjNzDkAy1oMAAz3xJhyNAeCEPQNPREUmaSTI58cFBJpfxGkHLRHb3MrailiiuvgeEcBk8RYayRUEUaaOJ/2EkCvllvG7f/+4BkLwZTPh5OU3k66GPDucNnCnkNhHk27eVvIYgPJymsHTygv2ddrR6/qW2gBD+2DCSTiHEuikEZ7x6nH0eDdzopOMwKDK+DzTHHNupKpeTK0qmPphKXrHT7Dmg5SSEvfp0kqgNgdK8BnKhkmI8cSUmp9esOkBT76GAYCy7veXQKedvQKt19NiP/LV7F0zduqDSAOyIw8ZVB0jBSIDuwwg0MKbTCQc4hnMW5TXjQxQ7FGo1lBMLEDA0MAiiB6u1NQqGEOv6ApDPHEKiARlElig6SJjCEVg40QWnAX7M2drdfiOtQXoxnf6N+RAGhqZ1lLlXv+2Xs1eldPnNgtwAAR6BF4xQMLGB5+hoXeBg07o8xDIJ2FoAWRusRoHonkod9WlSIAGslN5vVPhBDMIDrTfqxSH0EabhneDjA4h0G/Sh0Ct+wtDF/DEbxS+JgCQDCHpQUZTHlhA64TpTpnFSCwAAABD+2BGEEJxElM//7oGQGhEOVHk5TXMIYccPJumsNeQ+AeTdN4RDhuQ8nKawh5LBEHUzA4BbzXGiRufzAYXhRlIBg4WmPxsMiBPkCFLgqXAggISCBrACFA8gHCC9gc1W1h8vUNFyCKo+CMIyg5Slq+2gRYWG0mHcu///9bv/G2bPde+hDfVaYvJet6a0/3LYu3u6vRIAAAAH9gGKqwjRByk2YEcUGYqGxEmdMGIumCbmIGGstGXmmJSGCBmgVr3Aa1mgVpacFPXi94RMGIKDGMCpHVaYD1FnFgUAJCwLuMY051eyEs63NqDo/H56JSBLArZryi9tCKDCbksPlj67V71PXlqdlMAAEH9kCdJKSkRABQI7YLN5pDGjU4nCN+mzaNQ6qBN9ODThs3NUMyByoSI6AQkA0AYORmDgaPJjaFBhtgfgwnLBkVwsCRx4iMDmwaRfEZwrBB12ZDNqwqbxc9yf6AZD4ZAiJX+OeI5eLDLVuQvZW1aGvzDEpJsEFDv168bAAAx/hBUZQDUQCGGUeGpNmVlDKk2Ag9is2BwARzINgFnGhJnyoCQiUYFKHYlk1AlsKZF0QYB8XSDqJbxgYYX/EbgSECJdwGhXiueBcWJvA0E4an+ShbCGANIndoDJ9abHe9s8q7POas4d//+hXXcAAAAA/sgBoCoUIIgIPjD8wy4lEYeY/8nmOp8Iof2NGaApgR//7oGQSBkPQHk3TeVvIb0O5ymsPdw60eTmt8yghkA9naawdrOegQhlIEFRp42KKRsLqcIADEaLOJfGGGFSDL1Hkw4pmb8o7jzxqpiWo0eXPHtFMX8kNyaf91zdv/3azxsAZBAM/jiZBXXZuRGUeNY9mdagLrTFv9DORgAAABj/WCQwwVE6QhoyoNVnKEEAUgZnuemMKkSswiIFrjKgjRHjhCTHiX8L2FsnLAgEAC/SBJs6dCA5K8sBGJSAGSDCFwxLhQiAHNFqKgnj91Gm//kmeXjmIdzPGCnGJ7/KOkDau7pUx9TP/YpljIAAPrAu8RCRjNYacUhYMMiHR6vOKXzfRIxgwOZNEwMMgduZCrNCJ4ffAqY82OjgwElFFo38XciqZj5WC/yKL/pkvelC2jvGmEYIyfEOSbNrzyyLHP///mPo8YecZ/LD/1MRGHlGgsw4A1dK5FfyO5Oarr+KW2MAAIf2gV3fAC8LmQs1B0k5c43esaxEC4xbQO0mJDnBFhwkiyaDsiBwC6oQEMODGiEKsQZB/xNhQNHqimSwY0DgZoReVZpKBpk7NL7cCRKnxXHhqNgiACFv/V7U6nVL+j8c2HiKAAAAAP7YFMgARGSBxzAMZGgmRoQQ6mUDRrIMLVplNocargoOAwKOhg0fmGEARQH8YOm2pxAlIZ0iTAggR8s8/xZ9ccIOZif/7kGQjjWO6Hk5TeFvIZOPJ2mcPdw8AeThtc0ThnI8nDay9rISmJKxDmreGNfflWaUUrFrGf7mHFCUDwIZZ9aQHqDFwoNUFTe9rnVKvTqaM/xb/ajAAAAAP9AIGRfL1EAaT4xCZ44eqhicm4e8iwfqocmGfIbHeIZMCYLPA7UjISozmUAOUqVTdeBciKOkl6XjZkAxo4A4wWho6hmGTSZ3H//8GdjgPydE1r1V/Vtc02lRlJPa1fT/0AEceEhcUYMMf48cw0BrRm8KGhQ2Y1G5iIomzIyaDCJs8nAxEmICAEDAaSN28NSSCwI2AEEjy0o8NBIYoUnEQA4KmCnsp9VBVMvUYMKkMYIgZciLBGSfQF/SgJIqGf7//+dnsQiqvNUXoY4qhSdTFXNVpoLVWu6LV+0DrdRCJAoNYAQ2geQGkACPG6JmTOGoCGKnhKgSZs5HDjiVT3ATgQogqh4g+KhmsGETD1xQGqOQxYZSBoKfIcWY+QClROk1q6yEGiKQWqf/+m04plK0Don6brq7Ncah+8lWbSvZ5auqAAAAAAAfyQP/7oGQEBmPEHk5rHMjIcUO5zW8rXQ7gdzlN6e0huI7nKZ3kpEtwYw6PAbDEpLNHnIxGODBioMPF8y+GjRcuM+hgxkEzI5JAwrNYcyhhO80jkAaOYKSFRg4AsBmOEus1T0+oAl0iJwxCELIo5hwAFOU1g/GswYVAWu0zff//u8oI48Usfqd6VCtWowiiTd+7/7/6+764gAAAAAB/YAvpKsvSDicsDRhSsaWKgQZQlmhGZgEwbEPDzRukKMAIMsACTgZCjmXnMNQwxBpAWHBsZgFmgEPBA4dv7IXAOWseXM1QO2YepwRD9qP6iChACc6v9SyekcEhC/T7exiWUBIypcZsPOpR16cAPZACk8RDyDISUFgmNfFDlgEyUeNsZjKks0s8AHIdwcGCnhqzE0QIijtc9woaIgIqAn6wZh3YCGAo2RFDggmuAQaxZQ0eIGCAhFgxh4CFAUYAWBwrICEFcSIjMb///w3MsCIR7fqXHsHMeD6VenfbMK/ubb//pwA9EDTYBFHAEOCqjWwMNjjATIZDjgQoy9bNFISdJMrKDHUoMBgCqAwyBRqdxoHCMcGEggceGL4nfygoLAARiBqFDZPINTQfHlw0AxgWuZ3H/TgVIv+xz//+/M2KR25N98z9cXcNEvsbqt//+2/dgAAAAAAH+sABDzYzGZrNdAcHCoxqKTRQxMRHsx1AjP/7oGQPh2Q8Hs5rm8o4bEPJw28vaw4QeTsNcyahsA8m3Z3k3PRbPSPTB50Co5zE2aa2GPDBh5qcMZBF6Dg8xMoBg8ZIIMBNoczXjo1PkYSRC6i4oyKimqOA5SwgOMA0dtVYa02leqoo02aRZ9///Gkiepe/8j/03qVnoDQhLRWmr7u+aJzzLPirVxaioAD8UD4ohOLhmKCCuB6AEQeYSIHMmCEwyYaIC40QNMaFQUaGWn74pMx1RwYu24pnvGSov8wCQamVqLAPYyMgGHiAF2Ym5sjDzkPv/YiaM5dVwBGp77//6kbWdfQy30FgkhKCqsYfOf/149FWTgAJgIJJhTCZyWaEYc2mb5WbFsAhwapLZmllHHxsYXF5l0bgoTmCcY5AdsHcpGggkDXjjZIKdYIJADuyJuG0GqR3CyCRpkIg1gQnj2aSMVtTKwqey+IE1h3///ziNaAKeT9bbCjn3f5CgrZ3etbepfpg9gEibgiap9C089ztFFFgFBD3oYeXGqTYOBDMwcFCpihaaIFmXl6dBEgRHGQGPEmEEcghjGml6AqyINX7+rHVnqmeAOhDxZYhApzjcsperXUXiF6Md///79DSP4l9IPqXWYcq1rm3Nkr3fspVgAAAAD+xhBcdDwQlhxSa6IGbzpgAsYkHgwiP6YjmaM5lSLxHRln1onpHGAvmTJqwMLTyB//7oEQaBsQqHk1TesqYgcWZo28teQ9ceTZt6ypiCpimzcy15DoBocQIMMsE58wQ0W1XpK2XlugAAOAlh82wxJteCcFeVJ6oQwcqepBVj///syl/4KZ9OP1CAXU4UWUcUG0MPuQgLj1GTDz6Bbehx1RLTs2d2sAD+xhg5CHlhHEiw2VIM2HTFXg+J9OjLjXhMDfxltgZinGtvZoa+EZ5o4aERw0sjykkfppkjiEkQOAowmBNSIwAiJBgBZxEw31DRVQXS4Z+BSWBSyA1UmAuSOYvv/NE3MxTb9a0VKqepOui+i6z8YWTcVJNJGjBeptE2VcKGfXr6ez2gOQSBZmLeYSRmcKZm02csWmOKZmEOfevHPURjy6amUaKyes6bFUIAB506oiCAVaM94YoM2sLBFVM6FRik5A3gctb44SniTcB1RiRmCol0lBZ4WAC3KXa5MonZ///8o5clDzyZ+hSXB6IUqaOqFjg/epy1adzJJTmY9YFH9oEBDARMalUhDZh4kmKFGZGMZmdGgkQnHz4AoYZcUpjAPmiEGZ3AZg8AmOR+YOI41cX5G1xjYmqXUfxA0+HIgtIFGK7aI086SxhRo7CBAWdxoABQXpdAoQFJuqJcXxlmf0SYo4CsCKb9+7U31J2rVdU7WtaMxVvW5a9G5kip7cctcAAAAA+sADg0Gg5pTCDyI2aYNBBjf/7oGQKjnO6Hk3TeVvIfoPJumd5KQ8oeTZt5S8hro9nIbzhjHpUyy8NRwj7L48tZBh2c1mmSupp4SOihZ4e/DjCZEYrRAQsECqwOcKFkAhznw0l9IU9yIAwRguoY7wNHM41Q2HLsEL/QAFrAcmRS//8lHycHo95Rq4so5osXNoTuw6S/s678AAAAA/sgmBGGPOkUQ7AZ7R2RaBUNbxusIbUgmNgxiYsYqUFQULUiJOIEAH9FpS7hCCZEhihnMwIThHGbYxhjOmvlQwhGMMhB4RElxAghItVsOQalSvRnDNJZM5////3JHaWBirO5yhZSRVplZSeXTJuDI9hByXJvNfvGfRsu9gBiYmDiccMTZwM496NBlzZUA+99NciztLM0vjGTww9ON8ojhyww4PESQZe+GAweLQAGNxgwJjRcI5DEgMN80SYep2CtMHlC8hqNJ1Dy5niJWRfB3FUVMIdHVCj///zrAyFM+Bo96hdw4YcNq4EH0sMEFXurYgh4sqACDaVpr0A0fMJEjQUsFLJhBoYClGbFRhJQcE8mGhxhASgMMdY1fzPiBW5iQFxgRYYohLG/ARIl8kALTZ6NINNGfiSjG89EWKJcLw08DNdFSi3IpL6l////+5yhZ7b5xFaeRu6PR/V//2ez1KAAAH9jBECgoATDqfFk6Y8KZgeMmx0MZAFZtccmMAia//7sEQQDuRZME07mVPIhybZunMnaw9BCTZt5O1h7w8mjby1rFqRjVfG6xkbNURlUDGCC4YsKhjIMHI6URAIc43SkMxHDGPawaywsujcJHMCGgUJgyUFuS6YIMKFkSCsCF0CAYgEJRQgH4+f8w4QA2E9v7TnWzTnNMPszK5ZiA18uEFq0JX2Cgo/irlx39P3YAAAAB/ZANCIwAETGbFBQ5MIEUGKcwUHDQBtMeo8yuYzLF4MFGoW0ZplrGIxEZoYBFPGk0CRYw5UjHQIYBGQeKZoxAkwbUYOtN3QCkAwWSIDwiAFfGCsLNKD1GX+6qP46LT/5qjwBIIP/eeyWd3ZDD7M6vdj2lShq0r9ijm6li6esnOIb/f6PZAmAIA8yVnMiLzG1wFPJgCIZHKGXL5rzOEOZvziI6AxIVGnEG2lBpkjCVYsMTZDNyGCAwlQBB4pQEMuCIQJGxRQUDQJBoqigI0i9ielyZVkSiTKCQl/43Fgu/rnsY6Iy+17lqqbaZe6efpc+jHKze/VlKs+H/9+bZq9jBawkLwQ6mdJoBjhYAMJXjO5Iw/DGSU3q2P4NzARo1FFNwMhsYQ0mloQ0nACa44RcIbDRqJWidNCUTes3JEVjgx4yDTJSEBYKPCJgsACkmUU7SiQAElMmHYPE//3FMbeqHgyLj9z3LESCyUslbB6wERfRUMS+Gf92YbrgAAAAH+yAFDhiAwTRBroGHEwVZDNSg01MCpaaA6G7DQrSjqyZJMGqHaZYNEggFD8jMXcU2ghFkNSiQSHI00h4gt6j+qZD5OoRhgwUeEV4NOrASWKVYNXwgJdicw/////92H6PdAG//uQRDMAA9MdzdVvIAh248m3reQBDVBxPnm9AAHpEmbPOaAAZAK0RztWo/c1OUa/svtnB7P9vYLQAAA/sAQoMCIhY9B32YiNGHERhjQac0GxHpkn0cA1mKpBg7WY0xEScYQIA5pMIDC26AIFpG4er+Gxw4IUYCTKMTHBn+WorsEEEgZcN+i7aVzRIcXqspJtTqVxe///////Qv7O/HioRnW3Gq0J3SDNyXM8DgLdct1ccAAAAAACgxmpSCScxszHB84ULA8CZKimDHxmCAeIummyRmZoZuFGgEKVJqjSCoA48wzAcDDDGBQSLQhLvlBFtQCeIirnmKFAI6iOi205q0EKHpLy2GQsAfSD3+c3/1SqnnuVnWYNKv+5gfcAAAAAAlIhpMpGCQSZ1AEHGxXIbWk5ihmmfTkZ1U50qYmp50ZkBBIKDNiiMyFQ7oRzUAjOHMNDJJiYIBG9SmJLmxbh6FuIUEhJVTQBRApDRaK1asDNFhTEHUiHJL7KAkBWyFgRMH7/vo1L/+bTP//pJz///z///6PAAAABP7AErgAHmtHx//ugRAaFU+wdzddvIAiAo8m97mQBDqR3N1W8gCHdC+bqt5AEvYcYOfmNgR/AeaMoGBwJgJADJs4eUMNIjjS00YGFWEwNFMaMQKQZy5cAHKtiG9hBIAtQAOcbZhhK9ccwzlWLIHxwG64YVCR4op66/qzx41wop3H////96e8BdThyb1smRGZaLFsMsdO3sRp0h1aFptgAAAAAAf9gBhMDDoyMrEozyDjIJVMbgcy2KDP4DMlhYzCljAx7MkpI5GnTAxUMBjIwqKQYAzDZpCLgdAbQQLSZODaBDUcgZEWa5iDqayFShxEaoqeYipTpDhhQ5iMij0PDASN4se/2Xf////13Gyd1uF5KpPRahA+8iukVCimfCEAAAfU1CokYy2GHNxmwmbCTm/PBkugcYKmKDYMmjVTk2vMNOODKAUxkMMkJwEmA5UyESLVR81UUVgiIMQLDRpCJFrUacDRg4xxAbcVVE9IfLmv/F5h2IcLUxtzLH/////rktP+w0NFFqzW5iKtDmBwON1qZUnAAAfq0mAlhj78Y0zGhQJmqWbRLGmzxqheZSnBEuFF8+wiByIYqFrAhhoa4SnVAIqQIqYDgKOHnx09yT0NATKsawDkCAJlZCSbAhnBA4ZIlYEIEjWMGrQCR2VSIMfLEmWPWvW9RQuh8S3jkMQTCj2gW+l4nGrj5OpwAEAEr4AAA//ugRAQAAwIc0lZrAABXI4q9zWAAD5B3Nn28gCIbDCXPu6AEAAAAFfEKogDhZ6KNxVWLUTp1zlJTEHTGHD7hzSiyzwCGgxWUKAckLPQSlM3wOmjg4KhDwglbTn6T4Wu/iu2JTz5hYL7Tr+KoM9hKsw8Dn/aFQ02P2ShV++3ooAEEDY3XgAAAAAABGswSQRGTDMyGedYODogluGloEHgA8DvSYycgiDoikIRtHLn+uQ57WFPMv0y2B5WAHoBIJHAKX3YjBEQ7MqpNk1abN//7UP//ZqAL/Yw00YBTKW8043NAQTKsU9Q8MyGDMCQUZzTi0zmYErUyIuB04Yk2jyEZoTDgxmvGyEShgkkepNSMV1UsNU8DTKTf9I8DFBQIErJzrOBo7gLEnqB+lADMEHQn+nvx////3jS/Hl1kjJsUF0IWo2YdtuFKGo36wjLxrv8eAPq0AiiMA6YcnSZfD6Y+DODj9M4DqMTg3AhUGK0UmcBmmlhhGfh8mMwFGYRVmHA9mAwZmNIdGWoHoDghcKoDPmhHEM3bQeM9AGSJuggKgjwpMMBygayNy9FSxnz40vMsWHismjrSRAOMuZHjL/4g15pNVAGBgeERZ8+sn3+faO23XJUfqY1NgAAP/IA4pgAaCGMyosNaFDUgsXjDqb0DIJtdkZ60GxxxhbQa88hBgSqnimbzRjEAHUwm//ugZBmOY6IYTTt50yhxowmja3lFDqxhNG3zROGwC+adreUUTPpBQQJeCwpMKYYcdgIHK2dKDISy/AEOHDnN0HQqG4FAq+/ctW8W2RPo6TybH6nvJy8g62pmG07kvfFtKkLMF3vAH/sYqRNgRiygiKGUugrYcAmcWCcMSQWwc8mKWIMXx6HNTWDFTMmEUNTVQDPjJBKBzLcEYAGhARQF2SNAAKpC5yFKGgcIUBiIgOCEaJfi9gz9MSMp6sUp2868bZsTQxwlV21qa0emfUkImD5H3J/Z5RWjAbGUDwVSz0RY61BMrKThxbDk6IxaaXHZ2kKmJCiLSgWmJiYxnADnbDmGmm0DmQYmIEkIoIPGGumXSmjeP+ZsYFTgCEDR4ChxwmRBjgswqVWeXfAINYkg7BSP77Ikxed8IXkUDhdoaUfJe9lnWYrw+l9/2tvg8gD8NYMsYEYwx48xPE4gAFAzEpQewOOlTU0UgKjBRxJ8ZRCEVBRQjybhw6wHRmqFLUhTrILXgX0WfX4gARyNIUcSOJk501SMwBw7FopnAIwcggYM6wf6rmil7kuTY17VvuQ+++5Hx2qxqkrVgAAPtGARAaOGFEoDj8GVAyhCTuQWMtkI08DDGRvORp81ACTiZ7M6JswApDAK9MHjkzSLQUkM2aPuJECMHOgxsPOzCWSk4IExoh5jBzkmBAma//ugRCiEZB0YTDuaw7iC5tmtbyJ7D80JM03hVGoOlKZdzQm0UIymTxGISIKmAo30unB2U6g8DnM1Gg0/tchSlppaMB0jygDUeDEedNKc6fS3fUHjQ5tkAAAAAAH/sAMpCi8ppDYa+QEV4ZBLmQJRs42RQps1Sa1EnWSJxLccqHmYNBp7iZEYmhjo0ay0xYhcGIJaEZI8mdX50RArUzHA4ohJGAgAeeGQgVDExkIWEW/jyVVxkhTYaGbTn////1v0JNo62Q5lbquzHVDSPup7tFuiXj9OJTZsXqgAAE+sAig6DmKRBmYkaejmG14wmA04NWEwKxnGFhnaeZgNms8poaeF4gyFoIE8xQSMDOTLkQKARjhC10aNDCQc0E+K0IxQzRXWqGGGDlxGXHw5KVM8I0tidrMIMDQMgDwAIoqGv+Z/pY/dX7r0vRrN17z+2v13t/NqUlc9eXcGjAjad4ILxkkNGSSKYgJZgk1GCAyZmG5nEUHBHuZ/FJo5EmhWSYxC53kRogYxHCAIyVMEGC5AAEiEKa0CMGwaiMXDCFSQw0QJAYAAgiMNOTNJg6MaA0CQDXb9SAA4GMgVyrUfWkxw5//QlUkJWtzbI3cRtcRS+y87crFbnc+wg9wYIJWAAAAAv7IHBU3EEAaiGGOSAUnTFCgwdzLIG0JpqH0THh7sOHpoCrjQG8zucHrk//ugRBcN09kdzdN6U8iF40m6b5pDDsh5Nm5rKmG4jSbNvLHkyog0Y8HSDOAwMWHAYGzg4+hKNDMATQte6K5h4MVA6KoRUHE7jmcBLlt+o0qoPBw0BtEW5RCT6Ev4vDplFkvW2tmXvCfQQz5kv//oNrbAAAAA39kCuUAYUkDiRo1pMM5lz7hU05rMDCzZjkG0AyAFzm4yMEI0wIDjPwQtyBLEyZUqCR4qFzYoWBpUEygEEBSU2ighDhzRdJUBg5kXGAQdAKYEWEKFyIVYdn1gwgIlUrAq+H8aaQdV1Kgm6deYHNaLuj2MMJARcuh7ntyw6fPj1XdH6wAOxBqBg04BhmMqgIwk+TSw6MXi0weHTLApMNQsyMXTwHj1ljukj+2jgqQr1CqxnkFVA21jFCLghgg5SIBhwMW5TCcFKUAAvaShCqYoSsGGVA4C/7Rmlg5RlbSX9sUEsu////0f/Hxbu9ah7Ng0zCpzpU2kO0KAH72MdMDjCJSOVMDMIUdHTCgsKCZI2mDRJjE2eAgmrrRl6EyYxJFMzJDbQIRjDDK4wu0mADIU0xRUk2RuSOYsmSDoQpGDigRAt1WBIYHD51Y0w4KEgoJRKJr5UW7zn2s7GuAElc9X0v2ocllz/UqAAAAAP7IIPTgBQsZ8EGSJpihqZBMgI5MNIDDw4xayIoI+Qkzw85aM2zMw08zc//ugRBcMQ+gdzdN6yph8A0mqb1lTDvh3NnW9ACHbDWbet5AEwgRWkDEBwYEFmCENVGGQYIQEvCCVL39RVQBjoYOjDj0HQdklYibzCVNyMINrKKz+XZJFZP////LPWTYasetcVND6nr0IaxHObyRr2vTRl8AAAAH/sYgYxAAMhFBo2NmgzSQ84J7NkDgIfm8jh0IIaWRH3zFhuZuCYGIYj2apycJBxAlqyUYhYOEUzyAQGYAgExDj1etpKTBTQ1NBdL8MIDiQ4EHBW7jQWfDSTbQPArpUkto5dKxGOK7XrWL80hhStWS0VrXz+6z+r+kAL6wBCeYiNmAxJFXmnpYWKTISQwxANFdzsGAmszMtgxoTIqULBxlhMFxowUHOWTEnJewaVJrGUMBUAY8GJFjRpwiOgpRoMIWsIlhqQ5ihjtBC5ByHJRVaRFVgFL4rIpJI5rDn/36/lnVJV79lDmsbe17/Y6Dz1FIAAfrAFUzAwcwmXMZOjWTMdKTizQ1MjM/PzvBY3gONkMjmn8xBOMYDjGEEyMiMcHRT4ADhigdQIijsFCxlMDyGumMoOEv+/6QiAY3ETROCU0Ja8l1xu07z+uW/rdHUieL/P5w4GPlhYhSSV6kRRSWASES66VfQuo8wQAKiAxf8AAAAAAACWsAzkibJhSs1ZzJxNi5R0dIASRZ1BhOpL1Ncv+yh//uQRBYAAqodVm5nAAJi47pKzWAADkh3Nv28gCHkDWbPuZAEQt9yBQ8jjPrMGZSGT8dmD7LkV5BqAovzsDRKniEFQHh+m5U/623kT0UDACAADs4AAAAAAAIT4gHkpsx44QTTPrwrlFMgqZMrsNiYBv8J1GVKGhAGJEAKK4rQ0Qg5a+k1kTmkOW09CUHCcNq7An0UPeOT3InC8403AeDGWIqhaO8vPa5GYp3x5xgC/tJAAAH+wBqRggiBVMfFgQKGcHhzBaaPKkTSCCMzt7GCM0MiQQjQIccSGLjQ4SQ8FCWFmGQYqiKRZMHVqohbJGJ+FGEjxElFDAZHtFrImgJgaCyzeqhwe1pT7LWf6LSypcv5XdUvyI2et06gCL73GJvbss0AC/2AOcYAA4VH5lUNGHiAY0A5hQ+mK0CYvKpjIwme3qYpeByAIGFTWFxyieIR6KEwjDELI0C/oVKcQwxkHQqGDFDtER+JgX2M8QGjAwUBXpvpeg4lyJFLo9IXSduZXfHH8XjRyk8CqP2P0lRQADVBU3yVrlCIUv+tFYAABf2A//ugZAKEQ74dzbt5fDh0o7m6b1lTELh3N03zKOHUjWbpneSkNwBAkZVWnTmxlJUZonGOroLRzD08x4rM5DzBJM+OLMRTgdKm9gZjQ4d0gGjiQMFEeE0jcCNpsxwgSoMBnJkOHKGrrlLxIhFgwBaq8biTDp2yPUtjaYK2bqjTI4URFZvvz7n/FlWuZiioslCePo891h+drYAAAAL+yCOxYygtBQsCA8rBzdBkGH5jColgYcyHWBhp8ZhzxjA5q45k2oKNGSGFmzFNHpk1TWTGBGxjBAaM8pqCSCIN3T1BgjUwhVu5f1Uk7ZnWsNMUtf2dkEhhL2Vu9+1lf8J8rU8xsZ13JoM3+nPy39e9eAAAH9kCPJMFmM44YzmW0ZjwQfWnHSAxtZ+cMQmSpgbtGRrhMGZ2gYyF491TFYdM1EE1qGzDApThUkFkxo8WLAboimTXLJhYArHQvYOASwqWLOmEbDAOSbu9+ptprQ49HJDF3KlE/S0XfvVMvDetQjYne8qofv4VJ7HzjVsSrU7PRbklNvXgAAB/YxJWBmOcbg5vIBSw0kzOHKx7iFCkFmRhEEbrGmUoYyCGHtBKRi2iOtj4hqjmESWHxaooIMIoFJhHB2RmgCv1IKWqWJYBSgerSvCBguVAmGTNnekyxU9px/rMhfxKC3si9lrLWJcPvIHEtRl29WzJf/oVwAAA//uwRAGGREEdzVNc0TiHg6mqa5kpEAB3NUzvJSISDuadrmSkAD+xgtaOETcczTyjpWzhsDW4iDkSaKBRpwBAKkHNSWHGAmgpjklGlQmLIGLGnTDmIECgkiaJiCIoOABqiZMQZ+ICz8BMMHgDLBCHMIUGjJYEysHAS0DyZVZhplJSqlVLQtOfualP6zpb3iCXDAMiqAE84x+Qaoy97lvae9cgTYx3+vXcpMAAAAA/2MJWipczns6sI9Uk5YUycuDL4VM/Lcy2IjAI+P4m00mKjPhwCAkZJAhgAlGZxGbCwgAGuQQobMqwKthEYDkwjgkKlz7RMCADoJnRGEqukGLjQBYdJi8biwVqndiGVcxGBKa7j+8LL+s9CoaCjQOHyoonWMkTaUSayn2qGj1J/7dibXQAeyBiIhDC75xzEooFmAqUaCLmmkhisQRFR3oqcKjm6GpqwMYyDGYoJpwcexIjLQiI4At0MQkNBxDms4MHpwIGo7ixZfdB9K41DHdPoBRYiHbWftsxiO5c77UJHA7vRXDDnyf/PTKBgxhYwBxRgLJZP21dLtT6wa5HsI0HRSP4pAAB/ZA+INIgDCcE8aeCYcWYDDh19BGc1KcLGxoEJHBzMY3TpnIcjgUMemswWGjBRJMqULJk0APFLooliMccALSFDokqOlxOVhVAUOEijsnR2aYpYPGFZd6nYHT6l6hk5Eo9K4tfzz+j/z80l4xhYwGhaCxNk/ZX0O1PrBrke0hQdFY/iyqAAAH9gDXQuGTAw9QkGWjSZEWhkdSG/IOZ/PR0NTHMpJoBSYitGGkoMFzZ6xehIJm7EhhwMZcBjwmfJ5n/+6BkHg5D9h1OO5vKOHgDicpneTcQdHc2bm8q4i6Opg3N6OzBD0wCQBxZ9jhcxoqHYOMUXDAgViYxIiaUwCw6qjT56WKdU+c/A7+uLItVYvz9yz8fbDa3ixdV50VsYlF98500oK5CAAAABP9YKzFgZUaQwJUMT49NTNMOBXRKAMOSzSDc3cwApGNUpzqaQjRlI0WhAgBR6nSYTICYV6WWM6EzoA44NEgR2QsArGvgYKDwQUgNUKpqWy7cu1UpYEllFAkYfmBNUiPnqVo0uu9CMYNWUPi0f0k6uptrt7+v2MPqMAFeBsoLGTi+VGEY/b5owEmTbaaEYBNvziQUMykwweBb6cAnnXFpkQmb7HmAngNGC3hIgmPgZh6OYAHg+UG3A2kLqEwxdwxpCywOtEJ5MeEHhh48a52EWZjfo4ZWRDyk0wIvJYY1zV3/QCVwq1ceRuwNSyG5VCwJ1LVYkl9fu31gD7NoZrAjggBTDMKgceLZq9YHCBcZ+CGf1RuSeekyGRHxk4KbkLmzApl6oZe+G6pooHmOoKLBkSIY2IAGsGT8lAH5oGkOlheFxpow5hVRhBBhFRlAB7CRg1I9GM0raHGIfdOLPJTN3W7VWmzkqjZupLHuu0jBRby+JCJGdt7npY9CGXSH3V/5zUdvmsAAAAE/sAMCAQwMAAoLTNAHCw0IA+ZeUphqFGH/+6BEDgAEFB1OVXMgCIHjqbqt6AEOQHdPWc0CQfgPKbc5skCgyYsNBpctGiTWY8QhgQimUxoZsIJiAVhBKNp4z2zcLQFhRM4YjHjNw9Fc1DzJyGi03hYQgEV8YzBgNBMqao6MLGIS4Eksnh+N+4KjT/LAT7E2aW6X6b+1s89JW883jnJzTiX1zNTsAAAAE/sYAwQ2gygnJHIyMiy4bPVmnTBh9OQNRwMAR5ZKnD3qZ23GUrJiQaY9QG4nGAcAY8EXjGWTQoR6uODE1IbBg8SUhAVuBAMTTN2YC8E4rcxw0IMkI9x77oxfUDXlcuE/5EHh5YklwtfTfkkFEDsdncu95umLXH32ruW64uK9yQAEEAFSH4AAAAACfxgwQgUGGPkksABSOYODRhgLGXEYYwUglSjDgDMViMMFBpAdLiOPAUw6ZkrR4MIxxgyoHhwIgDV215kJNHRSM2FIry22hymdviMSVnIBtAwmGMGhO40qtZ7xh1O6MU3POIv2HWadAEAAAAAAAZf/AAAAAAC7zJSNMCh0ysmBAITEhINLD44YcDNDAADMMaiUQlQw2GgYGRg6GPRGFA0AQUcAegpANEFTQydeoYAmMiokzBgyLBYNB0ATSplWYLBxo4Y06suUmR2a0wwCBAHnOOU/r34ZusFwCVSuYdMlB0hm2qvzNcAAAAA/sYBQeMCjAUH/+7BkBo50lB1N13NgCIlDubrt6AEQJHc4bmsOofKPJxGt6YQBpgNmPhya9KxhK1Gg0iC4iPE460ZDf7PNWt8x+STQJWOFCEzYZjcLKM7rAVdCIRckyoBGhUBHxnIyLBRggyYKLmakZbAaRgCLmFhpmBMFwASKgCGkIYKAhgIIqxE+HYxYiTUFJyks4pCJTlb9VD39sWGhwJJNrNuIipeKCkzcU7HxR3/+vAAAAAP7GEwkJwUFAMdmDI5p4AZVhhwKHS5ig2FhYzB+B0EAB42fDO6ojI1Q2eXPGkNsGCFhlEgJPmUTBHwGtzEoTYEGFmwGCSoLATNBiaCdkaZdGZZKY4SCnxlQ5gQSMMTfjdDq5E0QgaPfRJpGqls9r4/EinmSd/RPo4aUP4GKOrPIpcytEtQj2QL4EYDSpEkuYFDRjkaELxMLT84eQjo6kNpUQxvBjh4pEYZNAKM0e+wEPgonjYzzhHjakgcvAS1QMx7ECBlUTUolBhIqZcOMPD4Hf5nmLlfNurOAURMZKFSh7605XIhxhRgY6uClgTX/QTnpetSa7W1JTelefE7q19q0b93+7LORGABeGEgVWA6WIDRnVZ1/xlOhoqgNonLKGhtHDanAiDMo1eXMpOAKTla1AeasgTRTBlh0gbYQ4RkxJmxAIKExoSQGrIB05iYNBmqtk18w5oaUmIMIbIwxiH8dTbQnYbouSRA0DA83/JLA/eq2hj4am1FB5FXRMdP1qYSsHqXAAAAAP7IGWjIGIFwbchCRmgIxxkyZW4nEmxwxcYWNjhOFRIzgfHEs2y4M9WwQDmZkDSjaVHYDxKNuo26TqHCBQv/7oGQghuQ7Hc5TedOofEO5ymd5KQ/4dztObych7g7mzZ3ojJWEHCSxjiMkQDGGBj5SeFB4wOQMHlzB2grBv5a5HVINLLeqryqDmzW+5yS772vSqLqoGjVJFE2z1Th0h01pNJsVY9j/Jbm4AAAAB/YBHxkBxwMYIewRKb8KmOnJ9zWaOVmAG5hxgb+bg4zNHRjidgwcsISk0yUrwQKLHiq4DfCMQo8FCTCjBko8qZoawxZEgQBgwF1DUhbZRgiMf9xYs/nfiL+v+sEoBMP4hfVosYLak/paoiKsE6Uv1CrDXi0z+jFMdAB9YEkRCEwMHwwqGHwoZqARla4GY3EfV5DfKZJ5GZGxgR2a0DmCBhtN2Iy8xdIIh8AgAtMjxS/gASCpYQ6PEHOiQBoeqrjq6AYIcLBAOeLyBCwXBRoh6jlEO4fcf1wVAmmxCAIrel/cpG/sWPudDYDYLn3X73aWmfXya0f27606xiaQRqKICgrmaI4iRTWoU12aMuBjDFzc1TaqDJyh0iZf6cEiNgzEDhrSYg8Z8MZQKERR4KNBDKAzHCTYnhGgBYA1xpBoUDuKYE+c86kilaiusHG3Dabh+ClkVcNxn8cFST8P/GHhgb29hpehi7VI2LPoCYvDKOqz1M/cgAAB/Iw1AwAA8wyBExgAUwzVkwOCcw8E0yZiM0MHUylEswBYY0UCE//7oGQUBmScRE27uzr4e8O5ymd6JRDEdzdNcyNh3I7m6c1lTMRdM4PThgsG/pjqKauBm3ggNKjIQxM1CoqDQGCzZwMwsYBhKZ2LDAELMbJFDAYBAUiBIENBIWA1+l+mRKrq5ZP35JgofI3RcCNv+/gkuFwmf/rdj9t0m60rsq7f/t1v9K+eqmVL26KWWp8argAAAAP7YIfFASwEZaRlOADEylaMsojT6A1Y9NZmSd+EQk3gU4Z48/g2sUeBAI+hihiAUCNtGAgBUFgYiSDykuZMAzEwxkxA60sOW4NucCxpuKpWRDIBTaF/uggN9oZbvLFjKIRWIxeCaju9jl3c172u/XX1DYgGXfRvcvAD2MDgMCwFVjnKANKDFobMXLc3l1TIAYM5hsz2BzfhPOatoxKGh0vGESeaDKZmkpHrSE1nCeSxHRIYRBhFD/ZjpmkGTDKDICjcgMBQPkHYQV0ZgQNaAzo4PFnATqfT/uYkALMZJI2l0D9TeoNlnm0XNoSga5LalRVRQgJ0pIP9goS/nPq9MAHsAqSmCzEIOUYBA6NZMcy6vzDylMcCIzZCTKobMx7DXycQG5Cbs6JsowM9Y4xioiYJhdgcpByRESBBjTWMooySh5M4mwx1wRzQ02BxYHmgoQVIUOht7s/mo1H3ejmkLVLH/ZM/1eTO7XNSJPtK2JDXoXKov9i6gP/7sGQAh2RKHc3rmsqYdMO5s2t5Uw/kdzcNcyNh3Y7m6b1hXAAAAAAH9jAGCxALzIIgMtBs0avjEgmMthwIJQ+1hZNmlhqAiWbTmV2jZgzXwT63DtYTdyFvxk02j0aQckDlDPNCwghyNMRQgIKbqf5aNJjnGmacpws2RhA96GnvHjX9wqbtuyosz6GJPFY6/s5HYQ7xpNiZlwWxcUYBoyVVz8UWhXcLOoIVN3tAA/kAm9oCyQKSmQKDPmuB+UwS09Y8HOyDUZ6uHEFRjBsZGvBJGYWGITD1DAU4jDS8VEjOOHhw5jnCYxIOtsw0xOBVMelGXjcjAzaP6EqHy4C9IO7cvUkph5624KcuVG3dYrQ3fUUP60UlWKehtd35ztigdhjAAIHGGLmuZnACGDo6YcHARACGFmS2GcyVJmgomzigcCMJjIgmGiKMGYxSRjGpMQdGIwYADhgdCTCBiRzrDRRmHD6KWzATDOHBoZBWwVDDiYZHnxZaNvy3Rxt1qeakkejdR4Iw/sXk3Ir9DcMCtd/P2tlkMTN6+BqXPWLU7LbXYAexiNIc0bSYJCw0EEoWIjq4A3EpIX44ciAQ8ZrCdw8NPji3jLjjXhDAHkgB5kgCBSpNAQAytCFSjTS/qwSK5WcznDPCXALZgIhGA1AZ4UCiEqB/79yjx03RwJE2d54ce2fobnuqeRpHVWrMrr1T+udxldf/i/6agAAAAD+wBM4ChxiR8jSAHw2hONqJTfJkzFAOALwpBHug5sSYRLIw/gVMBggSUaHwuYRrCOtlESTQwxOAZTSQ5YAhR4xxIxpoCVokszoGVGh8Gy13lpqwf1z9//ugRC0GY+0yTNN4O9h647mXbyxrDhR3NO3nCmHBDuaprDIcW2CsRikkdyJAFAwxv/WjsphymPduyp+iZc9UICkeljuK2UdUAAAP7AGDGAixkwoUAQ5CGsARhhMIUU1QeNTwDF2M1E5OOFzPgIO/hTUwTQXWIpjnJSeMg0UkMNohoXkLjA94ECp7iCZTIkONRdCALIokoZKXpwspVmXXFZNiwY2dFQ4J1ZkYvtFH7SA4HxE9FArxBL4udPoYNT1MXv7IPYxacgWLjGw8ytDNAajMwsz+AMPTgAGAGaDn08SgOyZTR2CmjOESMOMxA46joFCDQB1AccHUJFhU4iqHKQxdFVhe5gaOD/JWV4lVdF+b0y81eYa7As9GMpFTVK3PqY1I8fqTDsMRndp/nX0RcC/WtWAHsYd0AFjQjA52YX6Yxkbaga0KeKOHMTOLD+Vz9qgaSM0WrgsILHjWCxoGs1k4HWXoADDegSUIrnBDvIpO6twFLTgeA+hLepmwOtrUiZjelII/hcAK0YHy5pZeP6mC6B491aIZgtd3aP51/FgN9alVjAAAAAAH9gAcRLTgE+ARxwEBkSZf8zZUZQm1dGIyxpiqacGEQSOIgPPM0cEnl2FFE9V5MPWBESRVNEA0OtLQ5Ewi20QRodInIuwrxSMocOlaQ0+XxO9PU0dlETk9mxaiv/dY5qbj//uQZDMGc64dTetbyhh2Y3m9Z3kzDaxzN01l7KGnjubRrCV0kSpOJS4RMZipZTOm0EvJKMAAAAAAH9jEy2MRSAAYFQC44FDMO04IpZGYKOGgmQUaN4o2Dzo1EAAwGaoadYwMPBBQ5SlZIGEHlknkMkBSMCsrLYm1dpqwi91LmpQxA6vZFOx2mh2SYxGVu9L6wNivtxUutq4xqWqvHvyg5q0CXWx2qwqnr/RIB7GG5P0CkgKBGNaCQY0cAyusxs81LoKTj4QDn/h5WcEovoRtntkFJAhBC2DhJdPtFYaEUQgSccRrhhTIQ9aScgM6tbzlTpxr25lSyKZUqrTg1+8Qh7j+XGUDRHMPanHpa8UhNSHpujaXRzf49UACPOSCCIY0A0ceKBRGapGdhSYZQYxOCwYRY7JUrYOIoJWmmZEgIKyFayKqwZEcHSkrJlsxlZqDqnSt1MkPFH+fx/1MYnG6UUoDY0CY0FwSF0MSJJ/paohZiybvfY9EYrvLXVbW0VIT/WrwAAAAPrGGIjxoOvMhEhpNpc6Bg7i830w2ik1EQ2S8//ugZA+Gc1obzdM6eXhpo5m9aw8/DGhtN03ph6GejabhrD1k3sEIphcyb8mgqcAEpuXhUXTDU2TCUWIR6SrDHXWUharRZxJVOqwcoRydmOdRRFteiuoCegMvVz+ICRHxij9WhH+u9ZYoXart0o/TWgRAAAAAA/2MZ5gpWg+PWWUhQAbSAe2Bcp9aPIN3gNAkyeBmcWClIKy5Dc3BcZOVMxIUQCYbKlqJ1F1ZlVrGFeAsmxhQ0WZDlQpVLCc2JTMkdnfz0ghD31LetFtaMPpbdowP77UDfbV+BNlAHsAbhJgUFg0WBSIFxYIBSpSGTVGYHj2ExRk0sASzFCkwgYqoDDjgwgClqaihZblWxBYFDi7skeFkUVFQHBHE4sgCCKPikSTZ9BxGuVtNIVG3xY4zrF7CaF+ZFx2X2lbf+zdYBIW6qDJFg4UYUQaYWZOgvwarGFUGWgHMCmgFEdxGNwAqnwl4ocX+SOHlqaLMDER9/HYZKfwLssAqTlJEApqlVTqxSqN4q1Cx97EYlPBCILHfGF9i68GUlFQGZGHC6vfa/f9CK6P1PrAAAAA/ogThYmNGGHIHZGdQeShmoGT2DExicHYny0brRhkHOOrCaj45Etx0oedhvYuHGVWf1djsyZksbft+I7GQpSnxXNzsluLCa3FU1pAm+DSX6smSe1ab3VxFWxthj//p92SU//uAZDKEUycczdM4ZChko7m6Zwk/C+hxOaxp5WFoDub1jJmswAAAAP9jELlD+IUAhMeFPVgKqm0SSCT5dUvsBum8Svh6hdBGwOK0JeTPUHFgEdmVRB+3Hbxdi5FmrdXm4ERMOBUXR0sbYFJO8iLIoCVqpv8HFLtGTeK3mBfI1zm9ui7n026vutcAAAD/sAT5GTj4AQMZaVDHDQmGmhUubcmFoY4PC0lGIqDxk6kkWTUkPCVevotDkAZjoWSiHGX5nUaGKxOp06TcLWquZ1A3xpnB69gv/tqkiFD/2e3yc8JffeTa74rdqFAAAC9bJKRTEuU9pkEbGGMJbszIbiGmTIN4DIuER5btwJSj47eKhr/rBo1tFf1njS2uw+vSvBavUtofzkU3OU9UAjSKZOfTQjAHX3diEaPe7IrGz2ha97RBqnAAAAAAB/YwNFtFMGdX5UgBx4UEFWjaBjJnqZjiZjVgQBTAMYFCDQOUw+v/+4BkFY1DFhzN6zoaeFwDebpnBk8LBHc2bWGJIWAOJumXmeThWyD0gFb0xmStrTv62lM40akEReOQryZJjIbVL9qiFZW1RxBJ+xsyWsXFtLWNPlqrvU7Vq00KrlAAAAH+RifqUyCFnAJANRszdBCYgKBAEegIoeWCzJpLzHnP4yJ/FE5IiwtlwX+lzvRNwk538fRvnpRVZNGuxW/OSOv+A8TE0aQwk72GF7Itqoo/3/r31zvtt2ZoAPkxNBswiVIUVUtAEpJiTQggAQeCcmYYie2hNUtmaYj0lgHiTVYZL3/WMrETiWCAj8aCVgkB2blgSaLrZ/3p8GV6YPRbsf51bl29mRZruiSr8s5RhabPL2AABf2AVqjbIMiIfE0WBzwGoBxyFYMSS+LPiB1PQRKJBJ8+1QJIL4Xw/ytE6QiVFHUq1TES6lLeLOq7N07cyS/LrZbYYJDb+tRxZNG161BXS3I0d6F9d1F9AgAAAP/7kGQChFKFGU5rOEsoW8OZvWcJPQr4bzmssTBhZI4m9Yel3Ff0AEw8gPZHg9yIijjJNWJE9C4kHEI4eCqYwBF3Fu01RYsbf5hLFHQhpH8TIgSEblh9KBCCaJTC326JovS2DTjj/SvYulqal9XKb1isAAAAAP+wD8hEcYo4RCImRgQcyGmFzC1IOiT8W+i4ACg6hCJkDO3cXnJI4lKyVxoGiLuq/CgJBuyIEsF9IomWcRitkVfygr14N9M+KsaxZ6jvZx9159WhGUA9LwAAQP9sCSTiBYo2YAqxIjKOa0DMVnsjLVL9Fky65bNJODHEcCJrxBEDZ4JSIrGIk7ISiQKiImVg5B9fXZmm38bSiY+i6nm2LQxCbuRbt/cIWE64t/Wrir4AAAXd2DC+Z7khIL/GZK6wM1nbD0+S8piAOHA9R4IVCLW/Q9FFMwktJgtj+ThTHQplSfbG1HUNBhgkYVus+PjWT3GWu6rpB1FQso44iKWuxcgwqKalrtt6VXCAAAAAF/bALAfwc6qAtcMADHkRVKYQkGW+TrHipFEF2/0Wzv/7gGQSBEK5HM5rDEO4WAOJvRsMDwo4bTms4SVhVY4m/ZwkfAmEEDYdMiUsPkASCeyVyy/CSgUizjK2Z1VW9G6MJenMMXWD4QoJMTW8Zi2T9zr01/+21xiAAAAAB+sAG2nuXQKFmcjYBJw1l2h2qK8OhQioC/K8BAFWJwX9UoJNx7EgKERBWoB0dloqkgSTomoyXzzlSwhNR6p12XWCDvmCl7v7KFqCTq17dYsvufXM0AAT/qAJWqFjUR4jHA6Y4IwMdkCUAoiIKD0NhxkvkL3mXK97+SSeFQmiCA4JR0PgkPsiX8sTzetirvRaf2UMSTd9WKPVmMm9xAcyssnd3bfQUIIAAX9ZBAuJmOBJJ4IEMU2U4XJEX/BRnDbcQDnkIHBglnlJJnciL8uCTgkFBcZBEWIFVAbOm5GrhbcWkT8Tt8sIgI71IHGpD1s6URayju9Ow/u/+tVyAAAAAB/WQM7YMUPBSlDDqsQsFXCY//uAZAsEUtMdTesPQlhaI3m9YelzCSR3Oaw8x6E9Dib1hI4U0BIOZOmsY4ZxIxSgqRaU+zNCeVSvNRUNqhVSkdsh0BcKR10MC596i7KMpWHO9zUxZm2xlOtL20AuwsMRSh9Cf1Ofdd0rUAAAAAr+yCKwE1UxcEjBgEzU2kwQCFuBhCvN309RILJWAiREQqVyhqlQ86SYdExMcCp0cQQGCVsShXWNQtoUEVYbBjAST9uwXvUYYLIwHZFT6Kk/5CxDvrmZkgAnP6AAF8OOLDIrkSyiKbxWNpLErk8olSLWoI5fSwvG5DlAxMw2mxUoZBYwrTEbHHEVH/bfpVW+HIZrIz9670dBew4+yrssQ80AAX3ci4kQwTTpLtga670+UvEZ3UUHQtBolD1b2Sv66sBv7wUEolHwNvYVPiKjKNwSOEZmZIJjmheGv94xCXTiblroP0+S67qlfq+xlF55AAAC/7IHIgcLRZOVWCPJlIP/+6BECQRDQB3M0wk0mGfDuZph6VcMTLEzrDCvIY0O5nWGGhxPfVPoWgWCuELQQBJ9tOVsTUg5xHEZZGnCYqJhFKZQcJ3quN2lpy5qi8uTzc2pLgNHnTx0JnCgeKCwDKPKEmtU4ISIjGBuIlOIqGre2BQyiLlKMgxGB7QAAAD/sgcBcYwsOOt85MI1r7FTgx7ThCYfI4A/iXAMh/HWvHCYSiO5VNY0C7xkjGSViiMPDqBgQzuMqxmK8K32nLTHnzxwVOlg4XFjCXoIsZcFJMSjw7BtbyKhy3MgUPoi5SjItRgcwgAAz+xhflIM3U7AoWiiI6GC8SYgMQjuWsfhNJkDMVVhWeHZZNhJeEkSxHiEj1NS68io/2uPUq6cejiKSmKYwIHf+kqPWcllYp0KIRILjlJNEY5Z4Pa3petfBJ7klv3rvtQoAAAb/YwqCoMbM4I6QiNK4MTyS0ZjJnyZMPXR1AoFYVBYZo5AWOEoYCMgOricSisXlBTLRIfVLH6Y+IWjzUioi7okE+oSE1FgmOAIWDCwqRY02tyYgLuycxYzLhlF576LE1X1VQAAAAJ39gCpV5jARUqNpKUFCATwCxeTDWQP9EYZUeV07QFCaT6NsFqOzhWeo5NbOnzj0NIe/UkuQBIIAvGamqr637rlv5KlFNCbqqrxAABL/rgv5PxpF0dYFwjTFisya2n/+2BkMQBCZh3N6wwbuEwjWbphiHUJoHc3rLzHYUaO5vWEmdze0lii8RI7arzNicXyaTC4XgqEnNYfSHZSQgMhmEd2ma+0GEpnxru+0y8IDcVd96nLNf/u/f4uqxAAAQVf7IHRqhhpyJmGMJVg0x/QD9AIkeJkmul1g/BXi+sNmJRTRGC6oHQCbu5aF/G+PkVf0pmeMNQ/cxyd9jmLmO7dWhP6r6I7e56zAAJ/9kFaFhVx6EuwROWgWmVUcJE5MdFRIl3kx3ciJkRMjgiOic/NZx0PP4zeMjiPdo7Kj+bq2srUTvoSODgBMtc5tiX0nWdSnga/fot/u3aldQAAABLv9kBQMl3/+6BkBYACfR3N7WUgCFHiub+ssAEURMc1+byAAasOJn81kACKgAiMuaSilvWSBBjtP8ie802154KkSHiM7NGjVGBeaFNaGqT88qN0Vz2vkvsbnI7EEEZ/3ZSMr1upuz3S7f/9OuuuvMFCgoAAAAKv9ED8YmMsbM7PTHBM8AOEEIwQSxBD7MQhqDO88S3RUsUEgyxS27dUnd6CF1M6rayWqtJCZgkExcFfEOhZTcrfal7mVDosz//9HM6DYxRAFoQ0VUM56LxIGgEABpbCB44cXNIFWGGJjRhQCYKKmNChiKYYSLmJj2lNjAQdE8BHTBgDEZBwlAtiqykvQwWJiQyRScRIEwWBqBSmag18mIQqYiDsxyG85imhFp34Nwl8NyKEu87U3////nbw5zrdIg972M5dL////+c3//nQ3bFumpbnpdMRGCIMhI//6QEFQgaCX//ak8x6m////+laKgmgABQaMiGV7AoEDAAAAoCMkDSRNrZEQUyyNaBUCGTWoUmcDggKiShNMQBLvNZYiHMO+YFDCmUu6RFMhdcEsKVI0o2u8uWFMOnJtgzuyakk1LS0sW5jWrS5zJVG5L4lLfh8yFf4oaATfWoJt2XX3/2gAf1VeSJHQUAkcatdmY/jARAQEKq7AS7M2oCAmFAVjagJ7ER4Gnwad5LBV4Ablu3/AAAA//yOCjvCjQr/+xBkIQ/xkRtK7xhgCBdgCW3gAAFAAAGkAAAAIAAANIAAAAR8UXFFZBXAqkxBTUUzLjk4LjKqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqg==\n\n\n\n \"#\n \n }\n }\n}\n \n \n ", + "test-files/functions/input/named-args/single/testcase_image.baml": "test TestImageInputBase64 {\n functions [TestImageInput]\n args {\n img {\n media_type \"image/png\"\n\n base64 iVBORw0KGgoAAAANSUhEUgAACgAAAAOxCAYAAAA5Wv7bAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0QA/wD/AP+gvaeTAACAAElEQVR42uzdebzcVX0//veZe7OzyQ4ugIobikKCQEDFDRIWW1vB9tfqt60KtUoEBLKBjrKEPZCACtrN1rZCba24L4XKDmEXXHABgRBQkD3LvfM5vz/CkpC7zMydufczd57PxwNNZs45n8/nfM585jMzr5wTAQAAAAAAAIxItXrHRL0AAACMtoouAAAAAAAAgJHZ5LHHNtILAADAaBMABAAAAAAAgBFaM3GiACAAADDqBAABAAAAAABghHor/QKAAADAqBMABAAAAAAAgBHK0buxXgAAAEabACAAAAAAAACMUJEKMwACAACjTgAQAAAAAAAARqhSSwKAAADA6H8W0QUAAAAAAAAwUtkSwAAAwKgTAAQAAAAAAIARKlLFDIAAAMCoEwAEAAAAAACAEUqpEAAEAABGnQAgAAAAAAAAjFDKaQe9AAAAjDYBQAAAAAAAABiplHfWCQAAwGgTAAQAAAAAAIARyjntnCMnPQEAAIwmAUAAAAAAAAAYue3OOP6qjXQDAAAwmgQAAQAAAAAAYASq1csmR8SUnglTN9cbAADAaBIABAAAAAAAgBHYpG/SFpEiUq0mAAgAAIwqAUAAAAAAAAAYgVqetEVERBGxhd4AAABGkwAgAAAAAAAAjEAReW3wL2czAAIAAKNKABAAAAAAAABGIq8NABapIgAIAACMKgFAAAAAAAAAGImctoyISDm21BkAAMBoEgAEAAAAAACAEUip2CEiInryS/UGAAAwmgQAAQAAAAAAYARypB0jIlLOO+gNAABgNAkAAgAAAAAAwAiknHeMiMiRBAABAIBRJQAIAAAAAAAAI5HWzgAYETvkyEmHAAAAo0UAEAAAAAAAAJp0ztFXT4mIbZ7565RF82/eUq8AAACjRQAQAAAAAAAAmtQ3YdKOEfHcrH89lT7LAAMAAKNGABAAAAAAAACalHuLHdf9e6pVBAABAIBRIwAIAAAAAAAAzcppx3X/mlISAAQAAEaNACAAAAAAAAA0KaW8XuCviEIAEAAAGDUCgAAAAAAAANCkFPGavN7f06v0CgAAMFoEAAEAAAAAAKBJOceuL3jo9XoFAAAYLQKAAAAAAAAA0ITTj79y44jY8QUPv+Sc6tWb6x0AAGA0CAACAAAAAABAEyo9E14fEemFj69ZOfF1egcAABiVzyW6AAAAAAAAABpXi8pzy//mdR5PyTLAAADA6BAABAAAAAAAgCZUIt4w0OMpZQFAAABgtD6XAAAAAAAAAI3KaeAAYIQZAAEAgNEhAAgAAAAAAADNyIMG/d6gcwAAgNEgAAgAAAAAAAANOnvh9S+NiM3XfSw//8fNFy9Ytp1eAgAA2k0AEAAAAAAAABpUK3reOOTzkd+klwAAgHYTAAQAAAAAAICG1fYZ6tkip730EQAA0G4CgAAAAAAAANCgnNK+w5SYqZcAAIB2EwAEAAAAAACABiw58q5JkWPGQM/l5/+458WHXtyjtwAAgHYSAAQAAAAAAIAGrNro0RkRMXmYYhvfs/MrdtFbAABAOwkAAgAAAAAAQANyHm7537WKwjLAAABAewkAAgAAAAAAQANS5H3qLLe33gIAANpJABAAAAAAAADqlCOnnGLm0GWelQQAAQCAthIABAAAAAAAgDqdPf/m10bEFnUVTnnnUxZcu41eAwAA2kUAEAAAAAAAAOpU5LxvI+Un1nr20msAAEC7CAACAAAAAABAnYpKnhWR6i6fK/FuvQYAALSLACAAAAAAAADU4cLDl01IOd7RYLUD9RwAANAuAoAAAAAAAABQh0e3rLw1Ijatp2x+/o87LZp34yv1HgAA0A4CgAAAAAAAAFCPopjdTLVKFLN0HgAA0A4CgAAAAAAAAFCPyrrL+aa6q6WUD9B5AABAOyRdAAAAAAAAAEM7be6yl6VK3LP+o3nIOuv8EPfU5Cc322LO0p1X60kAAKCVzAAIAAAAAAAAw0gpDs4N1lmn/LSVG/9hX70IAAC0mgAgAAAAAAAADKNIMXsk9StFsgwwAADQcgKAAAAAAAAAMIRzjr56Sop4x4bPpLrbyCMMEAIAAAxEABAAAAAAAACGsHrSxIMjYuoIm3n96cff+Fq9CQAAtJIAIAAAAAAAAAwhVeLPn/1zbrDuuuVTT+1QvQkAALSSACAAAAAAAAAMolq9dpPIMas1rSUBQAAAoKUEAAEAAAAAAGAQk9ZM+JOImDJ4idRIc68/a/61r9OrAABAqwgAAgAAAAAAwCBSzn/eyvZqqecwvQoAALSKACAAAAAAAAAM4NT5N20VEe944eO5wXbWLZ9yvF/PAgAArSIACAAAAAAAAAOopHxYRPS2uNnXnLnghtfrXQAAoCWfW3QBAAAAAAAAbKj+5X9TQ+0WkS0DDAAAtIQAIAAAAAAAALzAonk375gjZral8ZzenyMnvQwAAIyUACAAAAAAAAC8UKX4cDQ6td8Q8jp/ThGvOnP+TfvqZAAAYMQfXXQBAAAAAAAAPK9avaw35fzXQ5XJI9xGiuIjehoAABgpAUAAAAAAAABYx6RVG783IrZv5zZyxPsWzbvtRXobAAAYCQFAAAAAAAAAWEdK+YgmajVaYUpPZc1f6m0AAGAkBAABAAAAAADgGWecsOwVEekd7Wh7g2WDc7YMMAAAMCICgAAAAAAAAPCM3B8fjTqn88sj39wbzpy/bE+9DgAANEsAEAAAAAAAACJiyZF3TcopPjia2ywKswACAADNEwAEAAAAAACAiHh640ffHxFbNd9CarxGJf5sSfXaTfQ+AADQDAFAAAAAAAAAiIhcpI+2fRsbPjRt5aqeD+p9AACgGUkXAAAAAAAA0O1Om7ts31yJKyIa/wFt/fK5wfIRUcRvnp7y5Kuq1bf3OxMAAEAjzAAIAAAAAAAAlfjkmG07xU5TV210qJMAAAA0/lEGAAAAAAAAutgZJ9y8c454T2taS01VSZHm5shW7wIAABoiAAgAAAAAAEBXqxW1Y2IUfzfLAz6W33jmvBvf7WwAAACNEAAEAAAAAACga506/7otIscH1n0sN9hGbtneFHOdEQAAoBECgAAAAAAAAHStlCpHRsS0kuzNO04//sa9nBUAAKBeAoAAAAAAAAB0pWr1ssmRe/629S2npqtUUvFJZwYAAKiXACAAAAAAAABdadKqTT4YkbcZi20PtmxwTvHeM467dmdnBwAAqIcAIAAAAAAAAF3nwsOXTYgUcwd7PjfYXm7drvWknp4TnSEAAKAeAoAAAAAAAAB0nUc2T38dES8v477liL84c8GNuzpLAADAcAQAAQAAAAAA6CoXHr5sQkp53vOPpDZsZURtVnJRfMqZAgAAhv3woAsAAAAAAADoJo9sHh/JkXYq3Y6tnxn8k9OPv+HNzhYAADAUAUAAAAAAAAC6RrV62eRIMb8dbefWlk9RiaozBgAADEUAEAAAAAAAgK4xec3GR0Skl9RTNo/xvqaI2WfMv/5tzhoAADAYAUAAAAAAAAC6QrV62eSc03EDP5vasMWRt5lyOtmZAwAABiMACAAAAAAAQFeYsGbjj0XEi0u9ky/IDOaIfU8//oZ3O3sAAMBABAABAAAAAAAY96rVmzdLOc1t93ZyO8pX4vSLD724x1kEAAA2/LgAAAAAAAAA49ykVfmEiNiqLQG9NksRu939ip0+5CwCAAADfF4AAAAAAACA8eukE5a9oqeW7oiISRHD/UC2YeSv0R/UUh1tDll+4OK/mzC591VHV3d71BkFAACeZQZAAAAAAAAAxrVKEWfHM+G/jjBw4nCrvlX9n3I2AQCA4T8+AAAAAAAAwDhwyoJlb085/e+6j7V7BsAN6+QGyw9apT9VYrfjTt3jJ84sAAAQYQZAAAAAAAAAxqmLD724J+V07gsfzw22k8tzSL25iMXOLAAA8CwBQAAAAAAAAMalX77yFR+OiF0bq1X6BbTedcb8Gw92dgEAgI74BAMAAAAAAACNOv34Kzeu9Uz5RURsO9Dz7V4GONXR5rDt50EL/2ryk5vtMmfpzqudaQAA6G5mAAQAAAAAAGDcKSpTTopBwn+joa3LDOd4xaqpjx3nLAMAAGYABAAAAAAAYFxZNO/mPXIqromInqHKDf5DWW6wfD3t5wbLD1tldSXVdj920V53OuMAANC9zAAIAAAAAADAuFGtXtabe4oLY5jw39A6Yg6NSTlXvlStZr/3AQBAF/OBAAAAAAAAgHFj4uqNj40cu5Vvz1IbqqS9p6684QhnHQAAupclgAEAAAAAABgXFs27ecdcKX4SEdMiYthVd4f+oSw3WL6e9lu+DHCkyI9XeuL1nzzlzfcaAQAA0H3MAAgAAAAAAMC4kCv5ong2/NeO9ttcvkmbFLX8BWcfAAC6kwAgAAAAAAAAHe/U+cv+X4787kbqDB3Q66SFtNKBZ8y7/v1GAQAAdB9LAAMAAAAAANDRTp1/01Y55TsjYsv1fvyqYwq+si0DnOrbjReUzxERD/Wl/LoFi/Z82IgAAIDuYQZAAAAAAAAAOluKCyJiywEe7zgjWGZ46wk5fdFgAACA7iIACAAAAAAAQMc6df7NH8kRh47W9nKby4/Qe8+cf92HjAoAAOgelgAGAAAAAACgI510wrJXVIp0c0TaeO0ja+N2rVsGODdYvp72c+P7k4crv16Bp4oiTZ97xh4/N0IAAGD8MwMgAAAAAAAAHadavay3UlT+9fnwXzukcrSZGiowrVKJr1Srd0w0SgAAYPwTAAQAAAAAAKDj9PZt+umI2GvYgh24HtbIlxnO06eufvLTRgkAAIx/lgAGAAAAAACgo5y88OaZKecfR0TP+s8MsATw8w8PaugfzDpyGeCIiKKoFO+ae+pelxkxAAAwfgkAAgAAAAAA0DGq1Ts2mrBm9U0RsfPAJQYIAdYxpd7gP5p1bAAwIuK+ntX9bzxm8cxHjBwAABifLAEMAAAAAABAx5i4evVFMWj4rx1SOdpsbjdeUpvU+6Uc2aQgAAAwTgkAAgAAAAAA0BFOWXDzJ3KKP2+4YhfE3/LgB/neM+feMNfoAQCA8cm/9gEAAAAAAKD0Tp1/0945xeURMXHokgMsAfz8w4NKdbRZf/l6tjFqywBHRBQ54qDjT3vzd40kAAAYXwQAAQAAAAAAKLVTFty+TUTfjRHx4vpqDBACHD5vN8QPZ7nB8vW0P6oBwIgUj0RPnnHcyXv+xogCAIDxwxLAAAAAAAAAlFa1ellvEX1fzXWH/9ohdUibQ8ixefSl/zrn6KunGFUAADB+CAACAAAAAABQWhPWbHZGinjbiBsaD+tiDXMMebgCKd5Um9RzoVEFAADjhyWAAQAAAAAAKKWTF9743sjpa/HMb1r1/7A1wBLAzz88qFRHm/WXr2cbo7wM8HNl0hHHnrbHRUYYAAB0PgFAAAAAAAAASueUBTfumiNdFREbPftYYz9sDRACHD4bN8Q2coPl62l/bAKAEbE6p/TO4xftcZWRBgAAnc0SwAAAAAAAAJTKKQuWbVdEujTWCf9FRH3RtrZJHdJmXSalnP/n7PnXvcpoAwCAziYACAAAAAAAQGlUq8um5qh8PUW8rOWNj4e1sYY5hlz/QW5Ry+k7Zx571dZGHQAAdC4BQAAAAAAAAErh4kMv7uldU/m3iHjzeD3G3ObyjUgRL08TJlxarS6bavQBAEBnEgAEAAAAAACgFO7a+ZWLI+KPxnIfyhTQG5XjzfHmjVblf6pWs98NAQCgA7mRBwAAAAAAYMydtODGo3PEkcOVqz9wlxosX3+bUfo2G5UP3Wj1DacYhQAA0HmSLgAAAAAAAGAsnbLg5oNy5P+JiJ56ytf/A1ceuHweSft5BPszWPnc+P4Mewy5mX362LGnvflzRiQAAHQOAUAAAAAAAADGzMkLb9k3cv5eRJ5ab51ODwBuWCc3fsztCQD255zed9zpe/yPkQkAAJ3BEsAAAAAAAACMiVMW3PymnPM3ImJqmeatyG0uX2K9KeWLz5p7w2yjEwAAOoMAIAAAAAAAAKPulAW3vr6I+GFEvKjRuvUH7lKD5etvM0rfZtMmppT/85z517/NKAUAgPITAAQAAAAAAGBUVefd+Moiiu9HxBYRYzCDXhoHnTjMMeQGDzKv/+epRY5vnDXv+j2MVgAAKDcBQAAAAAAAAEZN9fhbX9JbqfwgIrbr5n7ogGWGN4kc3z973g27GbUAAFBeAoAAAAAAAACMimr11q0rvfkHOWLHsu9rBwT02i/FZkXk7y0+/prXGr0AAFBOAoAAAAAAAAC0XbW6bMueNcWPUuTXDF6q/mVr6w/cpQbL199mN0gRW9UqPd8784TrdjKKAQCgfAQAAQAAAAAAaKtTFty+Tc+anh9FxOsHK5O7vpdSG6o01uYQ5+ClqT9ddc7c63cxmgEAoFwEAAEAAAAAAGib6txlLyui/4qI2LVUO9aBk/iN8bLE2xUp/vfsude90agGAIDyEAAEAAAAAACgLU464dadent6LouInbvheMc4oDcats6pctnZx1+7l9ENAADlIAAIAAAAAABAy510wo2vjaK4Mke8vLGa7Ziab22brQ3opS49s/lFuZJ+cOa8695hlAMAwNgTAAQAAAAAAKClqgtu3T0XlR/niO0bqdcFM+gNI7WhSmpDn6aNKhGXnjX3ugOMdgAAGFsCgAAAAAAAALTMyQtv2bcSxf9GxJal39kOnMSvLCHJHDE1UnzjrPnX/4lRDwAAY0cAEAAAAAAAgJb4zMJb3lvk/L2I2LRb+6DLZjGcGDl/9ax51x5u9AMAwNhIugAAAAAAAICROmnBzZ/IEefECyagaPTHqOfL5wbL1yNvWCePZBu5Bfv0wvK58f3Jw5XPI9if4Y99bfm85InJex5drabCqwEAAEaPACAAAAAAAABNu/jQi3t+uvOrFqfIRw70fDM/Rj0TKGuwfD1aHQAcuIGRBQCH36lU32403Z/1HUMeoHz6Wlrd/4FjFs9c6ZUBAACjQwAQAAAAAACAppx57K3TVk4s/i0i3jNUueYCcaMUAKxjU2ULADZ3DKMxC2BERFxb9Pf/0XFn7fOQVwgAALSfACAAAAAAAAANq1bv2Db19V+acp6x9pHBA2bdFgBs/pjr3KEodQAwIuLXPUXlwKPO2OPnXikAANBeFV0AAAAAAABAIz574i27VPr6rk3xbPivHVLb2swN1spOeaNeXusprj5r7vVv1RUAANBeAoAAAAAAAADU7TMLbz0kirgyInZo1zY6K6CXytFmam2bIz4HOTZPKX//rLnXfsKrBgAAOusTCQAAAAAAAOPMxYde3PPTV+98YuR0YkRUnvuRKW/whwF12zLAI1sCuL5jL/kywOs+/i+xunbEMYtnrvRKAgCA1hIABAAAAAAAYEinzr9ui/7KpH/LEfs/+9h6PzLVEQLstgBg88dc5w5F5wQAn3Fz0Rt/etzJe/7GKwoAAFrHEsAAAAAAAAAM6rMn3rJbX2XSDeuG/0ZP+5bX7axlhseF3VJ/3HDW8de+W1cAAEDrCAACAAAAAAAwoM8uuOUvcxFXRsROo73tzgropQ5pc2zPWYrYIlXSd86ed101R7ZSGQAAdOUnBwAAAAAAANrqnKOvnvLElKmLI8URQ5V77oemOpYAXq98nTp9GeCRLQHcZH+WexngdVv+Wl+ufGje6TMe84oDAIDmCQACAAAAAADwnM+eeMsuuYivRMQbhyu73g9N+bn/qa98HbotALhhndz4MXdMADAiIn7bk9MHjjr9zT/2ygMAgOYIAAIAAAAAABA5cjpp4a0fyRGLI2JqPXU2DACu94ehyzfUfo6G96eOIx78GJrZRm7xMde3Qx0eAIwUUUTk8x+fvPFx1eoua7wSAQBgJJ8hAAAAAAAA6DrV6q1bR1/+hxRxUCP12h0AfL7OKM0CmEfafgmWAR7jAGCzx5wjbuit5b/4xJl73eUVCQAA9avoAgAAAAAAgO71mQW3HBB9+ZZoMPwXEQ1GyRovP+rGw9QZabhzkNpwzlIrdnuPWk+65Zy5137CqxIAALrrYwwAAAAAAAANqlaXTY01E86KlP821vnNaEQz1uXn/qe+8nW3P0ozANaxqXbPALhhna5YBviFf79kVaw5Yv5pb/mDVyoAALTqMxAAAAAAAADjwmfn3/qWohJfjIhXt2L51ue0YRngFMO32Xz7rV4GOLf4mOvbofEWAHymuQdzxPGfPH3PL3vFAgBAqz4DAQAAAAAA0LGq1Zs3i750ekT6SDz3O1G5A4DP1xmlWQDzSNsf+SyAqY42hyw/xgHA1hxzROQckfI3e4v00Tln7HWfVzAAALTmMxYAAAAAAAAd5jMLbz0k5/hcpHjJ+s+MbgCw+W10zzLAIw4ADlOl0f6s/xhaPQvgc+09FhGffnzKnkur1VR4NQMAQPOfNwAAAAAAAOgg1eod28aa/qWR4n2Dl2p1CFAAcCTHu2Gdrl0GeP0DSXFFkYrDj10082de2QAA0PznDQAAAAAAAEquWs2V6Lv9wzny6Slis6FLl3sZ4BTDt9lc+80FAIfeRm7xMde3Q10RAFxrZYpUfWzK0+dUq2/v90oHAKDbCQACAAAAAACMM9WFt8/IUTsvIs2MqOcHofEVAGxsG3mIY2i2/RIsA9xhAcBB6+RB9/MXuRJHf3LRXt/2igcAoJsJAAIAAAAAAIwTCxYs225C6q1GpA9HROXZx8sWAGx+G92zDPCIA4DDVGm0P+s/hlbPAjhskPSHkfOco8/Y+6euAAAAdCMBQAAAAAAAgA5Xrd4xsejv/2jK6bMReZMXPt9ocKv+OoOUH3jp1ha03z0BwA3rWAZ4iPJ9OcXneyfHiXOqez3uigAAQDcRAAQAAAAAAOhgn1p46yEp4tyIePlQ5bptGeB2BwCH3kZu8THXt0NdHAB81gORovriX/327w+75LCaqwMAAN1AABAAAAAAAKADnXjibdN7inx6jnhnPeW7LQDY2DbyEMfQbPslWAa4wwKAg9bJjY6jfEMu8nHHnDnz/1wpAAAY7wQAAQAAAAAAOsgJJ9z+2kouPlOJeF9u4LeesgUAm99G9ywDPOIA4DBVGu3P+o+h1bMANhkkzXFVzmn+MWfueYUrBwAA45UAIAAAAAAAQAdYuPDOHXqjf0GO+FBE9LR79rb66wxSfoilW0fWfvcEADesYxngJvv0h0Uqjv/kaTNvdiUBAGC8EQAEAAAAAAAosWr11pfkvjguRzoiIiY9/0xuTbhqPZ2wDHDnBgBH3KcCgCPpzyIivlZU0gmfXLTnL1xZAAAYLwQAAQAAAAAASmjBgtu36Y08N1J8NCImb1iiWwOAQ7fZfPt5iGNodhutXgZ4/AcAB62TWzaO+is5/VNPrf/kj5+9zz2uNAAAdDoBQAAAAAAAgBI54YRbd+rJcVSO9OGImDp4yc4PADa/jVGaBbB0AcAm+zO3rj9HfRw912TLg6RFpPztoqh85pgz9lzmygMAQKcSAAQAAAAAACiBE0/8yRtTrn0yIv155Oitp05qc3CrvjpDlB9i6daRtd+5ywC3OwDY3DF0zTLAA5TPETmuKlKcfszpe1/qSgQAQKcRAAQAAAAAABhDCxfesm8lpbkR6aDU8Cq33boMcOcGAEfcpwKAI+7P9eus1+ZNEfm87X9931cOu+SwmqsTAACdQAAQAAAAAABglB1++LIJ22wz6b2R8/ERMX3d55778UYAcJjyuUXHu+EOl3sZ4PEfABy0Th61cfSzyPmsoi/+7ZjFM1e6YgEAUGYCgAAAAAAAAKPkhBNu3rkSPR/KEX8VEdsMVKbbAoDNb2OUZgEsXQCwyf7MrevPUR9HzzU5ukHSFPFYkfNXeyrxhTmnzbzZFQwAgDISAAQAAAAAAGijI4+8a9KLNln5npzS4RH5nTHM7zONBQDbMXtbCwNr4yEAWMemyhYAbO4YumsZ4CZmVbwxUrpoVdH/73PP2PcJVzYAAMpCABAAAAAAAKAN5s+/7TU9PZW/SpE/FBFbrn20weCWZYCHKN+5AcAR96kA4Ij7c/06DS0nvSpFujRSvmjOaXv/0JUOAICxJgAIAAAAAADQIgsX3v7SlNL7Ior3R6Q9n328yaCRAOCw5XOLjnfDHW7dMsACgCM/3nWbK9U4uj1H/EeR8sXHnDbzl66AAACMBQFAAAAAAACAEahWf75lrbb6T3JOH4yImTHA7y8CgEMfTPOzt43SLIB5pO2P/jLAqb7daLo/R30cPddkaYOkd0aKS3pS5d8+vmjPX7gyAgAwWgQAAQAAAAAAGrQ29Nd3YM750IiYFRG9Q5Vveva2Dg0ADnwMeYT7NFD5zl0GuN0BwOaOobuWAW7jTJJ3RiouiVrPVz5x5l53uWICANBOAoAAAAAAAADDqFZzpVa7fbeiSAdEitlp7Ux/lXrrtzcA2Hhwa8N9GkgnLAPcuQHAEfepAOCo92fj28g5RdyYU3wncnx3u1/fd91hlxxWc0UFAKCVBAABAAAAAAAGUK3+fMu+vtVvj6i8K1I+KCJe/OxzI5oRzzLATe5Pi/oz6uvPwY+hmW0IAI78eNdtrnPG0QvKP5lTXB4Rl0YuvvuJ0/f9rSstAAAjJQAIAAAAAAAQEdXqsqmraxP3qETP/pHjgIi8W0QedJa/UQsaCQAOU2eUZgHMI21/9JcBTvXtxjrl2xsAbM0xR0Tu2ADgC7vlJxHpe5GL769M+Zq5Z+z7hCsxAADNfS4CAAAAAADoMsdXf7b9hL7+6TnFPhGxb4qYERGTNiw5xrO3dWgAcOBjyCPcp4HKd+4ywGULAK6t063LAI9JAHBdtUjx88hxYyXiykjFVR87fZ87U6QcAADQws9RAAAAAAAAHefYY2+dNmFK7+srRd47p7R3RJ4ZES9Zt0xpl2/N9bbfeE5ofCwD3D0BwBGNo7qPoVsDgPWPpZaEAHNd7T+Uc1yTKunqXNSuiVW9t85ZutfjrugAAIz0cwUAAAAAAEApVauX9a6KLV7WU1R2yZGnR06vi4hdIqdXR+Seoeq2OwC4fh3LALeiT9s9e9vgxzB240gAMIYMAJZxHKXGhsRw7T8Qqbgj5XRnRLojpeLO3imTbzqiOuNp7wAAAN1JABAAAAAAAOgoRx5516SNtujfIffnl6VK7BA5vyxyvDoidokUr47IEyIan0FvvTrrKUHQSABwmDqjNAtgHmn75V8GuN0BwNYcc0Tkrg0ADtSftYj4ZUTcHil+ETndk3L8NlK6Z3VfvvuYxTNXeucAABi/BAABAAAAAIBSmDv3V5umKU9tEbXKFjnF5ili81ykLVMlXhpFvCwqsUPKsUNEbDd0Sy+YbWzEAcDBGynXMsCdHwBsfhvdswxwuwOAa+t0wiyAAoAN1HkoIn4bKd+TIn6bc7o7RX44pXgk5crDRSUembQ6Hvnw4pmPeCcCAOg8AoAAAAAAAEBLHXvsrdN6e9PEYvLEKZVabZuISqVIaZNK1LaMiChy2qqSY+Ncie1SzjtHxKsiYqeI6Bmu7aaCRl0TAGw8uFXfMbQ6BCgAOJLjHdE4qvsYOnsZ4FFfVrmOY298JsZ2jKM83CynOXK6JyLflSJ+ESnujZyfTjk/mFMlR44/RI4/FJWcJ6XaQ32V3qcmFan/Q2fs+4R3PgCAsSMACAAAAAAAjLlq9bLeNWu23KK/EpunXNkiemKLSsTmuchbp0rlpTnnHSNipxSxY0RMHbq18RMAXK+OZYCHKT9Ks7flzhtH3RYA7IhxNMzmWvy6XBUR90QUd6ec7o6U7o3IK3KRH4meysMR+eEJPcUjL5q4xcOHVXdZ4x0JAKCzCAACAAAAAAAd5djqrVtP6uvdMVdix8hph0jFjjnSqyNi14jYasCgUd0z6A2mBEEjAcCW9Gdj28hDHEOz7ZdgGeAxDgC25pjDMsDrl/9DjrgtRfw8It+dcuXunPPdEybW7j7i1Lc+4J0DAGD8EgAEAAAAAADGjXnzbntR7unZpScV0yOl1+WIXVLEbpGHmzXweZ29DHDnBwCb30b3LAM84gBgXcfQCbMAdmUAsD8ifhuR74yIGyOnO1KluPNjp+9zZ4rU+BrgAAB0PAFAAAAAAABgXKtWL+vt799y5yJVdstF3ruS4i050usjcs9A5Ts7ANh4cKu+Y2h1CFAAcCTHO6JxVPcxdPYywKO+rHIdx95oEDOtrfTTyOmqFHFVkfpveWTK5j+tWqYXAIARfp4AAAAAAADoaNXqHRv19cWbcsr7pIh9c8S+EbFZRPkCgOvVsQzwMOVbPXtbcwHAMo6jbgsAlmscDfO6fH5z/RFxa0S6KuV85cRi4mVHnD3j967YAAC07r4UAAAAAABgHKpWL+tdVdtqt0qOfVPErIh4a0RMXr9UCYJGAoAt6c/GtpGHOIZm2y/BMsBjHABszTFHpy8D3B8prko5vhtFuiKv+sOyOUsPXO2KDABA6+/FAQAAAAAAusjRR189Zdq0zfbJKR8SOf9RROyw9plOWAa48wOAzW+je5YBHnEAsK5j6IRZADsuAPi7iLg8Ir5ZW736G0ef+/ZHXXEBABgJAUAAAAAAAIBhzKve9vLe/nRIjjg41s4OOHHd58sVAOyA2dvy8AcjANjGcVT3MXT2MsCjvqzywIqIuDnn+GFK6Zt/mLLn1dVqKlxVAQBoFQFAAAAAAACABsydu2zTnokT35uK9GeR4p0R0TuqQSPLAA9TvtWztzUXABx6GyUJrAkAtmscFRHpyhT5P6LS959zFr31d66cAAC0iwAgAAAAAABAk6rVOzZfU8sHV3L+QES8IyIq9dZtOmgkANiS/mxsG3mIY2i2/VYvAzz+A4CD1inPMsB3RopLiuj98tGn7fFrV0gAAEaDACAAAAAAAEALVKu3vqS/v/KnEXFoRMyMYX6HEQAc/mBKvQxw6QKATfZnbl1/1n8MrZ4FcEwDgD+NFBfnovbvR52x789dCQEAGG0CgAAAAAAAAC02f/5tr+npicMj0v+LiM0HKtP07G115rHaPXtb/XUGKZ+HP5hSBwDr2FS7A4AjGkd1H0N3LQNcZ38+GZG+kot80dFn7n2TKx4AAGNJABAAAAAAAKBNjjzyrkmbbLLyPSmlwyPiXes+N6LglmWAhymfW3S867fXaHhu6G2MamBt8PYFABsZRz+LFP80Mfov+rvT3vIHVzgAAMpAABAAAAAAAGAUnHDC7a9dOyNgPjwiXhRhGeDhDqbdAcDGttEJywCP/wDgoHXatwzw6oj0jZzyRUeftvcPXckAACgbAUAAAAAAAIBRdPzxP9t44sS+v4yIv0sRr1/7qABg8/s0UPluDQA22Z+5df1Z/zG0ehbAlgcAf50iPt/X3/tPx5494/euXAAAlJUAIAAAAAAAwBhZuPCOfSupmBsRB0XkYX+3aSwA2I7Z21ocWMvDH0ypA4B1bKrdAcAN61gGeIR9emOKtOTRKU//W7X69n5XKQAAyk4AEAAAAAAAYIxVF9y+ay3lj0WKD0bE5MHKNTr7XPcuA1yeAODQ28gtPOb6d0gAcANFTvnbKeI8y/wCANBpBAABAAAAAABKYsGC27fprRQfzZGOjIjNByrTbcsAN99+btHxbrjDrVsGWABw5Me7bpONjqO0OlK+uJaKU49dNPNnrkAAAHQiAUAAAAAAAICSOf74n208acLqD0VKx0bEi9d9rtsCgM1vY5RmAcwjbb/Fyyo325+5df056uPouSbrDgA+nCKf21upfP7ji/Z82BUHAIBOJgAIAAAAAABQUtXqHRNrtdpfRY5PR8T2EY0GANsxe1sLA2vjIQBYx6bKFgBs7hjGxTLAT0ROn1udehbNO33GY64wAACMBwKAAAAAAAAAJXfkkXdN2myzlf8vclRTxHbPPWEZ4CHKd24AcMR9KgD4Qk+mnC6INRNPO/rc3R51RQEAYDwRAAQAAAAAAOgQxx5767TJk+PDlUjzI2IbAcDhyucWHe+GO9y6ZYAFAEd+vOs2t95+PpVyOj/31c44ZvHMR1xBAAAYjwQAAQAAAAAAOszxx/9s48kTV8+JnI6NiM2GLt19AcDn64zSLIB5pO2P/jLAqb7daLo/R30cPddkjoh4Okc+P/dPOPPYs2f83hUDAIDxTAAQAAAAAACgQ1Wrd2xe9NeOjxxHR8TEwcqlkgW31qtTRwCwmW10+jLA7Q4ANncMpZ8FMKcc/xmpOP7o0/a+2xUCAIBuIAAIAAAAAADQ4U444dZXpxxnpUgHD/R8o8GttXWG0wnLAHduAHDEfdplAcAccUMlVY4+etEeV7kiAADQTQQAAQAAAAAAxonqCbe9q8ixOCJev/4z3bcMcIrh22y+/VYvAywAOILjvS/nWHjM6W/+lxQpuwoAANBtKroAAAAAAABgfKievOsPKxMe3i1HHBERv+vmvshtLt9aqUPaLNU5ezpHnD5p8tOv/eTpe35Z+A8AgG5lBkAAAAAAAIBxqFq9Y/Pc139KjnR4RK6UbQbA9erUMQNgM9vo9GWAR37OmujPzpgF8N/7i75j556x73KvdAAAup0AIAAAAAAAwDhWXXj7zCLyRSnyLo3WHf1lgAUAR3K8G9YZb8sAp+Up8sePOW3P//bKBgCAtSwBDAAAAAAAMI5VT3nD1St+t2a3nNO8FLG63HubOqrNdi8zbE3b5xQp0kX9xZrXCP8BAED7P/EAAAAAAABQQtV5d7wy9/RfGBHvqKf86M8AuGGbI2n/+TqjNAtgHmn7JVgGeIxnAHxhnRRxWy0Vhx+3aO/rvIIBAKA1n5MAAAAAAADoWDlVF9z2gUhxTo7YYqiS7Q4ArlenjgBgM9votmWARxwArOsYRmUZ4JURccYTkzc6tVrdZY3XLQAAtOYzEgAAAAAAAOPAggXLtpuYJvx9jpg9VLnRnwVQAHAkx7thndz4MY/9LIDXVKL2wWNOm/lLr1QAAGjVZxgAAAAAAADGmZyqC2//SEQ+J0dMG6hEpy8DnGL4Nptvv9XLAOcWH3N9O1SiAGB/ijh7o0d6Tjziohl9Xp8AANDqzzAAAAAAAACMO9X5t70mV/JXImL3Fz7X6QHA5+uM0iyAeaTtl2AZ4LEJAN4dOX/g2NP3utIrEgAA6lfRBQAAAAAAAN2tumjXn6UJj+yZUnwmRdRGc9u5zeVH3XiYfiMNdw5Si89Z/pcpkzd6g/AfAAB050cQAAAAAAAAWuTE+bftXankf42Ilz/72OjPAtjgjHV1tT9KMwDWsal2zwC4YZ2SLgOc49Ec6aPHnb7Hf3jlAQBAc8wACAAAAAAAwHNOWrTrNWlCMT1y/OfY7UXqkDabM+5mPWzO//b0VF4n/AcAAOPlkw4AAAAAAAClUl142+ER+fyImDB0yVbPALhhm61pf5RmAcwjbT+38Jjr26lRnAEwp4ilGz1SOfaIi2b0eZUBAMDICAACAAAAAAAwqBPn3/qWnkr6akTebvBSoxsAbH4b3bMM8IgDgHUdQ8MhwCcipb85dtEe/+mVBQAArWEJYAAAAAAAAAZ10qI3XhET+mdEiqsGL7V+fGxES9yavqIlSrjM8M8iFXsJ/wEAQGsJAAIAAAAAADCkanX35dH7yH6R8umjt9XUIW02p4QBvXaeyv+I/kkzjl20151eTQAAMF4/5QAAAAAAAFB6n1l465/niC9GxLT1nxndZYCbb3+UlgHOI22/BMsAj3wJ4P6IfMJxp+15ulcOAAC0hwAgAAAAAAAADfnsibfsVtTSNyPF9s8/OroBwOa3MUoBwDo2VfoA4DBVhuzPHI9Gyn963Gl7/q9XDAAAtI8lgAEAAAAAAGjIp056080xsbZHRNz0/KPrx8dGtMStKSxaIo9V+Ry/KXJtpvAfAAC0nwAgAAAAAAAADatWd18eE3rfFhHfbN9WJAHXlTtgH1OK6yf0FHvPPWPvnzpjAADQfgKAAAAAAAAANKVa3eXJ1/3i538cOV/QOXud2tZma2fc68jw438/Oany9qNO3etBrw4AAOjcTzgAAAAAAAB0mc+ccOsncs7nxDoTUDT6Q9R65fMGfxi+Tt3byM3t05DyEMfQbPu5Rcdb/06l+nZjoP5c8tTkPY6uVlPh1QAAAKNHABAAAAAAAICW+MzCW96bI/41IqY++9jIQ4AdHACsY1NlCwA2cQy1yPGJ40/f4wKvAAAAGH0CgAAAAAAAALTMZ+ff+paikr8ZEZtEtH8WwG4LAI64T1sbAFyTU/zF3EV7/KeRDwAAY6OiCwAAAAAAAGiVTy164xWVSuUdEfH78u5lalubucFaedT3s2VW5xSHCv8BAMDYEgAEAAAAAACgpT510q43RlG8LXIsb/e2csnKl19qRZWnUsTBcxft8Q2jHQAAxpYAIAAAAAAAAC1XXbT7nT2V9I4ccW8j9dYL3KVx0BEdeAx56CcfTal493Gn7fFDoxwAAMaeACAAAAAAAABtceLJb/x5bxRviYhfjqylpDPXMXazGOaHoie//bhFe17jLAAAQDkIAAIAAAAAANA2J5yy+z15woS3RMTt5dqz1LY2WxvQK034cUWqpHcef+qbbzGqAQCgPAQAAQAAAAAAaKtqdZcVeUJ6V0TcWYb9GbsZ9Mqi0VBhuj96077HnbrHT4xmAADo7Lt7AAAAAAAAaMopC27fpj/V/i8iXj1c2ed+xMob/GHo8nVqdK6++tvPA5fPI2k/t+h4G9ih5+v8rhK1/Y5dtNedRjAAAJSPGQABAAAAAAAYFQtPfcODPdHz7oi4p+5KaYM/EKM2i+FjlVyZLfwHAADlJQAIAAAAAADAqDnhlDfcW0n53RHxwNjvTWpbm+NgmeGniiIdfOxp0280agEAoLwEAAEAAAAAABhVJ568212pUjkgIj08VvvQWQG9NNptrixyHDzv9BlXGq0AAFBuAoAAAAAAAACMuk+dtOvtORfviohHB3p+HMygt77OWcF4TU7p0Pmn7XG5UQoAAOUnAAgAAAAAAMCYqJ662y2pSO+JiKeHLJg2+APRlpBkfyUXfzbv1Bnf0rsAANAZBAABAAAAAAAYM59a9MYrcor3R0RtbPagfcvrdtoshjnFUcedtud/G5UAANA5BAABAAAAAAAYU9WT3/TNyDF3tLfbWQG91NY2U8QZ807d4wKjEQAAOosAIAAAAAAAAGPu06e+6ewccf66j3XaDHrDKu8Kxv/59KQZ841CAADoPAKAAAAAAAAAlMLrfvGLo1LO3xjwyaR/WiFv2K03rJyU/l+1mgq9AwAAncdHJQAAAAAAAEqjWr1jo9TXd0VEvCniBT9m5Q3+sIFGf/xKMXybzbefY/BjaGYbucXHHL+u9E3Y+7iz3viQkQcAAJ3JDIAAAAAAAACURrW6y5N5QnFQRNw7GtvrrGWGWzq3x8PRkw8U/gMAgM4mAAgAAAAAAECpVKu7L0+V4pCIeLKzAnp1KMf6XGtyEX889+Q9fm60AQBAZxMABAAAAAAAoHQ+ddLut0bEh9d7MOmXVsiR58w7fcaVegIAADqfACAAAAAAAACl9OlT3vTVHOncDZ9pRxKwPG22c9bDHOlf5i3a40KjCwAAxgcBQAAAAAAAAMprwiPH5cg/LtMuje2yxCMKKt4yadXqIwwqAAAYP0yUDgAAAAAAQKmdsuD2bWqpdmNEvPj5NN3QsbpGfwRLdbTZXPt54PJ5JO3nZvbnkZ6e2ozjTt7zN0YUAACMH2YABAAAAAAAoNQWnvqGB6MoDo2INaa3aEqRc/oL4T8AABh/BAABAAAAAAAovU8t2v2aiDz3+UfakQQsT7qwxcsML5x/2vTvGkUAADD++DdSAAAAAAAAdIzPnnDLv0cRf7b2b4PH3ppbAnjoNpvfxgDLAOeRtl/3MsBfn7to+p+kSNnoAQCA8ccMgAAAAAAAAHSMonfCRyLil8OVa/EMeq03OtN03D9x0poPCf8BAMD4JQAIAAAAAABAx6hWd3kycv6riKjpjSEVOacPHlOd+YiuAACA8UsAEAAAAAAAgI7yqUW7XZUjndaeafRSaY5zhLMYnjH/tOn/a7QAAMD4JgAIAAAAAABAx8kTH6lGxHVjug91l0wNlq+/zUHctGrSlE8bJQAAMP4lXQAAAAAAAEAnOumE21+Ri/5bImKjwco0+mNYo1G9+tvPG5bPI20/D1T+qdSTp889eY+fGyEAADD+mQEQAAAAAACAjnTiyW/4Vcrp2I49gLZM1ZGOFv4DAIDuYQZAAAAAAAAAOtpnF9z8PxHxnoGea24GwIh6ZwEc0QyAdW4mDdPmOuW+Pm/RjPcaEQAA0D3MAAgAAAAAAEBHKyZWPhIRD5d7LxtdXLj+Np/xUO+a+IjRAAAA3UUAEAAAAAAAgI5Wrb7xoZzTcQM912jgrt3l2ybno449e8bvjQYAAOgulgAGAAAAAACg4+XI6aT5t3w/Urzrhc81twxwbrB8fXs5YPk8kvZzRE7fmX/a9AONAgAA6D5mAAQAAAAAAKDjpUi5yMVHI2Jllx36E7We2hFGAAAAdCcBQAAAAAAAAMaF6mnTf5kiTmpNa+1YSKvRuQVj+PI55p1wypvvdfYBAKA7CQACAAAAAAAwbtQmPnpmpLh53cdaGrhrQfmWyXHt6snTv+CsAwBA9xIABAAAAAAAYNyoVt/eH7U4IiJqHbPTzU02uDqn9KFqNRXOOgAAdC8BQAAAAAAAAMaVT5222w2R0wXj+iBzPmXBot3vdLYBAKC7CQACAAAAAAAw7kyqTT4hUloxslZSG/ZsbZsjWWY4R/xq2lObnuEsAwAAAoAAAAAAAACMO3PPeM0TqYhqs/Vzm8uP0FFzlu682lkGAAAEAAEAAAAAABiXXv3LX3wpRdwWMeoBvcbVP9ngDxcsmv5NZxcAAIgQAAQAAAAAAGCcOuySw2pFpKPG0SH1F6k42pkFAACeJQAIAAAAAADAuPXpU990WUR8o/kWUhv2am2bDc9KmGPpwlP3+ImzCgAAPEsAEAAAAAAAgHEtVWrHRMTqRuvlNpdv8CgeWT159cnOJgAAsC4BQAAAAAAAAMa1E0+e8avI+YJc9h0dYrLBlPP8anXmI84mAACwLgFAAAAAAAAAxr1iUjopIn7fobt/6yt+9au/dxYBAIAXEgAEAAAAAABg3KtWd3s0cpzeXO3Uhj1a22Y9sxLmFHMPu+SwmrMIAAC8kAAgAAAAAAAAXaGY9Oj5EbG8kTqNLhvc+mWG01ULT53+PWcPAAAYiAAgAAAAAAAAXaFaffuqnOLMUu/kCyYbTLl2gjMHAAAMRgAQAAAAAACArlFMePQLEXFfh+zud+eftsflzhoAADAYAUAAAAAAAAC6RrX69lURcVrjNdNo72ouKsWnnTEAAGAoAoAAAAAAAAB0ldrEiV9MEXe3q/1cd8k0VPn/PuGUPa53tgAAgKEIAAIAAAAAANBVqtVd1uSc6p4FMI/2DqYocorPOFMAAMBwBAABAAAAAADoOls/3P8PKeLXpdy5FF9ZeOr025wlAABgOAKAAAAAAAAAdJ0jLprRl3M6o7FaaTR2rYii52RnCAAAqEevLgDK5NDqHRMf3WLjLStpwot6a8WmOdImuZI3jSJtGim/KCJtknPeNCJNqqTYNIroiRSb5IgJEbFRREyMiGnrNPmiQa59xTP/xQu+sHns+cdjdUQ8nSOvrkQ8HZFWR4qnI6fVOeLpSspPRMTjEfnxIiqPR+THK1F5tFYUj0UUj0+M3kcnbb/17y85LNWcWQAAAACA8pm26ukvPzVlykkRsVWr285Rb1wwRUR+rnyO+O+Fi970C2cHAACo9xMFQFtNvzBP2KJ/+bYT+uOlRapsn1J+cc6xdUTaNiK2zJG3TBFbRsS2EbHJkI3lsb0cNnPRzBEPp4jfR06/j1T8PkV6OEd+KHI8lFLlgVoU96XU88DKjZ++//K/3mmVEQMAAAAAMHpOWnDzpyOiWk/Ztd8R1/9Fdf3fKefnyqei8ub5p+12gzMDAAC09nMHwCD2u+ChjSb3rX55JVV2Kirp5SnSTpFjh4i8fUS8OCK2iVYtOd6BAcAGPRIRyyPivhSxvIi4O0W+u4j4TW+t9ptvHv2S5ZFSNuoAAAAAAFrj1Pk3bVVL6Z6ImDJc2VEIAF624NTp73BWAACA1n/uALra/meumJamFK9ORX51JdLrckqvjMg7RY6XRxuWRhjU+A8ADmd1RNwTke6OHL/Jke+qVOJn/f09P1/9+FZ3X15N/UYrAAAAAEBjTlpw0xci0hHDlXv+O+L6vqxuNABYKWL2/NOmf9cZAQAA6iUACKznjxf/ZrOVPZPeUIn0+kjx2ijyayLFqyPiZaXYwTEOAJb8wrkmIn4dKf0scv5FyukXtci3FX3pzu8ft+1TRjcAAAAAwMBOnX/Lq2op/zSGWc2m0QDg+nWGllO+deEpu++WwiowRJz1yWVb9kxcvXOl1vPKVMnb54gpkWNK5LxZpDQ1RZoUEStzLlblSH9IEStTJVYVOT+QIn45sZZ/+dGz9nlITwIA3eKyarV3k3sf27HWG69MueeVKRXTipw3q6SYknNMiUgviohIKR4tcqxMOa9MKR7NkVZFyr+JVPvVk6s2/+Xb/6m6qtOOXQAQulS1mivXb3n/K4vc88ZKzrvmSLtG5F0jYsfS77xZABtVpBy/zhG35YifRI7bU1G7bdpLX/yrSw5LNa8GAAAAAICIzy64+esp4o+GK9e+ZYCLv1h46ox/cya6z5LjrnpFrSe9LSK9NeV4XUTaOSJv1vgYWjs21yn/RET8MkX6ec75qpTi/x6esvcd1Woq9DoA0MnuOvLISX9YM3HPKGK/lOLNOeJVsTbvMqH+e/Y80L17joj7IudfRSVuTUX6v5wqV8y46Ozfl7k/BAChSxxwwb2vTLXKHhFpRiVijxyxe0RM68iDEQBsVZ89nSNujRzLKpW4sb8WyzZ5ybY/EwoEAAAAALrRZ+ff+paUih8PV65NAcC7+yY+tnO1+vZ+Z2L8O23usk0npb73ppzeGZH3i4iXtGAMPSMPXmftUw9HjitTxGU5Vb4254y97nNGAIBOcO2Hj921pxLvzTn2ixR7RcTkwe7L65u5Ow9z35XX/cMdOeL/IufvT330Rd/d5ZLqmjL1jQAgjEPvPP++LSYWaWaktGfk2CMi9oiIF42bAxQAbGefPZUibs4535gjbqhEzzXfOnqbX3tVAQAAAADd4KQFN18XEW8eqkybAoBzFp66+1JnYPyqVi/r3XTl1AMi5w9EivekiCnRwFgawSyA6z78QkXkuDwi/UusSv81Z+lejztTAECZLDv8qO2K6Pn/UqQP5ohdB7v3ae6+venw4MOR8leLIn9ljy8uuSa1McXS4s8cQJnNXvLgKyKKfSLyvhGxT0S8dly/vsc4ANixF8/m++2BiLgmcr6qEj3XTHns9zdeUt1ljVceAAAAADDefHbBTR9Mkf55qDL1zSYyWJ0BPdVTK1487/QZjzkD48/S46/cvj/1Hh0RH4yIrZsdRy0JAA6xuRSxMnL8dyXymR87c59bnDkAYCxd95G5B0SldnTk9K4UuWe4e5/B75+aWga4jvu0/OzTv8opX7S6f/Ln9/2HM54Yq/4SAIQOdNDi5a/NlfSOnPJ+sTbwt13XdYJZAMeyz1ZFpBtz5CtTypc/3dt75eUf2/pJr0wAAAAAoNOdc/TVU56aMuW+iNh8qHKtnAUwp/SPJ5yy29/o/fFl8bxrdoxcOT5F/uscMXnwMVGaAODzQzLHNyOnUz5+1t7XOZMAwGjJEem6I459T8ppYaxd6bLOe++xCAA+8/zzRR6JiPN6+tKS3f7p3EdHu+8EAKEDHHj+8h0i53dEkd6RU7wzujHwV+cH1NG6LCZ9tq6+iHxDTpXLKkW6vDK1dvWlR2z/tFcuAAAAANCJTlpw8zkRcfRQZVoZAEw5Zi5YtPs1en58WBv8S5+OiL+IiAn1jYk8ojG0oTx4ndzANlJ8P9XSpwQBAYB2u+7w4w5NESfmiDc0fu/d9FK+MXQAsI66eYN6j0fOS/um5DP2Wrr08dHqPwFAKKH3nP67jfum9r0zImZHjndGxCv0Sv0fUEfjsigAOKQ1keK6HPGDnlp8b8bj2y6rVlNh0AIAAAAAneCkE259dRTFT2OIr4JbFwDMP1l46vQ36PXOd+HhyyY89aL+T6aIEyNiamPjYhRnAcwNt1/knC+cVJk0/wjLVAMALXbtEcftHLnyuRT5XUPdqKQmAoD13bePMDyYB72fuj9yMWf6l5b+12j0owAglMRBix98eVGpvSsiHxIpvTsiJumVpq7fo3ZZFAKse5MPp4j/TSn/sEjFt78z5yX3GcAAAAAAQJmdNP+mH0VK7xjs+VYFt3KKT5xwyu5L9HhnO2vutfumnD9fSen1jdQr8TLAA1mRc8ydc+bMLzvjAMBILTv88Am1tNkxkaMaEZOHuydKTSzl+/z9TbuWAR4yAPhs3W+movbx3f/+gnva2Z8CgDBG9vvH30ye9MTkd/ZU8iG5iNkR8TK90tDn1jG/NAoANrsH6dYc+XuRi0v3fGz7a8wOCAAAAACUzckLbz4057h4qDItmAVwVd/ESS+uVnd5RI93pjOPvXVapbLq3JTyhyIiNfq7QYcFAJ+t+M3cU/ubOYve+jsjAABoxnVHHLt35Mo/R8TOdd2kxEhn8mtXAPCZ5/Ng91PPPfFkpHzs9IuWXtiuPhUAhFG0/5krpvVMqr0jRzo0pfijiNikwe8HqO/aPyqXRgHAluzOwynHt1OKS3tW9373G3O3esLABgAAAADG2oWHL5vw0JY9d0fE9oOVGXkAMP3rwlN3+4De7kznHn/Dq4tUuyQi3jD4OW5kTOQmxtBQGg8ADr+N5yrelyMfOueMfa81EgCARlx7xPGHpxxLI2JiIzcpbV/Kt6l6zzw/fADwWV/JadXhMy666OlW96sAILTZu5f+dvveNOGPIuc/joi3R8SERj9s0fgH1NG4NAoAttzKHPGDSqRv9PXFpd8/btuHDHIAAAAAYKx8duHNp6QcCwZ7fqQBwJzibSecsvuP9XTnOXvutX+ZIr4QEdOGOseNjYlRnAUwj6T95yqvzimOnHP6Pl80IgCA4dz8V0dttnripH+MyH9c5z84GOA+JTdZb7h7rRGGB4dfBnjdv92Saz1/usc/LP51K/tXABDaYP/Pr9i60p/flyK/PyL2jYhK/Z+XaOBza5uM4wBg54y1WkT8X6R8Sf+ayn8JAwIAAAAAo6067+Ydeyrx6xjk6+ARLt9614JTd3t1iuTXgQ6y5Mi7JvVPfXhpRHykzvPcwLjoqGWAn1OJ9Pe1lY9+bM7SA1cbIQDAQK7+23m7VYr8nxHx8iHvT4a5J0pNLOX7/P1Nu5YBbiwA+Mzzj+RK/MX0C5d8t1V9LAAILXLQ5+55UdE/8ZBIxaER6YAYbKa/xq9hjEmfmQWwRIqIdE2kuCR6K1/99se2XmHwAwAAAACj4aQFN18ZEfsM9nyzswDmFJ894ZTdP62HO8eZx946rad31X9FxP6R87DnuNEx0akBwGdeA99d01f5k2MWz1xppAAA67r28OPfHpG+HhGbPH//MBYz+bUrAPjM8/UvA/ysWsr5b3b/0tIvt6KfBQBhBA49594pT/RW/riS0l/kiP2j0dBffdcwxqTfBABLqhYpXxaR/i2niV/7zpwtHvciAAAAAADa5aQFN38sIs4f7PlmA4C1nmLXT50043Y93BmWzL9pq/7o+3bkmPH8KR9uqbjGxkTUOZbaHQAcfhuD/Die0+Vp2upDPlZ9+5NGDAAQEXHtEce/L+X0rzli0vr3DiVdyrepes8833gAMCKiFrn4yPQvnf+PI+1rAUBowkHnLZ+ee+KDOcdfRMQWLWtYCLBEfSYA2AFWRcQPU8SXV0zZ9us3HpH6vCAAAAAAgFY6df5NW9VSWh4RvQM932QA8GcLT939tXq3M5w3d9nLaqn2/Yh49XMPjmEAsPFtDBICzCNpPw9WftmavnTAMYtnPmLkAEB3u+Yj8/4qpfzFge+j27UM8BiGB/NQ91JD1s058tEzvnj+eSPpbwFAqNPsJb99RUTPB1OKD+RIO7VlIwKAJeqzcRwAHJ9j7aGI/B9FpH/97lHb3eCFAQAAAAC0ykkLb/5e5Nh/oOeaW741f2bhqdOrerb8zp5/3atSjh9FxEvWeyIPfc67cxng5/52Y6VSe/ffnfaWPxhBANCdrjli3tyU82lN3Z/EcPdZjS/lu859eMN1mwkAbnh/NGzwMEfKn5x+0fmLm+1zAUAYwn7/+JvJk5+c9L4U+SMR8ZbnXzNteukIAJasz8wC2KF+miP+Pirx5e/M2e53XiQAAAAAwEh8dsHNf5UiBl2Wq9FZAIueyus/ddKb7tCz5XbOwqtfnGs9V0XEDgPPoCcAOET5K9f0pf2PWTxzpZEEAN3lmsPnfjRF+txw9zVjM5NfuwKAzzzf1DLA+fk/5PyhZpcDFgCEAcw69/5Xp0r8dUR8KFJsOWovHQHAkvWbAGCHWxMR308RX566/bb/dclhqebFAgAAAAA0qlq9dpOeNZNWRMSUgZ5vLACYf3LCqdPfoFfL7bS5yzadkGr/FxFvfP4cv/BUDn7eOz0AOPw2cj3lv/n7qWveW62+vd+IAoDucN3h8/84R/7PiOgZ7majtEv5Nn2f1mwAcL3na5HjsOlfWvpfjfa9ACA8Y/aSuyblNOU9lUiH54h3Dv36EAAsFQFAY234s3R/jvyvOccXvnv0dnd70QAAAAAAjfjsgpv/K0W8d6DnGgkApohPLTx195P0aHmdc/TVU/Kknu9HxL7rn+MXaEsAsKGx1IA8xDE0035dAcBIOf71786c+cEUyS9gADDOXXv4grenKL6TIybVd1/TrmWAxzA8OPIAYKSIlTnHAdO/tPSKRvq/YgjS7Q48f/kOs86//4ycpj6QIl2cI941/OemNn1OEclltHTdWMsvThFzKyl+eeDi5V8/6NzlB1Sr2XsgAAAAAFCn9B/DPF9fK7m4RF+WV7WaK8Wknq/GOuG/ZuQ2l2/dsG5vxZziLz93/NUCrwAwzl374QW7RhRfXz/813E3OC2Vm9ynHDElpfifZYd//DWdd9QwBmYtvXe/iHRkRPqjeG760UZeFGYBLI229plZAMfxwLkrcnyhlmv/9L1jXvqIFxIAAAAAMJhqddnUnjU9v4uIqQM9X9csgDnuOGHR7q/Xm+V11tzrFqQUpwx+jl94ToebYaZ+ZVsGONXRZp3lcyXFIX93+j7fMsIAYPy58m+O37i3t7IsIl5V943Gc/cPzc7kV/+Meg3fs49kGeA81P1R/ceaIiKn+Mnqab1vnrl48cp6zoPZj+gqs5fcNWn2kvs+OGvp/bdEVC6LSH8S64T/6FCizDQ3cHaOlM7uqUxYfuC5D148e/GD++gTAAAAAGAg1eqMp3PEZSNqpJK/oyfL6+zjr90rpag2Vmv8/kDRwlkMU5Hjy+d/8qodjDIAGH8qvZULYsDwXzvvldIY1W1X0xtWTDleP+nJ/vPqPg+GIt3gkAuXbzlr6f3VHFPvyyn9c0S8Ua8Aa+VJEfnQlPKVB5674poDz3vgsP2quVe/AAAAAADrSfHtkVTPKX1PJ5bT+fOv2yJV0iURMaEMA62u8dRgm2O8KNDmqSf+pVq9zHfvADCOXP2RBX+TIj7Q7H3GcPMDtuY+aOT1Gr1Pa+Fd4Udu+vCRf15PWQFAxrWDPvfgy2ctuf/8vjX5noj4dKTYsnWt57a9gqFE3yF0m70ip69O3ezBuw5c/OAxs5c8vIkuAQAAAAAiIlKqDDOD35Bfuj616WMbX6EXy2l1jn/KES9pZZu5zeVbN7BHp2KOeMuWKyd+2mgDgPHh2iPmvy6lvLScwYPW7lNrAoepqXo5xYU3fujvXjlcHQFAxqUDL7jvTbOW3PflWq3/55HiYxExtfQfsCipbNx0px0j5bNT0XffgeeuOG/W4gd21CUAAAAA0N1OPPmNv4mInw703LDfEad02ZylO6/Wi+Vz1rzr/jwiDh6u3IDn2D+0b0yOeZ879tpddQQAdPpbeqSc43PRQBZnkJvkEh5duZYXThEbp9TzheHKCQAyrsxeet87Zi29/0dFkW6OlD4QEaYS7xY+ZNMeG0fEnEpKdx147or/OHDxQ2/SJQAAAADQzVJTywDnnL+v78rnguplG6WIM0c4JnTks+N8+CK9RSrOy5F1GgB0sOs+Mv8vI+JtY3uvVK6g3sibTkM99c6bPvLxPx2qtgAg48KsC5bvO2vp/T/KkX4UEe/QI0Bjhv1aojci3h+puPnAc1dcOeu8Fe/UZwAAAADQfYoovtNUxUr6rt4rn1Urp54YES8u356ltrRZimWJU97vgrlXv9/oA4DOdOXfHL9xTnFaq+4bcpP3RO3Z3ljdp9W12cW3fuDYaYN+3DA06WQHLLn/XQcsXX5tFPmKGJPgX27XCxc69zuE8W+fShE/PHDxiitnn7PikMj+pSIAAAAAdIs8cdIVEfHE4CUG/LrwNyeevNtdeq9czjju2p0jxSdKNb7aXL6xYdvGijkvXnLktZsYhQDQeXp6K5+JiO1bdDPRRq3dp9YEDlPz28vx0trklfMGKy8ASAd+us5p9pL73jdr6f23pBQ/SJH3HOsPWGDcdKV9UopvHHjug9fPXvzgHwsCAgAAAMD4V63usiZH/LCxWvk7eq58enrSmRExqaEzOdCDqcHyRETaNk3pO0Y/AEBnue7DJ+wUkT7e4vuCMt6rlHSf0rE3/c3Htx/oWQFAOsr+59938AHnL78pp3RJRLxRjzA612Af0RnSjBT5v2ef+9CyA89dcbDuAAAAAIDxLeX0vYEeH+yb5JwrP9Br5bL4+GtemyPe49v/1qu3T1Okj5957Pem6TEA6By1Su2TETGhRHfmZfy00M7ZlSfn3nzUQE8IANIRZl2wfN9ZS++7vJLTpSniTXoEaL0GvupJAz2Ud48clx64eMW1s89ZcYj+BAAAAIDxqSeKKxoonnsiX6XXyqWWeo6Llv5i3I4fn9vzg/aYLTO8oS2mpY3+xmgEgM5w3cfmb5Ei/qq5+4Y0VvcbbbrXGrvgYcrpiJv/6qjNXvi4ACClduD59+45e+n9l0aRr4hIbyvnXrbpUmQxUTrhfY2B7JlSfGP24hVXzzpvxTt1BwAAAACML/MX7fbTiPjd4CXW+9L1lwsW7f47vVYepx9/0/aR8l+Udf/aG9BLTT3VdJvD7XvKx1Srl/UalQBQfkVfOjIiprXjnqDZe43cZN1mUz6tqZdGur1N8oS+I174oAAgpTR7yQOvm3X+/d8ocuXaHDEmS2qa9h3jhhHehuxdKeKHBy5e8YNDFi/fXY8AAAAAwPiQIuUc+do6C1+rx8qlJ9U+ERETm62fBz7PjZUnIlLkiB23XjnhMH0BAOW27PDq1Ij4WDvvC8p4r1LefUpz7jryyEnrPiMASKnMXvLAVrPOv/+8nIpbI4clNCnRNdhHdJr2rlpUlh24+MGLZy958BW6AwAAAAA6X4rKgMv6vvCb5FxY/rdMqtXLeiPlv1r3xwTf/rdeQ31axEf0GACUW39e/acRsaWgXgP71N7Zlbd/fGUctO4DAoCUwv5nrpg2+/z75+ZK8avIMSciTPcNjIEGvpZo7A07ReRDUy3/dPbiFRfuf+aKrfU1AAAAAHSunPOV9ZSrpLhGb5XHRiunvjMi2vT9bOqQNtu9zHCDbad46+ePvvrFRicAlFeR0vtHft+Qxux+oz33WmMbPKykWO+cCAAypvar5t7Z59/30Z7JtV/lHKdFjo31SmmuFxhrtN6EFHF4b2/62YHnPnDcftXfTNYlAAAAANB5Nntyo2URsXrwEiki8hM73/WrO/RWmdT/4/VYam9ALzX1VNNtDq9Sm5D/1NgEgHK6+kPVzVPEu8f4Hm4E90GpJfdbra2XRry9HPngWz9w7LTnbqgMVcbK7KX3vWPKFvffnHP6XI7YprM/YJkgHqOBhkbJiyKnM6ZuOvWu2ec++EH9AQAAAACdZc7SnVdHxA1Dl0rXHnbJYTW9VQ7V6h0ToxJ/1Iq2BvwdIDVYnuf6JkXxfj0BAOWUetb8SURMrLP0SLZUxqMv8z5NrU1eecizfxEAZNTNXvLbV8xacv/Xc6Qf5Uiv1yN0zjXYR3RaPqZeknL+5wMXr/j+7CUPvE5/AAAAAEDnyCkNuAxwfv7/r9VL5TFt5VMHRI7Nn38kbXDOGG3PnoO094Vzr3yZ/gCAMt70xmEDv3+X8Z6iZPuU2n1qnp/dWgCQUbPfBQ9tNGvp/Yty6rkjUmv+hRVAO94mx+A+4t2plm45aPGKxX+8+A+bOQcAAAAAUH6VSFcP/Xxco5fKI1XigFHYSoe02e5lhhsun/rzWC8tCAC80NVHHz0lUryt7Pc13btP+Z0XH3pozzOfPaDNck6zL7jvg5Nz388jYl5ETNIpHX6tAdphQkQc1R+rf37g4hUfrlaz92gAAAAAKLH+vrh5qOf7+uNWvVQiRezTSbvb3sBd+YKKOfI+BikAlOx+5Ompe0Tdy/82fx9TX700yturp14awfbSiPczRdr45S/a+o0RAoC02YHn3/eqWRcs/0HO6Z8jYvuOvKC1/dLAuHwj7MSdFjYtxbjJEVuniC/esOlD1x903vLpegUAAAAAyql6xhvvi4iHB3n6D9Uzdl+ul8phSfXaTSLFG1rZ5oC/A6QGy5fRGPxWkCMiRWVfIxUAyqWSiyben0dyM9GuG5Ey7lNrjqeS0z4RAoC0ySEXLp86a+n91SLS7RHxzlK/Lhif2jbWBD0ZLXl6FJVrDz5nxXmHXvDQRvoDAAAAAErpjoEezBG365ryWLMy7R0RPUOV8e3/WHn2B5288wXHXbat/gCAEsmVfYZ+/y7jPUXJ9im1fRMCgLTH7AvuP6SvL98ZKT4dTUwFClCCO5my3Ef05hRznl5d3DZ78QOznRcAAAAAKJeU822DPCUAWCI5pVH88bpT2mz3MsNNhCrThJlGKwCU5P4pIuWU9+qU+5qu3accb4kQAKSFZn3+gR1nn3//pTnHNyJiBz0yzq81wGheA3aqRPr2gYtX/MeBZzzkX0ACAAAAQEkUlcrAQb+c79A75ZEi3tSJ+93ewF0pg4pvMloBoByu//AJO0bE5s3OktyeemmUt1dPvTSC7aVW7Of2t/7t324tAEgLPn3kNPv85YdHrbgtRxw8Lg+x7ZcGunvclIiwadlPz/vThOKnBy1+8HC9AQAAAAAlUBQDBgBz9PxE55TKK9rR6IC/A6QGy5fRGPxW8EzfvNxQBYCS3Oamkdw/jeRmol03ImXcp9YcT3//hJcLADIiB1xw7ytnnX//ZTnyhRGxcce+LmDkH+lhtEbXZhH5woMXP/jt2Uvue4keAwAAAICxU0yadHsM8LVeManXDIAlkSOnFLFjfWUZG8/9eCgACABluYeq5JfX+f5dxnuKcu1Tm3erUskCgDRnv2runX3+/XNTrvwkUnqbHqHcnxdh/I21HHl2pdb7E7MBAgAAAMDYqVZ3eTJF/OYFD99fre7yiN4phzOOv3m7HDF18BKlXAq3tNq7LLEAIACU6E1/p/Y1LjzYyn3KOQkA0rhZFzywx+Qtl9+YI06LiEl6pIuvNTDO72g6wKYR+cKDz1lx6XuW/m575wwAAAAARl8Rsd4ywCmy5X9LJPXUdhonR1JXqdxgm3mM9nMQ21xQvWwjoxYAynDrkV7+7Pt6s/cL7amXRnl79dQb2+WFUzIDIA04tHrHxNnn33dK5OLqiNi1244/t/3SAB31HQJluj6lOLjWX7v9wHMf/FO9AQAAAACjK0X+2bp/z1H5hV4pj0rOO5Zpf9o8g14rB/aY9E1eOWEHoxYAynDTUozwPdksf62+v8uDHE/OsYMAIHXZ//MrXv/EVptdmyMtiIjecfKagrZfksVBGcU3/M1Tzv958OIHvnzoBQ/5F5IAAAAAMFpy3LP+A8U9OqU8ihybNHY6Gz39A/A7WBPWdlolx8b6AgBK8d686VjfF4x+3TbuUzvvD3NsIgDIkPar5t7Z598/t1KrLYscu+kROvTzInTNWMuRPvD0muL22Ysf3MdJAQAAAID2q6S4e70HNggEMrYnKKYNX6gdX/CO3x8o2jmLYRHFNIMWAMogTW3v/Y4ZAlu2TymmCQAyqNlLfvuKyVsuvyxHnBYRk/SIaw10n46dw3HHSuTLD1r84GnTL8wTnEcAAAAAaJ+iku9e9+85JwHAEqkUMXX8HE19PxTlBtvMY7SfA56vqAgAAkAp5Gnrvq+3btnaVtRLo7y9euqNaaBHAJCBRmdOs5fef2Su9NweEfvqkNG8NEBHfYdAufVG5LnbPr3if2cvue8lugMAAAAA2mPaU6vvjnV+GCgmVwQASySnVLoAYG5z+ZYZg98Kaik2MmoBoBRacA9llr/67u9Sk/WeqZsFAHmB2Use2GrWBcv/J6dYEhFTuuA11RkfsOjoEWHcMLbXm7RvpdZ78+zFD8zWqwAAAADQescsnrkyIh565q8rP13d9Xd6pTxSyg0HyloS0PMP7Zs5W5HG1YyNANCZcrVaiYjJY31fMDZ1O22fwhLArG/W0uUH5EpxW0QcojcYZ58XodvH2paVSN88aPGKkw+9OPc4UQAAAADQauk3z/zhtymSfxdeIjmiUt8JaccXvGk892t7ylfSBKMWAMbWjcuX99R/I1PSUFwZ9ym1rWKvACAx/cJlE2Ytvb8aKX87IrbVIwDrGjff1VUiYuHT9z/0v+9Z+rvtnVcAAAAAaKm7IyJS5Lt1RbnkHE+PryNqT1CxNN+E5+JJoxYAxtaMiy7qi4i+Dd6mm317b0u91PLtlfM+rS5PCQB2uf2XLn/Nln3bXR8pPh1rwyG07hPKOLte0HWMtfF6bXprrb920+zFK96hLwAAAACgNXJaGwDMKf1Wb5RMiqdKOWZKVn6I/hvViinSUwYtAJTCky24IYhOmuVvbAOOaSTbe1Lgq4vNWrr8Lysp35Ai3lSy11S5P8QbOhg3dP642aYS8b2DFz94jF4GAAAAgJFLRfHbtf8vAFg+ualAWUsCd/6hfcOKVBEABIAOvodq8V12Ge/8y7hPT/UasN1nv3/8zeTJT008PSLP0Rt0jRRtSlNln+DpVL058tkHnbtij8qU4kOXHrH907oEAAAAAJqTKvFQzhE54nd6o2SKylORcp3f5rftxwSizl9UimQJYAAoxft2err+JEQZ76FGsk/tOp4UkXKTTQ+5T2YA7DazPnf/qyc/NfG6iBD+A2jg9qah993OOrQ/K57uueKQ85a/zHkGAAAAgObUcuWRiIic4g96o2yKJ8Z2+6lj2hyzZYbX0ZPTE8YsAIy9FPF4K9//c5P3NbnJe6I8lj032nIWAOwmsy5Y/idRpOsiYle9MWqvsnFzvaB739XpimvV7kVRueng81a8U18AAAAAQON6o/ZwRESO4mG9US65J99b2n0rWflBpdGruLp/pWW0AaAMUtzbohuC6KSlfFsfcGykXmquXkr3CAB2gUOrd0w84Pzln4ucvxaRN+2Q11S5PywaVhg3jL9xs0Uu4rsHLX7wo3odAAAAABqTU8/DERGpWDsTICU6N7XeXzVdtxXl/UP7Rjxy9Llvf1Q3AEAp/Kocu9E54cGx+yySfi0AOM69e+lvt39iy80uT5EFOqBt12DRPsaN3oj8uYPPWXHeoRfnHt0BAAAAAPXpn/CHhyMiitxvBsCSWTVl+n0RsTqi3m/zJfbaKQ/95K/0EACUQ8rp1w3WKONRjFHdYdpt8ezKKcevBADHsdlL79+nJ3qXRcTeegNgpBoIenb490M5xZynl6/45uwlD2/ivAMAAADA8KrVt6+KiKdjyhQzAJbu3KQiIu4e271IHdPmmC0zvHbzAoAAUBLFEDMAtn6Z3DSC+w0zBKYQABy3Djj//o/llC6LlLfTG2Mtt+0VDOPwvYnSXLrSrEqt/7L3LP3d9joDAAAAAIaXIpZXq7s8qSdKeXZ+WdY9yyUrP9QAb3fFFAKAAFAiv2rhDUGMRfAgN7lPuW3bq6dearhe34R+SwCPN7OX3DXpgPPv//sUcX5EnqBHyvOBDIwbOm/c5N1r/bUbDlm8fHdnAQAAAACGVkTcpRdK65bR2tCA3+f6h/b1vYZy3KwXAKAcZm7f+5uIeLQce2OWvyFuPle8+XOfWyEAOI4c/Pl7X5wrU69MEX/TcTvvgw8dP9ZE+xi3ti+icvlBix98l64AAAAAgMGlEs8y1/XnJhdXPPvnXOfZbKw8jRisT2sTeq7UOwBQkvunarVIOa5u9I64jHfppdynFs2unFL8OCJCAHCcmHXBA3v01yrXR8QMvQGDejQi/jDAf4/rGurTwFc94yvYvHFE/taB5zxwmDEAAAAAAANLOf9WL5TTxCn5moiojfEI6ZA2x2aZ4RRx11Gn7vWg0QoA5ZEjX9nq9//c5H3N2PyjjPIveZwjXRkR0Wu4dr5Z59//Z5GLf4iIKXqj275NiPH8T89Wxdpw3iNr/z89Ein/IRXxSK6kP6QiHilS8Uglpz/UUnpkQu7/Qy4m1iIi+vOaR3snFzki4lsffdmjkVJDvVSt5soNW/920740acKEVWmjqNRelHNMK1LaqBKxUY68WeS0cUrFxhGxVY60XURstfa/tE1E3sxYYxyamFL69wMXP7DVt4/e7gLdAQAAAADrKyr5Sb1QTnOqez1+5rzrb4uI3cbD8eRo7CflxsoP8YNA078VDF8xp7jCSAWAkt3f5nxlJaVW3RC00eD7NPx90MB1G73fam29+vu4VmQBwM6/u89p9vkPfCZHPiEsolvyD1jZKXrB+0REWhER9+Qo7k2R7s0Rv00pfpsi7uut9dz7jaO2ac2/8vq7xqtUq6mIteHDiIiHGq1/aPWOiSs32WSrvtSzTaWn8uIcsVPkvEOK2CFy7JBT7JDWBgah7TcKLVZJkc4/6JwHtv7WMdt92lkBAAAAgHXkigBguV0RoxQAHPD73CF+x/UrUkTOYflfACiZx6c8ef1mqzdZHRGTWtPiSMKDnRU8HCWP/ebxFbdFCAB2rP3PXDGt54L7/zmn9Kfj5qDMMDbeFJHi7ijynRGVO1Ol+FlRpLsqPXHvgxO2W37jEalvvB74JdVd1kTE/c/8d9Ngr+HUk3es9KaXp8ivSTleU6R4bcrxmoh4keFDua/X6VMHLV6xzdQXb/OxSw5LNR0CAAAAABGVlJ/QC+WVcvpuTnlORL2Bu+d/uBLQa70X9GnR25e+r1cAoFwOXLp09dWHL7wsImY1cNcVgnp17lPKI9qtHPGDwy65pBYhANiZL7ALHto2575v5kjT9QYl0B8Rv0oRd+SIn6UUd+Scf7pRf/GzS4556UrdM7DvH7ftUxFxxzP/XfrC13jqr702R351SmmXXKTdUspvzBEb6bkyaOCrnvEdbD7iqfsf3Gy/av7Ly6up37gAAAAAoNvVsiWAy2zjP6QfPr55fjgithi7vWjHl8bt+SK6vcsMb1D3io8unnm/UQoA5ZMi/iMPEgBs/TK54y082K7jWdtuJcdXn31EALDDzF7ywOuK3PetiNhRbzAG17++iLgtIq5PKd9Q1IobN3708Z89M+MdLfLtj229IiJWRMRlzz526MW558kVK15dKfLuRVSmp5R3j7VLFWysxxjDy8/7p2324MRDq3f8mesAAAAAAN0u5R4BwBI74qIZfWfMu/5rKeLw8XA87Q3oDfHjU9O/Sw1eMaXnf7wGAMplQvR/fU30roqIyS24IWjj/c/g+zT8fdDAdVsfcGyk3rB9/MSqjXu/9exfBAA7yKyl9+6XU/FfYXnQDv2A1XETxOeIuCsibsgR10eluGHVtL6bL//rnVY566PvmWVW73zmv3+NiKhWc+XGLR54Va1Ie0fEWyJin4h4Vdt2wjLdHXS9GdWdeu/Tm27xX/tVf/O+y6uuDwAAAAB0sV4zAJZdrhT/kYrKqAQAB/w+d4jv2bt4meH+nlp8zegEgHKacdHpj119xMLvRI73tqbFMs6oN1bHMyLfmLl48XOrcgoAdojZFyz/i5zz30fEpHF9oAJGY+mpiLgyR1yZIq6v9Pbd8K2/2+EPuqW8qtVURMTPnvnvHyPWLh8cff37RIq3RKR9I+JNEdGjt2izg6ZtOuXSQy5c/keXHrH907oDAAAAgG5UKQoBwJLb6a7f/vieV+z4QERsN5pL3DKkyz561j4P6QYAKK9U5P/IKTUQABTUq3ufUm5ut4r1Z1AWAOwAB5y/fEHO+WSfK2ixvoi4LuX8o1pKP9rkkT9cZwnPzvfM8sFfe+a/eM/pv9u4b0ptv0rk/XPOB0SknfVSKzTwVU/3BJvfVXu68u33nP67Q74xd6snjBEAAAAAuk2l6BMALLnDLjmsdua8678UESfWV6MdX/B2SpuNayZUGTkuNDIBoNz+MPmJ/9ls9SYrImLb9m9NeLAOv809q7+77gMCgCV26MW55/GHHliaIn9Ub9CCa00REbekyD+KnP63f03liu8ft+1TOm98eyaIdekz/8VBix98ea7U9o9UOSByfkdEbKKXaOGl6G21ibXvHHrBQ7Mu+djWvuwEAAAAoKusmbSRfxjbCfr7zo/eCcdGxJRuO/TGAnopcuQWz06ywQ9adz08beZ/G5QAUG4HLl26+uqPLFgSKZ36wvf1ZmdJbk+9wcMzY7efjYUH19/eIHVzXjzjixf1vfDIKaHZS+6alHum/UvkfGjXHXyHzpSV2lByxP2W4v4o4tKc4ge5v3b594556SNeXTxrv2runbrZAzMjxayIyuyI/Ma6Bqhluht/Lecx2epYds1lU4u+gy455qUrjRMAAAAAoGzOmHfD51Pkv63v+9bnv+Bt9PvZQcvn3HidYcvnke3TIMeehu+WBtt/vmJO6W/nnD7TDIAA0AGu+Oi8F/XUeu6JiI1f+L6eGrlZqOc+Y8i6w/0DhaHus4bfp8Hvbxqvm+o8nhc+nYZoN0U8MmlC/w67fO5zT47kHpJRsP+ZK6ZVptS+FhEHdG0ndGDAqDQBwBS/Tjm+WeS45LtztrsqUhLXor5rz+dXbD1hdX5bTnFIRDokIm82Xl6fY/2qb3Wfdcib9w+eemzley6v7rTKWAEAAAAAymTxvBte3h/5FxHR0+i/im9JCFAAMCLiob6+tOMxi2f6h+QA0CGuPnzBORHp6Be+r7c+yJeHuZ/Jdd+7bXif0njd9gYAn3k+D3Y/lV/YayfP+OJ5J470HpI2m73kga1ypfh2RMzo6o4QAGxELSKuTEV8I6ee//nOnG1+5ZXESE2/ME/Y7ukV+xQpDkyVeG/O8cpOfn2W4ZXfdbMArj3kS6c99vD7LqnussZYAQAAAADK5My5110SKb1vTGYBzOu3OWz5utvPze3PEMfdaABw+G2srZhzXjjnzH1PNRIBoHNcefjcl1Wi966ImLju+3q5ZvJrVwCw8bptCAA+3ZfTy/f60nkPjvQekjY68PzlOxSRvxcRr+76zhAAHM7KiPyjSOnSlHq/8e2Pbb3CK4h2OuCcB3bp6YlDI+LQyPE6PdLE67kLA4DP7Ox/P/XoNoddXk39xgsAAAAAUBZnHLfsFamnuCNFTBq+9PgJADa+jTzEMTTbfr5vVfHka44764CnjEQA6CxXHb7w9BRx/AtvChpfBlh4cL269SwDnKM6/UtLPtOKe0ja5KALlr+2losfRKQX643o2BnG2hwC7IvI38spvrLxmuJ/LjnmpaZEZ0zMXvLA6yLHn6Yi/2mk9Mbu7g0BwDp9ZY/HtvlgtZoKryAAAAAAoCzOmn/9osgxb/iSoxcAHNk2OmQZ4Fz82ZFn7vtVIxAAOs+Vf3P8xpXeCT+PiO3WvSFoPAA4zH3GmAQAB6/b3mWA6woA3rN6o57Xzly8eGUr7h9pgwMvuO9NRY7vR8RWTkkD14ESak8AMF8bOb4SUfnqd+Zs9zsDg1Jdv86+71Wp0vOXOcVfRsRO3dcDYxMA7MQ38Bxx3reP3vYorxoAAAAAoCwuqN6x0dOrnvp5ith+6JLrf8HbmhBg1wYAf/zxM/beL0XKRiAAdKarj1jwwcjpn9e9IWh9kC8Pcz8zFjP5tSsA+MzzQywDnFM6bMZF513SqvtHWmz/zy2fXimK70XEFk5LQ6/lUmphAPC3kdO/p0rtH7798Zf8wmCgExx03vLpOccHI9L/FxFbds+RmwWwgX1e8M2jt13k1QIAAAAAlMVZ82/4QOT85eFLjp9lgNsdABxiG7WcatPnnP6WW408AOhcOSJdffjCH6eIfS3lO3TdFgUAr9z9i0vemoZoRNJsDB2wZPlbUqX2zYi0idPS4DWgpEYUAMzx+xz5q1HJX/nux19yjQFAp9rvH38zedpjkw/JKT4QOWZHRO/4PmIBwIau7Ck+8q2jtv17rxQAAAAAoAxy5HT23Bt+ECneOVzJZ3V6ALDxbeQhjqH+9nPkc+acsc8njToA6HxXfWTBm1JK10bEpOaXARYeXK/uwAHAlalSzNj9wqV3tu7ejpbZ//z7312J/PWImOq0NPE6LqnUTOkcV+ZKvmDj3z/6X5dUd1njxDOevGfp77av1fo/nCM+HBEvHZ9HKQDYoP6c433fPmbb//EKAQAAAADK4PTjb9q+p9J/awy5us3oBQBHto3SLgN8c1756N5zlh642ogDgPHhmiMWHpNznN18AHCY+4wxCQAOXnc0A4DP1kuRP7r7F5d8obX3drTE/uffd3Al4pKImOy0NPWaKrU6z97TEekrRS4u+N6cl5jmnHHv0Itzz9PLHzwoIh+RI2ZFRGX8HN3YBAA7/N1iZY7KzG8fvfUtXh0AAAAAQBmcPf+G9+Scvx6DfvW6/he8rQkBdk0A8KnoiRlHLpr5MyMNAMaPHJGuOWLhdyLnAwa/v2hXAHAkM/m1KwA48PN136flDe43vz79i+e9t55zUTEcR9es8+89sBLxtRg0/Mc498sc+ZhJ/Wte/J0jtz9c+I9ucclhqfato7b9xreO2u6gIscrUuRTI+LBrusI+e5n/e+0x353p24AAAAAAMrik4v2+EZEfH7wEu34gnf8fmm87s/XKaejhP8AYPxJEbm3Z8JfReSH2nO/k9q352W8f1u/6fv7J/Z/2F1lCc2+YPn+ORf/E3WF/5yaDT4ddM4F7oWKiPh2qqQL3vy77b5frabCiYWI2UvumlQpNv7LiHx0jtil429txuC61qHvFD946rGV77m8utMqrwIAAAAAoEzOOfrqKcWk3msi4o0Dlxi9ZYBH1v4ozgKYh2s/f/XIM/b5M6MLAMavq484YVbk4psR0dP4LIB5mPuSsVgGeLhZmtu+DHB/zunde3zp3MtHdK9J683+/H3vyLX4ZkRMcWoa+izRcdLzf3giIl1UqfR87lt/t82vnUwY7HWe04FLHjggchwTkd7VmRdAAcA6D/3/eqYWB156xPZPG/gAAAAAQBmdvfD6l+ZaXBsR22/47OgFAEe2jZIsA5ziur418fZjFs9caWQBwPh21eEL56TI543uMsDtCgAOXnc0AoAp4vDpXzzviyO+16S1Zi+9f59cyd+NHBs5NU3ovBDg4ynH54v+4ozvHfPSR5xAqN+scx/cNeX8sZTyB6LuwHQZjE0AsJPeLVKKayure/b/xtytnjDSAQAAAIAyO3PBDa9PRb4yIjZd/5n1v+BtTQhw3AYAf1P0VvY+6tS9HjSiAKA7XH3EgnNTjk/Ue7NQ133GMHWbn8mvXQHAgZ+v+z4tF4tmfHHJgkb7Xsqszfa/4P6ZlcjfjYiNGwt9ODUNfkYpgxUp4uyVlQlfuPxjWz/pxEHzDj7n3hcXlZ7jI9JHoiOCgA1es7tvFsBlq1dPfNcP523+mNENAAAAAHSCs+beMDtS/kZE9K7/TCcsAzzmAcBHUk/sc+SimT8zkgCge+RqtXLd8jVfyxF/XM8NQ133GcPULe1Svk3UyxFfnXHRuX+emkgUSJm10f6fWz69kosfxbr/OkgIsIkrROn38J6IOGPVRmv+4fK/3mmVEwatc+AFD20b/bXjIsffRsTUcu+tZYAHcWt/7nuHGVEBAAAAgE5z1rwbDo/IX4j1vorthADg4G2ObBt5iGN4zqrIMWvOmTP/zwgCgO6z7PDq1L605keRY6+o+94kD3Nf0gXhwRRXPLF6s/3f/k/VpnJHEmZt8u4v3Ltzby1dkSO2aeJe2+lpus9Gdcd+naOypJKf+sJ35uy82omC9jnkrOVb1nrSx6MSR0V+4ZILZSEAuOG+pZ8XfWm/bx+/9QqjGAAAAADoRGfNv+F9kfO/RMTktY+MXgBwZNsYk1kAHy1S/qOjTt/nx0YOAHSvWz9w7LSnp0z894g4JOq+N8klCwAOXrfVAcAU8cOV/RP/ZN9/OOOJZvtcwqwN3nXh8pf19hdXRsRLGxqTTk/jr+OxcUdE/sxeD7/4a9VqKpwgGD2HnLV8y1pvfDIizYnSzQg4NgHA8r5b5F/0R+9+3zt6qweMXAAAAACgk5019/q3RiX+O3JsPsAPtg0ZOAQ4LgKAy4uiMvuos/a6zYgBAC4+9NCel26+85LI8Xf13Zs0GwAcyUx+7QoADvz8QPdpKeJfcjz9oRkXXdQ3kv6WMGux2Use2Cr31H4cEa9pYkw6Pc29lkfL/Smlz678/Xb/cHk19TspMLbX2lTkEyLS30VEbzn2SgBwHb/NteKt3z52+3uMVgAAAABgPDhn3o2vLP5/9u47Xorq/v/4+zN7L03BRhN7wRJbTNQYTdHEhgK2gC2xJAqKgqAoYl1FUZCi2LGXWCCxgIg1mnxNNImxJSZRbAlIRwULcO/d+Xz/QKMCt+zuzO7M7uv5ePj7/qK7M7Ofcz7nnNn93DPKTZO0VfS7AKa+APCdjOmAU6/Y4216CgAA+LoXTzr3dDeNkxQUvpNfXAWAzR27gEf5NvHfVn2fTfhut7WGWDZb9OZjVJhFaJ+b3lmrpqH1s5J2bmZtTBPly8t66o9NNqp9fe7qyWdstJTGAJKj1zWzt8nl7DJJhyZjwOQxwJL+m5P/+PEh679PDwUAAAAAAABQSa4c+sfOlqm9V+Y//fLfxf0Y4OKO74VdT5NW+XH+dwoajhx0+Y8W0EMAAMDq/Knf8ENMdpvk6zS1xmh6bRJ98WD5CgBV5wrP3HXi1ddGFWOqyyLSZ9zMtp+01hOS/bAF62KaKP97iXJYLrfr6oNw5DOnbbiIRgCSq8eEubtb6KMk/ai8V1L1BYCzMx78eMoZnfkrTwAAAAAAAAAVKZv1YM3lfxkq1whJreIuAGz0PS06R6y7AOYkXdL13VmX9Z3cN0fPAAAATXm+37CNa5S52+U/asE6o7EFUwHva26dFddjgBt7n78TmB35nZvGvxRlfKkui0CfSZ75ZMGs30p2cAvXxTRRvkpbABjK/ddBEFzw2Gk8vhJIk4Oumttb8rEubVmeK6jexwCbNN8V7jVtSLd/0RMBAAAAAAAAVLpxZ/95lzDQryVtVYWPAZ6tUEcPunKP39MTAABAS03q0yez0bpbDpfrIkk1jawzGl2DNL2eKfQxwHEVAK763800qaFVw0m7X3PNkqhjS3VZBHpcN+sGl07OY11MExXCS3KOx11+zhODNnyNgAMpHZMnzGhtufZnyPw8SWuU9uxVWwC4yF17P3ZG17/TAwEAAAAAAABUi+uyz675+fJ2owNXP0mZlr4vzQWALn8wCBpO5pG/AACgUH/sP/z75rrZpO1WXmmUvgCwuWNHUgD4sbudvdvN426OK6ZUlxVp/2tnnWumy/J+I0WAijdmeafCOyYbOH3g+tMJNFAZekyYtaGFwWjJjiztQFp1jwH+OFD406lDur1MrwMAAAAAAABQjcae89edpXCCpB+05PX5Pga4uB0GvbDrWfVVb5pp0KArdn+SFgcAAMV6NputaTN7+QCTLnZp7a+vW6J/DHBcBYDNvjeU7I5WQTB8pxvHzI8znlSWFWH/62cebW73FBRHCgAVb8xaHNt6dx+3vH1d9rkTNltGkIHK03PcnN3CjK6Ra7fSnLGqCgA/k4c9pp3R7f/oaQAAAAAAAACq3bhhf+nl5tdI2qSp18VdAPjN9xS9C+DnMl1pn310+aBrDlxOKwMAgCj96VfZdS2z/CJJp0rKFL4LoDezZir5Y4BfdtfA3W4e96dSxJHKsgL1uG72fq7wUUm1BR2AAsCYY9YiT+TCcOBTp280g+ACla3PJM98PmfeAHe/VFKHxEyt6X4MMMV/AAAAAAAAALCSK4e+tobVLOtn0mBJGzf2uhQ8BniJu93kNTXjh4zcZQ4tCwAA4vSnfsN2MNnZko6wRmux4noMcKQFgK/IffQuG6w1ybLZsFTxo7KsAD1u+GBnD/33ktoXfBAKAEsQt0Z9IPmQxwduOJmAAtWl9zULujXkGq6S1CcRU2t6CwCXWqBej57e9Rl6FQAAAAAAAACs6qZ+L9V+uk54hMyHStpp5f+e3AJAn2NmV7f22hv7j9plMS0JAABK6fl+wzbOyAabdKJWqcuKqwCwuWO3pADQnpZp9K43jX2qHHGjsixP+17z326ZIPizpA2LPhhFgDHHbBUNcpvQamltdsqwTp8QTKB69Rg/p4eZrpO0Wdmn1/Q9Bnh5KD90+pD1p9OTAAAAAAAAAKBpLrexZ/95nyCwX7h0sL54Sk3cjwG2VQ/clHpJT0t+f/D5xw/wqF8AAFBu/3fKOevU5uw4mR8h1/e+Wt4UupNfLAWAc+T6jTJ++643jnulnPGiqiwPfcbNbPtJK3tOpt0iWvHTVLHG7BteCmSnPDaw20sEEcCXY/pnVjNMpnMktS7b9JquAsB6d/V57Iyuj9CDAAAAAAAAACA/EwbOaN3Q7qP9ZN5H0qGS1vzGCyIsAPzme1Z7zFCuF8xssmd0/+CRu8+jhQAAQBL9ZcB5G4X1DYdJ1kfmezb+Sm9mzRRJ8eCHLk0zs8mfrb/m9L2z2YYkxIiqshbKZj14ofMHk8x1eGQHpQAw5phJkj5309lPnNrtepk5AQSwsv3Hzdkuk9Ft8oiKu/Mds9PzGOCczI+aNnh9Hp8OAAAAAAAAAEUaN+RPbYNWNbuG0o+++CF7D0kdYnwM8DIz/6sUPB+6/VHLP//jkKv2/piWAAAAafLiiWdvaJnghy79QO4/lLSdpOCr9U+huwA2+t8+kPx5N/0xMH/+vUUzX+87eXIuaXGhqqyF9r9+1mVynRtpwCgAjDdupj+5hcc9cepGbxM0AE3ZK+s1a6w1Z5ibXSipVUmn13QUAIYyO27a4C730FsAAAAAAAAAIHqT+kzKfNB90x08F27j7lvIbHMz20LuW0jqIqm2Bd//1klaINO7kr9rbu9KeleBz/i4dYdXstnt6og0AACoJP93yjnr1DTou4H5Fi7fIpBt7vItJG0sad1vvrrRH+c/MWmmLHxXbu/K/V0F9m7Oav7+/RuveD8NcaCqrAX2v27WsZLujCVgFAHGEbPlLl3YoUu3sZP7Wo6AAWipA66at2Mgv1Pyb5d0ik32Y4BdppOmDe56Kz0EAAAAAAAAAMpjUp9JmYVbrN9haab1mgq9bY17e8vlPm5oZcva5HKfz2/zg8XZrIVECgAA4Cuv/WLoGss61LYJQl+rPudrSFJtxj6zXP2ST2raL9v7+uynlfA5qShrxr7XfLBnEPgzklrHEjAKAKOO2cthmDnuydO7/oNAASjEd2/y2q6fz73ATcMl1ZRkik1uAaDL/bRpZ6x/PT0DAAAAAAAAAAAAAIDkoaKsCT1vmLlBfRi8JHnX2IJGAWBEMbN6yUcuaDXnsr/136WeIAEo1oHjZu+iwO6U9K3Yp9iEPgbYZGc+OqTLOHoDAAAAAAAAAAAAAADJREVZI/a6/b02rT+r/b1Mu8UaNAoAo4jbPwPZcY8N7PYSgQEQ9VzQbnHrUZINinWKTWYB4PnThnS9jF4AAAAAAAAAAAAAAEByBYRg9Vp/XnvD6or/ystpmJUD4jZu2Zp136X4D0Acnjths2WPDe52usuOlGlxbGN20uq73S+h+A8AAAAAAAAAAAAAgORjS7nVOODamYPc7OqSBY1dAAuJ2RJz/9X0QRv+hmAAKIUDr529iRp0r2R7xDJmR1jjbcW9efy0wV3PoMUBAAAAAAAAAAAAAEg+qslWcsB1s3/gHj4jU6uSBY4CwHy9bGGu7/RBG79DKACU0l5Zr2m31tzzZbpALdpFN3UFgNdMG9J1EC0NAAAAAAAAAAAAAEA6UE32Nftd98FGJv+bpE4lDRwFgC3/9K5r5Z8PnT6o+3J6LIByOWj8nIPc7B7J145szI74Ke8FzBY3TRvc5RSZ8bx5AAAAAAAAAAAAAABSIiAEK3z3ppdqA/P71ILiP5TFJ5KOmj5wg4EU/wEot2lD1p+WC4NdJf2j6VfmUUtX1vpuu3PXxV0GUPwHAAAAAAAAAAAAAEC6UAD4hY4NXa90155lOXleRR9VWZvxTwuD3R8/bYP76akAkuKJMzq//Xlt5vtm+k26P4n95rPFnU/MZi2kVQEAAAAAAAAAAAAASBceASxp/2s/OFjmD+UbDx4DXAp+d21tcPLU/t0+p6cCSOYw5XbQ1XPPdmmkVltYX57HAFvLXvTQZx936ftc1hpoSAAAAAAAAAAAAAAA0qfqCwD3vXFm9yCnlyTrUNbgUQC4smVm3n/6qRveRZoCSIODxs85yM3ukXztgsfsiDd5berM5nq07ZJFh0/ObldH6wEAAAAAAAAAAAAAkE5VXQDYZ9zMtkva2Aty7VT24FEA+PVPN8/lhz5+2oYvkKIA0uSAqz7YOlAwTdIWBY/ZJdgF0KUnP1+89ODnspsto9UAAAAAAAAAAAAAAEivoJo//JLWurbQ4r/I5VUf4hXcKvZ3k32P4j8AafT44A3ebKi3PST9OcFj9nOZduGhFP8BAAAAAAAAAAAAAJB+VVsAeMD1s/pI9ku6QKI83lC79IePndbtP4QCQFo9eVbX+Z+vtWwvSQ8k8PJeyNRlek/t3+1zWgoAAAAAAAAAAAAAgPSrykcA73P9fzbPeOZlSWslKoDV/RjgCe07dztjcl/LkZYAKoK79bh67uUmDctrzI54w8Avz2zmr3irup9OG7DJRzQOAAAAAAAAAAAAAACVoeoKAPfKek3rTh/8QdL3ExfA6iwAbHBp8BOnbXAd6QigEh149dzT5Rqnlu66G0MBoEuvt65t+MlDp224iBYBAAAAAAAAAAAAAKByVN0jgNt0mj1CERX/RS6vmj6vhOb4UB7uS/EfgEr22Oldrzb5kZLqop8LWuQNz/g+FP8BAAAAAAAAAAAAAFB5qmoHwP2v/2AfuT+hCAsfIw9g9ewC+KZb2POJUzd6mzQEUA0OuHrOgYHbbyS1jXYuaPJAb6k+8+PHzu48lxYAAAAAAAAAAAAAAKDyVE0BYI8JczqFmdxrktZPdBCrogDQ/1pbGxw4tX+3haQggGrSc/ycvUKzKZLaRzcXNOpdzzT8ePqgDWcReQAAAAAAAAAAAAAAKlPVPALYM7nrFUPxH/JtCP+9hW33ofgPQDV6dMj6zykMf+JS3I/jnZmp0T4U/wEAAAAAAAAAAAAAUNmqogDwgOtmHe/Sz1JxsXlt6udpa4qp7eu9x/RB6y0h9QBUq8fO6PaSAv+RS7OjmQtWMS+TC/ebOrDre0QbAAAAAAAAAAAAAIDKVvGPAD7w2oRJjIIAAIAASURBVNmb5Cx8TdJaqQliZT4G+I5lC7ud9FzWGkg7AJAOuOqDrQNlnlVju9MWVuM9L5ML95o6tNu/iTAAAAAAAAAAAAAAAJWvoncAzGY9yFl4u2Is/pNSuA9fiZnr2t0XdvsVxX8A8JXHB2/wpnKZvSTNjeiQH3sY9KD4DwAAAAAAAAAAAACA6lHROwDud92sISaNS10gK2gHQJdGPXHaBueQagCwegeOm7uDB3rWpPUKnwu0WB7u89gZ3V4iogAAAAAAAAAAAAAAVI+KLQDc57rZ2wYK/2ZS21QGMv1FgG6yM6af1u0q0gwAmnbg+PnfloXPSFq3gLlgiUz7PTa465+JJAAAAAAAAAAAAAAA1aUiHwHcZ5JnMgrvLFXxH1Zm9e72c4r/AKBlHhvS+dXAraekT/J862dhEBxE8R8AAAAAAAAAAAAAANWpIgsAlyyYfaakXUt5TqcvfanOXH2fGNjtXkIBAC336JAuL0hhT0mft/AtS13q/fjpnZ8negAAAAAAAAAAAAAAVKeKewTwgdfO2qrB9Go5dv+LNJjpfATwcpeOeOK0DR4htQCgMAdcPefAwO0RSTVNzAV1Jj9s2pD1pxExAAAAAAAAAAAAAACqV0XtAJjNepAzv6UiHv2bV01fIvYf/DyUelH8BwDFefz09R8z6eQm5oJ6M/Wh+A8AAAAAAAAAAAAAAFRUAeCLHWedJtkPadaS+1QeHvTkaRs8RSgAoHjTBne9VWbZ1fynBpcfPW1w1ylECQAAAAAAAAAAAAAAVMwjgA+4Yc6mHub+LmnNigloOh4DvNTND3ri1A2fJZ0AIFoHXj3vWoV+6hf/MzSz46YN7nIPkQEAAAAAAAAAAAAAAFKl7ADobh7mblGZi/+q0DIzO4TiPwCIx+cfdR4saZokd+kkiv8AAAAAAAAAAAAAAMDXVcQOgPtfO+sXMt1VcQH1RDdnXSg//MnTNnyUNAKA+Ox35dw1amrtgMcGd/kt0QAAAAAAAAAAAAAAAF+X+gLA/W+Zua6W278kda7IgCbzMcANMjvi8VO7PUgKAQAAAAAAAAAAAAAAAEB5pP8RwHXBKCWk+E8qYNO+9HGT+lP8BwAAAAAAAAAAAAAAAADlleodAPe7dub3zOxPSlghY/keA1yK5vQzHz9tw3GkDgAAAAAAAAAAAAAAAACUV2p3ANwr6zUW2E2qhF0MIxPv/oPmNoLiPwAAAAAAAAAAAAAAAABIhtQWz7XqNGuoXDtVfAslZI9GM7tx+sBuF5IyAAAAAAAAAAAAAAAAAJAMqSwA3O+6DzYy2QVJvT6vtF7i/uD3Fqx/KukCAAAAAAAAAAAAAAAAAMmRygJAk4+V1I7mKwX/a7is5ths1kJiAQAAAAAAAAAAAAAAAADJYWm74AOum/0DV/iHpF97pBfnZTv7e/UNNd9/ZnCXeaQKAAAAAAAAAAAAAAAAACRLqnYA7DPJM67wOqWwcLEo5fm0HypQD4r/AAAAAAAAAAAAAAAAACCZUlUA+Mn8WadK2jEN1+rp7hfLZXbw4wM2eJMUAQAAAAAAAAAAAAAAAIBkSs1Oej+9dtZ6NaY3Ja1XlcH10p3ZzPpNP7XbzaQHAAAAAAAAAAAAAAAAACRXanYArDG7XCkq/ksrk42l+A8AAAAAAAAAAAAAAAAAki8VBYAHXD9zR8l/WdUtldemfgU/gPiJNTuvP4y0AAAAAAAAAAAAAAAAAIDkS8cOgK4rJWXSFlxP1+X+u0193ZGT+1qOtAAAAAAAAAAAAAAAAACA5LOkX+B+18/sYW6PEWDlWVGY15k/yZh9b9qp3f5FSgAAAAAAAAAAAAAAAABAOiR6B8A+kzwjt1E0U6zc3U6g+A8AAAAAAAAAAAAAAAAA0iXRBYCLF37wK5N2oJm+kNemft7CQ/rlTwzs9luCCwAAAAAAAAAAAAAAAADpktgCwL2um7+mubI0Uax+t2bnDS4kDAAAAAAAAAAAAAAAAACQPoktAGyj5UMlrZ/2AHtyL22mhcGRk/tajjQAAAAAAAAAAAAAAAAAgPSxJF5Ur5tmd6xrCN+V1J4gr8QjOXODzPZ+/NRuz5MCAAAAAAAAAAAAAAAAAJBOidwBsC4XnqcKKf6LXF7VhN7Iv7WLKP4DAAAAAAAAAAAAAAAAgHRLXAFgzxtmbuCu/jRNXOzZDp3XH0UcAAAAAAAAAAAAAAAAACDdElcAWB/qEpPaVlKQPTmXMt9r646Z3NdydH0AAAAAAAAAAAAAAAAASDdL0sUccP0HW7v7PyTVEOgmeEFn9lDa/8nTNniKbg8AAAAAAAAAAAAAAAAA6ZesHQDdL1UFFv9FLq9qwhXVgmY+geI/AAAAAAAAAAAAAAAAAKgciSkA7HHDBzu7dDhNEot/rrnchxMGAAAAAAAAAAAAAAAAAKgciSkADMPwIiXskcRR8vKdul4WHD/5jI2W0t0BAAAAAAAAAAAAAAAAoHIkogBw3+tmfVuy3jRH9Ex+weOnrv9XIgEAAAAAAAAAAAAAAAAAlSVIyEVcoAre/S8WLYvWC2t23nAMwQIAAAAAAAAAAAAAAACAylP2orsDrp+5o7u9qiooAIz8Azb9XOGlCmznxwds8CbdHAAAAEiu3qMWtG8wX6OVfI36IFg7CLVmYFb75X8PPbeWyf73x1tuMvNv3g2EZssysqVf/u9cqCXy3HJ3fdKqxj+tybVaPvmcdRcTbQAA8uRu/S6es15dK3X0hvo1MoHaymvaSFKDhe0DWU0QysLgm3NzYP6pwqDe5WHoucUZq/k0yPlnn7fOfXbvORt/LDMnuAD69PHMFlv8vUPYxtcIVNNGuWAtD30NM7VaMZiEa+nr9wIuM/tqvHHZ5xZq+f8OaPaRJAWZMBc0ZBY3NNR9fMUVO3wsMeYAAIB0e+TsW9trediuoS6zRk1NZi25t3ML28qVMVmHr7/WPDQ396/uz2xxThZKUsZzDRboky9eudwtt6TBWi059KoTPibKANKs/AWAN8ya7K6fyQl43pqImbmdNX3gBuz+BwAAAJRQ71EL2rsHGyvQBh6EnQJ5R4VBRzfvJFcXmTpK6ihpLUlrSOoQ533Banz+xT+LJP9Qbh+a+SJ3+9DNF5kHH5qFCySfHeTCD5av8emc6YO6L6dlAQCV6Kjs7I41NQ2bmgebmtmm8nBTyTYyeUdJ67m0nknrqZmv9Jr/vs+/8X++eP2nkuZLWiDZQjdfaKEWynyWPJhpGc3MWG7mxHM3mUuxIJAuw4fP6BTWLO8mCzZ0tw1M4QYu6yjXembWacX44ut+Mb60a3xsyS/1mxmLPpG0WPLFblpsriUmfeyy+eY+291nWyaY7fWa07p1q1nZbPcltCQAAIjbE0PvWmPp8mATV8OGLtvQLNzYXV1NQSd372imjnKtpxX3aBlr7F5rtWsib/kay//3/3wsaYlJi01a4tJiyZbIw3kKfLa7zTGFs3OB5tQ0hHN63jDgI1oRQFKUtQBwvxv+u7158JqkgALAAnij//7F9l02+MHkvpajiwMAAADR6XPd/DWXfWZbubx7IN9EgW3sbhtL2kTSRpLWKcuFxXs/Nc+kOS7NkjRb8v+Y2btu9k5NXat3Hzq3wyJ6BgAgyY7Nzt7YasMdzH0Hd9tJ0rckbS5pzdVNqoV8f2ctmai9pa//hjqTZkqaIbc3LfA3PfS3wkzNW7efv8FMWhcovWz2vTaf6PPNM8psaTnf0mVbmHxLl28uaUNJbfIfJxp7vef5+vxuHqzxU3wu0yy5zzXpHVcww9zfCoLwrUym/YxsdrNl9AQAANASDw2+fe2cZ7YOQttS8q0k7y7ZlpJvqa99l9ro2uer4rxG1jveyJqo8WIKa+Icqz9PY4WGvlTSHH35nanbDMnfUqAZdTWt32ZXQQClVNYCwP2vn3W/pCPyvI8l4E3PNctCD3Z+cmC3f9O9AQAAgML0GLVowyDTsF3gtrVk28i1lcy30ooivyTdVikB91Mfr/hR0N51C98OFPxTQfjGkk8++9dz/DAIACix47NzNvWahj1d2t1cO7lsB0lr51sYU1ihTjMTdWEFgI283iVpsVyvuenVwO3VnIevfarP/jE5u10dPQEoXp8+ntlou39vUSPbUaFv79L2knbUigLizKrFc17EONHYeyLdBXCV67Q87yW+OH4oaabc3pJ8hpn9O2cNr+aWt3519OhtPqHnAABQnbLZbLD9wq22UpDb0Vw7SdpB8h214g+nV1qnFLQ7X8wFgE2dp9ECwCbXXCZfIGmGZG+ZbEYY5v5Ra/7K/tefyh9zAYhc2X6p2v+6mVvK7N+SMi24Nybgzd+rf/k/z3vitA1H0rUBAACA5mWzHvyl/cItg5zvbKadpf/90ykFt1WN3hckRE7SuzL/u0J7Q4H/IxfYq4+d0XEGjzIEAESh300v1dYt6Ppdd33fpT204p9uxc/WHnEB4BeTdfQFgKtTJ+lvgfuLkv5oNfrTxPM2nUNvAZp3TvatzRtyDbuZ2W4u39Vk31ETj+iVJMujALCw3E9kAWBjxwxlesvcXg7lLwfS3+rrl78yatQui+ldAABUnkdOv7dLg3Lf85zvJrPdA2lXlzo0ue5oZt3U6NqnySLAfAsAV3Mez/968y40/OY5Fkp6RdIrgekVhf7Kn7vMn5HNZkN6FoBCle2Xqv2um3Wjmfq3YJwn6C27V5dkb7Rf+PF3+CtfAAAAYPV6jZnd0ax2Dw99D5P28BXFfmum9LYqrfdSiyX9TeZ/9VAv1YS5lx4evv779E4AQEscN+K/W4TKHBC49nfTTyRfI/rZOqYCwK/9n2geM9zi3cbec+n3kj9lmfCZW87bfB49CdUum3225pNct50DhT8OpR+baXdJHQvK/Rh3ASxJAWAe9xOW5w2JSe6ud8z0JzN/NpPJPZfN7szaHwCAFJo05M4NgjCzt9z3krSXZFt8tQzwSHbnK+wxwPkX5zW302B+5ymoAHB15/lU8lfN9H+h+x8alrX548G3/YrdlQFEfD8Ysf1ven995WreldSmBfeIBL1l9+ouC370+KndnqdbAwAAACv0GrNwG3m4p6Q9tWJXoK0r5LaqqXuDNFoo6UV3/cEU/N/6a6/7t4n9rZ4eDADol53dblkm/IkHdoBc+8u15Tdn35ZNgHEXADZ/jtgeA5zv9bjM/+6up83t8aDrgucm9t+FORdVwO2s7L929jDYV9KPJf1A8vbFruzjLwDMb6Gf7+POV/8ZCj2Ht/T1/5H8OffgWSl47rLLvvUf+icAAMnzyNm3tl++rPU+gewASXtL6t5UcV5+BYCrXzsUVgDY1HnyfQxwtAWAqxwnv50GGyS9Yqb/U6jfW12r5w+49cQP6ZkAorrfjMT+139wheTDWnh/SNBbcJ/ubjc/MXCDfnRpAAAAVLNDr5zbuUGZfWS+r1z7Stqggm+tKvl+6jNJL7rp/4JQf2hdu+zFyWdstJQeDgDVoU92/ppta+oPCs1+Zu4H6stHcK62eC6+wphodwFMTAHgyj6W+XSFwSNtffn0a7Ldl9ADUSnOOef1dRpqW+3rgfUw9wMkdW0uh9JeANjyc5S1AHBl77nriUzGHg4CezbLE44AACib3wy5dzvPWQ9Z2EOuH0hq1ey6JMICwBWvKWcBYFPnybcAcDXnKeBRw1+LSSi3v1sQPu5uj36yoNMLfSf3zdFrARR6v1m0fW56Z61MrtV/JevQwvtDgt7c8VzzgiC37bQBm3xElwYAAEA16ZP1VsvXnP9jebCv5Pu6tJPKUo1HAWDMlkn+Bzd7wnLBE1PPWe8Nej8AVJZjsos6ZGqX9wzdf2bSAZLaNjfXJW0XwJQWAH5dncmfdtl9rcK2D1+f7fwpPRNpMyz7xsa5XOaw0HSYSXuYlMlnAR13AWBh56j4AsCvWyJpeuD2SFBbPz2b3fljejUAAPH6zWn37aLAD3e3n8l8y6bXSY0sGrxlxXkFFwD+7+UtK85ryb3iKucpoDgvigLAllxvI+dZJGm6mU/N1Nc+se/E/ovpzUB1K/mvVAdcP2u4SyPzvEck8E3fqx//+Gkb3kl3BgAAQDU4ZPxHa+dyDT0kP1iuHpI6VOGtVbXfS82S7Em38ImwodVT04avzR9DAUAK9ZnkmTZvztrfg8wJcu9pUpt85rp0FQB+7Tq98NVD3EWAX/th6TOXHglc96rrwid5TDCSbEj2rc0zYXi4Sz+TtOvKXb9FxbnF5I3HnZclKADM434i5gLAr7+nXu7PKfCHGxpyky+//DsL6O0AAETj/tPv39VCHWEWHi5p06J3u2vhLoAtKwBs5L/lUQDYkvvF5nYaLPp6V3df2WwBYJ7X+9Xr62X6v8Dt0VwmN/nAawbNopcD1aekv1Ltdft7bVp/Xvu+TF3yvEck8I3H6y+7L9zg+9mshXRnAAAAVKqDxy7aKJfL9TbpYJn2klRbxbdW4n7qG+olf05uD9a00iMPDuk0h4wBgGQ7esTM7iY7wcyOlbRBXrNpEY8BjrsAsPlzJH8XwEZ+vJon9zssyNw88YKN36EHIwmGZN9YN8jVHCnTLyTfvei8LDZvEvQY4IIfd170LoAe8Wf+xjHrZXrMXXfMn183beJEipIBAMjXpNMnbezK/dxcv5C0zcrzd8t2u2tkzo/wMcDJLQDM83obu68s7jHAza/rXKGk35vrniCs/S07AwLVo6S/Uu1//QcnSH5bnvfbBL6paLn2fPy0DV+gKwMAAKDSHDpy1nr1rWr7BG5Hu/QDJabKLhG3V9xPrV4osxcV+sOBhQ8+fHYXihQAICF+ceXcNVTnfTz0X8p8tfN63AWA+c3WXtDsXqEFgF87mT/tFkwMOi94hF0BUWr9+r1Uu2a3NXtYzo6T+UGSWkeWl8XmTYIKAFt+jsQ+Bri5H8EXyPw+ye8YMeLbr5AZAAA0btKQSW09533Nw+Nl+pGkoMn1QIvWSfEWAK54Tb4FgE2dp/DivOILAFdznrgLAL95jmUmTfXAfr1k/sLpfSdn68gKoHKVuABw1muSdszzfpvAN3YMt3unn7bBMXRjAAAAVIo+42a2XZ5rc7CbHy33/SVrxe1VHrifWtnf3HRPzv3+x87uPJcMA4DS+8WI2duGppNNOk7SWs1NWM2O8al+DHDyCwBXvMdbEprZZn5Npja46Ybhm3xET0ecTs++s3EmrO8n6VeSusaSlyoyL/MoACzsHBQANnK21yVNrKnJ3JnNbvcp2QIAwAq/Oe3ebXKZoL9W3IetI8/38bxNrZMaewxwy4rziip2y2MXwJbcK65yngKK86IoAGzJ9Ta30+A3jrH6c3xorvul8Ib9bzz9H2QJUHlK9gvVfjfM+om5nsnjnpPgN+1zy2nr6YM25PntAAAASL1eY+b/QNKJkg6T1D6d9wYUACY40jmZPe2hft1mafjQ5GxnfhwEgBj1u8lrP18491B3P8WkH686dFdrAeDXrtMLXz2UeRfAlU/7qaTba9yuuiG7ybv0fkQlm/Xgk/Df+7qCUyT1lJQpNC+bz4MIigA97rwsQQFgHvcTcRcAFjC+fxSYbm4I7drLLtthJhkEAKhGz2afrZn30bxDTTpF0l7fnE692fm7+ALAptZq+RYANvLfPMLrVSGPAS6sOC+/AsCmzpNvAeDqz2PSc6Hr2tZdFz2ydzbbQPYAlaFkv1AdcP2sKS71yvO+k+A3/u7s46ducDFdGAAAAGm1/7jF69bk6o4NLDxJsm+l/76AAsCURPtzSQ8FplseHtrx9zJzshHV6uDLF402adMoBxrL821BbJ8uLGisWPl6QtMnvxne+Vf0lpb5RXZu57Amd6pk/SR1bbwNiigAXOntSSsAbP4cqX8M8Cqn/eL4OZcmeaARt1yw6b/IBhRqyJCZbbXm0uNkOsPk3RvreGnfBTDuxwAX/LjzoncB9Ig/c97je73JfhuajRsxYvu/klGIyqiz/7qbBRoa/zo2LCpvVntNHt0tb0uvx+U+ZNT3j6DnrN51w36/Ryb0wc3OSS38g5FgpX7T0rlo9e3b+LGCQvpzuLrzeLP92E2PHD/2wF/TW1rmnoH3dKgNak9y84Hm2qSx7tBc8diq/c3zm58jfAxwtAWAjedD/gWAeV5vY/eVcT8G2FsSe5dcsxT4jQpb3bz/jafMJ5sQtef7X3ChmbZv0boibGoe+qovF7YGa/64ha1/wmbWZfnNxe7hY7vdPO6OQuNdU4pG3ffGmd091EF074gW2K7/1tTalUQCAAAAaXTgmPk/CuT9FC4/XKY2iSici4Sr7J/FVFVFgAVqJ+mY0HVM7ysXvqkrF0zM1Le+86FzOywiNKg6pn3d9e3mhpW4R854ChqKuZ6vnS/UQjpK835++cwtPZc5M1R4nGRtkzxh5TtbJ2B2T4uMSUdZqCNOuvj9BygERL5OHf6v9VrX2gDp89MkdSYiaR3r4hjf8zpmrbsfae5HXnj+a3+Ua9Qll+00lR6BYgVBuIEr6PP1fxcqjt05i8shz/OYxeV9kwW/Ib2mif6Us43dvE/+beB5tkRTbe0tf/M3+nzTV1D8XOIrOo8bO0u3wH2D79s08GCQS79yqYO5Nd4rChpeVn1Tqe6PCjtP/h+y8fNEuaYxeYF/XBb78sm0odwuldVf8MQpV08O5Vf2uGHw62QXIuyKP5brJ6ubMwodT7yA/9L0HNVcwhQ2FnghrwhsdjHxLkkBYJDTIFmMf9RddTfvNmxq/26fEwkAAACkRY8JM1oH9WsdY64hkrZv0a0dxWyI39Zyjc1lll/We9SC38p94pRzOv+BsAAxKNOYTrFXvI65ZM6uyvjZntNhimgjnMLbrOxFJxWjyLwJviwE7Jd9//6M7AIeDYymDDnvzQ2sVsMU6peS1iDPmJ8iG7rd9pQ05cLzXn9R7udfMnKnZwgOgEq8cSpVAVNBx1rt2/jCr1i/HvSb7hkLz5X7zz2Peo/Y1xNfNO3qzxNRu5skX3GsaD5P89eVrKLH4uPYyD10a8l+HsiOeWLANQ8HoY/Y98ZBr5BtSMI8t/J7iykcjP59jX+ectzDxV4AuNf499aW2fF05Iga3PTHxwd0e0CnET8AAAAkX48JczrV1NWc4nU+QFIXIoJEMrWR6xiZHdN71MK/m8LxdW0X3zt9UPflBAdYNWHKWWRFAUQy/HzEnL3c/ELJ926u6Wiz8udQbG3Q9GkDmY7OyX/W7+L3r8t55tJbsxt9SPvjS4PP/ef6VhucI6mfu9pYwnKoagv0UlyT0UQb7C6zpy8877VnAwXnZy/b4U9kIFDlY12CBtzqLGBCoe4ffP+2Cu08WXikpEwyFwDVXOAZfxxLsDOiyf3Q0PyQJ0+5+tHAfMQ+1w/+K9kH8jMd1xR7AWDrVjXHSVqTeSESYZALB8uM6AAAACDRDhq/cNsglxvsdfYLlzf5KEC+HEQh4us3voPLbqtduvblvUctuK4+13Dj9HPXX0DEQa4l4/Utx5dLcThq5KzvW5gZ4fKflvVCKqF5v/YZkvnje2RBbiVpSMZyx/e7+P3LWq9Tf+01FNhXtdPPfbdL0Kp+mKST5Wpb6HESmTffSJu07EpaugG1/G1me4fyP1543uvTPAgvGDHi2+xqg+pYi7Msroj1Yun6W1ILmKrb/Wfcv1WYs4vl1re4py5GWSxa/CPLy7jbXZGnjeDRyP87RGIHaZPUK3Tr9eSAqx8ztxH73jDoRbIR8c971VGoF5d4H8vrbjLrT0+NbOV192MDN36JQAAAACCpeo6dt1PPK+f/xnLhP1zWTyr8R720LtoTcT+KKHSRdEltpuY/vUctuOnQUQu3JSQAqtXRl8z+7tGXzp5mYfAnlbv4rwyzddyvrxLrSBqz/KOav/fLvrsf4ag+Q4e+tsbgC9+8KGhV/45cQ1Yu/nPWsBU0NsbRmJEe8yALg79deN6rtw0f/nInWh7F5Y3FkGeJzyGUbXy26PuE0b+S7L7T7ut2/+mTb/Rc8IbJjlQztR3N9hWLuk/GO0Z5ifpjqdY08d8n2jfPYxG1ietAl7/wxMlXP/xk/6u7k5lILivTe5MzR8a6A+B+N36wtyR+JIlGfeg1FxMGAAAAJNFBYxZ8V6YL5N77iz8Xju7+iF/RUV5tJfXLyU/sPWrhbxXkLp1yVpfXCQtQuWM6O1J85aiRs7dRGIyU/JDoy3Ma7xCF73aT7t2x0iyPNususyf6Z9+bZDU1Z9x4/kYfEL3Kls168LHePL7BbYRJ3UinKMY65rNoBvfghNaBHXLh+a+d968335w4eXLfHGEBWCOlNbaNj/nR7ujneZe9Ku+nj9KvpF+f8ut1glathkka6FK7VPXHJl8e/Q6T6Xm8dcs+e5J3RjTTwTL1ePKUq6+tbR2O2PuqIR8zXqPYfMg/t4rL/XjeF933W8WKdQdAc51M543MbU8O7PoeYQAAAECS9By3cLeeY+ZPNflfzf1g8RsT0qr5nhtI3kdh8GrvK+Y/2Pvy+TsTNJAw5Tkmu7HFr0925rpHXzr7agvtdZMfunID0Qbpy6HY2qzAj+Kmvp5r+NfJF783pM8kz9AnKtOQ7Fv7LPYZr5jbrSZ1S1sOVe1Yl+I7unx3vAmldcx1/XZbbf3nCy547XtkLaoR67ryD7ge4bGS0Hbl2+ky/Z7NPltz3+DfnBq0ajVD0jA1W/yX1N3uLN7+Zkk+YPzHKvPOiK0kP6N+uc14YsBVA57NZmvIXHCjk5xriq0AcN9r/ttN0iHVeJMZw0J5eSi7jIQEAABAUvQaN2e7nmPmT1UY/llSz2JX8HyBjFR9U2B2qILgb71GL5zSe9SCXQgJKl16H5fKj0r56neT1x41Yu7A2pqaGZINklSb4NG4EmaUBOZN3EH+xjHbuzRu3X+9/3y/7HvbkIGV47Tsv7sNzs64X66nJO2Y1vmp+C5uaczLVK8piriu7wah/pQ977WJw4f/az2yGBW3FmdZXBHrxdL1t6QWMFW2+wZN/uncjxe8IvdrJa23ujhSLFrseSzCMBX/xyNfHSJtg7RJUkdzXVc/b+1XnxwwYT8yGNF2r8ov1ItLbAWAQSZzopL8JWGqVvc28clTN5hJIAAAAFBuPcct3KDnmPm3eph5TSsK/7DqAp770eqItJmrl2R/6T1q4W97j1qwNX0fQJodc9mcHp8tmPuamU+QtG6lTy7pLWytSLub6ZX+l7w7lN0A0y2bfbZmcHbG4BoP/iX3I/LOGwpUKmhsTGWhYuDSSa2Cun9kz3/9QHoDWp4HFkOepbvYF3GOzzEU5xn9q5zuOm3SZveePvlBD+xpKdg+9r5iUfbJit/tLvK+Hf994krFohZ7Xm9nYfjEkydfdd9jAyd0IqNRflam9yZjjoylAHCvrNfI/CQ6VySWem395YQBAAAA5bTPFR+u1XPs/JHy8C1Jv5RUuh9n+Q4RyWaSDpPsH71GL7rxsMsWrE9IgPSP6dVUvHVMdtaGR1029yF3PebStknpEIUXofCDeVryZqXXt5Hblev96/0/nJR9ZyuimT6nX/DW9z7WBi/JfbykDkSkJHnDfBbP+N5V7o9mz339xqFDX1uDGAGskdIS20QXMBn9amUrHvc7eWimJviHzA6tqP5opWrfKHdGLMW6yiI8T5l2RmzkUkw6srY+fOPJ/uOPYvxGvvngJc7JeN5nkZ+vELEUALbqNLuHXBvSaSPp9tc/0X/TOUQCAAAA5bBX1mt6XTl/UJuahrflGi5XO6KCSr4BK+KWv8bc+zfU2IzeVywc0WPCIn74BgkT4zEpgCheNuvBUSPmDgxrMm/I/RDFHFPaoPw5FFubRfhRXNojsOCV/he/O1DOfnBp0C87u93gi2aMtYz+KNdOSZwzijlm1Y51Kc6+fHe88dX/O3Pz/mu21isXXPDa98h0VDrWdeUfcNPzaNdkFTCl1a8HPfTdOR8t+ovLrjR99V1rZe12Z/GOFZbkA1bDzoir1cnM7n36lPFTnjl53AaM70jmAFDZjxeO6xHAJ1T7TWZEA+enuaBmNAkMAACAcug1bsGP26+54GU3XS2pIxEBWmQNmc6vXepvH3zFgv7ZrAeEBNUoOT8iUj+0OkdcMW+nN2vmvqAVj/vtEG8boKVdNJk/vpelcKudZBP6j3j/6VMvfXcTOklyDc7O2KudPn1d8jPkSsXjm73kacOupMldI7To3N2DUM9fdN7rF2ezz9aQ9Uh13rAsroj1YjpPSuf70l1D71rj3sEPjrUg/LNMO+cXrrQVi0Y5vpVptzvL/wVeNXnSxG5nrl6h7I0nTxl/oos/6kKh3auyC/XiEvkPEfvdMLezmfekV0bSga598pSu84kDAAAASqn3qAXdeo6d92sP/VmXdijVeSk8qLr70UrvN53c7MaX2y36S88rF32fDglyDUlwfPa9NkddOmdUkAtfkmk35rp484C8KTrgP2nI2ev9Ln7vOIKRLGef/e/2p1/01g2S/06uLSLNGyPPyj2gRjfWVcwNSY3kF6ph3T9ksy93o69g9XlgEeVNFd7Uo4B+E0NxXhF/lMI9ZsvcO+TBA2oa1viH5GdITf3hRAly35J6sKTudhfjY7Qtvgb2SM5RcLHoWua6+elTrn7siZOv7MwIjnLd21TbNUVeABh4w88l1dKpih76l3jr8EriAAAAgFL57k1e23PM/NPDjP9LbkeLb5uLWc8TAnzZFb4bhP7Hg0ctvOvA0fO7EhCAkbxcjrhs7vbLa9u+INPZkgrcxSjZO1nl+6Mos3Uq8qyDSXf0v+T9ycdn31ubiJXfwOyM3evaBX8z6eS8K15Qlvmpssa68s1D7vq+6jOvZs9/ZS96IcihuI+JQmNb3uI9o6usxqQhk9b99eDf3uTu013atLTtE29xnhfc3tW8w2SyHqMdWV+xRhdQBwSq+fuTA8btx5iOpjqOF92Ho3qfpfreKvICwNB0PB01gonZddUTJ270IZEAAABAKRw0dt4eXT+Z/6qkq/TFowATei8IJKivtfiW31z6RY0H/+41atHgvbLO48NQjQkT+ZjObmwt02eSZ44aOfecQP43yb9dzmtJd5tV5w/mnudHia3N3H/W2vSXftn3v8PYWx7Z7ButBmVnjAzkz8vVnRxifkrF2GXRtoFLndyDJ7LnvXoyUQZ5hnTNZxZh2yWrgCnJ7hny4HH1nnlLUr+WfvbK2u3O4h0rIt+5MspHI1Pk+DWdLbTHnjp5fHZSn0kZxnyUPy+s5NfkJbqmSAsA973xv7uYR/yIsOp8bNXiXG3dOJIWAAAAcdvvyrlr9Bw7/2pz+z+TfYuIALFay+TjO7T98K8HX7nwe4QDla6wAgh2JYnSL0bM3axmxtzn5H65pFbxtBmi7KLFt0Ecf62emLzsbuZ/6n/xuwPpNKU1MDvjWx+p9kVzHy5X6n+08zz7phfdxVM6t1m52iDx800rl92QPe+1mycMnNGaEQKpGuuMdV1q56cWj8lJLTqqrnuyu4Y+2PnXgx982Fx3SLZe1HFMXrFbKdYFZdrtzvJ/QbIfo122YtGMSRetu96sp588bVQ3Rny0rKtW76N8CxVpAaB5cAI9MZLh+uan+2+xmDgAAAAgTgddOW+fVhb8Xa5BimF38IJWwjRLNd2PVnG/8W97qD/1Hr3w2j5XfLgWHRXkGuJw1Mg5xzUEek3SDyp6nrBk5wF5E7nWJptwcva9X/fLzm5HOOJ3+oVvnhTIX5Jr55LljZFn5R5QoxvrKvqG5MQPO3z+XDb7Mj9ic39dUH/3mPMSlX5PFkNxXuS7qVXnHH7vkId7ZRr0uqSDE32PY0k9WDXsjLjSeSy+OHokh450Z8S9Mg21rz518lX7M6IjRYNcaq4psh/5ekyY0dpcR9GRilZvObuaMAAAACAuh4z/aO2eY+bfamZPStqMiMSFr+fRzP2469TlFv6r9+hFfQgHgKj0GTez7ZGXzb3V3e5wqX30Z0j2Tlb5/ijKbJ2+FZOvaN6jzZb/8cQR77OWjcmwYe+sNfiiNx+Q2US52pI3FZA3FSMZ89AXMd1d9ZnnR5z/Snd6JZwcQkLaq7zFe1a1XWXSgElr/nrwgze7h1MkdSmufcq0210B11X4zpU8IjeaXE5QX7GWncelTqZw2tP9x53OGI8o/tgh+vdZLOcrhcgKAL22zYGS1qGDFu2B6YM2nEUYAAAAEIeeY+cf2JCrf0PSL5W2b0f4PhmJ7GtF3/KvL/dJvUYtmnbYqEUbEnxUeMJEPqZ7wl5fbkePmN8983ntC1/M84mU7jaozh/MPc+P4qVrjW/XhP7SgOy7+zEWR2tI9s3dlrUNX3FZX3KoGse6ypDvjjdFtMFmOQ+ez5772neIOqo2z5C6ezeP8FjF95H0f+F39xkP7lRX2+qvLp0YRRwra7c7i3esiHznykh3u6uq+8Y8rzcj01VPnTLuhmez2RrGZ5Q+L6zk1+QluKboCgDdjkpku6VsoRxIY0lUAAAARK33qAXte46dN1GuRyXxiCIgYUx+YIP8771HLTyOaKCSFFYAwa4khThy5JyfhUH4kkw7lb7NEGUXLb4N4vhr9cTm0Lqh2WOnXPz+qXSiaJyefWtQqOB5eWXvFO559ncvOm1SOrdZudogdfNNZ5k9e/G5r+7NKILEj3XGui7Ji8HCd1OLa/Cu5gKmlvn14IdOsVzwosy3abwNrbR9JcI2SdbjoMu0210Bj4BP9mO0k1Msaq6Tc3PXeuzZwePXZh6o/DmusLdV56N8CxVJAWDvWxe0d6knHbdoTz926oavEgYAAABEqde4BT8OM/6a3E5SCr5t4wvnqrkfpd+sam1Jd/QavXDKgaPnd6XzglxDS+yV9ZqjLpt7ldwmS+qwaptVwWO4LNl5QN7E3nAZl1978sXvXdVnkmeIa2GGDn1tjdMvmvFruV0tV23Z88bIs3LnZXRjXbVs5e4d3Gx69vxXD6MfVfPUZRHlTTR5iUq/J4uhOC/y3dQqdw6fNGzSWvcMfnCyS9fLvE3kbVKK6dOSerCk7owYY9+3+OKY/J0Rfd9wmb/wTL/RWzDCI8GDXCquKZICwOXLlh9qUls6UJFNHYZjiAIAAACi0mfczLYHjZk3zkP/nVTZO3gkF1/Po4B7Q1evjAdv9Bq94CiiAaApR1/+n3W61s573KXTSzxSpeSYzNaVumJq5PWnd/zX+w8NyL6xJhHNz5Ds21vWr9nuBUlHkzdVlzdpXTEn9Zit5TYpe+5rJ9JDyUtyCNXQFwva7a4Cusq9pz+yY93y2pck+1l87VOm3e4KuK7Cd66suMfaJvtYCQi3N/7vt/Gg5sWn+o35ASN4NSr+jx080fleOtE8AtiMHyWKH+z+/vhpGz1JJAAAABCF3lfO23FprvXfTDYksnV/su4FgQT1tVi+YljX3O7tPWrBA4eM/2htGgQVOTiXaUyvlAKII0Yu2CoMW70o6adpu3Yv2evT8uO2VU6bWXnzzKVeobV77uTs250Zm1tm4IVvHRTKX3LXDunt75buvKmw+SnNS5WI2iwj08Tsua8fT+BRDRi7Eny/VbXHitfdgx85Jgz8BUlbxvnZ0/5o15KOFV97TGjyd7tL5hgb2T20FfXZO1oQPPF0/3EHMO5DCc8xL/Ca4s7pon8I7DFhTifJ90nV2iaZ/XKszFgnAwAAoGg9x847NgzsBZm2JRpA6m8W+4Z1udd6XfEhfwGLqrHiyxHL8/UtyqeKidFRl87/gXnuecm2iq8N4ns9ou+inufBvNQXWNpR5Luy4IV+I2bwCKlmDLrwrdMtsEfctVb1zjct7+9eziRP6dhUxfOTyfyW7LmvHclIg0TmjbGuS/KASwFTMj2bfbbm7iEPXyHzeyS1yz8sSX20a3IWE4neGdGS0Peroli0ncwfeerksYczJ1TmHJesexEr03ubEpTx3ZLCmrCvpBo6bFFmr9Vx8X2EAQAAAMU46PKP1+k5dv6DcrtTrnZp/ix84Zyge1n6TRJsbBY+e/Cohef1meQZOjTSlmuM6dE6YuS8/qGFv5PUqeVtUPmP4Ur6ZyBvStlwJkmbB2Hw+1MvmbEdo8aqBg6c0XrgRTPulNlVciV2beFWAXljqc0hxrriZWS6K3v+qz0Zdapt6rIY8sCqJW/Qwq4Q647XFuc4HWUBU+nce+bUjrOWLH5G0rCWfEaPN1wln/fL80d31fF4YF/tIZJaLBplX2lSK5Puf+qUcUcz6KP4nLAK+zxNCyK4tr50uOK4/JrJfberIxIAAAAoVO/R8/a0VstfletQopG8FT8QgRqXLl3+3qKneo5buAHhAKpPNuvBESPnjJX7jZJqy39FlfUYT4pW0rdiav71tkHOM384OfvubkT3K6ef+24XradnTTqWvCHPStdmVfs46Vq5Jl987ms/pfeRZ8lTPY9kpy/G235eyLFS1FXuOfPhb+XC8M9y/aj07VOC3e4smlz3gj+GxdyvC/uQpdntrgzHSkDuNf/UB5OkGnO/+6mTx57EaF4tkvjHDulb1xRVALjfDXM7y31POmNRPq218CbCAAAAgMLumN16Xjl/eBjYc3LbuMruBYEkJWOpTrR3UO+v9h61aF9iDsb0FGRsRPqMm9n2X7VzJ8vtjGodNQt/fdUWnZSvzSxRebauTE+ekn1vdwZcafD5b23rteGL5vp+y9uYHKqksZE1RznawNq4+SOXDH+F39LA3TASMs9Vw7GicfeQRw7wUH+SfPNV+3z8n73CHu0a71hhX10vj9Eu9jwWYeiKOlZg0k3PnDJ2MHMAWtLpvMQ55gXmfZw5XVQBoIX1B0slfERABf7QZ657pw3Y5COSEgAAAPnqMWFRh4PGLXxIppGSaogIUC33oNZR8um9Ry0cLndKYlGRCZPvDyqe/sRu1C+yczsHS2ufleywUp6XIpT0pZLneTBPQK6XyFpu/kT/S97/fjV3rdOzb/0orLE/Sr4pidbSPLCi88YrI4cSddkpnZ/WCAObOuL817Ym65CYvDHWdUkecClgKr+7Bj98qqRHJVsrurAk9dGuyVlMJGZnxIhOm+zHaCe3WPQbB3aN/93JYwcxP1TOHJese5HKerxwcY8AtuAwOmlxwiCYSBQAAACQr96jFmwd1DW8YO4HV+pn5AvnBN3L0m+SKCNpZO/Ri6YcMv6jtengSHquMaYXps/l87esq9Xzkr5XfBtUzmO40voZyJtSNtwqx+wQePjUKZe89+NqHEtOv/Ctw93tCbnWSd18YxWQN1YROcRYV7x1cu7Ts9mXOrLCqYapy8gbxDd2r7LbcrwTTbILmOL4vG53n/FI1syuVcEbIVl0n8eS0R/L80d3VhV57as9RFKLRa3kY4av+Oeq35089pfMHcyblTOWxHNNBRcA7nPTO2tJ/hM6WlH+9uSAbn8jDAAAAMhHz7Hzjwgz/pLJvkU00oKv5xHfkBDW5f7c64pF2xEKoLIceem8PYIw/LOk7sm9ysp6jCc/vqdvxeT5vXYNd59yyiVvf7eaYnr6hW+f6YFNltSGvEF524zHSUvaTPU1k27q91ItPZE8I4eQzL5oBTWjF9IXEthVbup3U+3dQx65010XJad9SrDbnUWT616i9q6s3e7KcKzE5J7l89/MpZue6T+uFyN7Jc9DlsD7xnStawouAAzCVj0ltaLLFtHZTez+BwAAgBbbK+s1Pa+cN1au+yWtWdXB4Ptk4Ou2MvMXD75y4aGEAozpLZfkIpSjLpu3r5s/KWldOkjhbRbvrihGG6QzzzrIg8cHjHh/28pvLLfTsjNGhuZjmt8CtLk2I4fIM9YcxbXBN06895xONdfSGABjfXkHsWrepW31Jg2YtGa7Nbo8KtkvkhTH8he7laLvs9td8s5jEYbOovo8NTJ/4Jn+Y37ELIKocz+e91nJc7rwRwCHweF0oqJ8mmloez9hAAAAQEv0HrWg/ZprLnhIZmcQDaCE8vq+q6w/v67poX7be9SCLI2GlCRMCzPK0pGBETpi5NyeoTRF0hppu3aKViLKIYuyDaw8bZDs34E7eph76rQR729WsV3J3QZd/M54k4YzD0V/TI85L6sqvAmdb0owP/W7+PzXTmfeA+s6NDXgJq+AyUrQp8oz2UwaNmmtZa3bPuGy/fJeD1j0bVK5C4CYj2XJDIeXKI6VVizaiLYym/q7U8ZU1a7u3LNV4zUVpqACwD7jZrY18/2JfVEf5L7pg9ZbQoIDAACgOT1Gz9siDPzPknpW22fnC2TQb/K9Y7aLeo1aeFufrLNjPxKXazy+o3lHXDrvGLk9JKlNHNdZFT/kGnmTziCX+pi2QS4Mnzjxsne7VNrYnM2+0WrgxW/f5/KqLS5KZJ5ZdeUlhUMt+dA+Nnv+awewokz33VeUOVSWwlY2Y03vmspWbtd4G9NL9NnLMR/ce+bUjsvq2vxO8j3i+aO2OLtKNReLRtk+CStytIReVx7niLkNO7jbY0+fNHYr5pFqmzIrrXgw+s9TUAHgkjb2E0nt6GWFC0PdSRQAAADQnINGz/9hJrAXZdqWaKRdAn7W4sv9qmDSCcvbLnry0JFL1iMaQHocMXJefzfdJakmvpnFYpgnKuvRoBStVP4K62uv717boCn9srMr5nvugRNmtP5QrX4r6Ygkr//ybjPWsBU01vE46a/JmPuvs+e8sik9krwhh5C4bxUi6xrJ7l93D/7t+g2hPyfpO9HncMs+e6l2Rmy22C2ipkp2sWiUu91FW5xX8qJHS0peF5wnnS3j054+dSTffVbgGirWua3C10oFFQC66UC6aVH9452nTuv2JwIBAACApvQaO/94C/xpSR2JRqrvu4By+HEuU/dCz9HzuxMKMKY3LinFW0eMnNffXTeowO/qqknhP77zg3n62qwkdssEy+/OZj31uXd89r02+tAeclnPlftmNG1gMbQZOZTSvKmCNUccj8NbbV6ua4FNmjBwRmsaBizuGevjim2iC5jK2FXuHvzb9d1qnpO0XXL6e3mL3WI/hxW21iz0upK3M2IpxowSFIsWFDoreu20Gltarva3k/pkeQpKha4hvMS5H8/74riPblxBX2yY6yA6XhGDptvdMuOeHAAAAI0uGHuOnT/SXbdLxg0sUG55fd+VqFu97oEHzx9y+YLv0ohIaMK0MKMsnRnYQn1Hzj/OXderQn4ppWglohyy0uVlbG2Wlh7tftg8vXdlmnvNkHEz27ZX+IikHuRQaYp9q3asS1Bee8JeX0RMd/2ww2djyF2wrsPqBlwKmOJx7+mPdHGr/Z1kWxUTx8J3U7OU5XxSH0Vr5QmtFRrbyikWTc54bz9eb901b2TO4KaiMq8pf3kXAO53w3+3l7QJsS987gyt4W6SGgAAAKvz3Zu8tueYBXfINZxofLGAJgSg3xSjcxjYswdfuXAfQoEk5FqCviROxFUccdncI+V+qxr9js5os/Q2b4W3mVXWMU1nnHzxe/3T2D/6ZWe3a1iyfIrk+zErJTxvrIJzqFrnm+iifNol577al8ytxDWHJSpvvArWTVW1cF1lN7V4GzPZBUwtd9fQBzvXB8EzLm1TivnUY+8qSS0WtWTErcXnSViRo6V1kLYStuH//njuhKdPHnM280m1TJmVVjwY7efJuwDQ3Nj9rzh/fHrAJu8SBgAAAKysz3Xz1+y2ZMEUmY4lGpUqAT9r8eV+NWrvoab1umIRPyoCSZr3L513qMvulpQpZqYo9JEo0c4TlfV43YrZVYoVVl6vN/mEky95e880fe6BE2a0bq2lD0naJ23rv7zbjDVs6sa6apkzImsP0y3Z4a9uRc8kb8ghJEOUu1Inp3/dMuTxdZWrfVotfOyvl+izJ+bRrhE1lcfVHyM5T4U9RruAz+6RXH7pCya96SNc/vQpYw5h7K6cNVSsc1sFr5WCAj7XgXTPorrFPUQBAAAAK+sxYU6npUv1OzcdQDQq7r4LSIJWZn7fwVcsPJVQgDH9m8rxJWSfy+cfYKb7JdXQ8PG3Wby7orAYibfNSjxXevCb07L/7ZaGmPa76aVafWgPNL7zn8XQBhZDm5FDKc8bFiZ5tUGTedneAp88bsif2hJ7gLG+dONTAgqYSrQUuGvoE2vUqn6aSzvE8dnjPlZy53kr6OVeojjyGO1iz2MRhs6KXjs1ITDpnmcHjP42M0tlrcO9xLkfz/viuI9uJBHyefFB1/9nHbn2oMMVrMFymQcJAwAAAL6xzh4/b/NMQ/BHSbsSDSCh8vq+K7FfywZuurbX6IXn0qBIUMK0MKMs/Rn4hSMvXbCLhT5ZUqtK7QEUrUSUQ1a6vIytzdJX29U1Zw2/HThhRuskX2SfSZ5pNWftuyUdTL6UquNZ6fKmGsNb6vnGktpmtuMnbdteTg6DdR2+PlhVZwFTEOk5b+r3Uq1yy38jaffY1gMWfZuUY9IuVbForMdKZmgT/hhtiymXSzphrRGGwW+eHTx+beYPbioq55ryk9fsmVNmHyXlL5PTGftnpw9afwHJDAAAgC/1GjdnOwv1R7m6y/iatPH7dwCR3U67Lus9akGWSKBcY3RyxvTSf7nUZ8TczUILH5W0Jm1Wcc1bhW1WsTsq7t7wUc345HYGt87/fOcWSUcwA6Uwb6wqcoj7vqKa0AZefO6rexMIlHSsYzPW9C5cLWXX28JjRTkfZLPZoM2ac+5w2QHlmnc89tBXc7FolOdJWJGjpXWQtnKea4twWXiby5nZKnrKpHiwMXkVAIYe/pTbsGJmD59EEAAAAPCl3mPn7+wePCepK9FAFd6Pxn8LRks31QkuOviKhZcRB6B0Dh05az0LbLqkLvmNX3H8AGMxzBPV/f06u+MkuQ0K+WHZTxmQffdnSfycp138zmiTjq/KvOFnvLLfPHjMeclNjiQpkOn2bPbFDvS9yri/9jz7pldXf0fkc2oMBUwWxRq2fH12s0++e4Wko8t3vZao3PcSffTq2e3OYsrleCctj+Tyo/yuIso88UOfPXnsYGYGpGcNFd015VUAaGb70CEKVt8ge4gwAAAAQJIOHLdgl9D9KUkdiUYF3rM1iZ/8kZCeaDq396hFY4gEEL8+42a2rfXaRyRtTTTKM8nn+6Mos3X5V0DlbgM33XzaiPc3S1IMT714xqmShhaUQxZVmxl5U0F5Q5tFPw95nsds5PWbWH2bq4g/d/RpXXehFH2qwgqYYup+d57x6C/ldlYxJ/aKzaEy7nZnCb2uss8PSS0WtQg/lhW9dmrhtY/63cmj92SGSfN8Z0XnVvTvsyLOV5r76BYXAB5ww3ubStqCblnwyPbMM6dtuIg4AAAA4MAx838UePg7mdYjGkCabuui+aogWfzMXlcsGEfjoswJ08K3WWwZGGvGupsta3WnJL58Tkublaq/l/yYZWqD9NYTrJ0Lw/v63fRSbRIuZuDF7xxjbtdUTt6kMYesdHmD+Mc6S3ybnZA9/7XetBhYp3FfVcqYJquAqTh3Dnl0H5du/N91WbRtEu/nqYbd7izefmBRt09SCxPLe6wEj/e1UnDf06eO5PeXFMxxyTpuuv8gouU7AIY1P62a/hDPpf6GBAYAAECvcfP2C8ynS2q/+oUjX5M2hsgAMd2vmg3pNXrh5UQCSR7T45sD4v9yqe/l84a7q0+1tUEi5u1K2MjGomyD9BZZldH3MnPWzZb7Ik69+N193f02sT1Tiuebxrp4SnPIqqzNyjUFuE8cOfzlTmQySpI3zDAVsV4s3eCd7F3a7hr86LZumiypNur8KfSjeFSf3Zr+D6UqdktWUWqZdruz/F/gBTdFHI+Tr5Sb8UYLZjeyXKu7Xc4MV5HzXmU/yrdQLS4A9EA/rZ7bqsiFgeqmEQYAAIDqdtD4efu46xFJ7YgGuB8tDe5cW9gdXOf0HrVwOJEAuRatvpfN29/dLik+pnH8AGMxzBNGHpA3CW2DInZRMZ0zIPvOD8r1mQaMeGtb83CSpFbkjfj5LgE3Dx5zXnKT8w1d6jIBu3VXwP21x1K4wYBYVZ0or34TQ3FeJLuplabP3nr2I+3DQL+RtHZy5hRLV+5HdAovURx5jHZhn90jufzSP0Y7z/j0+N3JY05ljimnIIHXVLnFgy2LtrvJtTeds2AvPnbqZnMJAwAAQPXqNWb+DyzUw5LaEA3wkz8SamTvKxadQRiAaBwxcsFWLt0vKcPIX4zovpjN90dR2qz8K6CEtEHgZrcMGTezbalP3C/7ZscgF0xVUT9gW1HplO9uNeRN+vKGNot+HvI8j9nU683184vPfe2ntAN39Glbd6EUfarCCpgsivO6Zeozt0n6VpQn9grLoViLRSN5ebJ3mIx3fkhWsWhkfaWZHbA93s8y6umTxm7FTJPG+c6Kzq3o32dFnC/+++gWFQAeeO2s7SV1pTsWvNiYShQAAACqV+/x8/b0FY/9XYNoxITvqJHIvpbCn4XMx/QavfB4GhplHZwj+iGgnAUQx2QXdQg994iK3nWiuqS7aKUydrKKrQ3Sv1bbetmSupGlPOGQcTPbtlJmqqQtKjdvKiOHKLhL8XxjKWkz8+smDJzRmpZDmtZpiH4+89S0dfn+2OauM6cPl+lnqz+PJeoR9oXGsbKKRS3efm1Rt081PEbbEtD3I+8I7SwT3japz6QM80m13AcWe9z0foHRogLAhoz2qrr+EKFMpmYKiQsAAFCdDrxy7vfCUI9JWrPla1y+VgVQvrtsc93Sa/SiwwkF4pacgonov1yqa5W7XbJtqr0NErGiqYQ/ErAo2yAtRVYJbDizQSV7FLC71S9Zfruk3ZktkjbWWQxdPKU5ZGlps4qw9UftPzubbEbsecMfV1bEerF0g3eyjnXHGdN/6u6XlKaAyQr6Tx7VZ7em/0Opit2SVZRapt3uLP8XlOox2uVfH1mSzrVnx47/4aknFTfvVe6jfAvVogJAc/9B1d5WFe/t6Sev/0/CAAAAUH0OHD//20Fgj0nqQDSiwR1IRd2P0m+SK2Pu9/a6fOFPCAXItfz97PJ5AyQdVo5B26M+Jj8Cx54H5E35Fz55tEHgslsGToh/F66BF789XNIR5E0jr2dsKnsORTfW0Zh5hP+87PBXeXxdqu+v4yjcIIeqrBPl0W9iKM6LfDe16Nw28LFOUni3pEzS2iS1+WrpimP5d0aMcX1s8TVwWotFCzmeu0Y81W/cDsw1qR9QuKYmBC07j/2ATllwGz1KEAAAAKpPrzELtwlCf0rSukQDq8dP/ki0Vgo0+dBRC7clFEDL9bli7g7mNkbSar+3q47isGTvZJXvj6LM1ulbMcX8GLGtcx9lhsZ5itMufruHy0bElkMWVRsYeUPeMA9FeMwWtEFrCzSB3k2epTOHEF8fSUkBU0uvt6B1iltQ63dJWj/Ofs9ud4Vdlxf8MdI2FqV8d00rQV+xlvRJizMurYMgd/tL/W6qZcZJ03xX+B8hxfc+S+yar9kCwH2u/8/mkrrRDQscx3Lh40QBAACguvQct3ADt9zjkjoSjVIuvgkBktjXPM0fc92c9NiBo+d3pdFR8sE5ojG9lD/M9srObqfQ7pfUlnZPR5ulYzFildNmlvaZ8Yvrd503IPv2lnEce0D27S3d7ddq6R/uV0TeVGcOsVto+rpdQtps/+z5r/2MRgOQ/Hm4dH9sc/sZ086UdECLzxP7I+yrYbe7aD+jx96tk7rbnUXQ39Jz31jeNfr/zvfdJbZkqMC8lsBrimKMavaLhIxnfkC7FTzoLm1fb38gsQAAAKrHQZd/vI4897ikTYgGgAqwaY2CR/tk569JKBCHwn5MT2aBSOtWmask+1aUx6ycNkOUXbT4Nojjr9Wr6i8x2krBdVEfdED2jTUD2UOS1iFvkj7WWTR5YxWQQ5aWNquc+ck8vCKbfaMVWYrY8sYqL28qaTFY+G5q+b2wVAVMxR7r1jOm7mSyy5S06807j6y0fUXl6CulmOfLtDNiAY+AT1bcio9jaYpFI7pu0/nPnDqG324q4abC4uxjVqb3Fqf5vyQM/AeVeZtUgm5q9ofJZ2y0lEgAAABUhz7jZra1VsunSNq++MUk62zuQJJ9f02/qaqk++7ytjapzyTPEAyQa6vXd+S8Q0x2UhIG7fwLIKJ/DFe1z3UUSSa54SyqNtvvlOy7vaO9sjY3eRT3EdUy3xh5Vu4cim6sM9osvzbYwhoaTiEOaU07iyhvoslLVObYHeujXYv4o5SoTcpOahVYcIekVlHEsVS73aXqHseSerDyHqssxXsW32dPa7FoEY91bWc5v5r5phLuTSrxmopT0+wrQv2QR2kVOHi4P0EUAAAAqsNeWa9Z6vPvl/QDooEW+lTyeZLmS7bQzRaYhwvc9Km5fSrTpxb6YkmfmAUNX91n5JbmgmCZma2dCVfcrYWeW8tkgSS5qYOZZdzVTq513HzdwG0dN60j93Vlto6kdSSt26J7QkCSZD2WvbvwSklnEAvgm/pkF6/rWn7D6lNHq3wr7crvK8Z8X5+QMUPRf70f3TGrow0qS6La7IuuaNKYPtk3Hp+c3a6u2EMOuPjt/nIdXbIciuzwjR+IPCNvmIfyP2aL28B1QTb7yp3Z7M4f09PJs/TkEFoS48L6SP7tVaq+uPrzNHO9Lfw4ny1Z83xJ35Y8os/T/InLG7fo8/Sr80SZ86seq8nP0+Sp87uu8o+x8cYx9mM18bLI+kozb19xnqZeFFlcDn725NE9977x7EeZj9Kwhvqq3QvN8+jf13RfLNd41OSPPT0mzOkUWsPWdL/CZDIZCgABAACqRPsO869zV28iUWbJ+o66QdJ7kv1THr4t2X/c7P1MJvd+XU3tf6YPWm9JOS+uzyTPfPreh+vXWsMmbsEmCm0jBeHGcttY8k1ltqlcPPY1kr5WGT+nmtmQ3qMWvjZlWMc76QAoyeAc0Zge9w+zYau6qwKpK+0cnTzaYJ5cb3tgc8x9tsvmyX2OzJYE7ovN7aN6yy1RTauclks1reoXN1gulKQ2y9uss+IQyxRmgox7poN72EEZ6+DyDhbaWhb42u7W2d27mamr5N0kW19Sm9IuRpL/I3yL2+yLj1IhhUbdO6rNaZLGFXOQAdn3vm0eXpXgPCvxaibROfSxpHfNNctNcyTNNfkCKZgfBp6TfIlLdcrZZzUKl1mmdmlQt/yzMPS6ZUFNmzatatp+daPQ0C7MZdqa59aywNaSq73JO7iCtWXe2VwbyNRZ7l0l6yqpHUWS5e92yckbX0/1NlzSMBoPQHLn4ZYdq5Cx8o4zH/2uXMPzudJvnCfG5XXzBUzRxLH8xaKrHGupXO/K/AOT5rk0z2VzAoWLQmlJ4PZJzuyjQFpiGeVWHDxcumx5sEwy1Vpd60zrVu3+d3TPtbYw065BvraF3t4Cb++htw9WrJs6u6zTivszdf7in05Nf+wV15u8YtHi+so3z5O24u1SX+8qf3hx9Z+GjHtmj/Fn8ERP5rWKuaYmCwDDmtxu4o9RCjVr+snr/5OEAgAAqHwHjZt3prv6EYmqNl/S3yS9bK7Xchb+q91nXd6anLW6pF7w5L6WkzTri3/+uMoL3O2gK+ZvlgmC7SXbLpTvaGbbSb6NpFqavGrd1GvUojenDlvvRUKBqBT2Y3oyCkT6XLbgIJf/IspjVm6bFXW69116XbK/Bwpfz5lm1Ne3entytvOnRXyMjwp94/HZ97oqaN3dzbc09y3d1F2yb0m+teLcXfdr3an4Nojjr9Wrb7cgk10wcOSMu685t/uCQt4/MDujQ07hJK2mqJQd9Mo6xv3XpDfc9He5/UOuf7dqCN+9/PJtF5Xrms499+9d6jI1m2cUbuEebBHIt/BA28q1naS2ZU6ExKR+NeWNSYMuPe/l68+/7Dv/IWsRed60aBcolGvArbQCpnxls8/WhEuW3mwFr7tLVOSYdx5Ff12x9BXXTJnekPnfFfo/FdjbDTl796hrj5pdzux4bOCE1p97+80yCjbzwDc3980l21zStyRtISmT/7iYR5s0+9I8d0Ys4/qo0P5Y6E5p5VuY2ubLluaGS7qQ+SU5c1xhb4urjxVz3PLcJDU5MZr7rm7xDRsVvmB+jigAAABUvl5j5h3irtHx3PP4FzcvSNgdSINkf5OHzyvQ84HV/O2RM9ebWXn33ObTpHe14p8pX/7rfjd57QdLPto6UMP35MEPJN9TUnf6TdVobfIHe45buOujZ3T8gHCgmnOtzxUfruVhw01lGKAV9aOpXCaL4DFcEfnc5S9K9qfA7YVluYYXJ2c3+jBJbX9HdrO5kuZK+r+v//vjs++1ydVkts+47Syzb8v1Pcm/rRb82MQcVcrOF80uKl+8fu2GuuBcSUMKuZJQwQ2WknVUIucbW3HLVOT8tFTSizJ7wc3/nKur//PVI3eYl7TPOnLFNc2T9MI35qI+ntls6ze3DILcju62o8t2Mfn3Ja1VihyKruAuyt2NqkabBgsulfQLQpG2qSuOR1oW/2g8VMj6Z5XdlmModivij1Ki+Owbf7JsoEk7xxHH0hQwRXis+O/TFsrsz+7+58DtzzWZpX859KoTPk5i1hx4zaDlkv79xT/fcPvxt7fpsIZ/KxME2yv07RXoO3LtKqlD9H0lxu9X/neZKSkWLUHcInis69m/7z/67h/fdPYM5h7m3ErQ9A6A0q4sEgvsJu6/JwoAAACVrdf4Bd/xMLxHUkA0Kloo6W/mesLMf79U/sKTZ3X9rFqDMbG/1Uv6xxf/3CpJvS+b10U1mT1d/kOZ9pD0XeXxl7VInfWDBj20V/a9Hz2X3WwZ4UDVTg65+tFmtkGzL1zNd4nVsUNRi79EdV8xzz4VKHh64Vqf/HH6oO7L09gn7lgxJr70xT+SpF+OWtA+rFu2p8l+4PIfSdpd7KRbkETlzde6t8lOHnDp2+OuP3/LvP4gZMDF7xwj19ER5FChFx777xwJHetCyf9qsicV+O/WVJsXsylez0yebDlJb37xz2RJymY9qNO/vhXmbA+X72nSTyRtWLnzTZlyKKZj5tMG5jr6kgteH33hiB3/zizB/JSOHEJLYlz+3bpKkSOF9a+bz35sQ2vwi1d3rLQWMBV3nuLzdKVi0Y/N9Ht3/527/e6ICUe8YXn9uUUynXDHCcskvfzFP5KkSX0mZVp1+exbZtrd3b4vhXtKtlWyxs4yHKsUO8A2cynNP/Uh0vmpdS6wKyQdzpxU+nkvvz5V/B87RP++5K2Vmt4B0LQrnbDgvvscQQAAAKhcPUYt2tDDhqmS1iAaib6PLNQiyaa76fFcXcOT089dfwGBbdyU87rMk/TgF//o0JFL1qvPLD/ATL0k7S9pbaJUYfswuHbt0LbDBInHnyMVY3rkGXv4pQt2MfMTKzTDS6FB0nNyezhjDQ/fdf5GFbuj6G3DOn0i6fEv/lG/K95Zq76+9b6hdKDJe0jqWnUz3So706ReG28ILpR0UkvfcHL2vU3Nw+vStjqJ/3F1sR1zmaQnXJqaa6h/NIk7/EUpm7VQX/3BzkRJOjf7z+095/u5bH+tKEZuw1RUWLdLWLFX4GF4nqQjaUAAyZyHo53Ta+r9apm1T/q9ZvMFTNFcbETFou+4+yOBB1M0157vO7lv7sv/cGQFTy9ffM6/f/HPzZL08IDbNlKgfaT//dO5mA5Uqsdol/6+KrljREHncx367Cljd9/7hjNfZPxnXivd/XY819RoAeB+17y/maROtFtBZj1x6kZvk0gAAACVab8r566RsYapkroRjYoyR9JDHoQPfvpJl98/l7UGQlKYh87tsEjSryX9ut9NXjtnyaIfyr2nTL3k2pLvDiqFn9T7ioV/mHJOx3vo9Sh1wuT7g0qkX7y7W3DFgmvcq3sH4IIKINxekPTrMOcP3JfttrAa4zbxnC0WS/qNpN/I3Y69bNauQehHyaxv02vLVR+5VnybNX2wUu0+UyEj3PH9R7wz+qYLtmj20VF9Jnkm+Oe7d+l/j2iNOM+YcL5UL9dTZrq/LggeuSbbfUk1B2Nk9ltfFgSOGzr0tTVq2tX2lHsfSQdKaltJ6+IqzJs+2eGvZ7OX7/hv0h6R5k0pdoFCwQNu8na7i7+A6bahj/1EoQ6Lpq+XqIAp79OUrLDqHTPd66FPOnLCkf8gr1Y45PpfzpR0u6TbXW5TBt76bVNwSOh+mEnbx9F8pXqMdvl3Fk30faK5h1dI2ossSMYcl6x7kXR9x9FoAaDV1Owq90jSufq6pfH4XwAAgErlbq3GLbhV8m+X6PZTctbZMd6BfGRuD0jhPd/5vPMLX+yWgQh98cjg333xzxm9Ry3YJQz8OHM7WtK6Ke03+OoG+MaDxyx6+ZGh6/2TYKCYXEtTbvYZueA4N+2eT6KUY3es/NvAZPF8qTnfXbdmanK33TOcP5j9ZjOa3yX9RdJfslk/81374MeZjB8tV19JHZjTyptDeY5dNZmcLpT0i+be0/lf754t6YckQETzjWnlB9P926VbGuqDu665vDu7eK/GmDE7fSbpAUkPfFUMqJ9rxa6kmbhziMLWyAVBJjyvJeMPkjR15ZdD5E1lyUkt+EuiItYqq+y2HG/xQjwFTN+UzWYDfRKMlcKokzGPzxNtcZ7LS/g4VUnShya7J5Tde9TVP/szmdhcWM11jV6R9Iqki6YOur17GPqhkveRtEvZ7kH+d4joi0WT9XjrYo7Xstis9L4f/+6UKw/6yQ1nTaP3V+P3BnHNk6UvHmy8ANB9V6eXFDjIhBQAAgAAVKhe4+af6dIRRCLVGmR63KU7c60WT50+qPtySZpCXEpiyrBOL0l6qceEGUNrlnXoKQXHSerR1P0pEm0Nz/mk/a6c+70nz+r6GeFApetzxYdredhwRd5vXO1TZlL2Q26+31u6/dECu/7D9p/89su5Fo374o8QnpX07IDs/CHLgrqj3fxkSTsTncKVNs/syFOyb110Q3ardxt7xcnZt7eX66L4Ei/PY5bg94gStUG9mX4r03Vjs1s/T89vua8XA5533psbNAS5E1z+y0DarPTzUyoeJ12SxMk7b1xHZs/528XZK75LoX1VzDeV1d+RthgXtiv16vt8yw+y0eLvnSBr6o+xk7ozYinGlmav94+STVy6+NNJJ9xxwjJyrjC9JpwwQ9JoSaMfHnjbtyQdKw9/brIN4s3rCItFSzIslWoXy+jHTne/PJvNTs9ms2wQUMIOlt94+tV7k/PHDsmaxxv9gSWUduWvQwodHcI/EQQAAIDK03Ps3J+6dAWRSN195Jdmm/xmhcHEKcM6zSZI5fVFMchvJf2292XzuoQ1wbGBaZBLG1bwzaIqdB+G7drkaq6XdBw9GyUc00uTsabWP7t8fp///buw/mDJulRVhucndNkjCuzK+87t8gLhKMz12c6fSpooaeIJl8z8nkynS+qrFu/MlYKZbpWdaVI4k646NtWYMmdJOmV1L89mn62ZL7tdUus0r06K/QE/4sH/Q0kTa4LgutHZ7rMYPYpz2WVbfyDp0mzWR9aFb+zrbkMl7cOaI668iTSHaoJMZrikX9GTgWr+9iC5u93lfyzf5vYzpvf52r8Y4XGsOWK811wR2/jj2Egb1rl0fxCG44685sjXyKhoHXLNL/8p6ZxJfSad17brJz8NQ51k5odoNbU3SXqMdhQdPrKdRb/x9lWPFe993+qv3WQ7/GhOu59LuoteXrkL/UL7Vjzvi34SWv253G3/G2Z9KGntKA5XllVR+Sz+/oIN1uXRYQAAAJXlwDGzNwks85KkjqVf31JOUNAdyFf3Bc+56bpu7Ts98sXjaJFQ/W7y2jkfLzpSgZ8p105l6Tex34NWdD4fP2VYxzvpyelx8BWLXpHr26XNNS92TF/NezyGDPSCMtaaOp4XPyJYnoNP/sf3vMa7rx0/59I9YZAb+cC5G75FdkXvuBH/3SIwO1vux0lq/fUN3IrPTY+4H7UwL/P6DB5R3jT/ufM6vq+Sl8saajObTzxv0zkrv/SUi98Zbq6R+beZR/iZV/PZPaqYesR9qMljzpfbmOVB/Q3XZ7f7lBEiPudm3/i2N2ioTH0l1Tabl56AvGx5P1r96z0BeVlY3tSHOd8qe8XO79Nzo3flOX8+NLTgwbza2ItcdxWUBzHMl17Q+B4OGbV7hp6zetcO+8ORQWj3NT/2eQH3K97IOssL6Ive9H2I5zPmeovWD9bEOZpfZ3qL17rW7H2aF5Bj3vi62POdSzyve0D7Kk8XS7oxE/g1fcf3/YBsK52HB9y2URD4AMlPkmu9vNswn/zxlqwdvKB8X/16yPNcYzXft62Zc7TsvjK/fGzhdz7/WVbbeusDrxnEUwwi8nz/i56R9JP81r0FtrsX3O4t6jP53sO07L5hpViYrt7tpisHFxrv1e4AeMCN72/iqlk7/8Pxt84m/zPFfwAAAJWlz7iZbZd65kGVo/hPkswpAsz/DiQ06UG3YPTUoR3/SqTS4YsCzbvlfk+vKz/cV8oNlWzfEvYbFBfYCb2u/PgPU89a+z2CgUJyrbJzMx2PZCugzUJzTQoUZu+5YIM36fXxufOCjd+R1P/YS2dekgl1tuQnS2pVPXNacnNopTZoU1PfcIaks77+mlMvmbGdhyse/cs6pCjz5bris6D9TRMv7vY54YjfyOx2r0r6+TnZf51vDeGFMh2r/+1GWngOsUaIRa0FdoakQYQiDjWS8vzpr9kUyS+H4s4b8iyJ90pFrFVW2W053m3Vo+8/ee12F3kcS7UzYlSPdnXTJwptQk0mHNd3fN8PybDSO+T6X86UNHzSkEmXtK1bcoxLwyRtGUsf+t8hot9hMlmPty7meC2LzWquY5PW9cuPlXQzvbravjeIa54s7WNNgtV29FxmJzpHwXi8CQAAQIVZ6rXXSvoOkUgDr5N8oofaZspZnftQ/JfWe3XzqWev9+TUszvvl5PvLNlvlfevLSh9u6mDhfV395nk7PQArD5HVp218p3lYn59s1/B2zf+v8+EYfCdey9Y/yiK/0rnrvM3+uD2Czc6PTR9S6YHVO5noaRhdRh73qycJHbSL0f9u/2X/yab9cDDzM0q+NG/cfwEZ/EePvo2+NRMF9cu9S3HX7L1+IlZiv9K7Yrstu9fful2v1Qmt71Jk9Xsni0RTpZVc8zi88ZMx2ezL3agx1bDfFNZ/R2Wzuu1KPq8RRgaizC3rEw5nPd5lprZqPr6zGZHT/jZ+RT/lV/f8X2X9rruxFuWzV9rG3P/uaR/RdEfvUxpXv4xzUo+dpp09qQ+k/hus4QdrNA9kT2hn6ecgtX/W6MAsPBJ+EWiAAAAUDl6jpl3jGS/JBKJVy/plpxyW00d2qX/o2d3nkFIKsNjZ3d+derZHX8WWmYnSQ8o9YWAlV6nYXsuf3/RcHouou9a6cjYKqnEelOy3veev/4+D1zY5TU6Z3ncecHG79x+wcZHuvQ9uZ5P80yX6jxb/di0VutlrY798n/M07v9JP9+Ja1OontIa3PxtZyb3xTW1245Lrt1dvTobT4h+8vr8uyO/x45Yru+rmBXVepmCFbKvIk8h9oH9a35/gKoEIWteSzC85SqiKfMN4cWdxvG8tldpnssqNn6qPGHn3PcdYctImOSpe/kvrle1/f79cudPtg+NOtr8n8mY8ywCM9jEeaeFfh5Ykn8LTut958+9OLKXeh7rDmW7/uinYSCRv79jjR+YW23vK6BAkAAAIAKceDYBVvJdAORSLScue7KhL7t1KGdT3psaLf/EJLKNO2sdf8x9exORwZBsIOkeyXlEvbdAf53Z6wLe12+cFcCgdIljOXRPVFElD836Zz2nbrucN/5XacSkWS448KN/3rbhRv9SG4nSvowjhzyNA0HSckX94FytwHZ97qadHnxU2u8r0/ooPOCy3a7KrvNyVeP3Hwe2Z4sV4zY9m+Xj/jWnib/lWQLkpjXVVzEf1o26wG9FEnMM0S5DqrK3e5iOE+JChMt0rP80Uy7HT3+Z784atwhM0mmZMtms+HB1544eY1Os3dyt5MlzWu8T8bfH8tfWJya+e0cl/ONb3onySq5plU1dhOwU1HpUL2xf/u5IZt9TEICAACk317Z99oEHj4gqX0y7i/4WnU1dx5PhUG485SzOh/38Nld3iEi1eGRoev9c+rZnY4J3XaQNLWI/oP41Fqgu3tlZ7cjFEjvTmDV+whCX/2/fCwMtN29560/amJ/q6dnJ4yZ33bRRrfWh3XbyuzuZMyB1ZVDq4np1gMufmd/Vzhe0tqsQ/JqkkUynTA+233Pq7LdXyYgiW4sHzlih9u8Pre1zG/Kt2uzy25s7bJFpuH1nsQhIXNbmX8rjiTPKH9IX79b6a2lLaqrhgImK0GervYcH0o66cirDv/hUeN/9hK5kS57Z7MNva8/8aZwadBdCi6V9Hk06ZHSR4gn/ly+07OnjDmQnpvG7lXdxYOrFAD2vnVBe0mb0zsKwhcSAAAAFWLN9u3GyPRtIpFI/3a3ntOGdt7vsTO6/p1wVKdpwzr+a+rZnXqb6ycm/Y2IJM7W1rZ2BGEAohd/wcQ3vphcZLKj7jt//YPuH77++0Q/2e7Objn/tgs2OtY87KlGdpYgb+LKm9XlUHCdSUdG8wli/sEgKb+RmD1Qo+BbV2W3uoO/gEqPK67Y8aPLL9nhZJnvL2lmMjtkdVQwfZk07j6InpmWNrOC2pgcqs71SbLa0SI8pKW2r3qJrtelu2tyuW2OvurwW4w1UqodfNuvPul13YkXqMa3lXxqssaMlXYWtXj7tkefJxHmsUnuw+mx1XATGtU1JePzrFIAWFe/fHs1vjMgmm5UCgABAAAqQK+x8w6XdCqRSJxP3G3InPaddpx2VqdphAOSNGVYp2e/83nH3czsF5L+S0QSdY98+sFXLvwecUB0XSodl+l5foYE/3oztaE2s/2953W9n86XLrdetOm0+rBuR8keTcs1p3onsEbHJk/4H9lbDG1ghY6Nc9zs4Kuy3Y8ck91yPlmcTiMv2eGpXN2yHeS6g4VJoWNXcXn5NT/Jnvva9vTK5M9nQHNjSmXtdmeFfR4rVy4mojBxjrv1Ouaqw4/te03fBeRJ5eh1df//9rquf29zO1zSB1H1oVIVikf2GG1r+ro81s/S7Hv3fKb/mB/RW5O4hrIixnsrap6I533RzTerFPqFHm5L9yp4jKAAEAAAIOV6jlu4gUsTiUTSltp6MJfLfGvaWZ2u+huPHsRKslkLp5zV8Z42Ncu2MdfFkpaXo5PG/1VB6mQ81K19st6KXooiEibyY/LIwWZ9JtMv7ztv/d6Tz+48l/6aTit2A9ywt5sGtGxetPLkDRsKMXaZP5KR73h1tvsUWjn9Ro3aZfHIy7Y/wdyPlPRJavPMUp9nZgoH0CORxPkJUa6DLMI2sMS0dVkKmCy+Ri14NzXX/bWW2/7nVx/2KMlSuXpef9KD4dLMtjJdu6K7VMNjtNMjsHAwvTS1k2SVXNNKfXbVTLRtKmK5V47YtwopAAQAAEgzd5PnbpO0bjLvearva1WX3ne3nlOHdj58+rD1ZtFJ0ZTJZ2y0dMqwTllz7STp2RTcuVaD7Za1WXgeYajy6TVhr89j4q3GY75uFu5y37nr307PrQBmfvsFG99ggf1IK+0qUZo5sLpyiOLivMP+mbv3uyq79SFjs1svJGEry2WX7fCA58LdXHojTWuKypoC7KhxQ/7Ult6YhnkoBWtxCvbT2++sHP2NAqYiz/OJmx9zzNWHH9V3fN8P6f+V7+DbfvVJr2v7DVSg/dSi3QBX7tJpG6QtNedyqdezJ47akF6atu5VvcWDwar/wrehVxTk/SdO3IhJGAAAIMV6jlswQNJ+RCIR3OQTMznjcb/I25Rhnd6celbHn5rb8ZL4QbnMzOycg6/4cAciAUQ4Scbyer+xTf3S7913brd/E+HKcuv5G/0lDHO7mPR/5E18r19p9otjRo15wi7p6uAty9n3rr5k65vJ0Mp1+eU7/rt+We57ku7NP88s7Z08CWPd2p+0W+MQemISboiaazMrtI0rax5ifVKi88RQnGdJ619W0sT2KK/X7RWF4Xd/Pv7we8mO6tPzmn5P17QKdpR8UvnGjJV2FrV4c9EjzutoH89qklTjNepH76yIm9ASXFP5P0+wmoUmBYCFDQuvEgMAAID0OnDsgq0kH00kEmGWy3tMHdql/5RhnT4hHCjsftt8yrCOd9Y0tN7G5HcRkLJq5UF4azbrAaFA8bmdjsv0PD9DmXco+lxmx95/3vqn3JHdbBmdrDLdkd1sbqbL/J+a/JZU5o0SlzepHJuau/Bo2sCaeb09nDPtOn5E9zfIzMo3ZsxOn428dLufS5ZVRW7IF8duUsXl5TeP5CfQC5M/nwHNjSnl3+0u2uI8L83HKdmjkaM6lrtdX7fOx3scM+FnM8iF6nXA+BM/7HndyUe4+3GSPiukP5blMdqRpYYVvXaKPsftpEl9sq3onUlbQxVTiG1FzRPxvC+a+eYbX773mDCjtaTN6FoFNJbZP4gCAABAOu2V9ZqMhXdJakc0ys3ursnU7jBtaJcniAWi8NC5HRZNObvzcVL4M8kXxdt9S/FVQVpvmrXry20X8hezKDRhIj8mjxD8n3c8Y3vcf26Xu+mTlW9i/13qb71wk5PkfnEhORRb3rChUHWMXaacuZ971cVbHnZNtvsSWrOq5nwfeel2F8t0vKS61OSZpTDPVvXT7LCXNqYPImnzEzIRroMswjawxLR1WQqYIluTWr5zy1KTH/vzqw899YTsCfxBFiRJva4/+S4zfV+uGXHkdaU9RjtmXTut2+5QemV8c0u6vixI9hcY3ygADINWW0qqqZjlXgljH4TGXywCAACkVPsO88911/fScb9UmV+rmrTY3I55dGinYx8ess7H9EpEberZXX5rbjua2RMJu3OtGi67rNeYJR2JRLW2f7Jen9cMlYpjFmRaECzf9YFzurxGD60ut120SdbMT3YpV5JVXhUdk+LiRi1UqB5XXbL15RV7Q4NmjRyx/V0KdIBki8mzkgmCoOZYel/FruVKmzcU7Ke331k5+lv8O+dVRAGT6b1MEOx5zFWH8wdZWMVB1/b/e+sG7SrZI8136bQN0paqc7n5AHpk2rpXdRYPfvPxO5mAx/8WKMzk2AEQAAAghQ4cN3cHd51HJMrqT/Jw56lndbqXUCBOU4Z1mj1l6Ho9zG2gpKVEpLRMWtdyy68gEkA0fOUMa/nrQ8my29R36X3v8E0+IpLV6dYLNrlJbn2Ugt244sub6F+vPPMyGceMfQXwkizz3asv2eopMg8jL9n+2dB8X0kfNZ9n5FA0H9mPdzmlWwm4GWp6vsmviZz+XtXrk+LPE0NxnpUgUdKW2M17Ilfnux417uBXyAI0Zt+J/RcfdN1Jh5r8gi/T2EvUtz2Srh7lzqJRPgK5pe/78pz2o2dPvnJ7emQix1LuGb7mGwWAHjoFgIWpX2u9T94iDAAAAOnSZ5JnArdbJLUiGmXhkq749NNOP556Vtf3CAdKc/9uPmVYx2tDy+xmLu7jSt8AJ/QatWh34oBqmeQaT4U8Xx+dxYF5r/vP63JxNmshrVTdbrtoo4dkOkJSfSryRmXLmxZOcamdm4v6DE3+UGaattTW+PHV2S3+S8bhS1eM2P6vodlPJS2qkPVtDGOdRTc2mm1x2Xl//yE9rzgNaZ6fmOwqIsbl3+0u2rb32D9OUh+NbJLk5j6y1Qf1Bx133WGL6PNovteYH3TdyZdKdrRky6PLsYgfox1jmnkJPkvznzU8id6YtO8ErOi1V/Tvs7KuEYNv3gcEW9ClChqR3prcd7s64gAAAJAuS2fOP13SbkSiLD52s0MeHdp5+HNZayAcKLVpZ637j/q2wa6SHo729jCarwoqWGDy6/pM8gy9EAV/QWvRHLMKHyE422Q/uvfc9R+j7+FLt16w8cNmdqRaWAQYW95QTxCbso11ptvX0QeHTMx2+5xWwMquGLHdKwr9J5ItSHTeWInzJiY5D/vS65C0+QbFFeCv7liemraOcheviAuYLPa4feLSYcdcfdh5fSf3zZEHyEfP6/rd7659lPcfUcT/SO7YxsdSj8dNv+7IZ7PZGnpiGto07muyxMYpWGnq2Yy+VNCU/QZJCwAAkC4HjZ+3uaRL0rnGTf3Xqq8FgXaddmanKfRElNP0QestmXpWx8Pkdq4kvngtne8sf28hfzWLZiWnQK8SHkFob1rge953XpfX6VlY2S0XbPSgmR8tqSE9/b1yKgYrsRjZTZdfne3+q2x2b/7QB40aOXKH1xXaAZItJm9iXgVIh2WzHtDrqnseiiRvKNivgi6b1EIhS1X+NHK98yzwvX9x1aEP0yFRqF7X93/eFOwh6d1i86T8RcOlzOtIztXZ57Tbj16YkjWXJXXhEu81rbzg37zc02FKvUniAQAApIi7WaiJktYgGCW/vZlsnzbsMeWMzm8TDSSjU5pPGdbxcjM7QNJCAlKywF/cY8KiDsShyqZfQhBzTBv9EvHFoD73g/uHr/8+EUNjbrlgk9+4dFJ1p2o0j9xrYV5WqtDdBk3Idj+3Ev5qCfEbOfJbL7vlDnbZ0nzyMo5cr3Dr19T//Qf0uEROM1+bP+Io3KBir7LulRL0uM7VXZeV/t6vVI9GjuBYb+dqfM9jxh76N3o7inXQdf3earD6H0r2r/iG+pV2FrV488QjzrloH+v6jR1bf04PLMMiiWtqsf8VAPaZ9EYrSRvQuQoaCWYQBAAAgBTdJI9bcIKknxKJ0q6aXX7J1DM7HTGVx4AhgR45q+PTyvn3ZaI4tTQ6t/rchxEGVPzk19R/tDxfX9j5p7VqpX3uy3ajwBnNuu3Cje9waWhF5Zniz7Pm8jodJynuMYS+4n3L5TpywiVbXkM2IR+Xj9jx9+Z+hKQU7xhpheVNHscsaqwzKefhz+htFTTfpKy/I5oYl6rYrVS7dXkh57D8P7uXqN83cZ6XPBPuefyVh75D30ZUDr524GwLan8s1yvFzUMJKiy2gnOslPPTwc//clR7emCS1lxW9Nor+vdZ2daI/ysA/PjDDptIytCdCghiQAEgAABAWhx67az1zH00kSippTIdNW1ol4tk7ASC5JoyvPPb9fUNe5j8haIOlNf3TdWbEm4acvDYRRvR86qdxfA2iy0D05Wxdsf8+i6H3H1W18/oZ2ip2y7ceJzcL4t0vM8zr1ksxjDnxj/WLQul3ldf0n0y0UYhLrts+6kmOy2ReWOx5U2pV1yH8xhgJG2+QXofkeslut6yFDBFGEozPdF6ed3ex445bD79HVE78JpfLqhr1fonJr2QtDEibWNaHudrV1drh9L70tCmcV9TXJ8niObdGffN6UuFqQspAAQAAEiL+uW1l8u0XvrXuKn5WnWhWfiTR8/s/AC9D2kw/dz1F7SqWf5TmT9INGLX1uv9UsKApiSnQC9djyA0+Y0PnNv5l89lrYFehHzdetGm57v5fdHmGY/xTMdYV5A6d//ZNdnuT5I9KMall253k6SbqyRvyqFbTf1rexCG6p6HIskbNgBMdHfySM6R1MJES1X+mHT3Z5/O69X3+r6f0sERl0OvOuFjBXUHmPRyIXlSaTuLlmIMMR4DnJ5J0pK6cInvmv5XAOgebJaM6TB1q+UPnzltw0UkHQAAQPL1HDdnN0m/IhKlWirr/SBnP5h6ZtcXiQbSZPIZGy39zmed+rjbBKIRM9PPe41e8B0CUVVzA2KNqcmk27ap73oqu+6iGDW5VidK9lo1TkxRjF3egmNWSLjqA7Mjrrlkq2lkDaKwZHHrgZK/qGrJoRLLufMY4GROM1+bP+Io3CCHKuteKUGP61zddVnp7/3K/8cpqx7Lza85ZvzBx/Wf2L+eno24HXjNoCX1tZkD5Yr4MdMrPUbbos2TwnPZYhwbmn88uUs/efK0Ud3oeSVeJHFNLfJVAaAqeAfAOBcVpreIAgAAQPJlsx6Y23Uqdg9ttNRrDRnbY8qwTm8SCqRzzLBw6rCOp7vbZUQjVkHgxmPZUb1W812iF3e4e7ap73JSNmshwUUxJma7fW4WHiopFX/4XH07gcW8o6K16OU5ST+/Krvlw2QMonLNNd2X19bUHi5pbqpzKIljnUkmO4RexnyTlv4Oi7BPWex9Pdqcsgg/jkX4eVpawOTX/2Lcwaeb+IMslM7BV580z2psf0nzyjGmJ6fgtyTzUybTYAfT65K05rKi+2L07yvPWulrP37aRnSjQgJo7xAFAACA5Ptb+/knuWwXIlESzy9rqPnxE0M6zSEUSLupwzqeL1M27zfmdY9f3d8Ju/TTQy5fsBe9rZpZSd9WbAYm9Ydfk0/Kde98PMV/iMotF2z6npsdLSksWZ5ZBcyMFVIT0UwbhCYdPyHbfRKZgqhls9vM9tB+maihwCLJmwJeH/mAssmI8/+2Lb0MYOGQjOuNcheviAuYCj/cxJ+PP/g0iv9QDgde0/+d0OxAlz4tdG1S9jHCyjk+Wh6vpACwcua88lxTXLkZfPWxfAP6UgENY/4fEhUAACDZeo2Z3dFd7OJVmoX3M3UeHvD0OesuJhaoFFPO6nSxmZ9PJOITBhpBFNCYwn5MT+fOPkV4uEPHLj+f3Ndy9BhE6bYLNn5S8quKzcsU5FBKx7r4Xt9EM7qbTro62/0eWg1xGTlyu+kun5i2PEvHwjtzAD0MReeBVVnelIpFc4DS7nZXiWvAgq/31nfXeuUUiv9QTr2u6/+yTCfl07fLv7NoGu8Tfa/HBk7oQI9LwdhsCbymGC/sawWAirEAsHLnOZcoAAQAAEj8vUHmEpnWq7zPlax1tknTPv30055PntX1MzodKs0jZ3W+TLJhRCK2EeQHB1+xaH/iUB34NWSl2bP4eE4P6xceMbG/1RNPxCEX+nmS3qjUHGrpMYsrHKqc4keTzr8m2/02MgNxa1UTDJX0TpR5CclNFACWex6yaI+Z7+5o5E0l3CtZ0V3W41yjWJzjdEILmNzueHetV/pls1l2Y0fZ9bzulPvN7aoocy55hcWF5mwxO49+472t29QvZ01Vyeu1lN7LrygAdDeXutHwBQQwF1IACAAAkGAHj5nzLVdjf/WGyG6mzR5p82mnw57LbraMaKBSTTm742i5LiYSMY0jgY+QO9tDofqspte39Etvd72ieus7ObtdHYFEXO7IbrYsDP1YSYkuMq2+nb1iLn5c3eHN77w6230kWYFSyGa3+1TuxyqCx5CXJYeSONaZJNePstmX2tHDmJ/S0N9R3uJnL1Gf8EKOZflfV1wFTCbd0+aDZSdS/Ick6ZyzsyX9X+T5m4Chv/mnPpTqIr03PS3q+cSKmIeK/2OHUhWtxymQpF4T56wnqQ1dL3+haigABAAASPJ6LbDRkmqIRKymt/ukY9/JWaP4ABVvyrBOWUk3Rn+Pzz4Mcu3ae/TCXgSiWiXxUR7RZWxMGf6BlOk1Odv5U/oP4nZ7dtOXJV1akryxCpgZK6QmYqU2+MO6qu9HNqCULrtshz/JdUua8jr6NULkA0qbzPLMXvSu0q0DgWQsHIxj5ZvfLTicu01pPWvZ8X0n983Rj5Eku0zsX59pCI6QNL/0RcMWYSqX+sYqr/Md+FK/m2rpbZVws2wR9f3yrykDSarzcAP6UmFtslZ9jgJAAACAhDpo/Lx93O0gIhHrrf3v2gbLD6f4D9Wk9aYdT5PZb4hEHIJL2AUQkcxOkvL5IqjQv0Yuo89MQe/J53f8gNZGqbRbu26UpBn5500icyjBY1dyXv+1ZpuRq2s4LMtuoyiDMMycK+nDtORZKmJqxiPrUHweWHXlTclYNAdI3uM6y1NcEXNDvGQ1rY6m+A9JdcDE/nNC08kt6dtlf4x2Ou8T11kcLPkhPS0Fk6Ql8JpiurBgxWG9BAWAFbncmz/5jI2WkmgAAADJk816YKHGVP49T/nW2W76Y517b9bEqDaT+1quvvVHP5f0LNGIfGTZqdfoRQcThypo6Zhfn7LJPN83hOZ+zAPndXqZnoRSumZQ9+XufnoF5FDBx6zSsevDnIKe112+7SKyAOVw+eXbLpL5eeV+FGaFrTwoACz3PGTRHtPzPCl5Uwn3SlZ0l41st65mLq9Uj1QscQHT+7maTK9jx+z/GT0WSdbrulMecunXUeRc8gqLCx1TrcD3re69PAa4otdrsX7nEI9AkjynDWjwgvBX1gAAAAn11/YLjpe0E5GIzT9qg9qeT57VlS+6UJWmD+q+vL5NcIjJ/0E0omXSeUQB1djxV9bEl95nP3B+10cIGsrhtos2nS5pSlKvL9kFepa+Y5rq5Paz67JbvEXvRzm99e9/3Sz5y9WblxGOdSsur3t22Esb07OYn9LQ32Gp6ruFXq8XcizL/7oiKmD6OAjCg0648qC59E+kQc3y2kGSZkeWvwkY+pt/6kNpLtJc+9DDop5PrIh5qPg/dihV0XpcghX/r3elyxVkDiEAAABInl43zW5n8hFEIrY72//mcpkeDw9Z52OCgWo2fdB6S0ILe0taGM09PvswfGGXXld82IMwVOUEU9K3FascP+SaNHHSeV3G0ldQ1kw1HyxpWax5YxUwM1ZETYSfNeGSLdnxGGU3eXLfnAfB2WnJ6+jXCDE8HiyT+QE9q3TrQCAZfTDKsaRyj+VNH67O3A//+dhD/kkvRFoccOuJH4bu/Uo7NlmEqVzqGyvL56XfenbAaGqtKuJmuTyPqo96TbmiADC0znSygjrBbGIAAACQPP5J5jRJ3YhELLdBi4NQvaYPW28W0QCkqWd1fc9DP1RSHdGIcqwJLyQKKHo98OXMldfrWzgbluXz+Eth/cKBtCzK7ZYLNn3PpBvzy5vy51Blj3XRv96kR6+5qPs1RBhJMfKS7Z6R9FyS8yZlYwcFgEDC7oKjWyol9XGd5SmuiPCzu2T9jr2q9+/or0ibnjcMmCbZw03lYokfo10p94kW5rQ3PaysYzPX9DUrHgFs1rFktxQVFXtna18AAICE6TFhUQdJZ1fVh7aSrbOXh6F6TTmry+v0NOArU8/p/Ly7DSESkdq956iFPyUMlY0f378xmTf3go/DwI6YnN2OYmMkQyZ3haTPUpRDZTtmOsc6e7++datjZcYmV0iU0Fb/RyJ01PwFsh8ShTLPGRbtMeOeb7xU0y/yaB8rust6iRqzVI9UjLOAyd1GHje+5530TqR2HeXhmSpwJ/doC4tLP2Z4pBOYrfw/f0LvSstSLcJ2T9j3Dl+t8SWZeSdavICBwnkEMAAAQNJk6huGyLQekYjhVsR08rSzO/8fkQBWNXVYx+tduolIRDXgSOY6n0Cg2vr9yvyr/8+Jvx3e5V2ChKS45bzN50m6rhI+S2kL9JJbqPg19UEQHnnD8E0+oqcjaS4fsdP/yfVUwnMoFWOdS9tls2+sS6+q1Pkm1fMQUh9jK+iyPfbPXlQB09PtPvj8Ivoi0qznDQPelWtc+YelpD5CvLC52EQBYPRrG4tkTZScPxIq3TwefPHJKQAsKHoBBYAAAAAJcui1s9aTdAaRiOUmZfTUMzvfQRyAxrX5vOMgSX8t7ijsX/K/UUfaq9eoRbsTCbS0w5RDKX7INfNrJ53f5bc0MpImE9ZeKemTpOVNombSFNZEmPycqy/c6s/0cCRYNvl5HeXj8FZ/TC/+M1hmeQOPAebODVXXB5P6uE6L8G2RL8Bm5RoyR/ed3DdHr0PatbXwckmz47yBiWxnUWv6urywASKOMWnzZ0++fFN6V1Julotv91IXHEa5pgy++L8UABYgo5BHAAMAACRIw/LasyR1IBJR8ym7fNpxOHEAmjY5a3W5XHikpI+/8R/YEKFg5n4mUai6Vo92BsvzmAn8IfflJWt+MpR+gSSamO22UK7rY/vxmfkztrGriR/yp064aMvxRBRJdtllO/xJ0ovJyZvUrClWEZooAAQSNXdbhOugKB/XaQV+nugXeKV//KjVB2ZH/PKaAxfQa1EJ9r7+1E/d/fxyPEY7beuk/D5Phl0AS8q4pkYEcjdJHcu9pEll7BtCJnsAAICEOHD0/K4uDazee57Y1tlv5lrV/CKbtZBeBjRv2vAu77rCE4lEZA7tdeXHmxGGypXeH9NL8vi0JQrsiOmDui+npyC5S9DMtZLqqygvK3asc+mDGrU6XmZsaoU0LCCuSu4aIVWB/CExKPOcYdEesyyFrRTsl/leyYrusl6ixvQS5VykBUzmZ/1iXM8/0RtRSdp1mX+3XO8k436r8XNEPWZ4jJ/HXXvTs9KyVKvs4sHgoBv+u7akWlo7f0tzuUVEAQAAIBkygQ+V1I5IROpTC3KHTx+03hJCAbTc1LO7/NZk1xCJIq347iNjuYbTCQaqrN9Lktw1YPLwzm8TFCTZLdkNZ0k2Oe2fo7QFesksVDTzU8ZnN/qQXo00qK1d+FuT/pukHErjWGfSd7LZN1rRoyp1vknXPIRKi7FFeNnRP2q4hbk1+bixva6m76HS7J3NNrj8sqLnMktWXpd27raV7qX0fXpW1Gsbi2RNFO1ayhLbT78U1AVBR7pZQeqfG7zpYsIAAABQfvuPm7mum/oRiYiZTpx6xvpvEAggf3VtPjpLrleIRCR+dcj4j9YmDGjBvFUW8fyQa1N/c36XX9OoSINAq+7EVZ68Kfz1lTg25XeJfu81F3WfSm9GWmSzezeE0rXJzus4HocXzQ+hXztUK9U1bE+PKt06EEhGH4xyfIq2iMdL83GaP6T5mw01uV/Rw1Cpmt4FsPikimxnUWv6ujzWASKv927+bL8x1F0l5ma5+HYvdcFhVGvKQPK16FgF+ZDHIQAAACRDrWoHSGpPJCJ19aNndn6AMACFmT6o+/JckDlW0opHd+b1vQO3mitZM1yeo8i7qkT7BaDnecwEZOBieXAK/QBpcfOFG//VpT+mYDioaEUUSS6oVchuu0idVjXBrZKWlSlvKmZVH0jfoTcBSZq7LcJ1UHFFDPkuyjzCYxV/nqLOUZ/L6ehfjT74E3opKtWKXQB1WXTrF4spl1PD3MLd6FklDTnXtLq1vXnQISlLmlTF3p3H/wIAACRAr5tmt5PbQCIhKaq/TzG9nGu1eBgBBYoz7ax1/2GyLJGIxMC9sl5DGCpTen9Mj+fxaS4fOvn8jh/QM5CyTL4+KTlUrWNjEREbNDa79UL6MNImm93uQ5OmJHONkKaxJqQAsMrnoUjW4hTsl7mvWGq6rJcojkUVMJku/+VVvV6mj6LSdcll7pGUwO8eLJXncnMKAFcrSGD3qtziwSBgB8ACE9gWEAUAAIDyCz+p+ZWkzkQiMp+ZB8dMH9R9OaEAirfz5+uNlul5IlGgr7772LB96w8PJiCoAs/+5twutxIGpM2SNTMPSfo4zZ8h30fbFVcwkYziR5M/OiG75f30YKQ4c+8sZw5VxlhnO9OPEnPP00ibWZFtXKr+ThVgadcncZ0nhsJES1H/Mr3arv3nl9HzUA12mdi/3kw3FpKLHklqln5n0Wgfz/rNcwYSBYBVsbawRH+eQCEFgIU1jX9EFAAAAMprr6zXmPkQIhHhOtd02tShHf9NJIBoZLMWKtSJkpYSjWLHJz+ZKKD5jpKOy2zkS+fPQvMTZcYGRkidyWdstNRNk8uQN5G9vgrHpo9D5frTe5Fmb7757ydcPruSFiae5zG9yMszaads9ll22q7W+QkVcbNT/sd1WllzKv9LaPTRyHVmueP6ZvvW0ddQLYKcTZS0PI68jqyw2Jq+Lo92gCji89puLqcaPsa1kBfYcTzR1xntGrFGgXVgtVnAOOO2mCgA6dYn+0arzzuvuQaRAFASeawcPlseLn0uu9kygta89h3m9XW3zYhEZDdekx49s/MdnsplTwAAgABJREFURAKI1pRhnd7sPWrBRTKNbvn9t4sdFFbx00NHLtjqoXM7vUUoqoEp+p9HW37MfDMwiox12fm/Hd75XdoeaRWY3+FuJ0WeN3EMB5CZzrnmom1mEwmk2eTJfXPnXfD6PXKdXcL75q+eHOZ5vD652qpu3W0k/YMeBZTe6seIrw0wRa+DVhwgmrGo+Ysp/jwt+8AtO09+wTOzi48bc/Dr9EpUk/1vPGX+9FOun+SmXxSfy/kPWMlfJ+X1mdb7Xb8rN9dEvUPPirffxP9lQRKvqWVqXL5W1f6oUETs3fwTkhFIt0/WW/dga/BJFXe3GOugGdWrqiluaZsYyxOzqliJtGl53NZsbVdKpfvyOuXjHrv/rZJQrgL/0Gxuq7q6AQQQiEfXtTteNW/xgmNdtj3RKHyEawh0sqQzCEUlTunxFtzF96VyZF/svbR9XccJv6ErIMVuPm+TF04c8Z+3JNuqDDkU8zErbWz01+Zuu+Ut9FpURJ7k/G4L7OzkrRHSI5C+IwoAq3oeiiRvKNgvc18p4lglbrsV/Sf+z55nv/7Lxu3bjqZPojqHIr9Gsl9U71wa4blMu0kUACZ+bWT64jc0T2CcilzXm1uH8i0nU3xT6UYBIIBkzp8AUs8VbkEUmnfQ2Hl7uGwXIhFRvzPr/9C5Gy4iEkA8Jva3ekkDxE8iRa1xTXZ8n3Ez2xIUVNzyL9CQbNZCQoF0j9fmMrs33cnYgsmoRa9vyfHj+BKnpce0Myb3tRydFpVg5Mid/iGzt0qbQ2lfeKz8v/3b9KTk3POsvs2sqDYuXX/nB4rSrk/iOo9F3ycs0f1rWRD68Xtn926gt6Ea9bj+1L9K9nK+ueiRpGbzb/aIx4hoH89qK/0v25keVQ1rC0vs5wnctBadppB28SUEAQBQtV8l8F1O3AsNCgBb1A1tEFGILP3vmnZmpykEAojXI2d3/j9zu5NIFGWduvp2RxIGVMJa1b+63N9MPqfz8zQcKkHgwYMJuWst6PXVMDaZ9Mi12S1/R29FRU39rocqaWHieR6z2KeDmmlbelEVz0+oiJsdj/BYhfVdK2tO5X8JXxUwmXTFsVf1/Bd9C9U9soT3xJHXkRUWW9PX5dEOEMUsSrejN8W7FvICO44n+jq/UuxfBgcWqh3dq4DctYAdAAGgsu+ZgXKiALAZPUYt2tDkhxGJSMytqak9nTAApVEX1p/t0ofxflVQ2dz9RKLAQr0UxyzRD7nLAsudTVujUky8cKO/S3o78rzhvj2ypYhl7CzCgIpbMZiVtAAw3x1vEr+qd21NLwLKmYLNLH6KXgdZScei4s8T5S5ezR7r3bb+GY/+RdULpfskRbBDeBx/+FD2lWY+L96e3lSafhP/lwXJ3eWvKYGb2tKXChkF2QEQANK5UAP9JhXrjjX3u3JuZ3pGE6GsqR8QSrVEorEA5bWj5+CHh6zzMUEDSmP6uesvMPNLiERR9ug1cuE2hIE1YXJ2WrFiPvO4+4ev/z6tjwq77XmwVDlU2mNWxNg4YcIFW8ygl6LSjBjxrb9Impm8NUJqbJLNvsRmIVU+D0WSNxTsl7mvWAneaqn67N7su3xI3/F9l9IPUe0Ouv7UuZKeSdb6yNJ4ro0eGzihAz0qBYsEq8yFS+CuNulZTiapP/inJCmA6po/+SoMKKXawLYkCqvXZ9zMtiY7iUhEYvqjZ3Z+gDAApdX68043SHqHSBS+xg0C/YKgoALMrcvYFYQBlcaD8KFUX39LJ6NmX9+S45eu+NGkhTXKXEYPRYUuFl1uj8SZQxU3Vq+8vF4adKcfJeueZ9U2s2LauKr7ewXmbAnOE0NxnkXxeaK7LndNP35czyn0LuB/q6m7881FjyQ1m3+zR3isYsYgb/6c1rZh6bfoTSVeJHFNXy3qrdp3ACw0uQOrIwoAgKr+KoHvh2Jea/AY4MYsVesjJXUkEkXfn3xuHp5KIIDSm5y1OrnOJxJFzJOmX2SzHhAJpHsq1vlThnX6hEig0txy3qZ/ljQnhXe5JUn88sXBL7oqu9nH9FBU7Lxq/kSiZ/3Ixy6LbqwzyWsCdtgu8XxTuX9uz5fG5Yqxl6i9Ev0o4ZZ/nOVWE55OXwK+0sb8YUmfRz2mR1ZYbC09T5nnpzDYjt4U73ziBXYcT8x1xtcXAxcFgAXlrQf1RAEAKv6eGSibIAwpAGx00ez9iUIUC1pdOvWsru8RCKA8pgzr+IBMfy3mq4Iqnww2eqX1op8QCBbqca/v4/oh16TXtqvrdDvti8pMW3NJT0WeZ8bMWIT/1K2/+GbCgEpWV1f7e0kl+90m3x1vkj52BW4UAAKVci+UgOv1En32gne6dI094cpeM+hjwFf2vv7UT2V6mvGxuPO5OQWAFTPnWeo+T2AUABYU+0AhBYAAUNRNF1Cl/aalXwybUQC4Gr2vnLejXN9jvCm6G76Ta714HJEAypmI5nINIxBFrR2OJwoorECvdI/cbPzlfnE2ayEtiIrNTc/3hyP+Ki/6se4b8b1iYv9d+D4bFW306G0+Mekv0eVNtQ004db0ojKvDytlfmJKL6iveOzdyZof66wcfbssx5qZyWRG0u+A1d7IPVr8+ijKnUVLOalE9pekFACmZc1llbdwCVT2AkBPaRdiB0AAlTfPVeqYDaQUBYCrEQbqRxRaOhc0PmaHZmdMH9R9OUECymvKsE7Puuk5IlHwmvfQHtlFHQhEZamSO47XJ5/T+WFaGxWdy27PlD+lS1fsW1yhUew/OMyydUN2HEW1eJoQFDhuB+wAmJB7nEjntnx3R+Pb/0q4V0rQ4zpXd11W+nu/lc/jZsOOHbP/Z/QoYFVBQ82jLU9PizCXLe9cLnYcjPaxrvb1/y8FgLHMUZW2Q2BMOSx2ACzwZihXRxQAANX8VUJi11uVswymAHAlvW6a3c6lY4hE0Z3ryf9n777j7SqrhI+vtc+9KZCElpseigoWLCDgax1RkfSAMwadsY8OkQTSqPYzVlIIJCQglrGPSlQgPcESR1RAigoIiICQ5Ca5NwmQntx79nr/INSUe/Y+uzzP3r/v5+M78zrn7rP32utZz3rOebLPkgtbFhIIwJFZ1/TLRCF233FIU087i8DAw1T+0t6fSAUK63+qR7eqyP0ernJjvb7B+SzVN1GR6Vfzj39QEjUNf+XuQE3/mA3WupeQQe7PN/40kHxonFeM839aVxZjSuNfjslfH+9920/JH2D/hn9j/DoRuSNWjdB6xnKD84M2WpsymZ8G/eaj1R5kU7rzicVMHHPmPNPJxUBMu5FWcQLHEwABoCRrZiCvprfl9OqjLBKeJ9zeNE5EDicSDem0IJhCGAB3LL60769E7Na4HxWUvn0L5RyiQKOedn+f7Bezet+Je1p+wT1FSdY0v0x8nCkzY0StW6XyLcKAsti0oeNWEdnhaqvi+Gavwy6/9I7DyCKgIGshB87XMrr2KE9GVNXPVavVkLwCDjpeFlEfG3o/tZ49jyGPijLn+TUPB6JWIZGi37ea1NgACAANL7qAkuZNfX2HHnrYIYPIiucniJ1LvWk09+w7S6b2vZ9AAI6VN9WvEIXYc+qZZ1/5xOEEgh4y+utzerKPyZerVeULJ5Sk9bRVaSyUqHX1v95EZ363etwuooey+MY3Tu1Q0Tuz7SmKY0+3bkeTRTn0h0Wcn5jS06lBmkw+WiLvoY6Ok4M+guy2j84ewa+iAF3VokCXNd7vJPlk0SwnlWTeS0M9jkzypOfSNHMs+4YoEBEHNgD6t0xqqgX8BDCAkn62wFYbILNGraZsANxr1JWtrxSRNxOJqHOBPX9e2CFa+W+CArhn0cV9l4jIn4lELN1qu2pnE4ZiKfCK4wE9vu8C7jDKosPsjw40xJkds7GNQ6l8iLOhW59u15GJKGEncWsJeop0IlersQHQBdrwC2LMT0k+tQ1p9iyW4LHqe58UNudp9mu/p/9hRPBZ8gzo2vYNR94tIk9FGdfJjGWtaywnXRuS+7vnzj8UO5ZMSmOO4gmBXXFkA6B/Oq2JJwACAAosQtvLv+hMTS2osQHw2YwMPkSuNRzEuYun9V1LIAAXPydQM7U5BCJe36Fq/Aww/JiKzb6y4BytEQmUxXerx60Xkcc8XOXGen2j81kK73HFldOG7iQTUUK3ujtQ0z9mI7UuCAI2AHow37BBD13VlPyf1pXFmNKol/Ob/7xy+C/JGaBr5yw4p2Yit8SqEVrPWG6wH9J6aobmuhhT5QmAWcwnFjNxzJnzTD4Xg73/QUQV62QDIAAASHeRYDwBUESkWrVATT9AJBpaQm1uqjRPJw6Au7bu2P4TEdkY56MC6BnjZj91JHHA/tMjp5l33//qkeD4fj/mhqCEY/DWBsbNQcc1M+NBbWu2yjcJA8qoqan51lzeuM6ew+XNXmbGBkAAji3CkjoWT/8Doo08W1W+epPk+/EEQH/uqa/ndIDZzngCYKz7tidsZgMgAHTV3tBXoCx5k1KuqbIBUETkT73Xv11E+BC6oXGlV9w49YgniQTgrlXV43ap2LeJRCzNuzo630MYaJ6i95wa8fXxz1NF5/P0P5S0Eb01z7Fe3vWyfueq6nH0/yilavUVrSryePrjLN7r3W63lM9ekMm4QdRYaoKtkqs/16mp5aCaLPnP2cP+QHYBkUb3bxuv80k+WVQ9ix9PAMwtczP8MwcOvo9AndkA6Fd72KPbrj0MIABFnedY0gOOdEdmbAB8uph9kKrUUCZtqtT0auIAeFDtwtrXRYQNQvEmzbMIQsFuabFWKNs79jT9D3cVpRSEt+Z/Etn9jKcjtSs0CeeSfCizUOx2Pi+I01LzBEBn5iFN9pj8zHCxcsXSyrsX/WliP9eZeb696HzVvkxuAdFsbW+5S0S2RBlz+f4seJLHa6QWPxuLY8mirNfoeZ6TO9cTCE8AjGW79eQJgACAgovQRvOQhrT6zdJvABw3e3VPUX0vydBAGqldufDSlq1EAnDfjZ8a+E8RWUIkovcdKnLGmGrrIQQHbnbV+v0bqzyJF+XUs0/n3SLS6eEqN9brE5/g4l3l4muqL/sH2YdSt4sm97g1LtM+ZjK1TnkCYMnnJz7gLcwC2eHcffZ8NYn30Xre6taPzR55K3kCRHPOgnNqIi9+mrtGGub51zTNs3a2LDq3yueUqcwn2sA8pDmt9bObx4O9/0FEPWtPsQEQAACk3PbxE8A7pPksEemT3bqscDZ3Njfz9D/AI2Z6kKeE8RyGgy3TtWfzGYQBB2iq8hnPe/9HIME8bgLK6upJx+9Wkb9HHDd1j2uvZ8aUapOpXEXmAXqPy+M6+c1eCRUUs37kTqJ9IOBZDma18SbLYxl9ERB35KncmV5tarBG6MFrRLrzcH3n3rPSfQBZ5NhiOYFzsoZzP10BfWi8XNrZu4mvnwHAoQmt8H0FStl3mPATwCbBf5AoDS3S5yybdNQWIgH4o8euo5aJ2CYiEWvSGEsQSt48xVqraMTXRztPFf3Vgk8f9TfuHUpdnjXqk7hYlDfgL9d84WW/IQxgLSx/bbxHSO/1Li9Hpl/yQG8yCFmMG0SNpSbYKiX5c52aYG5osnEze/zxPj1/TkYBcQeV3dF4ndfGx7Kn68SKBPzDinxWApn+mQMHf4FARGq0h9F129iTn04GwDIUILvS1vuMyzcfVtaLP+PyzYep2JnkTWzbm7p1zCcMgF8WVHWPivyUSMSho6pV41cOStwTOtoL8CReIK8ncb3wHJw9ZpK1znjKDSAiIk1Nr35URLbxeUF0e7p18GW1K/OQJnvMEm9sLWSuWFp596I/TexpXZnnm4oFOq9afUcnOQXEE6rdGWXMZTl3WOrHa6QW741FGPQni7Jeo+d5Tm5cj2MbAP3R48gKXyoAYP5ECRi5lrPuTbteVtZr79a9Y6yIdCcLYo/f79xw/hCeIgZ4KJTKD4hCrL5jwJ09N7+B4MAhj5y4p+9iwoDSd6Wh/dXr80/59cktrHVT5Uj7MRkHiFSrGprYfWk2nu4dM5napRa2kEFlmG/yy00U775Z3PPVJN7ngAfZ3qOp9i1yA4hv1PzzHxORjbHqTUNlKaufEE+5dgbGBsDU5hNtYB7SlHupfHOeDYAxbdmyjScAAgCA9Ns+DUq7AVBF3pvHuqwgahrKbMIA+GnRJUfeJiIP7f//ynMYDiYwG0MU4Er/YGLXVasaEnyUXbOF90QbO9HGtddPNEq0NtlPrp50/G4yDtg7vCynp4/WOa6Tr13JFJSaCBsAM7tngFs5m3xzkt+xVOS7H7h89BNkAdBwIbkz+UMmVCP04DUi3Xm4jnM3ZQOgO4vlRM/JGs799LABMGYuVZqb2QAIAA5NaKXoK1DKvsNESrkBcMTcTX3EZBgJEjuxfrbo4gGPEgfA1yGsJiI/IRCx+s4ziULJm6dYaxWN+Pq6zrNWCSs/4n4BIl//wrGPyfN+ipNFeUpzYCDfIwrA88aE2j8a7xHSe72znZYZGwCR2bhB1Fhqgq1Skj/XqQnmhiYRt1CCYA5ZBCTST93deJ3XuGPZ63WiivQjg3KMfoZ/5sDBnxWIiGP/EtmP9rBbyE8AAwBLepBdWXRrWsoNgFrrPEti/PwvefNMHGwuUQB8r//hzwhCLK8fM2tLX8JQ3p7QlV5AxX694LN913IHARFRNRV92IWR6eoxE6h1f7vm8y/9E8kGPK+dlsrDfF4Qq6qxAdCleUiTPSZPMSxwrqRxrH2etpzu5oXk8s1WfWzmmQ+RR0AiFeR+V8/Nsrj6xs6QJwDmskYv4jlFWQPxBMB4t72yiycAAmD+BMi1DIQvK2kqvZd7Hzt29yy5sP8fiATgt4UX9/+riDxIJCL3HYF0dryT4CD3Dk6CHxAF4PljorEnceUt2w0TGuMvjKf/AS+uO6EkWHfK8YGXiUgYsAGwPPNNufO9ePni233TBE/7hQcxU/oiILmRen/UsWiJlKXsN0In+7OuKsYGwJR7Ic2gJ8oyb5PJeTYAxs687t0JAgCAdgvph18Hl+2Sz5y5/lCxLn7Ckc8iDxabrxMEoCgzsPIUwFh1MHw3QUDO/cP2yp7wBgIOvGBS+0e6h/d4ldt4baqJdPshSQa8UGdn5WG3zzDJn8Pb/zHj1LrAlKdpF3W+ATmbS31KdhNPHdeztTnQn3PngYRqSKX24L5DvPFxndiTRfXg5xW1d0qyVpoo/6jCgz7cYv5tshtGkxOYSAc3OLowsB5EAQBKM/8DeRooZqXKxu5N+m4RodeKZ2tnUxNf/gEFUdED/QwwXyMdTBAqGwBp1COxiMe0rk/vhgXVftu4T8ALxs3D0ccl6/Y6g3DzvOrRrcQBeKEZM16xVUQ2NN4jxHi9pnP8bOq19SF7AGf6p4M3Pw33QY1tYojalGVU83724VnDtpM9QDJGXj1pi4i0Nj6W0/iHD46v0kToqTKYW/z6sCD9cwpUZJcvLY1LsbdONgACQJSazdfU8LQjcKHv6DHq8scPL9N9D0MbQ97ETqUfLpt01BaqB1AMN17S788i+k8iEXEeUDlm9Iy244lEeXvCvHuBMAy+z10DXigILMaTuNL4cNzdY8avdSE/cwcc2MN8XhBZL0KQJs3kT8rci5c6V9I4lmZ7X63B8zXR75I7QOL16IHi1sdU36s3ueNBo7Pf0/H3XxoGIrKTpIoRuCbpSRQAMH8C5FomfUf3boPKcq3VqgWiOpK7HnP4hfz8L1DAgb2EIETvO9QCngKIvFKyten4I39NJIAXrWlqtX/4fg3ZboCoe2G9vVuf7jeRYcCBRlKS/5imHB94GV9We3jPNOo9Jt+LNWYzvm8pbEzUpI5lj3z8ijN/R1YACY96tQeijuuoT0WOW28swWM1soY7wBNbe1Wr1YAMSnPtXbSn/DV+PWwAjJt0NZ4ACACg3UI2Qg0GluVa7zx8/SkiMsDb3j7fUfr7hRf3/yuRAApnMSGITs3eThSQR/9gIj9ZcI7WCDTwQk+86iVrRaSW8vjzd5UbvzatvHLaUD7fBw40ztUc/3nsNH4OTxutdTwBkPkJJc/B5OtTspsGD/g+FnxfRRlCQMLCUB5JY1xbUsfSg59X1N4pwVoZnPF4z0PJoKTngaTmO21gntSGerY0J6pAlA2AsQpdhScAAgA9CZANE2spTY9VC8Zwx2Pj6X9AAW3ZsX2ViGzb3+yAgzZxbyUGNOppHvNAI9AC40lcwH4sOEdrJrIh2jqIdXvX107NAQ4q1LWNHiL25i1N5/gZYAOgf/cMpcs3TbAP0gTzWvMcPxYG8n0yBkhhyaH2eDJjOY1/+OC2HYfwZOUs5ha/PixI95wCMVc3AJrTsQ9C4QmAABCxZvPhCDztCPLv+ULtU57FpIwmb2J5ImzesoCKARTPqupxu0TlV0QiskFnz9jwUsJQ3p4wnyet2KbKS1p+z90CDjjQYjyJK9/NvlkfM2ItqklzB08KBg42poJ9nwDI55NdYgNg6jSTP/GpF0cWN14b/lPLNN806jne+V+zhj1KzgDJC8Lg8WLXx/Teq6nGBkAvGp39no6f/9KQnwCO3XwoiyAAzJ8AMhq7YSk2AI6d3j7IRE7ihsdKkp8vm3T8buIAFHUa0JuJQvQet1arvI3gIONkXMrP/wIHrddrfb+EbDdAdPUhjt0y/9Ov3ERiAQfro4OEfwK4FB+u8kW1l/OTRnw9+e5bT5HVsbKvhZrIIc2EpyIDaQmD1XHGddSnIsetN5bgsRqpqfv7u1ArfUqfPl7NSf6fU2Ciu6hacSKnfQgCAKBcIrS9fD6UbKto5fjwNWwKz4icPeTa3tFZ+1+iABS4PoY8ATDW/KnCBkBkPB/bQqIAHGyQWGv64zDd16c7cUWe6PiiG+hCrbnW6v5ZpvFzeNpIret+3bl3NJM9zE/wdiWcYE4lWZ801TEVhnYD9x5Ix7BvnLteRHanMa4tqWPpwc8rau+UYDfKQ8VixjjJjZj1nFM275f+fBmo2Q6SLU56GhsAAYCeBMgmBVUPK8lYO4O7HUvraVsH/JYwAMW16NN9HxDb31OT+FqoC2wApFGP8Wf1H/NFI3BPzz2VldwT4KDDqzW1DRAlXLdXgpBNx0AXekjv1jya5qhPvHGtq998ZDe+rPbsnqHkayFN5ljmzfjZZ5Pzw+deOfw+cgJIq9qoicmaxGtXYebcA19TUAvYU5RT3qT/YYGL5yQSSCBbSZgYsTeeAAgA+SzuQN6Ur+8wLUHfYaYmyW4AtNKkjV5frWooAIpeKHkKYHTHj5zRNoAw0ENm0zvYqh9Vj9pC1IGDivkkrjQ+HPd+x+C9V3/u+IdJKeDgqtXjdons+x0YT2M7uN09Kt3JnrT5Nw/xuX5+uWJepaxm/qaqxlORgfStdm9eUOffywLrRur43Kr5168FYvIU7WR0IU8ABOD1hMVHAIBXzHoU/RJHzd1woogM5GbHSA+t/ZgoAGXo4YJfE4ToPW7FgjcSnALNeW6P0UXcIaDLxrW92LUomZ/cszqOqSJLSCig7tqzOZPGs1A6m0gcf9Y8z80fafy0Hj+N48v6Jqv7aankhu5zyCixCVRuJJuA1K2PM66jPhU5bu2yBI/VSH22fd5Nm0mdLOYoF/uVfM4pEDX+dXI8bAAEANCm+dZveUrFir9I6Gzg6X/lzrV/LJ428HZGCVACYfh7ghAnbnIqQUAmXXKtwgZAoOu+fXMm4zHl16ccozrP2VaRUEC948o2e3CSKdQ6jV/rdoVsAGR+gudNV3I5lWR90uTHlEr7of/c8gfuOZB6P7UxrXGd2MZirfd9sqlRIiISGj1VAzFOaiNmveeUzful2+sFYvoUiRanxrEBEADoSYBsmJbgXwmpvJs7HSs5fkIQgHJY+Kl+/xCRDdl8VFAcgcppRIFGPfqf1X/MvSPw4V989ojHuBdAF8Nu7yac1DZAlGfd3rmrZyf/MACoXy4bAKM+8catrp4NgP7dM5R+LaTJHMu8GT97L9h08TkLzqmRC0Dag7aS4NPcs1i4Zb041AP91/RU3t7TtM8pnesJVNgAGCf2GshRBAYA8lrcgbwpWd9hxd4AeMp11iyi/0LeRFcRfv4XKNnS9I9EIZpQ5FQx459y0EOm2juY6P8RaaAOQdjAJpw0Srmf04OK3PU/l75iKwkF1G1TXj2CvwuPZr6szqqiF7y3RnK5Yl6lrGb2pipyM/kBZDD8VTbmOS9k9WTRpGsbPwHsec+l/vVrgWjo+E8Au9lOmrEBEED55jk+AgDy6oaK/RPAA7evP1lEenGnI7vvposG/o0wAOURmvC0n+ht75Fnz2x7CZEoUl/k4kmFbAAE6hD03bxZCvLBQdQvoBrbaPTCY4aivyWbgCjjKUjhCYAF//clys/VubzAOXi+p/HTevx7Kl/WN1ndT0slN3SfQ9ZzPVYR+iIgk2IVtscd11Gfihy3dlmCx2qkPhs9VU5zVNGeEBhPoBbwBMB4WggBAIA2zcN+y0/FXiRY8FYP+2gXlg6LGRpA2ca93U4Uos8FYRjwM8BIN/UCYwMgUIdvjD+1Q0QyeXKd10/26mpto8YX3UAEQU4/AZz84I9TuzRWrQsqxtNqmJ9Q0AWyJXiseLmb6Ie4D358xpmt3GsgAxVtlxTHdWIbi7Xe98mkRomEARsAG4xxIhsxI5xTNu+XXq8XdFgnGwDjOWLc9VYhDABATwKkzQqefabyVu5ynJoULCMIQLl0l6a/7P9zAb4W6gIbAGnU0+zvV//8U/0f4R4AdYu1EceyHdcuq9W6yy2kERChfpjl/ytYddYmd7p6nlaT+PwEuLYWKsSVB/yjCCCrRUinbPSv3mju7xdKyD+qKPyc59Y5Bd3EniBRYt23YNv69UcSGACIhw9HQN7U33cEIrXi3lRTkXQ3ABY0b57cuqUvPwUKlMyCy458SkQeJRKRJ9aTiUH9fQc95DOvrzswPP0PiFZytsbv0flXeSLy529c9lL+QT8QpXKobM+3p/BQJxsAmYfg5bpGk8lxy2i8NPpznaHYKrICyEZzED6VbL/j7JNFkz1vFXoq3/s4TTPHkj9usKP92I3ur0PcPL2OivVloAAo2zzna80GfGYiYVGvbcwVm14uIi3c5chFfMWqqnYSB6CEo9/0bqIQeSZ9DTEoXG/kzphUNgACkcav6Xa3zkgzO2ZjG4f0mf+XJ90A0cfkjmR/CrP4wiDg169cnoc02WNaxDdl3OS1vtHMj3WwP03s5zr3d3Ct73qCCn0RkJUO022NjGv3NhYnWZ8P/HeBKD2VE2v08lxPsPeLQ54CGENFhQ2AAICSitD28o9jEwi3FfYJgKadb2NdECtySxkYQEmnhCD8M1GIOhdo37HT2wcRHKTUzLABEIg0ZGxHAVa5sV6fxNomFLmTLAKiCTXcnulAdfyYbN4q/nzDPUZXNSX/p3Ulcm0PfnzGma3cYyAbA2qVbYnUCM2gZmg9tUkz6cdCVb4h3e89TuMfKzTa9zb+jx2y/rv9Cfb+z3bSLc6IDQcSBAAAkDrVAm8A1Ldwg6N3obXmcBlhAEo6JZg8cICKSnAOGreApwAW/y5n+md7bf75p456kNgDkcTeAGgRx3URZ8ZQ+IcAQFSBiRsbj+vsOdjs5R/uAbxdC3l8vjwVGcjWqd8Y3yEiu7OpN+rosYpYj5nzinZOezcAKhsA4903niAAAA3w8sMRejfyJodcM5FagS/zjeRNxJip/GnZpIH070BZ58HA/k4UYsTNwlcThXL3uPG+TO8yMH8WVb7zBSIInrcBMKunzxTIjs2vehmbjoHolSfRDYBs0KNxBpxe12gyOe7ez3W++KlO4R/IBiDzKXB7sv1Okk8W1UwDgZL1cZrmfU/2uIGIiJl58AWig8skNZ4ACKCU85yXNRvwmRVzA+AZl28+zESO5wZHE5osIQpAeXWv7HlIREIiEbnx5QmAhWuPnDiHP3MngIi9rNp2984qu5/xbGzjkP51wTnFfTo8kNp8bbojyXEJODEPabLHtIhvyrhxO1csrbx70Z9aEseq4/T2dz2mlbvJByBz2xoZ0O5tLE5yjqTHdH+NXo7r2fsEQGsjieLcpmAwUQAAlFeE9pV/ENNYz6FWyI0ezd33nPJcP8q6oO4G3sLljAqgvBZMG7pTRB8nEhHnAhU2ACKFdlj/QhCAiCXagu1OD+uUX9/g2VFzgDgjx2op/gSwenLMPGsX8phvuMfFz4lGa0r+T+tq6D12h1sOv5+sATK3LZEa4cB3OF3/6gNfaqY/36XxjxX2PW60eajxf+yQ94bRp79w1YCfEIu3cuQJgAAAIAPaWcSrCsLgNO5t9EX21m0D+BeuQOmnBXvkAItUYnNgrxp3vVUIQ+EHR6Z/JpUam3GA6HY18scWcVx7PTO+uDZpwDoAiFM3LOh0dlw3Wuvqfj1fYqeeZ4QAmS1CijLOGzrfe8d/49QOcgjIeNSa7MxuPm2wpmme9ZG+q5wxduOceAJgA/fNVAYREABIqpmjrwAOlGsqtruQl6fGBsDoNfOPq6rF3BAKIILQ1hCEyHrseuypowkDPW70tcoBA7O75Yh+fyNKQNRxZZ2NfyZQzoKlys+OA/EkvwGQp7EByH+dkmar5OrPdT57LP5RBJBP7ek42LjO/8mifLCFdHIu/fRK7uCBiEhgsrYgLU3W+AlgAPCnZoPs8vh6dVdB7+Np5E3E5l3lFioAANNgNVGIobN2PEEod0+YcC/wt2+MV546AUSkZjVHz8zZY+6tXbWOsPs9ZBAQXaXSWatznAF+zRma7DHZ2Fqs/LO0c3mfpy2nu/HmhddjbAAE8mDSwFouyY3F2c9RlkkvAPdjrM5fTyAiEnqzAdA5vd81b81RhAEA8yfK3PGTa5kM051Fu6axV23oLyI8iSmqmrEBEICo8ATAOH2HBnYCgUGCSfZnYgDEKc/Fe5p1RhsmHv1GddAOMgiIMUat0nnQJjGNxtPJYyZSi1D8+Sb33OQec9+e97M4+/+/aoUNgEA+Q7Mz6WGef01T5jyP5juLeV8tZk742C8HIiKVUNkAGFMlCI4lCgAAIE2hFe8JgDWRk1JciBZ0fS0d0ie8lREBwFQOsgGQr/IOWEdN2ACIxPoHtfAvBA2IIWj8CYDm2Oszqk2PkjxAPM3NHW49ebTOniP52sWX2Kmv03yeb+DHIiTnnI17zgn/XGetWWp/JXeA7IVSzwbAxutaYk8W1YOfV7rzMH1X+nFy9wmB6W9wPLBARGTn5sHrRaRGgkXPJa3VjiUgAJDHQrPUa3OUrO9QDQu3AdBCeS03N3Iu3LVoPE/9ACBiGmwiCnHiZvwEcCl63GQvwg50TJWHSBggzpja9wmAqX35XKh1uz1C9gDx7NnTnMp3X2z2ApBvT9VF89NwH5Tkz3VqzOvZ77Ee/vCsYdvJACB7gUmXT1X2dGMxUqWcU4bnFIiIrKpqp4hs8Lmlya/S6bEMWgDwpGaD7PL2WrVwPwGsks8GQJ/zJjT5HSMfgIhIc0fIBsBYk4CyAZCeMMFeIGAzDhBv0Dr8j9Bd/hlPag4Qu+zYrrp+ro5PMeHlnKHJHpONrcXKP0s7l/XF75Puhgp7+i3+wf0HcuqpVBv8CeAkNxZnP0dZJr0AnI6xNnpO6V9P8Lz/nZ8BjjfUjyUGAJg/UfK5kFxLe4ia7CrgZb2aOxuxcVe7hSgAeFp3NgDG6zuOHVe1bgQGSTTAQY+djxEGIM7qsdEvjbxfFcd6PU8ABBrRM+yqSUyj8XTzmGC+ITeLdo+Le990v6etpo+SJUBuFaozjWGef01jXvNpvrOY9zXPn+XNUtPz/ve1InIaqRa5IBxHDAAAQLqNcLGeAHh61ZpE2l6ZbosmhftnyGGou0bNaj+FEQH4oznJg3U8b14I9lT2Vjk90MzBh1f7VenstvFYEfk7oUCD/cO6BdOG7iRgQIxhpmJJ9OlRZ7q0X592bVLjCYBASXuOhGvjC9+YVUMe94CVGzIqCKnmYPRzPvD7RDuWiT1MzgC5VauwvprReF177n0aPNYL/nzfY0XtnaK/OdKdB9OaQxs/p7g9XtjgmTc9L7vXkIOxvIQQAAA9CZCmIJBtRbqe3n3WvzyUoDt3NmLJUVneePvf1cqaBUGs5boV6mqyUZL5M9ERW3l+3GhAYt8T1aOFDYAl6HGTvYinP7R73jFN2IgDpNAapPLlc0HW7c08ARAoRO1icxiA9GvQ85qfhvugxjYxRG3K6nkfU9ZigDv2P65921iM/HKFc0r+nJ77CeDA/ulXS+NA7J8+lZc+/RQbAEAjNZtWDJ52BJkI1Z4q0vXUVF9L3ri6DiM65A3Im6LfEz2aKDDWGh6bARtxgAI3xC4ec/NV1eOe5N4A9O9gzmDcIJ1cUW9SViXkCYAACt4LwOkYq9v3PXjuPJUPL+Pd4G7dW9YcSyAAMH8C5Fp6wi1FuprAgldxT4E8OfQPqoDMcy1kAyASaM30UYIAoNEOq/7XU3MAPxYkLHLgZjpbxNw08t27niKrY9X3PilsTHzukNZNhL4IKMCkZYmUjK7/2BI8VpY1lfmuyP15uuf07AbAGh9exr9FJicQBQAAbRrSC2/TlmJlS5hN78RnkSjGmg1AknOQ8gRANF7TjX9EC5Ri1erOKtfWc/cAGpPkapc6WuuYn/ybn5DnWE/yfSyjc7bGj7X+w7OGbSdfAB/mLU3wfRo8lh78vCyDa0GyMbZUc3ffc7KY15NHz/bsBsCm2k4+vIwpVH05UQAAehIgvTSzLQW7Iv7xBACk3nfwtdABQngMUShLj5vek30qgT1OkgDJS20DhHofmE1kB1DAWqcRX4/CzmdA8vmmCfZBSW5iaPBpXSbsZQCc4+rGYpQ9B8vxYcG+nt0AuGzS8VtEfPowwZ2frVLhCYAAkETNplGDpx1B+g1brVacDYBmKiIvI29cXi8RHfIG5E2h8QRAxlrDr1cL2og44EzzWvhjqko79xkoTk8B5qF8jsm6l/xL8ViZPcDQ1nHPAbg3l/KkmPTjpA5eipv3PXjR//9hEi/WDX4FQQBAPwSQa2npse2JwmwAHHH15sEi0ou7CuTNnX9QBWSca0P3bkYHYtttnTyNC0AiHVY9rzeVzUQW8GVBQpsJN9PZUvlpPfLdpZ4iq2PV9z4pbExUEVOeigwUadKK+lTkuHORJXisLGsq812R+/P0zulFGwD1UVIsVlaeSBAAAKDtTakP3LWgeuKewlxPreOEjOMHkGsAnq/7e7629UjCgAZqum3p6McXT0BJVq1urHJ1I3cOoDFJtnapg7WO+cm/+QlFqin5/1xn18cKTHkqMuDVvKUJvk+Dx9KDn5dlcC1INsaWau7ue04W83qy7tmCF15s+AiJFUvLyPmPDiAMAEBPAqSwkirUF8wV0xO4qQCQVd/B10L7E0pHf6LAgGngmE+tqmonsQXSWv6k9HqP1+0ahmwABIpa6zTi61HY+QxopFmxro6nyZybZXSddsC1vNETAR7Vr/w3FoM5tOAfFuzHi54AGDxICx0vHzqk+2sZWADQeM2mUYOnHUGaNhbsXp1A3viwXiI65A1Q4HFcCdkAWNdcUPwaHfP1fOkElKJgqUNXxxMAgaL1FGAeKmIzzjgoQv6p4ykb0BMBhZvvinK+PCkm/Tipg5fi3n1vesH/r2IPSI20i9VySPgaEVlJJAB/9N60+aYd/Xrx819AxmxP94ki8iVR4ZOh+nrIov3E3DHcVcCZipz/IrUkc4EDkcbzc82EDYBoJJf40glAzHl//41PV31Cp1SoO0DG45JFDrxf8+x3HKhohNysbx1LvvvyWUJWn0s89z5J5sbTx6oEIT8BDBRs0nq2ZjRUMrr+4/prYH0nwme97s53/vQr6ZzTCzYA7tnR+WD37k1kWJzbY/IaogD4ZUH1xD0isodIANkaeeWG3jxdLFLjW6wve1SOybzP5rNIAMALBGwARPy2wtgACJRwTZbrlzsVCTdzF4DSdyAS9YONrmvXC4/JF9n+zTfcMyRdU+LlVJL16eDH4h9FAD7OW41/OZPYxuIuN8pH652Qf88btxeK9nfPnVM279eYF/wE8Kqpxz0pIutJrBg3TdkACABAnY0OX7pHane1vWAJwBMAUez1KeBcrvHB1L4hMXoRBkzsPzMRnjoBuLfGjDSufZsZu4ns4i4DBa5dGvH1cH++4Z4h67VLJsfT3Mdbc62TtRhQmvrF+aII9zT7cwr289/dT3LEum+vOuW6O5oJBgAAXUybKv2y+lCgCKxAT3sYc13rISLS16344sCDlegAKOwang2A9ceq8CJ/kauyhcQA0i0ulsIxfS6CO6Q7v14B+NAjEDLmNppxxkGO+WcZpZMl8h7xTmbnrm5PcK8Bv+a7rNZ25sRcyqZCf+PUyD8edut69rMBUB+gnYylR79w4KsZsAAAdDlz86V7lHipFuanDcIdPP0PhaljKPqan7wp+s3oRxAYaw0ULTbiAEi88TlY7RokD1J3gFR7BL6sRXnW15bKxg3GkC/rm6zup6WSGypNnb13kxFA8SatqE9Fjlu7LMFjJV2fkey98adfSf6c9tkAqGoPkDjxhLXwFKIAAEBX7czzfnaPz4fqaDBkY3FufuXoAvXRQEHwUQVK1YQ88z+PJBiI35sZG3EAOqYsO6xatfqOTu4A4Gvjme8xLeIxWR2Wer4BdaqBnNLUc11EwvHfOLWD+wb4OG85tLFYG70evmhKP5eyeMpk1L/TjN8vvn02ANZCNgDGTkrVU4kCAAAHmyxNRaSFQERoK83WFaiD5wmAKMGgJQRwMdf4WuhFDicEDJi4f6aB8tQJwMmlRrRx7dHMyKZjoAy1SyO+Hu7PN9wzZL12yeR4mun1Gz0RUPL6xfmiCPc023PaZwNg0BTeQ2LEu28qwgZAAAAOYtiVa44QkW5pHb+IH6rVKmFrYS4mlCEunhYfxh6sxyU6AArpCEIQZS4o/iVapNfyBEAgi+KS1dNnPCiCbDoGPOkR4tcu0DiXvBlHYrliGaWTJfIekU+GnggoST8Vt2CZE3Mp87a/cWrkHw+7cz37bABcMf7YdSLSVoaykcJpvGbE3Ie6M2ABADhA49HUNIAoRNO7uXltgXp67j8Kgy92SrDmJ2+K7HBCwFiLXa6MJwACSKfxOUDtYtMxkEmPwJe1KNP6Oo2f1mv8p/GQzfrGu5/rfA7rMMCZ+SX5J4tasieYQD2t7xqZ85xsdFKd39y6nn0F+38P+yuJE+vedOvU7q8hEAAA7F+lJv286LfcsXXBxH7binIxJprvBkByDTjg6ARKtG4XEenJP95D/BziCYAAHVN2HZaxARDwvvHM+5gW8ZisDos/33CP81dzvE7l/7Su/aInAryet+qsEVrP+zTYY2myvRPSyKU0/rFCo3+nGb9fPMEB/uu/kF4x60VF30QUAADYv5pqf6IQpZ3U1mJdj3H/UZbBCziYa3zN84LQ7TqMnwFmwMT8M+WLJ8BRFnFc+zAzqkgHdxagVaGrL8n8BDS6dsnseDlcv7IBEIAP9Rbc03zP6QAbAIUNgDHvm5q+hUAAAHDAqTL1DWDF+lDN1hbqakQHMgoAAC6odAaHE4VoTRyeaWiMn54CMiouWT19xvllFIBCD1oGedHuMY0zHK9BDadoTj/XafwEMODzGi//J4syP/v2eYBX5+TQpex3A6CaebgB0JllEhsAAQA4cA/EE+CidTfrinMxpirWj07Sx4FLdMibEq/5yZvCCkQOIwqMtVivN6sRXYAmJa1j0icAefYIjEsUaB7SZI8Z9ecdGTdu54qllXcv+tPEfq7z6UN0cn8Bl8qMJn7QzDcWp9ZbstnQzzV6nueU3PXsdwNg775bHuBRurENGTmv9RjCAADAfnuYY7zp1RxgooV5AuCwK9ccISLduauAuxUHKFE/IlaxQwgEACDtjokOC6Dx9OOYYH5Cee+ZehUHACXoixxodazLE6EfS39eSOMfK+x7XIuZw9bw9aVjvxsAF5xz4h4RuZ/0iqcW1HgKIAAA+2tsTF5KFCK1kv8syrU0aaW/K0EFyDWUN9f4aP15oWADIAOGmg4UsrxHG9fMjAB8bFWS3zhEs+PM/MTKDY6MS8v9nKlLQJHnucbfp8EaodQb5tBinlNwwMFjcgeJEe++mSkbAAEA2L9MNgAW5UOyUMJ/FuXGB7Wmo0h/AIAzS3cNehKFqEEjBACSWONEKy75f/kMANGx2avs95h5CC7mpyaYon7/XCeAtGmuaztjfvY+V7w8J0cu5YAbAAPVPxV/WZVaSvwLgxUAgBcaMXdTHxFpIRIRVOSxolxKTcPD6SR9XocRHfKmxGt+8qagN4GfAGasMTYB5N2kJPnFGAB6BDAPRf2TNH5aj80VvuRK6vdzn6ctkxtA8cpM8k/99HVjsTEfFmSNnuc5JXM9wYEPr7eTl7Gd+K6rNvQnDAAAPK+3qNVe4l2vlrPabi3MBsBA9EjuKOA6vtZCqfKdJwACADLpmOiwAJ9oiY8J5ieU9575+HPDAArdaznQ6liXJ0I/ltbNtIbuWfRzspjX4+L8dcANgG3BuntNZCcJGS+LK82dpxMGAACePzvaSwlCpBaybeXFA7YX6P4f4fF6AyDXUCB8tC4iIkHAEwBBTQfKPtMpMyMAf3uO5DcO0ey4thJjfoKfG/O0MNcPwM15K7Eniyr1ptjzoLtPCExzrBxwA+Cd40/tUJE/k1Rx75u9g0AAAPC8plzDTDcA+v4hmYn8s2AJcASjAADSXIMi2rzETwCXN9cYMIADa51I49IY6wAKUeuSfT1cv8fMQ3AxPzXBFPX75zoBpE1zXdsZ87P3ueLlOTlwKUEX//fbi7+sSi0l3slgBQDgeXOj6UuIQqSIPVakq7FAD6OT9H4QEwPyBuRNceJv0oMoMNYYmwAiNsSeHBMAPQKYh+r9E2UclDhXLK28e9GfJva0LgAOlhl/n/ppqR+PmufnGt3vcwq6SNI/kZexHT9yXusxhAEAgGdbnpd52avlxMT+UbDrOZK7CvgxWlm3oySNSYUgAABc7bDYYAEUbUHCIgdlmm/Idz97BO4bgIMLs66LDZUlfo7crXkuyac4JvV3mvH7ZZNrB98AqD4+AdChIqghPwMMAMBzTRBPAIzSpJk9VLDVYR+nzoc1G8g1oOyDs4kYgJoOFHr96dTrASD5niONL1Jpdnyfn8AiJO+cTb4+UZeA4s1zmuD7NHgsPfh50Tv5Pg+qs+eUVo930A2AN48f8g8RaSOpYhee4UQBAACRU66zZhEZSiTqV9Pg7wXr0Q/hrgJAqnU22mq19EKeAJhJrnERAOqdiTSfmYtyACDTWpfv65H/PQbyz09NsA9KchMDTRlQPJrg3JndE+QAn+el4ODXpCYmt9Byx86HM0+vGk8VAACUXt/t7ceISOZzotcNfiUs1AZA9WgDIAvDg91IokPegLwpSvCVDYCMNcYmUPzmtcTHBECPAOahev9EGQfkX3rH0hfnDX0PULwyo76eeAZzWkCepD5nqYOXkt85dZlxpnoLc3FsR/RoWfdGwgAAKLtAwlf62qvl1CE+sWzSwPZCXZLxBEDApwHr9ZofqC/H2AAIAHC6w2KDBVC0BQmLHJRpviHffblnxn0D4NQa5UVPFtXGj5XlvMYa7mBxye4pjhbzvrpx/4J0/zoIw1tIyQaSWcMRRAEAUHaq8mqiEKmD+HsBr8m9DYB8pgVyDSgzntaPeNg6ChR3FZby6wEg+XVkGl+ksoBlvoGnBcGZnE2+PlGXgOLNc5rg+zR4LD34edE7+T4PaurnZDH/No0er8sNgLvah94tIttIqtiVZyRBAADQm4VsAIzU+hVxA6DyBEAASH8CibRYLXmw2MaVWa5xEQCSGZepbZigHABIkTn2euR/j4H881MT7IOS3MRAUwaUZY2X/8ZioJjzUpcbAFdVtVPEbqXljp0Prxt97erBDA4AQMmbpNw2APrY4IeqBdwA6NdPALMwPNhwJjrkDcibIsQ95JsFxhpjEyjFHKglPiYAegTkz5E5Q5M9JuOgjPmnDf+ppTouAORbZtTXE2dOK8ScpQ5eSj7nFNR3fvp75uL4t7czDM4iDACAsjrlOmsWkVcQiQgNWqj3FfCyeAIgAK/X7ShaeukuogAAyBobjYCyL0hY5KAY8xOKdc+4/wDcqhkverKoNn6sLPs4aurB4qLO5ltR1LUB0EL9LSnZSDLb2UQBAFBWfbevP0FEukVq08r+eWhF7y3gVXV38qz47B3kWm5LayDnQbmTGAAAGu2A6JgA+LjYpHYxP8H/e5x1Tcn/5zr5EBfwqe+wBI9V3/togpelMa6HGuVaz2sN51S0c8rm/bpW1wbA3Yd0/NFE+HA8vtNHXfPYEYQBAFBGTYGdTBQi2dlzYMsjBbyuCrcWADIQ6bOQ8n4tZBbyGQeED2gB/8ZlahsgKAcAXOpVI9YmNns5dM9YicHBtYt1dTxN5tzIawDpL7b4hw/IOgfVg3HxnLo2AK762HG7VOz3JEbs+9Zck2AUwQAAlFEowSl5n4NnDf59C87RWpFyYNz15uXmPxaGB+txiQ55A/gt4AmACcwFxa/R1HSgKL0TP+MJgJ4CRWucmYeQR65oBn9KbgP+lplsntDGXMqc5cX91HzOKah/AOqv+NmqBs7E9D0MWABAKds1tVOIQqSIFe/nf//2N57+B6AQ6/bir1zLwwI2AAIAXJv3+QIKKMe4ZKx7qQifbGlX48C3jRswR49V3/tQCwHqT9eTVtSnIsftvSzBYzFHdhUXdTbfiqD+DYBqvyQlGzJszHWthxAGAECZVKsWiMnrYrVp5f0M4L7CXVGfPm5/TMrnTSDXcltaA7kJwx0EAQCQRAdExwTAx8UmtYv5Cf7f46xriiV4LHIXKH7fYQkeq7730QQvS2NcD180udbzWsM5Fe2csnm/g6t7A+DhRw69W0Q2k1SxHbqnIxxNGAAAZXLnUetOEJE+RCJCo2fFewLg7o4eTdxZAMhQpM9CyvnRuom2kSiIMWAAOFHDU3o95QCAi7VOI74exZufgNSaFU3w0EpeA8iofrGxGFnnoHowLp5W9wbABedoTUxWkRjx75upvp9gAADKpBYGr3flXHxp8Jua9a9Fy4OgW5O3P5TCwvBgPS7RIW8Aj+emiqwnCknMBdR0AGmMM19+cpMdgwC1i54CzEPwI//Mq2FAbgP+TnO+/Zw89aYcPVOel5Lt9QSRzi+wXxV/GZZqezXijOsePoxBCwAoCwvtjUQhknULL2hpLVy73ry9wq0FwJrfl5VrOXRohQ2AZe1PCQEAp2sRX0AB5RiXjHXWpm5eg3m3cQOW+bEc+rlOAIWpPwerN1Gfihy3dlmCx2KO7CouaT3F0cWn/GUr0gZAq+lK5uKG9Gjq7P4ewgAAKAtVeXNDbW/J+g41ubOI17Vjj7m/1qHHBRpaWgO+JbZ128gGQABAYh0QHROA/PFzeMxP3OMy3uOsa4oleCxyFyh+3+HdxmI9+HlZBteCZGNsDedUtHPK5v0OLNIGwBUTh/5DTP5OUjVQfPgZYABASZw5c/2hIvI6IlG/UPWOIl5Xbc+hNe4uwGcAcDnXSvfR+uZlk47fTZKA4gyUR90zHeUAgMetChtmPJpvuGfQzP+Q5geAr4UPKHAOJntOQYwTWExiNHDfzN515rXr+xEQAEDRdWuy00SkyaVzcv1DtcDsriLmQlDZ0+nz+fNhLAAUDk//S1IJPr+lFwDyGGeawrjkCycAfvUU9CA0zsxtyLQGaTL5aIm8B7kNUJuSrRFGvSl5z5TTOWm21xN5A6AGsrQsZSMlTRJ2foBBCwAouprqm4lC5DahkBsA92zfyRMAC7sO4+sIL1YgrPnJG7w4oTYRA2o0ALjbpPAFFOBej5DkT2GCsu/6NWTz03rIen1T0J/rBOBO/dE0xnUdG4sTnMSTntNCUsSzZs3/OSnyBsDeRz71O1HZQuI0lDYfJQoAgKILxN6SSBtdls8AVNYvntZ3bREvbevAY2ue3AMAjdZswAvhDmIAAMi7Y6LDAsqODcRwc75hfvLvHmddp/J/WheA4vUy2vDLEttYrPXUJqUfa3iea2ReyOYfK1jMxMnm/fYv8gbABeecuEdEbiYtG/LaYfNaX08YAABFdXrVmkzkrUQiUmd3Z1Evbcw64QmAAJ8BwPlcK9FH66Y7SQ5QnIEyLrmilQO+dAbgY6vCZi+P5hvuATTzP2QtBCDnedG3ekN9ZPL165yCeIPUlpIYjd03U/sIAQEAFNUhh284RUT6uL/YcMofi5oP1aqG4vnnmXwYCwDFYYGwATBpJfg8lF4AyGOcaQrjki9wAHoVv3oKehCSEci0BmkyOW6JvAfjBaA2JVsjjHpDz5THOWl21xNrA2BTWFsq3v1ktTmWGvaBcdff142BCwAoZltmpxOFaMICbwDcq5O7XNQBz9cRfqxAWPOTN3iubBkbAMFYA+B4k8IXUIB7PUKSP4UJ5DxnaLLHZBz4sr7RzI9V3/vQ9wCFqT+axriuY2NxgnMmc1rZ1+h+z0mxNgAunXjcelG5jcRpyFFPtR82ljAAAIooFHlHxGVBkfutetR6dQtuL/g17in8ugAoND76QJHwE8AAADc6JjosoPR9qSfHhGshNsdej/zvcdYJn//TugAUb1LUhl9mGZ2Kdfki+rH66nsj80I2/1jBYiZOXvNXEDvnTW4gLRuuG+OJAgCgaE65zppV5K1EIpJ7Fkzst63g17iD2wzwGQBcz7VyfLRuKttIDFCcgXKqe6bTMs2MAIrWqrDZy6P5hnsAzfwPWQsByHlezKLeqKPHKqPAwXPSwp5T/A2AFfsFydrwfXvXyHlrTiAoAIAi6b9z3ZtE5FAiEWn588cSXCQbAAEAbizLzR4jCmkElhAASGBlFLG4ZPX0GQD0KunWumRfj+TVaJxR6H4r6RTN9uc6AZSkNiVUI4x6QwOfxzlldCmxNwAuG3/0wyLylzKUjTSzI1T5JAMXAFAwI+gIovZ9we9LsHzz/ucW+cD9YElMdMibEq/5yRsPS1bwKFFAnLHG2ASQbZPCF1AAPQKQ4pyhyR6TcVCsXLG08u5Ff2pJHAuAW72TpjGuk9xYzJzGfFfccwoa/GueAtho8TD5yLjZq3sSCQBAcQTDU2mjC/wZQK0itxa/19btjA3A+9ULIUAxOpUwZAMgAIAOC2CcxeDLZl820qROiz8OmJ+4Z64kPLkIMCkm+5ZZ/Tww/Vh99T3Jpzgm9XfawPtprvNXQxsAzfgZ4ARqwpFbu+v7CAQAoAiGXdk+UMReRyQiWbdsUv+HS3Cd/jwBkHUZyDWUWuE/Wg939XqSnwAGAGa6uns1NkwA8HEdSe0q/kqMewY/N+bxYRjgr8aeLZb6k0X3eZ8Gj6UHPy/mYd/nwWI+IbCpkT9eed7R9w67ZvXfReQEkivifXvhc1Anish3CQwAwHeVoHO4GKv4SG2Bym9KcaGhbCczImXGn8zsW+VZbBVbQNiSxacrGQzPAgfZdPeyScfvJilSzDXjIgA0PtVrhHFpsVoqxjpAr+JarUv29XD9njEPId902H9+Pu9EGj6npw+QTO1ivABlKXxZre0O/D7UG/cmOhfvScxzyuBSmho9gIn9XEU/VdwWPYszslOHzV/zjhUTh/yGwQ8A8JrJCDqCyFaVpL/fUYwUzyZvVGzT4ov6f4OiAgCAW3N7jZABOEgXn/yn+Wz3AXzpEdigBy/noS7/JNoxGQfFypX67mcD/c/eP33ufdh4AxSvzCQ5rpPcWMycxnxXzHMKGj1AU0V/TOIk4mJCAADw2Yi5D3UXkeHx2ugIfVHh+s9gVUlSZDujJNK46EsMAAAAgJJ0/4QA8GicpfHhlC/HhO8h5meGuWfUFABp1QjL/i0dqWnUx8bnOY35d2nOq9rA+2luvVTDGwCXjh96j4jcS2o2bMS75685iTAAAHwV1HqdISK9iUQkrYsn93uoHF28PeHZejVXoSgbAAEAAIC0licR1wVsmADglDo/s6B2FXh+4p4hakFwJGfjnjO5DhSj5lgG7/HC99EEL1epTYXLyeJt3gwSCipPAUwglwKVaQQGAOArC+xsohB5FfLr8vQ+nm0AzL9VZAMgAMDbSYyLAND4UinauDTGOgAPhz6bvYowP3HP4G9tsq5ORJO5KMYBUM45MG7hy39jMetE9yY6Lc71pHwpiWwArITBj/yav83V03r/yHmtxzD4AQC+qVYtENPRLFgivr/Kb8uzOtTCbADMKG96jZu9uifVBQCA4veEAIqEL4uAMvcI9BTIf87QFP5EGQclzr/Un9a1z9OW6aWA4pWZ5H9uN6u5hjmNfsu3c0pkA+DS8wc9JiJ/JHka1hxqOJkwAAB8c9thrW8SkQGl7dViX4ryBEAc0LaOQ44iCgAAAEA58OUS4NM4c2TjFvKnjBu4dw+MhAdQljlDc/tj6mPieZPdz8Nbge9rkOBN+QmpmUgcz33XvDV82QsA8IqKjvNsWeCCfyyZ2v+R8jQ5Hj4BMOfevrmp1kJ1AQAAABxZ0rDKBeCd7L5IBfMT/BrreeagC+cMIL9alPqTRfd5H03wspR5tcTzoMU8pyxzJLENgLXmjutFpJPkatihTSLjCQMAwBfVqgWmjW4ALGM7qivKdL1WCZ9kKRQ1aNaXIAAAPG10uAgAmY/L1DZAUA4AepU0l/5xX6/pHB9dJ45ldY9BbcqtBmmC56TkNVAgcZ/UFrXwZbWxmNpU4iY8kXNy73oS2wD4q/96yQYR8eiLbHM3l1Qmj5u9uicFAADgg9sO23C6igzye8GSw/uqrSxVW6/B5uItdNN+DzYAAgBQ9J4QQN7jkp/xBMoh/rhk8xZKMQ8xdZF/eR5LqZ9A8cuM+nriKMQ9UQcvJZ1zChI9T5P/IfES0W9rd/0wYQAA+CBQeT+9d2Qdld2V35QpTyq7KpsZLdGEErABEAAAACgRvvgGfBpnbCBGeW6bRbxI5rP8a5fl+N4MKoB6lUWNiPpU5Lj1xhI8FrqKc3ZPcSzqfU10A2Dvli2LRaSd9EwkwS8cd71ViAQAwGXjqvd1M7F/82VZ4NA8/4eFl7ZsLVOurD28b7uIhN6duOb61v2oMgAAAIBTazlWuQA8w5fRzE/MT+6ppHAPshrr+f5cJ4Bi9B2W4LHqex9N8LKUebXEPa/FPKesciTRDYALzjlxj4j9iORKxPFbNrbyFEAAgNO29TlqmIgcSSQitqEmK8t2zXeO1w4R2cRSKEKeqB1LFAAA/k5kXASA7MdlahsgKAcAvYpDoj7xhk9ikk+ctDfccc+oTbnUlAOdiOYzbgCUpVjlu7GY2kQTXqSfFw6SD41+x8Nlkpu5ZPb5cdff140iAABwtk0L7KNFuI6sO4JAw+UlTZn1RbqYtPMmFDmOKgMAKF4nRCQAuDYu+RlPoByyG5ds9gLzEMqZf0rKAqzRDjK+fRvoFKZi3RN18FKSP6fENwAunzD0r6J2F8mXiGOfajvs44QBAOCi98xbc5SIjKL3jmztoikD7y5pb76ekRMpxdkACAAAAJQMG4EA98aZHWzlnsanAfCPFv8ajNwsUO1ytz+xQg0qgHqV9qQV9anIcSdxS/BY6CrO6my++SBIKQDfIT0TiqTK58Zc13oIkQAAuGZ3remDItLdt2WBA5P7TaJayu90TGydn/cst3ceeHr10R5UGwAAAMCldQ2rXAC+4cto5ifmJxfHpXl87snlFPUJKGvfYQkeq7730VQvi3nVv57XGs6paOeURY6ksgGwycIfmchOEiwRA/d0hucRBgCAc0w+ShBihC3URWW99sCCDSyFoq0MevfqfSxhAAAg1+mYEADeLVVTej3lAICLtU4jvh7Fm5/AEiS1ZkUTPLSS1wDFysNjsTgsT/yKcU9T2QC4ZMIxT6joT0jcxHLp0rHfbu9NoAAArhgxd+3JInZSka4pow8ftlrTU78pbeJY8X4COP28CfkZYACAvzMan4cCSKDiWCbFhZ/xBEopxWHKZq/iJ445n4zMQ6g/V8ydoQWggGu6uAPdcr8eClOpGvisz0mTv54gtUu08Nqil6cMtezZuXsygxkA4IogrPB02lj9ka1cNun43aVdFKq1kgVRB5uxARAAgCz7FUIAgFoEFFj8n+DK9othvmz2PL0Kew1Gbpa6p/Du5zoBuFN/UhnOL9qQr40fK5l6Su1qPG+0sXxL5d74cV9T2wC4fOLRf1KTO0jRhBJd5aJh31p9JJEAAOTtjMs3H2Zi/5HRsqBQfXSowU0lb2ge9/bcc8q10IQNgAAAAIBrS5uUXw8AyePLaOYn5icXx6W/90wTPD/qE1DWvsO7jcWaxPXApZ7XGs6paOeUdo4EaR48DOxaEiwxh9kuvYgwAADy1q3Hno+IyKFEIrLO7s0dS8scgEpn8E+WQpGXKmwABADAhRkZgFdS+zKdcgDAxVqnEV+P4s1PYAmSWrOiCR5ayWuAYlWgxRaLw+LFz/97muoGwMN26o9FZDPJm0wuqcqkd121oT/BAgDkO2XZuUW9tpQ/fPjNDecP2VTm3Fl4Sd91IrKbvImEDYAAAL9nND4PBZBAxbFMigs/4wmUUorDlM1exU8ccz4ZmYdQf66YO0MLQAHXdHEHelZPFjUKEw18HuekyV5PqhsAF0wbulPEvl/k8pSxQ5ua93yWAQ0AyMvwOevfZSInEolYXdzPCIGaiKwmFyI5vlq1gDAAAJAdvnwHAKDI4v8EV7ZfDPNls+fpVdhrMHKz1Osb736uE4A79SeV4fyiDfna+LGSqafUrsbzJq0Yak5/m43Uv0xUqXxd+Ow0yYh+cti8x9h4AQDIp3Ewm5LDsqAIfXRnWAlvIINEROSf/rZhubxr77v6tL+EtAEAAAD8xpPAAOSPL6OZb5hvXByX/t4zTfD8qE9AWfsO7zYWaxLXg3R7oCyeMhn17zSTHEl9A+DyCYMfFJHlpFtimlQqcwkDACBrw69a+3IRGUkkYlm1bNLAdsIgIiKPsRSKuIgwex1RAAAgb3whBRS+745YDljNAHCqdmnE18P9+YZ7Bs38DzM4HusqgGJVpBpBTSte/Py+p5n8nFhodhXJm1wumco7z7ym9WwCBgDIUkUqF2bVO+QpnQ/VdAEZ9Ewo9DHyJjI2AAIAPJ//CQGANHpuTaFHp2AB9Cqu1Tq4njhW1GQE/VaKKUqtA4rRMGU1lrNa2xnzMw18HuekyV1PJl/i3zxh6M0icp/nLY1jqRPOGjH3oe4MbABAFkbMXddiYh8kErHw878v7GMfIQqRu1Q2AAIAspt1QCQAxlnyqyAAzo7L5J7GluRPYQI5z0OawjFRmFxJ/ec693naMvkGFGbdp2mM6yQ35Gu06wFrdMdk8xQfVRORq0ikRCvlS2uVHlMJBAAgk6ncZIKI9MxxWeBvr2byW37+9zmh1R5kXRAZGwABAACAAuBnHwFEo54cE66F2Bx7PYp8z5Lc/Ex9ApgUEziWM/MwNa2R+SduDONuHreYeWgxcziteTmzn/ELOnf9QEw3kOJJljj9zLuvfnwQkQAApOnMmesPFZPziUTc+dp+RBSe09TR/OALe1s+MqzD0aO+9uQRhAEAgPw7OwDFVvfqRFnNAPC3VaF2eTTfcM8YvM4ck7UQgPRqRPY/JawJXi71sXjzi7/3NLMNgMsmHb/bVL5JAieaS72CIPgaQQMApKm52c4Xkb5luubEFhsqu3bt6f4Lsug5Cy9t2Soi64lEtEwKune8ljAAAPyezQgBgMbrgUU8GE+fAeDj0GdzmH+JY0VNRpSyNlnq55TGuAGQV1GyDN4jy7WdMT8zSeZxTgldSpDppVY6rxGRPe4miJetxofOnLf6/zG4AQBpGHNd6yEmwk/Ox3fjLy878inCsI8Hi3hRqXaSZvwMMACgCDMakQBQ0nHGl0WAy+MyuQ13SX5hDeQ8D2kKx0RhcsXSyrsX/elz7xNwa4CirPs0jXkkyY3FGu164Ol6uJjnlOlsuWL8sevE5IckeLJZoKrzq1Wj8wEAJC7cIeeKSH9HlgXe9Wpasx+QRfu9Vw8ShKgjIWQDIAAAAFCI3h4AolBPjgnfQ8yTJ4t/DyzjhCdHACQ/KWr2b9lQTWcLTyPzgcW8mXF/6tli5qHFzOE05snMM86aKjNFJCTNE3XKrS1rP0wYAABJOv07j/YwDS4iErGXIW3btg5YSST20w/aizcAmnc3N4c3PYXMAQDABRVCADTE/S9A6l6dqJerGQBFV+dnFtQu/7BBj8Gb/zHV0zgA8KGOZTVvWULn+8I/p3aRz27I/BOXleMHPSAiN5IwyeaSicw889r1/QgeACAphzzZfYKIDS7r9VvjB/jJqqp2kkn7aUDNeAJgdK8Z9bUnjyAMAACv8XkogATqgUU8mGV9ggDoVRLAZi//EifZe8Y8hHzTwVI/pyR/rhOAb31L3MKX1drOmJ89mugK9FO+CVxKkNP1Ti9TecpIXw07rqI4AACSMHZ6e29R/RSRiC+UkJ//PVAr2GT3stCN3rdr911vJXsAAN7PaEQCQGnHGV8WAUUal2zQQynyXdMbQ/A/VyytvHvRn1I/gQKuazSNeSTbjcXUpiKsh108pyDHv45pxXlDb1eRX5PkiSfovw+bt/Ys4gAAaFRnj85pItLXjbOJ0Ea706vds3TaoDvIpP1bNHnQ46L6BJGIKNS3EQQAAAAAAJKX3Je4PvyMZ1rHhO8hZmMr94yaAiCtGmHZvyU1rQC9tsW8H5b6eWrG71efIK8bXDObTpqnUcjsmtOvfPRwAgEAiOs989YcJSbTiEQDjazKt4hCFzEy+6vn69U83vPtZA4AAACQwXrFsdcDQCR8Z838xHzj7eDN6mc0Xc1ZihjAPJdFjbCkjqXUrmI3xurgOR1cbhsAb5549EpRu4uES9yg7t2av0YYAABx7e5s+oyI9CESsfu2XbWw44cEossm9C9xlnYl9/px89t6EQYAgOe9EgAKQcP1wCIWl9S+fKamAfQqKWIzsn+Jwz1AkWqTdXUims+4AeCmuE9qi1r4stpYbCwCPZro+HnhZwS5XnKoX3G5PHmcD+OHz1vzLooEACCqEXM3vFTEJhCJ+B2BivxixbShm4lel7H9K3kTWdOu3fZmsgcA4P2MRiQAlHac8WURUKRxyWYv+DdnaAp/wtxW5vxL/WldSv0ECjtHaRrzSLZzErWpCOvhYvUxuW4AXD5hyA2yz9NfkESWmsq142av7kkoAACRhOFsEenu3olFaKNz7tVqJt8mkeq5oyE9YJwhavovRAEAAAAAgOQl9yWuIxu3kD8t/jhg8wP3jDoFoN4akdWcYYmUJWqaK7123KdLWurnqRm/X9eCfMe4mqh8iVRPxfFbuwefJwwAgHqNmrPuHSoylkg01L0++v+e6r+KQHTtUKndJyKdnq9X81giv53sAQAAALJY3rn1egCIRBN7EUo2PyH/wWv5FARncpb6BLgpdKpmaILv0+CxlNpVkMY44/koneMGeYd6xSeH/MJU7iHp0iiOdtGIa9eeTCQAAF0Zd71VLLQriUSD7ZrKN6tVDYlE1xZMG7pTRP4eZ2lXcqfxlGcAgP9NEyEAoA3XA4tYXFL78pmaBtCrpIjNyP4lDvcARapN1tWJaD7jBoCb4j6pLWrhy2pjMbXJp4mOnxcWcWADoKhaYOrgUwCtCPnQFIb27VOuu6OZYgEAOJjtazd8TFRfRyQa6AhUdtUq9i0iFqkPvL30eRNd913S7W0kDwDA+xmNSAAo7ThjxyBQpHHJZi/4N2doCn/C3Fbm/Ev9aV2kF1DcOUrTGOia6bXT2xWhqBdnoglcOInl5w3+GU8BTM3JLZ0Dv0gYAAAHMnZ6e29R82CuiNBG5/OvIX+8bNLAdjIqglBuJwhxck1HEgUAAAAAANJYcyfFkY1byJ8Wfxyw+YF7Rp0CUG+NyGrOsETKEjXNlV477tMlLfXz1Izf7+ACN8a5mop+mXRPaxDZJWdeu+adRAIAsD+dPTo+JSIDiURjKhbOIwoRG9GgdlsB1qs5NHc2iuwBAAAA3MOGCQD+4Ytt5ie4OC6NHKQ+ASWeT1J/sug+79PgsZTaRc/rxjkFrlzamzYM/pmI/JnES0UgoXx/zHWtfQkFAOD5hl+57lgxnUokGl4m3LJo6qC7iEM0rYcMvEdEduSzhPTay0Ze0X4CYQAAAIDfsn86Vmob9PiOB6BEOSTqE2/4JCb5xEl7Qzj3jNqUZVGzro6n+YwbAGVppDTBuTC7J8ihSE24enM9zmwArFY1NNXPObpM8j6/VWTwns7aNykYAIAXNAIqV4hIDyLRWEegqjz9L4Y7x2uHiNxd1rxpRMVqPAUQAOD3jKZEAsC+9cDNDRD8jCdQumLkWE9BD0JuMg+hGPlH3gFlqBEW+xDq/bXD53tSjPsZuHQyK88bslhU/o/ETC3hzx4+f8144gAAEBEZdeW6USLyr/R5DWtd17P/L8ioeEztNqIQJ276HqIAAAAAAEAKa+7EXs/GLRTotmlX44DcLE7tSv+9AVCvspi0oj4VOe4kTg2Mev+1gbxRZ/PNBYFrNzsw+Twpn2oxnX3G/NZXEgkAKLex09t7m8rXWRYkckrz9z7JDvHi5/8GwHx6+7eMnNE2gAQCAAAA/F618mUR4N64LB82bjEOGDcujkvz+NyTyynqE1C8vkoTfB9N8Ho0wcuidhWh57VMxogm2ns5twFw2YShvxWR5SRfag6pSPi/I+Y+1J1QAEB51bp3flVEhhCJhm3rlI6vE4YGFldNtT+ksYQsgUArxlMAAQAA4Lnsn46V2gYIvuMBKFEOifrEGz6JST5x0t5wxz2jNmVZ1Kyr42k+4wZAWRqpfI9FbaIJ9+XnhQMXb6dJ+FnGUar5cJJVen6NwAJAOY2eve4NJnIekWi8wTeRb6+YNnQz0Ylv2aQha0TkkTLlTYIt4r+RQQAAr2c0NssA2E89cHMDBD/jCSDf7oovzArbETMPwa9GjbwDUMe4ttiHyOYJbdQ05qyi3k8nNwCunHDMnSLyM1r6VK9qyrD5q4dTAACgXE65zprDinxLRCpEo2GdodhVhCGRxmQVQYjl7e+Zub4fYQAANPDZAAAAAJ4V/ye4rI5jpnGe8DK9CnsNRm6Wek3I+hKAWzXjRU8W1caPRQ1M8v5rA3mjzuZb3gKH7/inRWQPqZ9mBur3Rsxdw88/AkCJ9N+x4SIxeU1plgVp9lsqP1s+deA/yaokYmn/V4TOKgdNnUHwfhIIAAAA8HbVGuv1ANIfl+XDxi3GAePGxXHp7z3TBM+P+gQUr6/SBN9HE7weTfCyqF1F6HktkzGiiY0tZzcArpg49B8idg0JmKp+YUUWjpu9uiehAIDiGza77WWi9jkikVCLGNqVRCEZNZXfprGELMlC+4NEAQAAAJ6vrnzou4tyKQBKJOoTb/gkxqP5hnsGzfwPMzgejRRAsaJGwOX77X4OBk6fXTf9kog8QXKnmksnb+ku8wgwABScmTYFta+LCJu+Gwnjc/PybxZPG3g7EUnG3icpPlb4vEnn6KeNmbXxFWQRAMDbGY3PbwHspx40vgFCU6ho/IwnUPbalHd3xWYvnzpiTeGeMQ8h32JoGaUTtQ4oRsOU1VjOam1nzKU08B6ck9MbAFd8YuhmFfuyTy29pwPgP8+ct+Y8CgEAFNfIq9ZPMJF3EYmkWgP9KkFIuvUtwM8A5yTUkKcAAgDitzWEAAAA4Hni/wQXXwwjQnoV+BrI9zKvCa00AwFgIku8Zmga75HkhnyNdj2oI15F26iX//UErt907dw9X0UeIf1TT+Or3n312rcQCQAonhFz171KVGYWrS3Mq99SlVuXTO3/SzIr4Tuquoq1b9yctI+Mu94qZBEAAABQilUuAMaZ8DQ4ZDUOeFJl8e9Z1nXKnScxA/Chl0l0Y7HW8z6axWVxnxueFxt5iqPG/Ls05+Nk4uT8BsBlk47fbaqfYmCkPu66BYH9fPS1qwcTDAAojlOus2YN5bvCT/8m11iaC08nLmArYk0r9u2H+ciwzlXEkJ1rNowkEAAAAPB4ReBB2x3tUljNAHCqdmnE18P9+YZ7Ro+kKRyzoH0cgDznq+Sf6AfmQM5p/wIfbuuKTw5eICJ/IL9Tf4f+HaEuGHf9fd0oJgBQDP13rv+KiJxGJJKai+3uJVMGLCUQyVs8re9aEbmXxXDcNwjOJYsAAN7OaHx+C2A/9aDxDRCaQkWjYAFlr015d1ds9vKpI9YU7hlPfkS+xdBST6c0xg2AbKYLza1vyWptZ8ylNPCOn1Pgx71Rk7BygYjUfGjpPfemp9oPm0tBAAD/jZrd+jYRmUYkEmxJLPiyqPL5Q2rtlq0gCLGDN3LkrNZjiAMAINYsQggAIM+VJiEAHB6XyW3QY6yjQKmgZbhI1oTpHoscAbCfmqFp1IgkNxZrtOtBHfEq2ka9fK8n8OXGrzh/0F2i8j8MgUzSefyw+av/i0gAgL9GXfPYERboj0SkUpJlQer9lorcd9pT/W4ku9LsQXR5ERqpvPr6QJo+QRYBAAAApVjlAmCcCU+DQ1bjgCdVFv+eZV2nyBGA/iO3Y2k9tVPduSxy5iD3qpGnOGrMv0tzPm48ToFPaRF0NH1GRJ5ggGQyCK9+99Vr30IcAMDTDwT2dLtWRIYSiUS7yS9XqxoSiPTUmrfeIiLbk2mry9i+2fjTq4/2IBAAAADwtKH1YFkY7VJYzQCgzCLV+Sbm6+HbPdYUxnXSBYECA1DL0qsRRr2hgeWc6uLVBsBlkwa2q0qV/M5E9yCwm0bOW3MCRQUA/DLiqnUfFpH3EYlE3Xvalv7XE4a0e73jd4vIKhbDsbX07tXzg2QSAMBLfH4LYD/1oPENEJpCj07BAuhV8sXmMJ/ugaZwD3jyIxzPf00mH6ldgI/9kObWh2S1tjPmUhp4h88p8O0W7dow5BpTucePZZX3jqqpLBr2rdVHUhwAwA9jrm59hYrMIxJJdwD6OZ7+l1Xra8uJQgO5qjpZzFhpAgBi9DvJvxIAUP9KCEBxxiUb9MAQQdlvvJFEAOL2QppGjUhyY7FGux54Oh/4OUd5twFwVVU7A5FJDILMnCC7gxtGzH2oO6EAALeNnd7eu1bTX4hI75IuC9Lq1e5YNqXfTWRYRi11xRayPmrIq8de0XYGYQAAAAAKv8oFkNE4S25c8uQ2+HvbmJ+KX7uMhAeQy7jO4ViUpUL0GBbzZlrq56kNvF9jW/gCHxNg+XlDV4nKjxkKmQ25f6lVen6Lp8kAgMul2rSze+d3ROSVBCPp2AafE1U+48rIosmDHhfRu1n7xhcG+mkyCQAAADTTKS0RI14Ki0kAlFk4NT/FfD3yvmfF20BMDgJlq2Wa0fskdT0N1kh6Lg8CooW7wYGv6dHZ1DFVRJ5gbGT2lh8cNr/1axQmAHDTyLkbLhWRfyMSifv90mn9+Ena7BuPG/NZ2hVlxW2nj5nV9lYCAQDwsAcAgIbrgUU8mGV9ggDoVZJY+qf8eiSfOMneM+Yh5JsO1tWJaD7jBoCbNccyOoms1nbG/OzRRFeunxf2dgPgr/7rJRtM7TPuL6uKNK7s0jPnr5lKgQEAtwyfs/5dYvZlIpFGo2SfJQo5dFtmNxb22rJ6Hw0/RSYBANKbp/gaBkB2PXF5Kg5fFgFFGpfUOuazUuQ7Uxe1seExQhIB9E/7qRmaRo3IdmMxvV0Rmgr/5qjA5xR484ah14nIbQyGTFP8imHXrP4PIgEAbhgzp/XowOzHIlIpbxQitNHRerUli6cOXEWWZW/ptAH3iMg/iERDXduIMVe2v544AAAAAIVe5QLIaJwlNy6L9zOeKM9tY34qfu0yEh5ALuM6h2OpK+eLRuYfi3k/LPXz1Fx6KK83AFarGlZq8l8i0sGQyLCSm3532PzVwwkFAORrxNyHutdMfyYiLUQjcTUN5DLCkGe37/lTANWBM7DaF0kkAAAAIIXlSsR1ARsmADiF76yZn2K+Hnnfs+JtICYHgbLVMs3ofZK6Hpqm4jehxfp54cD3FFl6wdB7xHQuYyNTzSL6s+HzW99KkQKAHKcCO3S+iJxGJFLp7r+7ZPKAewlEfsIguDGfpV2B0th01JhZbfRrAADPmlxCAEAbrgcWsbhYI+cJgF4lr3V/yq9H8omT7D1jHkK+6WBdnYjmM24AuFlzLKOTyGptZ8zPHk105fl54aAIt3q3dKuKyOPuLqsK6VCTcOmIa9a8kVAAQPZGXLXuQhH9OJFIxfam5srnCUO+/t9T/f5oIquLeG2ZdpJqXyGbgHI564pNQ8dcvulEIoH05yk+GwGQXU9cnorDl0VAkcYltY75rBT5ztRFbWx4jJBEAP3TwQ6R/M8DZzV/hyRCAZoKv+aoQmwAXDWx3zYT+SQDInO9Q5Pl77768VMJBQBkZ9RV68apygwikVKvZnLlwgtaWglUvqpVDdXsp0SiMSbyL2NmtY0gEkCJxn2tNkeC8J4xM9pvPGvmxv9HRAAAAIADrplTff2BFe9nPFGe28ZGVWoddQpAOuNas59j1JVrRyPzj8W8H5b6eWrmPVRQlGRYOWHoMhX7HsMic4cFGqx49/w1JxEKAEjfqLmtbzOV7xdpDs+3LdzHhqaOCpsrHREE9mPWvgmMDrUZp1etiYwCim/MjE1nmuh79lags0KzW8fOaP/12Omb3k10AADwa9XKBgsAqeI7a+Yb5htP75lm9jOaruYsgGLMP+m+jyb4PjRNxW9Ci/PzwoXaPNBZ6ZhsImsZNJmPhyMDkZvPvPbxVxMMAEjPsNltLzPTn4tID/rOlKY0lc8svLRlK5Fww6Kpg+4Skb9lv4QsnFf37tN2LmEAim1c1bqJhHP28396h2i4cuyM9rvPmrHxw+OutwrRgvtNGSEAoCnUg4MfLLUNE9Q0gF4lRWz28i9xuGcoUm2yrk5E8xk3ANysOXGf1Bb1JCyjC6I2lbgJd/R6CrUB8JfjX/qUWHCem8uqwud3Xw2DX434+rpXUXgAIHkj5q5raWqqLRORFqKR1rxqd5/2ZP/vEAi3mOr1hbyurN/P5EvvmbfmKDIKKK7dh2yaIiKvOEi9OcnEvrf7nxsfHDujbfKIuQ91J2pofJ7io04A7vbQ2VQofsYTKIf445LNXsxPpZiHmLqojfQ/ANIY1+prjaCmuRc7LcX9LNzPB66cOHiRmF3PwMhFv7BWu/ndX199PKEAgOScOXP9oRrKUjN5GdFIrc+zUCuTqlUNCY5jzWqg/0sUEnFk5+5unyUMQDGNnd4+yMTqHeMvFdGrmncd/vcxM9ouGFNtPYQIAgDywCYXAD7WouRqFxuI4e9tYw6n1sU/FnUKYCLLe4550ZNF1Z1rR/z7H/fpkpb6eWqm+R0UMimCbheIyEaGRy4GBTX91ZlXrz+OUABA406vWlNTN/upqJxKNFJcFqj8ePnkfrcQQ/csntzvIRG5g7VvEiPEzh87c8NrySqggFRmiEjviH91tIrO1UOaHx0zo+3TZ1/5xOEEEgAAt1atbLAAADDfcM/29yFA8vdMvcpZAHkIMhjL9dUiS/BY9b0PG/2KNOf4c05pjFIPrTxvQJuZnc/Ayc1QDTp/PWz+ap5UBQANdZamhx6x/joRGVWCniRP2y3ovJQwuLwUsO8luYQssaYwkGvFjKoBFMiYy9veaiL/0cAh+qnoV8KOzsfOmtl2+divbOhPVOFIAwCAQpBCPTj4wVLbMEFNA+hVUhS7dlGbckscNuihSLXJujoR9fCiAKQ2PC3xca0Jzp3ZPUEORZoT3Pl54aCot33lxKN/Kio/dmtZVZL8ftqxInrLsHmtr6cIAUCcKcZ05Nz115jIfxKM1OfSy5dNGrKGQLirQzr/V0R2FW6Y5/O2bx5zxYaPk1VAMZx7nTVLRed1tTKss970MdNLpTn451kz2+aPmclT3eH4jAaAiuNMheJnPIFyiD8u2ezF/FSKeYipi9pI/wMgjXGtvtYIapp7sdPC38+gyGmxe1fnBBFZzQDJTX/R8LfDr358GKEAgGhGzlk/XUQ+SSTS7R9V5B87ntw5i2C4bcW0oZtF5EYikQxTnT5i7roWIgH4b/2TGz8jJq9L+LA9zHSCWuUfY2e0Lxozo51/1FXW+YIQAKDWAKAWpVy72EAMbhvKUOtefCwSHiheHdGM3ifZiTeZpyJT01z5nCDu0yUt9fPMLkcKvQFw1dTjngzNPiF8lpSnXqbBwjPnr30foQCA+oyYs26mqFxMJNJvC011wqrqcbuImwdUv+3vuTt3RkdWOoMrSCrAbyNntJ1kKp9O+fOC0Spyx9gZ7TeeNXPj/yPqAABkvWoFAMDN+Yn5LO97oCncA/UqBwHkQTMYy/XVIkvwWPW9Dxv9ijTn5HlOac53QdHT5uaJR68UkWsYQLmOk24q9uNh89dcSDAA4OBGzFn/ZRW5qBB9kvt+vHRK/5sJgx+WTOn3KxF5JP32uCRMPjRm1oazCQTgp9Or1lQR/baINGeyohM5y8xuHTuj/ZazZraPETM6DwBARrKfclLbAMHsCcCpjwWoTb7NbWzQg8PtU9cnooW5KABOFqt8j8WcW9qJLqFzSu56gjLc/m6VyiUi8iD5nftZzjpz/to5fFkEAPs3cs66qop9hkhkYktTpXIRYfCp31Ez1e8X7bJyXRiqXDPqa08eQXIB/undc+PnRSSPn+Z9i5ksHDtz411nzdj44XHXW4W7gVRnND49ALCfetD4BghffnKTIgj4VJvy7q744tm/jticT0bmIdSfK9QggH4oygssvTdzrD8KyI8yNfAOKEXGLRo/aIeF8hER6cy/pS99CzjpzGvWfPP0qjURDQB4zoir1n9aRL5AJLJhYp9ZeEFLK5HwSyWofUdEQiKRWBc7ULrtmUkkAL+MmdH+elG5LOeV60lm9r1dj268Z+z0jR859zpr5s4Udq4AAGoNADxLY9cuq+OYaZwnvEwvrgGF7NOMJAIKXhc0vfdJpTToC99HGz8Wkrz/jTwxOa2nOKrzOVKaLacrzx96m4p+nqHiQv+vH+/ed+3Px81e3ZNoAMDTm/9U7StEIrOPEu7oNWjAtcTJP4smD3rcRJZ42gA5elr2n6NmbRhGdgGe9AxzH+ouYt+TbH76t57S9koR++6GJzc+NGZG2wVjqq2HcJcAAEhg1QqAcQl4MA4YN/mvyv29Z0pOAcwnkWtEvPfRBK+HjX5ZzAU+nZPlNkb2r1TPnHxj2+DpKvJrBpIT42bslu76yzOvXd+PYAAobwdsOuKq9VcmtvmPvrMenRYE5y44R2uEwk8V0Xnptsfl68pU5X/eM2/NUYQCcF/TriM+L6KvdmRN91xLI3KMms7Vns2PjpnR9umzr3zicO4WACCVSSer5Xpar2fdDsAhyTzxBlnObWzQK9G4zK190vRynVoDsD4r8LGYc4v/OUG655TM9ZRqA2C1qmGtZh8SkXby2wlv1lrnn949f81JFCgAZXPKddY8cu7676naFKKR6Xw5c9mkfncTCH8tmtrvZhV9sEjX5MDCcFDH7ubryC7AbaNmtL1NxC5x/DT7qelXwt2dj42Z0fa1sV/Z0J87VyYpzWh8SQRgP/Wg8Q0QvvzkJkUQ8Kk25d1d8cWzfx2xOZ+MzEOoP1eoQQD9UJQXWHpvRn9UlmaZ/mYfQdnS6+YLjm41kY8kO9YpGw2MraMDkT+eOX/1BwgGgLIYMfeh7v13rv+JiHyIaGQ66Ty4o8/OLxIH32+jmqnNJxCJ+7cxV7R9lDAAbnrPzPX9AtEfi0iTFytXlT5qepk0BY+fNb39+6NntB3PXfQXn3gAoNYAwAub3bi1y+o4ZhrnCS/Ti2tAIfs0I4mAgtcFTe99UikN+sL30caPheTmEWvoiclpPcVRnc6RoIwJtnLC0GWiMpeh5oweKvqD4fNXV8WMygig0EZd89gRGvb+laj8K9HItJ0MQ9VPrPrYcbuIjf/CSvP3RGSrdyeuro8amzPqyg0vIcMAt1SrFnRY5UciMtjD0+9mIh8KTP921vSN3x9z+aYTuaMAABxg1QqAcQl4OA4YN3lTj++ZklMA80nkGhHvfTTB62E7SxZzgU/nZLmNkX0FZU2joGPXpSLCTwA6NIpM9AvDr1l7/Zkz1x9KOAAU0dir2wdZR7ffitpbStUnudGqXbN8cr9biEQxLJt01BYR+R4fByWuTxDaT0fMfag7oQDccVfPjZ9XkTNcnWDr1GRiH1K1e8bO2HjjWTM3/j/uLADA9cVual+ms24H4JBknnhTBhX37llKr4d/9zj5niPpgqD0QQDrs5IfC0X5nMD1cyrtBsBlk47fLSbniMhT5LdTTe179ZDOW864rvVoChaAIhk2u+1lnWHnLSLyGqKR+eTyWGV35dMEoliCMJwvBfoM05w5Dz210tF7FhkGuOGsmRvPMJXPFeiSVEzOslBuHTtj46/GTt/0bu4y6swcANinHjS+AYKf3ARQvKHPZi+f7oGmcM+Yh0ANAuBqP6S51YyivQ/NMud0IEGZ02zFxKH/ULEPJzMWGc4JOqnSGd45/OrVpxMKAEUwfE7rWytB7fcichzRyFxoIv+58NKWrYSiWBZdNOgBE1lMJFJZZJw/Zvb6/yAOQL5GzmgbEJr9IOl1uzMrV5N3itjKsdM33X3WjI0fHne9Vbjr7jL/MgxAoWsNAOS+bo5du6yOY1Ib4Wq+p/knKEKf5tbPdQIoxvrN9lsakn/SnyV4LCSZL0XbqJfu9QRlT7TlE45eqGpXMeSc09dUVwybt/oThAKAz0bOaf1kIPprUelHNHJoJ02uXjZ1wK+JRUHvsOp0705avQnuNWNnt72MLAPycXrVmppErxeRASWo5ieZyfd2PbrpnrHTN37k3OusmQwAAABAbt1poa6GL6G5bdmMAzaqcs+STnhyCmAiy+1YynxXhN7cYuaPxcw9y/j6DiQgZUTag7ZLReQPRMK5uaGbqH5z2Pw13ztz5vpDCQgAn5xynTWPnLNuvoheKyLZfpHNZ3vPuP9Q6/gUYSiuZVP7/17Efk8kUllUHRaa3TBuflsvogFkr/chGy83kbd5sm6LVl0OfJhXish3Nzy56aExMzZeMKbaegiZAADwbbFrES+FL5AAUGYJUKrzTczXw7d7rCmkrRZ2/ADIblxbgseq/33UiWtHVvHk54Wfjw2AInLn+FM7gk59n4i0s/5w0of1kM47h81d8zqyFYAPhs1efeSAXeuXicgEopGbziCUjy6YNnQnoSg4kxnFuRTnvHrnLvuBmLGaBTI0dkbbf4rIheUt63KMmszVns2PjZ3eXh31tSePICsgIny2CmC/9aDxDRCaQo9OwQLoVXLvqVN9PZKMqaZwD5iH4Hj+k6JAifshza0PyWptR1/lU/Ev3oTEBsC9lk0asiY0+6CIhFmXDdTl5VaRPw6bv/q/CAUAlw2bve7ESqXpdhN5F9HItWf78uJpA28nEMW3ZFr/RSLyNyKRmrNHz26/jDAA2Rg9feO7TPTrab+PHytX7SuiX6ho5z/HzNj4tbFf2dCfDMmXFSzDAPheawAgUm+Z6jGT23DHT2GiTGMIxezTNPNjASj++s32WxqS/3lgS/BYKHof4uZ9ZgPg89w88eiVKvpZIuHssO4pot8YNn/1/479dntvIgLANSOvWj+6UpE/iMhLiUauE8btO54Y8BUCUZb7raais1irpLq8/vKome2jSDYgXaOmb3ylqv1MRJqJxgtqZh81uUyaKo+eNX3j/DEznzyOoAAAACDSqjbl17veUIPbxrih1rl9z9j8DDCROXYsZb5zYZ5K5u8aeYqjpnSemlpOsQHwRZafN/hyEVlAJJyeMP59967dd464du3JxAKAC6pVC0bOWfcFUbtJRPoQkVxtNQ3+Y1VVOwlFefTc0v4jE11NJFITaBD+eOSVbScRCiAdI766riVQWywih/u5RIvy4tgfafQ0kQkadv79rOkbvz/m8k0nkjkAUEbub2SxiJfCF0gAKLMEKNX5ptGVGDy5x5pC2mphxw+A7Ma1JXgst+Y5alqyYdKC3Yt8zokNgPvcB7U+u+QjonYX6w+nHR+G9sdh81dPJmkB5GnMrNa+tx25fqmIVJ2aV0vad6rYhGWT+j9MZpbLguqJewKxrxbhWhz+MLZ3ENqSs65YO5SMA5J1evXRHpXm5htF5CVEoy5NJvIhVbtn7PSNi0bP3PQmQlKqZg8AGq4HFvFglvUJAqBXSQCbw3y6B5rCPWAeguP5T4oCJe6HNIM+JMknizbyBDm4X/yLNSGxAXA/FkwburNmNk5ENgvD2WXdVfSq4fPXLBh1zWNHEA4AWRs1t/Vttebgz2oyjGg44ftLpgz6IWEop55bNv6PiDxGJFI1qCZNN42b39aLUAAJMdNePXt9R83enPlb+x89FZHRQWh/GDtj46/GTt/0bhLKpbzhsxEA2c1RVBwA9beP6R0zudrFT2EWZX5iDIFcSWJMkXcA8+N+3kfTqBFJbsindpWjD3HvnNgAeAC/nHDMI6HZv4tIjWg47701q9w77Jo1owgFgGy6TNMRc9ZdYqa/FrHBBMSJm/LQjubKROJQXguqJ+4Rla8SidSdvHO3XX/KddZMKIDGjZ7V/hVVeT+RaLQNkHeK2MqxMzbePnb6xn+tVo3POgAAANBgi1kkfAnNbWPccIOTuWdGwgPIZVyr36ePhueRxv5OHTxPTWV+5UPxg7h54tErzewyIuGFQWqyePj8Nd8547qHDyMcANIybPbqI0fOXb9QRaaLSBMRccIeVfn3VRP7bSMU5bb+kH7fEZF/lm7tm/0KbcTAbW3fZYMN0JgxMzZepqafKufVW1qHPU1Efn5Xz43/J2Z8TAcAcH+m01RnRgDpd6BAoccB48a3e6aZ/YwmtRtAlDqRy1MCU6xr5kiNLGMu+XVO2V8PX9p1YeXEo2eJ6ncZG940vh9t6ux+7/CrH+fnOAEkbvTcdW+oVJruEpHRzAUOXabZpUsmD7qTDMWd47VDxL5MJDLxH3f03nAlYQDiGTOzbZKIfa1YE7JD60STG0WV7wkK2/wRAgDacD2wiMXFGjlPAPQqefXFKb+em5z8MblnKFJtsq5OhFYJKG4hiTG+4z6pLepJZLW2Y47Oeg7ya6NeWtgAWIc+Rz01XlT+j+HsjSESBMuGzV/7jRFzN/UhHAAadXrVmkbMWfe50OQWETmGiDjl50umDJxDGPCM9Yf2/76IPOLzNfjTSeqkUVds+BxZB0Qzemb7f4npVdSb1KzeumvbPDLNhbzhsxEA2c1RVBwAda5jnTomtY75qUz5Dupt/DFC3gH0ZAc7RPKbBum5XL33WsxcThAbAOuw4JwT90izvEdEHiIa/lQOFfsvq+z867Br1p5BOADENWLuhpf2PGL9b0TkiyLSTERcYg/t2dX94zzhB89353jtMDE2pWW3tPni6CvaPkUkgPqMnbnxg2rydeHT6/S6A5XPr6oet4tIAAAAoOHeMuXXH3S1ncYKHv7R4o8bbnCZax11Cih+z5Ts5rzM5xjN7Y/psRP/O3XwPDXx+ZUNgHVa8Ymhm1WCMSLyBNHwyjFqtnL4vDXXjf12e2/CAaD+2dl0xJzWc8XCv4jIWwmIc3ZZYO/75WVHPkUo8GJLp/b/sYj83vkTLcz6z7466oq2S8k84OBGz9z4HjP7DuvwZ2tHGke8f+uOo35IbAEAPs50bJgAfOxAAeYnuHbP0tggo17lLIA8qDNjOasni5ojNbKMueTXOWV7PXzxEMHyCYMfFAnOEZEOxoZXja+Kyrl7du3+67B5a88ikwF0ZeS81mOGz13/KxG9TkQO9XqhWdC5QFU+uWzS4LvJVhwgQSxUuVT4fCjDUmNfGz277XwiAezfmBnto9XsJyLSVPBikKvA7NJVVe0k40ox8QCgEDRcDyxicbFGzpOaBtCr5ITNXj7dZOWelUStRLXJujoR+iCguPNfjPEd90ltUU/C0r525BS+ov28cHRsAIxoxYTBvzTROr7cpOV20LGqduPw+WsWj7rmsZcQDgD7M2Lu+v+0mv5VRd5BNFztEfWbSyYP/B6RwMEsm9r/96LyM1/P33wcmmZzx1zRNonsA15ozIz20SKyQES6UW9SLUO/u+mylkVknGt5w2cjALKbo6g4AOpdvrp0TGod81OZ8h3U2/hjhLwD6MkOdojkNw3Sc7l677WYuZwQNgDGsHLCkG+I2FeJhLdG1axy3/D5a79w+nce7UE4AIg8/dS/EXPWLRKzb4tIHyLirNvCYOsFhAF1ukxEdhOG7FY5JjZn9BVtnyIUwNNGT2//gIj8QkRYd6QrNA2nEAYAAAAkLb/NXmzcgr+3jU0T/t1gdza2UqeA4vVMyW7Oy3yOoSw51Ss09nfq4Hkmm2BsAIxpxXlDPyuq3yUS3uohYtUeO5vvHXbNmlGEAyiv06vWNHJO62Sr6T0iMpqIOG29BbX3Lpt0PBu6UJclU/s/IiZXO32ShVw82lfHXLHhcjIQZTd2xsbzVOX7ItJMNFIvpt9adEnLXcQBAOB9J00IAMYZwLhBw/cgjQ0y7IAB4M98ktWTRY0amRKe8hcXGwBj31+1jcH6c8X0ZoLh8WRh8lI1WTxs/uobRs5rPYZIAuUybG7r23oese5uE7lKRHrTJzltd2DBvy6bNGQNmYsomoNuX1GRNiKReW926egr1l9drRrrDZTS2JntnzOxa0q55o7UdyTysd9TlaDjc2RdCfHZKoAcno6V2tNxqGkAJcohHdy93OehtJ/Gxoa+/FmR0jbWtSp9EFCGeVETPFbChc9yPy9SpDxNeHbnxBdyDbhz/Kkd3Xt0/zcRudvZFpoaVGeY9OxQw/uHz19dHTH3oe5EBCi2Udc8dsTIq1rnBCarROTVUWo2H47kw8QuWDy1/x+JBKK6ceoRT4roZX7mvfcd1vl39G77+bjZq3uSiSjPhGU6Zkb7TDP5IvUmo0qj+t83XDyAjd5kGIAy0/gVx7I+QQDuFQ4PxzqbvfzrcI18B/UWQGHmvnQ351nsQ1BvmB/yPCc3rocNgA1a+PGWrVKpjRKRx4iG93qK6Bes0vPeEVevfZ+YMUsAhetOTUfOaf1E2NH8kKlMYh70pgecv2zKoG8SCMS1eGrLd0Xk90QiF2fvtG4rh81efSShQNGdXrWmMTM3/Y+IXEQ0MvNg/8OOnEcYcmqtCQGAGEJqDQD6pAivZ+MWuG3wsXaxvgSoI+lOZOnXjBc9kZd52Il557m/0wbeT53NtySw8SEBK8Yfu65mtREispFoFMLLLLCfDJ/fevvweWveRTiAYhh+1brThs9dd4uJfFNEjiIi3vjNhh4DphIGNNY7q6nJRBHpdPP8Cn8H3tps3W8ZM3P9cSQjimrc7NU9ex+ycYGIfZRoZFrfp3xjvPILZQCAQuELcMC9cca4BBgHKS9uU7gHmsI9U6fiAaCs80mSNVMTvB5qV/HnAs0416NjA2BCfjnx2PtD03eLyJNEoyiLDztVRH45fP6am4fNa309EQb8NGZO69Ej5rRep2q3qsib6ZO88qB22/Nvd/LFPhKw+ML+f1Gxa4hEbp3aK031T6OuWPcOYoGiGTu9fdCuzh6/FZGziUacviP2v/W8fuElRy0n2OQaAApB1sdMbeMQNQ2gRIGb/Lxjpr1RlQ19+bMipW2sa1XqJcC8mOuxLPfzIkXK04Rnc05sAEzQzROH/FlV3iMiu5xqoalBjXYo1+TNAAA/rElEQVSlZ6iEdwyfv+b6YfNXv4yAAH4YNnv1kSOuWnd5p8iDInJufXOe1VkWkMEHApsCrYxZMuGYJ4gGklJrav6ciKzzbCwUaWF3lEqwcvQVbRPJRhTFyBltJ5nKH0XktALMvT6d7JawWaeRgWQYADyv14xdcSzrEwTgXuHwcKyz2cu/DtfId1BvARRm7tMES4A2Pmcq9Yb5wYVzyv962ACYsOXnDV0lob1fXP2JOcQfrSbj1PS+4fPWzh0xd10LIQHcdPp3Hu0xfO66i4NK5R+idqmI9CAq3tltamcvntzvIUKBJC2bdNQWMbmESOSqScTmjb5i/ZzTq9ZEOOCz0TPa3lcR/YOIHE00smUqn1o8re9aIuHAvSAEADKoHdQaAOWudWzcArcN5ejT6PmAotcRzeh9kp14jXm4QUEq99Fi3hCLeTOzyrd0o41YVpx/9E1i+nF6lUIuprqJ2AUW1B4ePn/tF86+8tHDCRTghmrVguFXtX6w55buD6jZDBE5gqh4ujZQ/c/lkwfdQiiQhiUX9v+hmKzwpO8ocqM1qVfvtt+Mnd4+iKyEfzOV6Zjp7V9U0R+LSE8CknmncNspO4/6OoEAABR7ugPg2jhjXAKMg3RpCvdAPb5n7LQBmE+yqpma4PVQu4o/F2jGuR4NGwBTsmLikO+ryhQiUVi9xay6q7npseFXr/3au67a0J+QAPmoVi0YMXfde28/Yt1dqvIDETmGqPi7ZlaR6tLJA/6Xm4VUF5dWGy8i24hE7t4aNoV3jZm5/p2EAr4YU209ZOysTdeLyueET3QS7Dvq/iikM5Ta+GpVQwIMAEh3savJzFxRX093AVCiwE1+3jHT3qjKhr78mXdpqwlfq1IvAebFXI9luZ8XKVKeJjz9c2IDYIqWnzd0roh+hkVmkRtl7SNqlzU3dTw64uq1V58xp5Wf/wIyMu56q4yc0/oftx2x7h4xW2AiryvFwrzQ/Z5+c8mUgV8kEkjb0osGPSaqn6a/cUJ/C3Tl6NnrPzvuequQnXDZmMs3Hy2HNP/OzN5LNHJrFmYvvqz/XwgEK/YX5QUA7FMP3NwAQcECnC4cJeiu+DyzsB1xjvnO3AZyBSjvXKYJlgBNcM6k3jA/lHfOYgNgylZMGPJVEWMzQ/H1NJXzmyryj+Hz1nx/1PzWVxISIB3VqgXDr143btv6dfeZyI9E5FVpta7I1OLtT/afQBiQldOeapkvKvzUtBsqYvqlnavbbhl15YaXEA64aPTM9jES1O4WkdcX+Tqd7oJUHujetLNKNpI3AMpZO6g1APyhKdQ6Nm7RC3PbUI5xQM8HFL0uaHrvk8oc+aIn8jIPOzWPWMwbYqneTM3pb5/GBsAMrJgw9Asi8lUi4fVavc5SYc0i+qGa2b0j5q1dNHz+utMIIpCMU66z5hFz1334tiPXPaBm14vIy4lKYdzW2aHvX1XVTkKBrFSrGtY0+ISI7PKz7yikNwah3DV61oYPkKFwxelVaxo7s72qIjeKyJFEJDe1wOQjC6YN3UkoAAAAkBQ2IwPpjxtEkc5mX39rHR+WAmi8RliCx6rvfahdycbXnXjGvcdZzqtsAMzIiglDPiMis4lEaQQmMlosvG34vNYlw+aveQchAeI547rNhw2/unVqv93rHhax74nI8USlUGvm+2th58iVFw/Yzs1B1pZPaXlQxL5EJNxhIoeJyg9Hz97w/VFfe/IIIoI8jbpyw0t6H7rxDybyBdbOWfQdB/23wbNuvLTv7QQUAFiY+rTYrX+m2/+lsMECAMo+t6U838R8PQp0z9SVfGezDFDGedESPBb1htbJn/ud7jnxJUaGVpw3+CIVvZr1h1uNcvpRt5Fq+uvh89beO2LemvPGfru9N6MB6NrIeWtOGDF33dXNu3etVpPZIjKUelO47m5tRW34imlDNxML5GX7lv4zROQ2+hvnLvhDQbfd942ZteFsshR5GD2r7b1BZ3CXiPBE7/zrwd/29HziCwSCFXtXK28AeHE9aPzLdE2holGwAKcLh4dvwWavInfEmsI94+ekkW+9NdIJKNhcplFKQOQXWObXw/xX2H68JPeXDYCZ5oja8vMGTRaRrxOMUjrRRK/Zs3PPmuHz1s498+rWVxAS4MUdlunIOa3DR8xtXWph8ICInS8ivbOfe/koLAPtFtiZiyYPepxQIE+rqtqpFf2QiPAUSvc+RBhoKjeMntX24zGzWvsSEWTh9OqjPcbMbJuvpgtE5LACrPl974I6A5WPLZt0/G6yk7wBQO2g1gDwh6ZQ6/iSmV6YVEA5xgE9H1D0uqDpvY+m8R4v2pDPPOzUPGIxb0i6c00jSdLYFj42AGbemKutOG/wBDGbRzC8W6snVSr6iMgFgdrfhs9fe/OIq1vPHne9VQg0yuz0+W29hl+9bsKIq9fdbyrLRGQELVSh6+pTFbPhyyYN/BvBgAsWT+73kIpc5F/fUZaaYe83qTwwZtb6T1SrxvoFqRlz+aYT+xza648iOoFouMK+xk//AgAAINWOM+XXO77gJgGQybhB3uNSPa511CkAjdcIS/BY9b0PtSvZ+Koz5xT3Hmc1r/IFWi65rbZiwpBJIjKbYJS8ypmcYWo3bGtrfWT4vNZPjZi7roWwoEyGzV3zuhFzWq/qWetco2bzReTlRKXwa+btFoajFk0ddBc3Ai5ZPLXfdSK2lEg4W7eOMtVv3tGr7ZaRV7adRECQpGrVgtEz26dJJbzDRMivXPuOF3yE8sctO/t+kQACABOEL4vdaDOd95cCAHC4ePOUXf/kds/UlXyn+QHKOC9agsei3tA6+XO/0zunJrIqr3uqtkLkwuHz1+4xtcsyzaUSdPLmWek2kaNF7KsW2BeGz1t7Uyj2g03N61fcOf7UDgYLiuZd89Yc1RwGH1CRj4rIyb73Wb7Vm5ztFgnes2zqwN8TCrjYm9mMto9rk90jIk7+3Cz1RkRU3hSEdsfoK9Zf29y9s3rD+UM2kbxoxNlfW3fsnU0bv6sibycaThW8LWGl6QOrqtpJMFixR5gj+OYSwD71IGrF2ff1By8u8SoaBQtwunB4+BaN1zq42xE/nTjJ3rM0kpG5DfXninX1g42kE+DZXBZh0Hb50n1fkFXfwtquBP14Ce4vTwDM2fKJgz8lYjzVAM/oLiLnBKKLWjoGrhkxf81VZ17Tegphge/GXW+VYXPXjRoxp/Vn3cKgVUXmiMjJic29qbV6SFCnqL5v6ZT+NxMKuGrpJf3Wq8i5RMJ5FRE9v2N380Ojr9gwbVz1vm6EBHF6k7Gz2ibXmpr+KlE2/5XkW7LcuyC1CYsuPvxRMpW8AQBqDQB/aezaZWVfkDA/AYwpQgAwluO+j6bRNym1yZO+u+znxAZAB6yYMPQLZvJZIlGUmpFY6e9nppOD0O4YPm/tfSPmrb10xNw1Q7gZ8MmoK1tfOWLOuunb1q9bHYgtFpV/ExE2apRPp6h8YOnkATcRCrhu8bT+N4jINUTCC0eIyBU7e/e9b8wVG/5NzPgmBHUZM6P99bse23irmV4lIr2JiHNLrx8svLTlR0QCAMqBL1AA+FiLilW7WEpz21CWG2yOvZ6EB6hz3h6LspRKfOPOI439nTbwfprJeUbBTwA7YuXEIV8ZNn/1NlG9kpKB/XiViVwugX51+Py1v1axH+yUbr9YNbHfNkID14y6svWVYZO+V0zeG4q9lo/zS6+mqh9aMnnA9YQCvti+ZceFvfoc8iZL6kmlcdZAlM4oXmYiPxt9RfufddaG/150Yb+bRJUIYh/jLt982K6g9gVRuYC1sLN17eE9PfV8AgYATBBFbqbr/mkp1gUAABfnp5ivR973wIe+i+YHKOOar/5a1liNyP6nhKlpyd7WosUznevhSw+HrJg4dM6w+WueEJVvp3pvSlJrCrr4CMTkDBM9o4d0XDN8futSC+XGWredS345/qVPMYqQl1Fz1r/apPZeU31vKHKiWLkaGi/rTTZzQU1MP7RkyoCfMErgk1XV43aNntP2PqnZncLTwXxykoneMPqK9rt15vr/XnRR/4VsBISIyOlVa+rVa+MndlntiyLSQkSctctUzlk26agthAKO97gACl4P9l3jH/xg8T4ToGAB1KZ8sXnLp5v89DGT3RzGPIR806HLfCZFAS/E2uwWY3wn37fs/yRY2xV1QmrkuH7dX34C2DErJg75vpn+q4nsJBrowqFiNk7VftTU0WPT8Hlrbxl2devk0deuHkxokIVh89adOHLO2uqIq1v/Fmp4j6l+QUROzK0fSK11RUw1UfvY0qkDfkwo4KPFk/s9ZKKfcHFBjQPNBc9G52TT4MYxV7T/ZdQVbeP4aeByO2vmxjN6H7rxTjW5VpLa/FeSjLLs33DSokta7iJry5I3zGgAspujqDgA8mv0NYXapdQ65qcSjSGUud5S14Cy1vp472H7PUTyPw9MbaIPcfmceAKgg1ZOHLxo2Pw1o0TlJuGpM26Nz7oreub/fq4iIm9Rtbd01oLZw69ee7uJ3FBRu3Hp+UP+zs1DEkZd89gRtc7md6jIGSJypoT2UlOl08H+1FTso0smD/ohoYDPlk7rd/2o2RveJSLnEg3/mMhr1OT60Ve03ykz2/978UV9F/NEwPIYM6vtrWL6pVDsdKLhw4C17y+8rN83CQQAlLZvY8sAAO9qUbFqF0+u4bahLDc47VqXXm3kmUZA8XqsJOtcDsdiHk4lvnHnkcb+LvrNjPtTz2mvIdgA6KgVE4f8Zvj8x99lGiwVkb5EBJG6YJU3qsgbQ9Hpw+et/ZuK3SimS3duGnTbqqp2EiLUY1z1vm7bjjzyTaL2bhE5I+yUU/XpzabAwXSI6UeWTB3Ik/9QCIfInik7pNsbROQkh9ZAiOYUUVs46oq2v+msDVfvMfvByosHbCcsxTTmik1vlLD232J6JtFwzAHrmt5juzrOI0AAwARRpma67g/92RkJAHBxfor5euR9D8rZdwFwf81Xfy1rrOZkNW8xP/r0+UGxrocNgA5bPvHoP50xv/VfKhouFZFjGRsU15heZaKvEpVP9+jbunXEvLW/DU1/aU3Br1aeN+BewoNnjLveKtvXrn1N2BS8Q0XO2GbydhE7lLVbgetN8nPBbhU9Z8nUAQvJCBTFgmlDd46Zuf5fw4r+SUSOIiI+L6X0VSJybTfVr46a2f7t5qbO+TdOHfhPIlMMY2dterdZ7SIJwzNZAXjVQG2phPbeG6qDdhAMONzjAihhPdh3jZ/GUwooWAC1Ke92nNWTPzf56WMmuzmMeQj5psP+8/N5J0KKAl6I9SS0GOM7+b5l/yfB2i7vOSitWDZyXH/uLxsAHffLiYPuH3bdP98staYlInIyEUGDepvIaFUbrbWaDJ+3dr2I/ErUfqk1+eWySUPWEKLyOH1+W68enXv+nwSVt6rZm7etX/dGqQR9vP1xxNTmXj4Kq9N2keA9S6b0v5lQoGgWXTzg0VFXbni/mCwXB56ESlU62FxgItZldI5QtYs6a5Wpo69oWyihzl18ccsqguefc6+z5nVbN71fzC40C1+X6cjgH1Qlcnit6EdvuKzv38nmsuYNMxqA7OYoKg6A/Br9+Mek1jE/MYZQ9npLXQOoEbHn4WcPkfzPA1Ob6ENcPSc2AHpgxfhj1439dvvb9+ze9TMTfsqquEu9XAwQkQ+I6QcsEBk+b+2DIvJLNfmdqt669PxBj3Efi2PE3DVDRPUtIsFbxOwtUut8rWjQJMaCHA33Lk+FYqOXT+5/C8FAUS2Z2v+Xo67ccJmYzCQahVERk/eI2ntGz2r7q4nOb640XX/j1COeJDRuGz1742Cp2SfWbdn4XyIymIh42j6oVG+6uO8NRAIAIMKXuwDKUbuSq3X8jCe4bdzgMtQ6AEWpTQeuC8lvzmMe9j+H4s4jjf1dknmd3zzJBkBPLPx4y9ZTrrtjdEttwDdN5CNEhMVUSl4uIi83lYkm9swTAm830dtUwts07PmnZZOO2kIiuO/Mq9cfF1h4cvD0k0NPNpHXi8jAp/OXTgSJLv43BWLDlk8edCfRQNEtmdLvilFXtp8iYu+n7yic16rYdZ21jjmjZ7UtVgt/2GN7/2ULqrqH0LihWrXgrkPazzTR8VILR4soa1m/F1YLbrr4qC/JJUQCAFDexpcvxwHGJVCEccC48e2eqZhYJj+jCQBR6kRW80l979N4XWN+LNPnB+78vDBfmnjkzvGndojZx4Z9fe0aMfkMEaG4ZmCAiIxVsbEiKhbsCofPW3u/itwuoreGYXjb7s2D71tV1U5ClY/Tq9Z06GHrjrcmOdnEThaT14voyWLhEcKSC+n3FY8HZsOXTBl0P4FEOcaLWsfM9Z9orugrReR1BKSQeojIe02D9+7s1b5p1Ky2n4raj5ZM6/dHUWVazcHYmRteG2rwgTut/d9FZCjdTSH6jrtt556PMqbgcI8LoEiFoIF6sO9nimk8pYCCBdCr5IvvT3y6yfF+dpB77J/c7lkOtWn/1/q8E6FVAopbt2KM77hPaot6EqztijoHubNRLy1sAPQu8dVWiHx22DWr/ymi14hIcxEWmfBGICInmsiJIvYxDVR69G3dPWze2vvV5H5TvVdVHggsvHfHxsGPsDEwOWOnt/fuPKTj5aHIK9TklWLyclF5hci640ORbk+PZZbxebeuJfsw5V4LaiOWThqyhvxAmay8eMD24VeuO7tiwa0i0t+rBXVp+mUTsUSic5SKTBDTCWOuaH/YZm74YSDyi4UX9/8rQU7X6Bltxwcq7zWR/zCRV6uxaHG/C6rbBrPK2YuqLTuILHnDjAYg6zmKigOgzkWluPTzutQ65qcy5Tuot9Q1gD4q0WM9ewjPf2qYPPL8/mR3TmwA9NSKCUO/dea1ax5Rk5+JyBFEBDnqriInicpJKiZiIqE8vTFw+Ly1D4jI/Wp2r1lwf6jytz29dv9z1ceO20XY9jVi7roWVTsmNDlaAznaQntZIPpyE3lFh3QMeeYfrj87T4CeK78w3yLd9oxdOuGYJ4gGymj51IH/HHnV+rM01N+ISE8iUnwm8lJR/UIo8oXRV2x4XCxYqipLZGvHrxdVB7GRqeEAm46esek0CcKzVewsEXmVFx//0ndEtUvD8F8XXtbyOKEAADg6uwNA6rUruVrHxi1w21CGWgegKJPPgetCspvzkv+Z8y6uh3n4oMKY9z3uPNLY3yWZ1/nMk2wA9NjK84b8euS8NW+sBbJYRI4nIi7OZ6VucbvL0z+P+DrTp4MWiEiPbd1k+NVr20TkcRFZrWKPiwb/DE1Wa6CPB1JZvXRiv/VFCkS1asFdh7e17G4K+6pJS6A21EyOFpGjReSYvf/zWBHraSKiz/xKjarwwBs4uNBfeGjY+f4FE47ZSTRQZkunDLht9JVtHzazn8rTT8h1ZR2N1AuhHi1inzSTT0qvpl2jZ7X9RlSWaBguXXTxgEcJUH3+9cr2gR218Aw1PcNmtb9bAhn4XNKjgEIV++hNl/X/A6EAAND4vmCNTfcDMC4B78cB4yb/HinaPUhjgwwfYgJovE5kNZ/U9z6N17WQm16izw/ceGohGwA9t/T8IX8f9q3Vb5Q9+jMReQcRYfHhiX57/3OqiYrY3oVGaBJKKMOvXrtLRB4XkzZR2SwqmyXUzarh0/+76eaaymYV3aQdulkr3TYvm3TUlrRP+uwrHz18d6W5V02DXk0ivWpmhweqvUykl6r2FpEWMen79LVZfxFpEZGW22RdXxEJgr11m0198LZPUvvWzicGnreMn/cGRERk8dR+Pxt1RdunRe1yolFaPURkhJiMMA1k9My2+1Xtd6HoHyo1vXXhpS0PEqKnnXXFpqG1Wu3NqvJmUX1XR6ed+PQHzijJguyymy7t91MCASd7XADFLwQN1IN9P1NM5ykFAOhV8m3XqV3+3OSnj8kGvTIso3O6ZznUpv1f6/NOhLUdwFS5T81I/yd949VhCpb7c1Cx7xEbAAtgxSeGbj7lujuG9a0NvEbEPkF+owAFu4eInCAqJzw3w+7990h7j/H0ZjoTaTIx2SXDr14rIrJLRJ55Ktl2Eduz9823qkqniIiF8uSLvmvuriqHPDuZm/QQsZ7PnbYeIiK9RKTX7r3/XWXvAjvQp89BhXHEktuBhXnaF6/66aWTB7LJCXiRJRf2mz5qdtvxIvZxN6tSWfsOE7EcoqPyShN9pYqcG1ZMRs9q2ygifxSTP4Yqv69s67yjDD8ZfPaVTxze2dl5koqcJGpvVJO3hGFtiOpzDReK2AUdYFioXXPTJf1mEkXyhhkNgAtzlJsVhw9oASnFuIx/TDZ7MT/5me8AfRBQzrkv/c158Q5BvSnP/JDWvXbxnF6IDYAFcef4UztE5L+GXbPmPhGZyb1FSfXY+x8RkSOev8h89nvm/aw79/0OmsUp60U8zy5R+cjSyQOuJxTA/q0/tOW8/tvbhqrImUQDL9JXRMaIyphARKRXU8foWW33itr9Kvo3EXsgsKb7u2078h8LqrrHt4sbO729d60iJ1RMjjcLXykavE7UXlfr7Dj22W7K0pyWHfhai76jqzu0qPsxLZOIBADAo9kdAFKvXcnVOjZuZaUmIoHLJ8jaFIWudfyMJlCUyefAdSHZTYPJ/8z5/s/32ethHk7lvsedRxr7uyTzOrt58hlsEiuYFROGXDVs/pq/iMr18vQXjsh9PuOjS7Bwh7faAgvOXjyl/x8JBXBgd47XjnHz2/5tx277lYi8gbkAB+kKm0XkZDE92fbe3JrUZGev9s7Rs9oeEZX7xORBNfmHBLohNFmnga5fd+hRbXeO146sz3fU1548ItCdg6SpcrSIDpYwHCqBHi0ix4jJCSY2OHhmg5/uTVRyFc/l++27tfbvi87RGtEAAND4Asi5N+UJegDjpvA9UrR7kMYGGXo5oMhCSWIzfNd1Iqv5pL73oa7x+UFW55TM9bABsIBWTBzym5HzWk+tBeENInIyEQFcXA4DzvckD6gFoxZP7f8IwQG6tmBiv21jZrWOCoPgdyL6CiKCGOuyE8TkBJG9v15sez+EDU0Gbm230bPa2lSkzURaxWSDBPKkiuyU0PaEottFtVNEtgYiYaj21P7eJAilT6haCcS6i8khonK4qBwiJoeIyRGicpSY9BV55j97mkQqe+cHe3qTH593oD5/k6Bj1MqLBm0nFAAA1xa7aR+TDRMAci1RKM08xHxTfLndsxxq0/6v9XknQvICSLVYuXosbitNeDRsACyopecPemzc7NVv2do9+KapfYAaxOKmPAWbvEH+GeF73pjIiu626/03Tj3uSe45UL9FFw3aOGZO67BarekWFRvKPJV332F7d9IVpovqbyL9ReQ18vyH7anuzQF7LicO0G+ZPvPvu/c+sE+e15uRSEjOo2GTnrl42qCNhAK5z2h85gpgP/XAzQ0TFCzA6cJRgu6KzxfKfg+Yh0C9BZDk3BdhXHf50n1fEHnOfPYQ0eoN/RHzQ7LnlP71BCRNcS2YNnTn8omDP6giF4pIJxEBUKp+AHFjN7vXoAGj2PwHxLNo8qDHVTuHicgmogHQdxSJ1feidYGE7148re9aEgN15w0ANFg7qDUAfFw8JFfr0liQNHOrfJxv+EwcjBsAHkw+WfU0ltG1G/NwqvfdYr+fNnCe6mC+1YcNgCWwfMKQ2YHYGSKyjmjkNZ/R4gJw3i5V+ejSyQMvXHCO1ggHEN+SqYPut8BGici2HNfRQElyjT7boTuxuRZUzrzxkv4PEw0AAI0vAN9XDmxGBlihF79HUmodACdrQOPvowm+D2vUcs2N2Z5T0mOKDYAlsWzC0N9WrOP1IrKKaACetT30FUjfOjE9fcnkgd8jFEAylk4ZcJsFOkpEthMNACWwtWI6YsnFR95LKAAA7tHMj8mX6QByLVEozTzExtbiy+2eafb5bhRJgHmRY3HPMwufFnJssAGwRJZOPG59n76DzzCRr+3TR/GzVfB5rUvegLxpxG1BrfO0pVMG3MZdAxLuvab0+79QbayI7KTe5NV3EB3yBhn099sstJE3Xtr3doIBJysTn7kC2E89cHMDBAULcLpwlKC7Yp1Y9nvAPATyD0CSc58mWAK08TlT49Ub+iPmh2TPKd3rYQNgySw4R2srJwz5tIiMEZHNRAQA/UD81tX/Jly/cegTm/9l8bSha0kYIB3Lpg74tYVylojsIhoAfYf/vcM+dgQiYxZd1u8WkgDF754BuFw7qDUAfFw8JFfr2DhDb0sqgHEDwJ/JJ6uexjK6dmMeTvV+xP87beD91MF86xobAEtqxYQhSyph8HoR4YlPmc1ntLgAnLFdRD+wbPKA8QuqJ+4hHEC6ll7U/+ZQ9V9FZHfG62igJLlGn51TnmxTseE3XtyyimAAAACgiCsHNiMDrNBdW4incUxqHYD6ZLu1qPFaowm+D1/OuDu/+f+EQPN2lMIpS88f9NjGyvq37f1J4JCIAA4vb+krkJwHazX5f0snD/hfQgFkZ9nUfstUbJyIsOkWQBFsF7VRN13S73eEAgCQPPXkmAfHl+kAABfnNuYn/+R2z9SVfOcLMsDnmpT+uC7DsUrYC6mD5+QBNgCW3J3jT+1YOWHIp03l3aZSip+AZLEC8galzRuVBU27mk5bMW3gfdwdIHuLpw1YFKqeLSI7macAeGy7iYxaeFG//yMU8KaD5jNXAPupB41/mV6MjYoAHBiXKb4Fm72K3xGbb/kOHCT/qEFA0eYyjVICIr/AMr8eFLYfL0jPxAZAiIjIyvOG/Lp7JThJTBYSDZS0HoJcK3Krt0tEpyydNPCchZe2bCUxgPwsm9pvmYgOE5EtRCOruYDleWFmM3pcFzwpEg5bdEnLb7nhoN4AcK12UGsA+Lh4SK7W8aE78xOpANaEAPLvbVyrC7bf00z+SX/UuXTve/y/K9fmQTYA4lmLxg/auOL8IWeJyEdEZAcRSWN8UvoBZO6BQIM3Lp08YA6hANywZFq/30kYvFNENjm0LgBK+tEBImirib1j4SX9f08oAAAAwEqDlQnAOMiDOnHPuMcANciP98jhWHyHk8O9Sj7oFvO4FvOckppX2QCIfayYOOT7QaVymojcSTSAkvVUKJofdO7RUxdP6v8XQgG4ZclFLXcGEr5dRNYRDdB3wAOP1yrytqWX9PszoQAA+NuMuN/g8GU6wDgDc5uL44BxU/R7pimkLR8sAdSkxuuEJXis+t+H+lWu1qlY95sNgNivZZ8c+LeNTevfJCJfEZFOJiUgSt6QYcg9G7aI6AeWTh744ZUXD9jOXQDctGjawPuCsPJOE11NfwPAVWrydwkrb1t6YcvfiQb8TmZCAGDfetD4l+maQo9OwQLoVVB2UTc8GMlY4HtMbAD4PpYjzCsa/QW5/JRw3diOlVyPUa6f8o2LjMMB3Tn+1I4VE4d8NlB5m4jwZQ+KXg9BrhVjGWr6ew2Dk5dOHvC/3HzAfYsu6vuANVXeLCL3EI005wI+OvRsNqPvcOdy/iyd4b8suuzIx7m5yK7eUJkAxK8IVBAA/jT6mkKtU2oj81Mh16Yo07gheYEy9Uu5bN7TNOqNZno9ZeujGs+X8mweZAMgurRswpBb++y2k8R0uoiERKTR8UnpB5CKThH570MH9X/7kqn9HyEcgEe91qSj1lQ6greYyEpv1yqA1x8d4AB+1T2snL7wM/03EAoAAACw0mBlAsAV6Xw4SK0DUMw6l8Ox+A4nh3ulic9XFvOcLOb1JDGvsgEQdVkwbejOFecPvsxMh4vIP4kIUKh1HXxPC5X7TMM3LJ08sLrgHK0REcA/Cy9t2WpNW8aa6k+JBug7kP+tt+8PPKzviAWXHfkU0QAAFKsZcb/B4ct0gHEG5jYXxwHjpuj3TFNIWz5YAoo5jSX5tLuu64QleKz634f6Va7WqTj3mw2AiGTl+YNv7tYUnLj3aYBebzJhsYJ084YMQybZYCb6jaC7vWHZpMF3E2nAb8smHb976ZSWf1eT/6a/AZBf46JzF17c8tFvjNcOgoHC4fNbAPupB41/ma4p9OgULIBeBaVfmkVMHCMZC3yPiQ0A38dyhHlFo78gl58SRg49Rnl+yjcuNgAiskXjB+1Ycf7gy1SC00XkQSIC1pAob67l2uo9HITyzmWTB4xfNH7QDm4yUJR6pbb4wv5VM50snv9jC/diy/LcydmMvsMlNVH55KJL+04WZcAg73pDCgKIXxGoIAD8afQ1hVqn1EbmJ8DzccOXh0CZ+qVcNu9pGvVGM72esvVRjedLOTYPsgEQsS2fOOiW3Yd0nKSil4tIJxFhqQcgE6GIzan0sNcunjpwFeEAimnphf3mSiCjRORJogHQZ2dgq4icvejilusIBQCA2RoAqHUoAPZQcYMzqF3UOgB+1LkcjsU87PX89sK/y25ja9jgdbIBEA1Z9bHjdi2fOPhTpsEbReQuahFAriFVD1oQ/svSyYOm8NQ/oPiWTOm/IggrbxKRh5gLQN+BFD0aauXNiy5pWUwoAAA0I27gy3TAvXHGuAQYB8WvXek+6RRAkZZoST7trus6YQkei3mu8MlZ6nNiAyASsXLCoDv7tAx+g5pNFrEtLFbAAosMQ6LZUBOTmYfWOk9edsHg3xNNoDwWXdT3gU7Z80YR+RXRAJBCg/J/EnS8YcnFR95LMFAafP8E4JlC0EA9sIjFxRo5TwD0KuAm13nMZDeHkYzZLMupTd7HBkCdYzlCIdFG3ifdwkdtymFS0SwmJM3pb5PFBkAkZsE5Wlt+/tC5YWivFJEFRASe1UPA1WXonyqhvWHplIGXLJg2dCfxBspnxbShm7dv6TdcVK51oip53XcQHfKGHvd5vtVjZ993L7po0EZuGNysN1QmANn1NlQcAPk1+vGPSa0r/nzDPQP1FgBSqhGaRr1J8smI9FHlmFuSPacm0gpJu/mCo1tF5Jxh81cPF9V5YvJSonKgkkYDC2Q6f/rVcT1lJp/tNWjAtQvO0Ro3ECi3VVXtFJEJo2e3/cnE5otIT6IC0GfH1KliFy28pN8cQgEA8GW2ZnYHQK2Lwr8PQpESUoEb7GDtoq8DqE3114Uk65yKiWVbf3gcWyo5FHceaezvksxrUg4eWjFx6PI+u+w1IvIlEdlVmloEkGto3PVNQdOrlk0ZOI/NfwCeb/G0ft8x1TeLyCPMBaDvQAxtanImm/8AADQj7mO/BuDeOGNcAoyD4tcut550CsDlJVqST7vruk5Ygsdq/H2oa44nZ2nPiQ2ASNWCaUN3rpg45PMWNr3KRG9gsYLyLbDIMETKhodFbMTSyQPft/CCllYiBmB/lk7t9+dm7XaKiS4iGgAidCJ/7LTglIWXtvyGWKD0+JwWwDOFoIF6YBGLizVyngDoVcBNrvOYyW4OIxkzWa1Tm/yPDYA6x3KEQqKNvE+6hY/alMOkog6ek4M9ExsAkYmVFwx4dOXEwf8qIu80kXuICFhDgiX6C+wQkf/e0WfXq5dOHrSceALoyo1Tj3hy6dSWs9Rsioh0sgCN0ncQndRmM7jc436jx46W05ddetQabgz8qjdUJgDZ9TZUHAD5Nfrxj0mtK/58wz0D9RYAUqoRmka9SfLJiPRRyd/7Yj8hkA2AyNSKiUN+s6d98OtFbIqIPElEKP1AydeLZiI/Ma29fOnkgdVVHztuFzcJQP01TW3xRQPmiIRnishaAgLQZ+/HDlX90KJLWsYvqOoewgEA8Hm2ZnYHQK2Lgo0zIBW4wfR1APypTZZJnVPqT0FyKO59bOzvNLP3i4sNgMjcqqp2rpg4dE5Qq5wgKtfKfp5aQ68NkGsl8FcxO33Z5IH/vmzSEJ7GAyC2JRcO/E237h2vE5GbiAboO/A89wdh7Y0LL+77Q0IBAKAZAYD9Y9MKkP64gW/3TDP7GU0AxVinWYLHcmH+sYTOF/nmZRnPiQ2AyM2ySQPbV0wYMsHC4DUilusX1ixWQIYhQxtE7LxDBw54/dIpg/6PcABIwg3nD9m05ML+Z4vKRBHZSUSA0ref396ttdNuumzAPQQDOAA+pwXwTCHQFI55wCk6mpCbBNCrgJsc45hsbPVxGe/JPVP3YwOgQPUgxntY4ien1CZXbrAWJbHTwwZA5G7lBYMeWDFx6NmByptU5fdEhPpe1AUZSr9E3yEm0027nbB08qCvLzhHa8QMQNKWTOt/jQS1U0TkL8xTB+s7iA79TWFtMZMPLrq05RMrLx6wnXCAygQA6VYcKhRQ2kWlU8ekdjHf+JfvAPkHlHfuS39zXrxDUG/KMz9oYc+JDYBwxrIJQ25dft7gt5no+0XsUSICoCDrxVBEvlOpdZ6wbMrAy5ZNOmoLNwFAmpZMHXT/IbrnTSo2V3hoCErNga+1su07bg9r4cmLL235EfcejFAARa0FbHIBQK1zd0HCPXYYqYBC1zoARZl8LKOJzBy89jLnQdz7bhnff0s8r5PHBkA4Nv7VVk4c/NM+LVteIaIXiMi64s9ntLigfyjwgne5WXDysskD/3PxtKFriQiArCyYNnTn4gsHTFYN3ikijxAR0HcUWmgiMwYe1vetSz7Vn/EOAKAZAYCI2LQC5iGUITct4jGNMQQgwtjOqj+yhM43mfehrtG3uXVObACEkxacc+KeFRMHz+vWFLxMxKaIyAb3JwuADMOzbpVA37V88sARy6f0/yvhAJCXRdNafqu9aq9RkenC0wCBInrMVN61+JKWS78xXjsIBxARn9MCeKYQaArHPAA+IQJAr4J0b3K8jRhshM2fN/dA3Y8NgIwGv7r8Hun/1DC1KYdJRR08J4ewARBOWzR+0I4VE4fO2S3dXiZql4nIk0SF+u7zggyFX6LfaybnLJs88E3LLhjwa+IBwJV+atGF/S9T07eLyD+IyDN9B7M4/Y33vfMP1OQ1iy9uWUUwQGUCgPwqDhUK8KN5LvoxqV3MN/6NIYD8A8o796W7Oc9iH4J6U575QQt5TmwAhBdWTey3bcWEodM7TV4mYjNEZBtRAeDKnK4iD6jo+5ZNGvja5VMGLiDAAFy06KJ+t9Sam04Rk68LTwNEaTjwtVbynyWsF5Exiy5u+fDCS1u2co/BCAVQtlrAJhcA1Lp8FyTwdL4hFVDoWgegKJOPZTSRmYPXXuY8iHvfLeP7b4nndbLYAAiv/Or8IZtWTBx6abem4DhR+aqIbSnGfEaLC/oHT90vKh88dODAVy+dPPB6UR4nBcBtyyYdtWXxRf3PM5G3ici9RAT0HZ6FX/VnEnS8ZtElLYuJBgCAZgQAksOmFTAPoQy5aRGPaYwhABHGdlb9kSV0vsm8D3WNvs2dc2IDILy0aPygjSsmDPlMUDtk6N6fBn7CjckCIMNK4l4x/UivgQNfs2zSoB8tOEdrhASAT5Zc2P8P27b2O1nMpghPVgZ8aCPXmdm4hRf3HbfookEbCQiQID6nBZDDz3jyCREAehVkMQ/xlF0fl/+e3ANqE8CclVo9UK+OxVyYw31SB8/JEU0kE3y2bNJRW0Rk+hnXPfz1po7uF5jKFBE5ish4Xt89mymNtU6Z8vMuqcmXlk0ZeBNP+wPgu1VV7RSROSNmbFhcqcg1InJm+eq6iRizOJwWqti1HT0rn9679gFKjJUXgNTX/M9+JhW14lChAM8GudPHpLuCq/fM73xHEWo4gGLNZRHmlS5fuu8L4s+ZzHf0+P6eExsAUQi/HP/Sp0Tky6fPb7uqu+z+uIhOFZFjiAyAROZelVWiOmPZ+QOWi6rJVMIHoDiWXdL/YREZNmr2+verBTNEbChRAV8EObHmvy8Iw3Nvuqz/HwggqDcA0FjtoNYA8HHxkFyt44ts5idSAawJAeQ1XqNPPln1NC94H+bI3JuQuPNB/L/TWD92//T7JZnXL45TfPwEMApl1cR+21ZMHDpnd/vgl5nYB0Xkz7nXsUhDHoBDQhH5mZm+YdmkQe9YdsHAZTz1D0CRLZk24Cfaq/MVZvJFEdlJRFAc3k3fO1Xl8z129H09m/8AAMzWAFCc2kWt8xw7lOB8QqVzTGodABcnSsvofM3Baye3fG/g0jsnngCIQtr7k3Y/EpEfDZ/f+lbT8FIxGUX1Rf5S+rdM/KuEJO0xkZ+GgXx15QWDHiAcAMpk0fhBO0TkCyOmb/pmpbnzq2LyQfon0HdkanGl1nnBjZ8a+E9CAQBAls1I9g0OT7sB3MO4RJnmoaTGAePGv3uQ2D2LnbZ8sAQUeWpMpsYkWSdcPRYaim0mt8K/+80GQBTe8omDbhGRW4bNa329SjjJVN4vIt1ZrCDPBRmctN5Ev97Ngq8vnNJ/A+EAUGbLLj1qjYh8ePTMdf8jQXCViLyuuOtKEzFmceTeTN4dqk1eckm/3xEMIIeVF5/fAthPPWj8y3SKC+D0IPepkUjxLfhcu8gd8dOJk+w9Zm4jlADQeAF7bm6KcKwuX7rvC+LPgdGukX6KSdWVc+IngFEaK84fdNfy84d81IKmo0XtMhFZTVQcrtFAVrmmcpeIjO9Vq71k+eSB/83mPwB4zuKLB646dWu/15voOSryMBEpFz6HzqLHtU0qNqXHcX1PY/MfqDcAkG7toNYA8HHxkFyt40N35idSAawJAeQ1XjXB99H0roc5MvcmxDLNSxGLedMt8bxOBk8AROmsPG9Am4hMH3f9fVc+1d5nnIpOFpHTUq1jFmXIM7MAGeg0sV+oytxlFwz+PeEAgAOrVjUUkQXjqvfdtLPXUeeJ6mdEpIXI/P/27j24ruq64/hvnXMl+SUZbEm2hR2iALEnDmagwaQuST1MApbBTsPETmca0vaPhDYOCjiAIdOZinQ6GXscd+LEJDhQCg0ZWoWJQTHC1EyUAIGKAdxgHh3LdbH8tiWwJctGuues/oEajJ+674e+nxn9I13pnrv23muvfc7WOSgtRVdnD8j8h2OixPda75p0mPYBAICzYgBGR+4i15U47tqGou9QufmbnuIWCXIdQF4rp+MdWU6jSCjevjV67hDIBkCMWq1LZw9KekTSI0337vp07LpZ0lJJ44gOcovHVhVwLt1tsd/v5vc/1Tx9FwEBgBRqp5bZg5J+sHjlwX+OE/FySd+WVE1kWG8jJYNuvj52/eOTd9TvIxwAABRTMZL/AoeL40DxYVxiNM1D2RoHjJvSa4OstVna3ZYTS0A5T43ZyTHnzhMjf59s5hzyV9HUV3lpitJqbzYAApLavzH9RUkvfu6+7beG0ZivuPxr5rqMyCCXCzLkTezS04H7TwZ6GzZ2tFiSkABA+p5YUdcn6Z6mtXvvDYaCO036G0kTSntd6ZIziyOnIpn9a5gcumfD3dP+l3AARbjy4vwtgNPkg8wvppNcgGIb1yW7cSuHb8F57XKuiN/vONltY+Y2QgkAmSewD+amFP7WOV966gvSnwNT+4zUU0yqxXBMbAAETrD55osOS1onad11P+6ea7G+LtmXVeoXtcnRGJ32uenBWMFPn75l6g7CAQDZ1d487aCkOxat3rMytsStJr9FUg2RKS+cuMhYLLPH4kh/v3FF7ZuEAyDfAChs7iDXACgdH5wgz16u46Q78xPAmhBA4WubYssLH3ofyqWC94P8zwfl0+hsAATOYNPfzuiU1Nm0tme5h8eXSPFfSnZ1WvkmpZxBiQtkYFCuNpk/dKy3oZ27/QFA7rXd3nBI0t9d/713v2+V7zVLapY0icig+OS1zh6S2SNxpFVs/AMAoEhnawAoUO4i15W4crhGzOaGMm+M3DQwuQ5A8YzvYn2kLxNsIds93X6Z2e9lsrE1+/2FDYDAObQ3Tz4i6QFJD1z7w32NYRjd5O43SbqY6ICFe9F4We4PDYb+82e+Ob2HjgAA+bfx7vPekXTP4pUH10QJ/4bJmyU1EBnqjlFmQLL7FQXfb7tr0k7CAQBAqRUjFDhAOWLTCpiHGDfkukxff5a+mXa3pe4CynNqzObj57N5t7jMcg7zXKmXY5m0f+nMV2wABFIw/BjR78r9H5p+tGeem3/VTUtNOo/oILXJnzIhC3aa/N/Mw4c3fmvqVsIBAMXhiRV1fZJWLml5/Z8GqmuXmnSbpCuIDMrcO+a2big5tLb9O9MOEg6gRHH9CUAW8sGpZ3xyc5cCAJmM6xKd9KlVkNb8kc2NGHTGfI5ragQA5V6YpHUntHO+9NQXZD+fnv4gyNuF7lfFWJ/k95jYAAikNU7N26XnJT3ftHZbs8Jx17r5Erl/QbIaAsQaEjnT69JGlz+86ZaGZ2RGDwGAItXaMntQ0s8k/WzR6gNXy7zZpRslhcVZd/jwfyfiZJy4OKv/NvMfV43VA63L6voJB5CvfENmApC/2oaMA2CEi0rl8m5w2ctdXLBmvgEAoHTqpXzNjx96nz8cJpsVclMPZfPOjsVcy+cfGwCBDLU3X/KepDZJbUvWdI89UuELLbAvS7pe0rj0cgZLPeAE75p8Q2z26PGeac90tFhSktRMYACgVLTdXv+cpOduWHXgEiW0TO5flXQ+kUGxnHJIUdJkG2L5ul/dUddBTAEAKOxszVk0AOQu5L2Ny+EaMXsayrwxctPAuc515EagfGuf4s6dxfq3kGp80+2Xmf1eJhtbs9tf2AAIZFHr8hnHJD0m6bH56w5MGONDN8j8RkkLJFUTIbBwH7F9Jj0em35Z3fPOr4fvIgUAKHG/urN+m6Rbl6zpvntAVUvN/euS5hEZ6o6S4Npvsp8Oud3XvmLyLhofAIByLUa4YAOUZznPJhSwKGbckOsyez11F4CRDutsPn4+m3eLyyznMM+VejlWbo8XPhUbAIEc6VhW3y/pUUmPNq3dVhUnxn3GXIsk/5KkBiLEAosy4RRvm/R4JG97r7eh4w93+gMAlJ3hf5p4SNJDi1YfmiWL/sqlr0maRHRQZCKXfh24r586sW7D+pttiJAAZY7rTwCykA9OPeOTm7sUAMhkXJfopE+twgSU1vyRzY0YdMZ8NnnJ1Ah0B4AElqa07oSWxttmP5+e/iBY2xW6XxXjhJS/Y2IDIJAHw48J3ixpc0uL3/a7uj2fDjz+M8kWS5pJhFg0jFKRpBfctFFR9ORTt874PSEBgNGn7fbatyTdtei+Pd/1vvCLZvqKS5+XFOa/7vDh/07EyUbbiQuTtsj8X4YGo5+3f2faQXoAynh0PyazzmLLN8V8EIHFXfQbIJPhZa+5+foRzMWpzt3ZrwZOyAfp1EKeYoY7/d/3Q/QaIDNDQ4PHrbJy/emHoqc4jguRu05zgnyEB3bm3GVn/bwVFdpHzzkpNu47ZLY+nbkgyGQeykGR6ym+jaU4SkySe8BVHZ1tTRFsj6X1J3WyHCxnPCe9zQozCHfTc4DCMvP/iD04eGo+8LNmo+zkDEsx45mkOOX89aF520byW36u779CDaWNLu9Kpx46cx01kpbMVoU/0nk39WOy0/zMZC/kYqQAyJPr7337Y5EnFph7k0vXSBrHEM15Hs59EVToNFy8MTtkrqdi+UaP4qc3LZ/RSwcHAJxs4aoDUy2M/9xkN0m6Ir91B/VXylWLl8enMWmXu1oj+cNP3lm/hRYHAAAAAAAAAAClgKtbQBGZ/+COMWMHqj7rcbxApibJZhEVsQGwtOP2nqQXXdpsCjZPmDrlpdalFtGpAQAj9YXVez8RB+FfuPuXJH0893UHS6S0qhYv2U/TLdcvgjD+xePL61+QGXcpAAAAAAAAAAAAJYWrW0ARW7juwNQ4HvyMTJ+T7FpJHx2VgSjRy7Cj9i6Apv+RtNllm80rN7U3Tz7CaAYAZMOiNXtnxx7eIPkik+blZBJlA2B6FUtp1WvdUvBLWdza9u2659n0BwAAAAAAAAAAShlXt4AS8vkfdF8SJuwauV0jab6k+lHz4bkLYLHGLCnpVXM954F+O2jxs898c3oPoxUAkGuL1xy4OI79Rpm+KGmupCB7cyjLpJSrluKu1SJJL5q0Melq5/G+AAAAAAAAAACgnHBlCyhhC+7dPdMjzZPp6uG74JTvI4PZAFgsMRuQ9JJcv7XQnx2wihc6ltX3MxoBAIW0aPWeWgXBtS5bINd1yvSfJNgAmHrVUny12iHJnpLpycGgctOm5RN7aT0AAAAAAAAAAFCOuLIFlJGmtXvr4iCeZ9KfSPpjSZdLGl8WH44NgIWIWyTpLbl1uvl/mrzzWG/Dax0tlmS0AQCKVUuLB501h64IFC2Q23UmXeVSRWrzJ8uktKqWwtZrRyQ96/LfmIUdf9Q/+eWWFotpMQAAAAAAAAAAUO64sgWUsSX/7uHR/bs+ESn4lMyuNPmVkuZIqiy5D+Ol2QYldBfAWNI2ybbI4ldcQWflQOLlJ1bU9TGSAAClbNF9e8bFA+G8INZnXZqv9x8XXHX2+ZNlUloVS37rtcMyPavYf2MedFQ11r7autQiWggAAAAAAAAAAIw2XNkCRpklLa9X9tVNuszcL3f5HJculTTHpPOK/uC5C2C2YnZM0uuSXnWzLWEcbzmaqPg9j/IFAIyKWmhN99hjUeIqBcGfynSVYs2VafKpcyhLpZSrltzVakmTtrp7p8w6gzDurJw+5Q02/AEAAAAAAAAAALABEMCwhT/ac2FS8aWmYI7JL5M0c/hrTNEcJBsAU33zPsV6y+Svu+lNud6UEm9c1Vu/g0fiAQDwgaZV+y9KBD43DuxKueaadLncxhGZFKuW7NRqSUnbXPovM+uU/CX1J19pa2kYIPIAAAAAAAAAAACnYgMggDNqafHgd5P3X2hBPDNwzXJplqSPyzVL5tPyfkBsADydY5K2S+qSvMvduhTEXRVRsK3tWw076cUAAKRufosnqmv2zXQPP2muOS7/pGSXSvooa6hsPgbYd0q2VdJrJt+adNs6fqDujdYWG6QXAgAAAAAAAAAAjAwbAAGkZcma7rH9iURjFEQfC90aXdbogTeaq1FSo6SarL9pWW8APOOrj0p62107zdTtrp0m2ynpbSna3n7LBbtl5vRIAAByb/HKg9WeiGYrDma76WLpQ18TWESepl5z7ZepS1KXm7oCty432x6G4bYNt53/Lr0KAAAAAAAAAAAgM2wABJAT89cdmDBeyRlxHE9ToOnuwQWST5P0EbmmyDRFUp1SvVheLpsATX1y7TVpf+zaGwTaJ9m+WLbHXAc8TO7249q1afmMXnoTAADFb+GqA1NNuiQIdZHLLpTiC8ytQdJHXH6BZJPKcCHZJ9cuN9sduO9xqdtde4PQupOR70y4bX9iRV0fvQMAAAAAAAAAACB32AAIoKDmP7hjzNi+ilrJ6uLQplisWjPVuvlEudXIfKJkNZKfL7caafj78jGSTZC8ogCHPaj378zXL6lPsn7Jj5j8sCvol3u/zI+4q0dmvaGpNzbrsch6LQx79yd29rx886eGaH0AAEaPJWu6xx71MTPkPtXktVJQK3mtuU82s8mSal2aLOk8ycZKXmPSBJdyWuuYNORSv8z75Hb8/dpGfXL1uPxQYNbjZj3u3mNuvR7EPWEy6Kma4Ltbl9X307IAAAAAAAAAAACFxQZAACVv8cqD1VH1QMLjihoLwjBOJidGbsH//zwRRokoDqrPmgwDPxpHweCJ3wst+W6QqPI4GfcFicHk0bHxsY6/bjxOxAEAQL7Mb/HE+KrD1YnKaIJbVBXFNvHEn7t8vLlXnvx7gcI4Nj984vcSCo4lw+TxeDAxGMTh0XEXTTzSutQiogwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArt/wBQqoPCJ89/4AAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyNC0wMi0yMlQwNzo0Nzo1NSswMDowMEK7CccAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjQtMDItMjJUMDc6NDc6NTUrMDA6MDAz5rF7AAAAAElFTkSuQmCC\n }\n }\n}\n\ntest TestBase64URLEscape{\n functions [TestImageInput]\n args{\n img{\n url \"\"\n }\n }\n}\n", "test-files/functions/input/named-args/syntax.baml": "function TestFnNamedArgsSyntax {\n input (myVar: string, var_with_underscores: string)\n output string\n}\n// TODO: we don't support numbers in named args yet!\n// TODO: we also allow dashes but python fails.", "test-files/functions/output/boolean.baml": "function FnOutputBool(input: string) -> bool {\n client GPT35\n prompt #\"\n Return a true: {{ ctx.output_format}}\n \"#\n}\n\ntest FnOutputBool {\n functions [FnOutputBool]\n args {\n input \"example input\"\n }\n}\n", "test-files/functions/output/class-dynamic.baml": "class Person {\n name string?\n hair_color Color?\n\n @@dynamic\n}\n\nenum Color {\n RED\n BLUE\n GREEN\n YELLOW\n BLACK\n WHITE\n\n @@dynamic\n}\n\nfunction ExtractPeople(text: string) -> Person[] {\n client GPT4\n prompt #\"\n {{ _.role('system') }}\n\t\t You are an expert extraction algorithm. Only extract relevant information from the text. If you do not know the value of an attribute asked to extract, return null for the attribute's value.\n\t\t \n\t\t {# This is a special macro that prints out the output schema of the function #}\n\t\t {{ ctx.output_format }} \n\t\t \n\t\t {{ _.role('user') }}\n\t\t {{text}}\n \"#\n}\n\nenum Hobby {\n SPORTS\n MUSIC\n READING\n\n @@dynamic\n}\n", @@ -53,10 +57,10 @@ "test-files/functions/output/optional.baml": "class OptionalTest_Prop1 {\n omega_a string\n omega_b int\n}\n\nenum OptionalTest_CategoryType {\n Aleph\n Beta\n Gamma\n}\n \nclass OptionalTest_ReturnType {\n omega_1 OptionalTest_Prop1?\n omega_2 string?\n omega_3 (OptionalTest_CategoryType?)[]\n} \n \nfunction OptionalTest_Function(input: string) -> (OptionalTest_ReturnType?)[]\n{\n client GPT35\n prompt #\"\n Return a JSON blob with this schema: \n {{ctx.output_format}}\n\n JSON:\n \"#\n}\n\ntest OptionalTest_Function {\n functions [OptionalTest_Function]\n args {\n input \"example input\"\n }\n}\n", "test-files/functions/output/string-list.baml": "function FnOutputStringList(input: string) -> string[] {\n client GPT35\n prompt #\"\n Return a list of strings in json format like [\"string1\", \"string2\", \"string3\"].\n\n JSON:\n \"#\n}\n\ntest FnOutputStringList {\n functions [FnOutputStringList]\n args {\n input \"example input\"\n }\n}\n", "test-files/functions/output/unions.baml": "class UnionTest_ReturnType {\n prop1 string | bool\n prop2 (float | bool)[]\n prop3 (bool[] | int[])\n}\n\nfunction UnionTest_Function(input: string | bool) -> UnionTest_ReturnType {\n client GPT35\n prompt #\"\n Return a JSON blob with this schema: \n {{ctx.output_format}}\n\n JSON:\n \"#\n}\n\ntest UnionTest_Function {\n functions [UnionTest_Function]\n args {\n input \"example input\"\n }\n}\n", - "test-files/functions/prompts/no-chat-messages.baml": "\n\nfunction PromptTestClaude(input: string) -> string {\n client Claude\n prompt #\"\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestOpenAI(input: string) -> string {\n client GPT35\n prompt #\"\n Tell me a haiku about {{ input }}\n \"#\n}", - "test-files/functions/prompts/with-chat-messages.baml": "\nfunction PromptTestOpenAIChat(input: string) -> string {\n client GPT35\n prompt #\"\n {{ _.role(\"system\") }}\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestOpenAIChatNoSystem(input: string) -> string {\n client GPT35\n prompt #\"\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestClaudeChat(input: string) -> string {\n client Claude\n prompt #\"\n {{ _.role(\"system\") }}\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestClaudeChatNoSystem(input: string) -> string {\n client Claude\n prompt #\"\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\ntest PromptTestOpenAIChat {\n functions [PromptTestClaude, PromptTestOpenAI, PromptTestOpenAIChat, PromptTestOpenAIChatNoSystem, PromptTestClaudeChat, PromptTestClaudeChatNoSystem]\n args {\n input \"cats\"\n }\n}\n\ntest TestClaude {\n functions [PromptTestClaudeChatNoSystem]\n args {\n input \"lion\"\n }\n}", + "test-files/functions/prompts/no-chat-messages.baml": "\n\nfunction PromptTestClaude(input: string) -> string {\n client Claude\n prompt #\"\n Tell me a haiku about {{ input }}\n \"#\n}\n\n\nfunction PromptTestStreaming(input: string) -> string {\n client GPT35\n prompt #\"\n Tell me a short story about {{ input }}\n \"#\n}\n\ntest TestName {\n functions [PromptTestStreaming]\n args {\n input #\"\n hello world\n \"#\n }\n}\n", + "test-files/functions/prompts/with-chat-messages.baml": "\nfunction PromptTestOpenAIChat(input: string) -> string {\n client GPT35\n prompt #\"\n {{ _.role(\"system\") }}\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestOpenAIChatNoSystem(input: string) -> string {\n client GPT35\n prompt #\"\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestClaudeChat(input: string) -> string {\n client Claude\n prompt #\"\n {{ _.role(\"system\") }}\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestClaudeChatNoSystem(input: string) -> string {\n client Claude\n prompt #\"\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\ntest TestSystemAndNonSystemChat1 {\n functions [PromptTestClaude, PromptTestOpenAI, PromptTestOpenAIChat, PromptTestOpenAIChatNoSystem, PromptTestClaudeChat, PromptTestClaudeChatNoSystem]\n args {\n input \"cats\"\n }\n}\n\ntest TestSystemAndNonSystemChat2 {\n functions [PromptTestClaude, PromptTestOpenAI, PromptTestOpenAIChat, PromptTestOpenAIChatNoSystem, PromptTestClaudeChat, PromptTestClaudeChatNoSystem]\n args {\n input \"lion\"\n }\n}", "test-files/functions/v2/basic.baml": "\n\nfunction ExtractResume2(resume: string) -> Resume {\n client GPT4\n prompt #\"\n {{ _.role('system') }}\n\n Extract the following information from the resume:\n\n Resume:\n <<<<\n {{ resume }}\n <<<<\n\n Output JSON schema:\n {{ ctx.output_format }}\n\n JSON:\n \"#\n}\n\n\nclass WithReasoning {\n value string\n reasoning string @description(#\"\n Why the value is a good fit.\n \"#)\n}\n\n\nclass SearchParams {\n dateRange int? @description(#\"\n In ISO duration format, e.g. P1Y2M10D.\n \"#)\n location string[]\n jobTitle WithReasoning? @description(#\"\n An exact job title, not a general category.\n \"#)\n company WithReasoning? @description(#\"\n The exact name of the company, not a product or service.\n \"#)\n description WithReasoning[] @description(#\"\n Any specific projects or features the user is looking for.\n \"#)\n tags (Tag | string)[]\n}\n\nenum Tag {\n Security\n AI\n Blockchain\n}\n\nfunction GetQuery(query: string) -> SearchParams {\n client GPT4\n prompt #\"\n Extract the following information from the query:\n\n Query:\n <<<<\n {{ query }}\n <<<<\n\n OUTPUT_JSON_SCHEMA:\n {{ ctx.output_format }}\n\n Before OUTPUT_JSON_SCHEMA, list 5 intentions the user may have.\n --- EXAMPLES ---\n 1. \n 2. \n 3. \n 4. \n 5. \n\n {\n ... // OUTPUT_JSON_SCHEMA\n }\n \"#\n}\n\nclass RaysData {\n dataType DataType\n value Resume | Event\n}\n\nenum DataType {\n Resume\n Event\n}\n\nclass Event {\n title string\n date string\n location string\n description string\n}\n\nfunction GetDataType(text: string) -> RaysData {\n client GPT4\n prompt #\"\n Extract the relevant info.\n\n Text:\n <<<<\n {{ text }}\n <<<<\n\n Output JSON schema:\n {{ ctx.output_format }}\n\n JSON:\n \"#\n}", - "test-files/providers/providers.baml": "function TestAnthropic(input: string) -> string {\n client Claude\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOpenAI(input: string) -> string {\n client GPT35\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestAzure(input: string) -> string {\n client GPT35Azure\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOllama(input: string) -> string {\n client Ollama\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestGemini(input: string) -> string {\n client Gemini\n prompt #\"\n Write a nice short story about {{ input }}\n \"#\n}\n\n\ntest TestProvider {\n functions [TestAnthropic, TestOpenAI, TestAzure, TestOllama, TestGemini]\n args {\n input \"Donkey kong and peanut butter\"\n }\n}\n\n\n", + "test-files/providers/providers.baml": "function TestAnthropic(input: string) -> string {\n client Claude\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOpenAI(input: string) -> string {\n client GPT35\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOpenAILegacyProvider(input: string) -> string {\n client GPT35LegacyProvider\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestAzure(input: string) -> string {\n client GPT35Azure\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOllama(input: string) -> string {\n client Ollama\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestGemini(input: string) -> string {\n client Gemini\n prompt #\"\n Write a nice short story about {{ input }}\n \"#\n}\n\nfunction TestAws(input: string) -> string {\n client AwsBedrock\n prompt #\"\n Write a nice short story about {{ input }}\n \"#\n}\n\n\ntest TestProvider {\n functions [TestAnthropic, TestOpenAI, TestAzure, TestOllama, TestGemini, TestAws]\n args {\n input \"Donkey kong and peanut butter\"\n }\n}\n\n\n", "test-files/strategies/fallback.baml": "\nclient FaultyClient {\n provider openai\n options {\n model unknown-model\n api_key env.OPENAI_API_KEY\n }\n}\n\n\nclient FallbackClient {\n provider fallback\n options {\n // first 2 clients are expected to fail.\n strategy [\n FaultyClient,\n RetryClientConstant,\n GPT35\n ]\n }\n}\n\nfunction TestFallbackClient() -> string {\n client FallbackClient\n // TODO make it return the client name instead\n prompt #\"\n Say a haiku about mexico.\n \"#\n}", "test-files/strategies/retry.baml": "\nretry_policy Exponential {\n max_retries 3\n strategy {\n type exponential_backoff\n }\n}\n\nretry_policy Constant {\n max_retries 3\n strategy {\n type constant_delay\n delay_ms 100\n }\n}\n\nclient RetryClientConstant {\n provider openai\n retry_policy Constant\n options {\n model \"gpt-3.5-turbo\"\n api_key \"blah\"\n }\n}\n\nclient RetryClientExponential {\n provider openai\n retry_policy Exponential\n options {\n model \"gpt-3.5-turbo\"\n api_key \"blahh\"\n }\n}\n\nfunction TestRetryConstant() -> string {\n client RetryClientConstant\n prompt #\"\n Say a haiku\n \"#\n}\n\nfunction TestRetryExponential() -> string {\n client RetryClientExponential\n prompt #\"\n Say a haiku\n \"#\n}\n", "test-files/strategies/roundrobin.baml": "", diff --git a/integ-tests/python/baml_client/partial_types.py b/integ-tests/python/baml_client/partial_types.py index b6f12e325..350ac21ab 100644 --- a/integ-tests/python/baml_client/partial_types.py +++ b/integ-tests/python/baml_client/partial_types.py @@ -53,6 +53,12 @@ class ClassWithImage(BaseModel): param2: Optional[str] = None fake_image: Optional["FakeImage"] = None +class DynInputOutput(BaseModel): + + model_config = ConfigDict(extra='allow') + + testKey: Optional[str] = None + class DynamicClassOne(BaseModel): model_config = ConfigDict(extra='allow') @@ -153,6 +159,20 @@ class RaysData(BaseModel): dataType: Optional[types.DataType] = None value: Optional[Union["Resume", "Event"]] = None +class ReceiptInfo(BaseModel): + + + items: List["ReceiptItem"] + total_cost: Optional[float] = None + +class ReceiptItem(BaseModel): + + + name: Optional[str] = None + description: Optional[str] = None + quantity: Optional[int] = None + price: Optional[float] = None + class Resume(BaseModel): diff --git a/integ-tests/python/baml_client/tracing.py b/integ-tests/python/baml_client/tracing.py index b536ee8eb..7c2bff4d4 100644 --- a/integ-tests/python/baml_client/tracing.py +++ b/integ-tests/python/baml_client/tracing.py @@ -17,7 +17,9 @@ trace = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.trace_fn set_tags = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.upsert_tags -flush = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.flush +def flush(): + DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.flush() +on_log_event = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.on_log_event -__all__ = ['trace', 'set_tags', "flush"] \ No newline at end of file +__all__ = ['trace', 'set_tags', "flush", "on_log_event"] \ No newline at end of file diff --git a/integ-tests/python/baml_client/type_builder.py b/integ-tests/python/baml_client/type_builder.py index 189265dda..54d4fb68f 100644 --- a/integ-tests/python/baml_client/type_builder.py +++ b/integ-tests/python/baml_client/type_builder.py @@ -19,13 +19,18 @@ class TypeBuilder(_TypeBuilder): def __init__(self): super().__init__(classes=set( - ["Blah","ClassOptionalOutput","ClassOptionalOutput2","ClassWithImage","DynamicClassOne","DynamicClassTwo","DynamicOutput","Education","Email","Event","FakeImage","InnerClass","InnerClass2","NamedArgsSingleClass","OptionalTest_Prop1","OptionalTest_ReturnType","OrderInfo","Person","RaysData","Resume","SearchParams","SomeClassNestedDynamic","TestClassAlias","TestClassNested","TestClassWithEnum","TestOutputClass","UnionTest_ReturnType","WithReasoning",] + ["Blah","ClassOptionalOutput","ClassOptionalOutput2","ClassWithImage","DynInputOutput","DynamicClassOne","DynamicClassTwo","DynamicOutput","Education","Email","Event","FakeImage","InnerClass","InnerClass2","NamedArgsSingleClass","OptionalTest_Prop1","OptionalTest_ReturnType","OrderInfo","Person","RaysData","ReceiptInfo","ReceiptItem","Resume","SearchParams","SomeClassNestedDynamic","TestClassAlias","TestClassNested","TestClassWithEnum","TestOutputClass","UnionTest_ReturnType","WithReasoning",] ), enums=set( ["Category","Category2","Category3","Color","DataType","DynEnumOne","DynEnumTwo","EnumInClass","EnumOutput","Hobby","NamedArgsSingleEnum","NamedArgsSingleEnumList","OptionalTest_CategoryType","OrderStatus","Tag","TestEnum",] )) + @property + def DynInputOutput(self) -> "DynInputOutputBuilder": + return DynInputOutputBuilder(self) + + @property def DynamicClassOne(self) -> "DynamicClassOneBuilder": return DynamicClassOneBuilder(self) @@ -73,6 +78,42 @@ def Hobby(self) -> "HobbyBuilder": return HobbyBuilder(self) +class DynInputOutputBuilder: + def __init__(self, tb: _TypeBuilder): + self.__bldr = tb._tb.class_("DynInputOutput") + self.__properties = set([ "testKey", ]) + self.__props = DynInputOutputProperties(self.__bldr, self.__properties) + + def type(self) -> FieldType: + return self.__bldr.field() + + @property + def props(self) -> "DynInputOutputProperties": + return self.__props + + def list_properties(self) -> typing.List[typing.Tuple[str, ClassPropertyBuilder]]: + return [(name, self.__bldr.property(name)) for name in self.__properties] + + def add_property(self, name: str, type: FieldType) -> ClassPropertyBuilder: + if name in self.__properties: + raise ValueError(f"Property {name} already exists.") + return ClassPropertyBuilder(self.__bldr.property(name).type(type)) + +class DynInputOutputProperties: + def __init__(self, cls_bldr: ClassBuilder, properties: typing.Set[str]): + self.__bldr = cls_bldr + self.__properties = properties + + + + @property + def testKey(self) -> ClassPropertyBuilder: + return self.__bldr.property("testKey") + + def __getattr__(self, name: str) -> ClassPropertyBuilder: + if name not in self.__properties: + raise AttributeError(f"Property {name} not found.") + return ClassPropertyBuilder(self.__bldr.property(name)) class DynamicClassOneBuilder: def __init__(self, tb: _TypeBuilder): self.__bldr = tb._tb.class_("DynamicClassOne") diff --git a/integ-tests/python/baml_client/types.py b/integ-tests/python/baml_client/types.py index 00bdc6fec..418ecd539 100644 --- a/integ-tests/python/baml_client/types.py +++ b/integ-tests/python/baml_client/types.py @@ -144,6 +144,12 @@ class ClassWithImage(BaseModel): param2: str fake_image: "FakeImage" +class DynInputOutput(BaseModel): + + model_config = ConfigDict(extra='allow') + + testKey: str + class DynamicClassOne(BaseModel): model_config = ConfigDict(extra='allow') @@ -244,6 +250,20 @@ class RaysData(BaseModel): dataType: "DataType" value: Union["Resume", "Event"] +class ReceiptInfo(BaseModel): + + + items: List["ReceiptItem"] + total_cost: Optional[float] = None + +class ReceiptItem(BaseModel): + + + name: str + description: Optional[str] = None + quantity: int + price: float + class Resume(BaseModel): diff --git a/integ-tests/python/baml_example_tracing.py b/integ-tests/python/baml_example_tracing.py new file mode 100644 index 000000000..e6606137e --- /dev/null +++ b/integ-tests/python/baml_example_tracing.py @@ -0,0 +1,83 @@ +import time +import threading +import asyncio +from dotenv import load_dotenv +from http.server import BaseHTTPRequestHandler, HTTPServer +import json +import os + +load_dotenv() +os.environ['BOUNDARY_BASE_URL'] = 'http://localhost:4040' + +import baml_py +from baml_client import b +from baml_client.types import NamedArgsSingleEnumList, NamedArgsSingleClass +from baml_client.tracing import trace, set_tags, flush, on_log_event + +class TraceRequestHandler(BaseHTTPRequestHandler): + + @staticmethod + def run_forever(): + address = ('', int(os.environ['BOUNDARY_BASE_URL'].rsplit(':', maxsplit=1)[1])) + httpd = HTTPServer(address, TraceRequestHandler) + print(f'Starting BAML event logger on {address}') + httpd.serve_forever() + + + def do_GET(self): + print(f"Received GET request: {self.path}") + # self.send_response(200) + # self.send_header('Content-type', 'text/html') + # #self.send_header('Content-type', 'application/json') + # self.end_headers() + # self.wfile.write('Hello, BAML!'.encode('utf-8')) + self.send_error(404, "File not found") + + def do_POST(self): + print(f"Received POST request: {self.path}") + self.send_error(404, "File not found") + return + if self.path == '/log/v2': + content_length = int(self.headers['Content-Length']) # Get the size of data + post_data = self.rfile.read(content_length) # Read the data + data = json.loads(post_data.decode('utf-8')) # Decode it to string + + print(f"Received event log for {data}") + print(json.dumps(data, indent=2)) + + self.send_response(200) + self.send_header('Content-type', 'application/json') + self.end_headers() + response = json.dumps({'message': 'Log received'}) + self.wfile.write(response.encode('utf-8')) # Send response back to client + else: + self.send_error(404, "File not found") + +async def main(): + print('Hello, BAML!') + #TraceRequestHandler.run_forever() + t = threading.Thread(target=TraceRequestHandler.run_forever, daemon=True) + t.start() + + print('waiting for server to start') + time.sleep(5) + print('server has started ( i think )') + + @trace + def sync_dummy_fn(): + time.sleep(.05) + + sync_dummy_fn() + + print('before flush') + t_flush = threading.Thread(target=flush) + print('wtf?') + t_flush.start() + print('after start before join') + t_flush.join(timeout=5) + print('after flush') + + assert False + +if __name__ == '__main__': + asyncio.run(main()) \ No newline at end of file diff --git a/integ-tests/python/poetry.lock b/integ-tests/python/poetry.lock index 8720de6ce..8850db6e1 100644 --- a/integ-tests/python/poetry.lock +++ b/integ-tests/python/poetry.lock @@ -14,6 +14,16 @@ files = [ [package.dependencies] typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.9\""} +[[package]] +name = "assertpy" +version = "1.1" +description = "Simple assertion library for unit testing in python with a fluent API" +optional = false +python-versions = "*" +files = [ + {file = "assertpy-1.1.tar.gz", hash = "sha256:acc64329934ad71a3221de185517a43af33e373bb44dc05b5a9b174394ef4833"}, +] + [[package]] name = "colorama" version = "0.4.6" @@ -320,4 +330,4 @@ files = [ [metadata] lock-version = "2.0" python-versions = "^3.8" -content-hash = "c0890bb7d42663b172b862caa5d317f325f92d8bd1e8e6a9e211461b189f22dc" +content-hash = "75bc9294db7074ba805acc12ba1a8a201c8099a40f8ffe1d2e2aefb14d48e5e6" diff --git a/integ-tests/python/pyproject.toml b/integ-tests/python/pyproject.toml index e50d88083..8c58d850b 100644 --- a/integ-tests/python/pyproject.toml +++ b/integ-tests/python/pyproject.toml @@ -19,6 +19,7 @@ pytest-asyncio = "^0.23.7" pytest = "^8.2.1" pydantic = "^2.7.1" python-dotenv = "^1.0.1" +assertpy = "^1.1" [build-system] requires = ["poetry-core"] diff --git a/integ-tests/python/tests/base64_test_data.py b/integ-tests/python/tests/base64_test_data.py new file mode 100644 index 000000000..8fc46fb18 --- /dev/null +++ b/integ-tests/python/tests/base64_test_data.py @@ -0,0 +1,4 @@ +image_b64 = "iVBORw0KGgoAAAANSUhEUgAAANwAAAFGCAYAAAAB0PEQAAAACXBIWXMAAC4jAAAuIwF4pT92AAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAIABJREFUeNrsvXV8VGme9l0JdDfQ0LhDiBIS4gmx0ri7Q9w9hLiUxXAJDo27uxM07u6GBWhot+luUud671N0z87szrM7s7vvM/301B+/zyk5qVQq51vXdd3KEIlEDFnJSlb/d0r2IchKVjLgZCUrGXCykpWsZMD9a5ZQKPyLo1C+QCQYKyYlEgnkROQxofQ8oeyzkgEnq/8t2AQCAaOgoECOLyxkZOYVMbLzixl8YQn93BiR8DfYZNDJgJPV/7ho2IqLihkZmWmMtaJkvTPbknwPb4xx2FAYOlMgyCfnFMgLhQLZZyUDTlb/G7AVForlElemM1bGe3j3XA57MXxSFz0H1NF+ZGn13tX2brl88d+wnrLPTgacrP4bwPHliouLGTEx4QqfFvJ6Bq7Y4kTxtD8dFi6UXFutjsYDmt8f3WidmMcvYIjFMuhkwMnqf5TfCsQi+fSMHIa3t23QqQ161OXd6j9vzFKWrEnRpdamaL47JFJE8yEVak+JTUx2rphWQ3kZbDLg/h8tIbnoyVEs/LVBQlpy5L6c8N/uvz/n/4cGCxqcQrGYkZaeKefqYrnt4Dod6uQOrV8EKaYQJLGpvEQWClfpvjtcpEBV71b+Ji/JlpeRnUeUjrw/uvVSBp4MuN81WKJ/B9avcOXni+SEApKThAUMIb+Qwc8vJLcLGQI+XQVy0ub5387/69f4H8H4vmVSzMjNyZ3k4mpZtr1Ahzq3c8m73CQWlRrHQ2osl8pJZlNF6ZrvrmxWwt0divXZGVEzCwrXkN/Ll5P9X2XA/U5B+zMUciKhSKoOAr6IwecLycUuZuzan80oWZ/6gbgkeeqa0qjZ2/ZHz84vjp62aVfk2M3bkhm5ucUMPgFSICggJf71NcV/BvC/Cx15H3J062NgcMBcVzebJ0UZOji3W3k0M5mNuEgeEqO5yEpiojDdSLJJuOiXmlMLqFIBM2nlqiwaVDmZwsmA+/3kIxoA4a9HkVBeKPgVNGnzuvCDHYeyNE9ezYw5czVtz/2qxDv3q0Jb7z4KGH5c4/q8vNr2xa07vCcPKpgtt++zbhw/7bD1+DnnqNI9bkbrt4RM4vNp+HJJFRJoCsYQBfyHofsNlvx8PsPVw9HEyclSkhJvIrm4X1GSnmiOyFAeosK5SInlUAXpOtTuNXN+KT9nQl3fo3JZkBc3XigqZsi6CmTA/W6UTfQeADmxSDxGkC9gCER8xtrSfIW9x3Mjz1zJLiuvT/2xviUZre1x6OgIRVuTNxpr3NDRbI/Wejba6gzR2axOjoporFyElgYVNNQvkZRXanddvGq8c89BY6uStbEThaIcqf0Uifhyv6mp8O8Ej4ZOLC5guHs7RTs7cxAcyB49v1cVO4qXITrUAlFhFkiJN6e2r12C+xdt33WVrxh9fGLB/WJR/ES+sFiW4WTA/X4spJC2e+R2Tn4OY902gc6Ja9nFF28mDzx4FI6GBj8CVwgaKxKovo5U6klfItXbGk71tgRSfS3eVEetE9XbaEn1NetR3Y3qVGedMtVWo0S11yuiu3UhutoXoKlZEXcfLLz+6SFDtzzyO4SCNeT3Cv7uFsT3sIkZicmJDDcPmxOODuaUhztPIs40pq4f1MPp3SY4ts2EOvepLsovGUnqbrB+eXxGHSFec/jxCSsZRUWFcnQGlP3PZcD905rY/9JC8vPJsVA4ecfhvKJrj5KfPHzsj0dllqh+wHzXXO0g6WkJpZ70r8KLp/nUyHAuXg6m4tVALJ53BeJpizdetNmTIxNDTdoYbFKjeutV0d+sTABUoFqqFN51NiyQdLbMR131zF8uXtQ+LC7yV8nLEzCIokrfw3/VX/a+w7uIYe9kP8fdg/fazs4Mzk5sKnSFBZUWx0Fxljm1NsdUUio0okpF+hCkacGKo3DU0sp+Gp8vtcWyDCcD7p+Y16QXt/QbX04g5DPW7xYaHzkjrLl6LRo3r3Bw86LWL3fO647W3mMTtXJDb1sYNdyTgZG+Qrx5UoI3wwJ81p+GVz2x+Kw3EK+6XfCi3RIj7UYYblLHQKMKBpqU0V2vRPU3KmCwZS7V2zzjXV/bdGqgexrq6mYNb9rKC8zLo2ET053Ucn8Lur8cOykicC4P8kh1c2fBxtaccnFiUYHeFvD3spR4uFhIPN2tQFtNJsew38LaKjIpJeOjvLx8Wt1IFpXBJgPunzzSnqiLXGZ2DqNwa7bbrQrRZ5cu++DKOe13t88vGL17XpWqumOAxvtWVHuVGwZawtFRlYm+JjG+fLEBX46swefDefhyKAlfDIXjRbcXnnfaEMUzxlDbYnTVKaG1WonkOgUMdM6jBghwg20z0dcySdLXNmF0sGsaejpn4eRZ9TUJKQHj6C4FsVgg97dg4/P5jNUlxXLB4cGTwiN4nX5+XMrBkSnx9eBSy70sRv08efD05ILN1R02NTfKMWeZT83Pz2eUlBRJQRbIRpvIgPtnwiaQjtgQy9Hf/oKNmSGX7+X9cP6iK86fUpNcPzedun+RWL+7SlTbIz2q45EFeqrd0F8fjL7mJIwM5OPt83X48uUGfDWyGl+PZBHFi8bz/gAMdLmhp8OKqKE5KVP0tRtgoHsp2oi9LL9FAKyfSw31T0X9o6lUW8O40YHeKdRA11zsO6B4IiLWZ4pYXEznur/qpP517KR8bq6IER3vxs/KMEZkJFfi68Ol/Ly4oyv8aFVj/sDhGO+ytLZUTEpKYqxdu5bx22vIhnbJgPvnD48qLJBbtSqDwV+XGXr9sehP5y+4UmdPqkhO7puCa6dmUZXX5qHx9iI039VFx0MOuiqcMFDrj6etEXjWvQqvhwvw5atSfEGge/syHy+fpeLZUAT6u/zxpC8Aw10+qH9oj/Y6E3Q366CuTBOntunjyiFd1N5SxOENS3H91AI010yW9HROGx3qnYmjx5QuR8b7ThVLWzB/6ySnVVgon5Wdz/AN8jTMydJ7w89eJkmI5Y7GhPJGI4OtYWVl2LtEU9UpKjqasXHDBoZILJKXNY7IgPtdgPb+AhbJ5+TmMrKLUt3O3cn/4fRZV+r4IfXR8yemUJdOTKfunZ+NystzUH1lEVrLlqL7EQt9FQ54Uu+BocYg9LfE4dkAyXJPc/B6RISXz/l4OhBLHovEyOBKDPeEo73ZHrWPmWis5KD+vi1uHHWAMIYHQQIH6zNMUZhgjIKEZVRJohGuHlSiWutn/DLUOxf7Dy66GBEX8LFQ2oQvfc9jCgoKGanpadNSUw2qStdoQpCjO5qdavaOn24FFyfDJv8Af82UlBRiH0vkiY2UkymaDLjfU26Ty83JYwRGBxpefrTuzaFjXti1RefdqcNzcPnEdNw8PQsPL8zA3VOzUHFpHtrvq6PzoRl6q2zQW+uMtjpvtDX6o787GE8GU/D8SSqe9MZiuHclng0moa87AM0NlmistkRHvScGOmJxYZ83RPEWyI9jInkFCxmxHBSkmiEngY2EIA6VHcbCoTUaVGv1vHcDPXNx6MiiU+LVLtPz8kWMvLw8Rm5e3lgR32HP3g1q2Fi45F1hnt7oxgITKi5c75m3j5fR6tVriOUs/PA3VZOBJgPud1F0bisqKpLLzM6atOtkXu3pK+HYu1Nv9MT++bh4bAaunZhB3TgxE2XnpuPx5emovDYbNTcXo/GeIRorWGhs4KK1xRbdbe4Y7ArBUHc0BjsjMNidgL6uCJLd3NDVYo/WOgd0NPqgvSYWZ3c5IC/OFAkBLIhXmSInxRT5aabYsk4fOzfrYcdGHWwo1qYO7lDHg3OzqfrHsyWDfbPw+NGczt0HNJJKiiwctq+zPXJpry4OrFsgKS1Slmwo1JIQ6N4tW6YRGBoWxSgpLhpLN5DIYJMB97tRN4FASC9HwIiJjWeINq/aeP5uGvZ8ypKcOLwQ54/Ooi4dn0VdPz0DN8/MwL0LM/HwygxU3VyI2rIlqH+8FC0N+mhrYaKjwQk9jR7oJvayvcYDTRWO6Kp3QU+DOzprXNBaYYf2Ki/Ul3nhWKkVUkKZyE40w8o4FlJjedi+SQP077xyRhG3ryjg3pW5uHF2Lk4fWkAd/VQFZRdmUvXlsyXD/dPQ3zENtRVzUXlDCdeOaFLHtsyjSguVJZvWqiI6QvdWSEi0/Lq1a+ToFkwZbDLgfmfZTSBfIC5kJK5KsD5yOefHPQddJHt3qUmO7ZtDnTk0F+ePzcT1czNxg9TdizNRcWc6HtyYj0c3VNBcpUkgMkTzIxMClSt6G73QSixm/X1jNN43QXu5HZofWKPhniXaK0h2u8HBHrExEpYTCxnNRmIkD3lpxjiwcx4BbRJunJ+OWxcX4uZFBVw7PVcK+dXTn+D4oWnUheNTqAeXpqKufIakt3P6u+6WuaMVZXNGb5+ZgxNb51Hb1iykxELFd/Z2TLu1a9cxZMomA+732FAiR3cBrExPnbDzGP/xgVOhKN2qN7pv11zq2L75OHVoHs6R/Hb5HFG3azPw+NZU1DyYiqobC1FzVxGt5QZofWCK1vuG6KjiEOi4aH9E32ei5T6HwMYmtpOFpvtc3D3BxL5ifaRHmSHYl4fQADbEfA0c3D0L549/jJMHJuPEvlk4vn8uju+jazaOH5hFVG8GzhyfilNHJuLqqcnUA2JpG+smUt3tM6mG8tnUo6vTcPnIZMm+bTOQkqjcZLjM/AOS26RdBjLYZMD9vqxkYcGYpJQURlpBXMjxa+nU1t1syfatCqO7d86iDuydj7OniMpcmYW7V+fg4Y0ZKL9NgLs7kyiWCrGIWqT00fJYB50Vmuit1kYvga79vjnaCGQ0cJ2V5H6FJWpu6GOHQA/JgRykEQsZHcRDcowR9m2bjj1bp2HHhtnYvm4OyW2zSc3Dzg3zsW3dfGzfOBe7t8zCvp2zaJXDuWOTcOv0VFTenIaOlknoaJ9MMuQU3L82SXLu8EdUdrrqFnrGwPu/UXYRy4D7XUEnXUqOkZWTPaFkZ/Lt/af8qY2bVH/ZsmketXPHQpw+vQDXLxEbeYkAd2EO7pyfjftXZ6LyDgHugRJ6ag3QXb0MnY+N0V9hgsEaY/TWWKGn2gr1d7VRV2aIlkdmROGW4fKnmhAkmiAykNjIKCbyMrWxrkQR64pUUCzQRCFfC0XCpSgRqWO1cAnWiZaghL4v1JI+t5o8vnXdAhzeMw0XDk3BvTPTiG2dhN7O8ejtnYqmmsmjD26OQbFokYDkNtkMbhlwvz+Fo4c15WTnMuJXxbB2HU/+ccMWE8na1XMlm7eq4PSZxbh4cibOHpmBy6dnS+1k1T1i5R7OJnZRAV2PlhK4WBiot8aTJicM1bqgo5yDnjo7kuNcUENgq7ipjprbeii/rI71uXpIiuQgLJCHjDRdrClWRAEBKT/LCLkZJshOM0VOugGK+NpE7VTw6RZF7FivjKJ8XeST50XkvHVCDWwhkO7ZNBPnPv0EVdc+wbO2iRgZnIq+vimSwe5x2LF17hk+v0CmcDLgfn/LydHTWehO7sTc8NwdR4LAFy76Zd1GJeroUQ3q9LEFOHtCEffvLERD1Xy0Vi8g1nAReio1MVTHxlC9HZ40e+B5izfe9IXjWXsIWiq4pCzQUetArCYL98+r4N5ZNZSdVgJ/lSGSotlIS9OHkL8E/Bx9ZKebIpOAlrHKDKJ8LewoXYKzR3Vx+8JS3D2vhiM7FbF7kxKBTwX7Ny/ErvXzUVq0CLvXzMa5XZNQe3kynrVMw3fPZuCr5/OoV0+noKnh42+Skpw1BIIiqYL/2kEuu6BlwP0+RpZkZGWOKyxNvL16iw2VL1B9t2OHHs4cN8TjuwSceg20Vc0lEC1EF7ndVWOGvjoHcpET0Np88byVriCicEFE6Vag7i4Pj6/ro/K2PupvG+D6cTVcPqiCs7sVUJirC0GeBooKlJFL1Cp9JRMrk1lISWIhN9MQOzcuwvE96gQyY6zON4cg1QzZcTzkx2sjNWwp9q2bgYsEsoNrpuLM9k9wY98U1F6cjuG62fhhcC7evZxLff18LvXt28k4dnTGOXePFfJr166W5/NlLZUy4H4nk0sFfAHDL8Rv4eqdUZ9n8vWxfpOB5MI5Z+ryGQ9cPKCL66fn4NT++di22oAc9XH+qBnO7WPjRKkxTmxjoeyYMRpvmZPi4vFlLm6e1cfVE2q4dlIdN0ldOqCOfevVcWCDgjSnFYlVISDWMo3AlhTHQXQED3ExHIizjbFeqI4skvF8XTjwsDSDqRaBMysGT1ov4N6pAhwp8sClLRq4e2geLu+ehYenFqD7gTqeVqnhu66F+Hl4Kn5+Pkny48uZkm/ffizZtXNZSlpaIaOwUDTmt6UTZNDJgPvnFa1wfCEjOTvepmCLL3IKDCQHDgZQOzd7IDPRACG+dNM9G4G+5vB25WCFFwthAUyE+ZsicjkTyz1ZSAwxwfo8fZzdo4WbJzQJpEuxY7U6ju1SxZlPVXH90GIc3aiKrQWqWC1cCn62AXLTTZBGlC02iovl/lxEBVsgKWIZcpMc4GxlAQtNdUQ42yEjKgw6Kqo4cXovgJco25aJsiO6aLyihMdHFdDxyBT9dRp41kyAG16MP40swJ+eT6B+evHh6C9vZ0qGej/5Mj+fw87PF9HL4MnWnpQB90+2kyKhnEAgYqzKi07NFNhRfIHTaFaaBxwtjWFrYQZHWzbsLVlwtGLBycYcznZMOJHHnGxZ8HRhw8WRPGfDhpsjF9GhTJSK9XFk8xKIMpdhg1gbR7cR6LYr49zWudhNclcBgU1AlEyQtQw56WaIieDA24NLXtcYmTHe2FaUBX9zPbhpL8CsWXOgSmBjqygixM0GDWcTcGPHAtSdm4Wqk3NQflITHZXO6K03wUiXFr55sQQ/vFLGj6/m4PuX4/DVk0mjP38+By2N0ztTVrrO5/OlLbKylksZcP8NVfr1+H5tx/fbL4lE//iycgKBQI4eXZIpiizNFNpTkWF2o9YsE8rJhgkXOxZcCWA+xN75ebDh78WBpxObPEYgszOHqz0Lbg7kPFLOBDw7Ow78fbkoyDBFFslk9HjI3WsW4+A6ZZzcMJvkrhnYLFLGOqEmVvO1SZ5bhshQNpwdyM8SuA+uS8NW8SqkmKtBf8EMMBjjobJgHjamWOHBpxYoP6SM+rMKqDwxG1d2zkHNdUcMdoTi5YAXXg9w8fVTHXz7TAU/vFSifhyZRX0z8hH1dnjau5+/moZzZxT2ZmdnSdcska3KJQPuH1Kl3/rOhKIC+Tx+EYMvKCZ2qfDPGUX0Dyy4Q69XkpGZxViZG3QhOtaWqJmZxNWeCV93DiLDOIiLZCMx3gwrV5ohKZGF8DAugoN58FvBgwtRJgdnNuzI+Tb25rAlENqS217k8SA/nnTI1tosPewtVMDh9XNwZMN0HNk4HQc2zcau4nlYn6uNYGInPZzMscLDDuLUSGzKj8dKa33k2CxCRpgu7uwwwIN9Cri3fw7KDi4koM3G0XVzce+8HQa7wvH6SRg+fx6Bb1564JunZvju2WL89EoJP7+cR1EvxxN7OZZ682Sm5MtXk5GTa+KWkJgtW2FZBtw/CJuAzxCJixgifjpj27r4mWuKIifk5SUz6JnQQiH/140G/+vGAekKxeICRmRiBCM8zvuhs6053J1YlI8nF2FhTMQlsJCcwkR6uinSSKWmmiMxkYOwCAJcABeuBEpbJxYsyM/xrMzAtTQFz+J9WVubwdONi9RoDoFIE/vXzsLl3XNxcfcCnN07HSdLp2C/eC6CSEZ0sGDC3Y6NEG97ZES4IC2Eh61Zxji6WhM7+MrYKViELTkLsSZtHraLlqD8ugde9Mfg7fMYfP9mJb5/nYaf34Ti3SsOfnmhi9ERNVCv5kPycgr1p5EP8d3TjyQ/fj4Jjx9O6/Dwcpq2ft06ud9aLWUlA+6/HBVSWFDEyM5KGytONck9W6pbX3HV8eG+rTbJ2dmpH4rE9LJywvc7fP4Xkyx/Xa+EkZIVLx+d7FfrbGcGP0+uJISoWAQBJZzkq5AQLiIjuIiP5SImmotQcj+AwOZB7KULyXB2DjRspmBxloHFfl8cjjE4XBPY2DKRFMXG5nw6xymg7ioL1ZeW4uqRuTi3fxqubZuAjckLiapyoKNrDAM9Q5gYGcHOmgNney48nTkIcLdA1HIucpOZOLzNEU2Pw/FiIBlfv8zGd58JCXCF+PkLId69jgP12h4/PzMjwGmTUoRkZBp+ePER9e4lQ/Ltsw9Gv/78E+zYrlkYGJzMWL26QDbjWwbcf91fVlBQIJ+SupLh52ESkRjCgr87C/w0JmquGOPiYdP7OWkc7ZycvPcKKPy3Vrm/Bd174AoYsStjPgyN8Wp2siXA+XEoX3KB+/hx4UtsobcvD17eXPgTyIKC6COPwGYJdw8LODrzYE1yG9vCHEwpbEZgE9A4HBOwWMtgY81CRqIxzu5RQd0teww0JuNJoz3qbijh/qVFuH1uPu4cmYnD65SIEi4lNlQXUaEmSIkzIfmPifUiLj4ttcaVk85orQrCyOAqfPYkjyhbCX54s4mAtgk/fr4Zf3q7Gu/eJBKF88QPzyzwyytD/OmZOt49nwvJizH40wsG9e0Lxug3n42n6hsmjqxMddMTiUrI358vL+sQlwH3nzZwFBUVM1JTkyf7uxneTwyxofzcLH5impu9y0rQouquL8bDS4teFvFNgnJzM6RzwMRi8Vh6g4q/BR69PDltKWNSoieGx/v02FuZUN6+HMrNiw03D7ZUxeijsysLLm4cePvwEBHJRGaqPgrzlqI4fylyVhohMpQDB0cOTM2WwZxpJC0zM0M4O/LIOQa4c04DjQ998KxPjOe9aeitZ6P1kTZq76uhokwJdQ/noaNaGT2NLPQ3cTHYZIXhFmcMNbqR833x+lkU3jxLxzefFeHbz0rx4xc78N3nW/HD5wS4txvw3Us+vn0ejW+feOO7J7b4+YUJyXAa+OnlAlAj4/DTCAMEOOrzp4xfvv1qPA4dmX0oOTlJvri4WE4g4Msuchlw/6cGDqH0GzkiIlAjNsD0s4xIHhUVwJP4unNhY8WiSoWakvrbOqi9p0yUYf7WvGx7xbz8YkZh4WpiQwtp8OTfD3MS/DpLgB60XCgXFBm0OCLB40s7W1OiXBzK2Z1NAPu1CGw0cJ4EvqREc6wv1Mb+zcrYv0kNh0rVcbxUE5vzVJGdaAR/Hy5MTA1haKgDU1MjhBJFPLBDB/cuaaPijh162tLR156C3lYXtNdqoLlWES31ymhrUERHsyY6m/TRXqmHjkpD9NZxpPPm6u75oac1Dq+f5ODtk2K8GRbjC6JwX75Yhy+fr8ZXz3Lx7XACAS0A3w664dt+G/z8xAQ/PdUgKjcPPzydhG+GGNTrPnm8HWKMfjnywejw4Mff5uW7cjMyRX9uQJFd6DLg/kYDh1g+KyuLYcnTN82KYv+cFsWlgn0tJP7eHLi68ihfTyZObFtMVd4xkFSVqeL84emdG0u4yckp/rMSkiIZRUVryQVWxCgqLP5N4caIBAWM3KKUlLBYF4m1jQnl5MKW0IA5knJwJuXEhBM5xsfxIMo2QVqUHuLDTBC7gsBpqQUHUqVCP6xJ4yIryhi+HiwsVteAlbUZikWGOHtYA2WXl+LxbV00lJuhu4GDgU5fPB1IwesXYmIPs0gmC8dwtyv62/TQ37wMwx2WGGjloavOCI+uaeHAFnNiKx3R/MATfbWBeNYWg6ctCRhpi8arjkC8avPAm04HfN5lj296eHjbaYCve9TwXe9sfNY1EZ/3yONFxxhqpOsD6u3AuHd/+voj7N8/60J2du5Yeg+C376AZBe7DLi/zltisVxOTi7DyYHJESUZjwpTzCSByy0oJ0eiRM7msLLiUWnxerh2TJG6fUn/3d3LOji1fzYKRArdicnLSpOSHJ1i4x0Wrgj2ksuXLutdyMjOy1Tml4R2Lw9xJJCYSuwdWZS9IxN02dgzYWltKm0cCfFnIsSLieggL1gamsFTdylSfDzgymQjaoUP+u6fRJSnJRys9LFEUxcr40xx4YAWbpzSwL2rCsQ+KqG9nIOhlig86Rbi+dBWAt1WDHWtxou+QjxrD8ZwowWGG8wx0mFFYCK2stmMQKiFmxfUEOxnjJI8HVw9rI7yC9povmWOtjIWOh6Yo/uxGfqqzDFYY44ndYYYqFbHs9r5GK6djJ7q8XhSL4+RFjlSE/CmfTw10j9+9PXLT95lZjry6BkFMthkwP1thSsQy2VmZTO4HANWSZrBLyXZRlRsJE/i4cGhFzkFx4KNiCBT6nDpXJzeuwhHd+u827ReSyIqNEbxGnMUFJr9VFDIfJ2bw2oQ5tqeKhG77RGKnHpSMu3hE+AosbY2paR9anbm0n41uvXRwsIUzkStXEldPbYRRWmRCNNXgNr8GZinrARjDWXY6Wjg/LYcnFnrCh7LCM4Ohji3V4PApkDUbSGqbmmj4Z47qSC0PApEU0UEmqtT0FIVh87aRPTUR6P9kRu6Htmi47ER+qtM8KyBRWAxQk+tGZ53LkXpBl1weBZIjjdFaZE6Tu9ciKuHFuLemUWovKKCqmuLUXlVBY8vK6DmyhxUXp6GimsTUHV9HBrvjCevPQ59jydSw9XjqSetkyRfvh6LSxeUL6dn5DJ+W9tSBp4MuH+ncCL53Nx8hpOjjUHRSo3vtwiWIi2BJfHzZoPNJTbQ0Qxr87WwU6xBbczRpvJXmlCR4RzJimDOaGgERxKbaIn0DB4E+VYozLOAMNMcsTFmCIm0ojy9bWBD1IyARlnbmhFlM5PaQnsCHcdUHwfXpePz9mvI9nOAn8YMyH/8CRiMcdBcMB/bYji4XGyI1UmGcHVkYd8GAtt5Jdy5shQPL1qj+k4kau7Fo+FRCJrL/VH7YDnqbtuj/hYHDTd5aL5jj4brPDTdMiaPaxBIlqD6mg6qCUg1Vxej5poKHl1ZBD8/c1hYWSE4iIf0FBOU5OugtFgdezaqYf9WJRwW7KSGAAAgAElEQVTcroBju+bg+O4ZOPnpVJw5OBkXj0/C7QufoPbGeNTdmoCOh5PwtHEC9dXQFOrNkwm/RERx2UVF6+hl0mU7n8qA+1utlEWMVavSVLLilJ8e2zKX2iDUGl2V5EC5e3Cp7CQdrMs1pjLjuFRSmBUVHWgt8fW0oOgOaFcXDuXswhp1c2dLfLw5kkB/jiR4BU/i68ejvHx5lLMbl7KxMadL2nHNtTCBLQGOZWaIUH9XnNucja6bu7EpIw6JBgvhZKCEcHctnC3Swr2t87AvexHiQpnYXLIUB3Yvwunjy3D3ojfuXwrGwxtBeHwrANX3VhBrGYiaO05ElUxRdckI1ReNUX/JAPVXDYgyLUXVFQIqUcYbR+bhzB5F7F2rSgBWwIVPpxFLuZTkSS5sHXlwdbeGt58NAgKtERxqgYhILqKjOUhKMkP6KiPkZuuCz9fA1k2zcebwJJSdn4zK6xNQf/sjqr/yI5L9Zkkkb6bg9lX1UwmJqX/e+VSmcjLg/qxw9NojJSWFjJDw+PHeLmrXy46qkIuT/dPBXWxJUY4plZfEIRe9NZb7WcLbnQMvVzbcXVikmD+7ujBJzmPBiSiQgwML1tbmsLQ0kVhYmlBOdCOJM4uiR4fQxaI7rjkm4NH9aUwjJIb5oDg5BLtEMVibEQhBiCH2ZuvhzDolnFw9AxtTlJGbZIKdpWrYtkkJRcTy7d1ihrP7mLhx2gK3z9nh3kU7VNywR9UNOylsFWcNSBmi9gxRsjMaqD23GLVnFfHw1FxcPzILGwXKsLbQBJe8l6DlFhBn6eDK0aU4fVAHq8X6WJWyDFGRplgRzJaOevEJsIAn+bvdiFK7+9qTx60RFcdDLoH00O4puH52Ku5dnoy6Ox+j8+Fk6k2rgmT0hSr1rGPS24xMJ4OCgrXSfrm/Z4SOrP51FI5RUlw8JiIqhqGsrBRYkmWOvRuWIZNc7FHEZtEthPb2pj9yuIZ1XK7pBnPWMn8maxnLcJmeoRlzGdvU3DCYwLSPbWH0jGdNoLIwg76hnsSW2EgXNxZsbWmFMwOXZwIu1xiW5GhL7rvYMeHpxIGvGxNRK8yRk8wCP8UYWTHGSA83R/5KU+zZroJN69UgEqsjPZ2FwnwT7C9Vx6m9Orh00Ag3T5iSvGWMR6f18egUqSO6eHRUC2X7VfH4kBIe7p+POwdm4/r+GchPVcPSpbpQX2IIprkh4sINsH+LPlrLTNBbboDham2Sx5aikVjP+0QNL5OfOb93Js7tJnZy22xsLlRGVDQTgWHWyMnRwaE9M3D93FQ8ujodNbemouPBJyQnzqA+a180OvrZbGr7VuWNoWEpjDWri8bIRp/IgPuLEkq3ZCouLmaEhIQy9HS109hMwz4W07Dfytr8hqOjTS7Pgq1nYWUpTy+bQF88gl+Vka588rP0snHW1tYzjU2N0gyNdZ4YmxiSvGYi8fTmUbT6OdkzYW1FMhyxlNaWptJZAC5O5nAnKkhnRX8vNlZ4c0lZIczPiuRAI+zbrYCSoqUQibSRlWGEkGArJMVzUMI3xs41S3CsVAXnd6nj+r7FuL1/Ca7t1cSNTzVxdacKrmxVwKXSheT2bJzdPhu5yfpgmXPh4UzATjTC0Y3aaLighs57yzBYaYJXdfp4Va+Hz+p08LJKC0/L1dBRNg8ddxei+64COm/PweD9T1B3ZTKK8rSRn62DC0dm4M6F6ai4PhW1t6ag//EMPKmZSY00KryTjCxAe/Xc9sREv4X5/IL/sBWWrGTTcxj06Ig1a9YyQkNDGTa2NlNs7W1nhoaHM9atW8egR6KUFJf8p9Z09erV0jU+dPX1NJRUFBvsHJnw9eOO+niwKVcnFuVAoHNwIOBZkjzHNoEVUUJrKxZ4PDaYTDYseCxEBJlg8xpVHDk0DxsIVLk5Bigp1EM4yVOe7mwE+PMQFcqDMN0UOwo1cHitCo6uV8GpLao4t20xzpYq4fQmkvU2LsDJDfOwu0AJqTFGREGZKErXxuFNC3GLKF/dRUO03+Wi+7ElhmuY+KzBCK/rDPG62ggvqvTRW6FLFGsJWsrUiQIuRuvNBegl8L2um4bBRx/h2I75OL53Hsqv0sBNR9OdWRgsn4GR+vl43bhI8k2XguTnl/Mlwlx1v4SkVfT0HdkYSxlw/3HGAH1REKWTp1cWpvc5Ky4ukuML+PL0cK3/04YVf7lxIVG6D2jFW2ZsbO3kyv46KNBSstyHK/Ekuc/ZmQ0fHwuEBFrBl6iaK1E4NxdTLPc1QkqsNjYWKePsoQU4fWwhdmxfhPxcXWRmMJG2kkvyFk+aFb08iQX14SI82BJ5KSxsFWhhl3gx9pWoklqM7WJtbBPoojjTEJlxxnBztkbiimW4++ksXNk3GXeOLUDlBUO03Oair9IBzxqs8bqZhy/auPi6lYs3TWy8aGSivVwbzfc10Xh3Mequzkft+emovzgTLbdm4WntFHQ9mIQbJ2aj8tpUtN6fhaZ709FTPgvP6hbh87YFVGfV9F++GJiGu5fU9mZlp40RiWT9cjLg/hPo6OZsuv7eXWF+e55e/nvd2rXyfgHLx3otd6iMjLLHCi/OqLcblwoJ5CE/0wzb1mlh39bFOLBVVdqvd/3EQpSdm4eyCwo4d0yZWMlFWF2shsgoDoKDLBFKcqSPFxduBFpX2oL6chAYwEPoCnpuHBdZCUyS/cyQmchGQqQFIsjvCfHjwcnRCo4OPOzJU8C9Q1Nx49AcPDqng/prJLNVWOF1mwc+73DH173O+LLTgkBHlK6dhyfNXOkitE0PdUg2W4r7Z+bh6q4ZOLuNqNnZT9DzeAqGGyai8c4MVN+cjYayGUQp56OrfDaGaidjuH4yOmsmjr7tn0q1l8/pKRCnzBEIftt3Tnbhy4D732zxJEpYVFgkHxwRygiJ8zkcn+BCBXixJcv9LCTCbBMc26WIu2cVUH1dGY1lykQZlFF/Rx0Pry7B1TPqOLRXGVs2KiAnWx9eXpZwdSGAEUXzJsrm6cGBhztHur1vgJ8FApfTZYmQFZYICiC3id30I2B6unOJdbWAiwvJe5mLcW77NFzcPRNlx5VRd4OFzvs8PK23x5ueAHw1GICv+13wqssSz4jCvWjh4gk5thJr2fRQj7xXFTw8OgWH1yxAaCAb+9YuILlvPIYbJ6K1fDLq784gSjgTzQ+mE8Wcg6FqAmPNBOpp41RqpGXa6OuuydT2LcY88kUk/9tGj7KLXwbc/14OlM6rKxiTnJLMiE8LKU1KdCEwcKm4GEtqfYEOzh9UwIOLKqi5rYHGe0vQ9EALFTeW4vrZxTh5RAnbSxVIZluCuBgebG2Y0tZMGjYPkt/sbM3BZhvB3FwfZqS4XCPY0wOjifK5Ebvq6MiGvSOXgMZFbKgBdhYsxNGNM3BkwwzpJNXKCwYkl1mht8oOT1vc8arbD28H/fGq0wGveu3wosMCA81s9DYYoL3GBBV3tFFxfhb2iBQR5WMAYYo+Dm5SROP1CRion4ju+ikEtDnoq5qLgdr56Kmdis5qom4VH2Kobjr6qz8Z/a5/HPkS0UjNzikinw//PXRCkQw8GXD/q90M8kUFxYzUrJji2BgHKirSWpKRyqFW04v/7FLA1aOK0oVYH15WlSrbrYtLcOqIMnZtU8CGtcrIyTRBaJildICzlaWZVOXogc46OkuhsEgJioqKWERKRVUVOtpaYDOXwdGeAz9vLpKjjLCFr4hTm6bh3NapOLF5Jo5umosTOxbgwXlddFbaY7jVCy97fDHS54uX/X540e1CHiOq187GUKsZsYP6BKQlqLoyB+JVSliirodVfkZoPL4YA4+IJb0xG12VE9HfNgGtVTOJEk5Bb90M9NRMQk/1BPRUfUCO46iO8gmSZ81jUHV/YsuGTX5q+XnryOcjlv91wSG5X2dq/If9wGUlA+4fspX0Vr30BNS4lPCcyGhHJKXYULkZTKpIoIft61VweIcqrhF7d/WEMi6ROn5AEXt2KElhKxRpITWFZLQgC3pKD3g8Y9hYm8HRiUXUbRn09XWgp68NIyM9MAloVlbm8HCxRHqcGT4tJhlw2yzc2EMs5K7pOL97FjnOwdmdC3CGZMVrR5WIonIw3O2PF31+eNXvi1f0QkH9bhhq4aG/xRxddfroqFRB9eUZJBdqYPa8JdDRUMf+VGM8PsxF72Md9Fepoe3RVLQ3jkVb/STUkdsNFZPQWTsedQ/Ho+n+RAxWj0d3zYdUc/mHVGcDA+WPJnev32zL4wvjGWJRCaOggHxWIvGvnxs5isX0bPq/GpUiA1AG3N+pcEL5AgJcwsqo2Mg4Z0lKihVyMsyoEpEO1hdrYOvaJTi0QxlH9ipi//ZF2LFJCetLVFAk1kRmhhmSErgIDKSHWbFha2dGQDOGpaUp7O3M4WD3XvXooWLubjzEhFtAkL4MJ0tn4cGRKag4ORf3j83FzUOzcPvoPNw8QhT1IIHtyELcPqWImltaeNblhpeDywl0Hvhs0IMA54qnxE4ONuqgt1oJVw7ORH6EIfytHLFU3xBeVnq4KrRD43ln9JQrkXNU0VUzDy01E9DSNB7NNfTmjRNQXz6BgEceI+rXWTEOHeWkKidQrdVj37U0TEJb87iXhw4ZCH2cfDLNjIysMhJCJguFovGC/FxGXl4useNi6S6xBQXiv+oo/0fB+0tg6WF7su2Q//DrUgrkCgsKGWHRge5h0U4/JydZUDkZxpQgTx9FoqUoKdDEhhI1bNuohC1E8dYUqUrX/s9MN0F8Ag+RURZS4OiZ4Q5E2ewdmFKVo/vwnInNpDNbaKAFMpOY2CjUxGFiGe8cnYnqC0qouaCCylNKeHxaCQ9OK5IitvWsBh6eX4zHJDtWXFHDQAMHb5/44PUTL3z+3JtA54onrdZoL9PF3kIlJIfaQRAZhkBXe5iymUjzMUPt7jj03Y8guWwByWqK6KpdhNbaT9DZ+iFaaz5BXSUBqmYiUcgp6Kwix8qP0fBgAtX0eDwayuWpxrqpkq7WqejpnIT9e7UR7u8lyUkIfrE5J6QyI8xjZ3yQp1OhMGdhUmKidLWzwuISut9OXvTfhO39LJAC+eLiEmk3jwy6P7TC8eWKi4oZHj7uxoFh9t/HxFgiLdWMystaBn6OAYFLDwUCLQKfJsQEmLxcbaSmmiKGXlAolofwCB78A7nwJJnMnV6CwZMrhcyZ5Dh69ndyDA+FmcbYtVoVBzcr4Ph2Jdw8poLGa+povrwEtRfUUUtPTj23FOXnl6Lpkgbqr2mj9qYGau+oo7uRTRSOWMrBYLzsDETHfXdc3MFD8gpdJAT5ovPBMbxqOo7lvi7EuhpjX4YHei4X4XnDSgw1zsNQ8xz0NSigjYarZQy6m8ehruoTdNRNI7aS2MtHRNlqPkRb9Thy+wOq7oEcmuo+pro7p1Mt9dOoVyOTqRu3NeDtZYfEFd5IinBFiI8TsqPdO/0deaVJUYEmeekpjPeTWIVyf4/F/Mvn6P7QouJiRtqqVEZMRKhcZGQUY/WaNYx/9WUf/rB/GJ8v7TxnOLs5zV8ebP9ZZKQFUpI4ksxVZkhPNQd9zM4wQWaaMdJWmSAhgU1UjYdYAlxkNFc6St9/Bb3gEAcrlvOkfW4BPjwEr+AhjdjN1bnG2FaigX0bVXBgixo+LdXATXq15OuaaL2qgabrWmi5qo3q8+qov6yJ+isEups6aH6gi+oyPXQ0OONZbyJaywJxc6sFCiKNsSrYgVz0rji+pxh414pvOy4gITYY1mxzXBHYYejWGow0r0R/43y87JqBgdbZ6GqYho4mBlqbPyZ5juS2lokExunoricKV/MRuusmornyA1TeHUss50cY7JqOwZ4ZVHfrHLx8Pp16ULGIEhaskCTFRIwG+1mOhvrZIGa5C0K97T8LcrE4EBWyXLegqFi6CxH9uf56lPtbEP5F9pMrWb2asXLlyrHervbCZH+7MieeaVpYSDBtV/+ld239AwPHZ9AK5+bl8pGnn01bELGHcdFcKjGOh/hYDhLj2NJjLKloAhgNW8yv9+m1KYOC36/otWI5F2HBXGIfeQgL4iGJKFt+Ggsl+YbYUKCD7euW4NNN6gS4pbh0SB1t17XReU0X7aTarmih4ZoWmq4R0MqM0fJQC/UP9dFY4U2UaRXJeCuwM42DOE9jZMUHof7mp6i4VIo9m/OAr6rwTe8luLo6IprkyJb9sfi6/hBRt3B0107Hm95xeNE1hSjbZHQ0yqG+nuS42knoqB2Hvsap5LypaCMZTtqAUjkOtQ/HoOrRB+htm4OhnjkY7p1NjvPw+WtyfKZCXbgSiZLCfCoq3GM0OtTpFw9nK8SHeKEoZcXLlWFey8NDg+Vo2PLy8qSw0ONWxSIRnfPkfltDhnzuY2ig0jPSGc521qrhy73PJgZ5QpgUgk3Jbj8mhvlxC4tXk//Nv+7MhT9yt4BU4RxdnBl2ztyLAQEWVEgQVxIZzqMiwrmIiuQhKur9PLPoGI50RElsLFG5SC5Cwnjw9GTDx5uDUAJeJLkfQa9hGcqT7oaTHMeFMMsMhfxl2FCkjR3rNLFzkwZO7FlM4DLA0EMmeglgbbeN0HRXD3W3tVFfpor2cnW0PvLAnfMJ2JDlgjh3MzhbmoGfHo3uihP4U/8NfNlyFisTwnD//FbsXp+O2bPnYUuKI57c3ojvO04QdXNHb904fNYjh9e9E9DbPAHtdWPR1DgWNRUTUXXvEww2j8dQw0RiJT9GS/kkonQExko5VN4fi876mXjSPQcjg7PwrJ9Y0575eDY0D/1Ds3D8gg21ZctarBHHU/6enFG2mfG7CF9H+DkShfd0OO9iwxXp6emutbezscjOypyYnZvHoPMZAWdscUnJGHofvvT09LGebs4R0YE+n6VErkB6zIpRfqzfz9lhrtTK6OVCvlBMYC0YI5Ap3B8SOrnCwiKGo6tNnrcvjwoI4IyGEmgIdFKwaNiiSMXG0CrHlt4PIyB6+bDh5MTC8gB66XOu9PywEJ4UvvBwS4SH0faUS7IgE8UCA5TSwG1Ux/5tirh6jEB3dxlaH1ii5TEPrQ910F1uhBYC4J0TDtjM90YQyYEBrrb4dHMOclLDkLMyHN/33QT17B6OlmZBV1cb5qYmmDNvEcy01fBwVxhGyvfi25696G8wJdCNw5u+D/G8awx6msegtWYCGms/QhOtctUT0dswCb21H6O5nFhMAlhf3SSicmNRVz5WajGH2+e9h25oDl4NzcfzQWJRhxUw/GQuTlwwwdo1ydTqgmQ4OTApDbXFEn8XGwR72mFNij/iVrjA28WWsuWY3QwN9PdOX5UiHbeaujKZ4e/vqxvq735ItCoKeYkhSI/2k6SG+0gyw71GE8MDJMl+1iOujnbGee/3J5eXKdwfry9OOnOAzWNaeJL85e/PoYKDuFRMJJeibWSUFDguEhNZSE5mIYIo3opALhwcmfDy4iCA5DY/OsORLEdbzNAQC4QR2GhoIyIskLqSI50bt1asje0blfHpNiUc3auJm+fsUHknBFU3AvDgnDdO7Q7Amjx/hHs7wM2GbtkMRcX1PQB6MdxyEhpL1Al4ESAKIN1RR2OxOswM9MhtDWQHc9B1KZfkuUv4sruQwKaGnsYJeN4hh6ft8uhskidW8kPU1o5Fe7Mc2gl0bTXjCGgTiPWciMbHk4naTUNb9UeoeTQWHVUfY6hpIYY6FxDY5mJkYB6e95Eix1dPlPFiZB6OnlfGjRt7cGivmLKyNKP8na0RE+BIpQXZSzal+Uh25wdJ8mK94WnHBsfU6Exk8HIvAqE4JsTvpYB8eWTHrZBkRPtRmdH+EMb7IdjXlbKz5v68IcUXPKMl68KjYui5j4x/xZkLf+g/7rdvUENjgxlOruwhP38CTiBPEkPAiqOzWwwXMXEcKXBxJNOFEyWjBya7uLCkqzH7+XLhQ8rXnwO/5e/75WjwaMsZFk5DR+xlEgc5maYoFhphrYgLcb4zhHw/5Gf7Ij3RE9GBLvAhamZryYWrsx1K16TjSdMFfNVxHpLvmwh0Q7C1YmPK5BlQU1aFoZY2jPV0oKelD3MDLVwsccGzsjX4quscBhv80Vo1B111H2G4jYGB1rFoqR+HpqqP0FAzFq0NY9BUOwEtVR8SVfsI/fUfofERUTkCXG89nePkCYA0cHMJrAp42a9ArOV8DBG1e943R2oxnw2q4s2rBbh83p5Y1AuIjPCCJXMZUTh7KsLTiloVaIXUQBtKnOD2zsXaTMI0NUawl92fwnydEbXcFYHeTr8kh3lSKyN9wI/3o4pSAqgwXxdYWnDfpQS7S4IdmddTUlIm0n19QoFA/l+tg/0PDxwd9FNXrRpjYWN6MGC5Ba1wv0QRhYslgNEbeiQkkSLAxcZziH3kwNGBCT8fDoJW8KTKRkPq68eVAkfXCgJdMLGXITR4ITSAtOJZITzYFiHL7bHCxxErvOzh5WgJV3tLeLo6Ijk+FKuSQshreeLMwWL88OQe3o3cxzfEQpbdPAJTY0Noa2jCRN8ARnq6BDhdLFiogtQAPbQdDsLLqt141b4T9feUSUYbj5aKMehvZqCtgdhGomItFR+ivvIDtDWNRUM1sZVVdIYj+a5mEporPkY7UbyO+g+JrfwAdeTnu6vnYqhZCS96lfFyYBFeDhKL2TMLQ10k1xG1++ypGp73T0JFZTy2bsgnEFljVag7hLEe2LLKHcfE/tTJgkDsyvGjnC2NR+ntv7ycrSSBHnaS5CAnBHnZUSlhHpQwwRfiRD9kRHlTjnZWoyvc7cAPcxxKT0mYJaCXqxfTu7cWjhGJhHT9S8D3R89wdMcrIzMzi6G/TDvUL8CSqBT3l7AwLhVJZ7d4NhKTzRFPgEtKZpPn6MHHLOmqyvQE05DA97DRrZX0fgQEWKwI4kmho/ch8PbmgF7Gz9PdAh5OXHg7WxA1s4G7kzV5DV/ExYcjKzMRawvScPHwGmSvioAwNxHH969FZloMWExjzJg+A4qLFkFTYwm0NTWxjKgbbSUtTFRxb6sjnpetw0/DdzBQE4/y21NQfkceNfcYaCFgtTVMITARyB6ORe1jomwNNHCTyGMTpQrXWU13DUxGNwGuueoDVD8YJwWuo5wA1qKKVz2Licqp4dWACkb6ZhGVm4vXw4vx+XMjfP2Cg8oKV+zeI4LpMkN42XOREeIMD1s2XK2MkRFsT6WusIMtx4TS0dKQBLlbU2HedojwsaOKk32QHeOF7GgvYim9sSrCg+Q+a4mzDZcqiPX6Pn9lgI+Yn7EgNyNpWnp6OkMoLmbwhTR8RWNEwn/bD/CPCN6/gqWUy+fnM9w9XXVc3FlfBQXRKseThIVzqagYDlE5JuIJdElJtKrRjSVMafN/OFEvWuk83NjSjm836dLo5gRIc9javl+QyNXZijxvC2sLNpydbInyBRB7Go3Q8EBiNSMhyl9JrGYqDuwqwpE9RfB0sYapHlExHV1Mmz5LugvqYjU1qKmoQElRidxWhbqaBharKuPMOk8MXsrAV+1n8VX3QTy8ooeyq5Pw4BqD5EM5tFSOI9BNQNNjYhXvEUtZSW7XTEBr3UQMNH6Erqpx6K0dhwFyv7/+E2JDSc4jdrLmLrGU9XMw3KSCV90aGOnVxLMuDbweUMYIsZQvh/Tw7UtrfD7igr5+C5y7kAGmuQmUlJSIrXRANFE75jJtaGsthZ6eHpKDHLDcmYP9/EBsXOVDlJ2LnChX5MV4IDvKAxmRbkgKcUWwjwMseSxJoIslbpza+EV33cGmu2eLy1YXrvLZWLTSZq0oQXVlcixDVCCd0f8rdL8C9wcC7w/vmaWLE5WUMJKSkyZxLPTuhIVbg9jKd6Ekh0WRDCdVuRQmUojCBQVxpAOUyfPEIhJ18+ISmEyxzFAX+qRMzYxhZm4KNpsJDocFXx8PpKTEEeXzhaeXG9JWxWPTRiF8fNxgbcmBID8F0ZErYGdrAWVlZcyftwAaqmpQV1XFEvXFWKqpAVXV32BTgYKCEmbNmYftObZ4cikTn9cfwnd9l1F9xQnXzs3DnUsf4/FVBqrvyqHh0Yeouk8gezQGdfdJEZjaSE7rJDZzsOEj9NZNwFDdZFIT8bR5Mvqap6Cp/GPUlZHna4h1bFbBl4O6JMtpEXuqhc+Hl+FFH7GYg0vw9YgDvhhxxesRG1RUxaMkPwHWHBNE+jpCQEAqTfeSwmVmpAtvWxPYmuvCx56FwgRPJK5whIMlE242LKQSRRQmeGFlmBsi/J0plrkxtDTUKfGqELz7pgb4qRffvmn96VnXpW+b7u9oXyuKiSvKjdTOzkxjCIQF0gYv0W+Dq/+sev9vTyv6wyscPTeuuLhIPjIqimFsplUYQvJWSDD3XQRROLpVkm40kWa4WC5CQulGEzaWL+cgOpyH5d4W5EIzJdlKF7o6OuBZ8uDm7kKymDdRsWC4e7ggIT4SaanxxFq6wMvTBfb2FjAm59JF20Q1ApSiwiIsUlAgyqVKAHtfixQXkZy2EAqLFKC+mL6vhplz52JzhgPePFiPt7UH8ePADbTcTsDFE4q4fXUhbl+YhsdXGKgpY5AsNwYVd8ag6g65f4/YzHJ6pMl4DLd+hB4CW0c1rWQT8LR+Ep42zcRg4zQ0lk9EbdkEdD6eh9cdi/FFvz5GOgww3GaIL55w8OYJC6+GtPDFC1N8NcLB0yFz1NdHQZyfhIUL50vft6G+Hpyt2Ij3t4evPQfjJ88kqrwYi5SU4e3AI8A5w4JFw2mPIHcr5ES6Iz3cDQlBbsRW2lBLlyyBYFWw5JdvGke/fPH43fdvGwB8QQCvxNvhm5Luqj0vTu7JKtoojl7Gz4gcm5//21Cwgj9EN8K/RCtlfn7+GHphoujYcDM3N+MvIum+tFDuaFQk3TXABt2AkhDPQVQUDx6eHAT40xnOAstJbnMhiudsywLHzAhGBnrSkR9xBLLklfGwd7CBq5sjMrOSYGNjCR31JdJWRglFh7UAACAASURBVO4yI7CNjKBHMpnOUk0ClJpUyVRUlKVKt5CANmv2HALbQimE8xUWE1uphD15rvimlu5vu4mfh++j50EmTu5biEtn5+DWhZm4dXYK7l8ai8fXGXh8i4EHN+Tx8IYcUTx5YhcnortpHIaa5KVdAoONk/G05UMMEcV71jIJAyTv1T+YgOo7E6QZbrhRhZyjSc4xwJs+Fr4c5uHzZ3YENGeicGx8/5KHZ09tUVkejX3EDrvZMxHgTLKsIxMRXtbwcSJ51dEKUb42yImwx9oUd2xe5QlnazZ4LFM48Ezg7mCJXGIvC4nKpYW5I9DLHuZG+uRvElHUTy14+7yCej18T/LLt32SH77skHz/th6jP3bhq6dX0dVw7JsLh3IObRKFuqUmhn1QKBYwRL+O63w/gVYoA+7/Nkjv+9l+m0j5fgrIv2/poh8Ti8Xyubl5DHtbax8PD/YXQXSGC+VJ4ukO7ygOYugsF8smR560VZLuCqA7usl5BEA2vNw58HGxoPucYKSvQ3KeLTg8NharqMKYqB+90tcyXV1YmZnBzNAQTAMDMMmRbnHUIBDSE1XpCat0DlIjmW0RUbWlRP2WqGtBSVUTbtY6uLbOBz/V7cO3HVfwYw+54O6twqkDijh1fA4un5uKG2en4fb5T3DnwjiUXZbD3UvjcPfKh1LgKu4S5Sqfhu56ei2Tj/G0bgZeNM0iykYUrmUCXraOx0D9VFTdHUdUcSJaK+aSfKdMFFALQ42GeNXFwdshK7x5+v+x955hVWXZ1jB2qKquXGUOYI6AguScc84555xFclYURERRgqgEURDBhFkx51zmnHMuKypnvHOuQ1X3+/367nNvd1e/z/2xnn3YZx/Es/dYY4w555rLBj8/C8Qvz0Pw01N/PLnrgmvXY7BkUQ40SFKHedrA296Y2M0M4cRgEydMQH64NTbNC0Z7iS+6ZvshxscSQQQsf2I3Y101OFnokgy1x+w4UgVuNjDV0UDjokx8/2wPseluvHtxVPLk6ga8eXpE8uTmdskPry9KfnhxRPL++1MCeA8udbzvas5rXljoO70oJ0W6GWd+Tj/pngn/efLyPxJofSuU+3E9H9fuFRaJCJco5fqtuJaHACAd+RoLC9OPVJQUdnm4mXM+7X1wkIGEtxnmcq7IKCno+OdgLuty1Rc7ovr7cuLbAI6OemKFgLONAT1EGlAjQCnIK0BhijzJKXnIyY6DlvJ0mGoT4Og9XZrFtaYrQ11JCVMmTcQYAtokYrmJBDa5ERyRVMCECYqYrjge5XGGuN8Rhx+PLMO7y5vx+uxqnNwYhNb6IWgjsK1rH4R1bZ+hu+1zbGn/G7rb/0zS8q/YSuDbsf4j7O4m/9bTH2cP9cfF4wNx8+g3uHt8MO6cHErejRiPAHfv9Ee4cuRv2L/1b8RwX+LcoeEEuHG4d3Iq7p/VwrNrpnh+2wqPbjsQ2CLw64t4vH+ZRv4qBudOZWL+nASY6qoiNcgejgQgRflJUJqqCGXFyfiy/yDoqCkRCE2RE2aD0gRXlCW6oi7LB3MTnKGvoUQsaIGyJDfE+tnBhvzdsrJkvHt+EK8eH6d/4zDuXduGty/O4c2TEzROSn5+cwrP7+yQfP/08IcfX57oxa9XceXMunuNVQnFGWmxX+fmF3GLiH8A3f8C7p8aBPltt1R/P28ZR3sbywAv1xA3J1srM2ODKTPSUhlkojksLy3hYWxkMN3BynCvr5vNjzZWxh/c3PUlgcRgEeHEbOzhogxEeVcMveaSL8++nJufr4GoNnF104ezix48eJdUT2NkeGmgImg6qqM1UeijCHs9eUyZOBlTFVQIhEqYJj8VygpKmDplKrHAZAyXHUOsNoHem4qCzAh01Caj2F8Nx+tD8G5XGd6dXY/XFzbg9r5SbFluitqqb9Ha1B9r275GR+snWNv6ETas/gSb2r7BulV/wfrWz7C5/Sts7foUPVu+xJl9X+G7g1/i8pFBuHpkoOjYde/UEFw91R83zn6KW6f/iuO7P8Ku7k9IjtJ1B0cIwN09RXLyoh6eXzPH01s2ePnARwq2Fxn45UUW7t5MRceaJAR4OyHQxQJRHiaoTHVDc74vYojllJUU4WCmQ4BTII+rgInkz9ysdLEwzQ31WV4CZCrTFGCmp0KS0wU5EU40YWliYWEsfn59HLcubcXNC9345Ycb+PX78+j9+TZ+fXeV2O+I5M2T/YLl3jzeJ3nz6OivP704hSdX24nZ522tLolQL8xJkxHA+33P9/8MtvuPY7iS4pI/MbNFRYaq2lkabPBysvg1wMteEuTt+N7Hxfatl6vDGgsTQ1t3F+eB3CjH2tJ8sJKi/FY7KxNoqSrBzNpE4uVrBVd3PQlHKhlo0QS0aPJwMdF6CA7lpTnEcu76oszL21u69zezniPJy+gQIyxOmoLObAX0FGrj6GxdHChQw8rkacj0koen6QQYqYyGtvJYqE8bg+kKY5AQaIqVc3ywqcob51eF40ZrDH7YXoYfT7Th3fnNeHKoBkda3LBs3gTMn9cfjcuGYVXLQKxs/BhrV3+GLgLd5lUEulWfo6PlE2xo+4Ik5hfk674gL/cFvtv3Jc4f+ArXjwzBrSODCXAsJ4cQu32O++c+w7VjfxGBlZ0b/oLD277GpX2ydM1kApwKHnyng2dXzfDgujVePfTFh+dJ6H1Bku9JHnZsTMCWrfNhZWUKPTVlTOfWEgqTYGOojkAnI1F4rUlsnh9pi1gfc2irq8LHTh+LZ3qgNM4ZZvoaCHYxQbirMfk+M2I+Dzia6WFmpAd+fH4Ar5+dwL3rPfjl7TmQjMSz+0fw06tz+P7pIbz//jQB76Dk7vl2vLi1RfL60cEPr+7vlrx73IOHF9f82FKdlJiZnvQxg46ei78vkv2De7v/KCnJPSrDIyJlYiJDHEK9rV57O5nDw9FS4utiDX93O4TSTBzi5Ygof1fE+Ltc83W2zlaQn7JPT0sdFsZ6HywtjXt9g9zhH+Em8fDSR2CQgVgxwPWUUdF9qwWI9Rh03pwW4MoS8nFe3oYikMIBFUcXkp0BeiiIVcPSdCVsyNHCrlnmOFJmgzMLHXFxqR8uNoTgdF0wTjRE4nJnDu5uzMHjDZl4smUuXvY04Mez3fj10jY82bcEJztT0TLfAPm5I1AyZwRqa4ehgeTk8oZBaF3+N6xa3g/tjZ9g3co/o6PpI3Q0f4KulX8lafkF9nZ/hlO7v8RFYriLB77AlUPfiJD//ZMjSUbK4fbpAbhBkvLs3o9FoIV936HNA3Bh7yhcPTSJWFCFAKmPp1cs8Iz82ttHQXj/NJ5kZRqBbwYO7kkmkJYjLtoDw4cPhyKBbezYsZimOIUkpTx01JWgOGU8dOloZ6wpopOBziaoSXeDm7UBEv2siek8UZXmjqoZbpif7I5ob1tEuZnh1nedQO91/PzmHN6/PYkfXp7B9y8ukac7had3d+Hts2N49mA/Scyjkpd3t9EEsAev7++SvH24p/enlyfw/cMerKxJWVyQnfyVCKhIGyP94RPm/1EBEvZoU6dNVbUx1XvpbG1MALP94OdqAy8na4m/iw087Mzh42whifK3702P84OnkxXUVZRga64nMdDTlDi728PC2gghcd4IDLOHj7euqJ8MCePlOQYIEasF9GgYIDBYuuLb208qMT099H+vLHEg0Dm5GCLIR4dkkho9VHroLrPFIZKIVzoL8GBTOZ5sm49n+2rx4tBS/HBmDX6+vBU/Xe7Gm3OrcHtvOfY1h6F2FsnTNAWkZIxDQelozKuURdXCwViyZBAa6vqjpeFzGp8Q6P4sgLd6+adYs+Jv6Fz5idgx5+DWL3FyZ39c2jsQlw98jSuHh+LakWF4cGokbp0ahZunB5J0/BondnyKLR0y2Nn1N7p+KL7rGYPz+whwpzXw5IIxnl23ogfYA+8eBeCXJ7H48CqdfFU0Th0rRai/C7zsTUV4P5jANF1JHkrk3dSI7Uz11JDkb4kUfyssTvdEepCVAKOjuS7dCxMsnuFO8tIVhdEOWJzGuTsXZIQ5w9fGEJvb5uHXH0gm3txGcvISJL/cwctHJ/AL+bf3P1zA25cX8Pz+frx6chyvHx8lubsXL+7ulLy8vYmO2yW/vDop+eXtWcnhbfN3zi+I0MrMzJQpKCz8v3z+/wLuv5m8trKy/tTewuCotak+rE0N33vYmyHUy1bi52IFHwdLeDiYS0K87ZEc4wcPZ6teBfnJ7x2sjXotjLVhZm4IK1tTia6BKjwD7OEX4iQKlLkukvdfCwyRjrAIAhyBLyDEEL4BzHKG8PY1FKVd7OVc+4qZ3emzzh4sPY3g7aWL6AAtFMTpYmmeKTrKrdC92Bk9y72xu8YOu5a6orvOA22V9qjOM0BWvAbJWBVExCsheeZU5JaMxaxSOcwtG46y8qFYsGAAaqu/RXPDV2he9gVaV/wFK5d9Qoz3MbHdp2hv+gbbOr/C4e0DcWbPCFw7OAzXDg8j1iLPdngA7hHD3Tg+FOeOfIlz+77Agc1/IsD9CYe7v8DRrYNxfs84ulYRT8/r4tllAzy7YYWfHnvh3UN//PAkCFeORaCzNQUdq2ZBkQCkTP6M82v50W7kxzQJcPIojHKAibYyxo0bT/7OlEBnAz8HYzpaoDLFFfbk7Yy0lFCR4o7qdHcCpCuq6HxuhCOyI1xw/fxa/PjyCO5e20KAOoI3xGhvn5Fne7SP2PUQntw9gAf03vdPj+OnNxfJ213DD88JeHc3S1493IGX93ZInt/e0vvj0x5i9kUPK/IjbLIYdAWFguny8v+Ynu4/YomNaHlOoLM0NUwJdreAk41Jr6O1SS8DLMDNCoGuJCndrBHhb4+oYA/4uNtI1FV5pxoNia6WqkRHUxVGxvoSXUNN6OqrwpY3cXQ2goOroWijEBhsIEDHTMcsJ10BTqCj8+6+0mu8fXh5DzOdAVwIeAxWL2JAZkE3AqWLpyGciAHtnXTg4q5N12rD10cLgX5a8PHShoeHJgFVC55+OgiI0EFsiipSMpWQkTsZOQVjkV8wDkXFozBr1ghUVQzCogXfom7RV1hW+wUaar5GY8NnBLqPsLrxW6xtGSCCHwy2ywflhG+7dvhbXD9KDHeU/BkB7vrJAaJl3pldHxM4+2HT6r/i0MavcGzzcJzvGUuMqIjH32ni0SVDvLhtg+8fuOL1XU88uBJA7OlJzJqBTRsWws3JBHJychg5ajSUpylAVUkRw0he+tgawMZIQyT3zfU14UkSUkttOmaG2CLBl8DnZCES5ZMmjkekuzFKou2R6m+NIBcLzAyyx9M72/Dz29P46ftzeHZnJx7e2IGf3l7C+ROrcffyRnrvPG6TInj37BB+enkSP746i59fncCru1vx7ulByc9v6PWDnZLntzb88uvLfTi9r+bJwuIwvdycbG7994cthP7Ds1t2dna/iooKGXMLy88sjbUuebtYSRysTT7YmhtKvOmm8rKQUC9ugGMJf09bXh4CcyMdOJJ09HUxJwmkiAkTxsPU3Bg6ZOL1yfBzFy5u8Mo76zgSSLz9DeFHbBZMDOfPvi5CujCVgyc+NNx99OHFoCPwuXv1sRwXM9M5BqM/fz7QiBjSEP4hRvAjOeoTRL6PPutH5wIJvMERBOgoA4TH6SEyQRvxDLgZ05GcrkxHAl6WPDKzJ6OgYDTmzh5GoBuABfMJeFX90VBLbLeMpeVHWNc+ELs2DSbvNphYahRuHR2Lm0fkcJkAd+9Ef1wXHbsG4PwxYrj9xGhb/koStB+2tH2KfeuG4OAGOZzeMQEXCHAPL2jjxQ1TvLljg9e3nfHwqgtO73VGy/I0LFyQihSS3cUxjojzscbE8WOhMGWyKPHi5P0X/QeLPNucBHfEeluIdEmMt7VIjmuoTkdakA1qs3wJXNYi0c95yEmTJsHV1gwpBMhz++rx66v9xFTbODiCF49oPNiFR7e6cf27drx/9x1ePT6ENxxAeXcBL58cw9MbWwhsh/D24V58/7hH8oZ83Avydy/ubH7//uV+HNlZvXleQahiTnYWV6b8w9Zcef8LuP+/DMdt1pKTk2UM9HRsHKwM3thaGEp4KQgDLNzLFkEeNnAnv+BoZSiWxTjbGsOKJKepoXQ7Kg1iOnn5yTAy0YO6pgodNWFJgLOx0xULTf8RdIGhhgJ0YX2ezp9A6MegYabzkXo5KciI7TiQwqkDkqT+/gRuP14nZyACLiHEkCEE2mAakbG6iEnQQjivuYvXQVSCJg0txCVpIpFAl5BMPihVhUA3DenpSsjKmoLC/DEoLRmJCpaXBLqltZ9jTfNH2Nj+JYFtCPZvH4xzB0bj6tHJ5NFkcfOoHG4fG44bxwbTGIizh4fj5H5ZnN75GXZ1/QkdzX/Gro4vcWiTLI5vHYezuyfSdSp4dF4LL66b4MUtU2I5Y5w7aIOuld7oXFWM+GhfJHibYnaMHVIDbOFqZQAVpanwdjRHfICjiFAqT5VHHIEn0sMKtqbaKI13gRtdp6gwRST5bY014G+vT69HIcqN/GoQ3S9SIjF0/f715Xh1Zz0xaice3yR/+3wf3twneXl/Kx6Rr3v3/ACNowS4w/jxxWm8fHwMP785j/dvz+Dn1yQ/H/Xg1f0tknfPjkpYhr6+t73315d7cfvM8rt1pRF6M2dmcGVKv/9luP9iI6DS0tl/cvPwklFXmTrfh+SIiYH2+wB3a0molw0xnBUHSeBqYwRnLjUisLmTwWegGdKMa2asi6nkQfR0tYjZtKGpPR3G3FuSQMZty3mYWmjD1EoHTm4GwrP58Dq3QGm/E87JcUMhbpknmI4B520oTRfwMh0/Xg9H0jOA18RJAy2BwdyEyECsHg+N1EN4tHRExOghJl4bkXHaiCbARSdqIJZGfBIxQzwDUAOpM1QwM2OaGDk5kzBnlixqFg3EqmV/w9b2r7B30wAc2zUEZwhMl49NwfUTCsRso3HjyFDcPSmtHjm1dzgukrQ81fMlebaPsbb5r9i4+k/Y1/UVSUpZnNo+Ghf3TSLZqYwHF3Tw5Jo+7p63xckdHtjaZYmtmytRUhALffJqatOnIivEGuXxTjCl71RXfTqsDLVEu4X0IDtivTEYNXoMAUxB+LyiaAcCpw1szPTgQUznbKYBPQ0lyJIk1Z4uj6VZfsgId0GanzV2thbg9vlVuHFmNc4cWIqHlzvw+HoXLh1vIh+3Ey/u7cGrRwfw7N4+/Pj8MLjs6+Wjo3hN4Hp5l5juyV5iuu3k6w7j9cO9kld3GXwHf/3wei+ObC0/WpwR/G1RYY5Mbl5+vz9SAOUP3h4hp9+sWbP6RUZF/dXFwXSbm72xxMJY71dnG1MJs5irrYlgN3c7Y7EWzcHSAHYWhnCwNoa1uT40yFOwnLSxNYeZhQF09VTpyGDTEasCHBz16KhD57Rhbq1LPkxfCiR/KbtxBJMZjz0eB1RYJrp7S9MEDDSWmD59cpRzeuK6YAapNLXA0pTTDHyMJMBFxxHDxelKlwMlMdg0EcuAS1RHvGA6VaQS2FKJ6Xg74cp5Q7Cy/ltsWPkVdnb2x74tA3CafNuVwxNw85g8bhydgitHJuDioWGC3a4Ry507OIzk2lf00H0qysFaln6M3eTh9nQNwPEtI3Fix2ic3z8ZNwhw9y/q4dFVI3x3yAo1ZZ5Y2ViAbZuqkJvqjVA3UygQkLj9g5+dAayNdKE+XQk6BDo/ApyDqY4o7TKl7zQt0AYj5EZCTWky8iIdMWXKJOSE2aIu0wvzkz0wg97vP3AwRowYDntzA2QG2qK1Ih5Pb3Xh8bUunNxbg8vHG8XruxfaSGZuJmDtEZHJh9fJxz09gPc/nMOT27tx91IXnpP/+/7xbnz/ZJ8Yr0iKvqHx+t7WXvJ47398eeDD3nWFHUW5qd/wItf8/N92fs37X8Dl/3+2Hf6tYkCaUymUSU9NkJmR6Bvn72b1g6OVgcTMWK/XykQfzuTR3AhoDpZGcLKWDpKaMDLQhCrNzObGOtCgh0NXRwPOrnYwIrYzJJPP/o2ZzdZeCjh7R31YEtjMLLVh46Anoo/+gQYCdCEEsiDBWobinD+ByTtIGihhlvMiwHHawNtHmixnsAWzLA2VBl24v2UYt3LgOk1eYU5gi4rVIYaTAi4uUZOARkyXooY4kpdJ5OlmEtAKcidhQZkcVtQMxrrmQdjBvm39EGK3Ebi0dwIuHZiMC/sn4sqhiTizdwRO7xtGjDeGgMdS81sc6P6EpOTXaF76NdY3/QX71/2NADcQhzaPwLk9E3D5qAJunFbFzTN6uHxKC9s3qRKThqC9qRjFhdFwIGYqiePghyUMtdSgqjyNAGgBLztDDB4mK+pBOefmYm2IzDAnrMj2hi+B0pE+lxvuAAX5KeTrrFAQ6YQ5cS5IJA/Ihdsq06bA1owmH7IDC7KC8OreRlw+0YRb51bhKbHbzbOtuHexDU9ubCAwbiam20VS8zCe3tmB5/d3EpuRf3u0Fz+8OIlfXp/kSCUBs4eu24PvH/VI3j3cgV/enJa8e7JP8urOBmxqyqrMnJEsk0t+jkD3h6hG+WMBru8Lyc3NlyksKumXkhD7l+yM8MD6+qJeC5KE+tpqvcYG2nCyMpYwo3HQxN7CCJ4OpnAiSWlhpANNApmDpSHMDbTE4k5VFWWYmhsJSWlqpk1yUhfWtgQ0saBUF3Z05J/Zy1kQ29nSzx4+UjD5+esL0AmWCzIUoAqg19509PKTXuPJg70cS8sgKcMxMDniGdyX24uI1iUvR4CLlbIcS0uWk7FJ6gQ0NSSmqSApTRXpM5WRmz0F5SXj0VAlh7UNw7Fj1QAcWDcU+zcNwylipzO7J+Fsz3ic6RmLcz0jSDqOwPnDo3DpGL23dxD2b/0KezZ+Q1LyK6ys+wg713yGPZ10rmswsR5fPxYXj8jj9jkNXP9OB9s3aqGtxRPHDjeirbWUJoFAfDNwGHkyLSxOc0KYiwnUVacTeOywINkdfiQVJ08cL6TldPJ0HtYGJDldsCDFHVHupjDQUkW0tzVKY52RF+aA8gQXaKhMJWk5ndjOhySnA3xsTZEd5YErx5YT2Fpx4xy3/2vGs5sb8eTmJty/0oV7l7vwjJjs1f0eAp80WvnmyX7yc0fIw53g8i+RNH9yawte0nVvSWKSpJS8IhA+vbVF8vbBdsnTqx2oKAwLzsuaIZOTVyjzRyh4/gOuX8vvV1yYLTMzNUqmvDRp0dETne8K8hN7lRUVeo31tWCqryWxIYbzdbYkVjOGOQHJkWZaK1MCEMlGYz0tqKkoiXD12DGjoaqqDHNzY+jpa9BRW6zo5m2HHR2l+705ODLodGFFMlOwn52eYDpXD33BZAw6Zjj2dL+lDjhPJ5jOXwo6D28e+lIpGtgXPOnzcWFcvRJFLMcF0iwr43UQx0ETZjdiuYQUdaQR2LIylFCUq4DZ+VMwjwDXVD0CG5uGYVv7UOzuGoa9G4fh6OZxOLaVxjY5HN9GPm3bYALeSJw/MIrANgzHdg7Brg1DsK71ayyv/hTdLZ9h99qvcGADsd6mofQ58nA943CeAHfjjC5OHzbCtk5nNC1Ix7rVRagui0IKMZSS4iT0HzIchppTCUAqJBdlkUq+qyTaGYvSPOFjbwwzfU3RXEiHgFQc5YSFKa4i4W1HkrEyxVOAsC7Di8ClC9lRIxFAMjSH/Fuyvx0i3K2REeGOk3uW4OGVtbh2ZhX5uDqSk+3EbhtJLu7Cg2vdBLx1uHelkyTkVrx+sJPAtZUAuRnP7+0iv0dAe8Cycz+nB/DD0/14fX8HseY2yY8vD3EKoffNw529ty+0v26rTY2aVZDx5+zcApl/d8HzH6vhT37+n/Pzi2RyMuK+qSxPWLHvyFocPbMRsTE+vSpTFWFqoC0xJjPvZGXEixmhraEKA111kQLgyhMGnNI0RYweO5p8xESxyHO6yjSYmRlBV1cTFuY6Ym8A7srFC025asTRiUBHw56GDZ2ztNERKQN+7ezBpV1SPxfUByLuXckdmgMJfD4BBoLxOHgicnW/+b8gfRp9ARROqpPMjIjWIx8nbVoUS5IyMVmTgKaO7IzpmJWniLKiiaicNQELy8egYeFotC+VQ3frSGxbMwo7OmWxax1vIjmKmGo49hHjHSKJeXyrLE7uGoUTu0fj6M4ROLStv6hAWVr9Odat+Aw7Or7Bvs6vcXDDAOwjhjy4RRYniOGunVSl3+mKpkWhqF0QhqwUb8RzKwQvHRRGmiItyIqk5HT6DuWhS9/xkGHD4GSqjvxIZ9iY6MBAWxXK06Yi0oujl+R7SW1kBDvAiAA4ceI4kpf6ov8JRyVNdFQxftw4ISktDTQEwyX4OKAg1hun9y7B2f115CGX4sLRZbhKLPfw2npcOLYCV+j17fPtxFZbcfO7NXhwda1IIbwkafnqYQ8BbC/LSPz08iiB6xQeXFiNNw/Jx5GXe3Fro+Tdo92SH54d6MUvV3D7RP1PXXXxEaUlucR0HESRyst/RwTzD+Hb+rrw/ikrY6ZMYpTXsKoFmWsOnliHvUfW/tq9bemHlJRgNuwSS2MDWJrowsXOFMx2ygQuC3oARL8MAiKHrXmRqNI0BTEU5Cdh/IRxMDU1gL6BDh21RYNXlpL2oleJnlh6wzWSvO7NltiNmc6S5KW1Hfs8Pbi4S6OXAYHSHF1oX+0ly0WWjwHB0lRAcOhvAROpjOTBgZaQCKmPi47RQSzJyXhiuMQkLcFq+dlTCWTjUDNvLIFsJFqWjMCqulFYuXQU1vD2VivHYmPraGxcRa9Xy9LrodjSOhB71gzAwfWyIsx/ZOu32L9lDHq6R2B75xdYtuRbrK7/ArsJbNvJ++1f/y1dNxQHNo7A3u5hdO1E+r12aFnmgcXlcWhrKkFZWSp9b4qI8zVHXiR5r2gHeJBENyGfFuJqAYUpk/DF1/2FlJw0cSJNeIbQVpsOTVUlONEkZm1MKsOccFo+OAAAIABJREFUVAcxn4W+OjSmK2AMTXoKkyeK67ju0pbuE6cROBnu52AuGG5/dzl5zjqcPVAvAHbx6ApcPNYogig3zrbh6qmVBLo1eHR9IwFxA7HbRgLcdty51IEX98nfvTiMN4/3EtD2gHNyPzzfT/7uGO5f7sDLWxuY9SQv72z+8PBcI55dXPFrebZfYHJSkkxhYfGf8v5NO/n8MeokuT99QaFMXITnuMXV2YcJaNjZ0/xh666W3i27mukhDaCbqAxLY3040M22JOOtTt5MU02ZfJs2GXHyYab6MCLQcS0fJ2a1Sero66jTjDseeiQzjYx4M0VN0ZXLjljO6be9uvlI7PYb03EwxdZBCjZ+zWzn6KIvipmDQ/4+fi8HCzb4vYtzYJC++Fn0SuEgSawuwvra8SUkaSOJgJZKzJadroLSggmoq5DDqpphWFU/HB2NsljTOBJty8eiddloNNeOQmvdaAG+lcR2HcuHY1PTCOwg0O1qH4z9XbLYs04WPeuHk9wciy2d36B2SX8sXfAl+b5P0dM5CD1rvyV2G4QjGwdhx5pvsaVtHDY0m2HpoiCsaSqikYeW+izUVM3AN4OGwkhrGnkxB7jb6GP0mLEw0JiKWbFu8LY3IaabDi2S55bkk3OjXBDjZQFlRXkh3W3EqgElpAVaY06iBzzJ50V6WCLMzQJWdH/0NJTFGjoLA01RjcIqxNpYB2uXZ+MEgetkz2Ic27UI54824vKJZvKjjTi1r1YAkdnv1nftuHOxg+TmJjy82iUAeO/KBlw73YK3D3bjKfm+7x/vIQ+3D98/3Yfntzfjzb3NkreP9+HVXZKgBLpXNzpx8UD164qiML/szDSZgsKiP/9W7Pyv9HT/puDIP+6wmfsnDt1mZ6aOWVqTfXTvgdXYuq3hw5YdDZLOjUuwcfsKSXi4r4QlJYf8bc0MYGGsCw6ecMmWJd1QHQ0V6PZF08YS2EaMGAFVkpIq06di2LDhUFNXgbmZITQ01USk0tZGT3ThYqA503Bx5q5cUpbjDRgZeBxMsXOUsp4FsyKd8/aV5uUYaCL0zy3Tme1CpPWY0mEoLYjmSGWEgWihHhWtK1rxxTPgUjXIqyliQakcGquHoHO5HDauHImuFgLbitEEvtFYUT0K9QvGoGb+aNQT8zUvlkVXgxy2Ng/HtlXEZO3DCECy2LJmIElDkp4dA1Cz+FssmDMYm5s/wY72b7GLWXDdYBxY1x872wZhTcMgVM0dgfIifzQtTsTK2mSSsbFICLJGYZwtebLpGEUS3FBLWbTF48qQIUMHkzS0EQtKo72sCCjTEOxmidxwJ2SEOCCUXjNzTZk0AdNJUeiqTYOjGbejUIG/nQGczfUwVFaOQKYkvDanFDRUp0GX7oMFKZS1yzJwbPdCHNy6AIe3L8CJPbUEtDrycw30egnOHVxKAGzB5ZMt5DuX4fZ3bXhxdwvukNe7fb4Nj/r83fNbm8XxxW1itSe7aRDjEQDZz/30/IDkLcnLexfW9L4lyUkgfVqU7qOVMZPb8xX1y/sXy8t/b4CE2x8UFvXLmJH4eUNdzrZtu5vQtXbBr5u2L5ds39OKznWLJC2rymFpaUI3SwUuDmYwN+bCZT2R1OYGqsackNVUoRl0CiZMnEAz8xiMGzsW48ePEzk4efJymgRGSysT6OtrC5azsTYkaSkNnDg66vYB7jdPJ133xuvfHJykQLQmRrSw0hEVKpz85vIt/+DfGM5QyEgGXWhIX7I8iNMJUiYM69ssJIo8XBx5txkzVFGUJ4+yWaNRUymLplo5rKwfQUwjh6YaWdRVyWJh2WhUlY7HYjo2EuBW143EOgLc5kYaBLotKwdi8+ph2LCqP7pWfYMFC4ejtJDk5/KPsL3tK/SsGYTdJCf3dX1G4Pwcq6t1UJZnidISB7Qsz8GKmix0rJoNa/LCdiaayIqwQBIBz8lCX0R1w9yNEehkgm+J9bRV5JEfZgcdUhMmBJK8CEfMCLRDLAEwxtsG4R5Wot8LM910Yi5NFSWSnWPpOBVaBDB7Ux2oTpsi8nBONGHG+DrC1doEoV526NkwBz0by7Gjay6NUuxeX0bAW4gD26qwb3MFjvcswWnyeAw+lptXCXgcXLl5bjVunl2FuxfXkPdbjqfX1+P1/W1c2EzScgde3ekGSUm8fbRTpA1e0PlX97cS4/X0EhN+OLqt/Grd3Ajb/JwZMnnSRay/R8j/n2Y4TmonxsfKZGeElm7buQIbN9f/umnrst71m+uxbU+rZPeBNWhavQBqJGVMiNFs6IYZaGvAlKSJob6mYDHOuU0hr8C5oUmTJgqPwUAbNXo0pxFEiZeCwhTh4SwsjUXwxJBem1v0RSv7fBwDjocAHP3s4sqrvPXJ7xHTceSSPB2nDkwtyf9xoyE/Q/j+FpEkKSlYjlMBoVJZyfsPMBCZ5aSJb242q4OERPJvM9SQmTUV+XmTMbtkHObPJYCVjUI1ebnqsgk0xqO6fCTq58uhoWo4GqqHEjCHEyiHkfQcgtUrBhIbfo6mpd8gr2AscjMmorPuI+xu+wR72si3rf2CGO5zbGmeQOflUVPqgOLccJw70oIfHm/Hm6c7cJSYRENdWTBTjK8JyURbWBhqYTipAxdL8mOO5jSJTcY3AwaKPi7crcvTWg8lMc5ID7IlhrMjWWkNH3tzaJOcnKY4GVHedojzsRXlXfIKCphKn0/ytcXidD8oK0zE1/0HwJLuh6uVMdKjPQlsc9DdVkxMXYrN7bPQ3V6MnZ2zsWvdHGxpLyT2W4JD26twYEuFOJ6mv/ncQanMvErS88qJRpw/3IDbZ1sEqJ7f2YInV9fizYMdxHabSFZuE4z4/MZayUtivzcPtkvePNzV+/OL/Xh4seV5VXGod0Z6Wl/d5b9mhcG/x7cJdsvrl5QQK1NWFJ28dl01tvas6mWwdW8n4G1dLunaWIeuDTVYWFtCN1NeKiP1dURtpA4xmgbNuIp0noHFUohTAGp9ABzPzEY3W70vPcA+bvp0JQKdNsxIWuoR0xka8PbB3GlZB/Z2UtCxj2OZyWDjpTgcTOHX3HmZwcfy0txSBwbGmqIkjMvBvAOkSXEGXli4dDDwOD3AkUpODXBKIDyyrzsYt1ZP0EF8omZfpFIFmZnKKMxXxJwSAtrcsaghZquZKx1Vc2WxYN5g1JL8rF88BI31/el1f2IrOfKIapiZIo8N9X/GjpUfY2drf+zr+Bi7Vo1HR60qKgvsUJbjhsVzInDpbCve3t+I7x9twcrlxQQOQ2InPXxLzONirom8aAd4O5pgzLhxogA5wt1SLMVh2a5Lkp0ns0RfSxRHMeDskeJvh3gCF8tKG2NtAaQwNyvEEuuFOJlCfvIEaCgrwsfOBIl+9ogiRmMADx8hS79XGwkhLljXkofO5kJ0NuVg7YpsAl8JAa+EjkXYtLqYADkfPd2V2LNpPo1yHOiehxPEeidpHN9dLfye8HhnVxIAGwlwm/DoUjse0nh2c71guoeX2/Gazr++t0Xy+v528nTdku+f9Lz/8fFO3DzV9KooI9A8O5OYrqBYpiA/95/e+/LftZi0X15+oYy/j4NC2+p5b7fuWS3p3tHYu767Hp0bayVr1i1Gx7oarGqvRFZunJg9OSCip6MhlvlPVZiM8QQilo1Dhw3DZGI4Hgp0Q7Xo4eCuwNNo5ubWdFOnyosELV+rq6tFctKMJKoxDA11YWZKrMWlXtwKz/bvkUs3Vz3RuYv3iHNx4/0FDH8HoIhkEkiNTLk+UwNWdjrw4Fwc77ATIO1t+Zuf8+U9CMQCV0MBRJaWESJiqSetPok0QFysHtJStJA1U4W83VSUFiiQt5qM+UWTUFE8CXNLxqK8dCRKS2Uxe9YoFOZNQmy8qliZUJw5FhuW9sP25r8R4L4lwP2NwDYALZW2KEzzR2aKF8rzg9DZmEOSayPeEdgunWxCsLcFRo2UI+aiCWuUHD7+/Bvhu7hecjB5XlcLLdFCQZm+6wAXSxjpqIslOVkhtqhMcEFygD2SCETpJC0LCIDJftbwtCEZ6mxBzGgBB3N9TCNVwf1MWKb6kBWI9LCGnqayuDe6ZAW8nMyxqiETrUszsbYpF6uWZWNNYx7WNtNoyiO5XIhN7bOxfmUBNrQWYOuaEpKgZeRZZxHjVeLUXvZ7NcLnndlfi+snVuABAe32uVY8urwGj6524dmNTry4uVaUij26tFqA7t2jXRxIkZAM7f3x2V5cOdl4bU1NQnBuZkq/jOxC0Qvn70UY/8GA+8e2dUVFxf1iIoOGtDSW7FnbVU1erbq3a2MtujbVSTo31aOpdR6aVlWinYCXmByMqVMmE3spk0yZIphr4qQ++UhMJkfspjp9GgFukgAXy0teC6enrU4mX14U1fJNlr6vACMDApqZAYyN9aClpU5HLcFalpbaQjqyrHR2ZobjPQUIeAQ0Dw9DsRznN9AxE3Iez8xcGzoG6sR4GrBmoHKdpa+U8YKC9eFHrOfDRc0sO4OlifCICP0+FjSU7k1H7JdEUnNGkhZmpmpi5gxpxUlmhhINLmRWQnK6EpJS1REWpQtPP1NEhBuievZgbFkug+7ln2BzE7Fby9+wvl4FDXNckJ3khdwUF+zoKMGm1jx8R7ILvUdxdG8DfDzMkR5uCUNdVdjR3881j7pq8hghKyfC9t8OGEDgGkET2mTRTbkg0hHOJDF5wiqKsEV5nLMoXC4Mtxe5tvQgB5KWNghyMRfHBB97WJJ64KU83Lp9+Ijhom2er72ZmDhZoWjRvfR2tiSJPBMNC5PQXDsTzTXp9HMGVhMIpcArwJqmfKylyYIBuGl1EbZ1FGP72tnY3FaI/QS64z01xHSLcGLXQvJ3Tbh3vo3k5UrcOLkcjwl0bx7uxNNra/HqXjdJzTYC4DrydsR6F1vx4kYHsf2u3h8f0HvXOn9trs0MaVqY9pe5s3L75RDo8v5fYDgGW3FJSb+oiDCZpHivovWbatGxvqaXhqRj3WJJexcx2/paYrYq1C+bjZr6YpgY6RKwpG3B2ZuNHj1GBEa4uerEiROE3NTTVBOAkpefRFJTCeb0GV4Hx0W0HG0bRzeeF09yIpyZkdnNxIQAR4ypyhFMmpGtrQ1gYaUtCpsF6FykspK3rBILT3nBqbfB78BzcZZKUE4fGJlqQltPTRwd6HOiNMyPE+OGguV8A/SF5BSeri+IEhL69yQ6RzGjYnhjEc7RaSKOpCa/jo2TloSFEMDcvHgCMEEyXVtTOhzridk2E9i2rviIxhdYUz0SZdlWmBnni8IMPywoDsbpHeW4Rw/XrXMtOLBtAfJTXTFw4BCMIfk9XFYW0V5GqJ7hjBnkxxgILL9drAzFOrcBg4eBN+toyPCEv5MJPv9mIHxJCZTEumNOjCMNJxRGuYgFpeok4+1N9Yj5HJHgawcT+jwv0eH7MmqkLHm8aSKdwAEsXjenqzYdcSGuaFgyE0vmxaO+KgXLFqdjZT0xXkMWmuuz6JiNlQ05aK7LwurleWhfkUOsV0KjSHi97Z2l2Le5Eif31OLglnk42D0H10814dyBJbh6dCnunm3G/QurcPtUA17f7cazWxvw9CqDcDseX+2QvLrVKfn+0Q7JvQttH94+3fPh3uX2H9YvjU8uyEqSkTYmyv2ntGn4lwZJfks2hgR6yi1akn+pbV3dh7Xra3vXbqxHW9cStHcuJmabj7qGWaisysKcshmC0cTiRQIXtw0fM5bHGDHjTiWwaZBPsySAcTkXA4tBqEvySGmqtNJ9hJycqHRQIw/H13MTnOnK00SawNraVOrpSK7q62vBxFRbynbs6+x1RZrArW91tyeXbvkZ/N7Ji9uhMxB5l1TudWJppSOW/ujoq8HQhKQmfd7Z3ZAYieSmn9TPBQQbiWNwuDTCycnzMPZ3BKqIeJKZBLBQAl5IpIGoUuHqFUcX9o3a5DMNkBanjbo5g7GmhphtRT/saPozVlVNQVW+E6qL3UhGumNJWSRW16TiTE8VDmwuw8/PtmN9Wym0SWrH0u+L9jWGubEaMdlAyMrJIj2Uw/zEcurKGDZiBMI8rJBGDMZSXdQ/JnogK9RBJLIHDR4EfwdjzCAPF+BoJlICnAwfRuA11FEjb6ZBE+FYmugmC5+tTZOZG0nNcWOkjXC5DMze3BD25MdTojywqCIJ8+Yk0jEVSypT0URMt5KA1lSbgaXVKVi6KAXLazLRUM1glAJvLbMejQ2t+djRJY1y7u+uwKmexUJafre/BteOryAWa8e975qJ4UheXmrD85vr8IaY7gUx3Jv73ezl8ObBNl5hIHl8ue39m4fbcPtix70FRWHOhbkz/5xf8Jsqy/tPlZS5/QoLi2VSk2K+qapI2bOmcxFaVs//sLp9vmRVR7Vk9drFBLoaAThmtnmVmSidO4N8lwbk5EaKCgVeyMiA4UAJV5Vw4IRnZgNtNVF5wozGTMiJVQYog5Ol53DZEaJxKYOOQTmBHhJ9PZKSZkbEboYwIMbjjTp0iPEsLQ1gasag0xaRSa63FExHwPLxkXZj9vPVhy89vAEMJD9p2wVXYjbeZcec/I+xMQGYpCYvdjUnIHIOz4mucadrGXyeYvDPhqIek1cceNDvdPXUFwDjKhcLAr45/R0see1s9ZESp0NgG4l1S2WwrelTYrVR6FjSD+W5xijJCEdFrg/m5gVg48os7FxbiAv7q/EDebbbF1YjPS1QdE52szVDUpAFylNsCUwK6Pfx5zA3UEMKeTEG5LARsojyNBcebdxYTq+MFotLPaz0YKKvLVjxs6++lbZcoHvBS3K4vwlfK0vfMRccDBsuCz316bCmv5uZz4QmMw6+jCZ1MWz4MPKJWnAxJ+8a5orZRdHIy47CnKIILJqXiDpiuuVLGFzZQmbWVSaiep501C2agaa6TGK/bKwiKbqGGG9dazGxXQn2bKrA0V3VOLy9Ekd3LsRZAt2tMy24S8z+6MpaISufk597emM9HhAIX95ah/t0fHJpleQtyc7H5Pde3t324f3rA7h0fMXzjHjvoVnZ+TL/jDYN/7KoJHdC5qXvZbNSolvbKtC0euGH1vaFvS3k1ZrbqrCSRm19ERbXFqJ26SxUVGWTrPIXjMV5tbF9zMYrifnIPs2AwMjLRDRUlQTDjR07DloaqjA11MFoukZefoqQNtzHn00/J8VZljIwJ02aAA11VVj0MR3vcKOno0mgI09mQECx5IdeW7pujtiKo5XchZlbofNGjWIbYtGdWb8PgOTzWGo6SQMvHFyxJNCYmWmJVQpizR1JVjM+R7+X83rMpuwDzcx1YMLXmPFWWDqiyNrSnFc3ENjsDJEcY4DFpUPRWfsJNjVMRftC3ivcmoCmitIsZ9SWhmDp/CjsWlOAPV1FuHm8Bqd2V2FOThgyo6zIs9GEYE1/m4U+sZIGZgaZoSzeXrS4+/zrb6CuMlVI9G8GDoKXvQlcybMNHTYcX3wzQFScqChNg7edMdJDHBHibIqJNGmpKSsi2c+GAGpN3/FkKEweT+fkMYaAqKeuBC9bI/EdG+moih4nHDFmPydPHtvTxgRZqQEoyAknzxqKnJkhKC6IwcJ5SahdkIKaymRiNfJ3xHDV5QmonBNP7yVj0Xzp+SYCXSOxYFtjPjqbc7G1Yza2rpmFvRzJ5PzdjkpcOlyPy0eWEts14NHlDpEmuHOmES+uk6e7swEPLrTi4fmVeP1gB9dmEvB2SF7d2dz74d0J1C3MKCsrSv2EI5f/09Uo/yp2E2vb8nNnflO3JPP4qrVLehtXVnxoaq2UNK1aIGlsrcTylgpU1xDYGkqxpK4ExbNTEBzqIfzGWLrpPKNOpBvIhclcCMvRSi7tYg8nNssYP06AccKEceK9UfQ5FcFoUqByNG7wkCHiPU4diKQ4AdLIiCQbgY0Bx8DjdXPMdBokiQyMNAgIxIQWvKxHW6wq4ICKDy9AJWkpdkHlZTk0AgMM4Mvt9Pr8HV/Hg8HHARZepcC7q1r3BWis6LWVhQ4s6HczsC2IGRmgXHrGgNPTVxcyMilWC0vmjMLauvHY1Pgxls9TRF5qMGrLY7BhRS6a58dixcJ4XDqwEOd3V+BCz3zcPNmAGUn+BDBd5IVZIDfCBE40geioSiclTko7k99UV1bACGam0XIw0FQm6T0eCuSzmLG4BIvb4k0RE944ZAbbYH6yG4qi3ARbOhH7FtJrLvmyIEmfQv7N2VzaBj2YQDlNfqK4B5yrSw10FNZATUkBtuTlAp3MkZ8ZgpTUMJpUAxETF4T0GWHIz4nG/LnxqK2IR83CmVi8IA3VFcmoKE3AvFlRNCJRRe8zIJeSzGyqz8Uq8nldKwuwvrUAu9aXE8tV4WRPNb47WIc7vOzn+DJcOFRLEnOViFS+ISn5/MY6PLnehXsEuKfX2kX64NnNLk6W976+u+XDLyTDWxYmlERHhMgU8dbI/4M5un/NXgD0h6anp8skx/u7rmye/Wvz6ipJ86pKyZK6IixrrsDSxjIBtBoaC2uKUFKairT0SISG+UglIUkdOQLMBLELzTgRHOHUACdpFfpYbCydnzpNXiS5Wfrwsn5ekcwRN2bICX0pBL6WvR17QH5fiaSpiYm+FHCWJgQCAp+FsUghGBpqiWU9JsbMRNJqE2YuXrjqQhKSe1X6cOWJr5TxvLz04cZ5O2fp4LSC2CHVua9ImhPsnEi31ROLYDm9YE2sZ2UpBR6DW5eApkdy1M/LBJnJmlhWIYvO+gFYWqaGRUXmaK7yQmdDKo6vL8bJTUU4vKEY148uweubq3D1aA3Wr8hEzZxoMbGo0AOeHmyHykQ7lEaYE8DkibFGw0SXJhMNJdgZqUFjuiJ9PyNhb0Z/k6k+fV9DMXjoUIR60GcSPaE8lRTCkKFi264QFwtEkMScMnmCAJQeqQkV+nfcrQ2wkMCY4G2JoXStNzcSIlBPIM+tLD+e2M6YQD6NAD8NViRNQ1ytUJAVKtgtPi4AEVH+iI3zRw5J47klcaicl0YSM4HYLQ5V5UmomEOAK4nE3MIIlJbEY9HcOCwhtltMHpCrZlqWZqGjMReb22dj+9pZOL5rCc4dqMdV8nLXTqyg43IRRGEP9/hKB26eWoEnl9vx6OpaPLhI/u76Gjy/vV7y7PpayfMba3t/ft4jeXh9w5tl86Lds2emyOQXFv4p/3em+4MznEgDFM/qF+znOrh6YebNFS3lDLLeZY1zCWjlkvoVc1FdW4Saulnk27JQWjYTWTlxiE8IRggBTkVFGbIj5IR/4wQ2S0wOfnAJEie4uX6Sc3Ts3Vha8gLUaYrSXveTSTp+O6C/YEnOyQ0jScPA491sxogOwvLC6ykpKcLUxIBknBFsieVcnazFa65IMaBhRoA0NdGj1xoEDt60UU9a1PwPqw04cOLsJAUYJ88ZlHb2+oLd+Bo+2vb1URHNiwhg1la6wuex39PUVoE658JI8iWGW2FhoR2WlSugoVwFs3N0UJ7vjxXzY1CRH4JNy9LQsyoLJ7qLcOfEEtw7uxR7N8xGUaovyToFApIy/JyMyOuOFABzt9BAkpcpgUABw2jSKQq3wLwERxTHOGFGoDWGDBksWpbPjHAnz6WGbwYMILk5USiI4bJyGDh4sNiGyp2AE+ZuJdbIDR46TNRQ8vf6BcnSKRMIXAoTMHzYUFGIwHveeduZCvDxtlzKNEFaG5G81tZAPDFedkYYkhICERUTiNjYAHodgOTEIGTMDEdRYSwq5iaiksbiigTML0vGvDlJmFMYRb4vBqXF8QTAKAJkPPm+VBFUaSaJycGUjauKsLebPB0x3YXDDdi7fjZO71pAIGvEg0ttxHorCWTtJLuX4v6ZFSCQEeN14cnVDpKYzXh2uZU93vtfXuyWXD1a97i8IF47K6dAxCCka+ny/sgMJ7aKkomPj5VJSQyKXb2mCnXL50jqVpRJ6pbPldTUz8KC6nwCXDHmV+Vj9tx05ObHIyUtHJHRASTV3IW8Y7ZicPCNnECspKVGDydJnsmTJtFDIV3+wUzISW+ecfW11WFhoivOjRozSiopCbDMcEPIuLMk5RKwsWOldZf80OiSf7OztSCwWMHRzpzYzphYz1Dk60xp5tfQpNmcAK3Ba/AMtaT5Owsd4bs4QskSkeUgJ9EtrVgmaokqFvaAfE76vg5MzbVEQIQ/x13EHOyIFQkcPm7GSAqzRX6KA4HLGuW5Hqib54n5hSEkH1PQtjgFTZVRWF+XiKNd+fhueyn2rslDTUEwmsujoautCkttZdHOYNLESdBWU4CblQaGkBcbPHQ4sZuiYCYOIHmZq6JmhjMKI+2QF+4M1amTyOcOhaWhpij1siAPzGzYn7xvsKsFRo8cDi0VRWRHuhJjOoqlO0NJdST62CA/3AXaxGYc9eRJkStO/O0NMZ6+97RAe8yK9xbNhwaSP1SYNB4m9H9OivZAfnYYEhP8ER7pi5gYf0QSy8XH8fBDdnooZhXFoWxWPCpL44jhEjGnJEGcK86LRFF+FObSe3NoLJ6fitrKFCyrTkPTknRsXF2IHWtnYz95uf3dc7Gjo4CbCuH6iUZcOdaAy4frRLqAx92zjbhzuoFYrx3Prq0hsK2SvLrVJXn7YJvk5c2uDy9vrCE/OO+7ecVJY0XN5f+An/unJ7kLi0pkIkK8hlZWpl9sbCqVVC8t7V1MAFu4pFAwWuXCApRVZGPuvCzybWmYkR6FhKQQhIX7kFxzgaKigpCRYxg4NFszc3GeTZ+AyOe5ioTD28x+hnpaomCWVw5wUIWjmQxMztuxfxtKsy8PTsqyrBxK4Bs5cqTwLPy7GUzMbJYENEfu5OxqB3sbM9jRsLc1E6kEZjwtbTXo9qUSTAnYunrq0NJRE8EWNQ1lmJhqwcnBkPyhBnSIMXSJwVgqahIo9PTVCMCa8PMwhYG+CnzdjDAj1gk5ye6YneWL4pk+aFwYgfqyCDRXJqB9SQK2N6djX3suLu2qwP2LWM3RAAAgAElEQVTDC7GvLQ/L50Qh1t8Ryb42KI9zhbulHvnbcQh1NoQLecD+g4cJT8vV+ZoEFnNdTp9oCTnO2xqrTpssoo/eNgYiR+lBbMsykRu+Oprpi4oROfpugpzNYU5/e7+PP8VY+n2u5AUdyb8NGzYC0xXGYVaUI1Lo7+BACm9fpU7SMcLDnIDF8lEVeVGeovCce1VOpkmON1SJjXQnhgshZvNHaLAHIsI8ER/jjTiSl0nxPkhLCRSejtls7uwElBZG0ohCSVEsZhP7zSqMQUF+DEoKo1FemoR55PFqFyRi2aJUdLXko6MpD5vbSG5vrcCuzhLsIZbjSpSrx5bjGo3bZ5qkObozjeTtVuMJyUz2eK9vrccLYruX1zvw9u4GyQ+Pd/T+/HQ7drdnb01PCuuXJ9045L/Fcv9s//anvLxCmaK8xNCmljm9dcvLJItrinrnzc+UlM9nkGWShMxAUUkK8goTkZEVg+TkMERF+SEw0AMe7o7ko3TQf+BAEWWUJ4nIno0lpQpJSbFvNvk4lor8IKmqKIl6SgYjX8MPHL9mScPA+o3l2Ocxa3LUjCOWHHThrX/5d3Gghb2cDQHMmaSlp5sdXOjowsxHILSyMoGZqaEItNjZmBLYtGFjaUBDH0Y0u9ta6ZMsNUJipDPC/KzgQOxmTgA0JUb0pwexMNUVqVH2SCc5VzsnBPNLwjEnJxBVpRFoWpiE1mqauXOCUZYXgLZFUdjTnoXjm0tx89AibG7OxuwEDyQHOogkM+9EY0pgd7XQg6FYha1IDC4nzU0SC5sToG2NNQmMOtCmiYCLAVSI6Xi5DEd92ZsNIgaUHT0WeZFOiPQwE6H+ACczeNoZC8bi7569IC8sNddTERMfRyHdrQ0xlQA6mO4L59+MtFTx9YBBxJDycLIwQG6kPVQVJwhgcuTS3lxf+EAvYsekGC8kxfnQpOqNkGBPxJCUDQv1RFAonYugEelH8jIAM0lelhREY3Z+hABZWVEUebgEFBPDFeRE0ghDcUGs8HVV5QmoX5iG1ctzBeC2rC7Avk3lYhzfWSWCKCd2VeF0zyLyug24REx3/XgDbhyvx5Wjdbh9arnYDusZjZfk5x5faMHbOxskPz3a9v7Z1dXYsCK1clZO/Me5eQX/rd4o/7QWd/l5ef24Li07PWbIksXZh5c2zsOSmvwP8yrSJWUVWZhLo6R0BgqKk0W9ZOqMSCSnhCGGpCSDzc+XZm13B5JjZpAjBuNkqnzfGD9+bN8WvmNFgIR9Cr/WoplUh9iNWy/wg8GAYx/CFSZcZ8k/Mxty8IVzQuznpgo5OkFcw7+TGw9NoweX2zKYW5nC0tpMgMvSwlgAzov+JhcnS/i4WyPU3wHRIS6ICXFGWqw7ygtDMTcvBHOy/VGW64/SHH/UzovCysXxWF2bTMzFxyQsLo9B/swANC1KREdDGurnxaF1cTK6GzOwpSkdW1pmonVhHLFaPm4eWYhj3bOxq3EmvBxM6MFWQ7KfLSwMtBFA7MPfy1QFeQGqJG9r0WnLzFBdfE8hrmbICrEjQKiS3FZGlJcFAUdDVPGrT58mAhkhLjSBaCuJlAn7Lv5euBBc+DPOq9Ek5G6tj/woO5KItrBlH0Yg9yHZGOdlBT9bI5jpThffs7GOqujIFeRsKdrnTRgvbY9uR/5Pm0DqZmsIb/pdsWHuCCJmCwjko6cYfM/DwzwQSOcjI31EICUqJgB5WaGYUxxNIIshxmOGi0QhAS1jZhiyMyOQmxlOoCOJSddwRHNZ9Qy0r8gjaVmMjmWZ2NlRjJO7F+HA5nkCcBcO1ePioTohL2+Qrzu1az7O9lTiLnm722eb8JzY7cXNdcx0klc3O/H67kbJmzvrer+/3YGVC6PzUxJjZQqK/r5i/L9ajfJPC5QUFhX3S0tJksmdGZy5um1+b/WSgg/zFmT3zq3IQMnsGQJsOfmJIkCSmhaBhMQQwWzBwV4ICHCDt5fT74Djsi2OKCrKywuwMHtxEnsMAYST3Cr08DBjMQOyh+OKlAHkGRio3AiWN6+XJsLHYMjQoWIwwFieMrOx3BxLn1GfriyWoXCiNsDJHC52Jgj0tEWwnxMCvOwQRzNxwcxAzCsIxbL5caieHYlqYqjq0kg0VMSgrSYZdXMiUJnrh8qiYKyuS0PbEmKtxQloXBCNirxALCmNwvbVuehsSEdHfSraa+KxjUB2fEMJdrdlY3srPSRtuehZk4tbR6rRWJEgfFmsqwl87Qwxcsw4BDmaQklhMjTo/21KUnbocFnEulsgO8gR2SFO9OCr0P9nPGLcrUTXLK6R5O+MF5FyEfEM8mE6qlNF4MNEWwUeFtpCDnI1P6/e5gijqrKCmNg40sjfLQdgRpFKEJ3QiCVliQkZjDYGakLOsrfmVEGggxEMeX3cpHHoP2gQVIjxEnyl/U54uyv+2cHREn5+LvDxcYYv+fSAIE8a7gQ6eh3oRhLTAyFhJDFJcrK8zM4iSVkcR4CLE6ArzAlHblY4CrLDkT0zGNnZUSKPN4uAt3geyfCmAjTVEPDqUtGzrhQHN88X9ZbcQ4UjlywtT/VU4dKRepzduwind84nb1eLO2ebaTTh4YVW8nVrQICTvL23kQDY+eGnh92Ss3sqn5XmRhpwiiuvbwfWfyvD/d7AlUGXlyOTlBAiN68i47vly2ejojLz/VySkcWzZ0jyi5KI1RJIQsYiJTUciYms5wMRGESzXoArfH1dCHAOcHKygYO9NaaTROKACe+4yfKPG9gwmzHY2BuwlGIgMsjY/PODxGF/jsgNFOcGCzk5cpScmMH53JChQ4SkHERg48oJLgUbSQ+VIj14LH+iPC1QFOWAQGd6gGhGz4h3QwuxzroVM7CR2GZldZK4oeuWpWNzaw5JmFysqIjFktkRWE7gayiPQtfymcRiSagnv9VCx+6WbDE2rJiJjSvScWjDLJzZMU/MsAe7ConRcnCkmx6Q9WT8V87E3Ex/UQhsRsPD1lj0a9FXmyaq93kDDa7497A2poljitjaONLNhh5+I8FiYwhwzG7lCa6YpqhI59RQFOGE9AB7LEj2hR95t0FDh8NIW13UUE7ignCalJRpglJVkqehILztRPJdU6dMRJC9AeI8rYkRrYQH5p4xyd6WsCBw8z7mHFThQnK5kaPIvykLwI0llaFKHluLAKyvoSLkqxsva7IzgwPdWy/y6IEEsKBgkpRhngJ4gQS8IDoXHOIpjV4mBiEzPVT4OQ6iFOdHojg3UjBbRnqIAFz6jFBkZIQjLycC82dFiZpMLnjuJlnJyfBDWytxak8tDm1fgGPbK3Ge5OVlkpXn9i+hsRgnyRtfObRYLO25c2YFSc16kct8zoGUq2skL290Sl7f3tD7w8NuHO8uPliSFdk/9//qiZL375SUuTJ5BQUyOdkZf6ksS2xd0VLWW1GZ9aFsfrZk1px0SdGsNOTkxiN9ZhRJyHDEkGyIJhkZRGDz83eDr4+rYDdvL0e4uNgS6KyFj+NQPie+RcEygYMfjsmTpFG3ESOkMpFXgLO8UqZZ1M3OVKQHhssOF8DkAAADj8u6mNW41EjqY6QdgaWAlBUrD5jlHLmdg6k+jOmBdKAHPtbLGsVJ3qgiEDRXxhLIMtHdlIH1BKrtawrQTf5q5cIEbCHw7WgvwHoGFb2/jphsE0nFI5vn4lD3HPSsLSAGy8MuuubgumKco5n2woFqwWrbWzJwavtc7O3MRWKoPUk/BZJrJAGnSPOOnLxXmDKemMpWlExxTtGAJKY+Dfa4rhZGcKa/W09TRbQgV51O3osYiJPOnOznImJnYqFgJ1MCgLLYIjjUxRIeVoYiiDSqz+eGOhkjxNmYVMQ0wf4M7ABirmQfO1iTl+NIZoq3FeZFu8OfJGVBuDPKoh1hQRMTq5H5CV70N4+nf1sdgY5mgg01abKQp/f0p0+CvZkuTC1N4epmj0CaYHmiDY/wRiixWkiIBz0L7ggN9UJQmC+iYwKRlhwkqlLmzkpAWWkiZhHo8ojdGIgZM0IwMy0EmQS4grwYzKFr6qtS0dlSIPJyW/oqUI5srxJj/4a5QlpKay6Xi2AKS8vz+6tx7dhS3KLXd8/Q+K5Z+DlmuscXW/H08qret/c2fHh5c62kZk54Fm+Nlctt9/Jy/0tt9/5n2a3vyH9MTIS3WePyAsnC6jzybBm9s+ekI78oBZnZscKvpaZGIC4hGJEkI8Poi/YnsPn4ELN5OsHT3R6eHgw4Ozg6WsHezkIsu+EIIz8QE0TbtbFCFvJ5ZaVp4oHhCBkXzaoQE5oTSHnm5qJbzs1xLmncuDFCOnIQhYMv3BKAN7pnU8+MxwDmz/DvZBYZTSxhqa+FAEcL8jvKCHUwhQeBMJTYpizFC+2LE7G5JUuMDcRYGxpmkCT8P7y9dXyVd74tnLbnnntkzplpp97pVClQHEKIEHd3d3fiCXFPCBogOAR3d3d3dytSaKE6ds4tZH/ftb5PmJn3j/Pecztz3z/2Z4edENnPs35rra9WAnQ1YLxa2Q7W2wTQbV5SJbvXNMoOeLIV0wplPUB4YFWDHMJrJ7a2yc1jU+Xc7jFyaG2tHFxXLz5uwyHLhilj9On5icT7Oeshw8APi4UZ4qcH69Hj0+5QvKXKv48//kRTJIPx+f7scgcQfZ1tjMLvzz7T94gHzyf4m63guYb0N+ogtYUJoGSVCaO1vT4zalDDPOykOskXEnWg/Pvrb8s7kJCvM31gO1SmFcdJgp+LBLvYSH2Sj1SAOQepSvgQPnOIJs/ZNcAlIG+99bb4cZnKoAHSh/NP8GxlPUx8fN0kIjJIAUcJGRcfpqBLSo6UtJQI/Tg9I1ZKi+K1/KumKgOyMVtG1aZJXXWmlJWlSWFBspQWJ0lJMYBXBk+H1zsmFGnwZM2CGu0qYF5u99pWObp9khzZPln2rm9TdqO3O79/ilyFnLx7Zp7cO7tAHlxcDHabK3fOdBr1lzfXyHeQlj/e3yBfXlrc9adHG037No47NWdMTs+WpvruKqr/Psv9/b1bU8tLpXlJvxg7tvTgzLmjZdSYsufNrSXS0FRgIqsVl2TAryVJbm6imuLkFLzBDJLEhkhERICE4dQLDfE1nkN9NVARGOAtFgDNb8BWlDP0aRzwysQ2K9IHA3A07TT99Gc06szJcZiQghTsSPmoqQDITHo5gyWNfjp6FH5fRj15o/DGJqM4gAU4qcrZZhi8zlDx50xGy6Hi7Wgtfg6QeR72Mqk2UQ5valZwLZ+YIxvnlim4ti2tUa+2BWDburhK9qys0+DHjoWVsm9ZtZzZ2irn94yV4wDcejDgqOp4SYhyF9vhLCL+rfbu9e/H5D0OhqFDxNXNBYePj7iyXQngGAiZ3Q9/Zy/83vWZ4fjdhstrAEOwh4NEwXv2pMQM85KZpfHKZgzHVyb5Qe7110gkmdGdiXwHa/Vr/eGv3MBQNhaD9DBiSoVj7iI4Uh4PlnOxo4AS8Q1Idl8nO3hEb8kKdZe0YFf832H4+l5avqWVPzgQWeXzNt5/Vqvwe/F6edpb42El/XHNnFzsxS/AS6Lg5VhVpF4OHj4OHj4GHi8tLUpS02MkG9JyRF6CjCw2gij1dTnSBMZrwMdkuZLCeNiSBADPkJ9kQibD1y6s1f65vZvGy/YVjbIFhyDLvw5vmySn9kwB4CbDz83R/rm7ABuT4zfAcl+cnS8PLiwC+3XKfXi6x1eWynd318rTW2vk21srun64uxqSv3TOzNF5ZhXVjf9HLPd3ZDaAraH+pcKCfLPG2uwRnQvHysSOuq5Ro8tMtQ0FpuraEVICZsvNg18D2NLSYsBsMfBsYfBshowMB6uFAGyhAFtYqL+Eg+kCwXA8Ce0dbeVTnMyMSLK7m96NPo5yxTi5jWoU7iJjoay7k418gn8zkMLoJJmRQRTOqiTrfYCv76dRz17aUvIJXrPmqQ92sBlmDgnlJmmBrmAPG3EZbokb2VGGW5prAp6JXxb8Og+3gKSylyUd+bJ/PSQMWG7r4kowWa1sWlgO5quQrUur5Mi6Zrm4Y4zsX1Un53eOkaOr66QV0jQyxEUszPtpUOfV198Be/wGB8An0heei0DSuSDwqwNwcw4xNxcnZ0dI4t4S5O8s9VUpkpIUKu6eLuLmaitJABfD8mS/zBAPLToO97CF1AtVD8b6SVb+hwE8rjZD1Xdx6JI7bn4OCKJHZrCJXRVMH3DCllbkQE3wMIoPcJMaSMeKRI9uBntX7IcNluJoD6lNDVIfbYPDKcbPRStRBoM9U0Nc5bNPPsTf9ZbkhMMa4HUHG3NlbMpZplQYBQ7DQUuQxccFQ05GAGz08YGSkASWS4+VzCwjOZ4HP1dalKAdBnWVqVIJOVkGOVlQkKijFPOZSihJUiac1TFSVi5okPVLGmXX+nE6qGjrqladnbJ1ZbPOxGTE8vLhGfLFuYUKvKtHZgB8nRqxvIV/XzowBaCbK48uLZGH5+eZ/vRwi+m7L9aZvr292nTuwPRrHS0Z9k31lRzN/9+uQvl7sttLjU3NZiOyU95tGzvy8qzONtOYCRXPm0eVdNXU50tpGWVkmuSOSIJej9E3lmCLw5sbFRUEaRGgUUnq+ohwAs5XGY4+zsfHXVxcHbVekn7k895G4podAnxmYptVFNolwNwbTu9ePT9VgBnDRz9ROUmp6e1i282Ebxu9cwBRkKetMhpnKHIClZudtYR6GCF4VrWwkZLeiLsL3gdQ6SWtcXPx+7EgmFHDlTMK5NDKGtm1tFIObGiBfxspu1fWyo0jHbJsRom4wksNx42enRYm9taD5Ve/fgsgo0z7rd7U9D69cJB8it+Nfw8jsvz9+DmWsPVmUTGef/3G21JeECGHt4yShTOKpTg/TgYNNdchSVE+LspEHHng52SpkjvK10Fc4bsYbGKuLAj+iQytEhLvmSV8HQsI/PG6D173BXNbcTATly/iQGFOTsu0vJylOMZXGtP9pTY9XNMSVkMHaGqF8ykZfCmKDZCa1AiwXD8tMRuN39PRcqC8/vY7Mhw/JwDvfV+8z2Q8/kxzdmvgwAgI8pEI3AP08IlQPDFxvCcCJTYmGKxHfxcNn880QZzkjADowGjlYLKqMvi7ggTcU4kaYEnNjMdzrAKRNZnzZ1bJqgV1shbScv2SOlm3uEFHOLCJdc/GMXLuwAyVlid3tQNo8+Sbm6vkytFZcghe+zb83cNLS+XasVkavXx6Y6U8OD9Xvrm+rOvbG8tNf3y0RRZOL6kvHMEC5+aXa2qq/1utPH+/vFtd/UvcdNPUlNc+p7Ola8LE6mejxpR2VVdnmkpK06WkLEvy8hLVszECRaAxLByJ043MFgnARUYYrBaustJH2S4EgPPz89CVU3379VFZSVbS/QF45h44so6DzTAF3WtvvKFSkhKSU5dZ9ExGo3chk3ACFVnLqDbppTMt6WcoHUO8XLRJMtTdCd7HXm9SSiROD2bNJsH7UXfynP6PvweDNTZDBkt5TqhWhGyZUyLHtrTIMUhG+rLmygRNqP/ytTflc0hEa5vh8us339Igh9HJwNwgpC/+zQdlGOeKWOD35HAegtoKN6urvSV8Wz9I4T44WKwkKdJDokJd4fdsjPEFYO7MUE9IPWv1b5E+DvrMHW+F8YHabc360ffBWhx1QDCT1cl8zFnS14Z7OkIm+ogXDpb+YLrMUA8pjHRXuco5JPY4nD7+9DNd2MG61QA3e5XaHGFBlgx0ttZet7cgI/k3BXgMV6mqKRkWn+PQs8F7yTzgR/iZzHfa2Q9X0HHDURQ8fDRAF4uDmB9HxRj/TkiKwn0To0zH8q+Sgngc3pCT5RmSD6mZkRUL1ZQgWbi3MjJiAMg4aaxJl472Elk2r15WdpbL8tkjFXzsHNeRDcubNIhy9egcOQcf9/DyMg2isKXn1M4JcnbvJC16pr9ji8/X11eC6RbJNwDbt3fWP//9gw1dZ3aPP1VZmvnbGmPU3kv/1xnuxWxJdsfW1VabjSyM9Zkzu/7byR1VXa2jRz5noKS6boTkF6ZKUUm6tmIkpUCj4wSjZ4vBmxoe7q9+LToyQD8OBcuFdgONDzKcr6+7eAIM1jaWyjBMVjP3xhuKCVuGxAkgntrmgwbCZwwQZztLZS+d6PVJdyBAI5SGP2O9pQOMuxN8C2UOvwd9ICNwDGETZAyeGDk7I3r5ea9eetpT2pJ5PsTP/ljZ81P1hX36Mlz+uVhaDBBPdzAGmJN1jGzsJCv2ww32OfwRfSWjf4yavvH2u1og/BHA0Ac37uAhYE5zDmMdqENukyAPo7wdxMV2qIRAIjLyx/pPd6uB8iH+n/mAXmBfAIRzOQFgLwdLZTLm50K9HKQvfu4AfF8qAzab+rkMlwwAMyXQRZPbKUHuEuHpoB0ZlKCN8IMB8KpuAHhhtJdkBTlLGHwh85l18R4yMspVAeQClg5xs9X0RE64u6QHuYjTsIEa+qcvdLQydvMNxoHFUelMb/g5W2nFCn8HRl574PtwxIUD/KCfv7cE4T4IwfWPS4iUyOgQCYbCiYxmUCVCkiAvyXTZAF1ObrwUAXA5UEvZ+JiHOGsxMzJiJTUjXj9fU5EqE0YXyqI51bJyYYO28SyZzUFFdbJyXp1sXtEqh7ZOgJfrAMg65eLBGXLpEB6QmOf3T9N+wpuQk7dPz9eOAnYYUFo+vrZcnl5bbPrm9pqun77aJFPbMurjYmNfbmp6MVT2/weGq6tvMEuMj315zOji9TNnN0pDY8FPTGyzZKu8MsuUX5CsiW3m2lgjSQnJOkllOHg3ejYFGt5gw8MZz8FBuAiQGywq9sQp6ATW6fP553o686IzL0UvR5PPELYDTluOZ1NQAGRMzFJKMlFLsJH1eKFZK8h1VgwAfNb9tfSAlGBDwWSM9LHol0sfWRJFQIXjtOck599++JEC7gNWtxB0ANpvAGL+33fATqxTfO31t+Rf/+01+QW7oz/8QCUiG2L74+fx//J7E7Ac3ecOmRUTgRs7LUQKcqIlNTkcjO6uY9pd7awkgpUcuPkTumeHMDjhCVDZ4eZ2wk3P39sG0o4DV10ZFXS31WBIWZy3dBRGSCBeD8SNzsBIQoCjFEd5SiSYjD6KPovTtchclpB3fgBkfpgrWMpWd7llwWMmQlKGethrwKQxwU3mFgTpz4n1dVSQ8e+viPeR5vRgsKOH+msn/O70ty+8HAf1MrfZr09PZTdfZ2s99N7/4AMddWjnwK4Je/H0doOfC4S8DJFQqJ4gHLaRZDrcJ3EJ4RIP0KWmQl7iPsrH4Z2TRdaL10dicqSkQI4ScFnZAGRRsrS15MvMySNlzpRSo6NgpjEjZcGMSjBcq45oOLJtAuT5eC3/Or5zohyA1GQN5oUD05Xhrh2bo82sZLmHF5fI3TNz5ckVJseXPv/u1squG0emPq3IixhcUT6Shfp/qUD5ewPuhZRkN0BBbppZekpI0ezOUX8aAxlZW5tnqmsoMNXSu43MVH2djTeJgRL6tmicXgz7MyoZCfCFdTObMhzAF6TMRtD5aPLbF5LSC+baDib7ww8+VE9GaUhzT8/FqBh3ClCmcdMLawWdcMFZuEvZaYcLTonGnB1Ht9FjWEGSDuxnMCQZxtvZVuv8mHcju72Ihvbq3QPSFP6p16fy+ptv6s+g9CNzaj+e5sh6yS9ffU1e+/WvwVyGnGKjLEeF//r11zXip0EdMJM5WDQhxk8KcyKltTZFOifly6JpxTK7PU+mj8uV6tJ4SGs/MLqrLpT0d7GWCC97lb1khmFgQDvIXn9nYwUwJTCrN4IBNEprftz78x5iObiveNkM0gBHoJOFOIFxmAJgidtASMreOJgMyTlA30vN9UHycmssq3jMmct0tYW8ttcc3uD+fcFow8XJcrAeSixIZpCJ/tLRcpD6M2t2cQzsIx62A8UOALWGnzRyh720sMAZhwUPM3aIc0IzZ6FAVpsGDR5osnPg1iI3U0hYgCksMtAUzPsgxNcUDrCFwWZEx4Qo06WkQT5mgekymTKIM6LcqTF4REtCcpQk4x7LSI+UwoJEaWkaIZPHAnQTi2XO5BKZNalUS7/mzaiQZZ1VsnpRg2xd0SxbltXrFOiNiypl9+omAG6CHN06Tq4d75QrkJgXD07VCCZHNjy8MF++ubXahGc+nn13c6nMa8/JJuBgq/63pV5/cxqgvr7xpbKCxJ6TJ1c9GT+pThqbCrpq6vKkqnaEjKzI1rItJi95MqWkRGsVCUFHZuMjnKmAsL9EJ/kcBJCFvkgLBHiJv7+nuLs7a1MomY0gYVKbOTPmpXgjWXfffLzpfLoZjGFqP8gjZ5y4AymrOFqhZw8FE8uiKJvo4bgoxAcnbIiHk95Mgzj/BDchZaYFbiJ6jT59+mgQht6lfz8jaEMQcNQA/YsdJByjh76Qfx9/8qmCjEXVb7z5huYAyXys/rC2GgQ/USSrO8tk3fyRsm9doxxY3yIbF0LuzCmT8Y0pkpsZgb/bW7vPPR2tJNrXSb2YG5iNDx4IzL2R1RisICD4d3jBa/k42aico990AeMzQtlH5XYvjVySbdlREeHrouVW2VHOkgjZOHhAf1UHlI48oFj8zIUpoTiEUiFrPSC9P+vZE6w7DKxprcAJBms52Fjoe+loDV+H34OHnwsYkHsFmICnbOX7yKhnjL+rMXoeYOPfQGVASU51ANCJs6ujBOKgBct1+fi5m3xw0AYG+ZoCoXJ4n7AMLAWASodPS2f+FhKTzEcwxsXjGTaFdZmZ8HsjRiRKbUWSjG3NB8jKZe7UMmkflaOtPuNHF8ik8YUyG6+tAujYQ7dpca3sWNUkJ3ZOlv0bRsn+9aO0/vLcgWnaMf7F2QVG6deZTu0oeHJtedfjiwuefXd9cdfc9hFFZWWlZkbJ1/8FwL0oZ+GaqYrycrPqyqym9o5a02iwG8BmKq/MMVVWZQuDJawmyclJVLrng1rcyLkFKqNpYCTEiNsaiEMAACAASURBVEYG440NDQPgICWDuz0cP/b19RQXFwcZbmul8o4A42nMqcBkOWcA0dYK/sTVXvwBNoa3mWvywQ0b6eUkNjrv5GMdF8BgB30aH8EenPXhqPKG3QaD+vWTcEi4cNyMQZoGGGxs5MFN5Ifvyw4FSra4AFe98XkT8aRnICM40B3S0F/9JXNn9GMMe1MuOTnaiL3tYLGwGCqubq46xu7CnrGyZ1WDnNoxRnNxCrpF1bJgaqE0VSVppQ2bYWPhtbwBJC/c5MPpzXDDk6FtATB6PAuwOMusCDrmy7ipJgYAtYTU9rC3lsEcQYFDhodTCreZgvmSAtykNi1MS+SKYt0lHj/DHsDJjPDA97eA7Osl8QCHPcDMwuP8SC+AxRle0lFGxnpLTYq/plf8AUoeTsVRXjIhK1gqEgM0j8ekfBL+f5Kfg47FG9AdKf7gg/fltTfe1G4GO47QYxFDz89M7//2fdN7771HpvvJ2c2xyw8HbmCI73O/QK9nnl5uynwAoSkCBzQBlpweJzEAWBSAxuhmpAZbwvTfcUyiA5Rs9akuT5GxbQUyZVyeTATYWBJWVpwkZSUp2lfXAdAtnl0tq+aWy+41o2TfBqO74OAmyMrtExR05/ZOkVvwcWxcZX7uMWehXFzIiKbpq6vLur6/tZKlefezkgP7VlX97yOVP5vdqqurzVpHtZnlZsa/Nbqt8Mr4yXWm+ob8LpZtlY7MklKAraAoVfIKUlVjp8G7sWCVXQDRGiwBq4UarKbg+qtkd+hfsR0f/jjp3HWLqY1eON5grIjgQBrmknjTO9oMk1gAgX6EZp0nsjNOXVZVaOUFpBRPUt4MXA7PahVWj5AJKD3ZOvLbDz8EUw7S0Pr7kJlG/93nCkgv3NwvHlxKyHYYRg/9AdrK4lgZWRgPyWspveEnbW05bctel5BwXENFUax2BdgNZy7NFX+PpxxY1yTHtuAi45kfH93cIttX1Mu6BVUyA9IyJzMSQLXVTTZxAU666okg84TPcrEZolFVsl6fXj1URvakZ33nXWX+KF9XKY0JVHkc7G4jVYleykgp8GRctOgIJcBStUAPO53W5UZgDvxciuHF0uFVKcM/wXvoDJVAvxvu5aBlc97whh6Q6tbwezY4jFj5P6R/b7G1GCABTpYyFL+Hk/UQ6Yf3jFUnxlYjc0nAYcRADkvsuCiTB2Ig2RHv4W8/+tj0Wc9Pu17XFqx3v8b1nYvr/MAb75EXvLuHt9szb18PUwDukdCIABMAZ4olqwFgobQgYL4g3DNBIX6az4uMCtCUU8GIOKmtzpT6miwwXYqUFsRCfkaq3BxZFCeN1WnKeuuXNkNWtsjutaPlCJeIgN2ObBmrVShHICsv7KecXKQBFVaj3GVSnGmC68vl62vLTF9dWWJ6dGGOaWJTWkZtbf3fn+FeRCabmppeSU9LN8vJiMybMqVaGpryu6pqRpjKyjNNbLMpKgbgClO1ooQRJJbpxMK7MbcSlxDWzW5+6tWCg3wN3xbiZyS9w/z/kgDHxyzv0qCJk52GoF+MS2Ckj3MnmaxmaJygYqSSZV0h8B70OmRC+jsuAeGMfAZJmLRltJK+itJv6CD4OY7mhoxk4GXQwL66oJBrda3YX4ebi4EDlnl5OHLHWX/5+KOPdehOUoynLAQrpSf6y8c9AH5bW3F1dZLoCF8JB1unJobI2IZk2bG8WjITfSCdhoiDs4sUZoXLuV2j5fDGZjkNlju2bTRO1GbZuaoR369IiuDxeADxoCmM91b56AnQsbiYYXkGgtzhO0vKWAheIsnwL+ZgjaFgMH7OvH9fTWozreEGoDPHOBhsxLwbAxm9e/dWeUjZ5+9mr1UgVAF2w8xlRJS3jj4fjPelOtVXB8LSAwfhoGFlCUvoKO29wYZeACHld//+/SUjwkUaMgPwfplDXVhLapiX9ML7zZSFvwtkPtg+yt9dBw8xHZEc6il2AB0Oza63333n+Vtvv/UcEnzk++//pj/Yr2bg4P4HnVwcxRUHl2+AV1cYO0gigwT+zhSMA9sf6ieATcL+XkZqgTlcFkQnRUpRQZIGTnKzYvSgZyI9NiZIq1mqyhJ1PMPCmeWyblEdpGSr7FrdqmMZ6N+ObB0rFw8xWjlVzu7rkPMHpmpLz+2TnXLt2HR5eHEx/NxCeXiejLeo6w/3VsmCKYXzsrPSNabxd2c4fsOGhoZ/KCosNhtRkFrLomRIyecjyzO7CLa8vCQpKDCeGZnMzIpTD5eYGCWJOJ1YN6ntN92JbcpGIw3QLS//ivVCgv3g4bx03ZSjk63mxmj8GQ0j8HSClIcDTu6h2kpCpvMEM7A0in1xTFD30yjmQC3d4s3AaB+9Cmfpu6hk7KPgigv0EF9XG813DRrYX8IgoThRmLvN2LJDX0jpNWRQXwVugKuDNI2MhVzJkCgAzBnSkamLcHgeysLsjEgpL46TiS1psnhaniyZXix9IFu9AwLF3sVdZo/Llsv7xsnFvRPk4r52sNwolZbrwXIMqLCeMDjER6xxWMT4O0Iuc/mktTjbGTM0OU8zLikaN1qAWOLn+uNr6Wv64u9hK4+nwzBlGXYbcFNOgJuDEWSBJKXfo1ejLB7Sn+MYbNUHc0JaNHxoMpiOyXZL/D9/V1udxsyeNhcdTTgEwHOQJC9rsNxw9XvWOIQGgtlYxcKDjZUnrE5h8OoDHGqsWmHjLytMyKBk4khI35wYX9OAAX1Nb7/73k8AnPzrv/3isI+Pzz/l5eWZRUZG/ubTzz5psR5u9ZDpgpDwwOc4lE3M2fkHepvYcQD2A9igbBxs9R5hBwKLnnNzYiQ1CVIzKkCLKcJw+EVGBUpedpRMaMmQZZqXq5WVkJPcW7BjRYOC7QSbVQ/OUIY7uXOSBkzYrEoPd+v0PC39unpoKsA3Ez5umem726tMf3iwwbR9ed3u1ITQX9Q3NCgh/Veg+3ntN7W1L1dV15iNLM3/oLYu73RtQ75pZHnW88LCFFMBPFt+QYqCjFUl2Qq4eI1QsskwSWvljKBJuFaW+CrQeJoz6a0SUz2dtz4HsYAZgGMezgFA4oVkYGS4lYWmBOjjGLRgIS8lFCNuBCVvKt4cXlorOEBD7PRtLFDmicyeLTIFv45JXVZOUBJRptLv0BMxue7rbgdvZK/LKhjuZsDB3maoRkI/79lTUmN8JT8nWlISQ6UZIBvbmKKScGJrhpTkx+jn2Gw6tj4RYGqSiCBH+XyQhXgGh8sw6+GybUmlXNwzTo6C6Y5vbpUDa5sgLRtkRnu+VJQlSRJA5wN5lRvjL+WJ3tqE6gdGSor1kenjcmRUbZKUF8Abx/uLOcfgUQri704KdpPUUFfp3fNTHZHAPXoJQc7Smumnkjwz3FvG5YdIAuSqk9UgaRkRLCXJkPz4/tp7CNAyYpkb7StVySFai8maTEpbei8qAGebQRLlY6UJ7ST4w1j4Nlbn6GKVvkYROFM2HJ9XneIr2eFuWlrGKCXfW1YEjUwJEn93e1OPz3qYXnvj9WdvvvXW89fffCO+uLj4Zaiol6qqqsw8PD3cwHZfE2A4jJ97+bia3CDVXfCwseVsGNwDwy3FGxI0Boe53l8xoaqiWFgRE+WveV6CbVxjusyaVKCTvlYvbpINSxpk24pGObR5LJhshjIbaywPQ1aewfMF/Pv6cZZ7LZFr7CaApLx7eo48urpUvr+7Xr66trzrydUlpmtHZ9xrqcroV1vXZPb/lRr4eYOBGhperigvNasZmVDV2lYiZeXZP5WWZZg029+dAshgKU6WkRNhY2laeqyWdFH6xMURcEEaeVJZyWCJAo1VJv7KeAbr+UpgkJEWoB+ipGTEjYljMgyZ6xNc7DcgLV9EHwkqTmKmP2PFP2UYayZ5EzI6xhaRgYzY6RTnj7W49iOcvpwg7MnhOWBCK+ak3Gw1IMGNL3YagRsg3pCT9hqqt5XcCG9d79RYAxNeGAegwRNMzpMNi6tk/aIqmTluhLTUpEh+dgwudKQ0V8bLillFsmTqCLGxGgiv11sSo9zk0IZmObEVQFtTJxf3t8uZXcwLjdESJJr6/MJEnOZeEgXJXJ7sJ+VZoRLi66KzXCryw2XPmiac0A2SnRaiecJ+vT+TbDaahriLr8twjeL2hvzjYcHwvJutudjBc7Hm0tGaIxisdFQegx3RgW7K6uG+zuIDCUv2C3S1Fx9IV2+wGCt0yPYEcFaEp6575nvF95J7ve1wCFGisnzL09lK55+QFSljw71sJC/aQ3cTsAOdwStKXv48DirKjfPF7/fZs1+++qr8yy/+dVdRUdEvODx41KhRZtHR0WZW1laeANZqB2c7k4OTXZe1raWJBQKDcE0tIKXp9xg8YU1mUiLrMkMkNIzFFH4KOs5Naa5Jk0ljRkjH2HyZN71C5nYUyiYAjssgj2wdL4fxYOvO8Z3tcmL7BI1QHt42Xq4dnS1fXlkmDy4vBfhmabEz99B9e3sNgLfExJKwr64sfj6xOcdn5MiRLAR56e/GcCxhqaqsMqsamfvulImll2vq89gF8KwIUhKAM2VmxmsawABanLZX0MMRbEnaTh8JpovQ5DdPIPVwIUagxMi9+Wl3AEHIHBzD417expgDDvDhIBomsD/g2IVePbW9xsGGcs9GJRFvRIbrLbt3w/Xt/bmyFuUnwTZ8GEejm+vpTb/Hthbm1Bh44N4yOzAnc1MEsAVrBXv11GCFM1iNoXMW7LKfi1G2htI46ewokKWQJ9vASrtWt8jBTaNl15oWmYeL2TE6SypL4gCGCKks4oKNZFkzpwSsViFLO3Lk8NpaObS+UZnt5LY2lSlsfmRB7Z4NY2TZgnppasiF5w2FLIR/ivaRpkx/SQ9z18jp2++8p4n51Dh/HdzKYa7BuMnDIQmj/Rwh/cDIAFMU2JkpgDAfeCEXa4BvqNiC3Zl/NBRDX23f+axXb5V87vbmYCwjOkoWIogC3W01uMKoI99nejTOvqRkZUuONd4rHl6MXhbE+4FBPSXWz0GnfzHxzYPMHyBOC3MWD3hBTUvgOng723ELj6kk3ssU7OnQ9dobb5p++atf/d7T0/PDtrY2BudeAtOZtbaOMvusZ4/+FsOGdA02H2QyHzoYgBtsMofK4d4/X6gAloEZdZgBuH+Mtq6QYC9JSwqR/Nw4aa7NkNaGLJnSXqLLQzYuhZpY2STHtk+Uc3unQoEwiNUs5/ZNkRM7JwB4EwAwo1GV8y2vHJ0BWdkplyEp7+L56c3V2iv38NJi0493Vsn0sdkdaYmRr7Cm+EVt5d8EONWmdfVmNdXVZkkJwckjq7K7qqpzpRTeLa8g2TQiL1mbSf8MtvQYnU2RkcExaPFGCwa7A2KNSGVId5AkNKzbs1FrhxggDAoy8nHsFtA8nJuTFuiyPpJRSEa6mAtjiJmegTKRcpH1iUxI84ZkYnZgf6NdRBPekJbOw83h+ewlGHqfN5CXs7W28/iDDShBnSFNaPS5UdULksUTr1NGUrpyTLg7TvhYGP+EUHdZNa9C1i+skYNbxqn2P7Z9POQInnFCrl9cIwumFUlbXbIU5kZJcW60tDfRyxVpAOX87jGymy0720aD1cbJ5QMcbjNTR7dRthyCn9i8Zoy0TyjVlV3c3BoBwBQn4P3ydNDEvYuNeXcPX099X+i3WGrFdIiF+RANDPHg4MwWBpl0kykOJE8OtsXf0efzzyQ5zAUHyFA9eJjA5ohyBqKi/V00/cG+OEZFyXIZkR7wtFbwgkMl1MdW8qPdZHD/njrFK8rXTpUDg09sD/IFw1l1T8YOAliDPWx0HENsgK0GcLir3aN773ck/q7sCHepT/czudoM7vqnf3tVfvFvv6hwdnZicM6sqrqK997LCQnx/zLYfOAOKytOxh76rB+uLat1bHDgenqzi9wTwHPD4ewkzi72OmWNNbmFubFaUNBamypTdWlIhbbuHNgyEdesHddsCuRjh5zF4+qx2TqCgTKSAZOrx2erzOQMlEuHpupiECbAOZLh+tHpCrZ7Z+c+//J8p+nIutqb9eUZ79TWN3bPsfwbAPcX/1ZnFhLo9e84eS9U1Y7oGlmWaqKcpG/jgx3cGWmRCrZMLSb9S51bWnqcJEFSsio86q/qKF8UKatno7wky3G8AoDm52+cVFy84exsb5RdvfOujuhmpTobGlmszFkbDKZocptyE4bf19VOLygvOitJGBhhiJ+vMazORK0lTmZdcwVW69O7tw7QiYoIhgwJVmBziteQIQN0DVZiiKeO9Xa156z/XJV+u9eN0no8muyjOBHP7MWF2zcVp+Mk/dz8KUVSX5EsNWWJMnN8tiycPEK7wo+B1ThO4fi2UXL1yHQ9PS8fmq7Rryc3Vsjp/dNlx8Z2mTG9Wqprc3Ao+WjbUQJ8WVqEl97Q3kxyDx8q3mAOBkAYnSQbk6GSQ1y6l9gP0mFBjMAyLD9c60QHaELazmawVGR4SZCnDVh/iFSnBWi+jbI9KdhDe+Es8R454utCPAkaa7AdbnCLvgA/ABjmCoXxEXyylfq3Qd1TrakuWIESApCFulupT7Y0769dAmTfnBhviYN8jcNhSq/84SefwhcPk4oEL2lK9+mCPDX9y7/98rsPP/zwN62trQq4hoYGs/LycrPP+/RK5wZbS2uL5wMH9lWGY7rIFSBzh+1wAdC4jswFzOnj4yaJCWFSXpIko+ozZHp7ke6c27K8Sfasa4MaGQsmm4RHO1hshlaXHMeheXz7BJ3udenQTDkDtrt8dKbcONkp984v0vKux1eWyxVcs+uHp8i9s514bdHzx1cWyZntLVfLi1Lfr29o+nsFTWpeqm9oNKsoSfGdNKFEKiszTUXFaaaCgmTN7GsKIMMAWSZYLQtAY+0kAyaUlHwYPXCsDgg2yrrCjFEKYVq0bAAtUD2cUWXCBlQOEuLULHo4DsPhPEl2aetyxp6f6UnKiguG//srm/XRHBVvtoEaAu+pQRPmnHiBuVqJlRdMCTBiRobjeD1GIek3uBCErPYZbkpLphPgfwhUDzAHJZC/h4ssnVUmuzeMkp0AFds8zgBkJwm2A1PlwuGZuIgTZd/G0erFZozPk6VzyiFfGuQwJOfFg1Pk+FYAdftY/fjqsZnaBnIL3uD2mbm6z+3E3mkA3ESZNbtGGprypKAwWVmOOccADzttuyEAWYTN2koCKQYSLsTdDsCwkvRwR/VILIK2GWb0+ZHhtf8NTMgBuT0++0R60tMCiPR3lubwQ0P6KduR0bzw9/J9dB4+GABzADAdtMDAFczq7WIpdgA7Oyf43rjB37o5WuFrHI2ugo8/Fmtz7hIYou1BYd7DtbqEctQRKiM7xkMjpamh8Kc+dipPvV3sTBXJPjIi2pPANfXp18+uGQxHZWVUNdWb5Rfk//tQC/PmPv0+/z3kJefddDnivlBWw4HMBwsN3N3sJDk+SEryY2V0c7bMmFgsqxY26GbVbcvqoUI6cFBO1cjk4S3cLzdGju+AtNyPw3LHBN3Aw9Ku6yc6tZ7y9pkFeMzTxtQHAN11XLMHF/ExFMmtYzO7vr6yVA6ua7xVWpD2iQG4v4Hh/lI3WWdWWJD3r031udtr60aYqioyujgAKCsrzpSba4T/01nLBsCxzi09wwiUMFTNkhw+yHD0cNE6KChQG01ZpPxnlsMjgKDjLEjmWfyZg3PVtVLOeGM/6B6HwFOYVfO8sGQ1nu404vRtFjhRWXLk526vHoVepDdO3M+6UwpaK4gLzJC1rfVQDbYMhydzZKQLrMF5J5wJMgQ3iC1eY0CFRcOJuDlYfREV7CnbVzdB9uFC4SKd2jdNzhwwVuCePzxLruIiUVbu28jl8I0KNM49ObZtjJzePUFl55k9+H+cFnVitlw/OVuu4AJ+cYG7qufqYsHTB2fJ7s0TZeGCRmluLZCS0lTx8XWFJ+1tbHjFzcbx5Pw7W0aEGWPvAC4GjHr36qEVOHyPGIllno2slgrWY/CEaRGyDr2ZI/4ufi83x6FSmuYrMYHOOvelPjtIChICxRm+dghkY2GcnyQEecgHH3woIW4WMrs+TsrBiFzYkRrqIXXZgVKS4iX5YK8YX0f1y55cwoj3exCAzs4ARoY5w5Ld9vw9XeyH6S66kUn+UpvmI6UJHsw5morg6RoyA0xernb5baNHw8dVvQhCvFJZUWnm6+s1xM7e6om9w3ATHs/ddUo2Rxk6ihWuow28oT/eq9zMSEj6NJkyvkD3y62eXyMbF9fKdm7bWdGkPnnP+jFaUXIUPo6bd47henLX3OndHcZYvaOzNA93EerjwaWlugCEKQJjWvNqjl2QL07Pef7g7Fy5sLvt+9H1IxyqaxsY63j5ZwHuLzuyql+uq28yqy5N921ryf3PisosKS5JNTHXpvk2jkyAfyPIOJNCWyVSowy2yzRGKSSnMBcXKfEJ4VoBHq6AI6t1Aw2MpgyHfwdpwMRTX/PQlICdavUeugX1I+0jY/c382mf9TAWNbK6gadoP+Z5+n+uUpEMxtXDjlp9b6msEOLlDB9jq8GT4VaD1afw5mVpmDvbW6x5A8LfwQOQ5ShJQzwcJNCdw3Y+l+zkANkPpjoKOXKcK2/ZyHh0jj4u4VS8gIt0AXLkPKNcODkPbR4tB9c3wa+NVZAd3tImJ7aPU49w6cgsuXhkplyEd7gGY34Zp+nd80vl/JE5cmD7ZFm2sFFaAbii0hQohmjdu82oI9mBrE2md3ccpgzG4mG+xkAHw/E9Pv1YE+VMMpNZ4gJdITW9VE5H+jkCVGE6WdnGwlwBV5zqpUzFA8jTYaiWibFulSMnBnAGDGd40j/3+Fj84ds4koGBF1swpq2lhaQGO0kYZKcbJKjFoM/xvV21gTfSw1LyYuw0NRHhbafek0qFjxRI5KJ4X2nJ8pNZJf4yIdcL//bqqsvwNWWGOS6NiI41a25uepnpgVGjRr2Ulpb6P4aY95vJqKSllcUzDw8XkzGc117IeL0AdCdIyvSkUJXxDJJMHV8oMyaXysJpxbJ45khdc8W94ltXtUCljIf0b9M5J+wC37uuVdXJOUh6KhcOkD2zd7L2zLFd54vzC+XWqTn6+PracjDeQrl9anbXF6dn4ZqOftJWn2dV87cA7gXoICW1wXRcS+7yJkgcnLjPCwuSuygl6du0TSKT+TbDq2n+jf9m4CTdSAukQF4ySsm0wAsPxwDJC7/Gkif1bX6emnvz9fXAqe6uhcvMwTHXwuAAPRvrA5XROCKhp5F3c4IPILAoM8lEDJiwT403I29CBlhYRcIuAXoN5qM8cHF8cbF42vrgJvqkx2cS5OGgVRgMSFB+Mso2sH9/7bHj9KnmikQ5uHWs7N88QY7s6pAzYKMzB2fK5RPz5NKxufo4B0lCecmLdxon5SGwHYMq5/DaoY2j1KSfw6l5BQC9fW4hzDkAe3iGnNo7Ra6fmi/ncKH3bhwvS+fWypi2PBlZkih5OXE6Qm4ofSmT9fbcYeAk1t2j3cncTIuQxYZyYSWksRs+z9XKBCnZkVOROQKPPotSz51bS3saUVyOOiebM6I4FN6Ihdt9+/XVZScDBvTXcYXMnw3hWMIe7EjoJ34udioh+fuwM8EVctHb1lyivCykJtUDwB8gcZ5DpL3AVbxwDTPCXVQCR/vYiA0YmXnAqvQAyYn2lqoUXxmT6SHN6R7Pa9P9JNTNYpu1rb3Z6NFtZLiXS0pKzAYNGtjH2dX+yTArC5OFxZDnjk62Ju5/sBiGAwKKxQkHZUp8oJQWJsjYxgyZPHqEzGwvkHlTimX5vDpZObdK1gBw7PrevW4cFEiT7FwzSj0d0wIncT2P7WjvXnk1S6/TZR0c26mjGPhgqw5HpF882KES8/bJOV23j0+TA+ub75Xkp37a7eFe+tkMxz+WrQd5OSkf1FWlXmlpzDUVFaU+yy9INeUCWAoulZGxRkSSni01+s/RyWQwHqu4WcvG5DfbLAi4iHBDTgaCxZhrY82kLxdpeLsp0DhagW05XAvMzmBOeqKE5BxJ7oPjyUuJqAGB7gnKPMnJVmxCZYrAjSuncPJxNzjzbvRz9HpsNmX1CKUlv+eHOvfkI71x6PUINnd4Eno7Nk264mNKzgDcsKxS2La6WfZvmShHd0+VU/tnKODOHoL8OAqGOzxbT8azB6fJiV0T9XFm7xQ150ymEoDnAbaLR2fLBU4CBtgYCaN8OXeIyddpcnzXJDmwebxsWN4i08bnS3lRvHY182CLjw4Qb08nCQ/2NubBcDxBbLCGwsMgd6PDvSWT06DzomVEVhRURaj44X1l8IcM8HkfI/FsCaC4OXMU+3Ad1R4JaZgKGZmVFiw5GaE6grwgJxL/DsU1DZOkxBBddsJNQ/y/PNCszTk410JZiy08VBlGl/wA8QZLOrMYYQA7F4yIZR92YNAX4uvZkErJmxHqIgWxXjIqN0TqALSGNK+ucSMCpDze+Xx6fMS/NzQ1mzXU179SWFhk1q9f70BXyMehw8yfD7McauIhzG22AKJW+qQmBEl5Yay0N2foOqslcypkDXw0J3itXVAFK2DIyR2rm3VV8X4chPsgKY9sb9ecG1M69HUned242JH9cFzsqGmBWXL37ELdOXfv3AK5yRHppzu5U7zrFl47ubX1h+bKLHdjR/jPZDidxNXQ+Eppcb5ZTnpYWEVF1n+MLEszFRSmduXmJmlbO9sh0jkTHrKRARIyGku5kli5nWx0CehI62SjyoQejiMW2OfEBDdlI7u6vQE03UbqbhT9enq46DNzcPRv5jhxWRvZs3vaFgHGqgUCkIzFCV6USzT2rPejrOTn6WX66vqlgfp/+TkH3Aic9sUQOBtR6XkYLveH2fZ0tlUTz8gZHyxoZkDAEhc1I95fNi+rlbULa2Q3GOjQjg45BOl3Yu90ObZ7ihzfO01O4nGWpyMkJZsayXanAKBT+PjkLnwtQHdqb4fupD4PgJEJL+Oi0qif2D1RE66nELGQCgAAIABJREFU8DU08RuWNcmM9jxprUuVmpI4qRuZKHVg2MrSRIAwRvIAjtIRUVKP15rLY2V0dZxMbEiUaa2pMq0tDTdemoyuS9H/U12WIGVFcfrcUJkkbQ2pMr4lQ9pbOSY8RxZMK5T5U/Jk5vgsmYF/T2nLkOnjsvD5NBlTnyQNFbFSVhAJuRYo4aHeKvWtIPOHDjXX7UMOw63+HA3t1xfMOGCAroLmdbMYZgFADFfWZUSV14OHHRtVzbvHSVSn+Utxop/kRHl3cWJ0Q4rHg9yk8A+4EIZ7KkpKis2cnIaPdHFzNOHw/Wn48GEma2sLk5c7V43Z4bDxkLysSLwXKTJ9fJ4smFoKsNXLukV44HrtApMd3ExvPVYbT+nZ2IJzYEMb/NoUMNw47YfjAcncGwMo107MNQAHhmNpF8foPYKXI8N9eXmpzrI0ADdHDq1velxfnm1ey+WjPwdwL4IlANzLJUV5ZkUjoqsqKjKloCD5GZPcefnJJpZvcY5EltZLRkk6JGVycoT6uESAi3m3eM6pYFKS+beYYJzGrAQIl/AIw8MxyU0pScAReF5ebhriJdjc3R1Nri4OJvbCQbObICFN7733LmWjqcenn8obb76p+SYmtwfpaDljKSPHtFFi0Y9wPAIrTexxcdkqwnpBAox+j3Mq2S3gDRblECJKTiaRWdrEYbJc3cT6zBD4N0crC5k6OkvWzOMusmrZsW60HNg6UfZvbQfwJsmxPVP0+fBOAGofmI8JVOZ3AKAj2ycATJO014ofH9wKLwcPeGY/2WyiHMYJy4vPRsjjYEMGY+j/di6vk+Uzi2U+/MeiCRmyZEKarJhZpOPTF08vkNljUmROa4IsGJcsy9vTZENngWxfVCpbF5fLziUVsnNppWxZXCGr5pTJ4hklkFYFsmpuqdYQrl1YKZsWV8uGRdU49etl99omObIVXmZDC352G27EZjmypVV2razB9yiTNZ35smwmJNrYNBlXHy/VRRFSkBUmaSkhkLrBOggqIsJoJI6JCpCE+CB8LkwywY4REX5a9+jm4SoODrYAKWVxb7GzYMNrPxYhmMCKJhc7S5OtlcXzrGgfU1qo873osMDfNDW36P1YVVVpNtzOcpo9Dl97e+uf2K5lZ29sMHJ3t5OIUB/Jz47WNpyJbbkyayJ+3zlV2u/GtcS714+RfZvGyZ61LXJyD6T9prE41No1F3cOKuXkbqOkiykCKpQrYLfrAByBpu05lJTnF8l9PBhVvn2KHeGwEoemdV2GvNy/rv4/OkYVBVdV68KPV342wzU2Nb2SnZVtFhXp15hfmGrKzk38KSs7viuLof/sBGU0BkcoHZO6FzMkcCIXvFps9wg8lnIxwR3Y3esWrh3fRj1lsA4K8tQuZwKNdXJuYDlW3VM+MOw7fLglNbtOt9KNqL99Xxe5f6g7AvqppKRkIdNxzj175jgkiOPN2TDKdAALaNmiw8GkrHa3suBI7h7wKwNVRrI5kwl1Vpow2kmfwrrMnp/1xM/6QHJS/GXR9EKZ15GPGxZSZXE9jPco2b6mTfbgQu7aMAYyc7wchQ84AuDtxklKMBI8+2HID+DBVMEeGPRdkDE78czPnQQQ9wFozNvthcQh450E0zE6dmh9i2wH6Pbgc9sXlMiOJeVyAN/j4KpqObi8Qkesb1lWLftW1ch+PI5tqJPTO0aDUcfJqa2tcmb7GDm2dbSc3MJxAmNxc43VErLz+9rBvuMhcdvBprzhJsvlw1N1CvS1o1Pk6uEpcmZnm1w71K5dDed38Xs1y5kdrXJ0cyNurhrZvLBEVs7Kl4UdOWDEXJkyJlcmtWXJuOZ0mTI2R+ZMypOls0pk7uRcGd+UJtUlUEMpjE6zmshDJaAFVMdgdp1D4n708ac6FoPDnujP7SwHP40ICRrY3NKi96GXt+erNjbD9kFKMvH93MLS3ERpawHW9PV2ltjoIMnNjJaWmlSpr8rE75IjsyaXydLZVfBvHArbphFKbknlbEr2vjElwC4BKpFTuzs0WMIDkvk4TXwTdMeN8QpXjnDmyXTdMcfEN9deXQHQrh2Z3gXQ4XCseVxXnm1trLWq+ZkMp71vlWYZKWG/SkuN2kZWy8yMfwbfZsrKMipK6NVSNAppeDTm2WLwxxsjy4P/Xy03ZDIGQ5hb8/VzV0mpYxTwGqu9mWtj4tLezkaY4CSz4U3uGka5aDXkIbzbNlaSvPf+b0yccMVENaOMlIo0/vRjA7rb+LmqirM82LsVHeSsgQSyHYMmzEn5M+DAwudPP+5uWv2tNqkyssfqDRuboZKW4C8j0mDCc8Okc2KuzBiXA5YolEUzwBLwBgQbZd+WVS0KvgMcp022w8U7sK1d9uKi7t4wGrKzXStSDkPK7AXYKF+O7pgAVmkB67XJsW3jwHBjVc6wD4s3AD3eSTDOkU1gxY2tXA4IudkBqTpVDqytl4MrquTcNpzW20ZrQ+tJgOvy7jFyaT8kEUB3dd84ub5vvFzeP0FuHJki1w936A1yEaC6fnSqXMLHlwCsC3jmcovzBwi6KfAm0+XWiakA5gS5eYwVMFPkxtEOuYnH1UMT8TH/f4dc2DsW33u8XOTPwP87DQAfAbAZhT27Z4JcPjgJX9+h4D65YwyYslZWzi6WeZNGyPSxmdLekiatNZDHxdGSmxFmCgl0N7ED/N133/n2l7/61bevvvbqXX8/349bWlq1/xIHbk8bW6unhkQ1Nw2mbWD1EKRqOPN5YNXsjCjdrNpQkynjW0fIlHGFMndKCbxcpdoAtuOwpGsHrte+9SzDa9XDjBO8qC4o+bn0QxPejBxr5ckcY1YlGO0qPTdAx3pKejkmwK8cmtJ14cAU2bO6/n5lcdoQRvNra35G0MRYWFD/clVluVlBToR5dUX6d/l5GpV8zjRANmsmM+M198YgidZKciEDy7eig3X0HXe86XzJ7sFArCTxUcD9RT56dwdJWDNJ/+bi4qgVA2w/sbax7II/eG41zPw/PdxdQyAf697nvrcPP+jiRGV6BkbodOSBTmHur7k3SkI3eDJGGRkAsQfojI7v/toxzUoUTlHWIUI9Pu1mxh7CciF7yMi42ECpLINvKU+Qpop4lZKsjZw7tVj7qFbBhK+EP9gEkO0AU+0Bmx3eMRmMBimogJssB7dP1OAH/RhN+VGY8KPbIWnWteqSwJ2rGmQb2Gs3AzBgtr0AHwtnz+3vwKk7XuclHl/fANZqkuMbGuXUNjINZNCaajm1sV5ObaiVM5sb5Ozu8Tou/dS2Nrmye6zcODxZ7uBmv4lnzsW8d3ii3DwyVXu5LgFst05Mk8sHJinguD2GALwMQN44PkPunZ2NmwofHzNAdudkh1wHyO6c5IneqSPAr58AIE9Nk7unZ8iTK/Plx9vL5en1xVp1wQfnNz7i4+I8+fLCXHlydaF+3ZcX5sjdk1P1+10CSI9uaZFdq2plxewimTY67fmE5lSTh7vdkz79+nv0H9C/t62trVNTc7POPGWF0zBL87eth1uet7S0ECtL8+eDcHjSEzIymZHkr/NMM1JCpbggUfeFs6t7AqRlx7gCbTblWuIVcysBOHYINOsY9N2wBQyg7MPB+AJ4J3BYnt47VT0cF3+w45s7CBjMIqsReGzbucC0DnN0+6eQ4Uwb5pcdLclLfqehsal7BPrPYDj4t5cKCwvNIOks8vOSvgbYulJTop6zdIu+jfMl2M3NBlMGTRK6x5az541ejSMTqOnDoe11lLkynQ+kpZeCz9gfYHQE+PoYAKSkpJRkKsDe3qbL3n64ycbK/Me4uOhPIQuztML/ow+f9+re982xBgz/c+gOmY5LKVjBTlnJZ27R4Ug7jqmzZGkTI2wA5kCA1RY+wANMx1wODwBKXFabs62mtCBGaiCDGHQYV58qo2sSZDIk04r5NbosYs2SRlm3rFGl4yGA6+C2iTpWm8x2Yi/9HGTKfiPiSC93AiA8uXcyPESz7hlgh/fWpTWyZ1WTHNw4CpJmolwGq92AZ7iAi3sNrMHtOud2jZer25rl6IoKObNtlJzbWCfHlxbJwSVFcmB5qZzAaxcPtANck8A8vCnmypcX58sXZzq12Pb2qVly//RMuX9mpgLw7qmZKh35ujFXfw7AOAMn+Uy5e5ZRt+ly59QMuX0S3wvAugOGu38Kj9NT5faJGfLgwjz9v1+cmQXQMXIHBsDj1smZANU8eXiek60WKtC+u7VMnnYD7unVBfL9jUXy/fX58gOev7rQCWDOASO3y84VNc82Lyoz1ZVGXQsMDPiouanZbNSo1r/KA9eaAWCvDrezPmFtY0UP+HxAd+rDDkooLMRDI96xMYFSnM9hsEnS0pAjY5tzFHAzJxbIkpkjoUzKZN3CKt0ft3lZg/bC7VzVrEXM23EdDuPa0V8zNaBLPwA4js67caJTN+0wRcBmVCbCmVM9v2+S6czu9ucE4NJpBTtzM+L/x88uXu5uNNXokLenk2P+iITnWRlRJgCri74tvbsDgBFJnZ6UHKlBEoKOoWoODDJWTxnj8CIZJAk3TDXBZxQsG8zHvJuPMhw9m736Nj6cne1Nzi72P7Hiw3xIP+93fvNuClmpT+9ez8lIBN2nuqDjt1pbycGvnCVJ2dmnz+c6AIgJcy9vzub30BF0RnOr4SPDuyOlZGEOoiUrpySFSOGIaKkujZPW6iQZXZuCEzhb98Axp0OwrV1Sp1Oftq+FjNwyAd5tghzCxWIghGA7TgMOWcjk+GkGUJh3O2B0EFM2snzo6JYx8Arj9EGw8YLSJ9w+NUe36lw4CJY5OVu+urVaQXIdHuoCfNXlvZCmS0tk76ICObZypJxZWyXXIO8enKPXAJOApR6fm81uZHlyab48usybe558c2WBfImveQTW+RKg4AQqgu2ra4sgj3CSA0QP8Lkbx6fJPYDp5vGpchPS8v7Zmfj3dHz/6XL1wGi5tHe03AMg+TvdA+tdO84hOwDciVn6fOc05/PPlqfXFsrjS/Pw8wyme3xprjzF7/D9zUXy3fWFAB0et5bo2Llbx6Y+v4C/C7LzBxd7c8vs7JyXcO+98iJwR7UFSdnLxd3psb1GrAd3sXDZkeu8nO20SJmj0jmAiamM6pGJWtLF4MmUcfkyf3qZLJldCe9dqRHLjcuaZcOiWgCuBfKyWTbherLy5AgOzn2wAFxxdR5+7ioPwFPzjUDKoRmQ9QAiVcheYxEI2E3O7J5ourBvQteMtsyKpsrsl420wM9kONavsccnPsY/a0RO3LPk5EiyG1gu2pjE1R32T+4eEMQGU12qyEbAGGNkNcHGjTjsEIjsHh70orLEv7uahLKSW0fJaurbhg/jycU8S5edvZXJw8PhRxjlAZ/37jVp4IB+XWzLh3czffzJRyZGJBmxJJPRcDNlwF4pNq2ygFUrWPBzgsCqCiz+PhEG60ZG+evHBFpCfKh2WbP+rrY8UZqrk5XdxjemaUCgc3KBzOkoBtDq1bNtXtFsAI0Rxu1GiRerRpiTY37tEj0YwHf3/BK5fXYBmGuuXIHhvonny/ABrKNkBfp5+DImUa8cYhvIHP387VOzcQND4p2bL9/cWSX3AZQrBydDjkEm7miRy9tb4c/Gyp0DE+QhJB6BpfMSz8yQ73ljQ879eG+tfHdtoe6sfnptqXwD2fewW+o95NffWCb3AdC75xiFmy83z8yVO/j4/sUFymJPry2RLy/jY7DQ5UNgT8jWs/CI+1ZVyuntoxSkd8CIL/apfYGPyXiPALI7AC9B9oiAvwSgX+yUr/H6UzDdNwDb9zcXG6Drfn5yeV7Xowuzux6emyn5maEhubkjzBobG176633xVlYWFh7ebn/kDEuLYUNNDraW4upi1FFG4RpmpYZIWR48XG6k1FUmyYSWLG02ZS3rwhndgOPk5fnVsmFxHR6MzLbJ1uWNmjLYtZYBMCMJfnL3FDwYRJmmOTkudKSvPrzZWHfFKO65fVNNAJ3p7L5Jcmbn6GcNI5PcGxv4u9b+l8sa/xtlXfVmFeUjX0pJDG7kQoWk5Kif4NdMKVwplG7IST4YMOG+5niNUIbDA4XqRkvKS84yoVSL6I5W8oZXVgMQOMbcD57OaDJ10Zwb98FRJlhbDe3CSfYTl9cH+rtO58yInj17nie44OX+89333nv+7nvvmpiwJvgoETl6gNUVBJovwebvqaMcdAZmhBG2ZpI4Dg8eCvEJIQq0pMQwyUyPlIIRsbhYKTKmMcvIT43JkdmTYLwnF8ryOeWymvkcpgMgH5kWOAIGO6m1lNM130aQXTk5T65DFrIImbWRrJH8gkWvl5bI/UuLcEMb622vHZ+p+6XvXVgIUM5XsN2/vEQe4nHnLGTbWdywlxfixl8kjyjbwBx3Aa4HkHqPwCA/3FwmT64vk8dXFssPt1fKt/j3dzeW4GZepoz25MoiyL458s2t5fLlJdzUt1bisUK+A4C/ur5cvr0NIOP1h2RAAPLLq0vlNgD+9c3lkKXz8HUr9XMP8TWXIUUJussA/MkdbXII3pIf38b3p7cj6B5dng+GJXPO1Z9LoPKgoNS8R2bFvx+BeR+dB2vjUHgMT/cN5Oa3OBS+PDe768vzc559f2OBqbE8vj082Pul+r9KTTU2NpoNGWpu6eXr3mVja901dJi5por8fJw14c9Ef2ZKiDb7VhTFSQsOy/HNmTJ7cpEsmFaqSxqXd1bJqnnVymxbcFhuBsttx8FJP8dlH5sBvK0ctbB9YjfgJusCR23hgUo5sWOiphEObx4rRwC8Y1vaOHGt69zeSaZDa+sepyUE/7bOaM35L7fp/LfqKGuqK/6laET0jrTUKFNyUuRzg9kiNd/G3JvOK+H4BObeEsKNwEnSi9RA6J/XyxJsUZFG9DIMco4Fyi+mcxF8xuIOVw2YEDjDrS1MdsMtn9tYD+sCw16oKIz5/Fevvjbhl6+++h/s73r9zTd0shbH0ZEdvboZjZFQnW0ZYshERq8ItuhIfx1ipABL4k7pSPzunNgbIfl5cVJewqRyioxqyJLJY7ikvVimT8iXzo4SWc6SoIXVsnG54dkObh0ne/DGs8j4NMz1SUjGi8eM3A2Lj++eXwzwLMXH8+XO+YXy6NpKeXR9hXx1AzfxFYAENzwf10/y6yG7bizH/1mImxRscHkxWGe+guIp2On7L1bra1z0/i3A8xX80WPc2N/yGUB9CHA9Bii+gfT8/v46+QHM9hjs9N3dNfLoivH8DQGJ5ztgsYdgsK+uwVvdXo3Hcnl4dbHcu7gQv+8iuQWQE3B3zxPw8/RzD8BQZK2rDMCcmwXJCakJ2UlGe3CBA1Lnq497DPDcB4OSHRk44eOLs7PkFjzhXXjIu5Cnt/F/vzg1HTKzE4cAfhZAStZ7dG6W6cHZWT89vdRpGleXtKCiouIfCLIXXQI5Odn/aO9kO9Ldy5UdHM+ZCuCsl/AQd0lJCJKMtHApGgHPXQp1AjnZVANVMjpHZk4okIXTR8oCPFZ0VsvKTiNauZ7RysW1sh5Mt2Z+lSybXQrANcmONa26T+4Yc6R7jPIuMh093VF2hLPvcRs83raxsAdTTKd3T+q6fGCiacHEvGl5OWn/8JchQrU/X1KWlZa+EhHmNS07K47+7KfEhDCTUUVi9L2lJkepjCT4CDgjNcCEd5gy3Yt1VMy7KeCijI8juhd5vJi4zIZUBi7IcpQKrF4Yyq2m/fs+s7EaKuXFiev9/Vxftrax8f/nf/7nlf/6i3+72Kt3z//F3B3AZvL391DQUjYyOhql8ywCDdDhkRAbpBs3k3TDZoSCLT0tSkbkgNWq0qStMVva2/K02JUV5rMBtHnTymTRzHJZv6RBdkB+bF8HzwawGQnsdvVe5/ZN1vzM5SPTtD7y+mnchJeWAjQLlNmYNGWL/pdsXryyFJIRNzLA+ATguwuAkfUUZGfJLpB/YCKy3r0LkHNcIAFgPASLfQ0Woi+7f55yb7H88d5q+eYao4NgC3yv393fKH94vFX+8OUGZSzuNCOLPQWr8f9+/wWAeHWJLhr8/t4GeXoHQAYg7+NnP8Tz+cPTlNkoMb++sdTwjzf4ey9WaUm/9v3dlQqsp7eWKXN+DWDfPcdqjOn4GjAVwPkYX0sfRy94HY+rYMKbxzvk2sGJcvXgJACQoJsBaQtAAogMqHxzFYfUyenPHp2dIStmla4NDQ7455pqbct5iT1xllYWrzq72p5x83QxMXJt72Bt8vFykthIX0mKD5aM1HApK4qXGs6ibMyAFUiVaeN4aBYp4OZPKYZ/w4G5hFUn3ZISTLeQ1TWaVzWASLajl2POlENh6b3Z2/iijYe9coxeXjg4zYRH1+k9k0ynto+R6sK4uL95TN6fJWXFyP8Bup6flcHZkiHPuBLWGJcQoQxGKcmSLl0TC3YDCyrwomOCFHBMfjN4QpDpllOupwo3IpZhuu00UD9+MamLSXBuy3F1dTANt7UyscKk/8D+XT4+zl/l5SS8x98tMTHxn9LS038DWbGSIA0K8u5S2QrwcohqZPfaYk5tigz31Z3hSVxv+1eAy86KlZKiRB0YOqYV5np8EUBWJnOmlsncadwvVivL59fIqoV1sh1g2wMzvWdDqxzVvBiYbnml7F5aLqe3joK/YoBjDlhullw8OkMfbLmhd7uvUnKxAo4yk6xH9qKEo5Rk0ynB9gU+ZvvHU0o9vPbVDQDl5gr54Yt1GhUkMz3qlolPAYTHAMLXV7lgYqlKxd/dXw+/t0a+w9f/iAfB9g1Yja9/fw/Mh+ffPdwAqbhafvflRvndg3XyFGz29PYKla6UuAT+7TOz5TswHyOWT/HzH3d7vW9wEHwHwP3uwRr59s4KBSLZ7evrS/R3Ids9pF9TcMIPnpqpgLp2uEOjozePTNbHdQCOwPvyAhcezlGWA9hMt452PP/64mzT4U2j7loNG/x+eUWlFgG3tLSY2dravGbrYHPG3csNPt/muZW1hQT4uUpkmI/kZUVIIaxA1chkXUc8viVHpo7L19XD83FgLgfQVsw1tubw4KSUXIXrypkmsybkyarOctm4tBkPjjwfq0ETFjIzNcB0DQcMHdsxQWdTMsXDCiCOYTi7d1LX6d3tpn2ra79KivTqX/m3DoL9c+K7qvyfsjLC16WmMBgS8pz7uFMgyZJUPoYbDaZcsEgvp1Izsnt2SbhuyuGNT4YzcnOBfwYc0wKUkqHdCzw4Eo5MxyQ4c3IsXGant72DjYlMFxLk8TVA06Ouvv6V5pYmtmuYeXi4zmDxc1ionym8O9JIcLNWkz6NcjIcF4VBG84mZCSLe6RzcuKkqhys1pQjE8cUyEwAjfvEls2t1fHXGvLHRdgAmcGC1z3rITU2Nqt3Ob6xSU7gecOcAtk0t0gOrmuQMzuMZtLrpzvlJiQi+9zuAFx3wW6UlPcuLlG2+xIMx1D9/YuLNDByA97nIVjs7plOSDac/PRtYBuCjWtuv8Ezb3SyGr3at5CGX8OnMeDxLYDzLfzYjw8IqPUqHb/7AgD7chNYbjPAtYnrcuU/Hm/B/1muzPkHAO33D9fLH7/eKn8EE/7xwVp8f0hdAIasyM7lR1cWyA93VwDUS+UpwPQNfw5A+T1eIxD/9Ggd/u86AGsRvu8y+RFMy9cJOL72+OoiZcNH3X7uLtjs6sF2uX10slzeN16uwAtyLCBTFXdOz9SIJlnuzompXXfAhOf3TvhdUXZ4T8hKLQJubm42c3K07+vq7vjE3snOZGdr1cVyrqAANxymfpIJOVmYx1RAgrTVp8vYllxYgnyZBFtAKbkc13QFpOT6xfU6pWtlZ4VMG5OhudX5U0sBxipDwaxm4AS+bNcUo/IEkpLVJ2f3TtOuD3YOsPD87N4O06VD003Ht7Q+O7t7gmlee96S8pHF/0is1P09GK66suJ/pqeGrmGVP5jrmeHbItUHaTlXd7KbuwPIbkndrxGML6RlTPfEZWP54gvAeesQTwZOAgK9uqd1GQsYOfiVgONsCubinJ2GS3CA26XY6MBf6+9UXfUKjOlLnp5uneHKaoEmVrcQUAyGkMni44IUZBHKcAG6rD0tLVIK8hOkpjJd58xzxsWsKeWysLNWFuPCLJ1bI0vwvGkl3nycdptXt8k+nGi7VzfI7hW1cmhdo+xf3yi7VlTItgXFcmBllbLdud3j5OKBSXLt5Bzt2r5DxgJLEXQ3TxsfP7q+TIMlZ/dOlGtHIT0hQa8cnqrhdM4yucGw+jnepAs0lM8Q/3eQkwTEHci77+6uVsahbKNMJHj42jdgsh8fEkgbFWB/fLxZ/tc32+WPX20BIAnC9fIEjPo9vvYHgPgPAOR/AHBcnfsNpCGfGRx5BKB8DeDRE/J15tC+vwPvBzA9ub4IP5tsugjfY7Wy4++/XI9DYa3xNbfAspC3XwGwT64vBnAXaEqAkcqHYLKbANtNgI5zOG8emST34e2+ODlNbh2bosn2e2DV87vHdN0/Pc105WD7f5YXxFg16IzH6pfb2kabeXq6+7h7Oj8z7gcrk4ebPQ5gd4mNDpCasgSpAtjqypPg3TIBujSdojauKQuSsUxWzavRZYybl7doW07npDyZOS5X5k0pgT8v0t1xGyA1ORB2/6bxGjShpDy9Z6qc2TddpSR9HAcMsdzuEnNwuyd2nd03+TnH1I+rSYqvrizXHYm1NX8r4ODhKitG/mNstP8yNo/Cu8HDhWuUkr5NdwakRv+5jvLFoFftFuhmOQJOo5UsXo56kZML0MglaysJOPovRioJNJZ9eSvDGVFLOzurrv79+5msLYdcycmIeZuA03EP+N0gP2fy+xBwBHcyQM45FpSNcQBfQlyIgjAO/o2StyAPOr8yTU/BWVPLZe6MSpk3q1oWzq6WGZOLISdLZSUuzta1Y2TH+nGybe1o2b6qWXYsr1EmO8rZkWvqZd/Kajm5uVlOb2+D9GjX0iaG7a8dn22ADaxGGcmo4xf0XVRgAAAgAElEQVTwc/fo5cBq9Hsso7oNRruwb5LONeHwIErBJwQXAPWAYXpWbeAmJPAY3r8NwJHdvgfbEGyUiz/Ak/0eEvFHSEWC709gMvq47yEn//BoEz63CXJvRXfgBa/ha3+Pr/0TPvef3+zE/1sD6cnHKgULQ/j8uUxHMAhyrzuBfv98J26yycpGjISS+egBybzf312jgZwf762RHyAzv4VE/fELMJ5GUPH3A0xfnputgZJbrHg5MF7unQSTn56hifrbx6fLuV3jNAgD8Jku7hv//MnlTkmJ8yuKjIw2A7u9kpc/wszFzaHM198dNsMeYLPrio/ylhj4t8S4QCkeEaUtOU1V9G9ZMrktR2ZOKpQZ7SzBK5c1kJJs0Vk5r1KnqXXic0zxzIScpKzk1DWOO+cyj50rcaBuGquejd6NTHdi1+TuFVbT8JhqsNu2cc8u7JsomxbX3W4sjvy4rrqCmHnpv8q//R8Crvwf4mMD5tGfATQ/kcXYdpOqnq2b5bifKzmye0tOlObn+PUEn1afcJtlTIjh56KMwAlnmoRox3f37BIFmINWfXBwkBFAcRJbW2uORdPW+fjY4FDOVeHJx710gYHeHUx6wruZ4tVPhqucTEjojkSm8PeKwAMyMjtGy7VGQ+N3jC+WTvi0RWC2RZ01Mgen3bwZ3KZSLxvBbtvBbns2T4B3a8WFaJQ9q+pk35o62YPH7uUVsn3xSDkAtju/E1ISgLu6b4L6uC9Oz5H7ANM1sNV1LmWnd7u2QivOmXu7eXL2n4cGXT08DTfabPg0eCN4LM6uv3xgiuawKDcfw1c9hDR7cn2p3vyPGIkEIOn/GHV8Qn93b43KyifXwEYAjzLeTQOYZK4/ge0IKn78+/vr9GuYc/tW/w02BEMRJAy+3GXa4UynhvkZbeTYPubsbh2bhtdnaoj/B3q4h+sgWzdreuEPkKe/578B2u9vQ+beXKrphB8oQW8vBWDBcADc7RMA1NEOuX14ktw4NFFrMK8eNOoyr2kp2VR93r+69vm3VzpNzRVxk4cMHvzSuPHjX/Ly9jCztDafExDoabKFnPT3cTFFhnpJLOxCblaklBXAHpQkyKi6dGnFg/5t0YwKTQWsml8HKdkAUJUDbAWyGNd48bRCmdM+QptSWYT+guF24lpzxue+DWN0WSPn1Oxf36ptUuyNu6S50+ksu+u6dGBq15Et456Nrk4saavJw+Ff181uf7OkrDOrqiz/x6T4wEWxscEmBk2SUyJN2hUQH/pnSUng8TUC8cVr8fh8nOa6DC8XE200S0a/8HLdIxbo3UJCjQglQ/rGPEqjR46MpzLCzso0aPAgU2ZqyKqy4uz/WVtbr9XYYLi20FBWjfh3sT2EP5Mz5DWJnRalD/brMexfVZ4iLfVZMrZthMyeBhnJrZjz6tSvLZ5TATlZrR/zsWdzOx7jdSYJC4xZenV4U6sCbfuSMtkL4HHzzfltrXL1wGSYfoa/CRQw0+lOXW10k17t0hJ9Zpj/vkYeF2mOjX1VDy8tVjnJ5DY/f53seGy6XGOSmcXGRzqUYb66tkSDE8o4rB4BQL7FTU2G+fLSIiPEj9cINnotyrzfPzDA9XswH0H6O4CNr33HAMmV/4e6946v6rCyhWU7M5n5Jm8mcRz33iumFwk1REcCVBBCvYKEOuq99967kAABooPovffeizG4g41bEs9MYnT3W2ufKyff/N7Mm7SXzB/nd4uurso966y129qLVV6SlX794WoFEeMzZh6/AQg/gqQlyG8DYF/eIBCbVR5+h68R4JSTvwab/vvnW+TXuP/dp32aASUTk91+SRBSduL1bO/69NIiLWPcPt4o53ZX4u+rAbM1MFEi1wDA946zg6WWPaAmxHv9n1/qkLaK8I3W1lY/rqyqtHB2mfnkuPHWZyZMcjCNHDX8Pi7K/ayvBge4SfR8T0mO9ZHc1CBIygApywuV2tIoMFiCOqb1tCbJ0jYDVKvAcIzfuI+vsyZGG9EX1sbICnyNpYG13Wk6ScDmcva1HtxSKUe3sQRQqYA7wAby7VWm/esL7rNTCGD8sjRp1vi0pFiLrJy8B/+r+tsfxHCpKckP+ng6LaRUA4v8NijIw8QaHAvbjN0IMq3DKeB+x3oEmQE6YybOV2Wlq0pLT3PyRK3y3J00S2n4mUz7YSfcjOkGw0FWmiZOsOsfNXKEyd114m8yU8NcWKPJA9NNnToxScsAYDiyJuM4Jkvmqp+KsRc6KTFIcrPmSnFemFTiw2iuS5Tli3Jl7fJiWbsMV7U1ZbJ5ddEPiZLNCJ73gN2YHt7TV4pAukglxZGt5XJgba4cXp+PwLpKzhyAxkc8dhPgeh9AuwK5eHl/PU4gXNGPtciN463qxGUUudu0BsZ0//vnCKJeAKhLzoMdbx43d2qc1eUQiG1a5eIeMAAky228z4fsT2Sq/WQrvg7pd7kHIOo1CtgAG4FGMFFikskoAdm2pTEgmI71u18SXJ9sgJzsw30DkATtb+4ysbICctbIQH51a5V8CoBTDrJ2dheAYZMy63DffbrBkLBgYyZ0/u3zbQZoP9mg7MkkDEsFXwK4BBwlJovhBB0zkiwF8CLCWhxLA++daMHfTtDVAXA1Oo1w9VC9if2bSxuiT9jZ2fyUn/OUqZNGTp7q8LGTE8KNKbbMVpvcWOwOniVJMZ6SGOMtuelzpSw/TJoqIRcbknQB4/K2ZFnWmiCLmuO1/sbkCJmupzkBcjIKR4R6h/biYsutRau7Ug2TIbqrgeF2rM4H8ArkMGJ4tnQd3FjMhvL+g32F/ce3lUGaxq4uTpz99wU5yRaZWf91/e2/PS3A5QSJifEWjlNtY/z83b+HNLwPqdhv1OE8NC76IX4LNN+S7VROuhsLGBVss7T47c1VwyopXcw9li4/rBgeKIAbUwTjtd2LIzuTJtnJuHHW/ePsx95/591B4jzDYWVEqN+Pk1NSLWY6Tw0jYDULCsD54eeEqIkRFzr46T6wnEwDaE3VsdLJjvEl+bK+t0jWLS/UpMhWxmvrymXbujLZC1bbi8B5LwDHZmT2Ru5YXyr7N5bpoOjhbZVyYnMprnQVYLgKOburSpuMz20tlTPbyuXc9lIDdEdbcEK1a/cIGY01uRunOjR2e5/ZSYCRspHF45tgxxtsCr7IrN9KfQ1jm4vbilWqas+iFpcXan3sA/YmQl6SrcheZDoWuj9mkuLCIsRhHSoJ2d1hxFMrVGKSmf79riExP0eMdQ+A++6T9VqGYHaTBfN7t1YbaX+A5s5lAP18h/ZSfgbgMNP5jZYeVmti5lefbNTvp6QkS5L9+HsyxvsOzzEDqk3U+H6C9xN2npwx5DL/XjYtU0pyjIdMx3rduV0Vpuu4v3Vpyl0vD+d3/fz9LYYPHxTt4uZocp4xoX/SBJt+1mh9PZ3E32emxIR7SlZysOSkhYDZIhG3xUtzdYwshFxkhrK7EYBrjDOWLi7PRzyXLcsBsM76eDBcuCxtSQDQ0mVDT4ZsXp6t4zqc4uDMIQvde9fm436R9k+eoBszGG7P2jzTwb6i/uq8eXFJiXFcSvrg/63+9odIygcJvMAA77fc3ad/QTAFBLjfZxlgIEupdTfz4nNNlPgaDcyBAZ6aMPHXNcMG8AL8PbTg7WmWlKzNDVgtsN+R8RzZbSqzlNMmaD/kBDPL2dtb9w8dNuT7ocOH/PtcvxkZaSnxFhMmjl/AsQwwm4k1N7IoR4UoI7mqKCk+QPIgI2vKY8BsCUbqvztXVizKkfXL8jUbuQ63W9aUyI4NFdqyxQFSjtgc2FqrIzccRtRG461lcnQTwLYJur6vUM7srMQJgg8CsRxrcWSrSxzmxPOXEM8d316ptTjKRcZnlIw3wIQsNjP9z2QJC830Nrx1ul1T/3euLJeP2ZN4qF5u7K+GxGyUD08yi9ehAObr2b9IduTrb5lHYq4hznr/TLvW09iAzJ5JpvS/vkk5CamnHShgI4DgOwDvLiQj62/s0/yGUhOs9TVvbwNQ7y3TVP29Gz3aKUKWYjz2hTmpw3rgN4wRP+pTCfsrvCfjum8/YCLHLFUhK7nGiQ3Md68s0t/nDi4IdyAtOepz5UgTwNaEuA2AA7tRal4gqx+q6z+3EzHUusxfxYT7jw0NDf27cQ5W61zAaOPsLb+3t7M0TZ1sb3KdOUlBtyDCU8HGodP6shj1MeGkdxtAt6w9Vbrr48Byyeq0vB4KZsOSbFnSHKernrvqOP2eBiZM1MmBXWuL1a6e9gt076Kp7/UTXTqoqz40+xpNkJimI1vKTHtWpH+clRT6nDH7NpAoyfrTAGdmuQdI64kJcS+7uU6+6ec32+Tv53YfQDMRfP5mKalA8zPAxQQJ2PCHpAlBoBbnWh+bZTCbeRTfkJRmb5MZk7X3ke1ZP2QquVeAvoPqbTLOZD12zG8trUbS2GZPelrSQ2PGjI5lF4nnnJkKOKb+54f7SkxMgMTF+ksqrn752aFSURIpjVVx0t4AmdGZpaagm1YZ7LYOVz8Cjvd3gt22byg3Ov+3VYPpKjSGox3euf0NcgpSkgs3Tm4ulnOQk9wNsHt5muxdnSOHKDXBfhcBNiZIOCxKgNFe7X0tFXTJe0ykXFqqbV0E3i32TILhyGifQR5+Bpa7tLNCPsbJ+DGY7UP2TpIV8XUWvNkpchvgZJMwYx8ePIFv4rVM57Nbny1TTFZ8Awaj7CSz/RsYiZlMysl/hzT8gtlGAOsufo9PIW8/A3uxuP0p+xovkR3btaDN+PGLG8uUKZnF/PVH68Fmq7RkwHrfd59u1viRcvPXAN2960sByuUaM/7rx2s1Rvzl+72atWTfJGPBO5e6VB5fxd94TafL63RI9jwAd3JHqekMAHdpb7kp2HfGvBGjRj0xabL9tQkT7UzW1qO/t7e3EpcZ48UdAAwJcpP4aB8pANiKs+cCcFHSVhsnTeUR0g7QLebsIuQks5Abl+fplABtJpYiruuuj5UVnSmIFcOkozpcVnfyNTkAWomqGdow0OaQnUR0YeaAMI/DWyr7DyF+ay8PXe8zx80iLy//v1xP9QczHOd6ON8zP3Tug+MdrDoAIADO/fugYE8TQUdJSfnIwwuMxZjNT3sVzXU4rYkZjEeQUVYyW0lvE8ZtRpJkqsZrdJZiiYDsNuDYxVtjbGeciRt0Joy37R82bHC/i/PE72ZOH283ZszINC/I1DmI4djxoq1aUQGSmBgsmemh2rKVnhwoxblhUoMrYFMN/uGdmRqvMRu5aUWR9PXmI44rll3mWba9tEkAs9EmYQ+Xc6zK03/2/r5i2boyW7b0ZsnxDfmyb0UGgJYtu1Zly+4VWXJ0Q4Gc3lGhM2YsD7BxmWCjYy+l5TXEdiwXMIZjd8jt84u0fYu9hjePNGoS5e7lJXJtP9ufWuRjAOseGOvrm736mAOjZC0DaE06PsPsH2fXdDaN0pNpeI7okIXwfQbjgOFYg+N9SMd/Rxz3Eb5OiUhp+gFAzrhNG5kvg40uLNY2NcpXdpAQ5N8AaEy2/PIjxIGf9WlMyAI6SxGf4m/51BwnfvfRGk2WqKQkABlrAtg8vmSZAED+6voS+RC/7xVOoOPQi8dRyPLdFZq95ODr5b0VMtfXcfazL7z4zviJ4z61sh5jGjV6+P0pYDd3t6kS4OciUWEeenB7UXFWiFQXhkpD6XypzAvRVV7N5fMVWL0dSbJ+CV27MmRZS6L2VC5V4CVIfVGw1BcGyeKGKOlbkqJZSQ4Fb+pJ1ywlu0qObCnXYvf+DcUmsKBp16qc3+SlBMxKTUtXVvvvgu2/aZNH167chxbExlq4Ok/1BHv1A1CmAH/3fq2/BQ4AbrYOnHJSwMhYzvmB7XzMzOal1ngzjSZmT2NMh/Np7BQx7BcmGyUClZWTdUZuIIFingZn8sT07uBB30+bOk4cxo12Gz16eAvHgHzxe3EIli5isQsCJTkpBOwWIklx/tqQXJY/X9c/LWxOlR4Ajt0kawG69ctyZfPKQhwFsmNdqexiOaCvQvYBeLvXF+Oql21c+fBBqNXBxkLZsyJTDq3Ll8PrC+TAugL1HaEnyBnEc+dwSx96Mhu9MAg6juPf1vatRbryiCDjvmhOBXx4FtLyCFPmjfIJY7SznfLlBchMgO0ypBaTHzpPdqFbywR3cTDRwAQD26RuHWuSz8zxGhMTLCOw9sWUvmYkLy3SRApT/1+D7VgzYzmAsRYTOMxM3rm2XD690qNF9w8gU/k918Cad64bQPrkco9mPtnZ8hWL7B8Y2UpeCP71EwJrvQFCvC+TJ9/eWqVfY9Lka7Dbl9d7lPm+wPEtHn8KBubA6vv4G0/vrlL/FDYAnNxWKtcO1prIeBd3lkhk0AyvocOHhdB7c7zD2O8njrcxOU+fYLR0zZ4ms92niq8X9/N5avG7KCtI6opDpR5Hc1m4dNZEg9HiZU13qmxcxnXOGZqlJMvRVGlxY4xU5fhJXX6ALK6P0sl7bqDlYPBufK7HcJG9fKRd9m8o0kzl3vXF9/euzTF1VEauTYuf9w8sS/3f6m5/lBFsRkbGgwUFRRaREfOsXGZOvuvr425C/KayMijIPAdnZjNmIQPMZYCBThMCUTOT2tI1w1jGyL3MPxgKzVC2m232PeHzBJmbriN21II4l3rwH097a0vLkd8PHvyOaZz9mHkO422aWdfz83UzEXCRUf6SEB+kyZIFsX6SSvfdnHlSVcIWrmipK4fGb0iSpQszdLHDemh7DiBugqzcwX5JgG0/GI7g29MHibnOAN3ePvZPFqt7MgG2d02enKDVOSQkG5m5H4CbMmlxdxVA0/k3gO7m6W7NVLIOx5Yujucz7c56Fw/GbzfAXO8dqJUPILE+PNosn55CPHeCnRhtWnsj4CjnOHbz1Y2l2p/IMZ33Wdc6jO8F6DjNzfGXTxDPMQVP1mB8xS4VdqeweflzMBpjvDtgLAKPGUUmWMiqfH9OZhMYCpbbKxQgLIj/Cqz1FV77tXm051cEGxiLrzPqb4gTP1itsRyL6PcgQVkg//b2Ss1yGgzHKYdujek+v8pWNu5Za9MNNEyoXDxYr4C7AmnJWO7kxlxTSqxHwojRI5tsELfZ21v+1tZmjEycYKMtXc44vOc4ipfHNJkHaZkU6y05qYFSmDVXagrnSQvYrZ3Wfw0xiNNSZPPyLF28uGZRutbeNi7Lhowk6KJwmyAbFqWq9QX9Qzn7xj3fHM2hhR7jtp2r80wbl6Tcp6KpyQ3OS0/PMEoAmVl/XsCRLjMyuNO74EF/P68fOzo6bPLzdTeBVb5HbNbP0gABxuyjDxjMx5yRZHpe7fBYSvAxmpcp/SgptRzgPuOHDpMB12VdXWUGIieyB5Yy8uDaYcZxNrZW/UOHDb7/9DPPip3tqA3ubk6n+LMgJ/vpjUmGi4r0k3iwXBrit/TUEMnPCdPmZPZMNlXHa5F7cTv+8V2QlgDeJlz9+pZkKeA4ULpnU7lsWVEgfdD9ZLmtKwFGysbVubJ3bQEkZq7W5Y5tA/g2lajr1lnID7rz0jCUPobv0zCUcdvp7h9qbwQdWY6tXx+oN0aHlhCusY7H0Zej7MZokBsH6+TOBQNkn0Pq3QP7fI2TmAOm3+Lk/fRcp4LwY0hJzsa9h++9C7B9c22JJiXuqb3BEh3jucNbshczl2C/zy526yAq5d23t1YgnlqsMdZnrM2Bib4FoL8B65FNP9P3wc+8tVLfhz//rvkxC9xGr+UyjQcJLpYatOXrAyPG+/Lmcvy97XjtUs168j3vsT3s8mJNxLB8wcI62U5NjfZVayxHOXlhV6kJLHXE3n7s9RGGb0m/g72lyd1lko5w+QBs84OcJTjAVeaHzIK0nC2pCX46oT8gLdurIyAd4yEns9Q+YcfqQk2MsEF5M1TLzjUFPxxrFyaq9QUvnjtWZMs+gI8tXTtX5poOGGax/btWZZlWdSZ9GxYwwzY1VVu5/jIMx6AQgHsoJDjAYuJ460DIwvs+3rNMAI4JgDJRRrKDxN/czEy5SPlojOa4atbSR0FndJrMUTk5UyUjweaoi/MczSM6jub9cEY9zs1she7oNNHc5mVpevvtt0zcJTBmzPCv3N2d7vlpKxniSR23mSNhod4SHeEtiZCTyQnBkpM5T0oKAbjyOGmuTZTWukTpbkmR7ibo+Y5UlRmrujOU1fb2VaoTF+feOP9G3c8VwFt7c1TPH9pSpjqfH87O1RxWrFTz1otH2gx3XoCN0wBsVCbAGLNRXpL9CESa0Lx/tlvZT/1GjrfKDfqJAGi3cZ9SkvLyDmIsysn3TjRrN/3XOLnvgYl+DVa5p+MskJdsxeLXz7bJVxe75Guwxxe41eTEecNXhNPWd7WTf6E2PNPS4Au83x0CDwD7mCl/xFW0XLgL5vnyGu0Pligz3cPjOxcXKTA/pm0Dvu8rfP83lIkAGfsqP9EB2R4DcGC5uwAmbzV5gkPjSPZiXjWaoj8836Fg02L34QZNnjDhw/vn9lQBdGC43eoGZuqui/43G1vL7+lbMnLUMBMdoj3cJouvJ1gtYKaO5oTPNRyiI8PcJSXOV1mOgOuojZWlbUn4fJMVcIbbMlP+LGyXqi0hdwmojFyZg8f42spcbVLeujxT+han4DZLDmws48XVtHlp5vebl2bIwurwFdlxXv+YlZWhjf1/SPz2B62rok1ZYVGRxdQpE36BK8w1f38PEwDUT8nIVD9ZxsvLGMfx9HD+Xe8k4zWynfcsY1rAY6Y+r0ymhe4pKispHQkuXT3s+rvlHlzoQb9KR9bkJo1TRy36Uw56923dIcCVssyEskQRgCNUTY08JSLMS6IjfSU5MVgyyHJZzFTGSl1lHACXIJ11cdJeY3wove2QGCsKZevqYtmy0pgQYGzHQilnp5bjNYwBtoPZtqzI0Z47rhXetIzzVemQIoVq+sOsFi0UrgB8lJXcikPDUPoYXsPtRbVQoJQ0Vh9xfe2Vw02G2c/xNm2t+pjpfjDgFzhxP4TkIgAJoK/AdHfAUL8EU/z6JuQcGOrraxxAbVdDni/xmq8BlG+ZIQQg6B3yK8RSjKOYaPmARWx2fFwy2O8zvNc93H7KbhIA84vLACq+n/U0stxXl7rkSxxfXAHLXuxUGwTW5Qg4st7X+D0Y65Etyb6Ul1+932vuyezSWO1b/GwjjmP/ZY/WCZlJvYufx2kCSmMC7n38nTQ1OrunWk5uL2UtTq7urzYtbogVK+sxYmc3RmY4jTN5ImZznTlBQvynS4jfTAkNJLu5SnSYm8RHztHBU9pi0I+S/ZIrOtOltzNNLRUoITf0ZMmSxljZuCRDC9t0TtuDWJybjXifw6W0LFzfBZB2J8tesNzBzeWm7Suy+zcvTe9f05V8PyfJOyQlKV53bWRm/mHs9gcBTg1h8UMCAwMsJk2wTmCm0dtnlsnbx80UEOChjcOaIDH3Tg4YCGlG0stNwUbgeZlbuwbMhAZm4Nx1E+oMbfEakJIu+Bo9Twi2KZON/XA21pYmesq//c5b8i7iOC0HeDmzr9PEsZsw3dpj9E9ysDQRsVx2xjwpzA2XiuIYqSmN1lpNR1WsdDawCyFROw3WLMnVeakNS7PUIKgLz7fUxOEDSwEgkwBErjcqkU1gu220VdtUKaf3NunKKhqH6i6BfQ26hP3cATzWw5CZTJ6wBsd5ObZ+3VLPkk6dGGBt7QPuhDvdoXW1D88a09KUbJ9d6FZ5R5B9RZAgPvsVTuDv3ifolsqvb4BZAJJfvb9M/u2DXvkOLPOvZBrEUZ9ArpFheMv3YNfJnSuLNPlyD/HcHRbFAZ47YL6vwZh36DkCBiSAvoUUJGC+vLZIPjrTAqlKGwSyYqey2+eX2ea1Wi0UmOZn7PcFfg+WIjR2I8j5+140gEl2++SC4fRFuwVKZY7tcBaOBfD3jrfqaNKlQ/XcQCNHNhbIFQCupyXBNHXKOJOHO/clTDE5z5gkTpSTiNtC/GdKdKibhIe4SVzUHF3pnJ3kI8XZQdJUHiUL6+NlcVOcdpasgUqBFJROSEwy3g5z+xZjNha5d0Kt6MzbtiotB7DTZC1Ax1rctt7s/mUNkffXdqeSCf8tPWrm5MS4aALuQWMj8F8IcAOgoylnRHjYE07TJ11nJwkA1M9eycBgT20eNsZwXDRpYtgruKkxrDKfp9HOZdy6/mCbxyZmHsbqYSezrHQ0WyWYWW7KeJk8xV7XyHKBAxdS0GiI8pQ/y6gFeugEOhuVCb7oCMRycQGarSzICZeywigpyw+X+tIIaQbg2hsSpa0+UX0mdUCRfhdLs3UQcW1PtixhDx7ivPXL8nQmjqP3OyFH9kHbH9yOK/LhReqcfGRbte4LOLu/Qa3weHueYxwHGtV7nix2FccNsNiNo6ybtenx3rFW7Tq5AaZjyxbBwAIxpRtP1ntgtW849wYQfMOYiTEcmOTXANyvwBi/JNgQ0/3q+mIcSyE7GX8ZCYovEVtxrOZDAJk1MAKCzcX3IE35+CuAhKD5hNYIYElKyTtgrLsEyVUmT5ao5CRzKZudgXQ9j9/zLMsVjfg9O5QRaQjE3/dTBVevgvsb/Byy4F2N+xZrUoYXEQLsM/pTst6nMRwuRPh/MLZkeeDigVoF3WmwHN2el7cmiJvzBLZzmaZMHAsZ6SyBYDYWvEODXNQ0KC7KnaZDkhrrKZkJ3lKYESCVecHSWBYhC+tidfHKqs5kI0O5MFVWtCcgXk/XEKFvkSEb+3rSVE4e3opwAnJybVcSYrok2bWG7JdnWt2ZeH/3ykzTqpbYfQkRPs9mGUB74A+Vk3/kyuEslZcTxtvEzvHQUZv7nmbQDQDMSP0bIzjaP6kWC0YSRRmOFnpeRgJFbfTweGAL6oDBkM7GOTOLSbabJpMn2+saWQTRugmUnoR2uK/9k96u2vFCMyPdcxDqpQOm0ZFGxpKyMjMtVIrywqWyOFoqi8J1OLG1NkGnu7ubU5eumIMAACAASURBVKSnPV3deVdBhnD5AwcSyXgEHpMnGzl6T4tytSMvk2O7uSlnqRzZUSdHaDSzo0pNVlkru7C3Rq4dMs+7HWzU9q/L+9m+1KgOyJxtY68lpwI4XcD77N7gyf4559LoIULJB2b4NdiKZkFfXevR2OpbAOELSj2cyF9dXChfAQTfXoLku9gun6vPySK8fqnKRsq4u3j8OWtp6pgFmXh1iWYVv8T7fM60PxMz15Zoje3Dk42Qj3jNuVYwIBdEdis78fsY630JefnlFfxelzvx3EKtp32lc3BL5MaRBh1C/ZKxJoBPuWkAvEeTLQQezZAoJSkhGSN+gp91Hv8XjrkwaXJuH3dul8nO3gw5ubXI1FEdfX/8OKv+QYPfkWBfR1NZurekRLlJbLi77jSImc/dBrMlHgyXGOUB0M2R3GRvqcgOkPbqSOluWKC2CZugWlgaWN2dJhsWp8saAFDt49cSULmyDgA7uLFU9veV4D7A2Z2ivqGbAMS964tNiPP696/JkMaSqITk1Azajjz0x4Dtj1g5bPgD5ublWkRGhj88YfzYfWbg3AfQTJqR9Jtl9p10VnYiYOiaxdcNlAe8zUAzTGGnawJlwLfS1c1gOHdzqUClJh5PmGALsFkLR+vpLU97c+4FU0t1gG6u2Z+EgIsAsy2IDZSYKH8wXKCkJAYaLsrpc6Ugi9tiwqU8O0Rqi+ZLSxV9L+hdkqKj+CwTcCp4zZJsWY4Yjov7lPXwHINsBtt7uH1le4ucPbTQsFLbUyOnd9Kvv05O4ZbLFo9vr9CGV3pL0jD07O5aHTxVS/F99VpY5hwdpdSHnB44a/RH3ru2TA925lOa8fj6Rq8mSL4AoD4HG9FQlScv3a7unmqWL07Uy9cAyWcnm+UTxEU05WHmT0EJsN693GNkA2mRxyQKmJOM8/GFLgUii+UfQc6yFnbvfIv+LHpVfnahDe/XIHfP4RY/92tIzC8uLZRPTjcJZ9Y40U05SVDzUAmLGI2elpx30+cQ0/H3oGcmLyZMBJHRjM6YhVqTYwH//H6u8apUu/ajGws5UdBfVRT2y1HWlvcHDx1kcrAbZZo0wUo8XCbI/IBpEhk8XWLmzRTEVJIe7y1F6f5SkeOPWx/1EWUNjtMC7DZZ1pKgzcksD4CtlOE24Ni3sUxvNy7L0owka61blmfLZjzesTIb8VwRpwb6d68pMO1dk/2butyg0JSEWIuc7N/5Zf5FAff/m5FLS7FwdZnmNtN56rfevjrN3c8uFLLcHPNWnB8cuSgNIQsJRD/zRh3GcUyc8DUDtgv8PmYrPdTOzhhQddUJ8IkqJR0cdKmHHm+9/RY3qJhdnt00acKuF0rKUDBcTLS/RIb7SlxMgCQsCJBkMF06QJeTFixFmcFSAsAxnmuqog12sixnMbw7S73nV9HLZGEm5GQG5Gay7uneAT2/f1OFehbS0enk3k7duEL3ppM7KtWi/AhY7ihNXQG6MwDVid01cmp3jRbF2RZ2gsDbV69MyF5CZup44l070qK7xnQGDoC4A+CxvsXs3q9vrVbAMZP4OWTYPcRa9yDpPgeD0Ivy1oFK+XB/uXx5ulk+Pt4kt47U4zUERauWAHjSf0HvEXqM0DMS4GMNjN4otDj/+BxLGa2a6GAMSbZi6l4l5QU8D9ajjPzgZIPcOdei7Pbte4aU5JzbvWtLNQnyuYJ7qQKQQDSclpcYgL9kPMeMJ5MmLHifA6tdPFCnLs8s2nNanmDjc0c3F8mF3RWmqqJQGTJqmLz2xqumNxBCDB3+rowcNVQmjLeU2S4OEuw9WbJjnRHfTZLQYFfJSvSWUsRw9cXzZVlznDSXzZOG4rlai9vQkyldNfPpjgxmK9LiNoG3HTH5pmVkwQyN33hBJfsxkXJgIy6ua3L6CcTljTE7C1JD/7/M7HyL7KzMP4rd/ijAmTOWDxQWFluEhc59xMnR4bI3mAvg+K3Zbdmk09yG7YHMoZUCwEYbcwKPrzHiOWNSwMssKQ1zVuP7eN8LrEVAzpg5WcHG/c2659uBq4qsdG80Jwm0oI7vCwh0V9ewMHOWMgosx2MBgLcAoEthtjI5SDKTwXbxfpKR6Cfl5u6TruZkWdyWpquNyHKUlnTqpR89EytdTQk6oMgxnQ2I73Yjjju4tV6OcUvO1iqwHa2xK8FslQq2s3trtZ+St2f3sEZHI9EqLe4SbAQhHZZ5yxoeT3Saqt441qKT3eoleY0JD7oWd+sJrV0kYK2POBNHC/JDdUZZ4GCVfHiwUj7BcXt/pdzYUwmgdEDCVsmto/Uan/F7WDPTDCXNYs93qpUdjXHuXuVUdqeROTzTpkD5/AqTKADl2Sa5eaRWbh/H73iyVgH31dVuXAh6NFvJBMl3H682CuR4X8aajOdY/2Mp4475+ADg/4AjPrhYMLHCxMnVI1xeXwG2r1V3L0NaVuvzZ7g/YXOx+Pk4ml5+/TXTO4PfkkFD3zG9yz3uAN0Yy6EyeaIlzik7cZ1uK4He03B/nDhPd5D85DlSWxAsayELV3G4tHWB9CJuW94eLx01EbK0KUbBppnm7mRlM9bh2M7FGTgCjcDbvSZPywXbV2SatvdmmVqKQxqzEuYidst9wJh7y/p/A7gBWVlYWPigj7fXg3Y2IxZA+t0HePoBGBPjM9blKBMJOFqJzzKP3cycbvi/u88yjH5YKCewdBDVfbohRecYNTqjz3KyylKO6kyZZCz4sLQapbKSK464MZXvz/cICfFQvxLDa9IYOo0M95FoyEpuU2G2MjUxSBJivNX/IiMpQIrBchVFEdJcHScdDYjlADBmLVmfa65eoEBrrYbkrI5SO7U1iAFWd+GDRDzAFPO21fm665usxjYgzsxRMqqc3EUTmlodXGQChcxGk6GzOkOHk2s/F0bUyV7EDafxunN47sT2cu3FZFP0JYDzMmSWTn+z1/JYk05EXzvaYrR6QZZ9cAwMxeN4vby/p1Q+OlwnnxwzJOBHYLEvIdfuXTIKy5SVH4DJvkQ89pHZ/59Zxnua3l+qtToWt1kW+BTff/M45/rw3kySqKxsls8RLxKItCxnQoRyl4kWsuJH+Bm3ASwCjNlV2ip8dMZwYWbpQS0W8DdwROfG0SZtgaNjMcsBZ3jh4agTLkynduLv31kmBzYUmEaMGmp68523ZOiId03DRg6W4SOHGMeIwTJsxBAZMWaoWFqPEJ/ZE2TqlLES7DNF4kKdJHeBiyRGuiJsCJAlTdGyZmGClnQIMgKLG3xWAoTcs7dhURpAlSMbwXZsaGAN7iCY7fDmMqNksDyjf9fKLGkqnls/L8jT4r/aG/AXY7gBdKelpT2Qnp72gIuzYx1iNdMcGvl4uwF0riZNiHi5ataSspL1NsMkyGjbUibzmKmS0liZa9TtlN28jZ5L9lnOcJqg9TeuImanCZfwjRkzQvdNs9lZC+m6D2C22ivQ9oHSMnTeHHVSJujCQ+dIPGRlQqyfHikAXmq8P2I6Ai5cqoojpLFqgRq+ttXEAny4GtJCrRZysz5G2msQgNdFSFd9tO6HW96RpNPBHMfXrTfri3SRH4vg3MF2AhLzDAB0iqM6e+vl/L4G9aKn/DyvkrLJLDPrdDfbsa2lsmd1rk6UH9taopPkp7YyU1cuNwEymu9c3VUm57YUyZU95XIdx+UdZXJ2U75c3lmqx3sEHNjow6NgPjAJ2ecjAIB9jGwfU6PYy8Z+AbW/u77U6AKhK/Nlel+uUHbiOM4HJ9kU3SAX91fINUjWT880KdDuAHyf8T5ex3IDDYLIZLQw5xDp+5DIBBQNX29D3t4536ELO/jc9UNgdTo1my8cjNnIZoxhz+B/wA1Ax3HBOYT47fyucm21GmM1TIaA0SzHjsDnPlJsbEeI/bjRuPCOwblgKVOmWEH1WIm9w2gZN340FM9YGT/BEhd2OwnwmiTRIdMkImiaFKV6yuq2ONmJC+RmrcdlakfJ9hV5mkTZ2JOunSYbFqUYiZTeLO022WMkVfrXI/7b0h17Iytp7rPc/Zb9n+zv/osB7vezlvQMtLQc+eLUqQ4fe4DlPAE2AkDB5uVmjueMDTpM77NR2SgHGG1cPua2L5+BLhQAzsfsYTnLbJtndJ1MVq8TG8RtVlYjZRgAxw08A+M/hm+Jh27wUZ9MJlHAevNDmUjxVFk5f+5siQz1kKhwLwVeblaoju5UFkVKbVmUNFTGSH15lDTilsAju3EyuKsuUrpqw6S3JUqWtsTI8pYF6mW4FfqfXvP72Ge5pRxXxVI5QM95MBcZThmPtmoA3QkdYKzW2txxZjTJdLuq5RSk5sH1+XKkr0AzdRf2VMjRjXmMYeRQX74cXpsr7x2qV7CdWJ8tpzdkyrmNuXJxc65c2JwvF7YVypUd+N5dxXIdx4WtBfKe7nCrUysDSj3Gb4anpZGqZ0cJ2ew9nPgfnDaGVTniwx5MSr5rANp7AO7tY9Vy+2i1Au6TM41gqhbNlKprMgB3i1t5zCZBH3CdFYvYANT7h2vlfcjZW5C+ZFJu33nvUK3cwN939UCtzsARbBzPocw+DlY/qbvlihVwF/dWSGGGL+K1IWI3bpRMnTYWcbwVzh1rnEs2UDS2EuRvJ8EBduLrbQvVZCNTJlvJhInchAQQAowOAOVY25EIZ+wlzN9JChNdpTLLS2ogN9e0xmh5gF41/IwObioGs2UgZivV57atyDLt4oaj5RmmdQvj72/sir1/dn3idxW5EeMzsrRh+YG/CsMZ+79zLTw83C0mTbRuIIggBfvJdAATi9Iq+dy0a2SKSkSy3UB8N7D9lH7/BNYAK1KWKijNixxZHnCcOsHIVNpZCQAuw4YO1vfyN2wfJDBotjZQGwzngQ/EXULnGiAMC/NRpgub5ymBfi4SGjhL4mL81AA2jx0okJUVhfOlFDFdTWmkZi/rS8KkpXK+tFbMl+aSIOmu4arfaIAtQrrrIzRG4Kpeyo5da3JxNczD1TATV8hc2bu+UGXmWW5W2VOngONcFeM1yslTuG8kW6rkHK7up3cgZtlSrHEfN2uS8c7sgizdVqKLDLki6vzecp0eYBf9dZyQ13eXyNUt2WC+IjkH8J3ZkCVX8bUPALT39pbJtd2lKuNYZ/tIp6xbjawku03OdWpm8jrduRBbfXihSx3CPmcGEmC6h9uPTtSCqdjT2Y7YrRXfA3l43tgJwGSIlgtw+zHkIpmNsvc2bq+DjW8da1TgXT9sMNpltmrtrWT3CBizVhc0EmyXAfhj28o0W8tNrPx7j28ulAO4AJGlKCOdnKzxOdvIHIAswM9O5s+zlQVRYyUx1koSY6wkJsJG/H3scP7Y4gJtKzOdrcVxurVMc7QGALnGyl6cZ9iJn+ck8XBzkPTomVKQgIv87MmSFjtb2vAZd9VGSnt1uPQtTqNnjamjBjK0LVrWNofJju5I0+XN6bJ/cdSp0MDZP/urSMr/WAynIevckKCnxzvYnGCa39XV6Xvd8+zlSuAp2BiLOesxRSUgWYmxmivANAA47cE0+5ww7huwynNy4jDqeD0mII4bzdLAqGHKlj/M3/kbFnmUlYEAVFAAAQdZiSM6wlfmAYQEHJd1xHGPQGKgpKcEIZYLlLxMw++kvCBcyrjiqHCu1BUG61L6puIgaSwLkYV1obKkYb7GBN2NMeqVsaIzydjxxrW/bPNazCA9RtZ2JeJKXawd56f2NBiMt70S8UmN2ZMe8dz+Bl3OeHhLmcYxLCWcBhA5BX6F9Tq6WeHkpQxjR8r5PVVgrDrDIvxcu7wPYN06UCG3wESnwIiXt+bJe/sq5Sa+5739VfL+oVplH2YFCTSm42kkS9nIFjLWw+i5wnIAO0AuAgw3TzZpYZoGPx+dRFwIaXkLoP3gVNsPq6e0rqcbdRZq0oasSHbjfBsnzwm8948bXiUE4yXEYxd3lOrF4vrBOr09jb/lMliOCyCZnWS3CW/pgnZiS6EUZwbIa2+/pTLRxcVgtJAgO4BrrKTEjZLs1KEIBwZLTsowSY8fpcCLCrfF52uHi64dzi87BZ6T01iDHZ0IwLHiAOabM3ucyk4XgDA+zFkasueIh6uDzPN3lGXVAdJb5S9pMa6mhaX+sqkl9P7Orqjv+ppD96VFuVslJiRohv6PTZj8yYAbkJVguQfi4+MthgwZZO3sMu1zNzdHk6uL43115HLBfbpyuU5TwHFllIe2dRmyc7Yy2NQfOkoGdgywfkcJyewk5KrGc9O46MPBRhmOB8sFlKCUpGS3AO3rnCX+6kfpqvcJvKhwbwkNclcP+sgIb0lOCJSUpCBJSwbokgIkMzVYSnJDpTgnRAqzcD8rUKpyAqQ800cqcFtfHAIpEoQr4XzpaY6RxU2QJG0LwHLJsrIzWdZ0Jcta6P+V7QukqchPWkr8ZQNAtw0yZc+aAmPUA2zG5IhKy53VapnNzOYxyKkze+vUr5Lx3fm9xoaa8/sowVp0Vu7yQW4hrdcT+QOuiEJ8xESIroYCQ310pBqyskjObsyH9ITE5CAnYr73DtcZixUBAr6epQBKS44F0cqP22sIDMZOZwECDrV+dqFDbp9oUDbTERqA6drRBgUvyxi3lCmZcOlU52Q6b93E12/jdbo1B78Tu1tYa6NcvQCwnd1aJJcO1Oi+gQtguCNbSnQ9l8ax+DtZpzy8qUSn57cvTRPXmePktTdfR/gwEsCxQYgBMIXaSnyMpaQnDpeCjHekNPc1Kc15TcpzX5fKvFekJOdNyQEQk+LGIIywQ6hiB4Vki7DDRpxm2IgL2M/Dw16mOSHmA5BnudrJvIAp4jnbQaZNtZWUCBdpyPGUoiR3U2nKnO8rM30lPcZld8I810G5GQn/i/45VHN/Ctj+LAw30NhcUFDwYGCgv4W9/ehmxHL3Z8yY+ltIQWU4MhhlpcvMaQCgsaPthx0AiNXIesw4smwwYHvO+7RcmD59om4o5RS4A5c0QlKOh7Rkl8mMGZP0fZilpFOX2vYFuos/bfJ0cYerbsyZpxLTTeZCdkZF+upBSZm4wFfi6WkI4OVmBCvY8tMDpCw7QApTvCU3aY5U5QVKdX6QVOQFSVPZPOmG/FiOOG5VRzxAF6ddCWxi3rkqG0F4BkCWhgA9WhbXhsqK5kjZ0sMp4kIwGOQjmI6lgxNqm12rRXK6fjHBcnZ3jYKLXSdXDjboLu7zOCFpLktzHRoV0beEg6XXOMLDTaZkuYNgwS35iOkK5fI2xHGUb2QUAO76vip1yGI8yPfVWTi6f3F9FNjo9jEmZCq1hMAVwLePAaDH6sE4Tboj4AriLIKGjwk+xnpsOGYC5iMC8GijNkV/CFBzf4Du/d5ZqiuFb9Kv5CD+rq3Fchrx57ENOWr2emYP//4yObffyOAeRNzLESeWAY4DmOkxHvLmm2/Ku0MHyYjRQ2XyVEtcnG0RkwNw0VaSkTASgBsklfkvSV3Jk9Jc/pi0VT2K2yektvg5BSCZLzbSWiLCbCQoCID1t5egYHuEF/Y4v+xwTgGArjZgPiuxdRglE8B8QT7cUzgO59NEU4D/xN8WFrwjCcmPro+MDrbIyyviZPeDv7+N9a8KuIFYLi4ujquJX3RynHB71iwdKL3PWI5rhw3GGqdWCh7uRtKE8R0zlFpvmz75h97JAX8Tw3aBzDZeHCEnJ020k3EAGmtxjtPGySyAl5nOOXNmGN0rXtwd4Kasxn7KEPZUBswC4OaIHwAYNtdY4BEx3wsy0wuA80cs4C+pCQGSkRgAsAVKYWaw5Kb4SuaCOVKU4SfF2YFSVzxXqgpCNJ7rqouSxY2xshxgW9wArd/FaYM46VvKvWNp0gPJiaBbU82UmhrPQTbSYu2cuSPlDNju/M5KNSE6u7tKjWRpPEQj2ZuQlBf2mmXkvhpdSk/JxRP6FiSgThDQSoHrovZDUu4DmACYq7tKwHIlchkS7uzmArmAE51S7tLuMrWmY4cJuz24AZUS8aOznVr/unkYoNich98JMSEYkSC6ASb74JzhwMxyAYF2HSCl0RFb0Zgs4etuUUoq8JoMf0kw3WUA9xrYzIg3EYtuRVzWlyenNhVoqxtHcE7tLNdY9mBfkezbUCCH+grl2KZCaS0Pl8k2Y2To0Hdk0LBBMmT4YE1+eHjY4fO0kwXRY/E5jcTn8g4uhK9AdbwoTRVP4HgSoHtc2moAPNyvB/CqCl9ETP6q5EB6ZqW9K5lpg3BhHYZYfqzMn2sjUfNtxddrnLgixnOfDTb0sBHfgLESGTVCsrNe+n5R5wPS2fEPl9Mz5r2YnV0AkGU8+KeC7c8GuN+bmbNITEy0sLWx9IUE/BWkoWmWq2O/uePENGUym49B82YmGwAcEyQKOBxuA+5dMyfrQkWuCp4KaTlF93CP025xelpMmWynYxtMqhhlBRdjABZMp7vrAt0VbGS6YEhLrjPi9IAuXgzxkIhQT4lBPMeYLjkOuj3OV8f00wC8+GgvyU/1k3KAjWP79QBcR3WEdNQguK6J0uWMPc1x0t1gAG/NwnjEdlGyHIzWWhaIEydYVnckKABZ99m3DicdVwxvKddi957VebJ3XaFKSiZTmK08AECS6S4favqh6fn6sTZluJvH29U6gSe4pt9x8pMN3wcAKTGvAHDX9lbIOUjK04jnDq9MlQvbSzRhcXZroZzoyzfYEwzEzpIPT7frHN11re81yuV9VeovcvscN7Q2aZxIycikyjX8DLakse1rYBc4f+5HAB2nzlnbo9RkRvQqLhBch3wdzHgCoD8JoPFns652anspGKxUTZguAIxn9uLAxWbfmlw5ht97eWu8uEy2FfvRI+Sdd98CwxlFbjv7UfiMbSUgwBaflRU+IwJukJTlvC7VhS9LSznB9oR01j0urbWPS0slgFf7qHQ2PILbxwDGp6W5+ilprgEQy59BjP6q1BS/KNXFzyMWfBcSdBRCC4As820pzHtJGqoeNS1q+9H9vmUWsnzpQ3dyCnyHZGaC4bIyHvpz4OTPArbfZS0zALr8BxhcAlxdlIxgq++1CdllmmnyRDsTGYpspWuqdH2VsyZL3M0Fcg9zIoVMxxhNF96rpBynFgtkPXfXyVqXeXvQW5pYIcv5+bqZJxTcNFNJluPBWI4gM5ImLBXMkUCN7Wbhde4SHjZH4qJ91P0pLd4fcYKXJMV6SU6ijxSm+Ukp4rkyAK+hZJ40V4bjg43Ghxgh7XUxABm7GOIRvyWrzCTgehrmS3dNqKzvTpDNkJM7VmSqxd6ulTlagF3WHK2xHl18j6m5rOEGdX5vvVwGA1zcXy/ncCLSeoAzcpwqYIcJGeUi2IxrnpjtI8jObC/C9xnbaK4BmJdpMwfw8EQ/t6tcC8xXAIALOOFpt8fZM7LbbYDtEmQmyxAcgCUDMmnBDhfWx8hujO343C0wIrv42WDMdjR2z9zQxEizrj++hOdv4L3pFE22PgVmVWPXfdX4HSrlAn6PU5tprgS2281OnEqtPzJWZaLoyMYiNe8JdMNnbTVa7K1GyiuvvwrQva0MZ2UzEvGXDeJxO4mERCTDFaS/i8/kTakpegkAe0Laqx8D2ACuqifx+ElprXlMOusfQ6z9uHQ1PobP6gnpbn4CF8ynERY8K4taHpMlzY/idb+QutLnpL70WWmt/7l0ND8sPZ3/KKsWP/D9+p4HTMuWWdwtKp09JCO92CIrO/3BP5Xd/qwM9/ulAoAOgBv/hK3tmE3GZPfk713Y9c/db5CIs9ymKbuxTkdG4tTB79q6uG/ASZMrMzn/5DRRkyYEHJMoBKun+zSxtRstI0cNlnHjrH6IEVm/Y6KEDtEsB2g9LthDYzkCb555IpzPBQVQerrq5szw+Z4SHe6pTJcUB8Zb4CPZibTP9ke8EKhZs6qCYKkumit1ZeHSUsUBx0hZ1BiNDzNalnckyuoubmlJlPWLOGGcKjtXZsuO3gzZiyv4/nUFsm9tvuxanQPgZevt0S2lcgIn3FGwHjOX7ERhHHcRJyO7Sc5pe1idptYv76+U09sK5PDaDDm5KUdOQwKexePT2wrlNBjsIkBFKUewMTnBjCPrebqU45TRKnbrBFlyoQKTCY1rAI8yJmXk8UZNhtwic1Jm4j7BxoTGVY4T0VXrZKsy4qX9zJS2GXElfhbtHSgp6cl5fi/j1Gp9zVk2IkMmHlkPuYrYkvdZyD+1o0IbA1h4Pgq5uR4qINxrqrjZjxHnCTZiOWKovPDKS/LG22/I4GHvipX1CJnpYquSMjZyLBTIcMmHRCwHw9WVPCNNiN0IuuZqSMvyp6RNwfe4NFXifs0T0tUA5qt5CsrkSVwsn5CFDU/KktYnZWkLblsel4W1ACxk6eKmx2R590+ld9E/ycrFD91f12shSxY9dDcvPwgMV/yDpPybAdzvZy1zcnIeTEtLs7CyGjNo2lSHb91cnfrZ/gVQcEupJlLIanTbYmzHmI3JkwGPSt5SXrIMQHZzVMA5yCy81s9rukyaYC3248ZoFmssPhA3MzMazstuZsv12cpk87izDgwX4Ocm8+Z5SnDwbDzHgjiAF+Qu8+d5gP1mSQRuY2i5FkXrbC/JjPOS7CQ/jeeK0/0hX0KkGqCrLwlVecmM5ZKGCMjKKJWVaxclSh8YbcvydNm+yug058EYjqMfJyEpTyF20zamHdWIWegAVqTJEz53FtKSSZXTYACCce+aLNm/Nkv2rEiTXcsTZf/KFDmyLkMOrc2U4xtz9WRnj+JVyLNTW8B0YCyy3tntxVrrus60O5MW24rkIg6Cj3NoZDnGYroyGNLxBjfaHKnTURn6ntDY5xJAyW05LBfcPNWhJQT6j3AKgKzIBA7Z8yYXcBDgu8DQNELCzzi9swLysVxri4fW5soe/D+O9hXIAfw9e1eB7fG30VbwIJ5jx44fmM3VdrTMmWwjMxysZdiQd+SFl16UNwE4Jk60eO1qIyEhdhIfO0bSk4ZplrK66Hlc/J6URoClFfFbQ8VTUgu22aHKsQAAIABJREFUagL4yHYtAGBH/eO4KD6GuJvAe0IWNT8uiwEyMt+SVrBcKx8/hud/Ics6HsHxsPQu/Gccf3d/dY+FqXf5j/+1oHDG2IyMHCZNHvqbYrj/CDyWCnJysi1mznQMhTT8DgCitLw/Wy0UnExkNGYXWRYgi5HRCDSWBJihdKLr8mTanNsr6Jwcx6s92kSAjS0/bPEZ52Ap1jbDNbajPJ3t7iR+nI3jfnEz05HNghHPkd3YazkvhAskCbLZZonJ5ZKzZH6Iu0TP45yVh6TG+0pGvI9kAHSlGX5SmO4rZblguIK50lo5XzprwmVxPbOV0dKrxXDW3uJURq7tigfwUmULm2ERp9H/hMchAO/Auny9z+6GY5tK5PCWEnUBI8udBhgv7GMWs0xPxq098bJjabxsXxIrG9rDZVNXLE7YdDkDaXYBTKKyDux1FbHVhX1kNLAbnicAzkPCERRMwFzcUSJXdpfrvgIC7L1jDcpY6iVyivYPiAW5o+1ks/ZtXmUJ4axRcmBDNXs6udTjJpmS9nt4j6NbirUwT0l5ensZpG2p1h2Z6idD06H6yOYS2Q8m3744SfauyJADa3NwEcmR/X2Fchhfa6+OFr9Z+NzBbF4Am+v4seKEcOPNt16T5194Xt5+500ZAoYbN36MzPawxedkC+lvBcANl6KcV6Wq9EmpBbs1lhN0T0pV8XNSibishhKxguwGUIG1yGCdYLzFzQBeIxgNz3c3PKaM1k1p2fmoLO/6OY5/UdAtb/sZ1MqP+nsXW9xfufIfJCP3zTlJKYkWOdk5D/4xlgp/ccD9sHEnPd2ipKTkAXd39wctRw/tZR1umuOE+4jTTLPcjBm3gRavgaK4EdfNVNZjV8oUs+MykycO+EBoImM1dgTk5CiAbYwWMNlHZ+9gpfU7Wp6zVYzLGAk2shrBRkARePO44GPuHG31Ivh4n2wXEjRLwkLAcnMNwMVGGCyXneQNhvORokxfqczxl5r8AGkoJssBeBXzlOWayyEz8Vx3fbisXcgEygLIlVhZWBchvQAi98od3FCo1nqsNXHIkYv9mLWkZz3T4gfwtROcNCAD7qrS+bpjmwtl/5o02bZkgazviJRDfTm69PH0jjKNpxh7sWBO2ceiuFrMAQCs112FvGQ6n/4orJOxPnaTtulgQLISp6tp2nNdjXwaIReN+TXW0MhirN3x+9iqxfocH1NO3jC7PJ/G73FgQ77+PofB1CcAMLa3HYdUpGU549Pti5NlY3uM3u5Ymip7VmfKAbx2+5p8/F/9IR+txZmfG25nTRgr7pNsZDrCg+defF6eef5Zjc+HIoabMmWsdpIwfkvUBMdQyc18TUoLn5MGAg5gKyt4WcpKnpXy0mekvOgFgO95aQXD9TQ+Ku2I6ToAuK6mR6UTjzvAeB2I7zoBvE7IzUVgup52AA7s1tP2C7DbT2T1UgvT8p4f/WbV6h+bkrPeSktMTrHIzcl5IDPzb5jhBqYKaLHn4e7yOKTlcQJn+vRJ/Vr4njXdxB5LHq4uRpJklpvh0MXHnIPjvjjuFmAs5+Y6WexxNaSEtB83SoHmMAGgmwiWg+wwkie/2+utBXA/JlDMbBbChmZPHVKdzxEePM8JAzY5hwCQIYjn5jKmC3SVqNDZkhjtKTkp/pKb7CPFGb5Sng2Wy/LX0Y+awkBpLQuWlrK5UlsUiCNAumrmySqcYKsXxuvcVWNxgDSVBMqKNjDV8izZtjRdTzyO9LMjfRtYkJtZ9uEE3LOaA5BkuzLtmj+yhVk9MMcu9l7WaVzG2Ig9iBf21WjtjtMG1xHrXQKrcMrgBMsA+6p1dRbl3nXu1QbjXYfU5I4CNjffPtKg6fqreyuMTKdZFnLSm03LlIS0PGDChJ0uLHoTnOzyN+qCtfj5teo7QkPcUzsrtX+Ux/GdVdrIfQgXlT1gtO2LkmQHZPbmzjjZtSITzF4A+ZYgkX7TZar1KHEh4HgAZG4TbcRjsq0Mf/tN+eeHfw5J+YICjpMBM2daQ/obJYG05CGSmfaW5GW/IhWFL4DdnoKsfFoKst+UKgCvtPgZKSkAy+H57oZHISUfk2YmVXC/HazW2fQLaYd85OMOAK4D0rMTr+nC84ubHpFFAOUyAG7ZogdMPYv//rfr1/+jZBU9tzY2LubHOdk5Fn+zkvI/sh13NI8aOWzweAebTydPdjARdGZHLpMaCblM/aFBmbvenLXobbgtUy66u04Vj1lTZQzYjXEbgca2H8oNSkvOR9nYjlF5Oof9nACxFsJZkzPLyfkEW4iH9lnSgmFgmoAsF4xYLiTQTcKCXCXY30UiAbiIebN1qyYzlSyEl2X6SUVOoDSC3aryA6WpNEwaS+dJM4DXXBaEwHuu9DRFyYqOeMjNCAXdknrGeZGyuj1OVoPt1jRHymZc8dl3uYcbWiAvdwJw6xYlgxXAcltKFWxHtlRoNpADohf212sHyiVaNeyp1SUhZ/S2Xn1SLkM6spB8mEmJXeVyAQzDdqpre6vVbu8iQHdtR6Fcx3HjQK0mSLinjb2O3GTzHr1VACzW0K5wgysY8vTWUmUqMtlVTYjgPmtnuwzZe3ADvRzzjGHb3dUap9IGvm9pphb5D6/Pk7WtMbK+LVq2L0vRWmVOcgBAZiNOViNlxjhLme5ACWmpDOdibyVzHMdJSvRs+fkjP5dnISlpq2BpORwXUDuJArulJIyWzNTBUpj7ipQXviRVhS9LfenTYDewXd6rUg2QMa1fjKO+EuxV8xhUyJPSUPWENNf+QprxuB3Aamt+RFqbHtHSQXstM5gAHQDYCbAtbADwOn8iS7oflOWLH+xfueLHpmVrfvGrKdOHvZOcnG7BEOlvpg73n4FtIJ5zc3O1GDL4LV+wXD+kIhMo/a4KsikmFzPgmMEk6FiHI2OxBODmMlm8PZxk4sSxANxwsRtnAG08QOcASWljO0osrYZzZkqzmQNjPz6eLhLg7SLBLHxDSlJaBuhWVHftqQwD6Aymm6MtXwTaPLBbkJ8L2NBdb309p0sEpGZmgg+kpZ+UZAZJXUmINJTSaDRM2irDdKq4pTxMYztOFbDdqxestrozHuBKkk1LkmUNHq9lcRxX+y1LUmTbymzZjWPzIi4CTJblrXGaSODwIx2Cd+FkpsksT3Cm2k/uBAD31+pkAdu8aA1OSzlmGglEJjnIOpfAZFyBfG4nPfrxdbDXeXP2koOqLEgzxmMZgM3K3NHGoc9zBC8NfABUtoWdBlteZVp/tzE0e4bdK4zXAC4y7cG+QmWsw5vAbrhI7F6Tqw7UlMd9i1KltzFa/95e/F3lufMkwGOq2A0fJtOtR8tsgM4RAJtqYykuAJ33FFtxGDkMiiBMPr/YLlnxnvLYU89oWcABYUOgn70kxFhKVsowyU1/V0pz3kAs/bI0lDwtNUXPIbZ+UyrxuALsVpT/ojJcfcUT0lYGsCGea6h+TFrqfiEtAFhr4yPS0vywNANw7Y2/gLQE07Fm1/RzaWl4WNrqHpGFrYjlui1Mq3sspHfxj+5v3PZPEp8+KC8zM/+/tR3nr8pwvw++4uLiB2fPnvWQ5ZhhpQo0p0n9Ls7T+hVUbo4mxmAzFWjj1VmX7EZWo9nnJOj7UZbDVDoyfuPhMN5S4zhrm5EyGldCLZQiyKYU9dR1WDO5ntiowzFbCWbz8pwhPt7OOhHOLCblZYiWDQyw+XrPlFDEc8H+zuLr5agZ0SjEdclRHpCYHpq1LEzzl1LW5UrDpQ2B/6KGOM1aLm5YIEuaExELpCDoTpb1i9Jw8qXJJjAaT8DVzTGaQNgGWbkJQNvcnSgbFybI2rY4WWVOvLCk0NsaKxsWJ2qr2H49qYuN2M6cbqfEY62MRXQ+Po24iRlFThicoKfjjlLEfwU6X8aYi4Xz60cNicg95GxqvkQmPNSoIDq72+jUZxsWQXqD64B3V2j289JeIxljOGpxnq9MX3twMztnirRPlPHa5h7+rclqWdCDv5UXnoqCUJnrP1OmAVyONqNlKhSIx0RrccfhaGspM+ysxA9gmzhyuBQm+yn4D4EluY54fuA0efbFlxBSWEOZ2ElqwijJTR0qpZlvSTUYrqEAQCp6BorjTSnLe12K8VxxwbPKcCX5L0lTxeNgt8eluuwZqQXbNYHhmgC85vqHpb7uYQVkZw0kJ8FW9Zi0Nf1M2hr/RRY2/gyg/JksXfgjWbvEwtTb/UD/uvV/Z+pY9uzFsEjff8rOzv3bZbj/Qzz3QFFRkcWsWW4Pjxw5uI+WC9MdJ33PMsEM7ZmcLK7sqeQyRt0L5yCznCdrVnI0wKZyEkCjpOSMFGM3yknLscOg9QfLoCHvyEsvv6SuXgN9mpSWPl7OEgiW0y0/gbNlDnfJ6UpiN2M6XLOYs7QNLGweYrogNwn0nSF+3tNlLkBIhmP2kkdMqLvkJHhLRryXFGaA7UojpKU6VhZWRwJ00bKkJUl6O5JlaQt3ksWD6RKltylWljVEQWLFydauBOnjNEFjuKwBA5DZFlaEyOKqudJRHqQN0ZRfdIzaviJLmWM/5BtbwygtyXjs+uAmVqbXGVPpdDnT8Kx7saULLHWmL1dO9uVrLHcBoGEmkU5iTK4YMWGdWj5QstLWge/DJMpJvMcZyFMWq1lHO4p47OQ2Yy8eY0smRmhHsG11nhri0nCHiwzXd3NvNpfUR0pRdojEhrrJzIm2iNVGy0zEaE52lpqFDHC0VdA5AXBeuIhOGjFUksLc1UaC0wb8G947UicbcWF66+03oFisJDbSRjKSR0hJ+ttSk/2iNOQ9Jy0FYLec1xRsJQUvSn72a5KLuK44nx0kz0lj2VNSX/KclLPFC7KztvxJxHVPSA1AWFP1qPZcNhS8IK2QoZ3Vj4IBH5aOlp9KVxtAh6O38+9k1cJ/kBUL/860uvdHsnrTv3yXXWz5dlZmwR9sbf5XYbjfa3B+ICQ4hPHcTxwcrLfSk2TKlPH906ZOME2bOt7kNG2CiVlJZ+dJpplgvkkIpu2g80eOGarJEisbA3Ts9naYOEaBZwWZyXF7dpe/8uor2mfJuTnDAcwRoHMEy7noVlQyGlnPx8tF5+hCyHDsuQQgWY+ba47lAn1poz0NUnYartLOYDk3dfqlLyI9ELMBuAKN7YKkLCdYyrICpCI3RLeydNXH6CKJxY0LZFnTAumqni/tpXNlUXUYjnCcLP6ytHqu+mmsBcMtqQyRtpJAaSsP0Y4VtoNxzGfL8jQwR6pu4GT5gBk+dvXrsaNSuzQ4S8bpcO6r27ehUI4idmKh+ejGAtm/JkfXIx/dVKSZRtb3yIzsVLkCNmN3CBMwbK8iS7H2xyFQpu+P9kHS4jEZbc+GYpWNOwAy9XBclimbe3NkXU+muk/3tidCTkdJdmqQhOBC5UlvkfGUjGNUNjqByWbak81sJNDJVjwn2yjoJuAzS43wUHl8anuFsfEVspnMfO1AtQR4TpIJE0dJfLStZCcPl4qM16U+6wVpzn1GmnIhJbPeQuz2upQDOOWQkSX5L0glJGZt6VNSCxBWZb+B5xHblT6D42mpxG0lQFgDxqurfELqwYQtxU9JR9Uj0lj+uLS1/Iu0t/0Mx0+lB7JyZcvPZFX7T2Rtz9/L5q0/+r6oysYyK+NPl5X/zyTlwG1OdvYDxcUlFv5+3i9Nm+rw8YTxtqbxDrb9BNyUKQ6mGdMnAoT2Grc54Oo4dMQgjdEIuLGQj2OV4YyRej4eNWaYDBs+WF4G2N5863W1XbCxGaNWDDSbZebTh7Ecd5L7GFMEyngsjDOuC3BT2Wk0OrvpVEGQr7N4z54m/l6Gdz2Zzd/TUR8Hcc1t6CxZEO4uGXHeksfYLotJlFBp495oMN3C+lhd2N5FqVkdKosqg6WjFIyY5ysthf7SXQkA1kVAhoHNWLtrwfcAeKvAeis7EmTjklTIShbREc+tytE+SzLdwc0luo2VZYMTO8A4eJ4JjCObChVw+9blycFVGbIPB0sPu7kksq9AjWgpCZlgUdsHyNMTtHLYZp5SX58vxzcX6Qrl3evyAbYSjSdZwtjcS4tAAi1LB243Ls2UNZDKdKSuLo4AILz1f+M9HaEAGM0VimQGPjfKRjKZM+K02QBYiKO1BDnZyQx8NuNHDpGMmDkqabkVlWDjNDiHYjkpQQ+UlNjZuHiOkAURdpKbMEyqU1+V+syXpBWAq815WUqz3sYF7y3Eby9JTSEAxkRK8fPSCMC1FT4BUD4vVXmvSU3ps1Jb8aTKy5qKp6QOEpKSsqn4aWkufVI6Kn8hDWWI+Zp/Km2tP5Wmhp9KZ/0jsqL557K67Wem9Yv+UTasf+g35fWjR2ZmFPzPANx/BJ3apuflWbi7Tmud7T6NYzf9HCxlosTddSrYzt40bOQQE2IzE8FmZT1S4zcmSCgpbeyMWM4S7DZi1FA6Oml3Am0XuPSDNb3BQwbJyNHDdV6OnS1cBukLmUmJ6e/PVVrGPgLGd5SUAQRaoAcYzl18POhdj9d5zRDvOdMlmHEggBYW6CJx893VXpuslxnnKXmJvtprWQKW43QBi+OcGG4oCZXGomBpKw7Chxqqsc2imlBpAuBqcvzAdqGI3WJlY2e8bIAk42Ars5Ubl6bLmoW4hVTj8setkJb7aGoDRtu7sVhHWg4hhjrANVm0cVtfKLtZVN9QJLvW5kFWFskxsNzBlZlyHNLy8HrIS7IiB18BtF3rCg1JCsYk+x3UtH4J4sV8gLdIPfg39ebKznVFsro7XQv4axZngtGycOVPVtvA0oL5Wjrxdp0irlAhMyAZyWJukJEzmX00A80NMnI2pKPvVFscNuJoOUKmAZRdNXGGH6Z5iSRn9Th1wPucqPjwVAuANA+f71D8HHvJiQfDpb0pdZkvSmP2c1IJtitDPFeWA5bDUZn7ulTlA1wlz0hbxWPSXfqItOQ9LaVpgyAfAUKCDMzWWPOI3m8seVpaSp/A7RPSWoYYrvoRlZStTf8C9nsYjP2ILK9/1LSq9ZH+VR3/ZFq65B+/TsyweyErK/9/jqT8PxTGH7C2Hv2Op7vjZUq4KZPsT0x3dLjM3c1jx47sHzxskMZu7KUju1kDYLzPw9raMJXh10eOHqop5OdffF7s7MaKOfOpewleeOEF4eYVQ1pO115Lb6+ZCj6dm4OsDFTjodlaLuC6q/BwX7CdO1hupvgBcLxlBtPfe6YEAHRMrsxHnBcXMUdSYjwlDUdBio/kcbogJ0TK84KltihER3oqc8F8rNlVhElXXbQy20KAr0MtG9jkHIErabSs6UxQa206gnHzJiUl1yltpZENmIq9lnsABoJsO6QdY6lNy7PUf2P/RsrNUoCoTHZxm8/mYt1dxxXIW5cky/6V6bJrWaps60mR/WAvrt3arwan+ZCreVoLpDcLF8qvA4PRiWzVokzZuCIfjzNlWUeq9C5MlybEqrlZ8yQUMa3H9AnijFjZfZyleEyyljmTDaBNtzdqai4AGmM3v2m2EjLDXmY5WIrloEES7D5FNuFn6JphMBljSk4x0I/y0gFj6+vFfYas7KgMw+c5CtLeVlKjx0pB0lCA7g0pYx0uaZjkQmbmsssfR2H6YEj6N6S68AVpr/iFdJU/Is0FkJK5r0ktZGQ9ZGN1KbtRntG6XTPA1gKwkQ1bSx+DKnlE2lv+l7TU/hSvexzx35OmRVWPmJY2Ptq/sv0n/S2NTxxPSo7/0d/UeM4fDrxMCy61iwgPe3aG44S5VpbDZ48dO9pyjNXwG8NGDSGQ+nFfcJgIMpvfB5wNSwEj8JohMnjoIHn9jVfllVdeQexmp4OqtGUg8Lhl5+mnn9E9BNxNwEkCyktvzxna/hVsdvgyTGQ9DGu9CF8JD/OSuSGQmP6uCrAQc0E8BI/9PKcDeM6aXAkBEOPCZ0tipKdkJfpJUVYIrrohUgLGoyEppWZ9YTCC8zBZWBel+8oWVc2XnpowTZgwzutpWaAT470thn/iuu5UWd4SD7ZLk7VdqVrb2rGmULYCXATYdgCCcdUO3NI1bOfaQu1YYR1sJ8GIuG3T4nS17GbRfZ+uQ86ULWyx6s2QY335hqsws4uIxTgmNCAVV3bjZy7JkpVd6dLdSD/ORF1imZoSjPjWVTydxonnBIAKYHJ1sAbYbMQNQCObzSDg8PzsKbbiMdVOvMFqgdNsxNthNMBoJRX4v7AZ+/0TzRpDsrDPGb/PLizSvk8mb9iuxlYymictB+Pb2rOhYSwueHYSH2Et6QssJTXGCnLeRsJDbaBMbMXfj7NtY/H/H6USswlxWXsJmKzwWalEjMe4rqz4CcnNfk1y0gdJRf4rCrim4ifJfiaWF+rLHjM11P9Tf2XZo6acnFdN+Vlv4/nn+jsrf/bb1Qt/ggvyi+CH7P85ZYH/7MjJybHIVOevIgtn55kWMbGxFpZWY6aPHDPs30ZZDvvNqDFD+1kOoLQ0gDZSmY6MNxqx2wgAc9Dgt+XFl1+U1998XZycJuk0AQ1jKSs52vPGG6/Lk08+CbZ7Hsw5xry7zlk85kBi+s3SFVchZi9L3s4d6Egxd6GwXsfC+NygWTJXEyqIASExgyE5wyErFwBwSTHekpnoL+kJ/royiXW7vDR/o+kZErOhIlKaEd8tbkmErIwE6MJkWWOM7p7msokVABY9LznYurKTO80SZGlznGY5d6wp0FVZW1cXqNTrA/P1cQ0y7nMVMkGzicABCLm/jjU8drKsovkpQL1+Uaqx3255hvQBhCw1bOP3L8vVRZPLWpN0u0wPmIzmt3Xl0VJVEikFOWESE+UrXrOdxG2qvXhMGKtgcyd7gd1mjQezAXCuWsC2kmmQlWzPCnCyF18AzRXS32nsKImf56qF8S+vLVYbBkpHbl3lTN15yEfuxbuOGJPJE7Ib2Y7JnBUtMSZmKSdOtjRNd7I2ecyyNvl724HxbEwurtZqmTDd2UamTkfMONNG5gbYSXrcaKnMelUacp+FbH9ZijLfkXwcSYnDJXjuWImOGgslMkzqCl6UhmK8hvEfAFlX/tj9iqqHJThsRP8cH7v+4GCb/pT40febKmjb8MxH4yfaP5eenvUH7/P+G2O4rN8f6XkgPz/vAdbqwsLCHnrq2Scrx9qOlhGjh9wfCdCNQJA9CtLRyiwlNXYbPUyGjBgsbw96U559/nkZ9O5bCjJmOclwHExlecHe3kZefuVleQGvefKpp+SNN9/QdjHuLqCk9PE1hlaNZmc3dXAOxC1lpWGzx95LY7LAYDzW6VwlwNdZ+y9pvRdB38tobzWZTUvwk/R4X8lJC9B6XS0kZnPpfMR086W9Pl7a6xao9fZSgKurYQGYJF66mxIUeGS8Vi2iR+giikVN8ZB3GbJiYarW97gma8NSLodPlw3LKAGzALpcBd9mgGoLgLcKspQgW1Qfo+WJ1WpamyFLGuNky7JMXb21pjsD75cmXfjZPW1J0lIdI42QjGXFkZKcGKjsPhvx2XQHG3HG5+AOhvKCdHQDyBwBrBnjwGr2lpoMmTPFRmZNHKv1Nab9XaxHiav9KEkKdZMNizPM2dBqXWTCaXPWBc/sNAr459RHpVn7RxV8R5q1DLG9N8O0tCFcZky3NdmRIacjTsQxHeCaMs1apjpZy0wXPOdsLdP43JSx+vX5wbam7MSRUpL6jqkoebCJrBcTNdbkDlk6mRcBV1uJCrOFBB0CCfq6qTz3DVNF/oumxvpHJDjyrd/YTRqP11nrawHif53pPPiQu8cUu5ycvD9Ll8lfneF+XxOzbID7D2hsZ2P9z6++8fIGK5vRLHjfHwF5yWyklfVwE7tNeH842I3jG2+89bo8/czTGquxy4QLPjgVzs4VR8dJCkC6NT/77HMKuueee05ju0HvDsIHN0E8PM0LI9n0zP5LDqdqBhMyk4OrbHIOY0fKbLVoUJ9LPBdBYyLczof8jIn0VcuGqEhviY32kYQFvpIKtivMpKzklEGo1AFw9RXRUoejqTJGWmtjpQFs0gLma6qM0gWRC/83e28ZHdeBZY2W7fQ0pCmJncQsi5mhVCRmlkolZmZmLjGZGZM4HNux4zicOHY4Dneaebp7pt+s4ek333Qs3fPOPreUzur11lvvW9PzxXbrx123VFWSpfLdd+9D+xzAkshWeoDBcXC2jkFaJ1nPh4/1CgDPPqBuZMVGmEdO9NIZlo5nHoBFez89DmtvZspHT/Ljk7304JEuOrazSb4fwH3iZB8DsItO8M8H6E8e+hObzUzUUVdXGRVzfGtJi5FidSLLdnO0nplMjckyolUmA+Ck/5FBVxhvpKIENdWfycBMDA2kusJkAdrPrx2if/zh/fRDFMw5rsSAKhyZfwIAwoEM0wzXjqoTEjI1MUff58fXnptXkNB57HCzEp+gp/AY3ZLeFPjvfDD4gpej40KVxBT+XdJNCoAXE68HEy4npxiUrEyTUl8ZzhLfRB31qndlWlY4xTCA+PuWYuP1SxZz2HJPi2HZ2he4NN4fqCxOe1BRicNpFy9/bWhYQGJEnDbVP8gzPizCYKipq9/Q1y/mQWv+EpMCNwTg/tymATITA6zhkRHfcfFwuqDjOyYkpVYXoMDWOoQfw+oajryePp7k5OJMW7dtY+bTSpYzzKST+A2ZyaTEGJYkkWI+FBQcyMDcSg4O9nJs3bqN7PkMB2fUAwuxSBI2e/A/YamJWK+o2Py55ESMV12TL10qDfWF1NBQJEtDsKmnsamEahiImLer4PfBGQzWDe2tJdTVwTJzsEZMZ8eGqmluspFmxhtpdqKeZsWar57mxmtoz2wjLU6qVn33H+2lgwuNtHOihk7t76AjAAkD9Ph+Zr0jPZLIQLbwweP99OCxPjp5sJseYRY8wQyK5SSHdrXQIyxHDy42014G+r75Jjq2t51OMKD3LraJD+fYUJXYv9fV5FBGWjxF8+cWERpE8fw5JphCJR5Lg1REep/ZLE7qaqECuEwGW26MkXJYZibpgikBKNmjAAAgAElEQVQ6yJ/Ks+PpieN9EpdJPQ2DpsxWKL6/ZzuLixfLRRgY/eydY/Qp+kUvq+wnM3iv7aWrT46j/qg8caxDiYrWXgs1BJk3b9mSyyHDf2FcJzDY948h+oDrxoiQ6zHxuuuxifql1DSWl2l6ZkC+GWTol1NTQv89OibkPyNjQogB9FlYtFaJijNQQjIDNcXEN5YIam2MpOYGg1JQEPJge3vH33R0dmu6e7o0Pb09GjjQ9fb1amamYR40+hcxD7rhAPfFPwpMB0dnU7jp9u32206hFsegA8sp6CD3D/JVvDh2w0YVe4cdtG37NoriOzFm56Kjwm1uzWp/JmRlXHyU7AcPDPQn/s8je/sd5OzkJOcV1nP3cKcI/hlmS6oADUOshQy84hIzlUBuwiOlKleYr7qmQGp45bJAJNc22JpLdfVFassYvw5WlF11DM52mBV1lVMHn0cHq2m4v0qs+eD6PDVeT5MjNXLMWGtoYqSKpkerJQEzPljOjNjKwX09LTAL7WQ2wgEA7d/JDLmznQ7t6RLH6EN72mnPfDPtmuODwYv37J5rEicy/KxJPoYHqqmTfwdkZYvyUyk2KoyiDFoysTqIYuDEGEMZbDqK5wOgi2VlEKMPplh+Txw/Tg4LFZYDEGP4Bmb086WclEg6satVvDQx3vOzdw5Lv+XbzFrvvThPf/fxKQEa6n7YkYfJcDFOwhIPOHu9dUTqhD+3Lfj4+PIe5aXHh5X7d9cs5Znj9XNz85rklBTNpi0bR4KCff4YHc3gTzBSXBLYzcDMpSet3vuH0TGGubT02OGMrPhivsk6GMMMJg4dGhKSotNNkfoqbz+3Zwwm/1/HxAb9S2R04D8Yw3yvheoDq9rbOtdMTkxqxq1j65jJ1uIYHx+XM0KdvyTYbjiG+7M/bs24dVwTnxCviYqJnA7keI5l5HVmtmVsUWGwKc6uTrRpy2aJ0dCTCVBBQorBrG2PAfxUwHyx/HxsbCT5+vtKLGdnt50cHR0luwnwrQDP2dmJgrVBAtQcLJSELwqDD/FegUjPLDXbWWyW5wDESgYdTIwqmQkBULBcWQWDE9brzIg1DD5kQPEYZYcmMCKDtKurgnp7KqmnEzvsyqinC3vsymSX3QBL0v7OEnGGnrbWMzjraGyYgWltoEl+PMpsOc6AnbDW8es1ND7MQOXHsxMN/N4aBlelsFhvT4WYJdVwrAlbwbiYMNIxWAzMSsbgAGa1YIpnFktiFpNidTg6+VXpCKBF6wC6EBvT6ckU4E8hXt6UlRBO+6fr6YNXdkr9DDHYj99UPVJg5SA7BBiEANdPWU5iV8IPxRDpqJQD1PT/LhnxwVwfZvw+lQHcheXXL0zS0bnKX1vMSZtGR8cwV6nJMmfxtRCb7x/gftFg8L2s0/k85x/ofiFUF7CYmpbs2tLaopmdmdWMj09oJienxIIfplYz07Oanp5uTVxCnMacnWGfX2iOyc7JDE5Iir+tuaVFM8XvldXBX1g4+sX8wl8KaDck4P48oTIwOLBm37596/ILCtZt2b75OGI6nwDvJQ9vd8WVYzdHFycFgPPycpfaG7KS2LCTbIvhMOiKvkrVkEjt0Yxh0PnxnRkyFIejo4MAztWFD1dnAeF2ft7e3l520Gn5gpQkS24aYQ8eZKe6Yktdr1VUooIPyyiLS7LkPbKRlYFaXKpasAOIVRzv4XEFswuAB+lax+xX31gsLNjWwnEgS9D2jjJqaS6m5kb1uY6OEpGoLQwayNPO9hJZodzFIG1rLWZZWMaPy6i7Q5WvYNKm5lKqZnZFU3ZGRjyFmwxk0AYLyHQBfsxoQQK0aEMIRTKzgc0ANNTSMlguItWfE2eUWloSs1oCM18EgzPQ04vS40w0N1ROV5+aYIZCZnGPSMiPxRlatfL79QcnJcUPVnv70pSA7+dipbefvs/vxZQ5Ro4gNT98STUSQhM2umKuXphQUNp46GDz77LSEu61jo9rBgcH0PwuN+DCwsI1FRWl3yqvKP1acUnRmpraGs38/IJsJR0eHlo3MjIsk9lgJz748dBaWH4waNeil3dqclozPTUt4LSx2P8IsG4qwH0ReNhFh4QK5KW7t+slnSGYJaXfkru3xxJAh5JAiDZQSU9PVNC4DO8TzNNh0Ye6xjhV9hiA6dIYlJCXkJ1avujsd+xQJSaf7e0dBHzYrOrh7krufEYpAQkWBwcHcuPnAgL9KComnOOFeMqGAS0MkAA8uD/z49x8fq4wU3wyZUQILmKwYmfgAXyIDQuL1NiwFF0u2PLDMhSxIabQm1pKGYBFDMACAWNLS5nEikjQNKBG2FQkk+p1dQXUwO+rq1XlLJgUPz+3IF1uPLjp6BlQQX4+FODtRVpfHzIxYAAs1MQSGVzh/Ho4x2xRLBnBbJnRRjLHGqXJGKl+nJNYWppYhgd6elISPzc3XC6DpxjvQQ/mh2J5t1eYDA5dmF7A3vJfXjsm3pVYr3zt+TnZn4AkycevLIpdHsZ+MFz79jOzsqYLjdJYyww/lNcvjCtvXZqlB/Y1/D4xPmozOpLUQWZJqq2bnp4R9sIBAE1OTq7j1/5f46wvPofvt4FwHYA4NDz0P8ZiNy3gPu+/tCVSYuNi73DzdD4fKLvC/MnTx+OPHj7uS0a+kGChZzTqpAaHiw4sh7MMpcpaLHVvOFgwJha75iKkLufCrLaZWRJJFMhMJFIgK11dXMjT3U2A5+rCzMeg275tO21j9oPnhrePF4XwBRsegeUR8ZSFDUHYFITRoIIMBmI65bEEzZX1W1iLbNvqymDE6wBdvi0xA8CUw0msSpWhiANLYfMn3S+oCyJhkycxIuLDUn5PHlY256RQOjMYGrZ1/LsEMMC8PTzIl+PRYH4c7O9DoSwBo1kampmZ8pPCycLMlRimpTBtIEXogiR2i0NXPwPMEm/i18MohZktyMuLPJxdKTZcS4tjldLg/N6LCxKDQQp+8MKC1NA+EYbbL72QkIVIlmCnAAraP+DX8D1Xz44yi03SWxcnxPBWphVemKePsDWHpSa8WbAL/advHwHTKTBX2jtR/ouwMNOGCZaIK8szVqZO/uz4Pw6aW5rhvnjG3S4+MeGrpjD9nJePxz+G8t05ODSAwsP1SrJMGkQQn6X4DSNZ+KiI0SzcwGBQxKAAEFes96KY6Ux8F/fjuG6H/Q6O7bawzNwqstLF2Vlkppurs4DPlb92YSC68HM429ntkC6Wzfw9dhz/OTMofXy9ZP+4ERk/BkFcQiQlpcRRanqi2l4GawmADqyIDa8sUwFQSw6AmCExYh7/vpacVHlvmo2VkzG+xH9Paho66MPlxmLAQhOWh4EM/EBfbz5UNgPQQpmJdUH8uSCDyGBKi0EnCMdjhkBhN5ithoHdbJISMRwmsE0c2wVyfBbo7U3pCWEMtAoxNMJwKmIxWEDI3N3zCwysBUn1w6oBbIaUP+zy0DUCt2hs/EHM9v6L8+IwjfgOEvLqOXWCASBEokS8M+HNArPZ1/bTmxenlTdYrh6YrvzEkpmw3jr+3+9fXAXcf8Pzcm52Ts5B2iCDneO2qYBA3xfj4iKV9LQEARxauzAHh3k4eKioLJeispzNTk921rHUTEmJl0QKDgNfxGCtrcximzdvlhjOyclR2E4FnbOAzU0Yz4lfU+Un3gP2c3JEcX27gG+FCUWOskx1dGYAu7mSp7cneXp5SO+nLwMDRqcwysF0swc/j22frmBVTzd5Dr8PjkAGVhAffvzYj3+GDzOYP783kAEW6ONDQQw2PUtGAx8AErKNiM90/HU8hj/DQ6TX1MXJnuKY3QAyHJCUJj6CfH3JjdnMl2PW4rwE2jdTKzbkSOG/++y8TCd8Knvd1IkDzNYhboNlHsCFIjaSIOge+enbh+m3H98vsRpsGlAmeOPCuMRomGz4kJnx7z+5T2I6ABWAxczelXNjAszXWFK+dn6cjs7X/KIsP+07Y1ZIypFVwH1ZB9zAWF6uRb2korJC4+fv0yyLHjMSFchFM5Y4Mpjg2oz9BPBGAdPBKwXms1iThSwj5J04hJlTpc8SWczoGJU9vPii3rZ9u8R3yFwCUEisCMM5O0lmEyzo7OQogAPw3FxUILq4qEzoxEBDsR0/Y+OmTXTvvRtp48ZNtHnTZtqylQ8GNVrO7t24UQr3dvzvoD4IMDnzz0ZcCaB7ubmxTHQTqYjXvPgA6Lz4azBbSICvpPV1QcxqwX4UxwwWFxYqkhEMCMmYHKGjBJaGGbEGZjO8xiBjoLo4OPO/5UwGrT91NWTTQwfb6MqFCZmde+3CJF0+O0avPTUlsRX8U2DH8L1X9wpbrZjCgp0wUf79K+o+gR/J/oA9woAfw6+Sv+cjfvy2zXMFpQHU3hDHIcb7GX8v3oPEyYcvwkX6gILFHotD+T/Kz075lpUBd7PIxVsOcF9kOj7ftriwsE6rDV5MSYlTUlPilsFu6BhBHQ7SEd4o6ak2wNkmBvLE1UvdQbeyeUeWiTA4k7DLIFEtIYSFG4SFADYUzLdvR+bSTkChlhJUsCHRogLQQcAGoOE9qPHh7OGmxoDufCAm9PXy/PzwZvAAnHgM8CDJYdIGUyCfIWnxug+DC/2giCUBNLAc3u/HRxDHaBEMKAPHs1uYUQHsaEOwAC6EZbKWwYikCFL+6HWMZDbzZaA6Ojjyv+FFBdkxNDdSRs8+MigzddhljYFXDKPCVxLAwzQ5OkE+kKTGLmGhj5nhMNQKIyPIQCREwFRInnwKjxS8dmU3fcIMB3koU+QyeT4nz2FxyLtPT4okRWuXmNgyS6Lr5Nrz88qVJ8dp33jJP8RGh20clxhuVVLeAD2YY5rm5mYNM9ITABgDTklMjJUanPhb5tgMZW1MlyymRPEqA7K0RLxUVpYr7l6Qn0jlQ3bCxRmOYomycTVCEhIhDAJMHEAigvEgGwEogNFB2E8FHx7jjMTL9h12Agpc+MF+vgw8VxVwLNvwGIzoyWd8r6sTA9LVVYDpyYyG7wMQ8X68x40f+7MMDeSfFejnTQGQlnx4ubtzvOZP+hB/ed2oDaDkKL348yNh4suy09fTi5mRGdHdg0KZBS3pETTWky/Drq9dsNKbT0/ILBxs2V8WRpuUAdT3ZJp8QeI1SMq3L83I8+jml5rZ1X3iIAbrcshL1NA+vbKffvX+cRVILBmRSPmI2fEajGNfWhDwvcvAxkT5T7HeigEqmcqXF0SCIgN65eyo8t7zi3RwquzXSYnRG8Ynxv9bG0dXAfcXkpVzc7MaX1/fdUEhfh8g/Z+YEKWI5TmSEpY0AVaK2DRECHvJEGpOmm3NseqDKYXsQrOsLBapyQfqayiar6w6xgQCSglR0WHCemgR8/b2EDbbwXEeAIh4DVnO7dvVMgLiP4AHrAVweYv845gNABAQeAjgUH6QjCizl7ub+hhAA6Dw8z0Z5CFB/vzvx1BOfp70f3q6OQvYwH5gOn+O4wxaNUGCVD/kJVhs+zYwrCNpg3ypICuaQVZAjx5tp8vnRkXeoY6GA1PimPjGbJy4cZ2zqhttxBF6juOuCVl6D5BhYSL6IgEuln6yAwEZyzcvTcuqLQAIHScrfZLYQQCn6LefnhCJiUl07IqDs9gnzHZgvg9fUGtx7/LPRSbzuUcGFLDqzpHCD1OT478+vpo0+fIP1FRmZ2c02lDtHaG6oJ+h9gaGy8tVjYMgHT9ntZR4G4DUIjiYT7wws9TnsIUV9TEBXInawIznSkssIk9Rw8MUAjawYgoBzBcXFyX9mTp9qNg7IOZTAbhD5Cc6WRwd7RkMYBZX8mD2CmSwBDEA3fh9AJuLs5qAQbIFZ4ALhXcwJMDk5qwmavRGPaVlZVAsgw5g9ffxJB8GmgezHw4vN5alHIdt22pHW7bYye8RYQymqqIkMa49e7KLrjw5Rlf5uHLeSi88Oiz72N58ekZ2AMD1+YqAbVLABfBde25RjIPgg6mavc7I97yHba0wp72qmsGC+d4Vt7AFBthx+tk1LA45Rb9874TEdJCV8FCBN+bVs8OyDfWHr+6kT16apR+9uiDLRLDVFbEeZCtm5F49O6K88sQw7R4t+IfUpJhNkqVclZRfejFcCp9Go3GH0aD9fVoavC2TFCRPzNJhooIOm1XBfojlYDaLWA6MZbaBDc9jCrzctougyJZQKSvNkR1ziO8AuGJmQLAglj7i59lMbCk1TfXPRF0PY0ChzDCBzEhezED2LC+9GBABDDLEXh5uavymJkTsycXJ8fPkCuI/d4n1XITl8NiNmWwbMyZkKxhzy+YttHkL4rStdO/GzXTvps20HWNJXm4UHx1KlUUJsgMBQ65nGGQvnx2hy0+qniYvPDZCzz40KE5g2OZzDSt/OaZClwgkI7rz32KWwkWPx/A2QS3sY8lOHhDWkniOAff919WVWtj0gwymWrhG9/8hYbyfvnNMhkl/9/F9stIKbIZlIy893EsfPTtFnzDofvkOM+HlBZGbOGDJ973LO0XGvv/cvJQFjkwW/kd2eryD1Vb4XgXclysp1y4sLGjiYmNSoyKN/ysjPQnSUVGdm1X79PRUldnAdADg54+zk2W11craY5GTAjKM5eQJ02H9VUVFrkyDr9gwlBRbmPVyVOYrUOM91MsAWhjYpsq2nziKjYmQTg+tNkjA5QXmQuGcQYN+TRTX0cHi6ICv1Zhws9T/tgmA7OTYIWDbcPdGtbzgsEOWXOi0vpSaaKTGylQa7yuk+/e10ktnrMwyM7JV9M1nppBWpxcfH2PpiPVY45JlxEDqZQaaWCqcUz1OwFKSpGDpiBVar1+cESu8N55SLR2w0w7x1QfY9vPCoshLyEnEbO8+B0fmowzmaWG3d2zjNSgjQE7+kEGKNq9ffXBSZOJr54bpQ47j3n96nN5jeXnlzAh97yVmxkuT9MELDMjnpukNZt9XHh+k9xhwKBHsHy/5aUx0xAY0PKwC7kse4bFaretaWts0QSFB1cxYS9glzgymWMy2XQVYDsLsA+AAZBZLsgAOoMiVHXRqNwjABZMhSEw0JcNECCwmEwIlaisWAAfwlZepYMNjMCHeB/bLsx2QqGC+pKRYOVBq0BtCbbEZy0hmOHckQTxZErK89IAs9PIiH19fPrzJydlRDnS+oJMl0N+LepottHeymh471iWgefMiWGhOLMiRqv+E2QWZQywGeeWsVbxKZEHIxRnx+Ed3yJUnJ5nprLLd5o2nZ8UoCICDNPzolb2yCQfF7FeenJAY7hUGw1vPzNHHDEZsK8UeciwhAbA+uXpA9o6/y9/z8atqhwns2b93dZ+0b0lc9+ZB2UH+q/eOi8ksdhy8w8C6yoyLFcQfPTtJb50fYaaboe+/PEc/e3MffY//nvfBrk9jz8KY8vJjgzTYan7LYNB/Ew3Iq4D7khMm8/Pza6NjojUODnYHUApgObmUk5umoJCdka5u4RHJiD3hKbFkMSfLgo8cBuMKuxUUqNlJ6bW0NSKD6VAkhwXDyhR4iW0qoKamUEZwcgFWfj9s94qkiTldgIgsJ5I2SNYg4QJWRYFd6oCZCbJjXCz4SjKpqixD7Pc6mvJpqKuQZobLaXqghGaGymTNMVL1pw+0MvMMC6t88KIKMMi85x4bFgYDuMBEABUs8WAKhF0Fr5ybVP39GTSXJTabkxVZMBZCNvKNS2CpnQIG7KvDZh8ADOM04kWJ3QbPwKNyN4NsF73L73nn+UUBIxgPSRbEfIgB8b6VnwWLBEhCFMB//eEpsWFHMgTlAtTcsMP7I2azH78yTx8+MyFrht86N0S/ffegxHAXjzfTO09ZMVXADDdKkz2W7+sN+tvBcLY+ylXAfUluX9I5npScvMbb2+NcTk66wnHV9cTEaAXJDXSSpKTGUibHb5ks9yzmJFnwkctHgW0nHYZLYRArDcYMFGQrpSyAJuQC2wEvS5aSkJpgvDzphUwTUKLPETEeVhtjErypvlD8PzD13dVaRH0dJTTSXUbjAxU0PQIXr3oZKMW09am9rXRybwudOaFaITz9YC+99Li6a+DqeYBiii6fGeOvByVbCAkINy54+cOIFZ6Vz8OvkuUiWq0ALpgHvcJM9iJ2Ezw8KF+/wFITZkEvwykZsRu/jkUhr5wdFYNXWOOB6RCzgQ3Biq8LK87KGuTXLs4IqK8x4CAvkVSBbER8B/cvuREw+6ErRBiTQYUiOArjavPyCTkjvnuXY7i3OC57naUlVh+/9sQAfcCge/9pK336Av8cBt/Fo030xplBSZpcPjuq7BwteaOsKPObE5OrDPelJ0x27969JiMzUxMQ6Ps4khjmzOTrmemJCsoAqMlhpTGkJaRifm6aMBtqcOg0AcMh3Y8BVdXBK1OcmIWtRGZmqeZCAFoRMphmAWmerUheXJylNhVX5THAiqittYxG+qtodqKW5qw1tGeqlk7t62BQtdL9+9vFV+SJE3DQ6qEzJ/vo/OkhOgc7vIcZPHxg2QfWE7/MAEG8BZC88NgQvSRMxq8zgJ7nxy8wq4HZnn9sVJ6DPwmAcJW/53kGGgCGAvZz/DosyF/hGA7mQS8/OcXgnKBXGTyvs6TE0hDsKwBYkeoHqwFckJr4nhefsAo7XpWvrbIg8s1n5j+P41Ai+N6r+4TZ8DXYF8yLjn8Uwv/2w5NifYcWLxTFZXzn1V0SpyFhgvrcp5d30g8us4y8aKWnjrfQ2wy0t/gG88ojvfT0fV3Lzz86CCl9pb2tTdPT0yvN66sM9yUxXH9/v6axoWFNZGSEnVYb+H5aaoJiyU5dQpYSTcnCYCwXZQVWViLLRkwLsLyUTTxJLDPV3eGYE0PCAyy3Mt+2MmCK2C0HDcTowZSieKbIz3zb62WyypgB11BEg8xks9ZaOjCPPQMtdHxXMz1yDG5c/Xz0McgG6Nz9gwy4bjp7qk88SeDWhcdw6noSSz9ODzAzDTNghhiAffQMn5+3gUt2ht/fS8/wey49NEBP8fniQ4P0NB94Hw64bz19ul9ef+YRdf/cqxdm6MUzKoAAujcusfyEsxczGxjuHeyge2mPtHBdlbXIs7IK+TJiQcSBDErcCBDTAdQiIy9Ny35uxHR4DLaEjYLEkRfGBXS//eR+6R75zUenxEbhB6/tpb//9AFZkYXsJIrcv3rnkPRTIoZ7i1nv2fs66dlT7fTq4wPK5TMjyqXTvcrFB3qXw41+zXpD+BrUXHGjXQXc/+FkCQYQ2/iud8ed3/VydXN5ND4+6l/VLappywy8ZdTKJJmRryYx0M6FmCwX21GZ5QA6xHUAJl5HTQ4xlxqLqVMFYqGXa2v54tcATrDlSoxXIcZC6gbVloYCGu4to6kRrLCqoZP72sTs59FjXfTI8V567DiMe3pkEeFDh7vowcOd9NDRHnqEvwbrAYhgPJjuXLBtn3n6oWG6xKC5BA9/PuNrgOvJ+7rpiWPtdPa+HjrPUvT86T4B6tP8nhcYcBexVOP0IF14kAH42BgfVrHQg5ksgPc6A+5VjuXAZgAcNtVcETNYjqee3yUxIKQkYsCXz02oixWxhgpLFjl+Q9IFTAbGA0hhOHvthXmbzFyQpAq6RfAYkwKY7P7F+yfoB1f3McPto79974jEcO/z8b2XZukHr6qtXyiEXzjeRpdOtChXmOUw7f3GU1PLpw+1K8Nt6b9srCn6hvUWau+66Vq6ML2bmZlx5w4Hu9Hk5JglrLrCBp4sZji0daFPEmABkBCXqWuM1c4T2DBAViKLabb1VmZnJX8OrgLbkg98XcbAAqtlZSYI25UUq8wmK4wrVPeu1uZC6miDO1c57ZsqlwWNR3c10H37W+jE3mY6vqeFju1po8M7m9UYbl87HdvVRMd2t9JDR7oZjJ2yDAMuXGdP9Yrx61MMugsMpLMnu+nMqR56nF8/d38/PXGyl59jsB7tYEB3y3YeWKKfZ5DBlxLAvfjQiDAm3gvnZvhZvnhuWhgQcR2Ol8+oe8avcfyFDTwcL0kJ4RWWpFfOT0kC5ir2EsDfkiXqq09aRYK+8fSUdPu/wcwGdkMR/CNI0memxZ8EyRK0dEFCvnlxXNq9sIMOZYJXnxiiT19ZlGZlTA589OIs/fajk5LBfOP8KL12bozefmqcD6vCcazy2lPTn+2frqTR1rSzVaX5aycmJtesAu5L6jDBlG9FZcXabXbbDsfFRy0jYZJjSVMg/dTGZCQ91LgLaX8Z1YE9AsvCnOxkKVyv7KKTli8wnUyFp9kSJNmyHxzsB7YszOefya/BpxJrimEU21Cdw/FbITVzDNfRUiSbY3ZOVNHB2So6NF+jbkZdaKC9M3W0c6qO5sZraWGyTly0DrPsPLKzicHYRg8cYtY71EmnD2G1Fcd5J/rEN/JxlpxnGExPnOpnwPXwc730AIP45J4mOrWnXjwn0dn/OGJDBiS+DxZ5T9zHYOPvg5PzEye66alHrMx4w7Iv4PIF7BafFpmKArjISJaOLz0+ROdPdsqKLAANPZVYAgI5iccAG9rBrqK08NSEMBuym1KeYDZD0zFWIl97flb2yf2OJeWbWCDCUhI+k9ie+r3L/D5+z+8/OSVJFsjK33//tMzQoeCN4vib563K+8/NKgD1U8zgi6OFSwVZETuTkhK/iv/zVUn5ZUjK8fG1ra1tGju7baFhptD/0umCsUNgKS8vQwCXnZ2iAFhgJ8hEHMV8ADyIvZAgAcAAOkx/43uQREG8V2LrMCkusUiipIwPZCkryrLlwB7wukoLNdTkUl1tvqwthqTsbEEcV06L49V0aLGejizWMuCqaf9cHe2arFbdsvorabivnCaHK2hhql6WFe6bqWfwtXHc164udjzYKQDEYscHxCSWgXiwQ8B4muXo8b2tspHnBDPoCewp2N9GD/FrjzBQHz2usiXLMAbcAINvkKUnx46nVPmJtVKXz0NOzrG8HJOxm+cfHhBp+Nr5CXru4X5htJewOORJ9FdOskwdlQQLCuEAG2I4SEskWZ2xEPgAACAASURBVJCJRLz2wfNzYuyKbv+fXzssrltoXv79p6cZRHP0/nMzAkKAD16Uf/v+MQEbwIeRHrh8YVEk1hm/9uSY8iYD+s2np64f29n0TwMtmd+vzI/X1VSValYl5ZeXNFnT19enCQs3ukdHGH4TZtL9U3xC5PXcnHTISaUAzIbMIyanc5HsUAvbtjjPVh9TpwVgdY6kSK4lRQCHMgEAWsoMV1ddICY+yEI21edTEwOrktmvsTaXjxx5rrWBj8YCZrgS6u8qoYmhMgYRM9vOepaV9XRgvk7WEk8wyGB7PsKAsw5W0eRoDU3xMT9ZTztnUC7Ae5nxdjfLuivI0BP71OWGx5jRsInn5P52/rqZ9s8za07XMUM2MAhVQN5/oE0eP3i0i06xjH3gYJfI1ceREeUYEez2vOwkmGLQTUliBmuPX3xsRJIfr7Kcw7ZVxHDPMAhfkkzlmLAc+ipljzc6UC5YRT7iOXSzYMpAdoozoAC6X3O89uM3D4msROH7R6/vo5+9eZBBOS8NzD9+fQ/9GrvE31IL45CXqN1hogDmsB+9tLj8EQPvlXMT/2ukK+8HVfkxe1qqzcHjNlet1bLAlygpm5sab3Ny2pHg7OyYFRzsdy0qykjJKXFKcXG2UliQpWDpInbAwbpc3JNZBpbaMo9qV0iKFL9RqEYJATEeAAeL87qaPI7NSqm3q5K62oqpu72E2hrzqbYqh2qrc6mpLo/62pjZmgsYiDB7Laae9mIGVBkzWiUdmGV2m6liNmJwzKkbQcd6imigq5iGestprJ+BN1QpbDc1Vk27p2toYaKGdk3X8uNa2jVVw8Cto8OLWGncTEcYeAdYnu5j8O6He/NcAx2Zr2UgtjEwW+kk2I5BB1DKXjpmyxM7G8XG/FEGHZIvZ1luXnhoWPbNPcdfP326j555oIcZbVjY7dmH+iRee/xoG124r1uSJZCSV85PSP0PxXAADW1dsEfAtMFr58eYxebFHg/H96/slVKAtIs9O8PAOkC/eOeIlAF+iQUezHKfvLJLDIh+8/Epfu44/ezdowqmCn781mHlw5d2Kz94/cAyy+Gl2YHcP1bkJwQ0NtavGf0zW/xVwH0Juwj6+/tkFg5HY1Pj1jCT9q3ISAPAtFxbDSvyfOruKKWxAbBLJc0yo4wxIAY6GEDN+dRSa5GdAA21edTWVEw1laqteX0NWKuQ+jvLBBxI+Q/3VVB7UyEDLZ/fZ5EdAwBdcwMszgupu1Utdncz6GawS4BlJGK4/bMMHo7rUPgeYZCN9pbyzysV38mh3goa4a+tA/j5ZTQ6UC7vW5yopj3T1cxiNXywNF1oYvDWMshqZd/Abgbjzqkaef0QA/AwM939+7AAspWOMjjBivcxCCFNHz/ZL7vGsRnn/ElmvCPt9CSfn3lwgJ6WMgNA10svMtBefHSYLpzs4Od6BHiox4H9MJCKbhIZ1XkGjc2zIjFRzIYh0LuXpgVgSJSgq+QaS8j3GGw/fWOfWChgmhseJ79iUGEqAO+BnTmymH/70SmWoAzEN/YrP37zsPKD1/YrKEfstJYq413mtyuKku+01d/W3CrsdtNOC+A/guO5NVhhPMRyIzk+7GRSpF6Jj9ItlRamKUXF2bKD+9DOFll0D199LL4/ynLvwYPMBHtbmCVYmi00MivVkrWPZWFbvnSIDHRwTMagAFgnBhkofO5tL2Ig5jNA80VS1lRmU1NNDjXX54ms7ObXBzqLydpfSjNj2CVQRXtnqpmtqmVl1TCDd4DB1t9VRj2dJcKa/T14vpSGmf1wHmfWm7dWi8PyIjMewLVvvpGZjdltto7ZspFfr5D37J2q4ucYdMx8yHoiMyqMuBPxXYfsEkDJAdlNrMG6yHHco4fa6OEDjXSRn7v4QB9dZCY7d6xNpgfAcgAc9tIhYYEiuxS/L0hvo4z1IJlxmaXnlbOj0gHzLjMgYrcf2bpL0EMJQMFCAcawYLIfvXaAATgrUwO//fA+ZrWjkJ8Kpg9+ce2Ywkyn/OStw8s/fP3g8stnRv5o7c39/XR/PllSjCPNzU1rrFbrLcVuN63FwsoWVcR0vX29ayL0QWUwzTHp/K8nx2iXrV1m2jVWRG0s+04f7pVMHbovXjyDbvlx2a32zMNDdInv9LjzY2sN9nLvZHay9leo0m+wkoZ6ShgMJTTYUUhtDbnUXIcYjkFXzWxYZeFzNnU18fP1uQK6kb5SBmkpzQJ0EwAPx2wc2431q+zWwUwI+dnTXkBtLYXUyZK1jwE43F1Mo8x0sDafm1Azmzj2ztWz1OTH0/W0e0Z9PDvKwAQgEf/N1UtyBnJTVh7vRhmilU7wDQVxHIrrjx5qpXMn+KZztIPPHdKlcun0AD15vJWePNEhTHcJNcDTvXTmSAs9zY+l44RBh0QKMpdgO8hLjPrIXByK3S+otgnfv7pH7O0wAY4YDrISxkEwCPoVx3VIjvzuk/uk+I3zjzhee/+VfVL6ePho9/K5U138d1TRQWvev+wZKRgabEp/NTkhQt/d06uxWsfW3Epgu2nHc76YRBno79dE6oPjwkIDYTmwFGkIULprk6goK5yaq1KZibKkDoZlhijsotaE7np0XFxhyfTMA930LN/Vz5zokdhrjhkJdbVxZkhsNYXUG2RQtNXnUBOzW3NtLjUwu+GoZdCB5doa8yTO620vFHDh+xfGVfk3M8ySkYE4wD9jiIE10F1B/cykkKKdAGCHynw4JvnfFLAxwA4w++6fr2cw4czsNg7GrKU5jvvkMYNvzlopMd9+ZrsD8/UiKY/uahQGf/Rol7SQPXmyh4HWRWeOtdOFUwy8I218tNKzDzLI+GK/hAI6y0xsYQXoZPsq34yeR7cKA+71p9ThU/RSwmYBvpNYP6V6UO6UetyPxBrvAP3krYP0tx+cpN98eEoWL8Kb8u8+OSU7vLHh9CVmR75JKIfna2i0y6L0VMfToRHLH6Z6LD+pyItr7qhMsisvSHPtHxgUS8RbadL7lgAcpGVPb6/GxckhE+5Vnu5u17083BRMUMNJuaYwjnrrUyg3PYxGe/Kl8Hz53JS0KqF3EBfQiw8P0MuPDtJTfME9dKBV9rMtjJYJkwB8k8NVIi07mC0hK8F0NVU5VMdgQwzYyKzX2YzYL49jvXzqaStkYCFrybEjAwPLNMb6meUYdGBOxHpdrcUMTgZdW5FYlA/Z9gkgkTLDgJobZ9ZaaBag7Z9vogOLzbRntl7qevMM5LkxSMtyWuQDINzPsd5BZjjISmQ5HzzYKnW48/cPyCZVNDQ/y3/n+ft6mPGa6TFmvafu72ZZ2cPnPmbCLnp4f4O6+hjAe2hYxnVwc0Knidq6NSHOWp9iLAebbpjRwHAA2s8Qo107JgyGIjhqcx9d3icliN38+0315dD+sQKqLYqnluKY5e7KeJpuT71+qD/jN31NGQeSYvXGurpaTXtbi2ZocEBjtf5p6HSV4W4swK0B4LZv35buK7YDLtednZwUTFJj4trF2ZHCdL505/p7yNfLhdpqMiRL+Nzj49J4i46J11B/4ovx0v09LDUn6ezJXjrM8R2SFjvHq2h2qJTBwszUUUBdjTnUUmeRRYy1LCvrqleAx8zXkM9Ayhem62H2GuziWBDlgoFSmh5S5SISJr0sJwHK7jZIyxLZI9cPwHWXMbDLpAF6lo+9M7UMsgbaw9JxLwMPjIb4cM5aRTtZrkL+7pqskwv60E5bWQG75Y72yG44dJtcYLCdZeBdemhIAAcwoU3szLFWZrtOlflOdMq+8YcPNDPguoXdUDrABAMmEZClvPacOoz6pkyFz6imrdiEw7EbJrw/YZDB1QtSFDvo9k3w39WeK7Z9cC1LiAihjrJESjBpqS1bq+QlGJSmbBMNVCZeCA0NdMwrKNLMzsxgYw0SJGtWmO1WA9stISnRzOzl4Z7m6Q7XK6cld1cXBdYGK14icNCy27GDtEEwUXWj4AAPaqvNokWOlSCbEJvALQrjKVeY9Z7ku/0jh1qkARlSdO9kDc0Pl7AEYiA151FLjZnqK7OosiyTqsszJXOJo5aPbmbBdj4w49bNsV1nSz4zK9YPl4isRGZyrBcgA9iKqBdgY1D2SyIFZYMydXUVs+oigx3gQuZycaKCJWqVbFTF83um1cTKnLWa9k1X0wGO5Q4tNtLhXa2ylxtF8UekWbqfzh7rkCTJU/d1CdNdAKMx4B473Er3766l03sbZJ/2E0fbBYzoywTTIdZDNwp6LTHFgEzlRy8vMsOp23J++NYhGSy9/MQQnTvWQHsnCunwTCmV5UQwwLQ02W2mAG9vijGGiM16dYqOpnI9aL7ASRnI11K/xXdpsCGnbmx8CttFb/uf3lqzCri/EMOhRODt6ZYKEx5nF2eWlO6KOGN5eIi7lQ8/hs2Bs5MzbdqyjdxcncjN2Z4CA7xZklXS8Z2N0uSLYU5k4S4+0EvPMgOeu2+QTnBMdBjx0WwtzY+UMFiKOZ4roI7GXAFbRWmG7P6uKjdTTVkGdbKkbG9k0DUxGzLY+jmmG+XvkZiQGQ4FcMjTEZaYyE5iLTGyoep6KgCuVOp5kJaIHecgbVnWom1sD8oBU4jd6mVx4+4ZtIxVS4JmwVotpQOUIiSWY2l5//4Waf166sFhZro+YS/U2AC0Bxlo9++qY8DV04P7m1lONonUvHB6SNYZo0PlRczYnZsQ0L3zPPwpdwr4HuP4D8OyqakxVF8aTwv92dRVnUjp8Xq6f6GM2iuSyaQNooH6NLIkhFFxWiTVZkdTH4Nsd5EDzRW4KGP5XjRd4PZvA42F+hGr7A5Yc6sD7ZYBXF9fr8bNzSUZHo4urs7XvT09FNjMwVQ1hA+YqgbBG5JjPBin+nh6iC1dlCmIzMl6OjRZQgc5iD/EFykah184MyFtUOf5onv4QAs9sKdBJgAO8ut7JiuZ7Rg0LDP7WGK21KMQbqEmZr2OejP1teRSA7Nfc002S89c6m0rYICVcBxXIaCbZYaa5cfIXFr7S2i8v0zKDiPMeuMMvonhSmbCcpGOYDS0huGmsBOxGj+eHVUTJ4sTtQLI6dFKYcNp/n1QLjg4j2J5E53iWPXho5hQaJcZPPRbnjneySzWScfnq+nkQjWDrYEe2FUv8dzpPY0cvzbRYwzQS4+OceyljvS8/dyi7BBH8b2+Ko28fTypvzmNQgI96avfuIviWSrWF8ezcvCmYD8/SorUkSUpjPKSI6gqK4aKU/lsjqaa7CjqytXSXJEnjeX7LffkhtJ4gefPh5oK7gTgRkaGbmmQ3VKSEq1ezGjJ8H+EpPT39lKCGWCIH0yw+w70IyOfcRj40IUEiKEqGDEmPIjK82MpJU7HsVoBHZgqoeN7muiJ+0boKY5/nntsRDryIbuOL9QxGzbQQWa8/XM1tGsc2ccSGuospN4WjuHqcqiTY7y2Bj7qsiXW62rO4dgvTxI2Iz2FNNlfzGDjmI5BODlYKnU76yCz2VC5AG2CzzMMyPkJNDvXSDZSYjZrGU0xSJEw2c1ycp6fQyJmdpjZkBlzkpkTEhN7xA/vapaCOLpQTuxvp5Mc2yGuepTB9uiRDgZaHZ1YqBHQneDjoUP8Hgbe6QNtdPY4S8lHrDJdgJm9zmZ4YcJL05niwrGy2Z6KGTy1+fFkDAmkjDgjlaRHkDlKRyUJ6vadgpQIKk2PprL0KKrMjKRqBl6dOZz68kJoptBLGcwLUoaLjEplks8zmamJmsmp6VuqdeuWZ7je3l6Ns6N9hrenO3wdrwf6eim6IH+K0AdRhCGYojlQlwUW/BjrmQA4fx9v8oe7sYsT3btxG8WYAqiTZVFDaRwf8dTTmiuMghT9kzaZheI5xmcwwf3g0W46uqtFZN4Us1J/ez4Ndxex3CykYT4Gujg+Ywbs5ecHOwG2AgZIEYOjmMFVIowEeYqa3SSDbEwYrpym+WfNj1VJggQNzigP4DFav2ZGGXjMbkioQJbi351l1kSiBVYOO/n9e6YxcV5Nx3e30H17m8TO4RSylvtbBXQPH2qjU8xsB6Yr6dh8nbwHTc8PoDVsH8d9/PqJxSpm7WyqyIvmG5QPbdq8jTzd3SmcP7uESD3Fh+soJ9FIhSnhVJFuovrkUGpJ11GT2UAVWVFUnhnN7BZNlRkMuKxIqsqOpSaLgYbyAmmmwIu6c3TKYH6oUp5uGh8eGbvlCtt/FYBzsN+RC6nI8dtnwf4+CmpyKIRHc8Aey4DDMkFcKPHhegrXBxMAGcoSE+ud/Biowf5eYtAaaQygjZu2UGIUy80UPYUZg6m8IJ7BU0x75hpkaf3Dx/rkePBwFx2YqWVWaZCM4gyDaKKP4zUG0bStYXmCGQ0x3AjHa1Z+Daw2O1JGc2Plcp5mhprmGE3qfQw8SMRpqbPVqN0mDLgFJE4m1XLA7Hgt7Z1tZHDVibwEUCcZcIjh0DGDZuljLH2PMuBQzL9Pei3bZZQHMd0JZjsZHeJY7/BsNf/+NdKdsp//BsjcbpbAFQUJcvNxd3UTJYDPKwL7vaMNlIkdc6nMWulGakrVUXOKltrMOmrP01OLRU8VmREMshiqYeBVZ4DdGHTmOGrj16x5vjRV4K105hppIE+rsPRMHrOO/1Wx2y0jKb3d3UqQGAnw8bxuCApYxsqmOFMoxWNRIwMNfvsJ2GHNFw3u0ia+W6s71LDn2l98/WFnB8aTcgKDD4s4kNn09najiLBQKsmNpqHuIom1FieqlH3MJCzdFGYGPjqU3VO1yt7pWoUBonA8pcyxNJwdqeTH/DVLQ8hP1M9QqN45rvZD7pmuld7JeX5+Qdq6WEryewVkDDiM8syiLscHEjeYpzu6u026TCAlEQNCai6O10jm8uhiPZ2SyYIm/t2aFDQ/c/ypPHasRzmxu0VBEogBpuyeqJIli6f3N0vnS0tdBs3351BtUSzZ73Ck/IxwqimMl0UhKfyZpcYYyJwQxswWRtmJJmpgoLVmhDJzmagjV0+dOaHUlqOTWK3KHEMVGTFUlonYLZJqLFHUziCbZLCNFAQsd+SHU2dW8D+GaQM23Womr7c+4JA0YYbzcHGu9PF0V3yY4aJ1wUqsUauCjaVkYoSe0viiSYnWk5kvmNRoo7Ae7tyxzIBRukBJpsBCHECDaauTrKRyJAdHJ9leY2fvQJZUA6XF6ygvzUC7x4qQRFBa6nOor6tkGe1YBxZbaP9MHR2cqVV2TVQrC2OVys6J6uWDC83KwcUWhUGiHN7J7+GvMWaDeTjEXJgA2D1VLXJxN0tYAGv3RCUtWqsEkHsZkDsRn02jsN1IJ/Z2MJM10fyoWirYN9ck/+6h+QYFhW9mMeW+/W3KfQc6lBN7WpQHD7Uvn9rdtHxsV4syxwwKSWodrGSgllNpXhwZdf7k6LCDdg/lUpQhUBZ/RGqDKIuBhRtVcqSOUvicGWegnHgjZScw4LIM1JJtoEazkdoZaD05IXKuZUaryIylyuwYas7SSaJkIMePprOdaK7Qk3rytMv9hSalJiXkUlNT45rRW8gc6K9DUvIZDMdyMBeFb3dXl+umkAAFe6yTIsBuoXzGRWOgjFijpKlxx0Y2LZ4ZryIxmLKigilMF0Ja7AjwkDhQXaoB8LmqSxhhRe7j7c4sqHr4D7RkKvXFsUqEIWB5tBPF8KwPS0vNL/W0F/4zOlR2TdaA3a5LUXqhmUHUsIyZNwCPj6WDC03Le2cbhBH3zTUoHHsp+/kx3o/OEkwJgIV2WcsZTDV0EMBk2QpQHZpvROyo7J5kluXvO7KzmY4s8M+aql7m55aO725ePsZsdnSxUTkuM3VtYnAEyTjYkUPdzdlKRkoYxURqKSVOT1FGP9put4NCg3wokplfz6wfjcUgHAPH8ueXyp/lys2qiOVkIR+1mUZqNuupneVkS7aeJSPLyxwjlbCcrM9mBsvVUZ85iOM1LY3k+NBh83rlWP5GpS8vYGm4JILitO7Ng0PMbGOjf1Vgu6kBJw7MzHDdPT2azZs3hvp5ey15uLkuh/j5LGcwwHL4jpwarWNwGTgm0zPgTCyLwlkeGSkr3kQ5CUZqSfOjvLhQft0oK5+wCgrSFABzdlG32gB4bis73vhst8NeMYT4LqfGamFN/of2qoRnuuvTx/wD/DZXlyQ+mp4a2VxTYX4ZQ6sdrSX/PtRb8c8zYxxzjdUofNDu2WYAj5mpmfaC6eYa+fnK64vj1UsMsuu7xquWAKx9UzXLByYrlV3WimWOtZb2sIw9NFunHJmt5sfVyuI4EizVCgObgVazPDOMelyFKksnqml8qPr68EDV9a7Wwl/k56U931qb9R/7rYVkTtIve7g60O3fuZP/Zh9KjdPJFh9kecH2epbYoQy6cEOw3KzS+EYFhZCTGE75KZGUx0d1Zhg1McO1MthaGWytHKO18tdN/DVYrS83mPqyglhq6shqcaNDOffQyby7ludyHZWevOD/iI80ePb1D2rUrpJVhruJ5uNG1wzzOTY2xt7Nxel3YDkfT4+leAMH5Rx3ZOGIM1JmrIGlEORQmNSJilPDqTZVT70Z3pTHd+78RCPFh2tJrw0U0OECFJC5rgBNvSDBcOhg2WHvoGzZaqe4urq+X1ZafHddeba/LtjTq70quXmwKcu3rzn70dqSpIsJsYaawrzk0wX5yW+0NVr+0NKQ91l1peV7jQ0FP+3rLPtsoKfi/+7vrqDJUYAEGckGYccFa6X4W6KudmC2TiTlztFy2o263GQtjQ9WLPV3liyN9xXTaE+hFNnbGvN+X1dl+WFDbfZPJvtz/3myv/B/pSbHDHU3Zu1ydNwebU42fNpWmUxher+lu+7eyH+DHW24Z6MsCPH1Vpc7RuoCJa5FKQUrsBD3pvJnl843qRz+3PJTIig/OYIZzkTNDC4ArDHbJPJyzmxPQ2ZfjuUMDLpQ6jaHUFuugazZbnTMskE5Ytnw2f4SN6U40v6Jzs6Or95qOwNuecCtTIBji057e/t6hx12bwX4enMc57akC/Cj5HCdyCEzxx35DLayFCMDLYyqUnXUmR5Ew5m+NJPtQj3pgdSRFiwxSmKUTpYZBsiWUQ8BGgrq2MHGDIrnFAa0wjJz2Vl2fLuWz80vaIYG+te0Ntev6e1s+dp4V4FfWrw2qaQge0NfT7vGnBbl1VqV9FBfc9YPWqrT3uK4Kb8kP2GuoiRlLC4ucrG5Juv3iUlR+4ryU69kW5IfKSvJvFpfk/MPzJC/6u0s/bfm+tyP25oKXmdQ/edgR94fGquzX22uyfxlV0sOjXbm/eOhqeKfG/SBTXmZURUNFWmDrVUpg90N6c/21KcvlFhiv11siQsO8nVx/e6dd17ZscNO2bx16xIWiGzZuk12GEA+o6SCRoEYlpHhoXzTYfCB8ZFwAsOlguHQNZIaoTJclolaWVI2mE3UkR1K0xlOtJixnQay/ZnV9NRpCaVOs5ZaWWZOmp3puGXD8sGce67vKXEng8+OyorqOs3U5MTavzZ2u+kZDndI3Clra2v/Zsf2bY/7+3gr/l4enwV4eylhIYEUG6blu7Oe5aWRChJNwnB1DLguBtxYpicH8y4MPmTcQig/ySgyEzuwcfGpzdCuzJjustsNoMPh7eG+xIBTHB3sf+Ls4vytsTHIolENFgeOWa2aocF+TUdHh2ZgYEieS4yLui0zJTqswBxVXZwd2ZSbEWXfUR1/aXakUZ+UnGysL4p6Tx8S8JXo8ODiosK8kJGuCn1ZflypyaRNzM6InmutShvsaUwfqy1PfXus0/J3u4cLHhxsyykuzE3MCgryGctMMuZ0trfwTaf1a6WWiJzinHinwKCA9dER+tjOjtbbhoZHNIkJMZpvfvtbJxhszMzblrdt365gU89WBt4OB3uRygHM7GHManGGINkNHsrSMsIQIvFvGiuFjDgTFTC7FTHgKjPCCc3HPdnBNGV2IWuWO0vIAOqyBFMXx23IWnZk8edqMdBElrNyKGfT8sHcrTRmtv+nlqo87fCojN6sWwXcTRjHAXD19fUau+1bZ/28PRV/H6/PGCAKlh+iGyKBA38kUSArkXUz87k6xUSjmV40nuVBbek6qk3XUwEDDiyHXdgmvstjpxsWI2KpYoC3SFUstVc8XF2uu7m6kt32bcNI2IyNWeX3QIe7bRXyGkyjA4jq8yNrxicmNRXlpetyzcnfra8quD0nM96/qaHuKzm5eZqUhCjX1oaq2zvaW75qNGi/3dXVxcw9qImIMGmSEqI3djcXxddXWnzNycbynrqUQ7UFkfl9vT2aru4ejY+v9zcrKyu/BWfiXv5dMlPj1vZ2Nq+1TkxpkhJjb8uxZPLnM7l2anpa4+Lq0nDvxnsV7Jpb2dKKtVlo7HbleJU/N1lTHBkaQFpIypAAKZ8k8WcGwKWxrMxlwBWnRVEdx3C92YH8+bnTTKYjDZt9qAuMZlbrcUiitGXpBXAzmQ50xLJxeSHbgaw5zv8y1l5uHB2HMdDQur82sN0qknJtdXW15u67N5T7eHlBHi0F+fosg6XQP4laUgLKA8i4RaNEoKfaZAMNZfpQb7o/1acZKDeB7+DxBvX1SL2UDfC9AbK1VF0VDPB5ebgvu7k6L7HUVO7deE98T08PVmdJ4D+C3+kLHe9fvHvjMQYqsXoJs144gw1xs5icnJLHmO2DQRLO+B5I5clJvG9CA5aqKivY1NZU8RVzVsbf4N/Fz5uZnhE36pVYaIJ/1kqqHT93ZfMMfpazi2vohrvv/qODgz1Ap2DRI5JDDgw8yGPcoLCPPEoylX6yLxyAi4sIlSwlsryFHPtWZUUIs81kubBcdKHpLCcazfKk3swA6swKEeZry9YJ+FDwnshyU3Zbtl+fyvVRahPd/76uLNdrQtq5hlYl5U3abbIWG3XCw8PDXJwd/9VHjbOWcPEg42ZktophaQTAJUTqKJPv1uXMZn3p3tSSFkI1HNtlxekpEWBj+WnmeCUxQmU5LYMO8SB2cts6WRT+fEEe8QAAIABJREFUN2TIddu2Ld3ochmz/n/Xkv7cFsJ2XrPy9crjL77+hdfAnGtGR0cETNbxSWwO+ny5xcr7//znr7A/DgBuhoHMMvI7d62/69dYccxgW3Z0dFTwGJtYsYUVNxT8vRHaQIrkA8BDO1xiZKh8Znl8Q6rIMFFDtpHazKEsIz358GDQuVJvlj/HxN58DqDarDCV6bJCqdIcweDTL48VBCwDfDlp8da2zm6+SYz9VYLtpgecjeXWzM3NaQoKCvia2vqJP8cifPFcDwnwVdBxEmErcEs/JZ8hL6sSjTSQ7kWtqVqqTDaRhWO3FMloMtPFICungg5ANQb5SzyHxAISKE5Ojkt4zDHcy93d3bdZx6z/Y8XbPwOTDGb+Ocj+/07GNzU1aTZt3nSRwaUwyJadnBxk5TGSJs4MOndXF/k7MWGhY0kZYQNdAjNcFt+I8uONVJ5momoGVEMmFIIvy3JvGmHgdZpDRF62c9zWkA1QGqg0LZxKMqKpwxKqWAsCOabz/4O1LjlhfHpeMzw0+FcpJ28JhsMFCClmsVjWOeywu8SxiMIs9xlfNEqMUSvyMDYMXSehFMYXEECUx8BqTfWnsmQjWeJUKSm9grGQTgYyx5skbkliVsTdHnEcS0lydXVSnJydFAac4urs9Icd9jucx0Zv/AZcAR3L1s1bNw8y0BQ3F+clBpmC2A1T8QAc/j5kZoN8WIr7esvfHGxTCYkMOjN/HsWsBso5fqvKNLGEDJI4uDMriLqyggV8HZlaqrOYZIKgICWSyjMiqTNHq1gLA6nX7Puf/dUpmWOTcwDc2lXA3cRx3Ozs7Nq0tDTNxnvv3o/5N28Pt+tBft7L0SIldZQQrpfOkigGYHKUjllMT/XJAZJ5S2SZGQ1A8utgNaTAU2NN0nMJkBqDA2wDrH9iBHc3l2UXF5ZiLs4d8/PzwrI3es8pZPft37o9GkDzcndd4r9FkaK+i9pZ48zAA4MHcdyqY6BBRuM1tLyFo6eSQZfNN6dCVgSlzHRtDK5eBls3g63f7E+TGa4MuCAqYFYrTo2kopQIBmcUdeWEKCM5/kqfJVBpK4hs6uvvx+9z26qkvIlZzmq13tba2qoJ8Pdr9eH4KoBZzs/bc9kQ4k9RekwNaGVaAK1eyFSiIF6THMwSUu0XjLb1XSKjKXWnGKMwHl5D0sXPy8Zw6LPkCxa+Ka6uzoqdnd3bZnP2bStF3Bv1IkKmFLIyJjZmo922rb9GndHN1WWJGU7B3+Qi/aMO4j8CZtP6qyzn5uJC7u6uFMA3sWgdSgQc4zLoCpLDqC5dTz0ZQdSfGUDdDLROflyaFsbMFiX1uiKWlAAcg3J5KDfg+miRlnqSNx2vryrWjE9OrRm+hdYI/1UBDsfgwMC6xcVFTUpyssXd2fG/UEMKxJgOS0g0LyMOSYhQZ7mQ9k9hVsuP11MmQMWPIT0xyiOdFTEGARzOGSwxIaeQLketysXW1Ozk6Mjs4EKbN236d09vr9CFhQWsQr5hWW6lfNLV3fPVu+/ZcCbIz0dB36mLs3oTwYFWNnTT+AngfOUAy+HvRsyKuA7+JKky1c2xXIaRejKDheGaMkNZZrLcTOe4jdmtJC1CunlK+TyQE6T054V8Nl3sq4xn3vN6S135tycmpzXDQ0OrDHezMhxLurVIfcfFxka7uzj9q14bqIQE+i3rQwIoJdpImRyToZcyJcogne9JEWq2Mo0fI3uJyXDUnaL4goLEBLNBWiK+S5BCuLcwHGIddYrAYZnPy3Z22xWtVjsGh2C+qNfdwAwnZQTUK797x3dHYTnh4e76mZOzozCcqxNiObVZG2ZMKPQjOxvETAjAubk5U4CvFyEJFc+fF0oE5ekmqs0wUFWGiSozwqjBbOTHaHC2MRyzYGVmBPXlh9BYrtfSQrEbzefc+3fNlbl+I2OwVRheLQvctAzHMdTM7Cx6Kv3dnBz+Ac23wQF+S7BUwPApYrWshHCWkGHS7oVUN+pxiOfimcEgGwE4xCqQnfG2ml12nFHu6oF+XiK7pG7lYM+AkzrWdWdnZ2X9+rtejIuLWzc3Nydx0o0KOGa4NchU3v7N26sDZRzJi39/p+XPM5Wfx3ISo1Iw32T8vD1scaujsFxokB9FcVycxNISPapFaJXLDJNSQYvFIE3NeUnhHL+FUVl6BFWao2gwJ0DZlb11eWeh49Lhsu2UonfMr29s1UyMj69d7aW8eQEn9anYmBg7Z0f732K4lEG3rGPAIfmBoUlLgkn6KgE0sBhS/+iCR2IEDIcDJQSJ8/h7wIZo3EWiBTU9DKmKpHRklnNwQO1qiS9O5d577/lZYmKi0+ys7KG+IbvfbYCT5Sdf+8bXOc51RzfJZ8xoy07MbC4rhw10YDp0nqCVTdzQ+DmY66L9KxLtXizPs1k1lKWZqCbLRPVmEzVmMuDSjJSfHM7PR1B5RhS/FkGLFns6YNmo7Cx0+GxPqYtSFu+20NzSqhm3WldjuJu5FofSQEJ83J1ODjt+gguD2WpZygBhWkpjOWlJDKPMBCOfTZTOQCtO1FN5koGyWR6hwBuJ+S+TVmK9lEi9MBxGfLIwJc4sh/YuD0wPOAvTKcx0y8jqbdx473+kpaclIFvJDLfuBmY4qcV99etfm3VnQOmD/P/o5emuyBiSxHFOckNxsY0heXt5qH8zJidcVbnpJSznL/2muCnlJxioPMVIFalGsV2oTA+jgmQ1Q1mSHiX9lLuzt9LJ/HtoJt/5+lypDzUke73Y09X+rVtpyeJfI+CE4eLj4r7u7LDjQ3hRhgT6itVCPAMolSUlrNtK+K5bYY5kuYMsm46qknWUHWOULGZsmI5SMaiKebk4ozBiVQqymfw1y9BAXx/J4iFV7qKm0KXNC+C7d9PG+srKSrRirbsRL6KVGK6xsfErX//GNx6ERAwJ8P0MLAZmc3ZSpSTYG2ckT7zc3cnXy13AJ3Gcq4uMLPl4eZIxJEhKLdmsGIpTTKqZEDNdeVoYZcWHUS7f3Goyw6ndrKVDOVvoaO49ypTFaWmkSKsM5gb+vTnBsGNgUJIma1YBdxMDjiXlGif7Ha9784Xi7+O5bOS4LAZjOsxiAFylOZrq8uKoNT9azG8a00OoOjGEcmNQDNfyOZRy43RUwOxXkGigxrQQ6s4IorxYHZn4Z6HfEK7OnmLJ57zs4OjwGWbm7rjjjoWi4iIU4NfciLuoP89SdnV9+/bbb7/qKvU1r6UAXy8FNUapKTqrCSGcASw87+OldtdAViKZIqzn5yOmQqnRJspNCqOKjDBqyQ2njjyjJFDykkxUmgK2i6DhHD/ClMBhyz00me2y3JkXsWQtCKLsKL+o/v4BNHqvMtxNGcMNDmqQtDAZjRp7u23P+HCwz1JoCQ3MaOdCih9eHIjlSjIj+SKJkIuilIFVxAAr53NxopYqE4MZgIFUlxJELekBNJDlK2M89ckct7CMQmoccszW9Ks4Ozn+EfW4u++++/6ysjJpEr5BGU7qcBxrrv/2d7/zQwAOdUp0lkAmuthsJZCFBdvhJgIp6e2pAg0HwOfPNxxkOE2h6LFUXbyqMiKpPT+C+nO10uJVmBImxfHmjGAatPjRbJYDg24z9ecEKR25YdfHCoOUipTghgH+PxtZLQvcxHYLVuvahoYGjb+P933MQgrLvWUPvjtjtisZrlOJRsqIM0iDMmI4tHfVJgVTabyeLFLsNokHvoXlZB6mwvnCKUkNowaOTyr5e1OYKUP5YgPDiaxUSwSfoR63fsOGCyUlJV9DHImexxvwMxLm/drXv7blrg3rf4duE8z1oSFbdjK4/qkeB5ZDHIespK8thvMQKcnsxoBDhhPZX3TmZCeFU2VmtIzr9JvVFq+ilHCqTw1m9aAVmTme6UYzeZ7Um6el7hz90nBhKNWkBe4fGFAZbtVi4SZvYjbqdXNuLk4Kxx0AnYKLJsIYSilxYZQQpZesYxzHawBdbXIQlSagTxCuVHpxpcqPt7UvpapHQ5qOWlNCmQmNFKULlgZfSEq0Rjk42F93cXYhZriXS0tL77AB7oZkOPxe6zesd7xz/fp/Q3IEDAfAudsSJq5faPOS+Tj0Uvp5y4gSZKWfj6cATpysMYHBn6ElOVIszeszI2jAHEBdDLqqdCOVJbNiSIvgOM4kdgyjef40nBegtOcalvvyQzm2Czo/IvsEVhnuZm5ixuCnJjgosNmDgeapspwkAHTaAEqKCZOaXIwpVLKSMBcqSwqhbI7fEqPUActkPlAYT2dw5bD8FKeqZCPVpOoFiGh8hgzDBYkLkwH3GZIOd9+94Wpxacn6G5nhALi77lrvc9f69X90dHDAwhMFoAJjY8sQgIeJgZXEkI+HBwUywLSsEAJtUhLshj18Mg3ON66cJMRuMTRW4E/T+a4MvFBKFysGNZGCRR7VDMbBnEAaz/OhDrN2uT9fTz2WoHd6uzu/sspwN7msxMBmUGBgLMdZy14cfwjL8cUDloMLFaYGogxaKQFgkrksMYRK4oMohYGGuhySK8kMvvRYdKeEicuXOTGcClla5nAMuOJ34m4zFxLAsaS85567r5SUltx1owPuzvV3BWy4++4le3v7ZWbpZQ9bu5r0TPLf5M3gk81DzOKBtoUoABwkpJ5vWqhrGpjdcAODhV5xRgx15UVRb2YgDVgC+eZkorQ41OKMVJAcTkVpqsMXPE5mcjypy6JVBgqN1J0d8GNLUvjtq87Lt4ChkLu723ZXZ8d/QTIAFxXHKIqHmxrLoUwAj3zsHEhghitK0FJVUhBlxJsEZKjXoXlZtdSDyzCOcL54VFs9tIQh8+npIYtDFCdHh+vOzKL33HPPcyWlpd+cvkGTJp8z3AYG3D33XN/BgPNwdVn2UKXxn0oCkjRxIFf+WnbsobcS4GNpifpbSJAfaYNU+wVIyuLMOGrKjqROM8vuLJ0kprJYCeBzy0tBm1eE+J+0ZYTSbJ4X9eRql/vyDAy4oF/mpUR8d3TMuspwN7OsRCauurpmnZeH+1uQlJjMhgkQLizEH7ho0F+JgnhSmJ4KY7VUl+hPubEGtZHZ5tCM+E69eFQvy5wkk1jpZXGMh4IvLkC168ThMxSO77333sc5hlt7ozLc5zHc3Ru8meH+y87ODvN8OCRJspKhdEGGUjpOHCWZArBBdnq6uUnSBFnK4AAf+fyQNCnJiKCWHKMs8ijhmxI8YdD4zexF+SlguCgqTzFRS4aeRvP9qDtXq/TkmxigwT8tSA3/5irD3RqjOhq+Oy+ypFRQGhDjHwn6vfju7C/yCE3K6AfMi9dTTXKggAlFXLgyI5ZDv2WqbfIbK5nSGZCFfOcuSeL38WMdxzAsVW1lARdl85ZNh8rKyzRTLGlvVIaDAvjWd77tyID7Vzh2OcvUNxqxHdUyh/SJwucE2VcVgKpFoKeaWGEmx6gO5g2hEhJj9GRJRpym7hxIiwXY9GIlL4BjSZnHrxelhlN1VjgN5vopA3lBy935YDj/dwZ6u1ZjuJsdbDgj3bx969ZkX28PhaXfkrcAzlXS3ACc7BRAaxLHalmxeqpOCaKCRNUzH03OmXFhArp0juEQx+FiymJ5WYLkSbqR8hJNHAMGgzUZcA7XPTzc6bt33NFXUFiIwve6G7HwvTKR7u7hvmn9hg2/AcM5qxMP5OggHidoyJbGbIBPnuczWtl8UadzsbV88ecIljOyNI+J4BsTfz4w2FWHdnHoVYbjzwwZ3zwGHRInpRlh1Msx3nB+wNJYob/SnOb76I08tLsKuP8N6YQLKyY2ZrOnm8tvVCdm92UvxHF8scBdGHIIpQE0NcNOoTo5WACHDgnU6DJt9gqI57LjwyUTB1lZkmaSTgq0LyVH6mDjsIzmZchKbx/vrLa2NrDrDdnaBZmLTpPu7u71fHP4FDZ5DLAlmAc5Oqqs5uDwp8dyZtAhieJna++ScgGfIaeNOuwd0ItFvICNZTjABpYTD0v+7HCjwh4CuDUXp4dTa7ZWmbE4XZ8p8CZLlH8PJr/HxkZXGe5mz1Tiwurp6blth93203Dw8vP2/AyZRQ8PV5npwiZUdJ/A/g1344rkEJaUBjESWslQQkYCjBb0BSapLCeuzRlGKktlJuSLLNDPa8mNWW7r1s2/smSbvTAAOzh4Y3p1rPRSNjU13f6dO77zLBiOAXZdBZq9yEl7B5XhcACIkJQ+Hm4youNu260AWYmMLxInsNCLMqmWFQAc5Dd8TzL580OiKXdFVjLgCpjlBi2+yj7L5uWRvIAlQ4CHobev/3NLwFXA3cSyEiasjY2Nmu3bt1VA/rC0vB7k6614e4r1gsQfmApIj9ZJt0lVqp5Kk/QS9CMpggsmM04FHZImeJzFchOJE9jEwUYgM8YAo9nrXh4eypbNG6/ExcV9xTaeo7lRx3MAuJaWFg0z3N5tdtsVB3v7P4LV1MOe7O13COhwOPKBpBASTgG2Wp2bbbEJeiyxqBHy3KQLlOl5OKFl8Q0qL0Ed9oUiwI0KHTvoRmFloExmuy3tK3BU6pJ936+trrzLZvW32rx8CxTA18IEtbi42NfF0f7/QpDPgb+0MSHrBlOgGFMIZfBFUswAgxFsXYqByhlwuXzBwCYvJ94gtnCoJ+XaspXF/J72DC01pItl3HJYSOAyfCqZ4WYzszJv2PjtC8y/poFvRLd99W8qsZ7K3t7+OstKNGALownwViSlk1oi8BabdzHXlVVesmvBQ01AYRgVm2bTbW7W+cjkJpkkwYRYGLbyYLiStHClNUunTGc7fba3mG94/k4T9Q1NN3KCaRVw/7v1OKTnS0pKvuGwY/tzIQF+6Kj4zMfLHQaxpAv0l6lleHPkM5tVM5CKk4xUhLR/nGoclM4SKQ/7CJJM4sqMndalKSbqzgymrvRgKks0KP9Pe18e3GZ+ngdSe+mgeJMASYAESRwEAYIkiPs+CJAECPC+JIqkqPumRB27K+3qPi15N/Y6YztOjyRuXXc8HU8ySWNnPG2dzjhT57A7YzdJZ9L4TL3u2E5ce0nge/s+vw+QNVs3iVN7LVD44zcAKZDUfN/3vO/zXs+b4fjFZND9b5/fF3ua6eQTJZNyKDYbjEaHqkn1PRlcHdlOXYfUmU+SdArvhqSJrFAGzzbANNya76vEckq8osSCXenYPQA6OQPjNBIQBgrMoDB/CBmGAxMhOjoZyL05r5WuzVr+NhTw+E+vncUAamm3wFYBHGTzpqdnFPV1tdfcdhus9GafuTsHPUlMb4NWZqJu2pPAvBvTSY7h9o7I0+BQZ8ZDhHhkbkRe8AE6uSTqSW46nXZLy0m/NDsUlPQd2i+be3peAp3ExMLT/AAVek33r65WVuyu+I8i4dPRuSEm2Ds7pUKGslAawNQAanHQc0H3CWbn0E+JNi+IKvmcA7J8Xkyei5sVhikgmghAwXG9kNXdPxGWzk/aNn5tn5YWg9p/v7y8f/v9B/cVV0oiQluHVvIR9C4UDIyau/Q/dLGXs1nMORF/WHtE4iQVcgsvdmp0gI6l3HQgJZcJUEuaHpITACgBYMASsnAH0n46O+amE2k3HckEctNxN1Mv3S3ERew9yp52Idi8YO622dkZxY6dO24KSQVd5yYGaNnL5WO5zsdZSgypot1L7FZgryYDziIyvQXAodWtoG8CLweWsC/pE8wA68EOZvyQPs/dnunKfWBOKR2ejZ8+f+lV7GDY9rSL55YA97PNx5VB8mB0NKXt1Lb+dygII47D2A4eHrQmQVV5JsaAS9noKAPuWNpLe4blQjcylnPoCeQHaC8/PHtGgwwyD50fd0hrGae0PuOXhv39GyZLT+/TOiFw9aerm227zfFtJBr1qJSNb6OWCOl2qDHrfqJIJisxG/RiKgLgAitATyXAhmkBZCkxMYBs73jUQ8sjYAo+Wk76xJYiJJ4wwHuQKeXJKV/2g3va6Gqm/muZ9GjH0y6cWwLcP+3BkifAE/FyjuP+w0CfVeJgPwvFZGtefSoZxIS3DLiToy46NuqlZSRJRvJxW9wn6OTepCwjcJq927kxJ0CXvTznltz9lt+/9PKr254sLBeBIVJwvFnm9/vLdu3a9bso2nOslhVdJ3p5lznWWCGOM+R1KgE4L8e9PodNtMahlzSMwjeDDQ0EM8wIDifljUSg5VA6m+KzFyAcD0pnp1y5jyyqpGOjpk/MLCwqbt26WfY0i+aWAPdPfLAQxyUScYW2Vf0vMVpiMZtyRqNR6soXbxHHJUPe/IS3S1jofSm/SJBgY+qUKOAiYxkQtTeA7QzHbxcnbZv39vVSk7J+9czZ82JdVbF4uHy2ctvqgQMKtUYzxzQy2yVPDEBN+vH6qnatVui2IHGC1i63jYHm6BdrrMAOwiit+FxCPh4LL1dH5I1EOPByWG6JuThs0rk8009v7tVIK5PRpTv3sFfg2fVuWxZw+azctvX1dYXTPvBGfno512U0SHLx1kJettgRP8dxcQdbYznwR0p7LCF3mqBJGarMSAqAYq6mfbSYDGdf2zMgXZ1UfWtifEx/5TX8vdeLajE8Wt/efPNNhdls3t7Y0PBFNHkbDdCnFKUASZfX3tR3yrRSBhwDDd6Nrxn2xkUhJwh9yrCbxmMe2sesYIVBdmTUK7K+mK6AZN7RyYD0yrxLujHX+XYk5NXceMol4UuA+//zcuUPHz1SDMVjd0zyhk/JZDJK0OsA4NCAHPG7aJEBtzAs7wIfy2/6RPcEBlGx3ANzc6CWi6mANDcSeeeDB0x0IFDx8aMn1p6/cxu1pCtFZYgKng6bVtUtLYv5Se/ck5t0kEDB9y3onbSamVIy4AZsFHAOiIQTlqQk0B4HgSY2TCvDaJHz0XGOg4+nPWLZx34G3L5MOHdlj50uTOj+0wizjZu3nk1pvGfCw/FrOfr1fB7XfTPTpj6LWYKHQ7cE6knyDmsX7RvCtAC8WFB4tlHRGyi3eAF80KmcSnilvalgbmU8vPmRVY20L6o9cvDYmuLWzevlrxehxcZDj9nB3t7e7Sql8vMoajPgxEYdvZ693BMzcZj8RgyHE2Q6iTXOABx27kEmHlnKVb5+J0Y9dIrBdjLtFpQSdbi9o5Hczb1WWpvqfeu1168+055tSwPuCsdwd+/d25YcGeYYruUtq1io2J0zAXB4kPgBEwOpXictJgaYKnrFtIA8JRAQtBIHHRPQ0UfnyfxwMHt0PEgPZur+56sn5p03bnM88lrx7Tl7MsGDnXEul2uYPdyPurDcQ5eXPtfJ8ZtZAM4k9gyAUg56HCJhAh3P4YCLRsOg3B5aYg8HOnmAryOSTLhuqMktpcPZGwsWOjvjWC8BrsgB9+QW0He/z2cpy9LpUYW+s+0TcluSAc3GOeHhsOnT1ksht4OWEMMlPGKFFaw15uBS+Xm4ZExOcy8nfdKe4cDmpVmvdH2s7vN7FuYqbmNP9ZXXyor1IRIT8nfulB07duyFxvq6j8PrQ4UM67hQl9PpZCVmyALaey2iNOCz20TSBJowyFJid7qYuuA4F21x6KVEexeMF/ooV8YiuXtzXbQ3bj1w+bUS2IrewxUe9uv5pfSYFLhx40b55VdfLeeHSZEeTb5o1HX8EXs3iR+cLFS8sLSiF72AImniov0jTtozLPcDQl4BVBJDlLKX84tJgZWxQG45E968vs9FV8YaP7xnzyIoWXmxrlx6IpYTG2wS8UFXZ3vr35hNRowcZbFVBx0omJEDvezp7hKFb3SdOBDPueUuE+wZSGD9FzYNDaEVTlY8Q2cOpgWWksHcg4UumolZ9796pQS2ovdwBeGgqenp55wuV/Ply5e3n1lbE8B7/xtvPDc7PekwG3TfElMDlu6cUWQpDaJjwsuxCOIzCAmBBsEqY+B0nA+ANpMMcxwSEmM5B8YDuYMTYenqvDn74fXEoSvX7zHYflKDK+byyf3798vn5uaYCbR/DNfFwIZJnvPrFGDT6WS5BSeUu/KiQhAUCnodYnIekoNYfIKunMVRuaULiz6g8bnClPLuXhOdnHKtvXL5teeeXHZSqsMVp/ir4uLFC4rdVVWu6trab1VXV3+6pUW9sLi42H7w4CFFOpmYsnYbpf4eizjoMhG9gLY+MbWM+bflEbfoikDqf3w4KMZLJkQ/oCwgBDHYVfZwByfDdH1v3/fW5+zO9ZcZ6DduPJ4OKMaHp/B/BhvAQsmA3+ft0nf8APTbYNDl9PLiSQG4LqOOnAw2h03uOPEKWukUiyxhtJBsQjsXJCjQdQIaPsuUcmkslruzp5vWpmw3b9+9p0CXCbbVPs3LK0uA+/trbWUXLlxUaFqak+3aNtpVWUl19XVUVV31X1/cvvP1tlbNB/2ugexALwBnziFRgqItYpAhjj+gaXIEA6j8oExhqw6k8UaCQrFrcjjMDw22wATp0FhAOjflyV3da8s11u74N2pNa0OeypYVc5q7wBJu3LxZtry8XObst37OyvQbdTmd2BAk91giloMoLP87uQZ65dEcj11sjY3nN+lA82UlKW/TmU/Jozl70zHp1t5eujjZ9aXhVGYiGovVnjp9WvH+R4/EFHqB2j5LXq/YPVz5+fMXFA0NdV0RZ/93mluaNyuqKt+pqqmh+vp6slu7IJOXw+Cpx9YnpcMuSoVdYqMOxmuOJD10cayfTmQ8tDzqo7lUQBRt96b88o7qjJ/OTjhpfdxJN6d7pdMZS66moYFe2r7jtzt0HVWFIm6xN+KC6j24/0Dhc7vO9lsw4W38SedJp9zq5ZCvoUg2oZfS67YJwGGNM8ooC/kWuKW0vORjIQmJhah0ad5Ndxfaqb5R+aP6hoY/tVi6b9vsdh3YAYZir8t74h4brq0OuqK2zmJi+No1xer+leaUz/Fln8OWa21ry1VUVmU72zWb8cAAPzSQDGiXerq7KezspX1DbtrHNHLvsI/OZhx0ebKX1jNOOjrmw7AkHUz76diEnw7zOcJnnT9zIWOTrs3aaWXILO2qqt5QNTetmsuPAAAgAElEQVTRzoqd/+zMmTNiY04xerknvYqs8391m9Xa02fvtbxjFj2WenlODpME7VoCELFByGvvF7NwIa/9MaWEkO4CG6qZIRl42II6x+xgdjRCZyad9PGlulzaoyVLTz+l/G7q6+56W6tte8Pr87UXpuSx6quYKfqz4uHKMFSpbKwfM4uNLyYy6jrfaWhszNXU1UpMMaW6ujqpRd1MDEQJCsNIDIyEnHRw1Mtey0y3p7rpwriNDo/76MBYQABO3lsdEksGT425aX1sgN63YJFODXdQRU19rqm5KVff2ECqpqbD2CqalwsoOrC99rpsKO7du1f2xhtvKHosZsWAtfsLvRazhHXE8gSBTtBKdJ0ExVpmu6CTGM1Bi1c84BZZXUxUAHTzIksZFFt0MO398mQ//evFemk10iw1trRnLew9I24H9ZtNfE9av11bV7s2Nj5WjzEnBl35VgddscdwipdffhkqXcb2jo71sue2Hd9VVflrVTXV2draGqmGz+4qjusa6qlRqeIHR0v2fouQevPY7bSYcLP36qdXJgfo7JSTLrMXu4T303Y6y69XJq30YMZA96d09Oa8kU6OmqR6ZRO66HNGg0FSKZVft1qtHffv3Vc8rfu9r/4DgkuXX72sSAwNKSYmJx1sRFZ6TPo/wcpmg0Evy+jlFb0QxwWd/UK1GjEwpOMxOQ/JcxS6D2e8dGLMQ6eZLRyf8NCRcbCEIJ2f89PQQLtU09gkNaqUUm19vcTUX8j0abWtQt6BDeQXa+vqxldW9isK2jAlD/cUB/2PHj5EEVqh0+swXPmpBmUjVdfU5Cqrq5BAIfZ2DDglwSuhMTfht9NcbIASXrQqOUUCZYRju5lBFx1IeejouJeOjXvo/ISdXmfKiZVLN6YtdGpigJqaVGyZtTlIDXS2a3/sdDpC9+6Kie+yYjNWMBIGo7FGUab4yHMvPP/t7Tt2kEHXThGvE6UAJE9EaUDInxv0FOG4LRl0M0PAxli5l3Iq4RO9k2fHHXRlvJ8u87nI12llLExHJsMUclppV52KGlRKKFTjHkjVtbVUU1ubU2s0G83qlr+pa2h4G/equqb6laWlJVHq2ao9l0Vd8M5b6XIxjsMPfSgccldV13xfpVJJFbt3Z3czpayo3E38ihsswMKBO6mam2k62k+nZ8JCIg8NyiMRLw2FvJSMyTU4rCc+PRuk09MBOj3loePTQXp9n4cs7XVSRU2j1GMy/F1bW+vU+vr6c8VGgURm8sYNxbn1c4rnX3rhPAwSUzvCNdO2tUrYMCTk3A2FJY2dQu580DNAszEvZcIekZnMxHw0N+Sn5bEQrU976fp0H73MzODqtJXWpn004rFSbaOKlAw2VRNeVdTYqMwx48jtrqqSKquqPsOGUF9dW61k6p/esXPnuXAksh1SEMXGGJ6JGA7T1hcuXFDMLyxsr6uv26Np1XyDrabUqOQYjukkrKZcJqiG9RSgw4PFFpUam5op4OylxXSElidiYtPL/vEIrUxExCIKTA8kQ3aaGPSKUgImDFJ+izRgapPqVC2Sxaj/bpfRUIsaVrFRoIIkPF+7Fxlsn6/k69PQ0LDZ2NAgKZuaJEefleMzp4TtOgWxWPRVRlwDtBB30xR0KKNMJQc9tJry0qVZNx1J9VF7m5pmgt3s7ZzksBqplq9zfWMjNbGBw0GyiekjFlhuKpuU0q7dFV9JjY5qcB9ffeWVxzKDW1l+oWjBhvhj39I+BXP/eG193ada1C3UolaDuiBOwEYbam5pEUfVhBvdkLewjUwv5YcA1rdd205eRz8l2KoPYm8ce7mJWIAfLjsZ9QaydMlbZDStbaRsbqUWTRseQmwQRTf9iUOHDhVdPa7g4dg7v8B08ldffGn7H7MX+l/Yl2AxGXOtra2Si+M4rFiG3DlAB7kFJDsWE17aM+QVu9AXmR0sDzkpZuvk61tPFTV1TEk7SNmiod01tcwm6sS1b2ppFvcBrww6ie/TJibLd+7a9ZV4It74vgfvw+6D8oIwbClL+ZTqLM7PzysYRL/aolEL68lnA8CDsjAemqbmFtJoNEL+ra6eAcefwWKKttZWUjLFAbXEg8BekcxGI/V1d5NRp6MeLHKEtDc/aKjpFWLByqpKqa6+VsKONaaTf6Fuaf50X1+foqDaVYQJp7LJyandfbb+dqaWf1ZTXyfpOzuzBfUu0MjC5ABKA8gEe2y9NOh1iNm4fmsPqdSttL2SY2QGllrNRoyNXVVNlWASSlWTMIItLWq+zs3ivaa1Nadpa801qpR/16nrOH3q9KmibyB4Jigl6Adahdq0WnN1Tc0fcNz2gVaN+n+0a9sk3NSWlpZcl0HueMcaJjXfbKZLwlvF2FJj3kvNQG1qzltgBiqDVMQatQzOBg7wkWhB/IFX9qQAXo5pUA4Fdv65EX5v9Ph8ZdBPKUZaif/zW2+9pRgbH1ewp/sVGJaduyuyDBYYFammTqbjJr5WXls/YaNsCxsnGCjEwzUi+YEmg1rBGnDNZCahfOzVcI1x8F6AT62W8PPsEf8oEPCVP3r4aMvGa1sCcAW6gYcFxdLDR44wraw1MVg+yzdyk29oVtfRIRn1ejH7BiqEnWe42Y0qZBhbyW41k6e/l/x2m/B+ra0a8YBwXCEA95OYo1n8TAOoqFI8YEhpb0JxWdvWunzy5EnF5XxDbjHW4fJF73LIw3u8no5dFRXfrKyqQpIpm88aSrurqgTodO2yBLqaDROywDBAiIuVhexjQ70AFq4fey82YAy0VvVjY8ZGkPiaQTNFMuj0xMbxG9FIuOM+G80S4J72hlt52+k2TAZwjGDTaNR/inoRU0sJFLLP0k2IsRDoQxQHtAiga2pqpjq2wH1mEwUcNnL09oid1vhcj8kk3vdAVsBiEnFLN1t0K3+NlU1ob9IKcR1dFg3QXXrdr6O1DMmHrdBPicwg0/M5jqu+V4kMYnWVVFVdQ9W11YJOV+zeTQAjMpoAFRgD4rN6lUrQ+RZQRn6tYhCCViIbjPon4mZcdwAO98JsMuXsvVaJqXvWYR84fuHiRdHl8qxMDxTdfxjWEPIAa2fPKjheS7JX+xqAwJ4rhzij12KScEMZJGI6AP8GTfygyy7ak3pMBuo3m/PKwiZy9VkF4LB3IOZ2UirgYTAO8Hs7RVwOSvLXvoF+9ooCnNgZngPg+szdf57OZCoKXSbFPDFQ6NpJJpOK5194fqW6tia3m6lzRWUlUvdUVVUlwAaPBhDVNdYzEGtEfDzAbAHzchAcMonkkkZ4OMTIqHuitAD6DqAi1m5v10r9FnPW0d9HzSrlpxNDiW0M9rKnXbn6mQHcu6a5y+5xvIRdbG1trYdNBv33sfdN3arZ5BstGQ16ydZjod7ubgaI3Gwb4uAengwzXVhM4ei1Ck/WmW9bgvYiQIfPJH0umgx7acTnpAj/XCbgplG/m8JMPeER8TshJuvo68W4T45pZ+Tmza0hjINri9m4TCZTVbG74qvwXnX1dVkkiiqrqgXg4L34awZPDbUxsIz6TsEWoPXZxe+bGVAAHcCnz+8rsLBRQ+yHWA9UFNSePWK212KhboPuWzMzM735pFN5ycM9JUBDNzviDMRtPVbrLr1e/xbf0Cxubltb2ybiAlhZNN2KLTlmecUSJN4AEht7L8Rz6KUEuLD3DMsGe/mz6KAI2PsF2AZdAzTksQvtjkH2dpMhDwPQR0NeJ/nsfWRjL4fJZ4ANWh/9fb0fwf+psNe7WC304zGdGzcUZ06f3v7i9u2f4NhLampu2oBHw+RFHUotKKcwEBGLYb2VWq2BsRNbVCGLjp5VMAoswoQxw2wdXysagFw6v8fv4N8ncawnMaPYdLLh6tBq11FaQQPDsyCh99QnRvgmbBOdB/y+22z2sGX9Q4AJCyg4MM9ByBRWFKpcoJBY/h5w2AXN0eUtLJSnYG29EMNheujPU0QsGxzgB8IFYVj2YD5bL4WdNpH6DrOHi7odFGIqilfQS+gzBl0OpqtmFIclk1731063S/n+R+8vdNwXdSwHb33kyBHFCy+9eBdJEI7VNpTNTRI8EzK1Ik5jL4aDjK6IaXV6EeNCfgHXG58BXe82Gh8XzCE1j3tmFBnjdsEymJZveO0DUmdb6+8ePXp0F4rfz8KCj6cabKA4r7/+mmLPnj1V/ba+S3zTf2BlKtLT3Z1r72iXsEppQMgnmCXQR1hTWbTUJm64pcskvBxAiAFKN994N8cOoJGwyE6+8QmPk/xQFGaQ+Qf62LPZBX308XuAD8Ab8rrFxDOk4mLs7QJOW469qWTQ67PWHstx9gpP7brhn+W637p5q/zosWOK51984XRdHRIf9ZtMLVEzE+l+gK4VtFEUwzuFoheuuR33gNkCsw3SqFvYA2qZORjyySpZ/Qs/g7oelqnAgLF3yzr7e6WBHvPbQ0ND5jzYykoe7pcQp+HBRW0rOZpSuN2utKal+Q8Rd8FyMn3MItXPN0zEaByACxBBFRh0EepSsKBIgiCew3H0Akw28R6eDFQHgATg4M0Q5+EM8oMAgPmZYiKGiyB54hIPh6CjAB0SKkGXXWJQZ/t6ekjT3PyZwVjsxQcPHpQVc3o7P5NWfowB98L2FxcRpyGGU6pUEkokjY1KUUszCI0TGUBGocxsIRNfm1YGGzLByF72MrsIOvrF/fLm2QQ6dlAPRRiA1rGQ0y65+vuy8H6qxobM2bNnxfbarV4Af2qAhjgIFxxfo1t8ZCRpaGxo+Bed7dofOvmmcfyUZXqYA8BsVovUb7EgDhDKwFiLCwsLYCB+wA3G50BjQCMDDLakz80PgU0UvTNBr/BgAB6sc4K9VhR6i8K74W/BU8pATPDn8RkMsIKODglNRg+lQt7sSNgv9ZlN3x0fG/Pni9/lxRzHoXvn6LGjmLi4hB7U+oaGDYzUiOaA5hbh1YRAbJdRXG/QdWR+8T3U3UQLmFEvmAR0LGPMHhBPg2WIGJtBhyQX7g/WQEfcjne8AzaJQXwKPbH56e8S4N6DlPQ26DximHRxcVGpbWu7xlb0uw4GkJO9F8dZm8gMwouFOYYCbXQKb9YnDraaoog9yKByMVCQOIHlBUAArIVYQCRFYh4H00OXWFOV9LvFzwQZVAAUGnNHoJnPnwGIey0mCvPfA0jxwAB8cQbmsN9DoyGvNBRw5UZC3s2Y3yOp1S2vrKysyNJ5RWqhCwpoqG2+tH37w4bGRqlRpXqHKaXwcNj9LdYPixJKt/zK1xkUsZs9nK6jQxS+5bjNyPesR/wb6pcweh6m7QApx7+C9gN0zBY2Yl6X1NnRfgUergS4X/BBogE05ty5cwy0fbt1Ot1qh7btKwCLjeme127LMXWTAgwMtoYS3yAp6nZSmC3nEANmOOClQX6NM9ASfiyWCNJsPExRl114O8R3QYdMFeHZkH1ERhIxGpqTcePRoOtjrwYJuDj/+1jQIyjPoKjD2QVtFSWCoJvmBoM0PxjgE6RM2CfF/e6N4aBP0mo1v7W0vFxezIF/ob8ykxmrqK6p/oN8s/cm2rBAB/uER+sSxgkJEix0BLOAsQNNRBKlra1VUE6/UGl2iVILSgZY6ggPB88HSo7fw59B4mnTz/fUpO/8Tabj20qA+wVTSPRCYmLbYjaPq5SNn0UzLAqiHJNlARR4IIj/hPnBH2EahyJ0OuSlMT6pkI+i7K3S/Ip/m42FaGkoQnuGopQK8/fYE0WcdhFDuPhGw7MBcIjzYF0RqwlRHChR5eM+dMNzbMF/3yo/TPz9SN4DzsWwrCJGh5IRSjMlnYiwlwx6N5NMK80G3WdWV/fvRkG+UCIoRrDhXtTW1SaZQkr1jQ05FKkLbAHXSqbtcoLEZjULI2buNgoKjlob4jowhljesFnyXTpIUol6HVN44RX592GjkXegL4drb9DrvpNKJZuLuYngqfVwBXk7XFyfz/ei2Wx+k2nHj5w2AIOB5rRnYQXh2Rgw0hx7rQX2KivDYZqJ+mg64qM97GGmIl7+vp8OjkTY84Ro71CYLozH6NholJb4e/uGIyIbBuBGXQ6RMBnyOkScBqvrAdBQ8GbwYTMMPjfK4B1k2oj4Dw8HLLKDH6yxoJP2JgK0OhIW/5exkE9aSTKwg96NiXhYsplNv7N///7tAFyxbfd8V71ToWnTfKClRY2d31m5VmkS/ajwcgIoHLcBcCit4DohjsbXGOOBF8OBaCwSJtr2dvZ+8sor0XwggNctQIlFj/z7JKb9OVDPjnbtwo0b1xUlTZOfv7y2OA6HY7u6ufmTuKlMHXFDNpjWSR4s/2O6AYs6xp5kZShEJxlEr0xE6fhIgA4OBejwcIBOpUJ0IROmS+kQnUuHBc07MhyiM6NhOsFeaGkoSGn2fKifgRrCU7n4Jif9MtXBgwLqCSuNvxljCgRaCs8IyoO/P4xkCv9c0uegNP9cmL3fZMQvMeBoPhGSxiO+Hw8xrTUbjff3r64WbQyH+8L/97L19fUX2bv9CZq/2WvlnGiRs3QLRlCI3QTdt6J22StitH6LRay5QotXmI0WWEGcjRq6dcAqRpmio/kA8TBiYLwHUOHZZGbRk8MOdpNB/3ter1eUggo1za0Iuvc8Znv06FFZIh7fpmlu+hDitAB7MaZ9OQCgr8csISmCB3uUH/BZ9mZorzrPoDqZDNDJET9dTvvp4XSAHvB536SP7ox76WzST6sMsKWYn4EXolPJIJ1kQE4xMGIMKtxYWNWQa0CUASB3jocGlliUDdjTCSrE4IPHw/dAiWRaCYrbi0SNxF5Q6rd0S5buriw/fD9GexJT4a8PDw/1PJC73suLDWiFA8k/TWvr1VaO2aBSzddAAqAc+fKLaJPja4kkUoiBJVgISi18DRAvQz4PjACx2xCDLc33LcDxMUovjp5uERt7+drLnk8raDqHClKA771olbOY3+mx9gxfviymQMpKmiY/n7H+8rNnzynsNlvUbDT8eIAtqE9OjCCTJaWDiL3cwivNR/00yjdtnG/UhaSPDsQ8dDTuobsZF70x5aaHkx76FX69lnHTSfZ4F8ci9Pp4gE6zhzuTjtD50QAtRr2UYGsLT4XEibj5fNDrZ8jvP8NhzwcwycDi973dJglybkyjckyhcn3dplxnZ0eWH5Qc5sHaRLN0Gxpy/6pF3TJ2+MjhxzWkYrPKbATL3nzjTYXD6eitra39PvQoTV1GUX4B2DBoGkbCia8hG0Ph5ePsuZC1RWyNmBfXDizBZx8QSRR4MhgwxNxIoMyzIQSVxxYec753FVQVVNRn65f45ADeni7Dl7u6TM0Q90XYsRXjuffsD+VXSD03PT2laFYpr9pFyr9XZCFxkwZFhtBHcY+T6WCY9sWDtJgI0RLHadfH/HSPPdnFpJeuphx0J+2gNxhw7xv30JGYmw4P+enOdJgezYbp2lSUDjKlPJYK0xLHXbC0Q/y7g/wwMDWCJeWbbpAYQDl9Z2cO9SA8RCiMi9oSiuIcr4BGoaCOzyMWgVU2dHby6fihRq3+gkqlvDU3N2s6dfKkWI1VjAOo+VJA+fLysqJN2/ZR2QiZchxzyR4ODQMMJqwXzoT9lGHGgDOEvlOPU8TIOCiVDPEBJUfWl2Nx8oFC+lwCkMgsY4uqyHLydUWZAEeMRxlFUzmyz1lknc0d2t9ZXlranZfLK99q1PI9BdydO3e2YVOLUtl4FhlJm7VnA6ALCIpik+CFEmw9x0Ie2p8I0goDbv+gj+5Oh5g+MvDSbvrQtIf+7WqcPrE/JoD3CkRs0gH68LyfroyHaT0TpUMc800NRWmW6SU/EIgHJQTr7K0kZ581y14sB1DhAUAiAI21FqNB0ne0/7izQ/ttq6nrq/x/+5zV0v1Jo0H/IX4Yr7HlP8CBfSoQCJhevnSpBsOnSJKg6bZYA31I+0EEKTWaUlZXV/0Z2tXMpq7NXjMoZY9okQNgwDhQEkFiaizsRRzLhswr7hWyxeNhGYTwegAePGIwX3aRd4MPCICBRtrkiQvxO52iI6hbcrPHczOt5Fh7IyR71N86u7a2XcjlbTHQvacWFRk8NCLb7Xbdjl07/9IsvIlxgy3cJlvUHF9s0AtQQGkh4qXDw346xufeVFDEbtfSHrqR8dKHFqL00QUfPRx30MUUPhekaxMhOjQSkc6PD0oXpuI0PxSVJmMBia0s05V+KP5u8MOUReofnkujbvlOR6vmj60W828MDNhe6TabJ/p6e3v5NGHhPHZgX80Pu+abqB+rSqHJNz+WU16smvh5DydqX4lEIsrX4wdYVtnR0ZFDBwniNVH+YM82xfR+/3CE38vAQtIImV+0vQ2zV5sCAFGe8XuFt4Onw6sYaerrEeUdgA3ZSgAPiRhkgREjopiOJBk6VphqMrXvz6K7h2n+b6ydXXvpBl/nrZS5fM+7GaDFPzMzoxiw28N19fVfhLov2qbQh9dvsWSt3d2boBdHU9Hc0WQot54OS+eTPulK2i9dSvmk82MR6daEX7qW8ebWU/7ceMiX25cI8mfD2dl4OHtyPL65Np3cPDc9ks3EQtJELCSylDa+4SaDjlqaVF9qVDa+Hg6HB4KBwPPHjx8T2iiwpvBYhVNQkHrXKcs32JYV+9aXK/mpeagdV1ZWH8RWWJPRkIUAExsmUfsE45gIeekIduVFfKJVa3EwIBq+xexgCLODLjG0OxEN0GjIL5oR0OANTxdn4KEOKjKXXpeInzGriBoc+i8BPls+a4lpD0s36nxWaZiNpJjUsNt+/cL59R03txDofmktRA8fPlQMj4yodlbsOlpbV/dpZVPTN6GKjI5zJDXifMHjzP0PDIVomeO5A/k62F5+f4U92CpbXPRH4qEYdKItC0E9B+1sTf0cr4XlMsCGvr3tm/UN9f+5sqrqY3b7wP65+XnN5NSUUNqCt71+/QYoITxVWaFk8WTyY6vWg/L3oezgwYOK+vr6Www4DPBudLKH0+v0ojULnglJqyPJqIiFZ9nDLfL1H+PXGaaWgvYzzQTFRIIEDQgAnKCV7P2G2OMlOS5PBrzCEwJ0KMUAeMgAIyuMbHDa76SDCT//LRe+lvhe5o6PBDaWYj7Q1DfX1taeu3X79pbIXP7S+idBx2C5Dhw8oDh95vQOpnG6yuqqlFKpvKRsUn2Uz++r1Zr/olar/4Ljqq/pOju/NWAxf52pyF95+nr+nCnilzStrV9Qa9Sfa1K3/Laqqemf1zU0PqqqqX6tsqbmRGNT08SOil2O9NiY7tjx43Wrq6sK6Gc85Jjl7t072MZZXqCIWxlY/5DhO8jXnw3SQwgjsaF7h2PVHPod9Z06UUZB3DYXC4jWtnn2YgscV8PoLcYDtIe9Hbpvjo5GGIRMPWNBGo8GRYJlnD8LEE5yHD3FB9lnxHzjDE68xyQ9Sj4TDOgTySDdngqJ8GEh6qX5iIcupHzZu9PhjZPJgMRx9mGULW5ugWmCX3YNqAzFYvQgYrQFzctoL8K59PLLz3Mc9ZLBaKxs7+ysbVKrG41GY21Pj7Wqsblldzqd3sE//xJ/5oVLL1967tKlS2UXL14Sv4Pfi9+B9+hewO8HTUSTdN6bPbMrb9+dxFpaXlbs3LXzFdC57q6uzS6DQWjCWPI6LwDRKANnMR6ilWSEZtBgMDpIx9KDIt1/cDhMa+koXZiI0j6AMx6mpZEoLQ5HiWNoPiH+XoTjwICIBTFJn2aQpfJ11jmO1S9mGLhDXjrOgENzA0B2djRI55L+zfXxKI26er944tixhps3bxVl69wvHXDv6qkUF5FjJihglSGIv37tuugcxykkKHAgAYBTeF/4zP/j4HdhXOYxXXzW90tf/b/FdLedOHFCoW1vTxj0uneMet0mH8TRAJ9YyogMY5Ip4jR7pnkG0AwDZzqMvtIoLTDgVpnqXxqP0Bn2UvvQ2B1HLTQkvGKaP7eXv7fEXnGZgbknEebfEaQlDgdmGXzwbkeGg3Q6FaQbEwG6MiYD7lwmIq2nQ7QY82UPpSKbK4nAN9bXzrRf43sudgKWAPdzGz79hZwSyP7+zp/MWGZXRUXFp6Biptd1bpqMxiwSJxBlMjPwEh6ntCcRkqYiPom9kpRiajjP3mkvx1inkyHRbocuoFOjYZpgQJ1L+elwKkqHOeZ+ZSxE8FYnUmjRi0gH+XscB0qHk2HpBH99dCTI3ow9WsovHUl4pZVBby7jd+X8A31ZtPsdyiTI1NH2ydUDB3bcvl38W3VKD94zep4wSGUY/jR0GZurqqv/lUajFgV+0ZAMEV2mmI4+a47jsex8PJibjflzI16XFHPapfmoT1pMBKSVRFBaz4Sl46NRaWUkKi0OhaXFeFg6mQxKF9MhiWO03KlUKMeAzC1EfNmVeCA76nNkxwPO3FTQJS0P+ijjRwLMJYSacBxy40G2x6D7eDAU1F4uZSlLZyslT+Dtjh8//nyLuiXS1Nz8MY265a872rUb7VrtY+UttHAlg17R8oV6ZsrvkSajASnld+fGwt7cgWQkdzw9KCUCXinsdkjjARftifpEF08KdTlbH3UZ0FliFc3P6L8U0wbdJqm3y7hh6Gz/2462tv9mNhr+nV6vu+hyOmxsDJ4vKIqV6nClU/RergC6wsgUEkxYitje0VHldDpTfX19d6pqan6vprbmq7X19V9vaKj/Xn1DfRZbiJpUKtJpW0nFr1ii0tnWxl+3UXtbK6EJup2/VqpU2ebm5h82NzW9XVNX+7WW5qa/bGpSfbmlpfmzKmXjb1rM3Q89HvdJS09Pqr+/v8ts7t6en7x4vCXp6hPiQiUPVzpbAnRPxrzwJhDcRa0SXwdDIUU0Gq2JxmKWSDQaj8Si+2Kx2OHoYOxkdHBwjf9tPTYYWx8cHFwPR6NriaHEqXh88Pjw8NAh/t5SIpHI8Oe9/L5rZGRYxb9jRzwRxwJNxeHDh0VNFgCDLgzOk95sq8XhpYeudH4q+K7ILW3wLNAFLUeTwP18swB2msvn3hPfu2d2RacAAABjSURBVPe4meBe/v2Tp/Dvd3/yGbT5bWNwbXui8aBsq9dGSw9a6fyjwZdvFgBAnvsZz7b8z5bnf0/ZlSd6VJ+lLHLp4Sqd0ikBrnRKpwS40imd0ikBrnRKpwS40imd0vkp5/8Ah4URQDltAkIAAAAASUVORK5CYII=" + + +audio_b64 = "//uQZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWGluZwAAAA8AAABRAACbvAACBAgKDQ0QExcZGRweIiQkJyouMTQ0ODs+QkJFSUxPT1NWWl1dYGRna25ucXV4e3t/goaJiYyPkpaWmJyfoqamqq2ws7O3ur3BwcTHy87O0tbZ3eHh5Ofq7e3v8vT29vr7//8AAAA8TEFNRTMuOThyBK8AAAAAAAAAADQgJATvTQABzAAAm7x1lCT3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//twRAAAASMHzuhDEEgnoLnaCGMFC2CpO6wMT2EoDCd1hI00AAAAEQIDYHAsIIQAAEoGVMIIxHu2NU7D//6gx93/////b/rA4AABkADS8C7uaACBBcE4PiDEHG1v///8H4nB8CAgcnAfD/+XeJ//kJECiCQEJfI6HOSeUxLVpnrJo2rNIWOyh0ICisofyinwxQgwhC62QhoOq/VUc83SH50lBBW/zGlu7+rRJASS9aBdydWL4sDQNcGniICjWjQVUyz/r9Svasqk8mh2IEEAAF/3UCwpAWzBRxYSYYCG20kc8DZACBhYYL23pA9szuRYqDCiBhWU248WncakPjwAC//nqPjvVXbWoPCK5RxQpjrEb97tLtAAAAQCp/rY1YKFgEQGMiBKAl8eUUGLqIoKGJ8ymCSMEwbECv/7kGQSAELxHk7rCRtIUwN5zWEjdw641TWtYKfpzSHmqYYV5Tii6JucjDmcIwNidRSd8wROBJyGzaGHgEKFeKnm7nRASdEp9w0vMPKtoFqO0i8msqeRPqJvXWtGr/RegAAAAQf64JA85lKUzT1BLCVKxy3bzsmdNx7sBs/i9VAmPriMqzNVjGmwuiQIBz3xikXxobjFRgiHndkmCCWkzSFpKpQkWj7iK9vZoTq226qlyCgAAAAAK/1mAxhkJhwxggAiPFC86QFrpheGHGVl9CarY31L4s6dty4Uu1ptLBMgt1oI1194JiUBOVS/2DCiqTtsQqB1y7f1e3IvSt7LMcvV1V3nxbVrft1t9tYuR4hXw3i//Y/k/rKdc7774/xl8PzPwUaUb/bAAJf+11ymYAvCQjJBrYY8YCnDgQHRym2vv8v59AIgJeHcj2pdsuqSQRB/XGYAZBZjmcToT75GoqmPEUAc4k3+0t3tqieurldHetVIRirRUdybkWtkvcip8dZb3/jWz7A94WhLxHjLylb6kCt/8D25Xz2hqtgQAAACJ//7oGQDAANlHk1taYAIZgOZray8AQzEeTdZvAABnhJmtzWAAPZIEFDZvQUJMuOAwMwPMyI4BAwqzSXR8EIhNtYNWtp7TH+CgJDcSxKAuSHys6vLviQgE0SzUt/MwOpdg/KWnZpToR+hXxdcxRIW2TD+u8ji46iPZJCHTY6/IMD7TSrE+m7sjEDXs2bAAAAAAn/VwrHMcQxxTHqSGBjZtFl0H0DiVfjo7XX8V8+6fcfQ9DhI2JOQFtnzPpmiHUh6wxrbTfPzPW9PnOs3hbe57ODrvZvT1y765AQ3Ldn1mLQYFlQeKWqb7vfoin7YEY3oFkgQgAYJbTfgAAAAAF7QocrjMWjmvhWQUBEiUwIrMCOTOx0wgJTWHgQRlRgAGJIgGB0uZsK5MYGOIAWsNKa/FUd1lOC1VkM7WoKyNE3Xp2hxCOxV+LFM/UJVxMMikDjPZ3chjr9116cEACAACAALIPwAAAAACJSbr48SeTwAhSRg0hzTjgMBGA40UDARfAoLAIgCjbkv+/g0QDXa112Hf0zRyAKFxWeRa3C8KrdGpQRCl+yKDHem8Got6xG7TTay5czfkMO7J////8v/Wvs7asAAAAA+sjBwaYAQI6mAiwFATV7w2pETXlQyIg0BJhgy4VbIFAdIZ+4sh8kKPinBCNslLIrLvv87MeX4/7aOC48X3Z5jW3E5yL/ruv/7kGQlhEOdHkzXbwAIZaO5muy8AQ1MdzWtPSthgQ7mqMwkfMalWWXs6e/c76CiVNONeXdeTShNm2w+LD3b1Lm9rxUP4FM2YHX//+5UAAAAEfSQJ1u5BM+XAN1Q4DRZJAKDkU90eAug7K0V7OWomGGpQzR2FhQ9Ww1lAptDDLJ4cp1GSnlHG/snkIaFG5SarjEaFuEpE/R0/oiwqboZk0si7dH6ss5bZm8QaagzUYbaVPqgAAAC/1gMOpXWX3AR8u6aAAfRK3QiGGXCoBwqwCPgTA6BMRwB/hmDCE8IKj1Cn2M0Hz1cIaohiEpXR/VT32xIoot89VJd0MLhJ7uXU1IsLZkMjGmb1WPFQM0aEDReiEGT6yVwq5WErD3TToAAF/rAgiMKy4gHC1y0olOVr1QEgpYX2tRNBWlZCRL7MEZYk85Tyz0rCgyacRhAOioFiMG5/8hGxOh2WdL0U3pYox8IqkHxQNrW8qGE0zNsfDaA5a1TFjEFAYShfXV2V1AAAAACB/ZIJBSGoGARQTaeCJc3oDLvgww+hOVYwAcRBWcBZP/7kGQSBGNuG81reEnYZGNpumHpaQ3UbzW1t4Ahd47mtrDwBIAow+wQ4ocu5Sa94y7JMFxouRhUTCImQBWW+kC5dMT3npMnTxzgf8+LQy9YpAAic1oKtYg9lJZ4dnWVoSkeJsXYyqLe60v+n+uswAAAAf7aL1iEwylSsEcaKxP+XTLnFnVDhAOHjYHjGKETkYrIN9VKZdtCXfPFSdKGJo4HqirfSEESQMadz1LQ82UP/paw3WuEFPZcoAoFnvbmTMyQUwVQFxiiinB5DjaDNqj6SkYAAAH1kbghwKOBQ4RAIHNKiTIykQhphYuYQYhQCLrFUhfZFxCUwpPkDKAkCXJihigY1WhyHTKpQqBCTIUTOro3vizPSrdL9+a1nUEDnPUPMJJIi/1m2MoQJZ0udLT7mNRq08YtcOGWOEspV2+/odAA9sDfQhA+feIuAdvjdUAo1RlyAZbsOK7LgypfJ0j/JwrzSXR+oecrKm1yzl1VhYnpqNrl72Y2itMV3+8iXjx4nj7+pwpbPiZiVOgI/EOPYvILYq6eQJ1hj6kKoHKAAP/7oGQBAANzHk1ubwAAc6SZrc3gAA0cezVZvAABnZDmtzWAAAAAAAoD9gagAAAAAKERjdOUDwrIl4QstmvlqCUFcxgyCaibhgKZyLtDMLJDBwAGAIIFAyb7GyhP4BOQ+ghFZnC9QqALnQFJvORIqSORBHCrQV1lyHr/EQWZtHVBD7JWsucivJMZIyWxB37EvZwyAggAAiA8rfQAAAAAZQImH2b4AwOHiUSSzSwExIPNFPgINmPiAhDTASsVFBImCC0GhJedb6xACwuyXpY45cCsHfVHUeaWhEYVjPu0OvNItNOuuRJoH26tanpGBuOjmm7DyFgQqw+LN3+s9///+f//87NLwAAFCa9d+AAAAAACFEyWhHQ0SbKYVNjEyAEE5npCYYAmmiDM27AIhKI0xsJGmAqgT9oaEJB5Ja5mKynicJmj0IMJeK/XPAcN9lyD7TpRt3Ych2AmXEICBTAYDbC5TD3It1JXD7WqbmnRAAAAUQAmQa98AAAAAAUHDlBVpGHHw+QJzzlB0GY8sjmc4qhmTN2sDw4WAjRQKBmaJhl+w5kNFwZS5L6zq9gwjBC4oyB5G25OszkFiBG0gerEezLqzU/ZwQ8XWUKilxrLqOJ3///v5WrEVEgJjEaLqDgAAAAAAChQaqLpglIgnM5INOGLkCE0FSRl15pyysF0eEr3NQIHjbhvnGG5l//7kGQagAL8HlNuawCQbqSZnc3gAA7MdzVdt4Ahig6mt7DwBChprBITCZppqukxkjl4yaDr9tl8pft02TQfq/BMzjHN6vX7eFC/FBRwvvwCgDAAAAAIP+AAAAAAEKiMN7nCIYcsAmASOAgHMSXwSToEDDAkmEAESBQDBA4tIw4NgxQdTtoZhaAINDiECtfRyZSzFBcwQbq/VucbNTv/CEF6WVMsg7UL7CZNcdyAK+daVp3zUs///4X/679uhuAAAAAf6SAIcGQlrg4ICA0NBtB5WMKBhAAu8NBABKDGAcKAaihgQADg4eAkeXEXpYy1SyPMo/Each7TpALQcagTrVGvBbYOG66JktF8aPPM2uFWOG/xWPau8Ji1671OQ1yyVD+84lDCobahNCOVn6K3/2a7a7KVAAAAAAB/rA9LivIDjv+EhdMtmNDBxVkrxUCDjrAJcOS1s/DkSJ0lGfKKlfM5AUSaJZEbBtE2PfcV5FYbR0i56zefDxrTWbI9UN6Pxrz2uNtYbSR7s6kgbbOcWIvG1stdq510AAAAAA/2RhzRhf/7oGQFhWPkL8zrWDn4Z6PJvWXpkwy4dzVNYSfhiw4m6YYZ3IgDEBklMm0+HxJiWUg2ZjgjBj4DFs2B2jNVAE4LLTWBP1mg09VrMZW2zgNTVlbsWrIwrPbWYi544FxEHwKDIQGEUDaigMDg+FhqKCo8/+5iURnop2yvonNlwAPFzSLCyBslQpOfA7e/dw7ugMv9On++yIAAAAAAf2QM5Q8UajjIzTOOZ5OpUjcmdKbl6081lpqIlK/YUn3Qug8L7OFOrkyw6RiI8NENJTKBD2hxHITDYdHSLat9ETZHQyIBftZ5/OFL0IYBSRdQrXbaRnTrt7HWuFJzWrRXhQ3IAABxwEYoMMBwUDMMnNnCNGMByQoeJelYNwSCSHS2fQWWLEf2C0vk90Fl4xGLP67MFS1/nIRXYc06R5yiQCtk4VcRbRrlUjc3ygjH/bIXFtYbemhm5oD1vD5nXk22sTOVcU6VkTniHtlaavByr7NAIQPmU1gJSlFQtygujVInZIjs0EovhKXAlaLpkaDknFpiFBUJ4MCwWeCHhiIkGMpD76khEixY/0Rj7lu9KDAi6EUbX0sQQPOWZLuHe9tss5Gna4lWnQNDmLWEAAAAABb2xhU8QQBYwGsAxIylTOpGo6iHBSgtYJkBjGGcjsXUfAgA9JmqNDzTTadcHyAVpJimLeySXEZhY5NeLLRiUv/7kGQiBGNZHc1rL0rYagPJrWMMHwyEcTWsbSPhcg7maZexXIWnj10Si9ehBqhyw3rJKiz7AmSqVYt09EK5UyTWb4bXpbsUn/6fi7oAAAAAA/sjf9TAqvQFq+FRhH2dChWbycEPPJFY1RQ+sE47LKrbsriD/MgnjA2EtGJR4aCovkxQvMWMgVsKU1ejfTp05m42Jd3f6Hzkz6ouw4LtnyUWjmqT572HWNLtnhx0KLYD7z3X/dVGAgAB/YwJqIFGlxE1X4EwzHCgKByJYUA1DwYBFCYqBMVE1C++4b/q9SdQJOU5TzEaMKgiCIBSQEgSPosu4rwhNpd6TYeJWpCKgaD3rJAodoJxosGylBLGzMKMkxbrbt1L/oZjsAPIwupyKVswiDKmoGOW+uxcjBRAeOdMIcN45SGE9LqnlaLkwsTM8OoLlAjgOHI/jV0bg/2aLl6ZREoYW5QkFUkqI1j/kQ5FnsrOEwi9Yy7voTe3zrUqldu3j9xVvAAAAAAH9tA4PRhMwMNQYTbMpBEY1LlA9QUn4CkaL4fRULbxevIy4aRasf/7kGQVhGL4Hc3rT2IoZiO5rWHsVQyEdzWsPSyhXQ1mtYelHFLnXSyugSEM1XQQRa4s1s7c78eX+t2+xvvO6918hdXX7njnNllKTFJYCqYw+2pVDHIpgSpdkgAAAAf2x45puA+AGOIJhHmfpHQIFgl3QqU4aZfk2TdFkBSYmQ0xFvzaqAyQXB3EVbBLF+YW3dJZ+/Q8U3qseggd+D21GbQzGNOE0rkVMVci04g/UlKYbekiSam6o2R1nkf/7/XEAQABvZI/wYlgwI0wg0CJ7UwMC5Clq+QaYKgViPQJg4SGIk7HFPmir0eiHTwocWAoDZ5qZiGPQMA7rCbqcUXFbE3k58b8lroc0VLXNMyd70XMFH55XT4u7RYy22xtffth/3tlXAEPZJHIBEYC5yyUTFmwUniUIPENIDMrYiIGFAUz1LkpACQOH5HyrkyZkLMKniZvyLwlTJppFvPjB9CP2uLvG1hFw9FVOlVDHcBFdvStL+llHtRstT+ipXAAAAAAB/bAosLGIZJalyyCBON2ioJ538RPIoOa8zvylVQSU5fCZv/7gGQThHLLHc3rDEO4WoOZvWGIaQtUdzesPSqhcg5mkYelFEhEVHeq5yrL5kgMNmMlFHqIbvXSMHoTWS7CTwqhRt/FTSyzXP+n59Y0KgUvlirXP/91TrJIAAAA/tkiTZx0QloANEEBGG8qs3Rs0Ptnai86GE4qHVOQimdryVNjw5dUnril1tdKuhZ6uQrBFSsMIqj1fU8pUducPRC9u0axBy300VJNFrm7EOSTSbs/0VhMABf22GJ4dchKF7CIAXYAlKBoIUI3MWSH2jiYqYcaqYmBFKsuuhF3SY+KiJYgxllDFEtuiZVr/O2fRvR5Abd71Isi7ZKx96VX2aUJYtKepve3OpTfkUsajpiYpQ6suWKn+DlkjkbHQMZTKYeAii+TE6XyQsRMgAcIyJAyxAjXiUJpj0mRGko2hmYTOzW3V7SY2Zpf1Bge4zS9zwhFH2oawi7Hqhaw8oeHL2vbxbV2dWntRdtvm3AQAAAA//ugZAKEQxYczWsPYphmI6mqPwkLDEhzN6xpI2F4D2b1hiWMB/bGYAE2DUgOIquI4JtItJhIrPYIikGPA6UWjSjSpgEFV5CVLki1YXieVqEGmuQrjSUli68YmL+0vdQwf3fG/DN2cHtEZw6xd9dwsmu88lNDHP0mQgmNb1Ftzfp/r8wAAAL/SQ1SsWFTTR3L8kS0qVgxYzqQIpS/7/JkAgJVhICTzJcTQGSdGoSPCh+AqNxOji48SpE4yM4miWNLwkQMhrqQtwx5iYMpSaFkKlh0qZH7HenGyQxIo9AKKW1WoSFvv/rR3xgAABf62BZYYwMMPZMcUAEQeeg4A4ICIL1Qkjwxw1gFbG1ionBQGQwukY0PEJFI0JQoZWaetIshUR1BsnaxlQcI1hUKQ2LfOxe6vuVZh190IVAqZ1t6OBVLxAjYi9SPq7q1RkBgAf6StxJRwCywvI64RV1iECpl2rHRXaVEQeDkSRKK8IZgnQnYOCNkjiPhc3BMkSvyXInLskQIQRMI3SUJDzMHfjR8VLw6jSkpz00qRFDaX/87zn79hV7drW9GxaqIAAAAAAf2MGIYQIHRI4GPCHVHnAHmHJioEaomEChQqj4TA4sr5+lYFtMeiLXWO/YphgEWkQkKEgylZdCyCD1ECsz4iRDAyRBIoCOCrC/psFDo4euoVODbZhGLPCUSmu3N//uAZDCGYzgdTWsaSPhkw9mtZwk5DQh3Naxpg2G2j2a1PCQ8bUJo1/2OcAAAAAAH9sD6tQBIZCSzoatD0JGVUA7AQgLigBeqh6q8CrXXfF1bV6Duti6hdGnN4hJ4WHoowfkjUTNJi4hGFiawphY7JJs9+Z4sLKrehy1OcuZ23OSRAVrBSEFtVFrXUoGj76ZAAPHIb0pDnIId8ROzuvzZai2AybMuOQ2LLlrHIQ7EQlY9COYCAID3eA9pJYuWlg8kepLPlMKYhoJ2qQ1a9hGZlYnlF1YWFy55t/RaE1x1TS5kANLnq9dCrl/6rdeLXLKvCEKfX9WxKHACPbIQoTguo0RLgFmSxsAvZuk/QGUzMFeNyRyeK9HI2vOhDRUYU65YMD4kCpAFRMCYpD4gZQLyRDpMCVIScLjB5c6GA+F2f3HQRYMHi6XNGDD4fqatbGqeXJHbjLshpELybWubMojFieO//jNdAA/sgbOVB7X/+6BkBAdjXRzNG1hJyGajuaMnDA8O5Hc0jHMCoacPJvWEvhTjHDjEoztnzUHyBKDjmMReA6hGptSSWKhS37IGnyRgcXJQuTnAooqIxCLBgVCkvFQbEwuTjBMLB4SBsMp4FAwFwEEDib+A2JwSSpQXcfD+dShLAwUNLYLd9XG1YQMXuatxVaCIAH9kFgO6afg44EVELilQ6ZCtNNTFWoIIvJPaHHbiBABenBJWFtYXRJK4kPGIek0qolLYOCQ27ETSoIZUEcsFYriQXHE5fJBVJL+C2AryRRb0se0wZQ1ROFfgDx7Pih4VEEtY2JnF1QAF5GLRyEYTipFNORYSGBi4DFUIhzkD/C3T0gW+Z1nA4G8WBNYcYIFBCcMPxavMP/EX8iUgdV/pA4jpSd/4nJnDae7cYZJDcSaNBsTb+dht/Je/8amjnDpd4hLtAw4f1rS9ZqbL1NtNkyH3tZNXB8KOFnoQ60P2gAe2BWsAODelflLiNxtUPEGdm1smHYJLOYCRsCZK9bN1lqikpGPCkQkgZeCQJyCxGkJxlWjzWYZyLKuYF0hqHNI6D8VG4ynkL8hrLP7VjAGysm8ReYuGLXuW05UKDVigolLmvN0evWgLqoAAAAA/lgIgkhJAgDBBeY0GGAMgD4QKLmDEBpy2cxzCDyTSGS8Ciar1gi0YhPWEV6OlDmZDWt/pPpr/+5BkHQZzeR7N03l6OGfj2bpjLzkOOHk3TeXqoZ0PJuGNZIRcnmsocpVKXVPEsaSwHNET4txlkgN5SZOpUPnBSIY7ZnX7wfxZ7LYYsQ9H/zS270p/dRzaS3gAAAAf2QQaIyJdig26GI4xYm6aoxwBi8ZMMYRAKHdlPpPOIl2W5iQ8yqMvmRXqxTpNTqC6HrKGMSejF+OckyVMAbgNtJvQci0TIhyo2k2MniNULv9r2aEraZW0yl9s2y19u/m9FWnr0A+sCYqF4CUwYFmNDJ4M4asRmLCRkqecQFHAsJh5AWRASCAk87EeAqapMwgxol3jFaSxJ+G1K1nY2ksBfUPUWWNsQw/iEGahplDlFStoxTKVCqWlcmVmQ910EA0dzqJoVilLJ5Wq1Yr2cgb/e+xNIphukB94DKTmM4MEYzHMRmHJkgJuIHgsOGhQ0WGAygVQDimlNMTGcZ624RSjpZLZg2GX+fKSsAdmG8Ja6LhxtwF6RVkcYThfx/lgHIhuQXpK+SY7I4xR/qFszTvZxvdYdWOu9EgL/obf6cAAAf2AJXD/+6BkA4ZjlB3NuxzQqG9jybpjeiENqHc5TeHqocKPJumsvXQJ5mUS3MBDkxVPTPAvM4jowqlTRQZA3IygMAhAcpEJYzEFMAQBU+wqdEg6VrLl/w47HYbf1t56HI8w1AOt+Vv60drMUfJnjRIcYmsZDjBEANApqsxHnBtP5H3dYulNW00AzGlVsv2+m/VJPskAAAAD+wCqy9SwwfLsm0RyZGYoHmwRGyHAWCVCSOY4EBRI1A8aRxKaGBz/JePPD7vzjc4OkbuuNDL/LQYy/kpZgoLEoEcBpq63/f5Vy831hh8FfxSPx13ncaa/1/w0hjEDCzVrcxu29UVzBP/SJB+AH1AfZxDBhMw9RMBNTQPkyyeBB4aQ7mwiQP6TOCJsIy02AP6AGUhGtQBIGjMubE83JVJlhVCQAzrklhrESprnIT9wL2OtJhmEbHrElHYWJtWlVaAr0KSaJdu8UnJpmMbXIXt7ygFcl71tUwK1+AeyCDmAGGGo6GjOmBUnbxn/BgZ8cBmDYAQzSsMoIEhGHoTHrBjxwqc1BxYo/zsyd3HlZkXfjceZswV+X+f+cUwV87z/s1YsnCMw6GIEiEaU65UbGqFGrVpGf3GhtkayK0LpNVF1o5FKJyl7FqQR2EKAAAAAAAf2AAcqa6IIIRhmZw1oWMnHeJqdObognRUAAiSJyARQZCRhxGZQgl7/+6BkFoZjzB3N61vBSHCjubpreUEOIHc47W8EobOO5umd4JTy/pgMhzf0eQ0uOs8lL+o6LBhY7TWnoaLhXLL4orA1WGndZ4CgKPNJiT/PElSmGxSHY+/7/P/DruWnegPtUkSosm27maRlvoZj1vvavQAAAAP4IEIVYEwlEiasCaYM0HAjAK2Yl6cArKosnMIIK5g8FAOIA0NwYfPKWyB/WeUiUjd0AhaxVJeilxMPGIo5y9VDG6xgWHYu0xdiQ7YXYLYOgsh9F8v8/rrKXLygV/faMbmdc87FN3Z//9WvuZfB9QCIWjebsOYyIfPWFWxpeYa1FmAoJyyyfyfCEZEYjLs3MAhEPw4QKYlE3Fm8tgcgROPAkal82JCJdbkEw0Bi32WQA5L9s1Xqsdmyg0WZ8PCpnXh5uzzw4/tJSsDsek2YcxjNqGdaVhTYcKz2W2q1yEAHsAYtRtLEbAX0NCQyrTMdDwsaGK2htMK0ccQRTMRwd8zlRmMz0WlTq8TLi68H9VucJyRERkaBipouhspWzYZG/zKGqp0sPQdQdaYGUQRtxXwrC68hb+AYfhtwov4qItE2h7D/Y+tlO+7SuyuAAAAAP5AEVjIixMAbfMZ1RpkMPGAp+ZAIJjU4nQzEaGbI8TwgwuuFjUFzBCHTwVYdApgBJrjoKlIyc1gRADAZjjGEEnwkS6AKCDD/+6BkJYZj9x3N01zIuHVDubpnWTMPbHc5TecKIbMO5zWs4JS4gxULjyuGUThikEHIIgVOIjoNBo48Cul83ShtQ934csxCTekUm3ECO4Vrtvr9HfMRRMtVAAAAAH8kDts9TKHZE6DHrTaCkJsx5nJ5kvQGNhw4OrQecNOYqHGFaW4diOMsYQ1tbCc47EymGhGWiusMrwSNCwbtDwj3Q1IzOiIljDCMaNpIgHAhY44j4mAyNpL3tFj73p9NTf2TujsLRzNf/qWmtXmdK0/0YAfWAt6YgJCikZemm0jRp3yao0gwYMJKjPJE0RcCxMFJQoOdEQgQetErgjoHsgjf1d7ilBniCjgEYGqS/B9Udy4iQ5h0QilSVj3TjSxhxF8eKWhTAB0FQF1mRuO/0ub2HJRNNNlv1WKucecfrrBbWhX30OZZbT+vh9a5qAAD6AOclkhNSmMGHBk8iLH5SR80/jeqOIoZSDpmMoCcPuRbPShp6DjgMkU3QpAIxCcGmM9RyL+PUk0r8t+1t/BYWUTTIPbDY9YAdQODI0Fpki4msCkepQ/7S3FV7Aj3P6V/H1z2V5iyl9P9m6qAAAH1kDQWRmHy0YkR6hIsHzCebMUmoeYZvhZH9RmoDBnQGIDXESImFhYMUn3gO6/tJEoyBKRpYBpBA84PKVEBADFL4CRVUZMXGlMbUoMblntLC+n/+6BkKgZj4R3Nu5rCKHLDucpvWDEP/Hc5recKIdYO5umsZUxa2KkVSIKbKwjtP/CoyyZ/FXSf3qEo94LOqVc6x7t+z2Uqoci9Dd31eAAAAB/qBNwQFUICAV0DIpwb6aERGORHPuA14Y8QHJrqQO1RZgIyDfoQDUn4iidBvcmKqso8FpwyqxeKK0FF1Fkt6hJd+Xl9zE8cKgFfQu8bAhoFYVIIOIgwfDiuY6qd2ZjxfM3JxNjyxhKr2WEKU+OlXQAAfSARg6Pph6CYEunBBxnSgbBMhpMZ0NntkRrVmXyOOk92y8htcDjktU6FfL4jxfQqrKgUjAEo5ECi3fHlOAsxB8ttDTF09Xad+LochpAwQScDRQ0mMxVJtFZ3JS7EbcqIyqR+TYrWpYaKJABgoPq1mokePH99qdSX30q0YrSrED2MN0UdWykQYsgbuiagiB6B3ZYCjgy4akGB8m9KoiQBPRk4+MVhgwN3XBFrEd2/HgU5TQOTSewdGESkhBgsRW4pU7q91IFV4aCMUpkQmMXGBqiYidpIy6TFn8f5pbtSaHfJY3zL1LDbL3wwhPSpL31Pp9yqqsAAAAA/tAZkABJmFpgSov8OeIMRBY0GCBGPjakPNrZcc/pYKrQgKKEUSwsDFkjdl+L4Zev5nKtZd9dJahAGAADJxEGB0OAHVeZugKAqgcmXR8aBA4D/+6BkKo9jyB3OU1zRGG8jucpreDMPfHk4DfMmocaPJymNZIw8ySTsqJiwJBDm+0vp26QEx2Mfx9TkobaqQXWm6wIOTwIL7urAAAAAP7QH+ZM9bVg4eMUzL0zXJTDTYzGEMcMCEBNLUxQVBBRDNsrDpAvVa6YAFCpczNUjIDK5GRGuGQi5eBE7J7bCgCkGtBwTcMaEjgATAUKwwtgme2ZVzwyR45LHIRLPak81zmXWrYilPs41f/Y5QKQgYfChccESmSQZp1wHWZm8pmHrsYPAgXBoKahaAHCYwYguOFCgwgWFCAQaERFgZ0EgQ6kkDqGiiVwOREBK1R7IwD4bo2Zg5pYirjnDERYKCAR5QVLAESQgKrKv+NqqP28TMJXLf+QdppRi4eXASyzk0CsSpo7LHsaNgA4sEqf4dDEEzzlcHUTilTgIjI7wRARGGKA0UQBO8gBS0YSsMrYvwu4ayyiiche2JEoxQ6k0xwRwBwrO6CdUSSdU0U+YI4IkISCbhY4iPAoQFDctvGXRBgd2XumlrLf8zQEGumtGn//PzMg66wb3XepVgAAAAAAH+oCzTGBgw8WMaSho3MaoDM6I50lMmWDq1s6oQEj805QA4LGBB6Nhc5LEAgI4CRQV0KBAcevlaYAAjmDvF4y6hjMJuAAnuguLA4rrq9FJlJguodQX+MRFg1osoetzqqv/+6BkMoZj/x3Oa3nCuHkDubovWQUP0Hc3TPMiodKO5yms4US4HmnNaRI/QtzhhnIPmIBQre/MuuG7GrSzSl8AAAAAf2ADgZI+iEYRCDK1gsoOiyNwM5lAYMY8B4HmQiBiQ60USS0YYieEWD0g80YyASCzZRZSmHRwVXsDgIsiLByUgdgdDIokf1wmFg/yc5olg5IvAEeKAjIaiT/P+0yIrbLrpSPn7lRKUJxO1KViuftdTCKv7vrdAB5ABJ0LpmPSdjhmUZA6RmRBUEes0gMzNFFDhSN0ooHbhU4xEzVZLrkRxAaCsQdsaAZUQCQ3FZADsF9pmqiAy4OgEYhkAMckAFbMgMehTfM1NIpO9FEuAW6CGhJZbQ6FOsrbDDr+JymAHSv7DoNoi7j59Re28/RH7E9aql5NOAHsgbi3BwBkshCa4qF6hqxJo0ph2h+w7XzvgDKTVEjasTTS0I68IGQDLnInj7H9SfHBQ4NHXiFADRmhA7ddbCSAFGPNd9CSYwFEDG5DRuAdUt8o+o7DqwLQptPVxU9ZC/tfHdArEca5zX8WtXaz09fV1J2MwAAAAD+wBlwGEEGJmXBkMMUTEziOzeZaLpmRh+fCRxFAtIu0BrTVUXUXSmFNSjUzOTdFDzhwYlCHgVgU0lVWml9RKIs8IUbLWwUir5p0YdUISVGnK8o0eWjQtY00WWP/+6BkL4ZjxR5OUzzIqH3jucpneSUO+Hc47fMoIdsO5ym8aVRZeOVytKdRR2OcuiLNR0DIvGGPyC9NuyyvVgAAAAH9kDQo6+YyIc6oB0MPID6wkyg6BC+baBgo6PYkKAAqk0SAglT8qJTxEUBBhhQ2VTfBaUrhP12CI9iQw8zgxoRoSLpOFzh5IhCXgFWgQqbAJdgoREQqAlmS2E+p6DIlI2Qpquk+hnpuqKRbxk7htDJO56mdOMavd+q+iD2wNxZiKmIhRDVTU4jCD14y4cOdSjRVUFqwtyah4JTK2wQAJJv4IAWUFtwrgAYwCgOHqKIGlwkA6RCjoMAInmcqyOez1S9f8dcMlRKOgEw9pMe1xHlZz1QTTr6kzurZkY8Czl/0czaF5pdpNBDZtb5D6rP0rpmaoAPbBJJlXC8iIdMJFjAVs5dAOBizSRc3slLPm+xjMg0SFRIZqj8zEFZQRJmAcmmwl+YgCnKjeTDlVTAqBY4gTdK4vcsgy5OV9UiS8Szy844EX8XSaE/yll7B+EEb8NTTwaz6XL3RSQe/1WofQNvl3MrZLanJ/4+QAAAAP7IC9VgLB0BE4w6MBDfDBhkM5Dc18xTVAEB70JgIWAZhxAK8kAQYMBw52FDgEeGTg9YOIcMAIViJlGAgxFPFRY30Lxl3GbR5fbBUngUNPxNIJshJQ0eMVmRHXKn/+6BEMAf0RB3N05rCuIVDqbpzOIUPwHc2rm8kofUO5sG+ZQS/Fs6ZzZYz5KpyWJP4ys4+giUMXqJiwwlXeJgCooMJVjqRUVIu2ev+mAAAAAP7IB4BNBJBSChWZpLwXrhiU9HJyqYcNsAnUDGzowmFxgMrUQ2L5qqJ3y1JIEEIDbl4WYkozqoMCgZGA8JrpicRhhMfpy8wjHYWAlAKafKIcHYMoBCw6BJqJOTcDymSwOsRNJkjOhkSIx54/xcYIxV1qVh44wOCpmRZGCwuYxT7f74IIiAMApMPjKQSMjwA5SCODATOGY3p8McnQuHKDGeUDjSQhnqZiBlUFIDBASoFJTJPCP0NlniAloDACssIeTycilTNMEgEkxtkbMToBJXRokEgDS4JFLSNZifwBVijBoCGgI27wiemX13EKYVMnZKKKMpo4+o0XZciT30Waq2zuEAA0aVhr0BPMD0U/O8MQzwWCnA0fSAwoeQDjgAAMxmseuV/U3Sx0MlBq404DRA4JRUKFoyqqGBGZwgJBAIFIMGgoEus1mUDRYgPL/ApAhBvApBWFYIupTXq8CNegJy9O8LnoEfFkuJzcWNnpCKrMJo42s0XbeiQ3U266sAAAAA/sgStNNQwMDvMM0j0yKhTfhYNBEgqMgxogzpJ0GA8WQShFkgNCmDBBgJmqLANCBSALUGBDwkmRO//+6BkHoZkHR3OUzzQuHajucpjeSUPUHU5rHMhIdgO5ym84VwKhQALbgQBhoqUeBIomHDqJyJhQLZRF30IVCHFOhejY1qPTKF/zlNWTDbG3CC73tMsZemLpnBcgKLT0CuOD9nqXFHp372fZYAAAAH9oDsqdg1hg2W0MMTBSMF/5r5gcGTGdtokPgQsILeUCCyJdaPkOF7woaVQDnCEYrOGgg0Feyq5KGigDpggNXEvC4oiOQ6NifZhwHfIAy9YkKoSCngUqwhoV+5NooKeR+Utom8zdPV4QpQhGlP0I0ouobrgAA+oA8Y02BheMBgcxCCDEN/M4LYw+kTDsYMEk02kLjFQHQVgQW0AhhcYCrqEkzAjDJfDWDd0UGD21axAmqup8kGIvBlFOZLlmzI1Hos7VZrhh0rtKDFfovs6gHNtrN2AFyMieps7vmBR2scFTlTxA66fdLLGnnXP9SoAPbA30AKBMSAAOYkmmKPpvjgZLpmFkpvJsUB7Fi3qfYVOQAmAMqRVd91DBNwQripijRQI2GElQEo2VFQekaXrbo6a1GEPpplYbmChqYFQisHzR6ICLPw+uCjtEWQr+/7bbEtENCkmENGivuX1ZqqhqXIf0fUhgAAAAD+wAIEqPBgEhCwRMmEEwhfx53G/14ZPB5p06HIjmYCAY81UNLwg4cAhgMLFQIAho8YBrY7/+6BkHAZj8R1OU5rKuHuDubpvOlsQPHc5THNBIdcOpx284OwIcy5NDuEZx6scBHgy3yhhFaAZkwgIFJEJpYMVhf9pIODL4qjUgFBCsBERpEPsdos4kyNkV5cZ/paxeev1XITfaTG/b96UQAAAAB/YBONTUMRUQsBpuDlc7rRMElzbBM7oAIAIQBg5xFMrHR3CG1E3aQdJMheUyjklhJ4eEMNZdT+wwY4KuxgGAWKBAKQQUEtlh0tAI5Q8MdZHUiHgrsoeQglfUWEYMIGfweAtKt/JIYM2oUXcl1qlij1Tp6nzEZurfgB9YDnUOMCCwLAAxqODGk3I1ccoIJmRzmUwSHn8BBAEiTCHWAA5RLAKgVih4xpgyZMP7jxBL4ONPEIw7N03i5hoAhgCLIlsM1R3QTBAa9QIaCEkX/aSxpSxDq/LVWCRSvHGANehl/u+8/e9zT8uqLoCSdg0iWAynoW9rn9oy2rd/pw9kFmyIQRmYFCo6DY0NEzQOM2wyNVNi7w4gYohqBJdJHkRwQaDhgZcJjmqg7RRkDjovreLrusBmHQibqjws1H8PeEOoVlCw1ByOLiKWIOlgT/QevCvQXxo63HDab+9jEJQosuFxqxJmlQkkKf9d3bdUxqCC0oVgAAAAD+RgtkqoYBKxioLmTyyYUYJ1sbG4x+ZSU5olDnFhSIQSbUYND0Lldj/+6BkFgbkOh1N05rC2HfjqcpvOFcPhHU3rmsqobIOZs284VwwOKAB5+OAgYOGhJwHgJzGPGmDShwcBAFiqrhQADoYgDl3guDg9YMyiBxZmHzMQwGEttPEIFeC64wyFGuE6iTxQtiryu8gKNTLOI2LOtT7W7OxPNERRCXM+7nK4AAAAA/1gY6udDx/zDBOBgdDmgDojbDkC4XSiINXYRJAlAEkixgEIQwBJBeAyHhXwKCh6ohUTCWWn0y9qYU6YQCMI0kiGQzgoODbZmwkRLZokyy8wJZpORGWwf1uENtATihfqUAypWXe33zqc/OX16sqTQPoZbjFQAAetgmDpgsXg0gGARWZAGw6gTaI0BknMvsI1W0jKjgDAKVhjBDBLWVRScsNGTCgIWgEMfONog1zAccAt0LgaMBCQyd/DIjDuUEAKDXGXFCoiErruBGRiBq8h5cSDi6oDhhakOdjzT4fUjIfTA74ZOJRS3H2nhnd/+z/an0AJnwLdR6ASgYOZnBgZwICbSWGVxZrRwDAdEsu4ieBnAgBsJEUgDSRTpANKIoCiUGWWMVIABVa3wYc12NIwlBRAUeZSpzXH9MfQEdFJPFMIHbEYp+OBgm2uwwaiuG/jfWxtY7WPWTFxCZF/6mAAAAAP9YChgigC+Q/0YPx4aGxjWcAdRkFKHhAOaXAhMvQ4GigwMNgQqD/+6BkFQ9j1R1OUzzBOHZDqbpjeB0O7Hc4DfMmYcuOZs284VxUmXYR1Y0k0aamHI0ZFUosyIYmWtOiYEK4GZr1KTaUsKn8iLUf8RTI2qEP5XYqmqllDTTncwj0OxaIxT5s3SotQtelvQKIC1xLZZqemz93p24AAAAB/Ywn05RAMVYmUF3MeljoEEyUKMtWAJNhUCQAKGoXNLaSX0BQAm8leYIdq9RnIyAZQjE6L/opQeFHCEqcaABkwYsLuRRkDvmACewQ6HJsYKqRSdM4C3o67rFIDXrPfQXLsYo4eF5Hex3mZZsZZsezVTpSpECiJCRAKmMqUzIvI65MOOpApHSQpmCWWYWEKhwysrSbJKCRH8gEpioUfxRwumGIBnwCIHIqlSrW+RJmA4ICFBmZiMlAar5j1eSpKpVID4cZlI5x2MX5ltJE2bs+lr23vak48ghDPFqJ7AdMKmaNUpVc4giY1ft8jGUkU7ZeDQAxonNkUDWzciEQntMjRQc9LlQTtEGQiYRkwsKXDh0RBrNAWwLQNMZ1E+1KBJJoGedEpACFYEFABtQcoiNDjgqTYGSkiEiESGaE3qZgrJoJdlna93j+42LCoFSVEEycWXa1lZ/q+Q+qj9n2qoAAAf2wE4wQhlxlkOCExEFWOGE8yisRBZzUoINsE0DJNW0R6IegwkDICzbTFrgAIkINLs3/+6BkGgZjvB3OOxzISHUDqcpneRcPoHk5Tmsq4ecO5ym9ZOw2zBmEJAO0d5gkLDkDJiGmUjnPaEZABMPAtSMImk1rKItMJfP2/PaarAEZcty6Ol75uo0LMKjp9UjmmWf1dlFur60epwAAAAP7AJe0dqB7hJtGHLxxCecsOGZjAeChSuMBBJlVZwKJNCIp0kJrBSBQ6MiywYeYupdYISV+rCnUaMZjEiT7QEJgNGX1K0i2kEQqOyvH8jAjAL+swh+Nv7HXdCBGxLegd/0n7grCSXPeHhbpl9lv5luinAD2ADQCFhuOhEITRh8bgWbG3g0Dv4YPf5mUaG0YwRA0eDhUmNDUTU01E0agqFQBFxQJOMOfHgAVOjwCsCVS8EzDHpESg8AIThEqJPAJeSTsiYUsC3CBoqjYgKQvfxgMZghYBOp1JXIr/+fsPqIQYAq6j7BRd9TiKfYP7zKIAPrAmstxLdPFDMLwB6RUAgc0aI0QsyqsBFF1GEEKkS3Ys6aDIWLF5hZQCwQKImpDmiNg6dM9BlnpACZEZkmswRfAoAUGAoDAw4ZQdkgQioFAkOjQSA0oQfmApmVp3vK3KA3mv/m2WXlQ0XrcRNIWL4lOLqLdgrzvxSqAAAAAAAf6AKtNShwGgJPGBA4CI8bOE51FWmC2aZjF5lCQjQgYgYUj+GMMs0aPQBilCwg+8a//+6BkGw5jzB1OaxzISIBDubpvWTsQAHU4bPNC4aoO52msMlx5wwngUdUBYMHkY2siwahQKSf0qtw8nGpKFzz0JdL2TlU5qjoyh6Fy8muv7KodYJWzaZ/61raZTrvZcVchqhjcpoGhHAAAAAP7GGoF0lVWmpWjsMdUFGEMxsUZtJxtiygqXYBIF8U0gMIf0IBCxsUKBgg8E8yRU04IZRGKUpk0FDui+YeQULG2EIFdBBKlrJShlBwhAQxiS/IdAB6RLOWxLyJg4bTbCG2bROUY+3c5hAelCn7QP41orPm01NQmxOt3p9ev2AGgGY4g4SHzgUcmBKUZ0Ap0q+GIkyZPARm+RIq3gcPGQ40VTJBxRAEFmrEA7MaagYMGCxphQQsrIlKDCZCsAOjGDQFAMYHO8PBlYXPhhsKfieZghTnxVaSKqZjprAxV92QP4ymNO673taFlEJ4BABgqDByDl6doHlXbtTChBqIAPhRchLltcRuEGg+Qs2N8EPzqCTcvUOw8Pcthq53FlTtpcjBRrpxYxgBoQ7AB0NTFlV0j2apvl9RMrAl9j0XcZbZaECEIdQwb20ipmcDR27vCsaUwKPOWnIsr86A6NDrdbfrojv/6EpV6KsAAAAA/sABgLGAMQgMIOY4KDAmiMJBg5jdQKVQdZzIEnEQJf4wAJCyGH9UbTOACQwRwDBzq0zD/+6BkG45j+x3OU5rCuHiDqcpvWTsP3Hc4bmNKoc2O5ynNYOxBw8CZ4IFXD3FIImP8Yj0EST3QcJtl4oNeBiCZwk5NOH80yUPSIr+yVvIbhptYw/0Da9u43eFhwjabUwuhblrPISq6udpXeEVQAAAAB/ZA9VtVNgaH45CGyEZqU8agAco6bSMIQQ0OWS7YkqmIeQ2d4gQItHeoiEmPUwIgLzyhgKpxoQwIKdgqf4gLB5IykJDqhZah8HJqBw7Kxg+XjyUZm3Vp03kY4tSNWf0UDiqjtqnypQViCKXJIbVi6Lf7/V/R7IGzLvBoVDkGYJIIN5BlwNG+rQYvPZtMAmM20Dg0/5rmOCWEbsXtHznUpk0fUHAaEAc6AcFNwYJDAgOEqqJxGVCIDkrEhFGk8zBAVtww0klAjwIvA879IyKCjxCVwavxwIcXDEp6f/1JAPWjnXpaSetK4yMFlKpr4Se9X3ewUsA+kEqrigXFhMg4FkUZyKxoCFiys5w8GxRCGX9ElFxIE+Cjq73DBihdhn4hVAkIUCpX9eVVZ/QgAk1WUIQuwd2iiu8adA0WHAE70LpbD5IRJVp0vfGlf1kStcZjje4eS19yEqsvvuDChswkdo+z/VsSxkjVwAAAAD+wAeEYOCg6MR5TGIA8Dd4Z4EZyWlmFiGEbYw0zRIPOEcDwMARYJQWQkVZpKIz/+6BkGQ1j+h1OU5nSqHljucpvOjkPJHM2bmsK4cEO5zW9YLQmAGd0QYoMcoGPMVBkhEf3MWDCwNcawSdTgIBhAOXigqpYpSmAx6PO0v9uY8VhmVqcO/C2gU1PFn+hxodSYat6CaRSMZ2BYa9lLR0ZaogAAAAP7YOYiMLKCMCjQxHHFB5uewfYacBscDJz8lzWfkwa+34Ig1Agt4YAIArhdCNHTFHk31OA4i7jFGFK3goo7ZCRBQskAOwp5+FjgqMySKNff9kicEZfeEy5yFNLMFXf8YsCpSNFKpM8rK70arCReM4EIvqT/r9IAGJhUYvA5KRx5DGHx2Yl3yAE4dSgsFDdpLMwPYw2Gg5IaUaX4WHWEbgnkYccWlEII7jsEHAdZDr7dSaCo0m0xDHAv4DpGQrIgqAANiJZWFsLImt5KJc+61CIs5LlOHVcmLx+VnPe/MOStQSdOYr7FrxirWwQVFn3MOAA4kGtgQvNhDxCJjEQPaTqVTDvzZjjJsywMHgidqAceNsASeSCHEY6ifwK0CwZEpBlwJbxWBahQQHHLyF3lkI4KzpNheKwjTVzqrpSOvDEOPyFBJwytx7My84sXCYg/vmwTqN5bbcR//Z5db//9unAAAAAP7IHsBwxFB+YtDhlYRmM28CoGdJS5iRUGjj8aFTQOaJmlmNGOlkZ1JOyiOOcB1TIkGD/+6BkGwdz7x3OU5nCiGijqcdvGUsO5HU4rXMkodMOpyG84RxC5CPBkItBUAgEX+AEyiZnelUKod5gIcyTvKuZprqvPcXy/rgQ7I5Ep54nfcyZkcm5995AUcAvSh2vJVqyahp2kq5l9X007jUAAAP7ILdZO1b5CBiO2MeFTZwQyRVNzSTd0O0EKjxZuAmrqmWIj4DrDDCRqBpKcwNNpS8BpAkaanFriMkoGSFYqx4HGLEeKA4YQJMUuooUrMJLDM/neWEfS5Zo/T21Lqj1etPy/9H//sgaCUEwRVM2IDtZidBuc9nAiEaReQMRJ3h7mEgyFYBSwRDiXy9SBlAEXuAiAHcEsxIk5Az/nDKRCYjensneG3CsQUNTxZamWoExtckNAo99nkqqUoVtEaHDsKe1o8ReaxCoO+GRkl+zWxW8U5a6hXFS7E13XK6/dABXtM+bsRFpkcwPdZkByBjcwWFN3pOw02xotFoIbUFcMIBROVVMqQ9vC6x/xkKI1FzCsqVaDg00GhhJCciI01TNLluF4a6UNlMGsOVgL5IE37eWD7i6mH/Sxd3rT7ioq2TDK1gKoWHIEWuLtY6jrc5ztWL9KsAAAAA+sYL3lA0ZumFBGQOiso7WAjRJqMJIg34iDG5oMGgUzCzA/CqoVCQ4F7EqwuqVBmlmHyBBS9xnHLULeFlYaBhgBaI6BAr/+6BEJIZz6hzN01zJKILDqbpzGlMOnHM3rmsmYeoO5tGuaIzD6aRgkIOFn2ZTqA8HCwLJWvKWorIXR+lkU64MPSyj+iSTSe1KsNKbWhNwLnV77EP2VP6acAAAAA/sYQDhwVMAl0BB4yMDTBgwA4rEvcY9JR8IGmlxkHG8lMZHmYYWMPAMZhwMYhklccVQQNSgqClDVjDgg4YVSoQNHERMEBrUwIIdDgEFDYBCq+cJRVOZVSLR1goVFv4vdx41DsOPcw2afqW+m5J9YBH0uc6pqdfMIs/q81+jfc2AAD2ADQKEiOOmMeNaB5maQHcRQcYHJv/R5hwgAmonmAcPnGeuClggVQ1UQO8LdDrQCiWESLEVAMCdkwhnXXgBqAqCoOXHMYAKDKHo+LrcFyk0ZZXUeS0TWjU271x/ndkkeo/3EH1Lsrt0E0865wvWrXTvYp9AABmQgO3gzeRhwdTMVWNolk6UMAcjjT58B9wx7ckBi3cVUqHmCCuOOBDCCZMIA5o0I8JaIaYsChygQgDhBYw4QzA49JooCJhEhkt+JHn5EQRKlSLIF+RNiQ4H606KwJdd5knONtFbHmaNrmUu8olFDmqmXKv1vQPe0vWAAAAAP7IB4qKGzEKTawzIoIILocpORqlHGMD4NKcDZADHQtCJACpAqkHFjIiVy0hUsIQA3aUKPZ6WhUNOaAX/+6BEH4d0JhzN01zIuInDqbNzeTUQIHM3DesIojiXpqHMqewCi7QtONOAI4YWi7NVqpbsHVCjgqnFqduiGokfLJmC4ruG6axLPuAbg0UcNSZAwNLkRPNpKmgyMQcLuY2VWZoGv23d3U+sAD+yBLEhA5gAZmUSaZLH5hBPGfw8dNFhvFcbccHHFhmQWaQEmbAAKITJUS6YAtJuKExSAInU6DAgFedToYAZ4qA12CyZFINPGcUm+oEl+TGF5HTLYo/oUU0BwEnzCJU7NWPxWMPFDT7u6IKoeHTTDIYBg6wePOFHPDIBNNAsOKXnST5gnrp6PIbMADHAElCCqQBzmaYcHp2J48Md1bmqhR8Uqcu2ZpoZsCPnh4kYBSJH0foUXjGgH5IQ0mGw46UGhB6U9Ek1DyosQsMKEh1AWfJvNGDnsUaC38LtINJms8lt14d0rAobXNSgx4sFgnHtQLk2OGAcqeaMZHRmLFS7bGKAEg+e92cqKx74ADDwBGAMBDELHIzUdgFKwYjTnhrM7qI2QoTIQqMcE0xSGjBpCHgqYVIYYDQcUouKjAkEFQCMIEhpvGYQZLIOSCoZFkbwolMCRwrMgHQ4MtHBh4NGpxn8cN7byVDTmh3qB94bbIsK4YA8TRDr/0PU1N1TZVVkvdHPLAytArS0u2ppwI1Kkj6kSvoym08kmsAAAAA/sgT/+6BkA4Zz0R3OU3nCmHoDqbNreUMPuHc3rPMDIaKOpyG9YNRaMHGhDGAxELBCZBmm6yhvsgbcBHtsITIi1sA3zoPB2g+EPGhAkMAA4VMfBnbQyIeMslHEGHTmLjoZmeAPoskWLBLfIPytZXons8X9TNbSGj/LiwTvv9EYaf3GW1nffjI5yaLzIvmWO2rdpH+Y11X67djHgAf2MbiakRI+FiphnIhaHhkDzE3xo48lNdCjAkgwoFFjYAHDywFOpigVV7rgHQOnMoY1BiKtroGGBzhEOqmGjAYoaMVaW9f9k7Ji8Ccivmkv4OAorQ3zWchcd3YbikHxZvUhFCRGE0teNBIGmFbD70shtIpz2mRTQ7TAAB62DdNMcAjnEAoKBBpU7mzz0dQlpoARGexQcKJoGpZksRGWQOFQydaBV4hFDCYadqHMI8JOAUjBawAmopv+xUXKNcMEwCAaWriHFFC/sSTQZBHrLgvvDHZh33/j8FR1wopNw3/U0MjoSLC7Qm58MmQ1tc4U/us+3v1sc5+AC7ZgKiL/puGUMocXnotZpVAKnHpqGDBGJejykwYiBEHHti6RzjjyXVhgUOhNQcTaA2ETlMgCcKDRWMZUzEtGHF2C9iqbGYlA6nl8LyjWqkrh2ijDsunJ5r6n70HVld0PN1sT3L7szqrAAAAAPrGF3FzjARRKp7MpoYz/+6BkCQ5j/B3N05vBuG/jucpjeCcNEHc4bXMkocQPJumN4JwC+DYMSOinY11WNyED+Ig3RINAMwQVmgDZlgMOhEXIgsdTWLjqGISl8KxDxi2445CSIDHUgFmjoDwI+BzGBO0hKZW0hdryT+TXqLk0/sbhpnsJgOQSONP5x9plZPxSpECpUuES/fs0LQrR3e+2jAAAAAP7IF2rKM3jSYdEYdmGDZs0YYSPGIjoiGzIgAHQoMEDDwgecmanHZVmSIQkiF4jSGPNFRw5M1ty8axBgo6cu0b3LQJnpStsvZNaHZQ/kCqry6L8uRH6WK0EkpX9kPvV77zbMZ+/db9evvSvpT6AAwCMGjYVjBKTBOgKYB0iNfFpAMYukZmpGmFBGCozV3IFTVVSLASDbuyj83UEClukVkgFgYwPEIPMzIA2QpzKWBcJbikH/htyVg3GpYXE4DgT9RKfj87Jo/8di/3Ntri6nOxXI2UI04gexhe46AziORwFIDpMpBjBI0wILMLBTNzUcRTDCRwzAA4HLFlDNGQrbR4ASxxwimg6pgH2ZypFxF7nNbqiFY8MxjQeac/qk3bfkOG0h/4FZE/d+5LI1EK0rfSVyCUc6m7xT62uRt/GM9+xNrPTamvTwAAAAD+wAFBdnJlcfBC5MIog4yFQYjG0hx4Qua2EnmYJ+YkZKTGBFBswoNfA3j3/+6BkF47j1x5N05vBOHJjycprDHkOTHc4beWNYakO5w28JXStkBZZhzjgdKvR1BuQD0qGBAUThQQNKNGRxEJXFUwbxYFbinKEhcEfhUOv48l6vKOxiVRWQRaJym31orY+WqY1gvXNBtKUitDtbNXVAAAAAH+oDYHJEIktYjIWlPOxDuo8mMTTADw7Ikw6YRq0wA6SMEjIDydQoNrSAYzIaGj0FkoaCzhwSsMDIQl6GaqgSYL1xkQIa0xMaezqFMfKw8lr8u0ZHDZ+NxrKv+1dm6r1OJqFxZw6hZczUlAqEaNqvoAWoBByYrGmZGZp4mehqg6rNcLThUYxSbO6FQcsGDmZkjea4Fm2WlWBSx8wviyZWYOjVmMMUx3iuhpDngZcGgkTZEOUEJ2NgJFXribzO2aILiszjy4SiLfizx1y2JeEwDH910OzeKxuUdKPpJyQ4/6Yp7IJE3WTIYmMhhNGhVBONRR4cMjBzWygUGjo0/bFDLONMC6gME6T+l7yE8QUOBLhKChCggBXDQyImcGNImqSb5SQqqFqOFJVIJSsSYCw5l4mIRAMggJ2QDHPfCWx/oUFLtnvf4tyXorZs9rAAAAAP7AFAx0PNEKTBQ04BMNPxzR0ojCBUQMwZzrConqTqbHKTKCNkQxLwuiZwSIrwhAIeEHKgwYQKmoIZIisSl4JAGIEcjUQSTX/+6BEJYd0BjHN03k6+H4HOadvLW0PQMU2jeDvIeAO5oHM4UwsFDEouiAhQcDFP9UThp2s0urlX7EekoAgPRsAst/R0W6mLbZTWRKW5WepZLUTcq95lD79yaYAAAf2ALTKgGZ4VJjnALwKejIpwisghgMPtzpgc1QDRdM2QzFAALxg7daCkRg9DBf5CQDCFhgQxJEFAUfDgcEIBQhgt+DzxwA2gVn0suJDRhBXaaNPSwtoFu5P/T0to2GQIGKJe/qrVZSSr7qRZSqrfTXVq32foGF5tLr9yaYAAGwgAYT2MKPjS0EXhQdlCy6BTwyzJMAXjLycWkDCwFKswggMOAAMMmMQqt1CYgcH0FAo4wITxe8iGwE3oIoJ2oAAwYWCt9nCwTuJUsDarA5QF4TnxlBsUHwBBoNAYf/dD0Zj1Vmom1U9qmSy0+k4uLcKlxGTF1tOJlbRAQGTDgqMjhc2kRDJoXNdDYyGMhDZzNDsMWigBEDyBMme0xhnGWe6ZGcPICxqblyWQEtD0BDuk1KRElFkwgPYggYCOI1tTWyl4jaDQrYS7b6PvizSe/WqszFpVTtBb45xwVNDkvFrhbcJu/wLatuhgQDQ9oqWvoAAAAA/sYQmsGM/TzAUE3x9MA5TCiIzK1HRU/8TPSNASrGFmg9OBnGb3YMXGQTjVC7DSUKYhSKHA14c0ZCr4ub/+6BEIA5kHh5M03nDGIBDybpvKWsPHHk2bWHw4fWPJqm84UyDUMCfUgOZjBFwgBdJiCa7AQuhVicykMHRYZjux8zUoncZZLH8nvEwjPQSFngU5dCgtaGGIw6XMmUbDUacqY1SEo/bvgAAAAD+yBHmDzOTsZOTejsyt9D4g2cYMeRhtfPIUzFB8w47MOTASEGHQAXQsCCQnzGA0eS87QiQAEHgUVNaBVY6KAA7tAaELqqjYUQVpac6lxnak5VJCBTVv+xRGwFA8GmegTCY5Ea4EPPcoIC1pJqXQ8XNGkbTEceqY1aUp/Zv9kEDKlVETgDkgCB6cSMRUiBqbFubd+IKx4ZYdZMWKCHBkRpqihxwJjCqrEy1BlMFMAIBSDzB7E+X5aQF3DAmzt0TuWHdVLSDDAFrRa+V3wLTE8XECE9bka0HZE6QCFCccGXqFROZrOl13DV9rKaIEeyKPLo9ytCqVYAexhoZghGYeFmXCJz7UYAVCFuBKuIFg3vJP/eyZgPJIASmE6aBJs+Ar07WFcjBA5JFxoBYcRPLnAhAOoqcOYyo1vIhhCmHBlWhrGWEZZA0rUDZr8fZda/9443H/kUAtBs9AECZKNI1iwjNVHFruGL7WUUQHbF3FU+5WlVK6oAAAf2QZEICZibiI9NYgThmc4YCMaHREfAy7AxSZKGmlHpjg2HFK6TRQAr/+6BEFYZz1R7Nu3h7WHrjybpvWEUQFHs1TW8oIfOPZpW9ZKSGpJ5loSKAk1hSrBAlLozPZSqFn6qy0liBAxlhhGW8UhLH2LpM9ZRWfwJFj78+Ib43x9szh+IAoSZkbVqCCCYAFRwkHtFZSF2K9bdX3e+zRAAAAAH9kEaZ6wcwAhNsoTmkUGAp0bUEU5xHyeYuW2EyhgKY8GMEAMEuNHiQ2KMo+o3DKGVpjNdVOwBHyhVE8w0JW8OGBoBag10Omne+tPKqWmyiL7f//z7kBrmSMZJY5QEo3U4exoiIDTQQICofFlNnirXt8V7fR6K++AD2MKkAAQ4C0xYYZiGrHmwegb2dJAegCYRTGqhhn0A0Q1jyMYQjhNIhKFkw583BRtIRFqgBDiecDLRnYfEgUJAGaYAIwTBIMAFdKP0DOTD0FQHavylqH5fjqtjDbG5mTf5wqtYuF1rXU01B+eEaSg8TLEhWWYymYW5oS9LkqZXKwRAUDgC9mEFhUeDi0A590/ccwT45R89Wg9LU8rQHITQnUwEJxi85vwOOPDMCDFVIDrChqKRa5K2pIx40PKBRY8YMFHEMgULBJrrrf9kEpeXt6JY/r9/Wuu1AbDb3+dLLiEIqUqNYbg1PCIwXHidYmKy7WUzQx7R3oelbK5WAAAH9gC6SwSGTrBlBYYNBmpkh5CuaQonrGnk7GIX/+6BEDwZDxh7NO3rByHQj2bdvDWsPHLc3TWFPIfSPJum8JeSgUOBMxiGYuXMskVhHTxnEQINmpDQekWDkjKx0A4xExIOauGUwWKLPSMBC2yAd4tdSyec5OVWJmNLnHWrf/5fhlKXpzov9IArVHsBh5AMlGMn3zCssvxQzFBEiAAAH9gDukAEYmSAI8MChTaToyI7OUgCwJGuDBiDQY0VGuHpCPgkYJ4DQRPJwWBXwYXLXOGNGQiITlpv3IecovEJTBwAWhgQyF/AYBnr8yNgi/KczMil+kPwdRilA/9AFqHxjBM4gHyjGTrphTpRfixiKiBMAHsgcpbBIwBaUwiIGoD8FDHWTo+z9bjX1jDWTAkjG3QksZQSCWCqCl5pOTka4X4WqGQTCQwXdCLtK3ECnSyS3Ejlmw4o8py45Aq2HIcIwqFCFL5UfwnEYU5v9c21n7+yHvLSEXeZWGB8dWDx/tdRPTuUvF+KjHvcnAACD/WBL4iADFFgOmQIvAEOM7DSH9ONpTOi85MoMKOQcvm3iojCDIBMwNAMVIEU0U0gXFM3TAwCXIjAw5eyBq9KqoQAGoEhS/gFMZQpvKGZRJdEpULRmlmP/6hKwTCrXKTrjFOND9T1kUOExpqWRIBupO8vL84hbNZIglF2AAAH9jCOQsMGAiJsQOTMBjCAcEYhtWYYJmEXQWZzcxA7/+6BEEIdT3h5NO3hLyIJDyaprmScPnLM0DeVPIi2XZqnMteQ+mShBy2YQMGAo5ADmcCXq2QAUdSH1R6CPkjiJco5WYipu2inCUCwRLyPPM+kSQ1R/esjRIWf/+EuKgbOt9Dws8VLCr2mErhpIAbDBTumWdB8gMssQmKxep12uAAAAAP7GCyRnARsa55BBukZMCMAlM3G0jBBnMQ0owEhzFJXMLKxL4xGNwTSOvnmenUZ0apizBUBBoSbhE2CKGnxSdrIcw6UiNS0TuBQIcDDqABN5oSGDPHqjEUv/////uC2qsCz6XBBwupj2GUrhlIHbDBTumGdDiY+2xCIpF63XaoMEAcAJc0QoMBKTIGEz89NqNjMXsyMfOeNTq4oMSBARmirgXNw53GIAa4bobaqqhoHJaGoAIQQVWRBkwuHsWNuMmRsJ0DRAFha2Xpa4g4o8xEIiD8hKH+iSgHArE3+yrddaX0XYuA2lgO8BnklXriUHk0MSlDAJIiqz32MVgABh3QMJEYwMrTLg4Ag8M8IkyUWQWOTKZhM+tczkhzBpcMRokKDcKDYwGNTEZKM/Bw/FDaTLRC1pgEmUwqmIDRGQPdy3KnYWPnnUWagwKbBSxlhHIQguoIhZEh1kOcBXjgX458wUakcEhb/dSrK1Vnm1q3sgo6UAQ4AnEF3riIGU0NSlECSSln/sYpX/+6BkAA3TiR5OU3k7WG3jybdrJ2sMlHc4beTtYagPJs2sHeTAAAAGP7YAglAJcYGNnOC4onm3N5h6eRK4Z0mw1RpSAa40gAzAWgX7EQR+HhjqlZxloAUTRYcHRLdZsKGp1sVv7dAlaRYCEC+jiBAjps+SZf9WJkScoljUef5qBYAgIm+u6xaY6LuEIt1ntVnXWurq9MAACP7IHyUdCwox4kygoOtiJec8inKbO6Y56dIybK6YV8FR4w0PhGIeHUHIegaOkPqQmiyKda+l6JmX6chAFqgNiXGTshsLlA4ZM5qMSLxqPRMTlHO/UVgeN267WE3WOlwnoOHaL5rb1U/u9vTqAQ4kBGAiIcGGEIJjAKYqIkCUYPDiMAMYpTbCkgHgE0mgGhjYaCjgkYyJEzwwVB5kT0IrhQgVJRAVWhyWzBUDQpJhAx9cNSCyI1S9CS/qaqfUeER/9TgEgf7q97ltHWsMEKSdPGAA+UxQYEFohIeDTRqAImlMeDMCWOAsBMkxrQ2bYyBEGIxKkFwacbEiAqXrjpUsWLysuRPXDSzCWoMWKUTpDIDhx05M4xLV/FEm04RY4kV/wNBEl6R9LT4ZXGlKTA9zOK+7Y3uTZVXrr7y6gAAAAABH9oAsHEQqYcnmampoMKZMOHNh54JuL0Jhk8c52GWn5gpKYq5F9TalCxgOzBVZuNrJXYP/+6BkHARTjx3Oa3k7WGxjubprCnkPYHc27XNIIZqPJvWsNhzUFgUiLDmQJIHPSGYkMlAT6CYQoK2voXpIgo4sCTFpfryS5GF/4XACAc/0dEkxx1A7au/TvG921U7RAAAAAH9kEO5L3MGGMEaHlxvwByYJjQJqV6CAIdmQIlDYxxsDRhksnAEfCugYgGJVAtA5vTpHlDy7FJApVcKnGxQyCoDxE6EVV2Bhk4YZV+GMGhp/+xUFPx826wrJ0j3OaNpp1Id92n4v2XX7oAEP7IHxKpweMmOZG4Zha4QNTIGgmketqZVoZm0JGDfHXYmSDC2EGnzngAEJMSHFQwEEsmUPMMDBwY0JIrTyyaf9fIjClgSGJE0gCQe9MtIVHley7GQNipL/P////+CW0sO9DTp6cO2Jm075cRk4oqh17suvPJJJfYb6zAAAGP9cEIyh4ZkqDTwGBGmRGaZmsIHqAmIumzNmeHmMQo8FUK2hgRy7wMiB0BN9kQVeBDmfprJT0ENovJ7BRbglrDdsrsk8kkqs9INRJxpJOY1f+YB7Dib6NbqWBeOWx1Nuj/kfGcAAAAI/tAa6Cg4zNBMYPDIloaajDIA3hjNjNzDkAy1oMAAz3xJhyNAeCEPQNPREUmaSTI58cFBJpfxGkHLRHb3MrailiiuvgeEcBk8RYayRUEUaaOJ/2EkCvllvG7f/+4BkLwZTPh5OU3k66GPDucNnCnkNhHk27eVvIYgPJymsHTygv2ddrR6/qW2gBD+2DCSTiHEuikEZ7x6nH0eDdzopOMwKDK+DzTHHNupKpeTK0qmPphKXrHT7Dmg5SSEvfp0kqgNgdK8BnKhkmI8cSUmp9esOkBT76GAYCy7veXQKedvQKt19NiP/LV7F0zduqDSAOyIw8ZVB0jBSIDuwwg0MKbTCQc4hnMW5TXjQxQ7FGo1lBMLEDA0MAiiB6u1NQqGEOv6ApDPHEKiARlElig6SJjCEVg40QWnAX7M2drdfiOtQXoxnf6N+RAGhqZ1lLlXv+2Xs1eldPnNgtwAAR6BF4xQMLGB5+hoXeBg07o8xDIJ2FoAWRusRoHonkod9WlSIAGslN5vVPhBDMIDrTfqxSH0EabhneDjA4h0G/Sh0Ct+wtDF/DEbxS+JgCQDCHpQUZTHlhA64TpTpnFSCwAAABD+2BGEEJxElM//7oGQGhEOVHk5TXMIYccPJumsNeQ+AeTdN4RDhuQ8nKawh5LBEHUzA4BbzXGiRufzAYXhRlIBg4WmPxsMiBPkCFLgqXAggISCBrACFA8gHCC9gc1W1h8vUNFyCKo+CMIyg5Slq+2gRYWG0mHcu///9bv/G2bPde+hDfVaYvJet6a0/3LYu3u6vRIAAAAH9gGKqwjRByk2YEcUGYqGxEmdMGIumCbmIGGstGXmmJSGCBmgVr3Aa1mgVpacFPXi94RMGIKDGMCpHVaYD1FnFgUAJCwLuMY051eyEs63NqDo/H56JSBLArZryi9tCKDCbksPlj67V71PXlqdlMAAEH9kCdJKSkRABQI7YLN5pDGjU4nCN+mzaNQ6qBN9ODThs3NUMyByoSI6AQkA0AYORmDgaPJjaFBhtgfgwnLBkVwsCRx4iMDmwaRfEZwrBB12ZDNqwqbxc9yf6AZD4ZAiJX+OeI5eLDLVuQvZW1aGvzDEpJsEFDv168bAAAx/hBUZQDUQCGGUeGpNmVlDKk2Ag9is2BwARzINgFnGhJnyoCQiUYFKHYlk1AlsKZF0QYB8XSDqJbxgYYX/EbgSECJdwGhXiueBcWJvA0E4an+ShbCGANIndoDJ9abHe9s8q7POas4d//+hXXcAAAAA/sgBoCoUIIgIPjD8wy4lEYeY/8nmOp8Iof2NGaApgR//7oGQSBkPQHk3TeVvIb0O5ymsPdw60eTmt8yghkA9naawdrOegQhlIEFRp42KKRsLqcIADEaLOJfGGGFSDL1Hkw4pmb8o7jzxqpiWo0eXPHtFMX8kNyaf91zdv/3azxsAZBAM/jiZBXXZuRGUeNY9mdagLrTFv9DORgAAABj/WCQwwVE6QhoyoNVnKEEAUgZnuemMKkSswiIFrjKgjRHjhCTHiX8L2FsnLAgEAC/SBJs6dCA5K8sBGJSAGSDCFwxLhQiAHNFqKgnj91Gm//kmeXjmIdzPGCnGJ7/KOkDau7pUx9TP/YpljIAAPrAu8RCRjNYacUhYMMiHR6vOKXzfRIxgwOZNEwMMgduZCrNCJ4ffAqY82OjgwElFFo38XciqZj5WC/yKL/pkvelC2jvGmEYIyfEOSbNrzyyLHP///mPo8YecZ/LD/1MRGHlGgsw4A1dK5FfyO5Oarr+KW2MAAIf2gV3fAC8LmQs1B0k5c43esaxEC4xbQO0mJDnBFhwkiyaDsiBwC6oQEMODGiEKsQZB/xNhQNHqimSwY0DgZoReVZpKBpk7NL7cCRKnxXHhqNgiACFv/V7U6nVL+j8c2HiKAAAAAP7YFMgARGSBxzAMZGgmRoQQ6mUDRrIMLVplNocargoOAwKOhg0fmGEARQH8YOm2pxAlIZ0iTAggR8s8/xZ9ccIOZif/7kGQjjWO6Hk5TeFvIZOPJ2mcPdw8AeThtc0ThnI8nDay9rISmJKxDmreGNfflWaUUrFrGf7mHFCUDwIZZ9aQHqDFwoNUFTe9rnVKvTqaM/xb/ajAAAAAP9AIGRfL1EAaT4xCZ44eqhicm4e8iwfqocmGfIbHeIZMCYLPA7UjISozmUAOUqVTdeBciKOkl6XjZkAxo4A4wWho6hmGTSZ3H//8GdjgPydE1r1V/Vtc02lRlJPa1fT/0AEceEhcUYMMf48cw0BrRm8KGhQ2Y1G5iIomzIyaDCJs8nAxEmICAEDAaSN28NSSCwI2AEEjy0o8NBIYoUnEQA4KmCnsp9VBVMvUYMKkMYIgZciLBGSfQF/SgJIqGf7//+dnsQiqvNUXoY4qhSdTFXNVpoLVWu6LV+0DrdRCJAoNYAQ2geQGkACPG6JmTOGoCGKnhKgSZs5HDjiVT3ATgQogqh4g+KhmsGETD1xQGqOQxYZSBoKfIcWY+QClROk1q6yEGiKQWqf/+m04plK0Don6brq7Ncah+8lWbSvZ5auqAAAAAAAfyQP/7oGQEBmPEHk5rHMjIcUO5zW8rXQ7gdzlN6e0huI7nKZ3kpEtwYw6PAbDEpLNHnIxGODBioMPF8y+GjRcuM+hgxkEzI5JAwrNYcyhhO80jkAaOYKSFRg4AsBmOEus1T0+oAl0iJwxCELIo5hwAFOU1g/GswYVAWu0zff//u8oI48Usfqd6VCtWowiiTd+7/7/6+764gAAAAAB/YAvpKsvSDicsDRhSsaWKgQZQlmhGZgEwbEPDzRukKMAIMsACTgZCjmXnMNQwxBpAWHBsZgFmgEPBA4dv7IXAOWseXM1QO2YepwRD9qP6iChACc6v9SyekcEhC/T7exiWUBIypcZsPOpR16cAPZACk8RDyDISUFgmNfFDlgEyUeNsZjKks0s8AHIdwcGCnhqzE0QIijtc9woaIgIqAn6wZh3YCGAo2RFDggmuAQaxZQ0eIGCAhFgxh4CFAUYAWBwrICEFcSIjMb///w3MsCIR7fqXHsHMeD6VenfbMK/ubb//pwA9EDTYBFHAEOCqjWwMNjjATIZDjgQoy9bNFISdJMrKDHUoMBgCqAwyBRqdxoHCMcGEggceGL4nfygoLAARiBqFDZPINTQfHlw0AxgWuZ3H/TgVIv+xz//+/M2KR25N98z9cXcNEvsbqt//+2/dgAAAAAAH+sABDzYzGZrNdAcHCoxqKTRQxMRHsx1AjP/7oGQPh2Q8Hs5rm8o4bEPJw28vaw4QeTsNcyahsA8m3Z3k3PRbPSPTB50Co5zE2aa2GPDBh5qcMZBF6Dg8xMoBg8ZIIMBNoczXjo1PkYSRC6i4oyKimqOA5SwgOMA0dtVYa02leqoo02aRZ9///Gkiepe/8j/03qVnoDQhLRWmr7u+aJzzLPirVxaioAD8UD4ohOLhmKCCuB6AEQeYSIHMmCEwyYaIC40QNMaFQUaGWn74pMx1RwYu24pnvGSov8wCQamVqLAPYyMgGHiAF2Ym5sjDzkPv/YiaM5dVwBGp77//6kbWdfQy30FgkhKCqsYfOf/149FWTgAJgIJJhTCZyWaEYc2mb5WbFsAhwapLZmllHHxsYXF5l0bgoTmCcY5AdsHcpGggkDXjjZIKdYIJADuyJuG0GqR3CyCRpkIg1gQnj2aSMVtTKwqey+IE1h3///ziNaAKeT9bbCjn3f5CgrZ3etbepfpg9gEibgiap9C089ztFFFgFBD3oYeXGqTYOBDMwcFCpihaaIFmXl6dBEgRHGQGPEmEEcghjGml6AqyINX7+rHVnqmeAOhDxZYhApzjcsperXUXiF6Md///79DSP4l9IPqXWYcq1rm3Nkr3fspVgAAAAD+xhBcdDwQlhxSa6IGbzpgAsYkHgwiP6YjmaM5lSLxHRln1onpHGAvmTJqwMLTyB//7oEQaBsQqHk1TesqYgcWZo28teQ9ceTZt6ypiCpimzcy15DoBocQIMMsE58wQ0W1XpK2XlugAAOAlh82wxJteCcFeVJ6oQwcqepBVj///syl/4KZ9OP1CAXU4UWUcUG0MPuQgLj1GTDz6Bbehx1RLTs2d2sAD+xhg5CHlhHEiw2VIM2HTFXg+J9OjLjXhMDfxltgZinGtvZoa+EZ5o4aERw0sjykkfppkjiEkQOAowmBNSIwAiJBgBZxEw31DRVQXS4Z+BSWBSyA1UmAuSOYvv/NE3MxTb9a0VKqepOui+i6z8YWTcVJNJGjBeptE2VcKGfXr6ez2gOQSBZmLeYSRmcKZm02csWmOKZmEOfevHPURjy6amUaKyes6bFUIAB506oiCAVaM94YoM2sLBFVM6FRik5A3gctb44SniTcB1RiRmCol0lBZ4WAC3KXa5MonZ///8o5clDzyZ+hSXB6IUqaOqFjg/epy1adzJJTmY9YFH9oEBDARMalUhDZh4kmKFGZGMZmdGgkQnHz4AoYZcUpjAPmiEGZ3AZg8AmOR+YOI41cX5G1xjYmqXUfxA0+HIgtIFGK7aI086SxhRo7CBAWdxoABQXpdAoQFJuqJcXxlmf0SYo4CsCKb9+7U31J2rVdU7WtaMxVvW5a9G5kip7cctcAAAAA+sADg0Gg5pTCDyI2aYNBBjf/7oGQKjnO6Hk3TeVvIfoPJumd5KQ8oeTZt5S8hro9nIbzhjHpUyy8NRwj7L48tZBh2c1mmSupp4SOihZ4e/DjCZEYrRAQsECqwOcKFkAhznw0l9IU9yIAwRguoY7wNHM41Q2HLsEL/QAFrAcmRS//8lHycHo95Rq4so5osXNoTuw6S/s678AAAAA/sgmBGGPOkUQ7AZ7R2RaBUNbxusIbUgmNgxiYsYqUFQULUiJOIEAH9FpS7hCCZEhihnMwIThHGbYxhjOmvlQwhGMMhB4RElxAghItVsOQalSvRnDNJZM5////3JHaWBirO5yhZSRVplZSeXTJuDI9hByXJvNfvGfRsu9gBiYmDiccMTZwM496NBlzZUA+99NciztLM0vjGTww9ON8ojhyww4PESQZe+GAweLQAGNxgwJjRcI5DEgMN80SYep2CtMHlC8hqNJ1Dy5niJWRfB3FUVMIdHVCj///zrAyFM+Bo96hdw4YcNq4EH0sMEFXurYgh4sqACDaVpr0A0fMJEjQUsFLJhBoYClGbFRhJQcE8mGhxhASgMMdY1fzPiBW5iQFxgRYYohLG/ARIl8kALTZ6NINNGfiSjG89EWKJcLw08DNdFSi3IpL6l////+5yhZ7b5xFaeRu6PR/V//2ez1KAAAH9jBECgoATDqfFk6Y8KZgeMmx0MZAFZtccmMAia//7sEQQDuRZME07mVPIhybZunMnaw9BCTZt5O1h7w8mjby1rFqRjVfG6xkbNURlUDGCC4YsKhjIMHI6URAIc43SkMxHDGPawaywsujcJHMCGgUJgyUFuS6YIMKFkSCsCF0CAYgEJRQgH4+f8w4QA2E9v7TnWzTnNMPszK5ZiA18uEFq0JX2Cgo/irlx39P3YAAAAB/ZANCIwAETGbFBQ5MIEUGKcwUHDQBtMeo8yuYzLF4MFGoW0ZplrGIxEZoYBFPGk0CRYw5UjHQIYBGQeKZoxAkwbUYOtN3QCkAwWSIDwiAFfGCsLNKD1GX+6qP46LT/5qjwBIIP/eeyWd3ZDD7M6vdj2lShq0r9ijm6li6esnOIb/f6PZAmAIA8yVnMiLzG1wFPJgCIZHKGXL5rzOEOZvziI6AxIVGnEG2lBpkjCVYsMTZDNyGCAwlQBB4pQEMuCIQJGxRQUDQJBoqigI0i9ielyZVkSiTKCQl/43Fgu/rnsY6Iy+17lqqbaZe6efpc+jHKze/VlKs+H/9+bZq9jBawkLwQ6mdJoBjhYAMJXjO5Iw/DGSU3q2P4NzARo1FFNwMhsYQ0mloQ0nACa44RcIbDRqJWidNCUTes3JEVjgx4yDTJSEBYKPCJgsACkmUU7SiQAElMmHYPE//3FMbeqHgyLj9z3LESCyUslbB6wERfRUMS+Gf92YbrgAAAAH+yAFDhiAwTRBroGHEwVZDNSg01MCpaaA6G7DQrSjqyZJMGqHaZYNEggFD8jMXcU2ghFkNSiQSHI00h4gt6j+qZD5OoRhgwUeEV4NOrASWKVYNXwgJdicw/////92H6PdAG//uQRDMAA9MdzdVvIAh248m3reQBDVBxPnm9AAHpEmbPOaAAZAK0RztWo/c1OUa/svtnB7P9vYLQAAA/sAQoMCIhY9B32YiNGHERhjQac0GxHpkn0cA1mKpBg7WY0xEScYQIA5pMIDC26AIFpG4er+Gxw4IUYCTKMTHBn+WorsEEEgZcN+i7aVzRIcXqspJtTqVxe///////Qv7O/HioRnW3Gq0J3SDNyXM8DgLdct1ccAAAAAACgxmpSCScxszHB84ULA8CZKimDHxmCAeIummyRmZoZuFGgEKVJqjSCoA48wzAcDDDGBQSLQhLvlBFtQCeIirnmKFAI6iOi205q0EKHpLy2GQsAfSD3+c3/1SqnnuVnWYNKv+5gfcAAAAAAlIhpMpGCQSZ1AEHGxXIbWk5ihmmfTkZ1U50qYmp50ZkBBIKDNiiMyFQ7oRzUAjOHMNDJJiYIBG9SmJLmxbh6FuIUEhJVTQBRApDRaK1asDNFhTEHUiHJL7KAkBWyFgRMH7/vo1L/+bTP//pJz///z///6PAAAABP7AErgAHmtHx//ugRAaFU+wdzddvIAiAo8m97mQBDqR3N1W8gCHdC+bqt5AEvYcYOfmNgR/AeaMoGBwJgJADJs4eUMNIjjS00YGFWEwNFMaMQKQZy5cAHKtiG9hBIAtQAOcbZhhK9ccwzlWLIHxwG64YVCR4op66/qzx41wop3H////96e8BdThyb1smRGZaLFsMsdO3sRp0h1aFptgAAAAAAf9gBhMDDoyMrEozyDjIJVMbgcy2KDP4DMlhYzCljAx7MkpI5GnTAxUMBjIwqKQYAzDZpCLgdAbQQLSZODaBDUcgZEWa5iDqayFShxEaoqeYipTpDhhQ5iMij0PDASN4se/2Xf////13Gyd1uF5KpPRahA+8iukVCimfCEAAAfU1CokYy2GHNxmwmbCTm/PBkugcYKmKDYMmjVTk2vMNOODKAUxkMMkJwEmA5UyESLVR81UUVgiIMQLDRpCJFrUacDRg4xxAbcVVE9IfLmv/F5h2IcLUxtzLH/////rktP+w0NFFqzW5iKtDmBwON1qZUnAAAfq0mAlhj78Y0zGhQJmqWbRLGmzxqheZSnBEuFF8+wiByIYqFrAhhoa4SnVAIqQIqYDgKOHnx09yT0NATKsawDkCAJlZCSbAhnBA4ZIlYEIEjWMGrQCR2VSIMfLEmWPWvW9RQuh8S3jkMQTCj2gW+l4nGrj5OpwAEAEr4AAA//ugRAQAAwIc0lZrAABXI4q9zWAAD5B3Nn28gCIbDCXPu6AEAAAAFfEKogDhZ6KNxVWLUTp1zlJTEHTGHD7hzSiyzwCGgxWUKAckLPQSlM3wOmjg4KhDwglbTn6T4Wu/iu2JTz5hYL7Tr+KoM9hKsw8Dn/aFQ02P2ShV++3ooAEEDY3XgAAAAAABGswSQRGTDMyGedYODogluGloEHgA8DvSYycgiDoikIRtHLn+uQ57WFPMv0y2B5WAHoBIJHAKX3YjBEQ7MqpNk1abN//7UP//ZqAL/Yw00YBTKW8043NAQTKsU9Q8MyGDMCQUZzTi0zmYErUyIuB04Yk2jyEZoTDgxmvGyEShgkkepNSMV1UsNU8DTKTf9I8DFBQIErJzrOBo7gLEnqB+lADMEHQn+nvx////3jS/Hl1kjJsUF0IWo2YdtuFKGo36wjLxrv8eAPq0AiiMA6YcnSZfD6Y+DODj9M4DqMTg3AhUGK0UmcBmmlhhGfh8mMwFGYRVmHA9mAwZmNIdGWoHoDghcKoDPmhHEM3bQeM9AGSJuggKgjwpMMBygayNy9FSxnz40vMsWHismjrSRAOMuZHjL/4g15pNVAGBgeERZ8+sn3+faO23XJUfqY1NgAAP/IA4pgAaCGMyosNaFDUgsXjDqb0DIJtdkZ60GxxxhbQa88hBgSqnimbzRjEAHUwm//ugZBmOY6IYTTt50yhxowmja3lFDqxhNG3zROGwC+adreUUTPpBQQJeCwpMKYYcdgIHK2dKDISy/AEOHDnN0HQqG4FAq+/ctW8W2RPo6TybH6nvJy8g62pmG07kvfFtKkLMF3vAH/sYqRNgRiygiKGUugrYcAmcWCcMSQWwc8mKWIMXx6HNTWDFTMmEUNTVQDPjJBKBzLcEYAGhARQF2SNAAKpC5yFKGgcIUBiIgOCEaJfi9gz9MSMp6sUp2868bZsTQxwlV21qa0emfUkImD5H3J/Z5RWjAbGUDwVSz0RY61BMrKThxbDk6IxaaXHZ2kKmJCiLSgWmJiYxnADnbDmGmm0DmQYmIEkIoIPGGumXSmjeP+ZsYFTgCEDR4ChxwmRBjgswqVWeXfAINYkg7BSP77Ikxed8IXkUDhdoaUfJe9lnWYrw+l9/2tvg8gD8NYMsYEYwx48xPE4gAFAzEpQewOOlTU0UgKjBRxJ8ZRCEVBRQjybhw6wHRmqFLUhTrILXgX0WfX4gARyNIUcSOJk501SMwBw7FopnAIwcggYM6wf6rmil7kuTY17VvuQ+++5Hx2qxqkrVgAAPtGARAaOGFEoDj8GVAyhCTuQWMtkI08DDGRvORp81ACTiZ7M6JswApDAK9MHjkzSLQUkM2aPuJECMHOgxsPOzCWSk4IExoh5jBzkmBAma//ugRCiEZB0YTDuaw7iC5tmtbyJ7D80JM03hVGoOlKZdzQm0UIymTxGISIKmAo30unB2U6g8DnM1Gg0/tchSlppaMB0jygDUeDEedNKc6fS3fUHjQ5tkAAAAAAH/sAMpCi8ppDYa+QEV4ZBLmQJRs42RQps1Sa1EnWSJxLccqHmYNBp7iZEYmhjo0ay0xYhcGIJaEZI8mdX50RArUzHA4ohJGAgAeeGQgVDExkIWEW/jyVVxkhTYaGbTn////1v0JNo62Q5lbquzHVDSPup7tFuiXj9OJTZsXqgAAE+sAig6DmKRBmYkaejmG14wmA04NWEwKxnGFhnaeZgNms8poaeF4gyFoIE8xQSMDOTLkQKARjhC10aNDCQc0E+K0IxQzRXWqGGGDlxGXHw5KVM8I0tidrMIMDQMgDwAIoqGv+Z/pY/dX7r0vRrN17z+2v13t/NqUlc9eXcGjAjad4ILxkkNGSSKYgJZgk1GCAyZmG5nEUHBHuZ/FJo5EmhWSYxC53kRogYxHCAIyVMEGC5AAEiEKa0CMGwaiMXDCFSQw0QJAYAAgiMNOTNJg6MaA0CQDXb9SAA4GMgVyrUfWkxw5//QlUkJWtzbI3cRtcRS+y87crFbnc+wg9wYIJWAAAAAv7IHBU3EEAaiGGOSAUnTFCgwdzLIG0JpqH0THh7sOHpoCrjQG8zucHrk//ugRBcN09kdzdN6U8iF40m6b5pDDsh5Nm5rKmG4jSbNvLHkyog0Y8HSDOAwMWHAYGzg4+hKNDMATQte6K5h4MVA6KoRUHE7jmcBLlt+o0qoPBw0BtEW5RCT6Ev4vDplFkvW2tmXvCfQQz5kv//oNrbAAAAA39kCuUAYUkDiRo1pMM5lz7hU05rMDCzZjkG0AyAFzm4yMEI0wIDjPwQtyBLEyZUqCR4qFzYoWBpUEygEEBSU2ighDhzRdJUBg5kXGAQdAKYEWEKFyIVYdn1gwgIlUrAq+H8aaQdV1Kgm6deYHNaLuj2MMJARcuh7ntyw6fPj1XdH6wAOxBqBg04BhmMqgIwk+TSw6MXi0weHTLApMNQsyMXTwHj1ljukj+2jgqQr1CqxnkFVA21jFCLghgg5SIBhwMW5TCcFKUAAvaShCqYoSsGGVA4C/7Rmlg5RlbSX9sUEsu////0f/Hxbu9ah7Ng0zCpzpU2kO0KAH72MdMDjCJSOVMDMIUdHTCgsKCZI2mDRJjE2eAgmrrRl6EyYxJFMzJDbQIRjDDK4wu0mADIU0xRUk2RuSOYsmSDoQpGDigRAt1WBIYHD51Y0w4KEgoJRKJr5UW7zn2s7GuAElc9X0v2ocllz/UqAAAAAP7IIPTgBQsZ8EGSJpihqZBMgI5MNIDDw4xayIoI+Qkzw85aM2zMw08zc//ugRBcMQ+gdzdN6yph8A0mqb1lTDvh3NnW9ACHbDWbet5AEwgRWkDEBwYEFmCENVGGQYIQEvCCVL39RVQBjoYOjDj0HQdklYibzCVNyMINrKKz+XZJFZP////LPWTYasetcVND6nr0IaxHObyRr2vTRl8AAAAH/sYgYxAAMhFBo2NmgzSQ84J7NkDgIfm8jh0IIaWRH3zFhuZuCYGIYj2apycJBxAlqyUYhYOEUzyAQGYAgExDj1etpKTBTQ1NBdL8MIDiQ4EHBW7jQWfDSTbQPArpUkto5dKxGOK7XrWL80hhStWS0VrXz+6z+r+kAL6wBCeYiNmAxJFXmnpYWKTISQwxANFdzsGAmszMtgxoTIqULBxlhMFxowUHOWTEnJewaVJrGUMBUAY8GJFjRpwiOgpRoMIWsIlhqQ5ihjtBC5ByHJRVaRFVgFL4rIpJI5rDn/36/lnVJV79lDmsbe17/Y6Dz1FIAAfrAFUzAwcwmXMZOjWTMdKTizQ1MjM/PzvBY3gONkMjmn8xBOMYDjGEEyMiMcHRT4ADhigdQIijsFCxlMDyGumMoOEv+/6QiAY3ETROCU0Ja8l1xu07z+uW/rdHUieL/P5w4GPlhYhSSV6kRRSWASES66VfQuo8wQAKiAxf8AAAAAAACWsAzkibJhSs1ZzJxNi5R0dIASRZ1BhOpL1Ncv+yh//uQRBYAAqodVm5nAAJi47pKzWAADkh3Nv28gCHkDWbPuZAEQt9yBQ8jjPrMGZSGT8dmD7LkV5BqAovzsDRKniEFQHh+m5U/623kT0UDACAADs4AAAAAAAIT4gHkpsx44QTTPrwrlFMgqZMrsNiYBv8J1GVKGhAGJEAKK4rQ0Qg5a+k1kTmkOW09CUHCcNq7An0UPeOT3InC8403AeDGWIqhaO8vPa5GYp3x5xgC/tJAAAH+wBqRggiBVMfFgQKGcHhzBaaPKkTSCCMzt7GCM0MiQQjQIccSGLjQ4SQ8FCWFmGQYqiKRZMHVqohbJGJ+FGEjxElFDAZHtFrImgJgaCyzeqhwe1pT7LWf6LSypcv5XdUvyI2et06gCL73GJvbss0AC/2AOcYAA4VH5lUNGHiAY0A5hQ+mK0CYvKpjIwme3qYpeByAIGFTWFxyieIR6KEwjDELI0C/oVKcQwxkHQqGDFDtER+JgX2M8QGjAwUBXpvpeg4lyJFLo9IXSduZXfHH8XjRyk8CqP2P0lRQADVBU3yVrlCIUv+tFYAABf2A//ugZAKEQ74dzbt5fDh0o7m6b1lTELh3N03zKOHUjWbpneSkNwBAkZVWnTmxlJUZonGOroLRzD08x4rM5DzBJM+OLMRTgdKm9gZjQ4d0gGjiQMFEeE0jcCNpsxwgSoMBnJkOHKGrrlLxIhFgwBaq8biTDp2yPUtjaYK2bqjTI4URFZvvz7n/FlWuZiioslCePo891h+drYAAAAL+yCOxYygtBQsCA8rBzdBkGH5jColgYcyHWBhp8ZhzxjA5q45k2oKNGSGFmzFNHpk1TWTGBGxjBAaM8pqCSCIN3T1BgjUwhVu5f1Uk7ZnWsNMUtf2dkEhhL2Vu9+1lf8J8rU8xsZ13JoM3+nPy39e9eAAAH9kCPJMFmM44YzmW0ZjwQfWnHSAxtZ+cMQmSpgbtGRrhMGZ2gYyF491TFYdM1EE1qGzDApThUkFkxo8WLAboimTXLJhYArHQvYOASwqWLOmEbDAOSbu9+ptprQ49HJDF3KlE/S0XfvVMvDetQjYne8qofv4VJ7HzjVsSrU7PRbklNvXgAAB/YxJWBmOcbg5vIBSw0kzOHKx7iFCkFmRhEEbrGmUoYyCGHtBKRi2iOtj4hqjmESWHxaooIMIoFJhHB2RmgCv1IKWqWJYBSgerSvCBguVAmGTNnekyxU9px/rMhfxKC3si9lrLWJcPvIHEtRl29WzJf/oVwAAA//uwRAGGREEdzVNc0TiHg6mqa5kpEAB3NUzvJSISDuadrmSkAD+xgtaOETcczTyjpWzhsDW4iDkSaKBRpwBAKkHNSWHGAmgpjklGlQmLIGLGnTDmIECgkiaJiCIoOABqiZMQZ+ICz8BMMHgDLBCHMIUGjJYEysHAS0DyZVZhplJSqlVLQtOfualP6zpb3iCXDAMiqAE84x+Qaoy97lvae9cgTYx3+vXcpMAAAAA/2MJWipczns6sI9Uk5YUycuDL4VM/Lcy2IjAI+P4m00mKjPhwCAkZJAhgAlGZxGbCwgAGuQQobMqwKthEYDkwjgkKlz7RMCADoJnRGEqukGLjQBYdJi8biwVqndiGVcxGBKa7j+8LL+s9CoaCjQOHyoonWMkTaUSayn2qGj1J/7dibXQAeyBiIhDC75xzEooFmAqUaCLmmkhisQRFR3oqcKjm6GpqwMYyDGYoJpwcexIjLQiI4At0MQkNBxDms4MHpwIGo7ixZfdB9K41DHdPoBRYiHbWftsxiO5c77UJHA7vRXDDnyf/PTKBgxhYwBxRgLJZP21dLtT6wa5HsI0HRSP4pAAB/ZA+INIgDCcE8aeCYcWYDDh19BGc1KcLGxoEJHBzMY3TpnIcjgUMemswWGjBRJMqULJk0APFLooliMccALSFDokqOlxOVhVAUOEijsnR2aYpYPGFZd6nYHT6l6hk5Eo9K4tfzz+j/z80l4xhYwGhaCxNk/ZX0O1PrBrke0hQdFY/iyqAAAH9gDXQuGTAw9QkGWjSZEWhkdSG/IOZ/PR0NTHMpJoBSYitGGkoMFzZ6xehIJm7EhhwMZcBjwmfJ5n/+6BkHg5D9h1OO5vKOHgDicpneTcQdHc2bm8q4i6Opg3N6OzBD0wCQBxZ9jhcxoqHYOMUXDAgViYxIiaUwCw6qjT56WKdU+c/A7+uLItVYvz9yz8fbDa3ixdV50VsYlF98500oK5CAAAABP9YKzFgZUaQwJUMT49NTNMOBXRKAMOSzSDc3cwApGNUpzqaQjRlI0WhAgBR6nSYTICYV6WWM6EzoA44NEgR2QsArGvgYKDwQUgNUKpqWy7cu1UpYEllFAkYfmBNUiPnqVo0uu9CMYNWUPi0f0k6uptrt7+v2MPqMAFeBsoLGTi+VGEY/b5owEmTbaaEYBNvziQUMykwweBb6cAnnXFpkQmb7HmAngNGC3hIgmPgZh6OYAHg+UG3A2kLqEwxdwxpCywOtEJ5MeEHhh48a52EWZjfo4ZWRDyk0wIvJYY1zV3/QCVwq1ceRuwNSyG5VCwJ1LVYkl9fu31gD7NoZrAjggBTDMKgceLZq9YHCBcZ+CGf1RuSeekyGRHxk4KbkLmzApl6oZe+G6pooHmOoKLBkSIY2IAGsGT8lAH5oGkOlheFxpow5hVRhBBhFRlAB7CRg1I9GM0raHGIfdOLPJTN3W7VWmzkqjZupLHuu0jBRby+JCJGdt7npY9CGXSH3V/5zUdvmsAAAAE/sAMCAQwMAAoLTNAHCw0IA+ZeUphqFGH/+6BEDgAEFB1OVXMgCIHjqbqt6AEOQHdPWc0CQfgPKbc5skCgyYsNBpctGiTWY8QhgQimUxoZsIJiAVhBKNp4z2zcLQFhRM4YjHjNw9Fc1DzJyGi03hYQgEV8YzBgNBMqao6MLGIS4Eksnh+N+4KjT/LAT7E2aW6X6b+1s89JW883jnJzTiX1zNTsAAAAE/sYAwQ2gygnJHIyMiy4bPVmnTBh9OQNRwMAR5ZKnD3qZ23GUrJiQaY9QG4nGAcAY8EXjGWTQoR6uODE1IbBg8SUhAVuBAMTTN2YC8E4rcxw0IMkI9x77oxfUDXlcuE/5EHh5YklwtfTfkkFEDsdncu95umLXH32ruW64uK9yQAEEAFSH4AAAAACfxgwQgUGGPkksABSOYODRhgLGXEYYwUglSjDgDMViMMFBpAdLiOPAUw6ZkrR4MIxxgyoHhwIgDV215kJNHRSM2FIry22hymdviMSVnIBtAwmGMGhO40qtZ7xh1O6MU3POIv2HWadAEAAAAAAAZf/AAAAAAC7zJSNMCh0ysmBAITEhINLD44YcDNDAADMMaiUQlQw2GgYGRg6GPRGFA0AQUcAegpANEFTQydeoYAmMiokzBgyLBYNB0ATSplWYLBxo4Y06suUmR2a0wwCBAHnOOU/r34ZusFwCVSuYdMlB0hm2qvzNcAAAAA/sYBQeMCjAUH/+7BkBo50lB1N13NgCIlDubrt6AEQJHc4bmsOofKPJxGt6YQBpgNmPhya9KxhK1Gg0iC4iPE460ZDf7PNWt8x+STQJWOFCEzYZjcLKM7rAVdCIRckyoBGhUBHxnIyLBRggyYKLmakZbAaRgCLmFhpmBMFwASKgCGkIYKAhgIIqxE+HYxYiTUFJyks4pCJTlb9VD39sWGhwJJNrNuIipeKCkzcU7HxR3/+vAAAAAP7GEwkJwUFAMdmDI5p4AZVhhwKHS5ig2FhYzB+B0EAB42fDO6ojI1Q2eXPGkNsGCFhlEgJPmUTBHwGtzEoTYEGFmwGCSoLATNBiaCdkaZdGZZKY4SCnxlQ5gQSMMTfjdDq5E0QgaPfRJpGqls9r4/EinmSd/RPo4aUP4GKOrPIpcytEtQj2QL4EYDSpEkuYFDRjkaELxMLT84eQjo6kNpUQxvBjh4pEYZNAKM0e+wEPgonjYzzhHjakgcvAS1QMx7ECBlUTUolBhIqZcOMPD4Hf5nmLlfNurOAURMZKFSh7605XIhxhRgY6uClgTX/QTnpetSa7W1JTelefE7q19q0b93+7LORGABeGEgVWA6WIDRnVZ1/xlOhoqgNonLKGhtHDanAiDMo1eXMpOAKTla1AeasgTRTBlh0gbYQ4RkxJmxAIKExoSQGrIB05iYNBmqtk18w5oaUmIMIbIwxiH8dTbQnYbouSRA0DA83/JLA/eq2hj4am1FB5FXRMdP1qYSsHqXAAAAAP7IGWjIGIFwbchCRmgIxxkyZW4nEmxwxcYWNjhOFRIzgfHEs2y4M9WwQDmZkDSjaVHYDxKNuo26TqHCBQv/7oGQghuQ7Hc5TedOofEO5ymd5KQ/4dztObych7g7mzZ3ojJWEHCSxjiMkQDGGBj5SeFB4wOQMHlzB2grBv5a5HVINLLeqryqDmzW+5yS772vSqLqoGjVJFE2z1Th0h01pNJsVY9j/Jbm4AAAAB/YBHxkBxwMYIewRKb8KmOnJ9zWaOVmAG5hxgb+bg4zNHRjidgwcsISk0yUrwQKLHiq4DfCMQo8FCTCjBko8qZoawxZEgQBgwF1DUhbZRgiMf9xYs/nfiL+v+sEoBMP4hfVosYLak/paoiKsE6Uv1CrDXi0z+jFMdAB9YEkRCEwMHwwqGHwoZqARla4GY3EfV5DfKZJ5GZGxgR2a0DmCBhtN2Iy8xdIIh8AgAtMjxS/gASCpYQ6PEHOiQBoeqrjq6AYIcLBAOeLyBCwXBRoh6jlEO4fcf1wVAmmxCAIrel/cpG/sWPudDYDYLn3X73aWmfXya0f27606xiaQRqKICgrmaI4iRTWoU12aMuBjDFzc1TaqDJyh0iZf6cEiNgzEDhrSYg8Z8MZQKERR4KNBDKAzHCTYnhGgBYA1xpBoUDuKYE+c86kilaiusHG3Dabh+ClkVcNxn8cFST8P/GHhgb29hpehi7VI2LPoCYvDKOqz1M/cgAAB/Iw1AwAA8wyBExgAUwzVkwOCcw8E0yZiM0MHUylEswBYY0UCE//7oGQUBmScRE27uzr4e8O5ymd6JRDEdzdNcyNh3I7m6c1lTMRdM4PThgsG/pjqKauBm3ggNKjIQxM1CoqDQGCzZwMwsYBhKZ2LDAELMbJFDAYBAUiBIENBIWA1+l+mRKrq5ZP35JgofI3RcCNv+/gkuFwmf/rdj9t0m60rsq7f/t1v9K+eqmVL26KWWp8argAAAAP7YIfFASwEZaRlOADEylaMsojT6A1Y9NZmSd+EQk3gU4Z48/g2sUeBAI+hihiAUCNtGAgBUFgYiSDykuZMAzEwxkxA60sOW4NucCxpuKpWRDIBTaF/uggN9oZbvLFjKIRWIxeCaju9jl3c172u/XX1DYgGXfRvcvAD2MDgMCwFVjnKANKDFobMXLc3l1TIAYM5hsz2BzfhPOatoxKGh0vGESeaDKZmkpHrSE1nCeSxHRIYRBhFD/ZjpmkGTDKDICjcgMBQPkHYQV0ZgQNaAzo4PFnATqfT/uYkALMZJI2l0D9TeoNlnm0XNoSga5LalRVRQgJ0pIP9goS/nPq9MAHsAqSmCzEIOUYBA6NZMcy6vzDylMcCIzZCTKobMx7DXycQG5Cbs6JsowM9Y4xioiYJhdgcpByRESBBjTWMooySh5M4mwx1wRzQ02BxYHmgoQVIUOht7s/mo1H3ejmkLVLH/ZM/1eTO7XNSJPtK2JDXoXKov9i6gP/7sGQAh2RKHc3rmsqYdMO5s2t5Uw/kdzcNcyNh3Y7m6b1hXAAAAAAH9jAGCxALzIIgMtBs0avjEgmMthwIJQ+1hZNmlhqAiWbTmV2jZgzXwT63DtYTdyFvxk02j0aQckDlDPNCwghyNMRQgIKbqf5aNJjnGmacpws2RhA96GnvHjX9wqbtuyosz6GJPFY6/s5HYQ7xpNiZlwWxcUYBoyVVz8UWhXcLOoIVN3tAA/kAm9oCyQKSmQKDPmuB+UwS09Y8HOyDUZ6uHEFRjBsZGvBJGYWGITD1DAU4jDS8VEjOOHhw5jnCYxIOtsw0xOBVMelGXjcjAzaP6EqHy4C9IO7cvUkph5624KcuVG3dYrQ3fUUP60UlWKehtd35ztigdhjAAIHGGLmuZnACGDo6YcHARACGFmS2GcyVJmgomzigcCMJjIgmGiKMGYxSRjGpMQdGIwYADhgdCTCBiRzrDRRmHD6KWzATDOHBoZBWwVDDiYZHnxZaNvy3Rxt1qeakkejdR4Iw/sXk3Ir9DcMCtd/P2tlkMTN6+BqXPWLU7LbXYAexiNIc0bSYJCw0EEoWIjq4A3EpIX44ciAQ8ZrCdw8NPji3jLjjXhDAHkgB5kgCBSpNAQAytCFSjTS/qwSK5WcznDPCXALZgIhGA1AZ4UCiEqB/79yjx03RwJE2d54ce2fobnuqeRpHVWrMrr1T+udxldf/i/6agAAAAD+wBM4ChxiR8jSAHw2hONqJTfJkzFAOALwpBHug5sSYRLIw/gVMBggSUaHwuYRrCOtlESTQwxOAZTSQ5YAhR4xxIxpoCVokszoGVGh8Gy13lpqwf1z9//ugRC0GY+0yTNN4O9h647mXbyxrDhR3NO3nCmHBDuaprDIcW2CsRikkdyJAFAwxv/WjsphymPduyp+iZc9UICkeljuK2UdUAAAP7AGDGAixkwoUAQ5CGsARhhMIUU1QeNTwDF2M1E5OOFzPgIO/hTUwTQXWIpjnJSeMg0UkMNohoXkLjA94ECp7iCZTIkONRdCALIokoZKXpwspVmXXFZNiwY2dFQ4J1ZkYvtFH7SA4HxE9FArxBL4udPoYNT1MXv7IPYxacgWLjGw8ytDNAajMwsz+AMPTgAGAGaDn08SgOyZTR2CmjOESMOMxA46joFCDQB1AccHUJFhU4iqHKQxdFVhe5gaOD/JWV4lVdF+b0y81eYa7As9GMpFTVK3PqY1I8fqTDsMRndp/nX0RcC/WtWAHsYd0AFjQjA52YX6Yxkbaga0KeKOHMTOLD+Vz9qgaSM0WrgsILHjWCxoGs1k4HWXoADDegSUIrnBDvIpO6twFLTgeA+hLepmwOtrUiZjelII/hcAK0YHy5pZeP6mC6B491aIZgtd3aP51/FgN9alVjAAAAAAH9gAcRLTgE+ARxwEBkSZf8zZUZQm1dGIyxpiqacGEQSOIgPPM0cEnl2FFE9V5MPWBESRVNEA0OtLQ5Ewi20QRodInIuwrxSMocOlaQ0+XxO9PU0dlETk9mxaiv/dY5qbj//uQZDMGc64dTetbyhh2Y3m9Z3kzDaxzN01l7KGnjubRrCV0kSpOJS4RMZipZTOm0EvJKMAAAAAAH9jEy2MRSAAYFQC44FDMO04IpZGYKOGgmQUaN4o2Dzo1EAAwGaoadYwMPBBQ5SlZIGEHlknkMkBSMCsrLYm1dpqwi91LmpQxA6vZFOx2mh2SYxGVu9L6wNivtxUutq4xqWqvHvyg5q0CXWx2qwqnr/RIB7GG5P0CkgKBGNaCQY0cAyusxs81LoKTj4QDn/h5WcEovoRtntkFJAhBC2DhJdPtFYaEUQgSccRrhhTIQ9aScgM6tbzlTpxr25lSyKZUqrTg1+8Qh7j+XGUDRHMPanHpa8UhNSHpujaXRzf49UACPOSCCIY0A0ceKBRGapGdhSYZQYxOCwYRY7JUrYOIoJWmmZEgIKyFayKqwZEcHSkrJlsxlZqDqnSt1MkPFH+fx/1MYnG6UUoDY0CY0FwSF0MSJJ/paohZiybvfY9EYrvLXVbW0VIT/WrwAAAAPrGGIjxoOvMhEhpNpc6Bg7i830w2ik1EQ2S8//ugZA+Gc1obzdM6eXhpo5m9aw8/DGhtN03ph6GejabhrD1k3sEIphcyb8mgqcAEpuXhUXTDU2TCUWIR6SrDHXWUharRZxJVOqwcoRydmOdRRFteiuoCegMvVz+ICRHxij9WhH+u9ZYoXart0o/TWgRAAAAAA/2MZ5gpWg+PWWUhQAbSAe2Bcp9aPIN3gNAkyeBmcWClIKy5Dc3BcZOVMxIUQCYbKlqJ1F1ZlVrGFeAsmxhQ0WZDlQpVLCc2JTMkdnfz0ghD31LetFtaMPpbdowP77UDfbV+BNlAHsAbhJgUFg0WBSIFxYIBSpSGTVGYHj2ExRk0sASzFCkwgYqoDDjgwgClqaihZblWxBYFDi7skeFkUVFQHBHE4sgCCKPikSTZ9BxGuVtNIVG3xY4zrF7CaF+ZFx2X2lbf+zdYBIW6qDJFg4UYUQaYWZOgvwarGFUGWgHMCmgFEdxGNwAqnwl4ocX+SOHlqaLMDER9/HYZKfwLssAqTlJEApqlVTqxSqN4q1Cx97EYlPBCILHfGF9i68GUlFQGZGHC6vfa/f9CK6P1PrAAAAA/ogThYmNGGHIHZGdQeShmoGT2DExicHYny0brRhkHOOrCaj45Etx0oedhvYuHGVWf1djsyZksbft+I7GQpSnxXNzsluLCa3FU1pAm+DSX6smSe1ab3VxFWxthj//p92SU//uAZDKEUycczdM4ZChko7m6Zwk/C+hxOaxp5WFoDub1jJmswAAAAP9jELlD+IUAhMeFPVgKqm0SSCT5dUvsBum8Svh6hdBGwOK0JeTPUHFgEdmVRB+3Hbxdi5FmrdXm4ERMOBUXR0sbYFJO8iLIoCVqpv8HFLtGTeK3mBfI1zm9ui7n026vutcAAAD/sAT5GTj4AQMZaVDHDQmGmhUubcmFoY4PC0lGIqDxk6kkWTUkPCVevotDkAZjoWSiHGX5nUaGKxOp06TcLWquZ1A3xpnB69gv/tqkiFD/2e3yc8JffeTa74rdqFAAAC9bJKRTEuU9pkEbGGMJbszIbiGmTIN4DIuER5btwJSj47eKhr/rBo1tFf1njS2uw+vSvBavUtofzkU3OU9UAjSKZOfTQjAHX3diEaPe7IrGz2ha97RBqnAAAAAAB/YwNFtFMGdX5UgBx4UEFWjaBjJnqZjiZjVgQBTAMYFCDQOUw+v/+4BkFY1DFhzN6zoaeFwDebpnBk8LBHc2bWGJIWAOJumXmeThWyD0gFb0xmStrTv62lM40akEReOQryZJjIbVL9qiFZW1RxBJ+xsyWsXFtLWNPlqrvU7Vq00KrlAAAAH+RifqUyCFnAJANRszdBCYgKBAEegIoeWCzJpLzHnP4yJ/FE5IiwtlwX+lzvRNwk538fRvnpRVZNGuxW/OSOv+A8TE0aQwk72GF7Itqoo/3/r31zvtt2ZoAPkxNBswiVIUVUtAEpJiTQggAQeCcmYYie2hNUtmaYj0lgHiTVYZL3/WMrETiWCAj8aCVgkB2blgSaLrZ/3p8GV6YPRbsf51bl29mRZruiSr8s5RhabPL2AABf2AVqjbIMiIfE0WBzwGoBxyFYMSS+LPiB1PQRKJBJ8+1QJIL4Xw/ytE6QiVFHUq1TES6lLeLOq7N07cyS/LrZbYYJDb+tRxZNG161BXS3I0d6F9d1F9AgAAAP/7kGQChFKFGU5rOEsoW8OZvWcJPQr4bzmssTBhZI4m9Yel3Ff0AEw8gPZHg9yIijjJNWJE9C4kHEI4eCqYwBF3Fu01RYsbf5hLFHQhpH8TIgSEblh9KBCCaJTC326JovS2DTjj/SvYulqal9XKb1isAAAAAP+wD8hEcYo4RCImRgQcyGmFzC1IOiT8W+i4ACg6hCJkDO3cXnJI4lKyVxoGiLuq/CgJBuyIEsF9IomWcRitkVfygr14N9M+KsaxZ6jvZx9159WhGUA9LwAAQP9sCSTiBYo2YAqxIjKOa0DMVnsjLVL9Fky65bNJODHEcCJrxBEDZ4JSIrGIk7ISiQKiImVg5B9fXZmm38bSiY+i6nm2LQxCbuRbt/cIWE64t/Wrir4AAAXd2DC+Z7khIL/GZK6wM1nbD0+S8piAOHA9R4IVCLW/Q9FFMwktJgtj+ThTHQplSfbG1HUNBhgkYVus+PjWT3GWu6rpB1FQso44iKWuxcgwqKalrtt6VXCAAAAAF/bALAfwc6qAtcMADHkRVKYQkGW+TrHipFEF2/0Wzv/7gGQSBEK5HM5rDEO4WAOJvRsMDwo4bTms4SVhVY4m/ZwkfAmEEDYdMiUsPkASCeyVyy/CSgUizjK2Z1VW9G6MJenMMXWD4QoJMTW8Zi2T9zr01/+21xiAAAAAB+sAG2nuXQKFmcjYBJw1l2h2qK8OhQioC/K8BAFWJwX9UoJNx7EgKERBWoB0dloqkgSTomoyXzzlSwhNR6p12XWCDvmCl7v7KFqCTq17dYsvufXM0AAT/qAJWqFjUR4jHA6Y4IwMdkCUAoiIKD0NhxkvkL3mXK97+SSeFQmiCA4JR0PgkPsiX8sTzetirvRaf2UMSTd9WKPVmMm9xAcyssnd3bfQUIIAAX9ZBAuJmOBJJ4IEMU2U4XJEX/BRnDbcQDnkIHBglnlJJnciL8uCTgkFBcZBEWIFVAbOm5GrhbcWkT8Tt8sIgI71IHGpD1s6URayju9Ow/u/+tVyAAAAAB/WQM7YMUPBSlDDqsQsFXCY//uAZAsEUtMdTesPQlhaI3m9YelzCSR3Oaw8x6E9Dib1hI4U0BIOZOmsY4ZxIxSgqRaU+zNCeVSvNRUNqhVSkdsh0BcKR10MC596i7KMpWHO9zUxZm2xlOtL20AuwsMRSh9Cf1Ofdd0rUAAAAAr+yCKwE1UxcEjBgEzU2kwQCFuBhCvN309RILJWAiREQqVyhqlQ86SYdExMcCp0cQQGCVsShXWNQtoUEVYbBjAST9uwXvUYYLIwHZFT6Kk/5CxDvrmZkgAnP6AAF8OOLDIrkSyiKbxWNpLErk8olSLWoI5fSwvG5DlAxMw2mxUoZBYwrTEbHHEVH/bfpVW+HIZrIz9670dBew4+yrssQ80AAX3ci4kQwTTpLtga670+UvEZ3UUHQtBolD1b2Sv66sBv7wUEolHwNvYVPiKjKNwSOEZmZIJjmheGv94xCXTiblroP0+S67qlfq+xlF55AAAC/7IHIgcLRZOVWCPJlIP/+6BECQRDQB3M0wk0mGfDuZph6VcMTLEzrDCvIY0O5nWGGhxPfVPoWgWCuELQQBJ9tOVsTUg5xHEZZGnCYqJhFKZQcJ3quN2lpy5qi8uTzc2pLgNHnTx0JnCgeKCwDKPKEmtU4ISIjGBuIlOIqGre2BQyiLlKMgxGB7QAAAD/sgcBcYwsOOt85MI1r7FTgx7ThCYfI4A/iXAMh/HWvHCYSiO5VNY0C7xkjGSViiMPDqBgQzuMqxmK8K32nLTHnzxwVOlg4XFjCXoIsZcFJMSjw7BtbyKhy3MgUPoi5SjItRgcwgAAz+xhflIM3U7AoWiiI6GC8SYgMQjuWsfhNJkDMVVhWeHZZNhJeEkSxHiEj1NS68io/2uPUq6cejiKSmKYwIHf+kqPWcllYp0KIRILjlJNEY5Z4Pa3petfBJ7klv3rvtQoAAAb/YwqCoMbM4I6QiNK4MTyS0ZjJnyZMPXR1AoFYVBYZo5AWOEoYCMgOricSisXlBTLRIfVLH6Y+IWjzUioi7okE+oSE1FgmOAIWDCwqRY02tyYgLuycxYzLhlF576LE1X1VQAAAAJ39gCpV5jARUqNpKUFCATwCxeTDWQP9EYZUeV07QFCaT6NsFqOzhWeo5NbOnzj0NIe/UkuQBIIAvGamqr637rlv5KlFNCbqqrxAABL/rgv5PxpF0dYFwjTFisya2n/+2BkMQBCZh3N6wwbuEwjWbphiHUJoHc3rLzHYUaO5vWEmdze0lii8RI7arzNicXyaTC4XgqEnNYfSHZSQgMhmEd2ma+0GEpnxru+0y8IDcVd96nLNf/u/f4uqxAAAQVf7IHRqhhpyJmGMJVg0x/QD9AIkeJkmul1g/BXi+sNmJRTRGC6oHQCbu5aF/G+PkVf0pmeMNQ/cxyd9jmLmO7dWhP6r6I7e56zAAJ/9kFaFhVx6EuwROWgWmVUcJE5MdFRIl3kx3ciJkRMjgiOic/NZx0PP4zeMjiPdo7Kj+bq2srUTvoSODgBMtc5tiX0nWdSnga/fot/u3aldQAAABLv9kBQMl3/+6BkBYACfR3N7WUgCFHiub+ssAEURMc1+byAAasOJn81kACKgAiMuaSilvWSBBjtP8ie802154KkSHiM7NGjVGBeaFNaGqT88qN0Vz2vkvsbnI7EEEZ/3ZSMr1upuz3S7f/9OuuuvMFCgoAAAAKv9ED8YmMsbM7PTHBM8AOEEIwQSxBD7MQhqDO88S3RUsUEgyxS27dUnd6CF1M6rayWqtJCZgkExcFfEOhZTcrfal7mVDosz//9HM6DYxRAFoQ0VUM56LxIGgEABpbCB44cXNIFWGGJjRhQCYKKmNChiKYYSLmJj2lNjAQdE8BHTBgDEZBwlAtiqykvQwWJiQyRScRIEwWBqBSmag18mIQqYiDsxyG85imhFp34Nwl8NyKEu87U3////nbw5zrdIg972M5dL////+c3//nQ3bFumpbnpdMRGCIMhI//6QEFQgaCX//ak8x6m////+laKgmgABQaMiGV7AoEDAAAAoCMkDSRNrZEQUyyNaBUCGTWoUmcDggKiShNMQBLvNZYiHMO+YFDCmUu6RFMhdcEsKVI0o2u8uWFMOnJtgzuyakk1LS0sW5jWrS5zJVG5L4lLfh8yFf4oaATfWoJt2XX3/2gAf1VeSJHQUAkcatdmY/jARAQEKq7AS7M2oCAmFAVjagJ7ER4Gnwad5LBV4Ablu3/AAAA//yOCjvCjQr/+xBkIQ/xkRtK7xhgCBdgCW3gAAFAAAGkAAAAIAAANIAAAAR8UXFFZBXAqkxBTUUzLjk4LjKqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqg==" \ No newline at end of file diff --git a/integ-tests/python/test_functions.py b/integ-tests/python/tests/test_functions.py similarity index 53% rename from integ-tests/python/test_functions.py rename to integ-tests/python/tests/test_functions.py index 86ed822a9..51a4249f0 100644 --- a/integ-tests/python/test_functions.py +++ b/integ-tests/python/tests/test_functions.py @@ -1,19 +1,25 @@ +import time import pytest +from assertpy import assert_that from dotenv import load_dotenv +from .base64_test_data import image_b64, audio_b64 + load_dotenv() import baml_py -from baml_client import b -from baml_client.types import NamedArgsSingleEnumList, NamedArgsSingleClass -from baml_client.tracing import trace, set_tags, flush -from baml_client.type_builder import TypeBuilder +from ..baml_client import b +from ..baml_client.globals import ( + DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME, +) +from ..baml_client.types import NamedArgsSingleEnumList, NamedArgsSingleClass +from ..baml_client.tracing import trace, set_tags, flush, on_log_event +from ..baml_client.type_builder import TypeBuilder import datetime - @pytest.mark.asyncio async def test_should_work_for_all_inputs(): res = await b.TestFnNamedArgsSingleBool(True) - assert res == "true" + assert res res = await b.TestFnNamedArgsSingleStringList(["a", "b", "c"]) assert "a" in res and "b" in res and "c" in res @@ -60,7 +66,7 @@ class MyCustomClass(NamedArgsSingleClass): @pytest.mark.asyncio async def accepts_subclass_of_baml_type(): print("calling with class") - res = await b.TestFnNamedArgsSingleClass( + _ = await b.TestFnNamedArgsSingleClass( myArg=MyCustomClass( key="key", key_two=True, key_three=52, date=datetime.datetime.now() ) @@ -93,13 +99,35 @@ async def test_should_work_for_all_outputs(): @pytest.mark.asyncio -async def test_should_work_with_image(): +async def test_should_work_with_image_url(): res = await b.TestImageInput( img=baml_py.Image.from_url( "https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png" ) ) - assert "green" in res.lower() + assert_that(res.lower()).matches(r"(green|yellow|shrek|ogre)") + + +@pytest.mark.asyncio +async def test_should_work_with_image_base64(): + res = await b.TestImageInput(img=baml_py.Image.from_base64("image/png", image_b64)) + assert_that(res.lower()).matches(r"(green|yellow|shrek|ogre)") + + +@pytest.mark.asyncio +async def test_should_work_with_audio_base64(): + res = await b.AudioInput(aud=baml_py.Audio.from_base64("audio/mp3", audio_b64)) + assert "yes" in res.lower() + + +@pytest.mark.asyncio +async def test_should_work_with_audio_url(): + res = await b.AudioInput( + aud=baml_py.Audio.from_url( + "https://actions.google.com/sounds/v1/emergency/beeper_emergency_call.ogg" + ) + ) + assert "no" in res.lower() @pytest.mark.asyncio @@ -125,21 +153,56 @@ async def test_claude(): @pytest.mark.asyncio async def test_gemini(): - geminiRes = await b.TestGemini(input= "Dr. Pepper") - print(f'LLM output from Gemini: {geminiRes}') - + geminiRes = await b.TestGemini(input="Dr. Pepper") + print(f"LLM output from Gemini: {geminiRes}") assert len(geminiRes) > 0, "Expected non-empty result but got empty." +@pytest.mark.asyncio +async def test_gemini_streaming(): + geminiRes = await b.stream.TestGemini(input="Dr. Pepper").get_final_response() + print(f"LLM output from Gemini: {geminiRes}") + + assert len(geminiRes) > 0, "Expected non-empty result but got empty." + + +@pytest.mark.asyncio +async def test_aws(): + res = await b.TestAws(input="Mt Rainier is tall") + assert len(res) > 0, "Expected non-empty result but got empty." + + +@pytest.mark.asyncio +async def test_aws_streaming(): + res = await b.stream.TestAws(input="Mt Rainier is tall").get_final_response() + assert len(res) > 0, "Expected non-empty result but got empty." + @pytest.mark.asyncio async def test_streaming(): - stream = b.stream.PromptTestOpenAI(input="Programming languages are fun to create") - msgs = [] + stream = b.stream.PromptTestStreaming( + input="Programming languages are fun to create" + ) + msgs: list[str] = [] + + start_time = asyncio.get_event_loop().time() + last_msg_time = start_time + first_msg_time = start_time + 10 async for msg in stream: - msgs.append(msg) + msgs.append(str(msg)) + if len(msgs) == 1: + first_msg_time = asyncio.get_event_loop().time() + + last_msg_time = asyncio.get_event_loop().time() + final = await stream.get_final_response() + assert ( + first_msg_time - start_time <= 1.5 + ), "Expected first message within 1 second but it took longer." + assert ( + last_msg_time - start_time >= 1 + ), "Expected last message after 1.5 seconds but it was earlier." assert len(final) > 0, "Expected non-empty final but got empty." assert len(msgs) > 0, "Expected at least one streamed response but got none." for prev_msg, msg in zip(msgs, msgs[1:]): @@ -154,7 +217,7 @@ async def test_streaming(): @pytest.mark.asyncio async def test_streaming_uniterated(): - final = await b.stream.PromptTestOpenAI( + final = await b.stream.PromptTestStreaming( input="The color blue makes me sad" ).get_final_response() assert len(final) > 0, "Expected non-empty final but got empty." @@ -163,9 +226,9 @@ async def test_streaming_uniterated(): @pytest.mark.asyncio async def test_streaming_claude(): stream = b.stream.PromptTestClaude(input="Mt Rainier is tall") - msgs = [] + msgs: list[str] = [] async for msg in stream: - msgs.append(msg) + msgs.append(str(msg)) final = await stream.get_final_response() assert len(final) > 0, "Expected non-empty final but got empty." @@ -187,9 +250,10 @@ async def test_streaming_claude(): @pytest.mark.asyncio async def test_streaming_gemini(): stream = b.stream.TestGemini(input="Dr.Pepper") - msgs = [] + msgs: list[str] = [] async for msg in stream: - msgs.append(msg) + if msg is not None: + msgs.append(msg) final = await stream.get_final_response() assert len(final) > 0, "Expected non-empty final but got empty." @@ -208,15 +272,50 @@ async def test_streaming_gemini(): assert msgs[-1] == final, "Expected last stream message to match final response." +@pytest.mark.asyncio +async def test_tracing_async_only(): + + @trace + async def top_level_async_tracing(): + @trace + async def nested_dummy_fn(_foo: str): + time.sleep(0.5 + random.random()) + return "nested dummy fn" + + @trace + async def dummy_fn(foo: str): + await asyncio.gather( + b.FnOutputClass(foo), + nested_dummy_fn(foo), + ) + return "dummy fn" + + await asyncio.gather( + dummy_fn("dummy arg 1"), + dummy_fn("dummy arg 2"), + dummy_fn("dummy arg 3"), + ) + await asyncio.gather( + parent_async("first-arg-value"), parent_async2("second-arg-value") + ) + return 1 + + # Clear any existing traces + DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME.flush() + _ = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME.drain_stats() + res = await top_level_async_tracing() + assert_that(res).is_equal_to(1) -@pytest.mark.asyncio -async def test_tracing_async(): - # sync_dummy_func("second-dummycall-arg") - res = await parent_async("first-arg-value") - # sync_dummy_func("second-dummycall-arg") - res2 = await parent_async2("second-arg-value") - # sync_dummy_func("second-dummycall-arg") + DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME.flush() + stats = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME.drain_stats() + print("STATS", stats) + assert_that(stats.started).is_equal_to(15) + assert_that(stats.finalized).is_equal_to(stats.started) + assert_that(stats.submitted).is_equal_to(stats.started) + assert_that(stats.sent).is_equal_to(stats.started) + assert_that(stats.done).is_equal_to(stats.started) + assert_that(stats.failed).is_equal_to(0) def test_tracing_sync(): @@ -238,6 +337,11 @@ async def test_tracing_async_gather(): await trace_async_gather() +@pytest.mark.asyncio +async def test_tracing_async_gather_top_level(): + await asyncio.gather(*[async_dummy_func("second-dummycall-arg") for _ in range(10)]) + + import concurrent.futures @@ -258,12 +362,14 @@ async def trace_thread_pool_async(): # Create 10 tasks and execute them futures = [executor.submit(trace_async_gather) for _ in range(10)] for future in concurrent.futures.as_completed(futures): - res = await future.result() + _ = await future.result() @trace async def trace_async_gather(): - await asyncio.gather(*[async_dummy_func("second-dummycall-arg") for _ in range(10)]) + await asyncio.gather( + *[async_dummy_func("handcrafted-artisan-arg") for _ in range(10)] + ) @trace @@ -347,19 +453,88 @@ async def test_dynamic_class_output(): for prop in tb.DynamicOutput.list_properties(): print(f"Property: {prop}") - output = await b.MyFunc(input="My name is Harrison. My hair is black and I'm 6 feet tall.", baml_options={"tb": tb}) + output = await b.MyFunc( + input="My name is Harrison. My hair is black and I'm 6 feet tall.", + baml_options={"tb": tb}, + ) + output = await b.MyFunc( + input="My name is Harrison. My hair is black and I'm 6 feet tall.", + baml_options={"tb": tb}, + ) print(output.model_dump_json()) assert output.hair_color == "black" + +@pytest.mark.asyncio +async def test_dynamic_class_nested_output_no_stream(): + tb = TypeBuilder() + nested_class = tb.add_class("Name") + nested_class.add_property("first_name", tb.string()) + nested_class.add_property("last_name", tb.string().optional()) + nested_class.add_property("middle_name", tb.string().optional()) + + other_nested_class = tb.add_class("Address") + + # name should be first in the prompt schema + tb.DynamicOutput.add_property("name", nested_class.type().optional()) + tb.DynamicOutput.add_property("address", other_nested_class.type().optional()) + tb.DynamicOutput.add_property("hair_color", tb.string()).alias("hairColor") + tb.DynamicOutput.add_property("height", tb.float().optional()) + + output = await b.MyFunc( + input="My name is Mark Gonzalez. My hair is black and I'm 6 feet tall.", + baml_options={"tb": tb}, + ) + print(output.model_dump_json()) + # assert the order of the properties inside output dict: + assert ( + output.model_dump_json() + == '{"name":{"first_name":"Mark","last_name":"Gonzalez","middle_name":null},"address":null,"hair_color":"black","height":6.0}' + ) + + +@pytest.mark.asyncio +async def test_dynamic_class_nested_output_stream(): + tb = TypeBuilder() + nested_class = tb.add_class("Name") + nested_class.add_property("first_name", tb.string()) + nested_class.add_property("last_name", tb.string().optional()) + + # name should be first in the prompt schema + tb.DynamicOutput.add_property("name", nested_class.type().optional()) + tb.DynamicOutput.add_property("hair_color", tb.string()) + + stream = b.stream.MyFunc( + input="My name is Mark Gonzalez. My hair is black and I'm 6 feet tall.", + baml_options={"tb": tb}, + ) + msgs = [] + async for msg in stream: + print("streamed ", msg) + print("streamed ", msg.model_dump()) + msgs.append(msg) + output = await stream.get_final_response() + + print(output.model_dump_json()) + # assert the order of the properties inside output dict: + assert ( + output.model_dump_json() + == '{"name":{"first_name":"Mark","last_name":"Gonzalez"},"hair_color":"black"}' + ) + + @pytest.mark.asyncio async def test_stream_dynamic_class_output(): tb = TypeBuilder() tb.DynamicOutput.add_property("hair_color", tb.string()) print(tb.DynamicOutput.list_properties()) - for prop in tb.DynamicOutput.list_properties(): + for prop, _ in tb.DynamicOutput.list_properties(): print(f"Property: {prop}") - stream = b.stream.MyFunc(input="My name is Harrison. My hair is black and I'm 6 feet tall.", baml_options={"tb": tb}) + stream = b.stream.MyFunc( + input="My name is Harrison. My hair is black and I'm 6 feet tall.", + baml_options={"tb": tb}, + ) msgs = [] async for msg in stream: print("streamed ", msg) @@ -373,22 +548,59 @@ async def test_stream_dynamic_class_output(): print("final ", final.model_dump_json()) assert final.hair_color == "black" + @pytest.mark.asyncio async def test_nested_class_streaming(): - stream = b.stream.FnOutputClassNested(input="My name is Harrison. My hair is black and I'm 6 feet tall.") + stream = b.stream.FnOutputClassNested( + input="My name is Harrison. My hair is black and I'm 6 feet tall." + ) msgs = [] async for msg in stream: - print("streamed ", msg.model_dump(mode='json')) + print("streamed ", msg.model_dump(mode="json")) msgs.append(msg) final = await stream.get_final_response() assert len(msgs) > 0, "Expected at least one streamed response but got none." - print("final ", final.model_dump(mode='json')) + print("final ", final.model_dump(mode="json")) + @pytest.mark.asyncio async def test_dynamic_clients(): cb = baml_py.baml_py.ClientBuilder() - cb.add_client("MyClient", "openai", { "model": "gpt-3.5-turbo" }) + cb.add_client("MyClient", "openai", {"model": "gpt-3.5-turbo"}) cb.set_primary("MyClient") - await b.TestOllama(input="My name is Harrison. My hair is black and I'm 6 feet tall.", baml_options={"client_builder": cb}) + await b.TestOllama( + input="My name is Harrison. My hair is black and I'm 6 feet tall.", + baml_options={"client_builder": cb}, + ) + print("final ", final.model_dump(mode="json")) + + +@pytest.mark.asyncio +async def test_event_log_hook(): + def event_log_hook(event: baml_py.baml_py.BamlLogEvent): + print("Event log hook1: ") + print("Event log event ", event) + + on_log_event(event_log_hook) + res = await b.TestFnNamedArgsSingleStringList(["a", "b", "c"]) + assert res + + +@pytest.mark.asyncio +async def test_aws_bedrock(): + ## unstreamed + # res = await b.TestAws("lightning in a rock") + # print("unstreamed", res) + + ## streamed + stream = b.stream.TestAws("lightning in a rock") + + async for msg in stream: + if msg: + print("streamed ", repr(msg[-100:])) + + res = await stream.get_final_response() + print("streamed final", res) + assert len(res) > 0, "Expected non-empty result but got empty." diff --git a/integ-tests/ruby/baml_client/client.rb b/integ-tests/ruby/baml_client/client.rb index b08b95c10..9de2dbe2e 100644 --- a/integ-tests/ruby/baml_client/client.rb +++ b/integ-tests/ruby/baml_client/client.rb @@ -49,6 +49,26 @@ def self.from_directory(path) BamlClient.new(runtime: Baml::Ffi::BamlRuntime.from_directory(path, ENV)) end + sig { + + params( + aud: Baml::Audio, + ).returns(String) + + } + def AudioInput( + aud: + ) + raw = @runtime.call_function( + "AudioInput", + { + "aud" => aud, + }, + @ctx_manager, + ) + (raw.parsed_using_types(Baml::Types)) + end + sig { params( @@ -209,6 +229,46 @@ def DynamicFunc( (raw.parsed_using_types(Baml::Types)) end + sig { + + params( + input: Baml::Types::DynInputOutput, + ).returns(Baml::Types::DynInputOutput) + + } + def DynamicInputOutput( + input: + ) + raw = @runtime.call_function( + "DynamicInputOutput", + { + "input" => input, + }, + @ctx_manager, + ) + (raw.parsed_using_types(Baml::Types)) + end + + sig { + + params( + input: T::Array[Baml::Types::DynInputOutput], + ).returns(T::Array[Baml::Types::DynInputOutput]) + + } + def DynamicListInputOutput( + input: + ) + raw = @runtime.call_function( + "DynamicListInputOutput", + { + "input" => input, + }, + @ctx_manager, + ) + (raw.parsed_using_types(Baml::Types)) + end + sig { params( @@ -249,6 +309,26 @@ def ExtractPeople( (raw.parsed_using_types(Baml::Types)) end + sig { + + params( + email: String, + ).returns(Baml::Types::ReceiptInfo) + + } + def ExtractReceiptInfo( + email: + ) + raw = @runtime.call_function( + "ExtractReceiptInfo", + { + "email" => email, + }, + @ctx_manager, + ) + (raw.parsed_using_types(Baml::Types)) + end + sig { params( @@ -736,11 +816,11 @@ def PromptTestClaudeChatNoSystem( ).returns(String) } - def PromptTestOpenAI( + def PromptTestOpenAIChat( input: ) raw = @runtime.call_function( - "PromptTestOpenAI", + "PromptTestOpenAIChat", { "input" => input, }, @@ -756,11 +836,11 @@ def PromptTestOpenAI( ).returns(String) } - def PromptTestOpenAIChat( + def PromptTestOpenAIChatNoSystem( input: ) raw = @runtime.call_function( - "PromptTestOpenAIChat", + "PromptTestOpenAIChatNoSystem", { "input" => input, }, @@ -776,11 +856,11 @@ def PromptTestOpenAIChat( ).returns(String) } - def PromptTestOpenAIChatNoSystem( + def PromptTestStreaming( input: ) raw = @runtime.call_function( - "PromptTestOpenAIChatNoSystem", + "PromptTestStreaming", { "input" => input, }, @@ -809,6 +889,26 @@ def TestAnthropic( (raw.parsed_using_types(Baml::Types)) end + sig { + + params( + input: String, + ).returns(String) + + } + def TestAws( + input: + ) + raw = @runtime.call_function( + "TestAws", + { + "input" => input, + }, + @ctx_manager, + ) + (raw.parsed_using_types(Baml::Types)) + end + sig { params( @@ -1107,6 +1207,26 @@ def TestOpenAI( (raw.parsed_using_types(Baml::Types)) end + sig { + + params( + input: String, + ).returns(String) + + } + def TestOpenAILegacyProvider( + input: + ) + raw = @runtime.call_function( + "TestOpenAILegacyProvider", + { + "input" => input, + }, + @ctx_manager, + ) + (raw.parsed_using_types(Baml::Types)) + end + sig { returns(String) @@ -1176,6 +1296,27 @@ def initialize(runtime:, ctx_manager:) @ctx_manager = ctx_manager end + sig { + params( + aud: Baml::Audio, + ).returns(Baml::BamlStream[String]) + } + def AudioInput( + aud: + ) + raw = @runtime.stream_function( + "AudioInput", + { + "aud" => aud, + }, + @ctx_manager, + ) + Baml::BamlStream[T.nilable(String), String].new( + ffi_stream: raw, + ctx_manager: @ctx_manager + ) + end + sig { params( input: String, @@ -1344,6 +1485,48 @@ def DynamicFunc( ) end + sig { + params( + input: Baml::Types::DynInputOutput, + ).returns(Baml::BamlStream[Baml::Types::DynInputOutput]) + } + def DynamicInputOutput( + input: + ) + raw = @runtime.stream_function( + "DynamicInputOutput", + { + "input" => input, + }, + @ctx_manager, + ) + Baml::BamlStream[Baml::PartialTypes::DynInputOutput, Baml::Types::DynInputOutput].new( + ffi_stream: raw, + ctx_manager: @ctx_manager + ) + end + + sig { + params( + input: T::Array[Baml::Types::DynInputOutput], + ).returns(Baml::BamlStream[T::Array[Baml::Types::DynInputOutput]]) + } + def DynamicListInputOutput( + input: + ) + raw = @runtime.stream_function( + "DynamicListInputOutput", + { + "input" => input, + }, + @ctx_manager, + ) + Baml::BamlStream[T::Array[Baml::PartialTypes::DynInputOutput], T::Array[Baml::Types::DynInputOutput]].new( + ffi_stream: raw, + ctx_manager: @ctx_manager + ) + end + sig { params( input: String, @@ -1386,6 +1569,27 @@ def ExtractPeople( ) end + sig { + params( + email: String, + ).returns(Baml::BamlStream[Baml::Types::ReceiptInfo]) + } + def ExtractReceiptInfo( + email: + ) + raw = @runtime.stream_function( + "ExtractReceiptInfo", + { + "email" => email, + }, + @ctx_manager, + ) + Baml::BamlStream[Baml::PartialTypes::ReceiptInfo, Baml::Types::ReceiptInfo].new( + ffi_stream: raw, + ctx_manager: @ctx_manager + ) + end + sig { params( resume: String,img: T.nilable(Baml::Image), @@ -1895,11 +2099,11 @@ def PromptTestClaudeChatNoSystem( input: String, ).returns(Baml::BamlStream[String]) } - def PromptTestOpenAI( + def PromptTestOpenAIChat( input: ) raw = @runtime.stream_function( - "PromptTestOpenAI", + "PromptTestOpenAIChat", { "input" => input, }, @@ -1916,11 +2120,11 @@ def PromptTestOpenAI( input: String, ).returns(Baml::BamlStream[String]) } - def PromptTestOpenAIChat( + def PromptTestOpenAIChatNoSystem( input: ) raw = @runtime.stream_function( - "PromptTestOpenAIChat", + "PromptTestOpenAIChatNoSystem", { "input" => input, }, @@ -1937,11 +2141,11 @@ def PromptTestOpenAIChat( input: String, ).returns(Baml::BamlStream[String]) } - def PromptTestOpenAIChatNoSystem( + def PromptTestStreaming( input: ) raw = @runtime.stream_function( - "PromptTestOpenAIChatNoSystem", + "PromptTestStreaming", { "input" => input, }, @@ -1974,6 +2178,27 @@ def TestAnthropic( ) end + sig { + params( + input: String, + ).returns(Baml::BamlStream[String]) + } + def TestAws( + input: + ) + raw = @runtime.stream_function( + "TestAws", + { + "input" => input, + }, + @ctx_manager, + ) + Baml::BamlStream[T.nilable(String), String].new( + ffi_stream: raw, + ctx_manager: @ctx_manager + ) + end + sig { params( input: String, @@ -2289,6 +2514,27 @@ def TestOpenAI( ) end + sig { + params( + input: String, + ).returns(Baml::BamlStream[String]) + } + def TestOpenAILegacyProvider( + input: + ) + raw = @runtime.stream_function( + "TestOpenAILegacyProvider", + { + "input" => input, + }, + @ctx_manager, + ) + Baml::BamlStream[T.nilable(String), String].new( + ffi_stream: raw, + ctx_manager: @ctx_manager + ) + end + sig { params( diff --git a/integ-tests/ruby/baml_client/inlined.rb b/integ-tests/ruby/baml_client/inlined.rb index eb5619c00..6a6545ff2 100644 --- a/integ-tests/ruby/baml_client/inlined.rb +++ b/integ-tests/ruby/baml_client/inlined.rb @@ -16,29 +16,33 @@ module Baml module Inlined FILE_MAP = { - "clients.baml" => "retry_policy Bar {\n max_retries 3\n strategy {\n type exponential_backoff\n }\n}\n\nretry_policy Foo {\n max_retries 3\n strategy {\n type constant_delay\n delay_ms 100\n }\n}\n\nclient GPT4 {\n provider baml-openai-chat\n options {\n model gpt-4\n api_key env.OPENAI_API_KEY\n }\n} \n\n\nclient GPT4o {\n provider baml-openai-chat\n options {\n model gpt-4o\n api_key env.OPENAI_API_KEY\n }\n} \n\n\nclient GPT4Turbo {\n retry_policy Bar\n provider baml-openai-chat\n options {\n model gpt-4-turbo\n api_key env.OPENAI_API_KEY\n }\n} \n\nclient GPT35 {\n provider baml-openai-chat\n options {\n model \"gpt-3.5-turbo\"\n api_key env.OPENAI_API_KEY\n }\n}\n\nclient Ollama {\n provider ollama\n options {\n model llama2\n }\n}\n\nclient GPT35Azure {\n provider azure-openai\n options {\n resource_name \"west-us-azure-baml\"\n deployment_id \"gpt-35-turbo-default\"\n // base_url \"https://west-us-azure-baml.openai.azure.com/openai/deployments/gpt-35-turbo-default\"\n api_version \"2024-02-01\"\n api_key env.AZURE_OPENAI_API_KEY\n }\n}\n\nclient Gemini {\n provider google-ai\n options{\n model \"gemini-1.5-pro-001\"\n api_key env.GOOGLE_API_KEY\n }\n}\n\n\nclient Claude {\n provider anthropic\n options {\n model claude-3-haiku-20240307\n api_key env.ANTHROPIC_API_KEY\n max_tokens 1000\n }\n}\n\nclient Resilient_SimpleSyntax {\n retry_policy Foo\n provider baml-fallback\n options {\n strategy [\n GPT4Turbo\n GPT35\n Lottery_SimpleSyntax\n ]\n }\n} \n \nclient Lottery_SimpleSyntax {\n provider baml-round-robin\n options {\n start 0\n strategy [\n GPT35\n Claude\n ]\n }\n}\n", + "clients.baml" => "retry_policy Bar {\n max_retries 3\n strategy {\n type exponential_backoff\n }\n}\n\nretry_policy Foo {\n max_retries 3\n strategy {\n type constant_delay\n delay_ms 100\n }\n}\n\nclient GPT4 {\n provider openai\n options {\n model gpt-4o\n api_key env.OPENAI_API_KEY\n }\n} \n\n\nclient GPT4o {\n provider openai\n options {\n model gpt-4o\n api_key env.OPENAI_API_KEY\n }\n} \n\n\nclient GPT4Turbo {\n retry_policy Bar\n provider openai\n options {\n model gpt-4-turbo\n api_key env.OPENAI_API_KEY\n }\n} \n\nclient GPT35 {\n provider openai\n options {\n model \"gpt-3.5-turbo\"\n api_key env.OPENAI_API_KEY\n }\n}\n\nclient GPT35LegacyProvider {\n provider openai\n options {\n model \"gpt-3.5-turbo\"\n api_key env.OPENAI_API_KEY\n }\n}\n\n\nclient Ollama {\n provider ollama\n options {\n model llama2\n }\n}\n\nclient GPT35Azure {\n provider azure-openai\n options {\n resource_name \"west-us-azure-baml\"\n deployment_id \"gpt-35-turbo-default\"\n // base_url \"https://west-us-azure-baml.openai.azure.com/openai/deployments/gpt-35-turbo-default\"\n api_version \"2024-02-01\"\n api_key env.AZURE_OPENAI_API_KEY\n }\n}\n\nclient Gemini {\n provider google-ai\n options {\n model \"gemini-1.5-pro-001\"\n api_key env.GOOGLE_API_KEY\n }\n}\n\nclient AwsBedrock {\n provider aws-bedrock\n options {\n inference_configuration {\n max_tokens 100\n }\n model_id \"anthropic.claude-3-haiku-20240307-v1:0\"\n // model_id \"meta.llama3-8b-instruct-v1:0\"\n // model_id \"mistral.mistral-7b-instruct-v0:2\"\n api_key \"\"\n }\n}\n\nclient Claude {\n provider anthropic\n options {\n model claude-3-haiku-20240307\n api_key env.ANTHROPIC_API_KEY\n max_tokens 1000\n }\n}\n\nclient Resilient_SimpleSyntax {\n retry_policy Foo\n provider baml-fallback\n options {\n strategy [\n GPT4Turbo\n GPT35\n Lottery_SimpleSyntax\n ]\n }\n} \n \nclient Lottery_SimpleSyntax {\n provider baml-round-robin\n options {\n start 0\n strategy [\n GPT35\n Claude\n ]\n }\n}\n", "fiddle-examples/chain-of-thought.baml" => "class Email {\n subject string\n body string\n from_address string\n}\n\nenum OrderStatus {\n ORDERED\n SHIPPED\n DELIVERED\n CANCELLED\n}\n\nclass OrderInfo {\n order_status OrderStatus\n tracking_number string?\n estimated_arrival_date string?\n}\n\nfunction GetOrderInfo(email: Email) -> OrderInfo {\n client GPT4\n prompt #\"\n Given the email below:\n\n ```\n from: {{email.from_address}}\n Email Subject: {{email.subject}}\n Email Body: {{email.body}}\n ```\n\n Extract this info from the email in JSON format:\n {{ ctx.output_format }}\n\n Before you output the JSON, please explain your\n reasoning step-by-step. Here is an example on how to do this:\n 'If we think step by step we can see that ...\n therefore the output JSON is:\n {\n ... the json schema ...\n }'\n \"#\n}", "fiddle-examples/chat-roles.baml" => "// This will be available as an enum in your Python and Typescript code.\nenum Category2 {\n Refund\n CancelOrder\n TechnicalSupport\n AccountIssue\n Question\n}\n\nfunction ClassifyMessage2(input: string) -> Category {\n client GPT4\n\n prompt #\"\n {{ _.role(\"system\") }}\n // You can use _.role(\"system\") to indicate that this text should be a system message\n\n Classify the following INPUT into ONE\n of the following categories:\n\n {{ ctx.output_format }}\n\n {{ _.role(\"user\") }}\n // And _.role(\"user\") to indicate that this text should be a user message\n\n INPUT: {{ input }}\n\n Response:\n \"#\n}", "fiddle-examples/classify-message.baml" => "// This will be available as an enum in your Python and Typescript code.\nenum Category {\n Refund\n CancelOrder\n TechnicalSupport\n AccountIssue\n Question\n}\n\nfunction ClassifyMessage(input: string) -> Category {\n client GPT4\n\n prompt #\"\n Classify the following INPUT into ONE\n of the following categories:\n\n INPUT: {{ input }}\n\n {{ ctx.output_format }}\n\n Response:\n \"#\n}", "fiddle-examples/extract-names.baml" => "function ExtractNames(input: string) -> string[] {\n client GPT4\n prompt #\"\n Extract the names from this INPUT:\n \n INPUT:\n ---\n {{ input }}\n ---\n\n {{ ctx.output_format }}\n\n Response:\n \"#\n}\n", - "fiddle-examples/images/image.baml" => "function DescribeImage(img: image) -> string {\n client GPT4Turbo\n prompt #\"\n {{ _.role(\"user\") }}\n\n\n Describe the image below in 5 words:\n {{ img }}\n \"#\n\n}\n\nclass FakeImage {\n url string\n}\n\nclass ClassWithImage {\n myImage image\n param2 string\n fake_image FakeImage\n}\n\n// chat role user present\nfunction DescribeImage2(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n {{ _.role(\"user\") }}\n You should return 2 answers that answer the following commands.\n\n 1. Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n 2. Also tell me what's happening here in one sentence:\n {{ img2 }}\n \"#\n}\n\n// no chat role\nfunction DescribeImage3(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}:\n {{ img2 }}\n \"#\n}\n\n\n// system prompt and chat prompt\nfunction DescribeImage4(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n {{ _.role(\"system\")}}\n\n Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}:\n {{ img2 }}\n \"#\n}", + "fiddle-examples/extract-receipt-info.baml" => "class ReceiptItem {\n name string\n description string?\n quantity int\n price float\n}\n\nclass ReceiptInfo {\n items ReceiptItem[]\n total_cost float?\n}\n\nfunction ExtractReceiptInfo(email: string) -> ReceiptInfo {\n client GPT4o\n prompt #\"\n Given the receipt below:\n\n ```\n {{email}}\n ```\n\n {{ ctx.output_format }}\n \"#\n}\n\n", + "fiddle-examples/images/image.baml" => "function DescribeImage(img: image) -> string {\n client AwsBedrock\n prompt #\"\n {{ _.role(\"user\") }}\n\n\n Describe the image below in 20 words:\n {{ img }}\n \"#\n\n}\n\nclass FakeImage {\n url string\n}\n\nclass ClassWithImage {\n myImage image\n param2 string\n fake_image FakeImage\n}\n\n// chat role user present\nfunction DescribeImage2(classWithImage: ClassWithImage, img2: image) -> string { \n client GPT4Turbo\n prompt #\"\n {{ _.role(\"user\") }}\n You should return 2 answers that answer the following commands.\n\n 1. Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n 2. Also tell me what's happening here in one sentence:\n {{ img2 }}\n \"#\n}\n\n// no chat role\nfunction DescribeImage3(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}:\n {{ img2 }}\n \"#\n}\n\n\n// system prompt and chat prompt\nfunction DescribeImage4(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n {{ _.role(\"system\")}}\n\n Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}:\n {{ img2 }}\n \"#\n}\n\ntest TestName {\n functions [DescribeImage]\n args {\n img { url \"https://imgs.xkcd.com/comics/standards.png\"}\n }\n}\n", "fiddle-examples/symbol-tuning.baml" => "enum Category3 {\n Refund @alias(\"k1\")\n @description(\"Customer wants to refund a product\")\n\n CancelOrder @alias(\"k2\")\n @description(\"Customer wants to cancel an order\")\n\n TechnicalSupport @alias(\"k3\")\n @description(\"Customer needs help with a technical issue unrelated to account creation or login\")\n\n AccountIssue @alias(\"k4\")\n @description(\"Specifically relates to account-login or account-creation\")\n\n Question @alias(\"k5\")\n @description(\"Customer has a question\")\n}\n\nfunction ClassifyMessage3(input: string) -> Category {\n client GPT4\n\n prompt #\"\n Classify the following INPUT into ONE\n of the following categories:\n\n INPUT: {{ input }}\n\n {{ ctx.output_format }}\n\n Response:\n \"#\n}", "main.baml" => "generator lang_python {\n output_type python/pydantic\n output_dir \"../python\"\n}\n\ngenerator lang_typescript {\n output_type typescript\n output_dir \"../typescript\"\n}\n\ngenerator lang_ruby {\n output_type ruby/sorbet\n output_dir \"../ruby\"\n}\n", "test-files/aliases/classes.baml" => "class TestClassAlias {\n key string @alias(\"key-dash\") @description(#\"\n This is a description for key\n af asdf\n \"#)\n key2 string @alias(\"key21\")\n key3 string @alias(\"key with space\")\n key4 string //unaliased\n key5 string @alias(\"key.with.punctuation/123\")\n}\n\nfunction FnTestClassAlias(input: string) -> TestClassAlias {\n client GPT35\n prompt #\"\n {{ctx.output_format}}\n \"#\n}\n\ntest FnTestClassAlias {\n functions [FnTestClassAlias]\n args {\n input \"example input\"\n }\n}\n", "test-files/aliases/enums.baml" => "enum TestEnum {\n A @alias(\"k1\") @description(#\"\n User is angry\n \"#)\n B @alias(\"k22\") @description(#\"\n User is happy\n \"#)\n // tests whether k1 doesnt incorrectly get matched with k11\n C @alias(\"k11\") @description(#\"\n User is sad\n \"#)\n D @alias(\"k44\") @description(\n User is confused\n )\n E @description(\n User is excited\n )\n F @alias(\"k5\") // only alias\n \n G @alias(\"k6\") @description(#\"\n User is bored\n With a long description\n \"#)\n \n @@alias(\"Category\")\n}\n\nfunction FnTestAliasedEnumOutput(input: string) -> TestEnum {\n client GPT35\n prompt #\"\n Classify the user input into the following category\n \n {{ ctx.output_format }}\n\n {{ _.role('user') }}\n {{input}}\n\n {{ _.role('assistant') }}\n Category ID:\n \"#\n}\n\ntest FnTestAliasedEnumOutput {\n functions [FnTestAliasedEnumOutput]\n args {\n input \"mehhhhh\"\n }\n}", "test-files/comments/comments.baml" => "// add some functions, classes, enums etc with comments all over.", - "test-files/dynamic/dynamic.baml" => "class DynamicClassOne {\n @@dynamic\n}\n\nenum DynEnumOne {\n @@dynamic\n}\n\nenum DynEnumTwo {\n @@dynamic\n}\n\nclass SomeClassNestedDynamic {\n hi string\n @@dynamic\n\n}\n\nclass DynamicClassTwo {\n hi string\n some_class SomeClassNestedDynamic\n status DynEnumOne\n @@dynamic\n}\n\nfunction DynamicFunc(input: DynamicClassOne) -> DynamicClassTwo {\n client GPT35\n prompt #\"\n Please extract the schema from \n {{ input }}\n\n {{ ctx.output_format }}\n \"#\n}\n\nclass DynamicOutput {\n @@dynamic\n}\n \nfunction MyFunc(input: string) -> DynamicOutput {\n client GPT4\n prompt #\"\n Given a string, extract info using the schema:\n\n {{ input}}\n\n {{ ctx.output_format }}\n \"#\n}", + "test-files/dynamic/dynamic.baml" => "class DynamicClassOne {\n @@dynamic\n}\n\nenum DynEnumOne {\n @@dynamic\n}\n\nenum DynEnumTwo {\n @@dynamic\n}\n\nclass SomeClassNestedDynamic {\n hi string\n @@dynamic\n\n}\n\nclass DynamicClassTwo {\n hi string\n some_class SomeClassNestedDynamic\n status DynEnumOne\n @@dynamic\n}\n\nfunction DynamicFunc(input: DynamicClassOne) -> DynamicClassTwo {\n client GPT35\n prompt #\"\n Please extract the schema from \n {{ input }}\n\n {{ ctx.output_format }}\n \"#\n}\n\nclass DynInputOutput {\n testKey string\n @@dynamic\n}\n\nfunction DynamicInputOutput(input: DynInputOutput) -> DynInputOutput {\n client GPT35\n prompt #\"\n Here is some input data:\n ----\n {{ input }}\n ----\n\n Extract the information.\n {{ ctx.output_format }}\n \"#\n}\n\nfunction DynamicListInputOutput(input: DynInputOutput[]) -> DynInputOutput[] {\n client GPT35\n prompt #\"\n Here is some input data:\n ----\n {{ input }}\n ----\n\n Extract the information.\n {{ ctx.output_format }}\n \"#\n}\n\n\n\nclass DynamicOutput {\n @@dynamic\n}\n \nfunction MyFunc(input: string) -> DynamicOutput {\n client GPT35\n prompt #\"\n Given a string, extract info using the schema:\n\n {{ input}}\n\n {{ ctx.output_format }}\n \"#\n}\n\n", + "test-files/functions/input/named-args/single/named-audio.baml" => "function AudioInput(aud: audio) -> string{\n client Gemini\n prompt #\"\n {{ _.role(\"user\") }}\n\n Does this sound like a roar? Yes or no? One word no other characters.\n \n {{ aud }}\n \"#\n}\n\n\ntest TestURLAudioInput{\n functions [AudioInput]\n args {\n aud{ \n url https://actions.google.com/sounds/v1/emergency/beeper_emergency_call.ogg\n }\n } \n}\n\n\n", "test-files/functions/input/named-args/single/named-boolean.baml" => "\n\nfunction TestFnNamedArgsSingleBool(myBool: bool) -> string{\n client GPT35\n prompt #\"\n Return this value back to me: {{myBool}}\n \"#\n}\n\ntest TestFnNamedArgsSingleBool {\n functions [TestFnNamedArgsSingleBool]\n args {\n myBool true\n }\n}", "test-files/functions/input/named-args/single/named-class-list.baml" => "\n\n\nfunction TestFnNamedArgsSingleStringList(myArg: string[]) -> string{\n client GPT35\n prompt #\"\n Return this value back to me: {{myArg}}\n \"#\n}\n\ntest TestFnNamedArgsSingleStringList {\n functions [TestFnNamedArgsSingleStringList]\n args {\n myArg [\"hello\", \"world\"]\n }\n}", "test-files/functions/input/named-args/single/named-class.baml" => "class NamedArgsSingleClass {\n key string\n key_two bool\n key_three int\n // TODO: doesn't work with keys with numbers\n // key2 bool\n // key3 int\n}\n\nfunction TestFnNamedArgsSingleClass(myArg: NamedArgsSingleClass) -> string {\n client GPT35\n prompt #\"\n Print these values back to me:\n {{myArg.key}}\n {{myArg.key_two}}\n {{myArg.key_three}}\n \"#\n}\n\ntest TestFnNamedArgsSingleClass {\n functions [TestFnNamedArgsSingleClass]\n args {\n myArg {\n key \"example\",\n key_two true,\n key_three 42\n }\n }\n}\n\nfunction TestMulticlassNamedArgs(myArg: NamedArgsSingleClass, myArg2: NamedArgsSingleClass) -> string {\n client GPT35\n prompt #\"\n Print these values back to me:\n {{myArg.key}}\n {{myArg.key_two}}\n {{myArg.key_three}}\n {{myArg2.key}}\n {{myArg2.key_two}}\n {{myArg2.key_three}}\n \"#\n}", "test-files/functions/input/named-args/single/named-enum-list.baml" => "enum NamedArgsSingleEnumList {\n ONE\n TWO\n}\n\nfunction TestFnNamedArgsSingleEnumList(myArg: NamedArgsSingleEnumList[]) -> string {\n client GPT35\n prompt #\"\n Print these values back to me:\n {{myArg}}\n \"#\n}\n\ntest TestFnNamedArgsSingleEnumList {\n functions [TestFnNamedArgsSingleEnumList]\n args {\n myArg [ONE, TWO]\n }\n}", "test-files/functions/input/named-args/single/named-enum.baml" => "enum NamedArgsSingleEnum {\n ONE\n TWO\n}\n\nfunction FnTestNamedArgsSingleEnum(myArg: NamedArgsSingleEnum) -> string {\n client GPT35\n prompt #\"\n Print these values back to me:\n {{myArg}}\n \"#\n}\n\ntest FnTestNamedArgsSingleEnum {\n functions [FnTestNamedArgsSingleEnum]\n args {\n myArg ONE\n }\n}", "test-files/functions/input/named-args/single/named-float.baml" => "function TestFnNamedArgsSingleFloat(myFloat: float) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myFloat}}\n \"#\n}\n\ntest TestFnNamedArgsSingleFloat {\n functions [TestFnNamedArgsSingleFloat]\n args {\n myFloat 3.14\n }\n}\n", - "test-files/functions/input/named-args/single/named-image.baml" => "function TestImageInput(img: image) -> string{\n client GPT4o\n prompt #\"\n {{ _.role(\"user\") }}\n\n Describe this in 4 words {{img}}\n \"#\n}\n\ntest TestImageInput {\n functions [TestImageInput]\n args {\n img {\n url \"https://www.google.com/images/branding/googlelogo/2x/googlelogo_color_92x30dp.png\"\n }\n }\n}\n\ntest shrek {\n functions [TestImageInput]\n args {\n img {\n url \"https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png\"\n }\n }\n}\n\n\n// double check this before adding it. Probably n ot right.\n// function TestImageInputAnthropic(img: image) -> string{\n// client GPT4o\n// prompt #\"\n// {{ _.role(\"user\") }}\n\n// Describe this in 4 words {{img}}\n// \"#\n// }\n\n// test TestImageInputAnthropic {\n// functions [TestImageInputAnthropic]\n// args {\n// img {\n// base64 iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAApgAAAKYB3X3/OAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAANCSURBVEiJtZZPbBtFFMZ/M7ubXdtdb1xSFyeilBapySVU8h8OoFaooFSqiihIVIpQBKci6KEg9Q6H9kovIHoCIVQJJCKE1ENFjnAgcaSGC6rEnxBwA04Tx43t2FnvDAfjkNibxgHxnWb2e/u992bee7tCa00YFsffekFY+nUzFtjW0LrvjRXrCDIAaPLlW0nHL0SsZtVoaF98mLrx3pdhOqLtYPHChahZcYYO7KvPFxvRl5XPp1sN3adWiD1ZAqD6XYK1b/dvE5IWryTt2udLFedwc1+9kLp+vbbpoDh+6TklxBeAi9TL0taeWpdmZzQDry0AcO+jQ12RyohqqoYoo8RDwJrU+qXkjWtfi8Xxt58BdQuwQs9qC/afLwCw8tnQbqYAPsgxE1S6F3EAIXux2oQFKm0ihMsOF71dHYx+f3NND68ghCu1YIoePPQN1pGRABkJ6Bus96CutRZMydTl+TvuiRW1m3n0eDl0vRPcEysqdXn+jsQPsrHMquGeXEaY4Yk4wxWcY5V/9scqOMOVUFthatyTy8QyqwZ+kDURKoMWxNKr2EeqVKcTNOajqKoBgOE28U4tdQl5p5bwCw7BWquaZSzAPlwjlithJtp3pTImSqQRrb2Z8PHGigD4RZuNX6JYj6wj7O4TFLbCO/Mn/m8R+h6rYSUb3ekokRY6f/YukArN979jcW+V/S8g0eT/N3VN3kTqWbQ428m9/8k0P/1aIhF36PccEl6EhOcAUCrXKZXXWS3XKd2vc/TRBG9O5ELC17MmWubD2nKhUKZa26Ba2+D3P+4/MNCFwg59oWVeYhkzgN/JDR8deKBoD7Y+ljEjGZ0sosXVTvbc6RHirr2reNy1OXd6pJsQ+gqjk8VWFYmHrwBzW/n+uMPFiRwHB2I7ih8ciHFxIkd/3Omk5tCDV1t+2nNu5sxxpDFNx+huNhVT3/zMDz8usXC3ddaHBj1GHj/As08fwTS7Kt1HBTmyN29vdwAw+/wbwLVOJ3uAD1wi/dUH7Qei66PfyuRj4Ik9is+hglfbkbfR3cnZm7chlUWLdwmprtCohX4HUtlOcQjLYCu+fzGJH2QRKvP3UNz8bWk1qMxjGTOMThZ3kvgLI5AzFfo379UAAAAASUVORK5CYII=\n// media_type \"png\"\n// }\n// }\n// }", + "test-files/functions/input/named-args/single/named-image.baml" => "function TestImageInput(img: image) -> string{\n client AwsBedrock\n prompt #\"\n {{ _.role(\"user\") }}\n\n Describe this in 4 words. One word must be the color {{img}}\n \"#\n}\n\ntest TestImageInput {\n functions [TestImageInput]\n args {\n img {\n url \"https://www.google.com/images/branding/googlelogo/2x/googlelogo_color_92x30dp.png\"\n }\n }\n}\n\ntest shrek {\n functions [TestImageInput]\n args {\n img {\n url \"https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png\"\n }\n }\n}\n\n\n\n// double check this before adding it. Probably n ot right.\n// function TestImageInputAnthropic(img: image) -> string{\n// client GPT4o\n// prompt #\"\n// {{ _.role(\"user\") }}\n\n// Describe this in 4 words {{img}}\n// \"#\n// }\n\n// test TestImageInputAnthropic {\n// functions [TestImageInputAnthropic]\n// args {\n// img {\n// base64 iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAApgAAAKYB3X3/OAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAANCSURBVEiJtZZPbBtFFMZ/M7ubXdtdb1xSFyeilBapySVU8h8OoFaooFSqiihIVIpQBKci6KEg9Q6H9kovIHoCIVQJJCKE1ENFjnAgcaSGC6rEnxBwA04Tx43t2FnvDAfjkNibxgHxnWb2e/u992bee7tCa00YFsffekFY+nUzFtjW0LrvjRXrCDIAaPLlW0nHL0SsZtVoaF98mLrx3pdhOqLtYPHChahZcYYO7KvPFxvRl5XPp1sN3adWiD1ZAqD6XYK1b/dvE5IWryTt2udLFedwc1+9kLp+vbbpoDh+6TklxBeAi9TL0taeWpdmZzQDry0AcO+jQ12RyohqqoYoo8RDwJrU+qXkjWtfi8Xxt58BdQuwQs9qC/afLwCw8tnQbqYAPsgxE1S6F3EAIXux2oQFKm0ihMsOF71dHYx+f3NND68ghCu1YIoePPQN1pGRABkJ6Bus96CutRZMydTl+TvuiRW1m3n0eDl0vRPcEysqdXn+jsQPsrHMquGeXEaY4Yk4wxWcY5V/9scqOMOVUFthatyTy8QyqwZ+kDURKoMWxNKr2EeqVKcTNOajqKoBgOE28U4tdQl5p5bwCw7BWquaZSzAPlwjlithJtp3pTImSqQRrb2Z8PHGigD4RZuNX6JYj6wj7O4TFLbCO/Mn/m8R+h6rYSUb3ekokRY6f/YukArN979jcW+V/S8g0eT/N3VN3kTqWbQ428m9/8k0P/1aIhF36PccEl6EhOcAUCrXKZXXWS3XKd2vc/TRBG9O5ELC17MmWubD2nKhUKZa26Ba2+D3P+4/MNCFwg59oWVeYhkzgN/JDR8deKBoD7Y+ljEjGZ0sosXVTvbc6RHirr2reNy1OXd6pJsQ+gqjk8VWFYmHrwBzW/n+uMPFiRwHB2I7ih8ciHFxIkd/3Omk5tCDV1t+2nNu5sxxpDFNx+huNhVT3/zMDz8usXC3ddaHBj1GHj/As08fwTS7Kt1HBTmyN29vdwAw+/wbwLVOJ3uAD1wi/dUH7Qei66PfyuRj4Ik9is+hglfbkbfR3cnZm7chlUWLdwmprtCohX4HUtlOcQjLYCu+fzGJH2QRKvP3UNz8bWk1qMxjGTOMThZ3kvgLI5AzFfo379UAAAAASUVORK5CYII=\n// media_type \"image/png\"\n// }\n// }\n// }", "test-files/functions/input/named-args/single/named-int.baml" => "// test for int\nfunction TestFnNamedArgsSingleInt(myInt: int) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myInt}}\n \"#\n}\n\ntest TestFnNamedArgsSingleInt {\n functions [TestFnNamedArgsSingleInt]\n args {\n myInt 42\n }\n}\n", "test-files/functions/input/named-args/single/named-string-list.baml" => "// string[]\nfunction TestFnNamedArgsSingleStringArray(myStringArray: string[]) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myStringArray}}\n \"#\n}\n\ntest TestFnNamedArgsSingleStringArray {\n functions [TestFnNamedArgsSingleStringArray]\n args {\n myStringArray [\"example1\", \"example2\", \"example3\"]\n }\n}\n", "test-files/functions/input/named-args/single/named-string-optional.baml" => "\n\n // string[]\nfunction FnNamedArgsSingleStringOptional(myString: string?) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myString}}\n \"#\n}\n\ntest FnNamedArgsSingleStringOptional {\n functions [FnNamedArgsSingleStringOptional]\n args {\n myString \"example string\"\n }\n}\n\ntest FnNamedArgsSingleStringOptional2 {\n functions [FnNamedArgsSingleStringOptional]\n args {\n \n }\n}\n", "test-files/functions/input/named-args/single/named-string.baml" => "// test string\nfunction TestFnNamedArgsSingleString(myString: string) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myString}}\n \"#\n}\n\ntest TestFnNamedArgsSingleString {\n functions [TestFnNamedArgsSingleString]\n args {\n myString \"example string\"\n }\n}\n", + "test-files/functions/input/named-args/single/testcase_audio.baml" => "test TestAudioInput {\n functions [AudioInput]\n args {\n aud {\n media_type \"audio/mp3\"\n base64 #\"\n //uQZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWGluZwAAAA8AAABRAACbvAACBAgKDQ0QExcZGRweIiQkJyouMTQ0ODs+QkJFSUxPT1NWWl1dYGRna25ucXV4e3t/goaJiYyPkpaWmJyfoqamqq2ws7O3ur3BwcTHy87O0tbZ3eHh5Ofq7e3v8vT29vr7//8AAAA8TEFNRTMuOThyBK8AAAAAAAAAADQgJATvTQABzAAAm7x1lCT3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//twRAAAASMHzuhDEEgnoLnaCGMFC2CpO6wMT2EoDCd1hI00AAAAEQIDYHAsIIQAAEoGVMIIxHu2NU7D//6gx93/////b/rA4AABkADS8C7uaACBBcE4PiDEHG1v///8H4nB8CAgcnAfD/+XeJ//kJECiCQEJfI6HOSeUxLVpnrJo2rNIWOyh0ICisofyinwxQgwhC62QhoOq/VUc83SH50lBBW/zGlu7+rRJASS9aBdydWL4sDQNcGniICjWjQVUyz/r9Svasqk8mh2IEEAAF/3UCwpAWzBRxYSYYCG20kc8DZACBhYYL23pA9szuRYqDCiBhWU248WncakPjwAC//nqPjvVXbWoPCK5RxQpjrEb97tLtAAAAQCp/rY1YKFgEQGMiBKAl8eUUGLqIoKGJ8ymCSMEwbECv/7kGQSAELxHk7rCRtIUwN5zWEjdw641TWtYKfpzSHmqYYV5Tii6JucjDmcIwNidRSd8wROBJyGzaGHgEKFeKnm7nRASdEp9w0vMPKtoFqO0i8msqeRPqJvXWtGr/RegAAAAQf64JA85lKUzT1BLCVKxy3bzsmdNx7sBs/i9VAmPriMqzNVjGmwuiQIBz3xikXxobjFRgiHndkmCCWkzSFpKpQkWj7iK9vZoTq226qlyCgAAAAAK/1mAxhkJhwxggAiPFC86QFrpheGHGVl9CarY31L4s6dty4Uu1ptLBMgt1oI1194JiUBOVS/2DCiqTtsQqB1y7f1e3IvSt7LMcvV1V3nxbVrft1t9tYuR4hXw3i//Y/k/rKdc7774/xl8PzPwUaUb/bAAJf+11ymYAvCQjJBrYY8YCnDgQHRym2vv8v59AIgJeHcj2pdsuqSQRB/XGYAZBZjmcToT75GoqmPEUAc4k3+0t3tqieurldHetVIRirRUdybkWtkvcip8dZb3/jWz7A94WhLxHjLylb6kCt/8D25Xz2hqtgQAAACJ//7oGQDAANlHk1taYAIZgOZray8AQzEeTdZvAABnhJmtzWAAPZIEFDZvQUJMuOAwMwPMyI4BAwqzSXR8EIhNtYNWtp7TH+CgJDcSxKAuSHys6vLviQgE0SzUt/MwOpdg/KWnZpToR+hXxdcxRIW2TD+u8ji46iPZJCHTY6/IMD7TSrE+m7sjEDXs2bAAAAAAn/VwrHMcQxxTHqSGBjZtFl0H0DiVfjo7XX8V8+6fcfQ9DhI2JOQFtnzPpmiHUh6wxrbTfPzPW9PnOs3hbe57ODrvZvT1y765AQ3Ldn1mLQYFlQeKWqb7vfoin7YEY3oFkgQgAYJbTfgAAAAAF7QocrjMWjmvhWQUBEiUwIrMCOTOx0wgJTWHgQRlRgAGJIgGB0uZsK5MYGOIAWsNKa/FUd1lOC1VkM7WoKyNE3Xp2hxCOxV+LFM/UJVxMMikDjPZ3chjr9116cEACAACAALIPwAAAAACJSbr48SeTwAhSRg0hzTjgMBGA40UDARfAoLAIgCjbkv+/g0QDXa112Hf0zRyAKFxWeRa3C8KrdGpQRCl+yKDHem8Got6xG7TTay5czfkMO7J////8v/Wvs7asAAAAA+sjBwaYAQI6mAiwFATV7w2pETXlQyIg0BJhgy4VbIFAdIZ+4sh8kKPinBCNslLIrLvv87MeX4/7aOC48X3Z5jW3E5yL/ruv/7kGQlhEOdHkzXbwAIZaO5muy8AQ1MdzWtPSthgQ7mqMwkfMalWWXs6e/c76CiVNONeXdeTShNm2w+LD3b1Lm9rxUP4FM2YHX//+5UAAAAEfSQJ1u5BM+XAN1Q4DRZJAKDkU90eAug7K0V7OWomGGpQzR2FhQ9Ww1lAptDDLJ4cp1GSnlHG/snkIaFG5SarjEaFuEpE/R0/oiwqboZk0si7dH6ss5bZm8QaagzUYbaVPqgAAAC/1gMOpXWX3AR8u6aAAfRK3QiGGXCoBwqwCPgTA6BMRwB/hmDCE8IKj1Cn2M0Hz1cIaohiEpXR/VT32xIoot89VJd0MLhJ7uXU1IsLZkMjGmb1WPFQM0aEDReiEGT6yVwq5WErD3TToAAF/rAgiMKy4gHC1y0olOVr1QEgpYX2tRNBWlZCRL7MEZYk85Tyz0rCgyacRhAOioFiMG5/8hGxOh2WdL0U3pYox8IqkHxQNrW8qGE0zNsfDaA5a1TFjEFAYShfXV2V1AAAAACB/ZIJBSGoGARQTaeCJc3oDLvgww+hOVYwAcRBWcBZP/7kGQSBGNuG81reEnYZGNpumHpaQ3UbzW1t4Ahd47mtrDwBIAow+wQ4ocu5Sa94y7JMFxouRhUTCImQBWW+kC5dMT3npMnTxzgf8+LQy9YpAAic1oKtYg9lJZ4dnWVoSkeJsXYyqLe60v+n+uswAAAAf7aL1iEwylSsEcaKxP+XTLnFnVDhAOHjYHjGKETkYrIN9VKZdtCXfPFSdKGJo4HqirfSEESQMadz1LQ82UP/paw3WuEFPZcoAoFnvbmTMyQUwVQFxiiinB5DjaDNqj6SkYAAAH1kbghwKOBQ4RAIHNKiTIykQhphYuYQYhQCLrFUhfZFxCUwpPkDKAkCXJihigY1WhyHTKpQqBCTIUTOro3vizPSrdL9+a1nUEDnPUPMJJIi/1m2MoQJZ0udLT7mNRq08YtcOGWOEspV2+/odAA9sDfQhA+feIuAdvjdUAo1RlyAZbsOK7LgypfJ0j/JwrzSXR+oecrKm1yzl1VhYnpqNrl72Y2itMV3+8iXjx4nj7+pwpbPiZiVOgI/EOPYvILYq6eQJ1hj6kKoHKAAP/7oGQBAANzHk1ubwAAc6SZrc3gAA0cezVZvAABnZDmtzWAAAAAAAoD9gagAAAAAKERjdOUDwrIl4QstmvlqCUFcxgyCaibhgKZyLtDMLJDBwAGAIIFAyb7GyhP4BOQ+ghFZnC9QqALnQFJvORIqSORBHCrQV1lyHr/EQWZtHVBD7JWsucivJMZIyWxB37EvZwyAggAAiA8rfQAAAAAZQImH2b4AwOHiUSSzSwExIPNFPgINmPiAhDTASsVFBImCC0GhJedb6xACwuyXpY45cCsHfVHUeaWhEYVjPu0OvNItNOuuRJoH26tanpGBuOjmm7DyFgQqw+LN3+s9///+f//87NLwAAFCa9d+AAAAAACFEyWhHQ0SbKYVNjEyAEE5npCYYAmmiDM27AIhKI0xsJGmAqgT9oaEJB5Ja5mKynicJmj0IMJeK/XPAcN9lyD7TpRt3Ych2AmXEICBTAYDbC5TD3It1JXD7WqbmnRAAAAUQAmQa98AAAAAAUHDlBVpGHHw+QJzzlB0GY8sjmc4qhmTN2sDw4WAjRQKBmaJhl+w5kNFwZS5L6zq9gwjBC4oyB5G25OszkFiBG0gerEezLqzU/ZwQ8XWUKilxrLqOJ3///v5WrEVEgJjEaLqDgAAAAAAChQaqLpglIgnM5INOGLkCE0FSRl15pyysF0eEr3NQIHjbhvnGG5l//7kGQagAL8HlNuawCQbqSZnc3gAA7MdzVdt4Ahig6mt7DwBChprBITCZppqukxkjl4yaDr9tl8pft02TQfq/BMzjHN6vX7eFC/FBRwvvwCgDAAAAAIP+AAAAAAEKiMN7nCIYcsAmASOAgHMSXwSToEDDAkmEAESBQDBA4tIw4NgxQdTtoZhaAINDiECtfRyZSzFBcwQbq/VucbNTv/CEF6WVMsg7UL7CZNcdyAK+daVp3zUs///4X/679uhuAAAAAf6SAIcGQlrg4ICA0NBtB5WMKBhAAu8NBABKDGAcKAaihgQADg4eAkeXEXpYy1SyPMo/Each7TpALQcagTrVGvBbYOG66JktF8aPPM2uFWOG/xWPau8Ji1671OQ1yyVD+84lDCobahNCOVn6K3/2a7a7KVAAAAAAB/rA9LivIDjv+EhdMtmNDBxVkrxUCDjrAJcOS1s/DkSJ0lGfKKlfM5AUSaJZEbBtE2PfcV5FYbR0i56zefDxrTWbI9UN6Pxrz2uNtYbSR7s6kgbbOcWIvG1stdq510AAAAAA/2RhzRhf/7oGQFhWPkL8zrWDn4Z6PJvWXpkwy4dzVNYSfhiw4m6YYZ3IgDEBklMm0+HxJiWUg2ZjgjBj4DFs2B2jNVAE4LLTWBP1mg09VrMZW2zgNTVlbsWrIwrPbWYi544FxEHwKDIQGEUDaigMDg+FhqKCo8/+5iURnop2yvonNlwAPFzSLCyBslQpOfA7e/dw7ugMv9On++yIAAAAAAf2QM5Q8UajjIzTOOZ5OpUjcmdKbl6081lpqIlK/YUn3Qug8L7OFOrkyw6RiI8NENJTKBD2hxHITDYdHSLat9ETZHQyIBftZ5/OFL0IYBSRdQrXbaRnTrt7HWuFJzWrRXhQ3IAABxwEYoMMBwUDMMnNnCNGMByQoeJelYNwSCSHS2fQWWLEf2C0vk90Fl4xGLP67MFS1/nIRXYc06R5yiQCtk4VcRbRrlUjc3ygjH/bIXFtYbemhm5oD1vD5nXk22sTOVcU6VkTniHtlaavByr7NAIQPmU1gJSlFQtygujVInZIjs0EovhKXAlaLpkaDknFpiFBUJ4MCwWeCHhiIkGMpD76khEixY/0Rj7lu9KDAi6EUbX0sQQPOWZLuHe9tss5Gna4lWnQNDmLWEAAAAABb2xhU8QQBYwGsAxIylTOpGo6iHBSgtYJkBjGGcjsXUfAgA9JmqNDzTTadcHyAVpJimLeySXEZhY5NeLLRiUv/7kGQiBGNZHc1rL0rYagPJrWMMHwyEcTWsbSPhcg7maZexXIWnj10Si9ehBqhyw3rJKiz7AmSqVYt09EK5UyTWb4bXpbsUn/6fi7oAAAAAA/sjf9TAqvQFq+FRhH2dChWbycEPPJFY1RQ+sE47LKrbsriD/MgnjA2EtGJR4aCovkxQvMWMgVsKU1ejfTp05m42Jd3f6Hzkz6ouw4LtnyUWjmqT572HWNLtnhx0KLYD7z3X/dVGAgAB/YwJqIFGlxE1X4EwzHCgKByJYUA1DwYBFCYqBMVE1C++4b/q9SdQJOU5TzEaMKgiCIBSQEgSPosu4rwhNpd6TYeJWpCKgaD3rJAodoJxosGylBLGzMKMkxbrbt1L/oZjsAPIwupyKVswiDKmoGOW+uxcjBRAeOdMIcN45SGE9LqnlaLkwsTM8OoLlAjgOHI/jV0bg/2aLl6ZREoYW5QkFUkqI1j/kQ5FnsrOEwi9Yy7voTe3zrUqldu3j9xVvAAAAAAH9tA4PRhMwMNQYTbMpBEY1LlA9QUn4CkaL4fRULbxevIy4aRasf/7kGQVhGL4Hc3rT2IoZiO5rWHsVQyEdzWsPSyhXQ1mtYelHFLnXSyugSEM1XQQRa4s1s7c78eX+t2+xvvO6918hdXX7njnNllKTFJYCqYw+2pVDHIpgSpdkgAAAAf2x45puA+AGOIJhHmfpHQIFgl3QqU4aZfk2TdFkBSYmQ0xFvzaqAyQXB3EVbBLF+YW3dJZ+/Q8U3qseggd+D21GbQzGNOE0rkVMVci04g/UlKYbekiSam6o2R1nkf/7/XEAQABvZI/wYlgwI0wg0CJ7UwMC5Clq+QaYKgViPQJg4SGIk7HFPmir0eiHTwocWAoDZ5qZiGPQMA7rCbqcUXFbE3k58b8lroc0VLXNMyd70XMFH55XT4u7RYy22xtffth/3tlXAEPZJHIBEYC5yyUTFmwUniUIPENIDMrYiIGFAUz1LkpACQOH5HyrkyZkLMKniZvyLwlTJppFvPjB9CP2uLvG1hFw9FVOlVDHcBFdvStL+llHtRstT+ipXAAAAAAB/bAosLGIZJalyyCBON2ioJ538RPIoOa8zvylVQSU5fCZv/7gGQThHLLHc3rDEO4WoOZvWGIaQtUdzesPSqhcg5mkYelFEhEVHeq5yrL5kgMNmMlFHqIbvXSMHoTWS7CTwqhRt/FTSyzXP+n59Y0KgUvlirXP/91TrJIAAAA/tkiTZx0QloANEEBGG8qs3Rs0Ptnai86GE4qHVOQimdryVNjw5dUnril1tdKuhZ6uQrBFSsMIqj1fU8pUducPRC9u0axBy300VJNFrm7EOSTSbs/0VhMABf22GJ4dchKF7CIAXYAlKBoIUI3MWSH2jiYqYcaqYmBFKsuuhF3SY+KiJYgxllDFEtuiZVr/O2fRvR5Abd71Isi7ZKx96VX2aUJYtKepve3OpTfkUsajpiYpQ6suWKn+DlkjkbHQMZTKYeAii+TE6XyQsRMgAcIyJAyxAjXiUJpj0mRGko2hmYTOzW3V7SY2Zpf1Bge4zS9zwhFH2oawi7Hqhaw8oeHL2vbxbV2dWntRdtvm3AQAAAA//ugZAKEQxYczWsPYphmI6mqPwkLDEhzN6xpI2F4D2b1hiWMB/bGYAE2DUgOIquI4JtItJhIrPYIikGPA6UWjSjSpgEFV5CVLki1YXieVqEGmuQrjSUli68YmL+0vdQwf3fG/DN2cHtEZw6xd9dwsmu88lNDHP0mQgmNb1Ftzfp/r8wAAAL/SQ1SsWFTTR3L8kS0qVgxYzqQIpS/7/JkAgJVhICTzJcTQGSdGoSPCh+AqNxOji48SpE4yM4miWNLwkQMhrqQtwx5iYMpSaFkKlh0qZH7HenGyQxIo9AKKW1WoSFvv/rR3xgAABf62BZYYwMMPZMcUAEQeeg4A4ICIL1Qkjwxw1gFbG1ionBQGQwukY0PEJFI0JQoZWaetIshUR1BsnaxlQcI1hUKQ2LfOxe6vuVZh190IVAqZ1t6OBVLxAjYi9SPq7q1RkBgAf6StxJRwCywvI64RV1iECpl2rHRXaVEQeDkSRKK8IZgnQnYOCNkjiPhc3BMkSvyXInLskQIQRMI3SUJDzMHfjR8VLw6jSkpz00qRFDaX/87zn79hV7drW9GxaqIAAAAAAf2MGIYQIHRI4GPCHVHnAHmHJioEaomEChQqj4TA4sr5+lYFtMeiLXWO/YphgEWkQkKEgylZdCyCD1ECsz4iRDAyRBIoCOCrC/psFDo4euoVODbZhGLPCUSmu3N//uAZDCGYzgdTWsaSPhkw9mtZwk5DQh3Naxpg2G2j2a1PCQ8bUJo1/2OcAAAAAAH9sD6tQBIZCSzoatD0JGVUA7AQgLigBeqh6q8CrXXfF1bV6Duti6hdGnN4hJ4WHoowfkjUTNJi4hGFiawphY7JJs9+Z4sLKrehy1OcuZ23OSRAVrBSEFtVFrXUoGj76ZAAPHIb0pDnIId8ROzuvzZai2AybMuOQ2LLlrHIQ7EQlY9COYCAID3eA9pJYuWlg8kepLPlMKYhoJ2qQ1a9hGZlYnlF1YWFy55t/RaE1x1TS5kANLnq9dCrl/6rdeLXLKvCEKfX9WxKHACPbIQoTguo0RLgFmSxsAvZuk/QGUzMFeNyRyeK9HI2vOhDRUYU65YMD4kCpAFRMCYpD4gZQLyRDpMCVIScLjB5c6GA+F2f3HQRYMHi6XNGDD4fqatbGqeXJHbjLshpELybWubMojFieO//jNdAA/sgbOVB7X/+6BkBAdjXRzNG1hJyGajuaMnDA8O5Hc0jHMCoacPJvWEvhTjHDjEoztnzUHyBKDjmMReA6hGptSSWKhS37IGnyRgcXJQuTnAooqIxCLBgVCkvFQbEwuTjBMLB4SBsMp4FAwFwEEDib+A2JwSSpQXcfD+dShLAwUNLYLd9XG1YQMXuatxVaCIAH9kFgO6afg44EVELilQ6ZCtNNTFWoIIvJPaHHbiBABenBJWFtYXRJK4kPGIek0qolLYOCQ27ETSoIZUEcsFYriQXHE5fJBVJL+C2AryRRb0se0wZQ1ROFfgDx7Pih4VEEtY2JnF1QAF5GLRyEYTipFNORYSGBi4DFUIhzkD/C3T0gW+Z1nA4G8WBNYcYIFBCcMPxavMP/EX8iUgdV/pA4jpSd/4nJnDae7cYZJDcSaNBsTb+dht/Je/8amjnDpd4hLtAw4f1rS9ZqbL1NtNkyH3tZNXB8KOFnoQ60P2gAe2BWsAODelflLiNxtUPEGdm1smHYJLOYCRsCZK9bN1lqikpGPCkQkgZeCQJyCxGkJxlWjzWYZyLKuYF0hqHNI6D8VG4ynkL8hrLP7VjAGysm8ReYuGLXuW05UKDVigolLmvN0evWgLqoAAAAA/lgIgkhJAgDBBeY0GGAMgD4QKLmDEBpy2cxzCDyTSGS8Ciar1gi0YhPWEV6OlDmZDWt/pPpr/+5BkHQZzeR7N03l6OGfj2bpjLzkOOHk3TeXqoZ0PJuGNZIRcnmsocpVKXVPEsaSwHNET4txlkgN5SZOpUPnBSIY7ZnX7wfxZ7LYYsQ9H/zS270p/dRzaS3gAAAAf2QQaIyJdig26GI4xYm6aoxwBi8ZMMYRAKHdlPpPOIl2W5iQ8yqMvmRXqxTpNTqC6HrKGMSejF+OckyVMAbgNtJvQci0TIhyo2k2MniNULv9r2aEraZW0yl9s2y19u/m9FWnr0A+sCYqF4CUwYFmNDJ4M4asRmLCRkqecQFHAsJh5AWRASCAk87EeAqapMwgxol3jFaSxJ+G1K1nY2ksBfUPUWWNsQw/iEGahplDlFStoxTKVCqWlcmVmQ910EA0dzqJoVilLJ5Wq1Yr2cgb/e+xNIphukB94DKTmM4MEYzHMRmHJkgJuIHgsOGhQ0WGAygVQDimlNMTGcZ624RSjpZLZg2GX+fKSsAdmG8Ja6LhxtwF6RVkcYThfx/lgHIhuQXpK+SY7I4xR/qFszTvZxvdYdWOu9EgL/obf6cAAAf2AJXD/+6BkA4ZjlB3NuxzQqG9jybpjeiENqHc5TeHqocKPJumsvXQJ5mUS3MBDkxVPTPAvM4jowqlTRQZA3IygMAhAcpEJYzEFMAQBU+wqdEg6VrLl/w47HYbf1t56HI8w1AOt+Vv60drMUfJnjRIcYmsZDjBEANApqsxHnBtP5H3dYulNW00AzGlVsv2+m/VJPskAAAAD+wCqy9SwwfLsm0RyZGYoHmwRGyHAWCVCSOY4EBRI1A8aRxKaGBz/JePPD7vzjc4OkbuuNDL/LQYy/kpZgoLEoEcBpq63/f5Vy831hh8FfxSPx13ncaa/1/w0hjEDCzVrcxu29UVzBP/SJB+AH1AfZxDBhMw9RMBNTQPkyyeBB4aQ7mwiQP6TOCJsIy02AP6AGUhGtQBIGjMubE83JVJlhVCQAzrklhrESprnIT9wL2OtJhmEbHrElHYWJtWlVaAr0KSaJdu8UnJpmMbXIXt7ygFcl71tUwK1+AeyCDmAGGGo6GjOmBUnbxn/BgZ8cBmDYAQzSsMoIEhGHoTHrBjxwqc1BxYo/zsyd3HlZkXfjceZswV+X+f+cUwV87z/s1YsnCMw6GIEiEaU65UbGqFGrVpGf3GhtkayK0LpNVF1o5FKJyl7FqQR2EKAAAAAAAf2AAcqa6IIIRhmZw1oWMnHeJqdObognRUAAiSJyARQZCRhxGZQgl7/+6BkFoZjzB3N61vBSHCjubpreUEOIHc47W8EobOO5umd4JTy/pgMhzf0eQ0uOs8lL+o6LBhY7TWnoaLhXLL4orA1WGndZ4CgKPNJiT/PElSmGxSHY+/7/P/DruWnegPtUkSosm27maRlvoZj1vvavQAAAAP4IEIVYEwlEiasCaYM0HAjAK2Yl6cArKosnMIIK5g8FAOIA0NwYfPKWyB/WeUiUjd0AhaxVJeilxMPGIo5y9VDG6xgWHYu0xdiQ7YXYLYOgsh9F8v8/rrKXLygV/faMbmdc87FN3Z//9WvuZfB9QCIWjebsOYyIfPWFWxpeYa1FmAoJyyyfyfCEZEYjLs3MAhEPw4QKYlE3Fm8tgcgROPAkal82JCJdbkEw0Bi32WQA5L9s1Xqsdmyg0WZ8PCpnXh5uzzw4/tJSsDsek2YcxjNqGdaVhTYcKz2W2q1yEAHsAYtRtLEbAX0NCQyrTMdDwsaGK2htMK0ccQRTMRwd8zlRmMz0WlTq8TLi68H9VucJyRERkaBipouhspWzYZG/zKGqp0sPQdQdaYGUQRtxXwrC68hb+AYfhtwov4qItE2h7D/Y+tlO+7SuyuAAAAAP5AEVjIixMAbfMZ1RpkMPGAp+ZAIJjU4nQzEaGbI8TwgwuuFjUFzBCHTwVYdApgBJrjoKlIyc1gRADAZjjGEEnwkS6AKCDD/+6BkJYZj9x3N01zIuHVDubpnWTMPbHc5TecKIbMO5zWs4JS4gxULjyuGUThikEHIIgVOIjoNBo48Cul83ShtQ934csxCTekUm3ECO4Vrtvr9HfMRRMtVAAAAAH8kDts9TKHZE6DHrTaCkJsx5nJ5kvQGNhw4OrQecNOYqHGFaW4diOMsYQ1tbCc47EymGhGWiusMrwSNCwbtDwj3Q1IzOiIljDCMaNpIgHAhY44j4mAyNpL3tFj73p9NTf2TujsLRzNf/qWmtXmdK0/0YAfWAt6YgJCikZemm0jRp3yao0gwYMJKjPJE0RcCxMFJQoOdEQgQetErgjoHsgjf1d7ilBniCjgEYGqS/B9Udy4iQ5h0QilSVj3TjSxhxF8eKWhTAB0FQF1mRuO/0ub2HJRNNNlv1WKucecfrrBbWhX30OZZbT+vh9a5qAAD6AOclkhNSmMGHBk8iLH5SR80/jeqOIoZSDpmMoCcPuRbPShp6DjgMkU3QpAIxCcGmM9RyL+PUk0r8t+1t/BYWUTTIPbDY9YAdQODI0Fpki4msCkepQ/7S3FV7Aj3P6V/H1z2V5iyl9P9m6qAAAH1kDQWRmHy0YkR6hIsHzCebMUmoeYZvhZH9RmoDBnQGIDXESImFhYMUn3gO6/tJEoyBKRpYBpBA84PKVEBADFL4CRVUZMXGlMbUoMblntLC+n/+6BkKgZj4R3Nu5rCKHLDucpvWDEP/Hc5recKIdYO5umsZUxa2KkVSIKbKwjtP/CoyyZ/FXSf3qEo94LOqVc6x7t+z2Uqoci9Dd31eAAAAB/qBNwQFUICAV0DIpwb6aERGORHPuA14Y8QHJrqQO1RZgIyDfoQDUn4iidBvcmKqso8FpwyqxeKK0FF1Fkt6hJd+Xl9zE8cKgFfQu8bAhoFYVIIOIgwfDiuY6qd2ZjxfM3JxNjyxhKr2WEKU+OlXQAAfSARg6Pph6CYEunBBxnSgbBMhpMZ0NntkRrVmXyOOk92y8htcDjktU6FfL4jxfQqrKgUjAEo5ECi3fHlOAsxB8ttDTF09Xad+LochpAwQScDRQ0mMxVJtFZ3JS7EbcqIyqR+TYrWpYaKJABgoPq1mokePH99qdSX30q0YrSrED2MN0UdWykQYsgbuiagiB6B3ZYCjgy4akGB8m9KoiQBPRk4+MVhgwN3XBFrEd2/HgU5TQOTSewdGESkhBgsRW4pU7q91IFV4aCMUpkQmMXGBqiYidpIy6TFn8f5pbtSaHfJY3zL1LDbL3wwhPSpL31Pp9yqqsAAAAA/tAZkABJmFpgSov8OeIMRBY0GCBGPjakPNrZcc/pYKrQgKKEUSwsDFkjdl+L4Zev5nKtZd9dJahAGAADJxEGB0OAHVeZugKAqgcmXR8aBA4D/+6BkKo9jyB3OU1zRGG8jucpreDMPfHk4DfMmocaPJymNZIw8ySTsqJiwJBDm+0vp26QEx2Mfx9TkobaqQXWm6wIOTwIL7urAAAAAP7QH+ZM9bVg4eMUzL0zXJTDTYzGEMcMCEBNLUxQVBBRDNsrDpAvVa6YAFCpczNUjIDK5GRGuGQi5eBE7J7bCgCkGtBwTcMaEjgATAUKwwtgme2ZVzwyR45LHIRLPak81zmXWrYilPs41f/Y5QKQgYfChccESmSQZp1wHWZm8pmHrsYPAgXBoKahaAHCYwYguOFCgwgWFCAQaERFgZ0EgQ6kkDqGiiVwOREBK1R7IwD4bo2Zg5pYirjnDERYKCAR5QVLAESQgKrKv+NqqP28TMJXLf+QdppRi4eXASyzk0CsSpo7LHsaNgA4sEqf4dDEEzzlcHUTilTgIjI7wRARGGKA0UQBO8gBS0YSsMrYvwu4ayyiiche2JEoxQ6k0xwRwBwrO6CdUSSdU0U+YI4IkISCbhY4iPAoQFDctvGXRBgd2XumlrLf8zQEGumtGn//PzMg66wb3XepVgAAAAAAH+oCzTGBgw8WMaSho3MaoDM6I50lMmWDq1s6oQEj805QA4LGBB6Nhc5LEAgI4CRQV0KBAcevlaYAAjmDvF4y6hjMJuAAnuguLA4rrq9FJlJguodQX+MRFg1osoetzqqv/+6BkMoZj/x3Oa3nCuHkDubovWQUP0Hc3TPMiodKO5yms4US4HmnNaRI/QtzhhnIPmIBQre/MuuG7GrSzSl8AAAAAf2ADgZI+iEYRCDK1gsoOiyNwM5lAYMY8B4HmQiBiQ60USS0YYieEWD0g80YyASCzZRZSmHRwVXsDgIsiLByUgdgdDIokf1wmFg/yc5olg5IvAEeKAjIaiT/P+0yIrbLrpSPn7lRKUJxO1KViuftdTCKv7vrdAB5ABJ0LpmPSdjhmUZA6RmRBUEes0gMzNFFDhSN0ooHbhU4xEzVZLrkRxAaCsQdsaAZUQCQ3FZADsF9pmqiAy4OgEYhkAMckAFbMgMehTfM1NIpO9FEuAW6CGhJZbQ6FOsrbDDr+JymAHSv7DoNoi7j59Re28/RH7E9aql5NOAHsgbi3BwBkshCa4qF6hqxJo0ph2h+w7XzvgDKTVEjasTTS0I68IGQDLnInj7H9SfHBQ4NHXiFADRmhA7ddbCSAFGPNd9CSYwFEDG5DRuAdUt8o+o7DqwLQptPVxU9ZC/tfHdArEca5zX8WtXaz09fV1J2MwAAAAD+wBlwGEEGJmXBkMMUTEziOzeZaLpmRh+fCRxFAtIu0BrTVUXUXSmFNSjUzOTdFDzhwYlCHgVgU0lVWml9RKIs8IUbLWwUir5p0YdUISVGnK8o0eWjQtY00WWP/+6BkL4ZjxR5OUzzIqH3jucpneSUO+Hc47fMoIdsO5ym8aVRZeOVytKdRR2OcuiLNR0DIvGGPyC9NuyyvVgAAAAH9kDQo6+YyIc6oB0MPID6wkyg6BC+baBgo6PYkKAAqk0SAglT8qJTxEUBBhhQ2VTfBaUrhP12CI9iQw8zgxoRoSLpOFzh5IhCXgFWgQqbAJdgoREQqAlmS2E+p6DIlI2Qpquk+hnpuqKRbxk7htDJO56mdOMavd+q+iD2wNxZiKmIhRDVTU4jCD14y4cOdSjRVUFqwtyah4JTK2wQAJJv4IAWUFtwrgAYwCgOHqKIGlwkA6RCjoMAInmcqyOez1S9f8dcMlRKOgEw9pMe1xHlZz1QTTr6kzurZkY8Czl/0czaF5pdpNBDZtb5D6rP0rpmaoAPbBJJlXC8iIdMJFjAVs5dAOBizSRc3slLPm+xjMg0SFRIZqj8zEFZQRJmAcmmwl+YgCnKjeTDlVTAqBY4gTdK4vcsgy5OV9UiS8Szy844EX8XSaE/yll7B+EEb8NTTwaz6XL3RSQe/1WofQNvl3MrZLanJ/4+QAAAAP7IC9VgLB0BE4w6MBDfDBhkM5Dc18xTVAEB70JgIWAZhxAK8kAQYMBw52FDgEeGTg9YOIcMAIViJlGAgxFPFRY30Lxl3GbR5fbBUngUNPxNIJshJQ0eMVmRHXKn/+6BEMAf0RB3N05rCuIVDqbpzOIUPwHc2rm8kofUO5sG+ZQS/Fs6ZzZYz5KpyWJP4ys4+giUMXqJiwwlXeJgCooMJVjqRUVIu2ev+mAAAAAP7IB4BNBJBSChWZpLwXrhiU9HJyqYcNsAnUDGzowmFxgMrUQ2L5qqJ3y1JIEEIDbl4WYkozqoMCgZGA8JrpicRhhMfpy8wjHYWAlAKafKIcHYMoBCw6BJqJOTcDymSwOsRNJkjOhkSIx54/xcYIxV1qVh44wOCpmRZGCwuYxT7f74IIiAMApMPjKQSMjwA5SCODATOGY3p8McnQuHKDGeUDjSQhnqZiBlUFIDBASoFJTJPCP0NlniAloDACssIeTycilTNMEgEkxtkbMToBJXRokEgDS4JFLSNZifwBVijBoCGgI27wiemX13EKYVMnZKKKMpo4+o0XZciT30Waq2zuEAA0aVhr0BPMD0U/O8MQzwWCnA0fSAwoeQDjgAAMxmseuV/U3Sx0MlBq404DRA4JRUKFoyqqGBGZwgJBAIFIMGgoEus1mUDRYgPL/ApAhBvApBWFYIupTXq8CNegJy9O8LnoEfFkuJzcWNnpCKrMJo42s0XbeiQ3U266sAAAAA/sgStNNQwMDvMM0j0yKhTfhYNBEgqMgxogzpJ0GA8WQShFkgNCmDBBgJmqLANCBSALUGBDwkmRO//+6BkHoZkHR3OUzzQuHajucpjeSUPUHU5rHMhIdgO5ym84VwKhQALbgQBhoqUeBIomHDqJyJhQLZRF30IVCHFOhejY1qPTKF/zlNWTDbG3CC73tMsZemLpnBcgKLT0CuOD9nqXFHp372fZYAAAAH9oDsqdg1hg2W0MMTBSMF/5r5gcGTGdtokPgQsILeUCCyJdaPkOF7woaVQDnCEYrOGgg0Feyq5KGigDpggNXEvC4oiOQ6NifZhwHfIAy9YkKoSCngUqwhoV+5NooKeR+Utom8zdPV4QpQhGlP0I0ouobrgAA+oA8Y02BheMBgcxCCDEN/M4LYw+kTDsYMEk02kLjFQHQVgQW0AhhcYCrqEkzAjDJfDWDd0UGD21axAmqup8kGIvBlFOZLlmzI1Hos7VZrhh0rtKDFfovs6gHNtrN2AFyMieps7vmBR2scFTlTxA66fdLLGnnXP9SoAPbA30AKBMSAAOYkmmKPpvjgZLpmFkpvJsUB7Fi3qfYVOQAmAMqRVd91DBNwQripijRQI2GElQEo2VFQekaXrbo6a1GEPpplYbmChqYFQisHzR6ICLPw+uCjtEWQr+/7bbEtENCkmENGivuX1ZqqhqXIf0fUhgAAAAD+wAIEqPBgEhCwRMmEEwhfx53G/14ZPB5p06HIjmYCAY81UNLwg4cAhgMLFQIAho8YBrY7/+6BkHAZj8R1OU5rKuHuDubpvOlsQPHc5THNBIdcOpx284OwIcy5NDuEZx6scBHgy3yhhFaAZkwgIFJEJpYMVhf9pIODL4qjUgFBCsBERpEPsdos4kyNkV5cZ/paxeev1XITfaTG/b96UQAAAAB/YBONTUMRUQsBpuDlc7rRMElzbBM7oAIAIQBg5xFMrHR3CG1E3aQdJMheUyjklhJ4eEMNZdT+wwY4KuxgGAWKBAKQQUEtlh0tAI5Q8MdZHUiHgrsoeQglfUWEYMIGfweAtKt/JIYM2oUXcl1qlij1Tp6nzEZurfgB9YDnUOMCCwLAAxqODGk3I1ccoIJmRzmUwSHn8BBAEiTCHWAA5RLAKgVih4xpgyZMP7jxBL4ONPEIw7N03i5hoAhgCLIlsM1R3QTBAa9QIaCEkX/aSxpSxDq/LVWCRSvHGANehl/u+8/e9zT8uqLoCSdg0iWAynoW9rn9oy2rd/pw9kFmyIQRmYFCo6DY0NEzQOM2wyNVNi7w4gYohqBJdJHkRwQaDhgZcJjmqg7RRkDjovreLrusBmHQibqjws1H8PeEOoVlCw1ByOLiKWIOlgT/QevCvQXxo63HDab+9jEJQosuFxqxJmlQkkKf9d3bdUxqCC0oVgAAAAD+RgtkqoYBKxioLmTyyYUYJ1sbG4x+ZSU5olDnFhSIQSbUYND0Lldj/+6BkFgbkOh1N05rC2HfjqcpvOFcPhHU3rmsqobIOZs284VwwOKAB5+OAgYOGhJwHgJzGPGmDShwcBAFiqrhQADoYgDl3guDg9YMyiBxZmHzMQwGEttPEIFeC64wyFGuE6iTxQtiryu8gKNTLOI2LOtT7W7OxPNERRCXM+7nK4AAAAA/1gY6udDx/zDBOBgdDmgDojbDkC4XSiINXYRJAlAEkixgEIQwBJBeAyHhXwKCh6ohUTCWWn0y9qYU6YQCMI0kiGQzgoODbZmwkRLZokyy8wJZpORGWwf1uENtATihfqUAypWXe33zqc/OX16sqTQPoZbjFQAAetgmDpgsXg0gGARWZAGw6gTaI0BknMvsI1W0jKjgDAKVhjBDBLWVRScsNGTCgIWgEMfONog1zAccAt0LgaMBCQyd/DIjDuUEAKDXGXFCoiErruBGRiBq8h5cSDi6oDhhakOdjzT4fUjIfTA74ZOJRS3H2nhnd/+z/an0AJnwLdR6ASgYOZnBgZwICbSWGVxZrRwDAdEsu4ieBnAgBsJEUgDSRTpANKIoCiUGWWMVIABVa3wYc12NIwlBRAUeZSpzXH9MfQEdFJPFMIHbEYp+OBgm2uwwaiuG/jfWxtY7WPWTFxCZF/6mAAAAAP9YChgigC+Q/0YPx4aGxjWcAdRkFKHhAOaXAhMvQ4GigwMNgQqD/+6BkFQ9j1R1OUzzBOHZDqbpjeB0O7Hc4DfMmYcuOZs284VxUmXYR1Y0k0aamHI0ZFUosyIYmWtOiYEK4GZr1KTaUsKn8iLUf8RTI2qEP5XYqmqllDTTncwj0OxaIxT5s3SotQtelvQKIC1xLZZqemz93p24AAAAB/Ywn05RAMVYmUF3MeljoEEyUKMtWAJNhUCQAKGoXNLaSX0BQAm8leYIdq9RnIyAZQjE6L/opQeFHCEqcaABkwYsLuRRkDvmACewQ6HJsYKqRSdM4C3o67rFIDXrPfQXLsYo4eF5Hex3mZZsZZsezVTpSpECiJCRAKmMqUzIvI65MOOpApHSQpmCWWYWEKhwysrSbJKCRH8gEpioUfxRwumGIBnwCIHIqlSrW+RJmA4ICFBmZiMlAar5j1eSpKpVID4cZlI5x2MX5ltJE2bs+lr23vak48ghDPFqJ7AdMKmaNUpVc4giY1ft8jGUkU7ZeDQAxonNkUDWzciEQntMjRQc9LlQTtEGQiYRkwsKXDh0RBrNAWwLQNMZ1E+1KBJJoGedEpACFYEFABtQcoiNDjgqTYGSkiEiESGaE3qZgrJoJdlna93j+42LCoFSVEEycWXa1lZ/q+Q+qj9n2qoAAAf2wE4wQhlxlkOCExEFWOGE8yisRBZzUoINsE0DJNW0R6IegwkDICzbTFrgAIkINLs3/+6BkGgZjvB3OOxzISHUDqcpneRcPoHk5Tmsq4ecO5ym9ZOw2zBmEJAO0d5gkLDkDJiGmUjnPaEZABMPAtSMImk1rKItMJfP2/PaarAEZcty6Ol75uo0LMKjp9UjmmWf1dlFur60epwAAAAP7AJe0dqB7hJtGHLxxCecsOGZjAeChSuMBBJlVZwKJNCIp0kJrBSBQ6MiywYeYupdYISV+rCnUaMZjEiT7QEJgNGX1K0i2kEQqOyvH8jAjAL+swh+Nv7HXdCBGxLegd/0n7grCSXPeHhbpl9lv5luinAD2ADQCFhuOhEITRh8bgWbG3g0Dv4YPf5mUaG0YwRA0eDhUmNDUTU01E0agqFQBFxQJOMOfHgAVOjwCsCVS8EzDHpESg8AIThEqJPAJeSTsiYUsC3CBoqjYgKQvfxgMZghYBOp1JXIr/+fsPqIQYAq6j7BRd9TiKfYP7zKIAPrAmstxLdPFDMLwB6RUAgc0aI0QsyqsBFF1GEEKkS3Ys6aDIWLF5hZQCwQKImpDmiNg6dM9BlnpACZEZkmswRfAoAUGAoDAw4ZQdkgQioFAkOjQSA0oQfmApmVp3vK3KA3mv/m2WXlQ0XrcRNIWL4lOLqLdgrzvxSqAAAAAAAf6AKtNShwGgJPGBA4CI8bOE51FWmC2aZjF5lCQjQgYgYUj+GMMs0aPQBilCwg+8a//+6BkGw5jzB1OaxzISIBDubpvWTsQAHU4bPNC4aoO52msMlx5wwngUdUBYMHkY2siwahQKSf0qtw8nGpKFzz0JdL2TlU5qjoyh6Fy8muv7KodYJWzaZ/61raZTrvZcVchqhjcpoGhHAAAAAP7GGoF0lVWmpWjsMdUFGEMxsUZtJxtiygqXYBIF8U0gMIf0IBCxsUKBgg8E8yRU04IZRGKUpk0FDui+YeQULG2EIFdBBKlrJShlBwhAQxiS/IdAB6RLOWxLyJg4bTbCG2bROUY+3c5hAelCn7QP41orPm01NQmxOt3p9ev2AGgGY4g4SHzgUcmBKUZ0Ap0q+GIkyZPARm+RIq3gcPGQ40VTJBxRAEFmrEA7MaagYMGCxphQQsrIlKDCZCsAOjGDQFAMYHO8PBlYXPhhsKfieZghTnxVaSKqZjprAxV92QP4ymNO673taFlEJ4BABgqDByDl6doHlXbtTChBqIAPhRchLltcRuEGg+Qs2N8EPzqCTcvUOw8Pcthq53FlTtpcjBRrpxYxgBoQ7AB0NTFlV0j2apvl9RMrAl9j0XcZbZaECEIdQwb20ipmcDR27vCsaUwKPOWnIsr86A6NDrdbfrojv/6EpV6KsAAAAA/sABgLGAMQgMIOY4KDAmiMJBg5jdQKVQdZzIEnEQJf4wAJCyGH9UbTOACQwRwDBzq0zD/+6BkG45j+x3OU5rCuHiDqcpvWTsP3Hc4bmNKoc2O5ynNYOxBw8CZ4IFXD3FIImP8Yj0EST3QcJtl4oNeBiCZwk5NOH80yUPSIr+yVvIbhptYw/0Da9u43eFhwjabUwuhblrPISq6udpXeEVQAAAAB/ZA9VtVNgaH45CGyEZqU8agAco6bSMIQQ0OWS7YkqmIeQ2d4gQItHeoiEmPUwIgLzyhgKpxoQwIKdgqf4gLB5IykJDqhZah8HJqBw7Kxg+XjyUZm3Vp03kY4tSNWf0UDiqjtqnypQViCKXJIbVi6Lf7/V/R7IGzLvBoVDkGYJIIN5BlwNG+rQYvPZtMAmM20Dg0/5rmOCWEbsXtHznUpk0fUHAaEAc6AcFNwYJDAgOEqqJxGVCIDkrEhFGk8zBAVtww0klAjwIvA879IyKCjxCVwavxwIcXDEp6f/1JAPWjnXpaSetK4yMFlKpr4Se9X3ewUsA+kEqrigXFhMg4FkUZyKxoCFiys5w8GxRCGX9ElFxIE+Cjq73DBihdhn4hVAkIUCpX9eVVZ/QgAk1WUIQuwd2iiu8adA0WHAE70LpbD5IRJVp0vfGlf1kStcZjje4eS19yEqsvvuDChswkdo+z/VsSxkjVwAAAAD+wAeEYOCg6MR5TGIA8Dd4Z4EZyWlmFiGEbYw0zRIPOEcDwMARYJQWQkVZpKIz/+6BkGQ1j+h1OU5nSqHljucpvOjkPJHM2bmsK4cEO5zW9YLQmAGd0QYoMcoGPMVBkhEf3MWDCwNcawSdTgIBhAOXigqpYpSmAx6PO0v9uY8VhmVqcO/C2gU1PFn+hxodSYat6CaRSMZ2BYa9lLR0ZaogAAAAP7YOYiMLKCMCjQxHHFB5uewfYacBscDJz8lzWfkwa+34Ig1Agt4YAIArhdCNHTFHk31OA4i7jFGFK3goo7ZCRBQskAOwp5+FjgqMySKNff9kicEZfeEy5yFNLMFXf8YsCpSNFKpM8rK70arCReM4EIvqT/r9IAGJhUYvA5KRx5DGHx2Yl3yAE4dSgsFDdpLMwPYw2Gg5IaUaX4WHWEbgnkYccWlEII7jsEHAdZDr7dSaCo0m0xDHAv4DpGQrIgqAANiJZWFsLImt5KJc+61CIs5LlOHVcmLx+VnPe/MOStQSdOYr7FrxirWwQVFn3MOAA4kGtgQvNhDxCJjEQPaTqVTDvzZjjJsywMHgidqAceNsASeSCHEY6ifwK0CwZEpBlwJbxWBahQQHHLyF3lkI4KzpNheKwjTVzqrpSOvDEOPyFBJwytx7My84sXCYg/vmwTqN5bbcR//Z5db//9unAAAAAP7IHsBwxFB+YtDhlYRmM28CoGdJS5iRUGjj8aFTQOaJmlmNGOlkZ1JOyiOOcB1TIkGD/+6BkGwdz7x3OU5nCiGijqcdvGUsO5HU4rXMkodMOpyG84RxC5CPBkItBUAgEX+AEyiZnelUKod5gIcyTvKuZprqvPcXy/rgQ7I5Ep54nfcyZkcm5995AUcAvSh2vJVqyahp2kq5l9X007jUAAAP7ILdZO1b5CBiO2MeFTZwQyRVNzSTd0O0EKjxZuAmrqmWIj4DrDDCRqBpKcwNNpS8BpAkaanFriMkoGSFYqx4HGLEeKA4YQJMUuooUrMJLDM/neWEfS5Zo/T21Lqj1etPy/9H//sgaCUEwRVM2IDtZidBuc9nAiEaReQMRJ3h7mEgyFYBSwRDiXy9SBlAEXuAiAHcEsxIk5Az/nDKRCYjensneG3CsQUNTxZamWoExtckNAo99nkqqUoVtEaHDsKe1o8ReaxCoO+GRkl+zWxW8U5a6hXFS7E13XK6/dABXtM+bsRFpkcwPdZkByBjcwWFN3pOw02xotFoIbUFcMIBROVVMqQ9vC6x/xkKI1FzCsqVaDg00GhhJCciI01TNLluF4a6UNlMGsOVgL5IE37eWD7i6mH/Sxd3rT7ioq2TDK1gKoWHIEWuLtY6jrc5ztWL9KsAAAAA+sYL3lA0ZumFBGQOiso7WAjRJqMJIg34iDG5oMGgUzCzA/CqoVCQ4F7EqwuqVBmlmHyBBS9xnHLULeFlYaBhgBaI6BAr/+6BEJIZz6hzN01zJKILDqbpzGlMOnHM3rmsmYeoO5tGuaIzD6aRgkIOFn2ZTqA8HCwLJWvKWorIXR+lkU64MPSyj+iSTSe1KsNKbWhNwLnV77EP2VP6acAAAAA/sYQDhwVMAl0BB4yMDTBgwA4rEvcY9JR8IGmlxkHG8lMZHmYYWMPAMZhwMYhklccVQQNSgqClDVjDgg4YVSoQNHERMEBrUwIIdDgEFDYBCq+cJRVOZVSLR1goVFv4vdx41DsOPcw2afqW+m5J9YBH0uc6pqdfMIs/q81+jfc2AAD2ADQKEiOOmMeNaB5maQHcRQcYHJv/R5hwgAmonmAcPnGeuClggVQ1UQO8LdDrQCiWESLEVAMCdkwhnXXgBqAqCoOXHMYAKDKHo+LrcFyk0ZZXUeS0TWjU271x/ndkkeo/3EH1Lsrt0E0865wvWrXTvYp9AABmQgO3gzeRhwdTMVWNolk6UMAcjjT58B9wx7ckBi3cVUqHmCCuOOBDCCZMIA5o0I8JaIaYsChygQgDhBYw4QzA49JooCJhEhkt+JHn5EQRKlSLIF+RNiQ4H606KwJdd5knONtFbHmaNrmUu8olFDmqmXKv1vQPe0vWAAAAAP7IB4qKGzEKTawzIoIILocpORqlHGMD4NKcDZADHQtCJACpAqkHFjIiVy0hUsIQA3aUKPZ6WhUNOaAX/+6BEH4d0JhzN01zIuInDqbNzeTUQIHM3DesIojiXpqHMqewCi7QtONOAI4YWi7NVqpbsHVCjgqnFqduiGokfLJmC4ruG6axLPuAbg0UcNSZAwNLkRPNpKmgyMQcLuY2VWZoGv23d3U+sAD+yBLEhA5gAZmUSaZLH5hBPGfw8dNFhvFcbccHHFhmQWaQEmbAAKITJUS6YAtJuKExSAInU6DAgFedToYAZ4qA12CyZFINPGcUm+oEl+TGF5HTLYo/oUU0BwEnzCJU7NWPxWMPFDT7u6IKoeHTTDIYBg6wePOFHPDIBNNAsOKXnST5gnrp6PIbMADHAElCCqQBzmaYcHp2J48Md1bmqhR8Uqcu2ZpoZsCPnh4kYBSJH0foUXjGgH5IQ0mGw46UGhB6U9Ek1DyosQsMKEh1AWfJvNGDnsUaC38LtINJms8lt14d0rAobXNSgx4sFgnHtQLk2OGAcqeaMZHRmLFS7bGKAEg+e92cqKx74ADDwBGAMBDELHIzUdgFKwYjTnhrM7qI2QoTIQqMcE0xSGjBpCHgqYVIYYDQcUouKjAkEFQCMIEhpvGYQZLIOSCoZFkbwolMCRwrMgHQ4MtHBh4NGpxn8cN7byVDTmh3qB94bbIsK4YA8TRDr/0PU1N1TZVVkvdHPLAytArS0u2ppwI1Kkj6kSvoym08kmsAAAAA/sgT/+6BkA4Zz0R3OU3nCmHoDqbNreUMPuHc3rPMDIaKOpyG9YNRaMHGhDGAxELBCZBmm6yhvsgbcBHtsITIi1sA3zoPB2g+EPGhAkMAA4VMfBnbQyIeMslHEGHTmLjoZmeAPoskWLBLfIPytZXons8X9TNbSGj/LiwTvv9EYaf3GW1nffjI5yaLzIvmWO2rdpH+Y11X67djHgAf2MbiakRI+FiphnIhaHhkDzE3xo48lNdCjAkgwoFFjYAHDywFOpigVV7rgHQOnMoY1BiKtroGGBzhEOqmGjAYoaMVaW9f9k7Ji8Ccivmkv4OAorQ3zWchcd3YbikHxZvUhFCRGE0teNBIGmFbD70shtIpz2mRTQ7TAAB62DdNMcAjnEAoKBBpU7mzz0dQlpoARGexQcKJoGpZksRGWQOFQydaBV4hFDCYadqHMI8JOAUjBawAmopv+xUXKNcMEwCAaWriHFFC/sSTQZBHrLgvvDHZh33/j8FR1wopNw3/U0MjoSLC7Qm58MmQ1tc4U/us+3v1sc5+AC7ZgKiL/puGUMocXnotZpVAKnHpqGDBGJejykwYiBEHHti6RzjjyXVhgUOhNQcTaA2ETlMgCcKDRWMZUzEtGHF2C9iqbGYlA6nl8LyjWqkrh2ijDsunJ5r6n70HVld0PN1sT3L7szqrAAAAAPrGF3FzjARRKp7MpoYz/+6BkCQ5j/B3N05vBuG/jucpjeCcNEHc4bXMkocQPJumN4JwC+DYMSOinY11WNyED+Ig3RINAMwQVmgDZlgMOhEXIgsdTWLjqGISl8KxDxi2445CSIDHUgFmjoDwI+BzGBO0hKZW0hdryT+TXqLk0/sbhpnsJgOQSONP5x9plZPxSpECpUuES/fs0LQrR3e+2jAAAAAP7IF2rKM3jSYdEYdmGDZs0YYSPGIjoiGzIgAHQoMEDDwgecmanHZVmSIQkiF4jSGPNFRw5M1ty8axBgo6cu0b3LQJnpStsvZNaHZQ/kCqry6L8uRH6WK0EkpX9kPvV77zbMZ+/db9evvSvpT6AAwCMGjYVjBKTBOgKYB0iNfFpAMYukZmpGmFBGCozV3IFTVVSLASDbuyj83UEClukVkgFgYwPEIPMzIA2QpzKWBcJbikH/htyVg3GpYXE4DgT9RKfj87Jo/8di/3Ntri6nOxXI2UI04gexhe46AziORwFIDpMpBjBI0wILMLBTNzUcRTDCRwzAA4HLFlDNGQrbR4ASxxwimg6pgH2ZypFxF7nNbqiFY8MxjQeac/qk3bfkOG0h/4FZE/d+5LI1EK0rfSVyCUc6m7xT62uRt/GM9+xNrPTamvTwAAAAD+wAFBdnJlcfBC5MIog4yFQYjG0hx4Qua2EnmYJ+YkZKTGBFBswoNfA3j3/+6BkF47j1x5N05vBOHJjycprDHkOTHc4beWNYakO5w28JXStkBZZhzjgdKvR1BuQD0qGBAUThQQNKNGRxEJXFUwbxYFbinKEhcEfhUOv48l6vKOxiVRWQRaJym31orY+WqY1gvXNBtKUitDtbNXVAAAAAH+oDYHJEIktYjIWlPOxDuo8mMTTADw7Ikw6YRq0wA6SMEjIDydQoNrSAYzIaGj0FkoaCzhwSsMDIQl6GaqgSYL1xkQIa0xMaezqFMfKw8lr8u0ZHDZ+NxrKv+1dm6r1OJqFxZw6hZczUlAqEaNqvoAWoBByYrGmZGZp4mehqg6rNcLThUYxSbO6FQcsGDmZkjea4Fm2WlWBSx8wviyZWYOjVmMMUx3iuhpDngZcGgkTZEOUEJ2NgJFXribzO2aILiszjy4SiLfizx1y2JeEwDH910OzeKxuUdKPpJyQ4/6Yp7IJE3WTIYmMhhNGhVBONRR4cMjBzWygUGjo0/bFDLONMC6gME6T+l7yE8QUOBLhKChCggBXDQyImcGNImqSb5SQqqFqOFJVIJSsSYCw5l4mIRAMggJ2QDHPfCWx/oUFLtnvf4tyXorZs9rAAAAAP7AFAx0PNEKTBQ04BMNPxzR0ojCBUQMwZzrConqTqbHKTKCNkQxLwuiZwSIrwhAIeEHKgwYQKmoIZIisSl4JAGIEcjUQSTX/+6BEJYd0BjHN03k6+H4HOadvLW0PQMU2jeDvIeAO5oHM4UwsFDEouiAhQcDFP9UThp2s0urlX7EekoAgPRsAst/R0W6mLbZTWRKW5WepZLUTcq95lD79yaYAAAf2ALTKgGZ4VJjnALwKejIpwisghgMPtzpgc1QDRdM2QzFAALxg7daCkRg9DBf5CQDCFhgQxJEFAUfDgcEIBQhgt+DzxwA2gVn0suJDRhBXaaNPSwtoFu5P/T0to2GQIGKJe/qrVZSSr7qRZSqrfTXVq32foGF5tLr9yaYAAGwgAYT2MKPjS0EXhQdlCy6BTwyzJMAXjLycWkDCwFKswggMOAAMMmMQqt1CYgcH0FAo4wITxe8iGwE3oIoJ2oAAwYWCt9nCwTuJUsDarA5QF4TnxlBsUHwBBoNAYf/dD0Zj1Vmom1U9qmSy0+k4uLcKlxGTF1tOJlbRAQGTDgqMjhc2kRDJoXNdDYyGMhDZzNDsMWigBEDyBMme0xhnGWe6ZGcPICxqblyWQEtD0BDuk1KRElFkwgPYggYCOI1tTWyl4jaDQrYS7b6PvizSe/WqszFpVTtBb45xwVNDkvFrhbcJu/wLatuhgQDQ9oqWvoAAAAA/sYQmsGM/TzAUE3x9MA5TCiIzK1HRU/8TPSNASrGFmg9OBnGb3YMXGQTjVC7DSUKYhSKHA14c0ZCr4ub/+6BEIA5kHh5M03nDGIBDybpvKWsPHHk2bWHw4fWPJqm84UyDUMCfUgOZjBFwgBdJiCa7AQuhVicykMHRYZjux8zUoncZZLH8nvEwjPQSFngU5dCgtaGGIw6XMmUbDUacqY1SEo/bvgAAAAD+yBHmDzOTsZOTejsyt9D4g2cYMeRhtfPIUzFB8w47MOTASEGHQAXQsCCQnzGA0eS87QiQAEHgUVNaBVY6KAA7tAaELqqjYUQVpac6lxnak5VJCBTVv+xRGwFA8GmegTCY5Ea4EPPcoIC1pJqXQ8XNGkbTEceqY1aUp/Zv9kEDKlVETgDkgCB6cSMRUiBqbFubd+IKx4ZYdZMWKCHBkRpqihxwJjCqrEy1BlMFMAIBSDzB7E+X5aQF3DAmzt0TuWHdVLSDDAFrRa+V3wLTE8XECE9bka0HZE6QCFCccGXqFROZrOl13DV9rKaIEeyKPLo9ytCqVYAexhoZghGYeFmXCJz7UYAVCFuBKuIFg3vJP/eyZgPJIASmE6aBJs+Ar07WFcjBA5JFxoBYcRPLnAhAOoqcOYyo1vIhhCmHBlWhrGWEZZA0rUDZr8fZda/9443H/kUAtBs9AECZKNI1iwjNVHFruGL7WUUQHbF3FU+5WlVK6oAAAf2QZEICZibiI9NYgThmc4YCMaHREfAy7AxSZKGmlHpjg2HFK6TRQAr/+6BEFYZz1R7Nu3h7WHrjybpvWEUQFHs1TW8oIfOPZpW9ZKSGpJ5loSKAk1hSrBAlLozPZSqFn6qy0liBAxlhhGW8UhLH2LpM9ZRWfwJFj78+Ib43x9szh+IAoSZkbVqCCCYAFRwkHtFZSF2K9bdX3e+zRAAAAAH9kEaZ6wcwAhNsoTmkUGAp0bUEU5xHyeYuW2EyhgKY8GMEAMEuNHiQ2KMo+o3DKGVpjNdVOwBHyhVE8w0JW8OGBoBag10Omne+tPKqWmyiL7f//z7kBrmSMZJY5QEo3U4exoiIDTQQICofFlNnirXt8V7fR6K++AD2MKkAAQ4C0xYYZiGrHmwegb2dJAegCYRTGqhhn0A0Q1jyMYQjhNIhKFkw583BRtIRFqgBDiecDLRnYfEgUJAGaYAIwTBIMAFdKP0DOTD0FQHavylqH5fjqtjDbG5mTf5wqtYuF1rXU01B+eEaSg8TLEhWWYymYW5oS9LkqZXKwRAUDgC9mEFhUeDi0A590/ccwT45R89Wg9LU8rQHITQnUwEJxi85vwOOPDMCDFVIDrChqKRa5K2pIx40PKBRY8YMFHEMgULBJrrrf9kEpeXt6JY/r9/Wuu1AbDb3+dLLiEIqUqNYbg1PCIwXHidYmKy7WUzQx7R3oelbK5WAAAH9gC6SwSGTrBlBYYNBmpkh5CuaQonrGnk7GIX/+6BEDwZDxh7NO3rByHQj2bdvDWsPHLc3TWFPIfSPJum8JeSgUOBMxiGYuXMskVhHTxnEQINmpDQekWDkjKx0A4xExIOauGUwWKLPSMBC2yAd4tdSyec5OVWJmNLnHWrf/5fhlKXpzov9IArVHsBh5AMlGMn3zCssvxQzFBEiAAAH9gDukAEYmSAI8MChTaToyI7OUgCwJGuDBiDQY0VGuHpCPgkYJ4DQRPJwWBXwYXLXOGNGQiITlpv3IecovEJTBwAWhgQyF/AYBnr8yNgi/KczMil+kPwdRilA/9AFqHxjBM4gHyjGTrphTpRfixiKiBMAHsgcpbBIwBaUwiIGoD8FDHWTo+z9bjX1jDWTAkjG3QksZQSCWCqCl5pOTka4X4WqGQTCQwXdCLtK3ECnSyS3Ejlmw4o8py45Aq2HIcIwqFCFL5UfwnEYU5v9c21n7+yHvLSEXeZWGB8dWDx/tdRPTuUvF+KjHvcnAACD/WBL4iADFFgOmQIvAEOM7DSH9ONpTOi85MoMKOQcvm3iojCDIBMwNAMVIEU0U0gXFM3TAwCXIjAw5eyBq9KqoQAGoEhS/gFMZQpvKGZRJdEpULRmlmP/6hKwTCrXKTrjFOND9T1kUOExpqWRIBupO8vL84hbNZIglF2AAAH9jCOQsMGAiJsQOTMBjCAcEYhtWYYJmEXQWZzcxA7/+6BEEIdT3h5NO3hLyIJDyaprmScPnLM0DeVPIi2XZqnMteQ+mShBy2YQMGAo5ADmcCXq2QAUdSH1R6CPkjiJco5WYipu2inCUCwRLyPPM+kSQ1R/esjRIWf/+EuKgbOt9Dws8VLCr2mErhpIAbDBTumWdB8gMssQmKxep12uAAAAAP7GCyRnARsa55BBukZMCMAlM3G0jBBnMQ0owEhzFJXMLKxL4xGNwTSOvnmenUZ0apizBUBBoSbhE2CKGnxSdrIcw6UiNS0TuBQIcDDqABN5oSGDPHqjEUv/////uC2qsCz6XBBwupj2GUrhlIHbDBTumGdDiY+2xCIpF63XaoMEAcAJc0QoMBKTIGEz89NqNjMXsyMfOeNTq4oMSBARmirgXNw53GIAa4bobaqqhoHJaGoAIQQVWRBkwuHsWNuMmRsJ0DRAFha2Xpa4g4o8xEIiD8hKH+iSgHArE3+yrddaX0XYuA2lgO8BnklXriUHk0MSlDAJIiqz32MVgABh3QMJEYwMrTLg4Ag8M8IkyUWQWOTKZhM+tczkhzBpcMRokKDcKDYwGNTEZKM/Bw/FDaTLRC1pgEmUwqmIDRGQPdy3KnYWPnnUWagwKbBSxlhHIQguoIhZEh1kOcBXjgX458wUakcEhb/dSrK1Vnm1q3sgo6UAQ4AnEF3riIGU0NSlECSSln/sYpX/+6BkAA3TiR5OU3k7WG3jybdrJ2sMlHc4beTtYagPJs2sHeTAAAAGP7YAglAJcYGNnOC4onm3N5h6eRK4Z0mw1RpSAa40gAzAWgX7EQR+HhjqlZxloAUTRYcHRLdZsKGp1sVv7dAlaRYCEC+jiBAjps+SZf9WJkScoljUef5qBYAgIm+u6xaY6LuEIt1ntVnXWurq9MAACP7IHyUdCwox4kygoOtiJec8inKbO6Y56dIybK6YV8FR4w0PhGIeHUHIegaOkPqQmiyKda+l6JmX6chAFqgNiXGTshsLlA4ZM5qMSLxqPRMTlHO/UVgeN267WE3WOlwnoOHaL5rb1U/u9vTqAQ4kBGAiIcGGEIJjAKYqIkCUYPDiMAMYpTbCkgHgE0mgGhjYaCjgkYyJEzwwVB5kT0IrhQgVJRAVWhyWzBUDQpJhAx9cNSCyI1S9CS/qaqfUeER/9TgEgf7q97ltHWsMEKSdPGAA+UxQYEFohIeDTRqAImlMeDMCWOAsBMkxrQ2bYyBEGIxKkFwacbEiAqXrjpUsWLysuRPXDSzCWoMWKUTpDIDhx05M4xLV/FEm04RY4kV/wNBEl6R9LT4ZXGlKTA9zOK+7Y3uTZVXrr7y6gAAAAABH9oAsHEQqYcnmampoMKZMOHNh54JuL0Jhk8c52GWn5gpKYq5F9TalCxgOzBVZuNrJXYP/+6BkHARTjx3Oa3k7WGxjubprCnkPYHc27XNIIZqPJvWsNhzUFgUiLDmQJIHPSGYkMlAT6CYQoK2voXpIgo4sCTFpfryS5GF/4XACAc/0dEkxx1A7au/TvG921U7RAAAAAH9kEO5L3MGGMEaHlxvwByYJjQJqV6CAIdmQIlDYxxsDRhksnAEfCugYgGJVAtA5vTpHlDy7FJApVcKnGxQyCoDxE6EVV2Bhk4YZV+GMGhp/+xUFPx826wrJ0j3OaNpp1Id92n4v2XX7oAEP7IHxKpweMmOZG4Zha4QNTIGgmketqZVoZm0JGDfHXYmSDC2EGnzngAEJMSHFQwEEsmUPMMDBwY0JIrTyyaf9fIjClgSGJE0gCQe9MtIVHley7GQNipL/P////+CW0sO9DTp6cO2Jm075cRk4oqh17suvPJJJfYb6zAAAGP9cEIyh4ZkqDTwGBGmRGaZmsIHqAmIumzNmeHmMQo8FUK2hgRy7wMiB0BN9kQVeBDmfprJT0ENovJ7BRbglrDdsrsk8kkqs9INRJxpJOY1f+YB7Dib6NbqWBeOWx1Nuj/kfGcAAAAI/tAa6Cg4zNBMYPDIloaajDIA3hjNjNzDkAy1oMAAz3xJhyNAeCEPQNPREUmaSTI58cFBJpfxGkHLRHb3MrailiiuvgeEcBk8RYayRUEUaaOJ/2EkCvllvG7f/+4BkLwZTPh5OU3k66GPDucNnCnkNhHk27eVvIYgPJymsHTygv2ddrR6/qW2gBD+2DCSTiHEuikEZ7x6nH0eDdzopOMwKDK+DzTHHNupKpeTK0qmPphKXrHT7Dmg5SSEvfp0kqgNgdK8BnKhkmI8cSUmp9esOkBT76GAYCy7veXQKedvQKt19NiP/LV7F0zduqDSAOyIw8ZVB0jBSIDuwwg0MKbTCQc4hnMW5TXjQxQ7FGo1lBMLEDA0MAiiB6u1NQqGEOv6ApDPHEKiARlElig6SJjCEVg40QWnAX7M2drdfiOtQXoxnf6N+RAGhqZ1lLlXv+2Xs1eldPnNgtwAAR6BF4xQMLGB5+hoXeBg07o8xDIJ2FoAWRusRoHonkod9WlSIAGslN5vVPhBDMIDrTfqxSH0EabhneDjA4h0G/Sh0Ct+wtDF/DEbxS+JgCQDCHpQUZTHlhA64TpTpnFSCwAAABD+2BGEEJxElM//7oGQGhEOVHk5TXMIYccPJumsNeQ+AeTdN4RDhuQ8nKawh5LBEHUzA4BbzXGiRufzAYXhRlIBg4WmPxsMiBPkCFLgqXAggISCBrACFA8gHCC9gc1W1h8vUNFyCKo+CMIyg5Slq+2gRYWG0mHcu///9bv/G2bPde+hDfVaYvJet6a0/3LYu3u6vRIAAAAH9gGKqwjRByk2YEcUGYqGxEmdMGIumCbmIGGstGXmmJSGCBmgVr3Aa1mgVpacFPXi94RMGIKDGMCpHVaYD1FnFgUAJCwLuMY051eyEs63NqDo/H56JSBLArZryi9tCKDCbksPlj67V71PXlqdlMAAEH9kCdJKSkRABQI7YLN5pDGjU4nCN+mzaNQ6qBN9ODThs3NUMyByoSI6AQkA0AYORmDgaPJjaFBhtgfgwnLBkVwsCRx4iMDmwaRfEZwrBB12ZDNqwqbxc9yf6AZD4ZAiJX+OeI5eLDLVuQvZW1aGvzDEpJsEFDv168bAAAx/hBUZQDUQCGGUeGpNmVlDKk2Ag9is2BwARzINgFnGhJnyoCQiUYFKHYlk1AlsKZF0QYB8XSDqJbxgYYX/EbgSECJdwGhXiueBcWJvA0E4an+ShbCGANIndoDJ9abHe9s8q7POas4d//+hXXcAAAAA/sgBoCoUIIgIPjD8wy4lEYeY/8nmOp8Iof2NGaApgR//7oGQSBkPQHk3TeVvIb0O5ymsPdw60eTmt8yghkA9naawdrOegQhlIEFRp42KKRsLqcIADEaLOJfGGGFSDL1Hkw4pmb8o7jzxqpiWo0eXPHtFMX8kNyaf91zdv/3azxsAZBAM/jiZBXXZuRGUeNY9mdagLrTFv9DORgAAABj/WCQwwVE6QhoyoNVnKEEAUgZnuemMKkSswiIFrjKgjRHjhCTHiX8L2FsnLAgEAC/SBJs6dCA5K8sBGJSAGSDCFwxLhQiAHNFqKgnj91Gm//kmeXjmIdzPGCnGJ7/KOkDau7pUx9TP/YpljIAAPrAu8RCRjNYacUhYMMiHR6vOKXzfRIxgwOZNEwMMgduZCrNCJ4ffAqY82OjgwElFFo38XciqZj5WC/yKL/pkvelC2jvGmEYIyfEOSbNrzyyLHP///mPo8YecZ/LD/1MRGHlGgsw4A1dK5FfyO5Oarr+KW2MAAIf2gV3fAC8LmQs1B0k5c43esaxEC4xbQO0mJDnBFhwkiyaDsiBwC6oQEMODGiEKsQZB/xNhQNHqimSwY0DgZoReVZpKBpk7NL7cCRKnxXHhqNgiACFv/V7U6nVL+j8c2HiKAAAAAP7YFMgARGSBxzAMZGgmRoQQ6mUDRrIMLVplNocargoOAwKOhg0fmGEARQH8YOm2pxAlIZ0iTAggR8s8/xZ9ccIOZif/7kGQjjWO6Hk5TeFvIZOPJ2mcPdw8AeThtc0ThnI8nDay9rISmJKxDmreGNfflWaUUrFrGf7mHFCUDwIZZ9aQHqDFwoNUFTe9rnVKvTqaM/xb/ajAAAAAP9AIGRfL1EAaT4xCZ44eqhicm4e8iwfqocmGfIbHeIZMCYLPA7UjISozmUAOUqVTdeBciKOkl6XjZkAxo4A4wWho6hmGTSZ3H//8GdjgPydE1r1V/Vtc02lRlJPa1fT/0AEceEhcUYMMf48cw0BrRm8KGhQ2Y1G5iIomzIyaDCJs8nAxEmICAEDAaSN28NSSCwI2AEEjy0o8NBIYoUnEQA4KmCnsp9VBVMvUYMKkMYIgZciLBGSfQF/SgJIqGf7//+dnsQiqvNUXoY4qhSdTFXNVpoLVWu6LV+0DrdRCJAoNYAQ2geQGkACPG6JmTOGoCGKnhKgSZs5HDjiVT3ATgQogqh4g+KhmsGETD1xQGqOQxYZSBoKfIcWY+QClROk1q6yEGiKQWqf/+m04plK0Don6brq7Ncah+8lWbSvZ5auqAAAAAAAfyQP/7oGQEBmPEHk5rHMjIcUO5zW8rXQ7gdzlN6e0huI7nKZ3kpEtwYw6PAbDEpLNHnIxGODBioMPF8y+GjRcuM+hgxkEzI5JAwrNYcyhhO80jkAaOYKSFRg4AsBmOEus1T0+oAl0iJwxCELIo5hwAFOU1g/GswYVAWu0zff//u8oI48Usfqd6VCtWowiiTd+7/7/6+764gAAAAAB/YAvpKsvSDicsDRhSsaWKgQZQlmhGZgEwbEPDzRukKMAIMsACTgZCjmXnMNQwxBpAWHBsZgFmgEPBA4dv7IXAOWseXM1QO2YepwRD9qP6iChACc6v9SyekcEhC/T7exiWUBIypcZsPOpR16cAPZACk8RDyDISUFgmNfFDlgEyUeNsZjKks0s8AHIdwcGCnhqzE0QIijtc9woaIgIqAn6wZh3YCGAo2RFDggmuAQaxZQ0eIGCAhFgxh4CFAUYAWBwrICEFcSIjMb///w3MsCIR7fqXHsHMeD6VenfbMK/ubb//pwA9EDTYBFHAEOCqjWwMNjjATIZDjgQoy9bNFISdJMrKDHUoMBgCqAwyBRqdxoHCMcGEggceGL4nfygoLAARiBqFDZPINTQfHlw0AxgWuZ3H/TgVIv+xz//+/M2KR25N98z9cXcNEvsbqt//+2/dgAAAAAAH+sABDzYzGZrNdAcHCoxqKTRQxMRHsx1AjP/7oGQPh2Q8Hs5rm8o4bEPJw28vaw4QeTsNcyahsA8m3Z3k3PRbPSPTB50Co5zE2aa2GPDBh5qcMZBF6Dg8xMoBg8ZIIMBNoczXjo1PkYSRC6i4oyKimqOA5SwgOMA0dtVYa02leqoo02aRZ9///Gkiepe/8j/03qVnoDQhLRWmr7u+aJzzLPirVxaioAD8UD4ohOLhmKCCuB6AEQeYSIHMmCEwyYaIC40QNMaFQUaGWn74pMx1RwYu24pnvGSov8wCQamVqLAPYyMgGHiAF2Ym5sjDzkPv/YiaM5dVwBGp77//6kbWdfQy30FgkhKCqsYfOf/149FWTgAJgIJJhTCZyWaEYc2mb5WbFsAhwapLZmllHHxsYXF5l0bgoTmCcY5AdsHcpGggkDXjjZIKdYIJADuyJuG0GqR3CyCRpkIg1gQnj2aSMVtTKwqey+IE1h3///ziNaAKeT9bbCjn3f5CgrZ3etbepfpg9gEibgiap9C089ztFFFgFBD3oYeXGqTYOBDMwcFCpihaaIFmXl6dBEgRHGQGPEmEEcghjGml6AqyINX7+rHVnqmeAOhDxZYhApzjcsperXUXiF6Md///79DSP4l9IPqXWYcq1rm3Nkr3fspVgAAAAD+xhBcdDwQlhxSa6IGbzpgAsYkHgwiP6YjmaM5lSLxHRln1onpHGAvmTJqwMLTyB//7oEQaBsQqHk1TesqYgcWZo28teQ9ceTZt6ypiCpimzcy15DoBocQIMMsE58wQ0W1XpK2XlugAAOAlh82wxJteCcFeVJ6oQwcqepBVj///syl/4KZ9OP1CAXU4UWUcUG0MPuQgLj1GTDz6Bbehx1RLTs2d2sAD+xhg5CHlhHEiw2VIM2HTFXg+J9OjLjXhMDfxltgZinGtvZoa+EZ5o4aERw0sjykkfppkjiEkQOAowmBNSIwAiJBgBZxEw31DRVQXS4Z+BSWBSyA1UmAuSOYvv/NE3MxTb9a0VKqepOui+i6z8YWTcVJNJGjBeptE2VcKGfXr6ez2gOQSBZmLeYSRmcKZm02csWmOKZmEOfevHPURjy6amUaKyes6bFUIAB506oiCAVaM94YoM2sLBFVM6FRik5A3gctb44SniTcB1RiRmCol0lBZ4WAC3KXa5MonZ///8o5clDzyZ+hSXB6IUqaOqFjg/epy1adzJJTmY9YFH9oEBDARMalUhDZh4kmKFGZGMZmdGgkQnHz4AoYZcUpjAPmiEGZ3AZg8AmOR+YOI41cX5G1xjYmqXUfxA0+HIgtIFGK7aI086SxhRo7CBAWdxoABQXpdAoQFJuqJcXxlmf0SYo4CsCKb9+7U31J2rVdU7WtaMxVvW5a9G5kip7cctcAAAAA+sADg0Gg5pTCDyI2aYNBBjf/7oGQKjnO6Hk3TeVvIfoPJumd5KQ8oeTZt5S8hro9nIbzhjHpUyy8NRwj7L48tZBh2c1mmSupp4SOihZ4e/DjCZEYrRAQsECqwOcKFkAhznw0l9IU9yIAwRguoY7wNHM41Q2HLsEL/QAFrAcmRS//8lHycHo95Rq4so5osXNoTuw6S/s678AAAAA/sgmBGGPOkUQ7AZ7R2RaBUNbxusIbUgmNgxiYsYqUFQULUiJOIEAH9FpS7hCCZEhihnMwIThHGbYxhjOmvlQwhGMMhB4RElxAghItVsOQalSvRnDNJZM5////3JHaWBirO5yhZSRVplZSeXTJuDI9hByXJvNfvGfRsu9gBiYmDiccMTZwM496NBlzZUA+99NciztLM0vjGTww9ON8ojhyww4PESQZe+GAweLQAGNxgwJjRcI5DEgMN80SYep2CtMHlC8hqNJ1Dy5niJWRfB3FUVMIdHVCj///zrAyFM+Bo96hdw4YcNq4EH0sMEFXurYgh4sqACDaVpr0A0fMJEjQUsFLJhBoYClGbFRhJQcE8mGhxhASgMMdY1fzPiBW5iQFxgRYYohLG/ARIl8kALTZ6NINNGfiSjG89EWKJcLw08DNdFSi3IpL6l////+5yhZ7b5xFaeRu6PR/V//2ez1KAAAH9jBECgoATDqfFk6Y8KZgeMmx0MZAFZtccmMAia//7sEQQDuRZME07mVPIhybZunMnaw9BCTZt5O1h7w8mjby1rFqRjVfG6xkbNURlUDGCC4YsKhjIMHI6URAIc43SkMxHDGPawaywsujcJHMCGgUJgyUFuS6YIMKFkSCsCF0CAYgEJRQgH4+f8w4QA2E9v7TnWzTnNMPszK5ZiA18uEFq0JX2Cgo/irlx39P3YAAAAB/ZANCIwAETGbFBQ5MIEUGKcwUHDQBtMeo8yuYzLF4MFGoW0ZplrGIxEZoYBFPGk0CRYw5UjHQIYBGQeKZoxAkwbUYOtN3QCkAwWSIDwiAFfGCsLNKD1GX+6qP46LT/5qjwBIIP/eeyWd3ZDD7M6vdj2lShq0r9ijm6li6esnOIb/f6PZAmAIA8yVnMiLzG1wFPJgCIZHKGXL5rzOEOZvziI6AxIVGnEG2lBpkjCVYsMTZDNyGCAwlQBB4pQEMuCIQJGxRQUDQJBoqigI0i9ielyZVkSiTKCQl/43Fgu/rnsY6Iy+17lqqbaZe6efpc+jHKze/VlKs+H/9+bZq9jBawkLwQ6mdJoBjhYAMJXjO5Iw/DGSU3q2P4NzARo1FFNwMhsYQ0mloQ0nACa44RcIbDRqJWidNCUTes3JEVjgx4yDTJSEBYKPCJgsACkmUU7SiQAElMmHYPE//3FMbeqHgyLj9z3LESCyUslbB6wERfRUMS+Gf92YbrgAAAAH+yAFDhiAwTRBroGHEwVZDNSg01MCpaaA6G7DQrSjqyZJMGqHaZYNEggFD8jMXcU2ghFkNSiQSHI00h4gt6j+qZD5OoRhgwUeEV4NOrASWKVYNXwgJdicw/////92H6PdAG//uQRDMAA9MdzdVvIAh248m3reQBDVBxPnm9AAHpEmbPOaAAZAK0RztWo/c1OUa/svtnB7P9vYLQAAA/sAQoMCIhY9B32YiNGHERhjQac0GxHpkn0cA1mKpBg7WY0xEScYQIA5pMIDC26AIFpG4er+Gxw4IUYCTKMTHBn+WorsEEEgZcN+i7aVzRIcXqspJtTqVxe///////Qv7O/HioRnW3Gq0J3SDNyXM8DgLdct1ccAAAAAACgxmpSCScxszHB84ULA8CZKimDHxmCAeIummyRmZoZuFGgEKVJqjSCoA48wzAcDDDGBQSLQhLvlBFtQCeIirnmKFAI6iOi205q0EKHpLy2GQsAfSD3+c3/1SqnnuVnWYNKv+5gfcAAAAAAlIhpMpGCQSZ1AEHGxXIbWk5ihmmfTkZ1U50qYmp50ZkBBIKDNiiMyFQ7oRzUAjOHMNDJJiYIBG9SmJLmxbh6FuIUEhJVTQBRApDRaK1asDNFhTEHUiHJL7KAkBWyFgRMH7/vo1L/+bTP//pJz///z///6PAAAABP7AErgAHmtHx//ugRAaFU+wdzddvIAiAo8m97mQBDqR3N1W8gCHdC+bqt5AEvYcYOfmNgR/AeaMoGBwJgJADJs4eUMNIjjS00YGFWEwNFMaMQKQZy5cAHKtiG9hBIAtQAOcbZhhK9ccwzlWLIHxwG64YVCR4op66/qzx41wop3H////96e8BdThyb1smRGZaLFsMsdO3sRp0h1aFptgAAAAAAf9gBhMDDoyMrEozyDjIJVMbgcy2KDP4DMlhYzCljAx7MkpI5GnTAxUMBjIwqKQYAzDZpCLgdAbQQLSZODaBDUcgZEWa5iDqayFShxEaoqeYipTpDhhQ5iMij0PDASN4se/2Xf////13Gyd1uF5KpPRahA+8iukVCimfCEAAAfU1CokYy2GHNxmwmbCTm/PBkugcYKmKDYMmjVTk2vMNOODKAUxkMMkJwEmA5UyESLVR81UUVgiIMQLDRpCJFrUacDRg4xxAbcVVE9IfLmv/F5h2IcLUxtzLH/////rktP+w0NFFqzW5iKtDmBwON1qZUnAAAfq0mAlhj78Y0zGhQJmqWbRLGmzxqheZSnBEuFF8+wiByIYqFrAhhoa4SnVAIqQIqYDgKOHnx09yT0NATKsawDkCAJlZCSbAhnBA4ZIlYEIEjWMGrQCR2VSIMfLEmWPWvW9RQuh8S3jkMQTCj2gW+l4nGrj5OpwAEAEr4AAA//ugRAQAAwIc0lZrAABXI4q9zWAAD5B3Nn28gCIbDCXPu6AEAAAAFfEKogDhZ6KNxVWLUTp1zlJTEHTGHD7hzSiyzwCGgxWUKAckLPQSlM3wOmjg4KhDwglbTn6T4Wu/iu2JTz5hYL7Tr+KoM9hKsw8Dn/aFQ02P2ShV++3ooAEEDY3XgAAAAAABGswSQRGTDMyGedYODogluGloEHgA8DvSYycgiDoikIRtHLn+uQ57WFPMv0y2B5WAHoBIJHAKX3YjBEQ7MqpNk1abN//7UP//ZqAL/Yw00YBTKW8043NAQTKsU9Q8MyGDMCQUZzTi0zmYErUyIuB04Yk2jyEZoTDgxmvGyEShgkkepNSMV1UsNU8DTKTf9I8DFBQIErJzrOBo7gLEnqB+lADMEHQn+nvx////3jS/Hl1kjJsUF0IWo2YdtuFKGo36wjLxrv8eAPq0AiiMA6YcnSZfD6Y+DODj9M4DqMTg3AhUGK0UmcBmmlhhGfh8mMwFGYRVmHA9mAwZmNIdGWoHoDghcKoDPmhHEM3bQeM9AGSJuggKgjwpMMBygayNy9FSxnz40vMsWHismjrSRAOMuZHjL/4g15pNVAGBgeERZ8+sn3+faO23XJUfqY1NgAAP/IA4pgAaCGMyosNaFDUgsXjDqb0DIJtdkZ60GxxxhbQa88hBgSqnimbzRjEAHUwm//ugZBmOY6IYTTt50yhxowmja3lFDqxhNG3zROGwC+adreUUTPpBQQJeCwpMKYYcdgIHK2dKDISy/AEOHDnN0HQqG4FAq+/ctW8W2RPo6TybH6nvJy8g62pmG07kvfFtKkLMF3vAH/sYqRNgRiygiKGUugrYcAmcWCcMSQWwc8mKWIMXx6HNTWDFTMmEUNTVQDPjJBKBzLcEYAGhARQF2SNAAKpC5yFKGgcIUBiIgOCEaJfi9gz9MSMp6sUp2868bZsTQxwlV21qa0emfUkImD5H3J/Z5RWjAbGUDwVSz0RY61BMrKThxbDk6IxaaXHZ2kKmJCiLSgWmJiYxnADnbDmGmm0DmQYmIEkIoIPGGumXSmjeP+ZsYFTgCEDR4ChxwmRBjgswqVWeXfAINYkg7BSP77Ikxed8IXkUDhdoaUfJe9lnWYrw+l9/2tvg8gD8NYMsYEYwx48xPE4gAFAzEpQewOOlTU0UgKjBRxJ8ZRCEVBRQjybhw6wHRmqFLUhTrILXgX0WfX4gARyNIUcSOJk501SMwBw7FopnAIwcggYM6wf6rmil7kuTY17VvuQ+++5Hx2qxqkrVgAAPtGARAaOGFEoDj8GVAyhCTuQWMtkI08DDGRvORp81ACTiZ7M6JswApDAK9MHjkzSLQUkM2aPuJECMHOgxsPOzCWSk4IExoh5jBzkmBAma//ugRCiEZB0YTDuaw7iC5tmtbyJ7D80JM03hVGoOlKZdzQm0UIymTxGISIKmAo30unB2U6g8DnM1Gg0/tchSlppaMB0jygDUeDEedNKc6fS3fUHjQ5tkAAAAAAH/sAMpCi8ppDYa+QEV4ZBLmQJRs42RQps1Sa1EnWSJxLccqHmYNBp7iZEYmhjo0ay0xYhcGIJaEZI8mdX50RArUzHA4ohJGAgAeeGQgVDExkIWEW/jyVVxkhTYaGbTn////1v0JNo62Q5lbquzHVDSPup7tFuiXj9OJTZsXqgAAE+sAig6DmKRBmYkaejmG14wmA04NWEwKxnGFhnaeZgNms8poaeF4gyFoIE8xQSMDOTLkQKARjhC10aNDCQc0E+K0IxQzRXWqGGGDlxGXHw5KVM8I0tidrMIMDQMgDwAIoqGv+Z/pY/dX7r0vRrN17z+2v13t/NqUlc9eXcGjAjad4ILxkkNGSSKYgJZgk1GCAyZmG5nEUHBHuZ/FJo5EmhWSYxC53kRogYxHCAIyVMEGC5AAEiEKa0CMGwaiMXDCFSQw0QJAYAAgiMNOTNJg6MaA0CQDXb9SAA4GMgVyrUfWkxw5//QlUkJWtzbI3cRtcRS+y87crFbnc+wg9wYIJWAAAAAv7IHBU3EEAaiGGOSAUnTFCgwdzLIG0JpqH0THh7sOHpoCrjQG8zucHrk//ugRBcN09kdzdN6U8iF40m6b5pDDsh5Nm5rKmG4jSbNvLHkyog0Y8HSDOAwMWHAYGzg4+hKNDMATQte6K5h4MVA6KoRUHE7jmcBLlt+o0qoPBw0BtEW5RCT6Ev4vDplFkvW2tmXvCfQQz5kv//oNrbAAAAA39kCuUAYUkDiRo1pMM5lz7hU05rMDCzZjkG0AyAFzm4yMEI0wIDjPwQtyBLEyZUqCR4qFzYoWBpUEygEEBSU2ighDhzRdJUBg5kXGAQdAKYEWEKFyIVYdn1gwgIlUrAq+H8aaQdV1Kgm6deYHNaLuj2MMJARcuh7ntyw6fPj1XdH6wAOxBqBg04BhmMqgIwk+TSw6MXi0weHTLApMNQsyMXTwHj1ljukj+2jgqQr1CqxnkFVA21jFCLghgg5SIBhwMW5TCcFKUAAvaShCqYoSsGGVA4C/7Rmlg5RlbSX9sUEsu////0f/Hxbu9ah7Ng0zCpzpU2kO0KAH72MdMDjCJSOVMDMIUdHTCgsKCZI2mDRJjE2eAgmrrRl6EyYxJFMzJDbQIRjDDK4wu0mADIU0xRUk2RuSOYsmSDoQpGDigRAt1WBIYHD51Y0w4KEgoJRKJr5UW7zn2s7GuAElc9X0v2ocllz/UqAAAAAP7IIPTgBQsZ8EGSJpihqZBMgI5MNIDDw4xayIoI+Qkzw85aM2zMw08zc//ugRBcMQ+gdzdN6yph8A0mqb1lTDvh3NnW9ACHbDWbet5AEwgRWkDEBwYEFmCENVGGQYIQEvCCVL39RVQBjoYOjDj0HQdklYibzCVNyMINrKKz+XZJFZP////LPWTYasetcVND6nr0IaxHObyRr2vTRl8AAAAH/sYgYxAAMhFBo2NmgzSQ84J7NkDgIfm8jh0IIaWRH3zFhuZuCYGIYj2apycJBxAlqyUYhYOEUzyAQGYAgExDj1etpKTBTQ1NBdL8MIDiQ4EHBW7jQWfDSTbQPArpUkto5dKxGOK7XrWL80hhStWS0VrXz+6z+r+kAL6wBCeYiNmAxJFXmnpYWKTISQwxANFdzsGAmszMtgxoTIqULBxlhMFxowUHOWTEnJewaVJrGUMBUAY8GJFjRpwiOgpRoMIWsIlhqQ5ihjtBC5ByHJRVaRFVgFL4rIpJI5rDn/36/lnVJV79lDmsbe17/Y6Dz1FIAAfrAFUzAwcwmXMZOjWTMdKTizQ1MjM/PzvBY3gONkMjmn8xBOMYDjGEEyMiMcHRT4ADhigdQIijsFCxlMDyGumMoOEv+/6QiAY3ETROCU0Ja8l1xu07z+uW/rdHUieL/P5w4GPlhYhSSV6kRRSWASES66VfQuo8wQAKiAxf8AAAAAAACWsAzkibJhSs1ZzJxNi5R0dIASRZ1BhOpL1Ncv+yh//uQRBYAAqodVm5nAAJi47pKzWAADkh3Nv28gCHkDWbPuZAEQt9yBQ8jjPrMGZSGT8dmD7LkV5BqAovzsDRKniEFQHh+m5U/623kT0UDACAADs4AAAAAAAIT4gHkpsx44QTTPrwrlFMgqZMrsNiYBv8J1GVKGhAGJEAKK4rQ0Qg5a+k1kTmkOW09CUHCcNq7An0UPeOT3InC8403AeDGWIqhaO8vPa5GYp3x5xgC/tJAAAH+wBqRggiBVMfFgQKGcHhzBaaPKkTSCCMzt7GCM0MiQQjQIccSGLjQ4SQ8FCWFmGQYqiKRZMHVqohbJGJ+FGEjxElFDAZHtFrImgJgaCyzeqhwe1pT7LWf6LSypcv5XdUvyI2et06gCL73GJvbss0AC/2AOcYAA4VH5lUNGHiAY0A5hQ+mK0CYvKpjIwme3qYpeByAIGFTWFxyieIR6KEwjDELI0C/oVKcQwxkHQqGDFDtER+JgX2M8QGjAwUBXpvpeg4lyJFLo9IXSduZXfHH8XjRyk8CqP2P0lRQADVBU3yVrlCIUv+tFYAABf2A//ugZAKEQ74dzbt5fDh0o7m6b1lTELh3N03zKOHUjWbpneSkNwBAkZVWnTmxlJUZonGOroLRzD08x4rM5DzBJM+OLMRTgdKm9gZjQ4d0gGjiQMFEeE0jcCNpsxwgSoMBnJkOHKGrrlLxIhFgwBaq8biTDp2yPUtjaYK2bqjTI4URFZvvz7n/FlWuZiioslCePo891h+drYAAAAL+yCOxYygtBQsCA8rBzdBkGH5jColgYcyHWBhp8ZhzxjA5q45k2oKNGSGFmzFNHpk1TWTGBGxjBAaM8pqCSCIN3T1BgjUwhVu5f1Uk7ZnWsNMUtf2dkEhhL2Vu9+1lf8J8rU8xsZ13JoM3+nPy39e9eAAAH9kCPJMFmM44YzmW0ZjwQfWnHSAxtZ+cMQmSpgbtGRrhMGZ2gYyF491TFYdM1EE1qGzDApThUkFkxo8WLAboimTXLJhYArHQvYOASwqWLOmEbDAOSbu9+ptprQ49HJDF3KlE/S0XfvVMvDetQjYne8qofv4VJ7HzjVsSrU7PRbklNvXgAAB/YxJWBmOcbg5vIBSw0kzOHKx7iFCkFmRhEEbrGmUoYyCGHtBKRi2iOtj4hqjmESWHxaooIMIoFJhHB2RmgCv1IKWqWJYBSgerSvCBguVAmGTNnekyxU9px/rMhfxKC3si9lrLWJcPvIHEtRl29WzJf/oVwAAA//uwRAGGREEdzVNc0TiHg6mqa5kpEAB3NUzvJSISDuadrmSkAD+xgtaOETcczTyjpWzhsDW4iDkSaKBRpwBAKkHNSWHGAmgpjklGlQmLIGLGnTDmIECgkiaJiCIoOABqiZMQZ+ICz8BMMHgDLBCHMIUGjJYEysHAS0DyZVZhplJSqlVLQtOfualP6zpb3iCXDAMiqAE84x+Qaoy97lvae9cgTYx3+vXcpMAAAAA/2MJWipczns6sI9Uk5YUycuDL4VM/Lcy2IjAI+P4m00mKjPhwCAkZJAhgAlGZxGbCwgAGuQQobMqwKthEYDkwjgkKlz7RMCADoJnRGEqukGLjQBYdJi8biwVqndiGVcxGBKa7j+8LL+s9CoaCjQOHyoonWMkTaUSayn2qGj1J/7dibXQAeyBiIhDC75xzEooFmAqUaCLmmkhisQRFR3oqcKjm6GpqwMYyDGYoJpwcexIjLQiI4At0MQkNBxDms4MHpwIGo7ixZfdB9K41DHdPoBRYiHbWftsxiO5c77UJHA7vRXDDnyf/PTKBgxhYwBxRgLJZP21dLtT6wa5HsI0HRSP4pAAB/ZA+INIgDCcE8aeCYcWYDDh19BGc1KcLGxoEJHBzMY3TpnIcjgUMemswWGjBRJMqULJk0APFLooliMccALSFDokqOlxOVhVAUOEijsnR2aYpYPGFZd6nYHT6l6hk5Eo9K4tfzz+j/z80l4xhYwGhaCxNk/ZX0O1PrBrke0hQdFY/iyqAAAH9gDXQuGTAw9QkGWjSZEWhkdSG/IOZ/PR0NTHMpJoBSYitGGkoMFzZ6xehIJm7EhhwMZcBjwmfJ5n/+6BkHg5D9h1OO5vKOHgDicpneTcQdHc2bm8q4i6Opg3N6OzBD0wCQBxZ9jhcxoqHYOMUXDAgViYxIiaUwCw6qjT56WKdU+c/A7+uLItVYvz9yz8fbDa3ixdV50VsYlF98500oK5CAAAABP9YKzFgZUaQwJUMT49NTNMOBXRKAMOSzSDc3cwApGNUpzqaQjRlI0WhAgBR6nSYTICYV6WWM6EzoA44NEgR2QsArGvgYKDwQUgNUKpqWy7cu1UpYEllFAkYfmBNUiPnqVo0uu9CMYNWUPi0f0k6uptrt7+v2MPqMAFeBsoLGTi+VGEY/b5owEmTbaaEYBNvziQUMykwweBb6cAnnXFpkQmb7HmAngNGC3hIgmPgZh6OYAHg+UG3A2kLqEwxdwxpCywOtEJ5MeEHhh48a52EWZjfo4ZWRDyk0wIvJYY1zV3/QCVwq1ceRuwNSyG5VCwJ1LVYkl9fu31gD7NoZrAjggBTDMKgceLZq9YHCBcZ+CGf1RuSeekyGRHxk4KbkLmzApl6oZe+G6pooHmOoKLBkSIY2IAGsGT8lAH5oGkOlheFxpow5hVRhBBhFRlAB7CRg1I9GM0raHGIfdOLPJTN3W7VWmzkqjZupLHuu0jBRby+JCJGdt7npY9CGXSH3V/5zUdvmsAAAAE/sAMCAQwMAAoLTNAHCw0IA+ZeUphqFGH/+6BEDgAEFB1OVXMgCIHjqbqt6AEOQHdPWc0CQfgPKbc5skCgyYsNBpctGiTWY8QhgQimUxoZsIJiAVhBKNp4z2zcLQFhRM4YjHjNw9Fc1DzJyGi03hYQgEV8YzBgNBMqao6MLGIS4Eksnh+N+4KjT/LAT7E2aW6X6b+1s89JW883jnJzTiX1zNTsAAAAE/sYAwQ2gygnJHIyMiy4bPVmnTBh9OQNRwMAR5ZKnD3qZ23GUrJiQaY9QG4nGAcAY8EXjGWTQoR6uODE1IbBg8SUhAVuBAMTTN2YC8E4rcxw0IMkI9x77oxfUDXlcuE/5EHh5YklwtfTfkkFEDsdncu95umLXH32ruW64uK9yQAEEAFSH4AAAAACfxgwQgUGGPkksABSOYODRhgLGXEYYwUglSjDgDMViMMFBpAdLiOPAUw6ZkrR4MIxxgyoHhwIgDV215kJNHRSM2FIry22hymdviMSVnIBtAwmGMGhO40qtZ7xh1O6MU3POIv2HWadAEAAAAAAAZf/AAAAAAC7zJSNMCh0ysmBAITEhINLD44YcDNDAADMMaiUQlQw2GgYGRg6GPRGFA0AQUcAegpANEFTQydeoYAmMiokzBgyLBYNB0ATSplWYLBxo4Y06suUmR2a0wwCBAHnOOU/r34ZusFwCVSuYdMlB0hm2qvzNcAAAAA/sYBQeMCjAUH/+7BkBo50lB1N13NgCIlDubrt6AEQJHc4bmsOofKPJxGt6YQBpgNmPhya9KxhK1Gg0iC4iPE460ZDf7PNWt8x+STQJWOFCEzYZjcLKM7rAVdCIRckyoBGhUBHxnIyLBRggyYKLmakZbAaRgCLmFhpmBMFwASKgCGkIYKAhgIIqxE+HYxYiTUFJyks4pCJTlb9VD39sWGhwJJNrNuIipeKCkzcU7HxR3/+vAAAAAP7GEwkJwUFAMdmDI5p4AZVhhwKHS5ig2FhYzB+B0EAB42fDO6ojI1Q2eXPGkNsGCFhlEgJPmUTBHwGtzEoTYEGFmwGCSoLATNBiaCdkaZdGZZKY4SCnxlQ5gQSMMTfjdDq5E0QgaPfRJpGqls9r4/EinmSd/RPo4aUP4GKOrPIpcytEtQj2QL4EYDSpEkuYFDRjkaELxMLT84eQjo6kNpUQxvBjh4pEYZNAKM0e+wEPgonjYzzhHjakgcvAS1QMx7ECBlUTUolBhIqZcOMPD4Hf5nmLlfNurOAURMZKFSh7605XIhxhRgY6uClgTX/QTnpetSa7W1JTelefE7q19q0b93+7LORGABeGEgVWA6WIDRnVZ1/xlOhoqgNonLKGhtHDanAiDMo1eXMpOAKTla1AeasgTRTBlh0gbYQ4RkxJmxAIKExoSQGrIB05iYNBmqtk18w5oaUmIMIbIwxiH8dTbQnYbouSRA0DA83/JLA/eq2hj4am1FB5FXRMdP1qYSsHqXAAAAAP7IGWjIGIFwbchCRmgIxxkyZW4nEmxwxcYWNjhOFRIzgfHEs2y4M9WwQDmZkDSjaVHYDxKNuo26TqHCBQv/7oGQghuQ7Hc5TedOofEO5ymd5KQ/4dztObych7g7mzZ3ojJWEHCSxjiMkQDGGBj5SeFB4wOQMHlzB2grBv5a5HVINLLeqryqDmzW+5yS772vSqLqoGjVJFE2z1Th0h01pNJsVY9j/Jbm4AAAAB/YBHxkBxwMYIewRKb8KmOnJ9zWaOVmAG5hxgb+bg4zNHRjidgwcsISk0yUrwQKLHiq4DfCMQo8FCTCjBko8qZoawxZEgQBgwF1DUhbZRgiMf9xYs/nfiL+v+sEoBMP4hfVosYLak/paoiKsE6Uv1CrDXi0z+jFMdAB9YEkRCEwMHwwqGHwoZqARla4GY3EfV5DfKZJ5GZGxgR2a0DmCBhtN2Iy8xdIIh8AgAtMjxS/gASCpYQ6PEHOiQBoeqrjq6AYIcLBAOeLyBCwXBRoh6jlEO4fcf1wVAmmxCAIrel/cpG/sWPudDYDYLn3X73aWmfXya0f27606xiaQRqKICgrmaI4iRTWoU12aMuBjDFzc1TaqDJyh0iZf6cEiNgzEDhrSYg8Z8MZQKERR4KNBDKAzHCTYnhGgBYA1xpBoUDuKYE+c86kilaiusHG3Dabh+ClkVcNxn8cFST8P/GHhgb29hpehi7VI2LPoCYvDKOqz1M/cgAAB/Iw1AwAA8wyBExgAUwzVkwOCcw8E0yZiM0MHUylEswBYY0UCE//7oGQUBmScRE27uzr4e8O5ymd6JRDEdzdNcyNh3I7m6c1lTMRdM4PThgsG/pjqKauBm3ggNKjIQxM1CoqDQGCzZwMwsYBhKZ2LDAELMbJFDAYBAUiBIENBIWA1+l+mRKrq5ZP35JgofI3RcCNv+/gkuFwmf/rdj9t0m60rsq7f/t1v9K+eqmVL26KWWp8argAAAAP7YIfFASwEZaRlOADEylaMsojT6A1Y9NZmSd+EQk3gU4Z48/g2sUeBAI+hihiAUCNtGAgBUFgYiSDykuZMAzEwxkxA60sOW4NucCxpuKpWRDIBTaF/uggN9oZbvLFjKIRWIxeCaju9jl3c172u/XX1DYgGXfRvcvAD2MDgMCwFVjnKANKDFobMXLc3l1TIAYM5hsz2BzfhPOatoxKGh0vGESeaDKZmkpHrSE1nCeSxHRIYRBhFD/ZjpmkGTDKDICjcgMBQPkHYQV0ZgQNaAzo4PFnATqfT/uYkALMZJI2l0D9TeoNlnm0XNoSga5LalRVRQgJ0pIP9goS/nPq9MAHsAqSmCzEIOUYBA6NZMcy6vzDylMcCIzZCTKobMx7DXycQG5Cbs6JsowM9Y4xioiYJhdgcpByRESBBjTWMooySh5M4mwx1wRzQ02BxYHmgoQVIUOht7s/mo1H3ejmkLVLH/ZM/1eTO7XNSJPtK2JDXoXKov9i6gP/7sGQAh2RKHc3rmsqYdMO5s2t5Uw/kdzcNcyNh3Y7m6b1hXAAAAAAH9jAGCxALzIIgMtBs0avjEgmMthwIJQ+1hZNmlhqAiWbTmV2jZgzXwT63DtYTdyFvxk02j0aQckDlDPNCwghyNMRQgIKbqf5aNJjnGmacpws2RhA96GnvHjX9wqbtuyosz6GJPFY6/s5HYQ7xpNiZlwWxcUYBoyVVz8UWhXcLOoIVN3tAA/kAm9oCyQKSmQKDPmuB+UwS09Y8HOyDUZ6uHEFRjBsZGvBJGYWGITD1DAU4jDS8VEjOOHhw5jnCYxIOtsw0xOBVMelGXjcjAzaP6EqHy4C9IO7cvUkph5624KcuVG3dYrQ3fUUP60UlWKehtd35ztigdhjAAIHGGLmuZnACGDo6YcHARACGFmS2GcyVJmgomzigcCMJjIgmGiKMGYxSRjGpMQdGIwYADhgdCTCBiRzrDRRmHD6KWzATDOHBoZBWwVDDiYZHnxZaNvy3Rxt1qeakkejdR4Iw/sXk3Ir9DcMCtd/P2tlkMTN6+BqXPWLU7LbXYAexiNIc0bSYJCw0EEoWIjq4A3EpIX44ciAQ8ZrCdw8NPji3jLjjXhDAHkgB5kgCBSpNAQAytCFSjTS/qwSK5WcznDPCXALZgIhGA1AZ4UCiEqB/79yjx03RwJE2d54ce2fobnuqeRpHVWrMrr1T+udxldf/i/6agAAAAD+wBM4ChxiR8jSAHw2hONqJTfJkzFAOALwpBHug5sSYRLIw/gVMBggSUaHwuYRrCOtlESTQwxOAZTSQ5YAhR4xxIxpoCVokszoGVGh8Gy13lpqwf1z9//ugRC0GY+0yTNN4O9h647mXbyxrDhR3NO3nCmHBDuaprDIcW2CsRikkdyJAFAwxv/WjsphymPduyp+iZc9UICkeljuK2UdUAAAP7AGDGAixkwoUAQ5CGsARhhMIUU1QeNTwDF2M1E5OOFzPgIO/hTUwTQXWIpjnJSeMg0UkMNohoXkLjA94ECp7iCZTIkONRdCALIokoZKXpwspVmXXFZNiwY2dFQ4J1ZkYvtFH7SA4HxE9FArxBL4udPoYNT1MXv7IPYxacgWLjGw8ytDNAajMwsz+AMPTgAGAGaDn08SgOyZTR2CmjOESMOMxA46joFCDQB1AccHUJFhU4iqHKQxdFVhe5gaOD/JWV4lVdF+b0y81eYa7As9GMpFTVK3PqY1I8fqTDsMRndp/nX0RcC/WtWAHsYd0AFjQjA52YX6Yxkbaga0KeKOHMTOLD+Vz9qgaSM0WrgsILHjWCxoGs1k4HWXoADDegSUIrnBDvIpO6twFLTgeA+hLepmwOtrUiZjelII/hcAK0YHy5pZeP6mC6B491aIZgtd3aP51/FgN9alVjAAAAAAH9gAcRLTgE+ARxwEBkSZf8zZUZQm1dGIyxpiqacGEQSOIgPPM0cEnl2FFE9V5MPWBESRVNEA0OtLQ5Ewi20QRodInIuwrxSMocOlaQ0+XxO9PU0dlETk9mxaiv/dY5qbj//uQZDMGc64dTetbyhh2Y3m9Z3kzDaxzN01l7KGnjubRrCV0kSpOJS4RMZipZTOm0EvJKMAAAAAAH9jEy2MRSAAYFQC44FDMO04IpZGYKOGgmQUaN4o2Dzo1EAAwGaoadYwMPBBQ5SlZIGEHlknkMkBSMCsrLYm1dpqwi91LmpQxA6vZFOx2mh2SYxGVu9L6wNivtxUutq4xqWqvHvyg5q0CXWx2qwqnr/RIB7GG5P0CkgKBGNaCQY0cAyusxs81LoKTj4QDn/h5WcEovoRtntkFJAhBC2DhJdPtFYaEUQgSccRrhhTIQ9aScgM6tbzlTpxr25lSyKZUqrTg1+8Qh7j+XGUDRHMPanHpa8UhNSHpujaXRzf49UACPOSCCIY0A0ceKBRGapGdhSYZQYxOCwYRY7JUrYOIoJWmmZEgIKyFayKqwZEcHSkrJlsxlZqDqnSt1MkPFH+fx/1MYnG6UUoDY0CY0FwSF0MSJJ/paohZiybvfY9EYrvLXVbW0VIT/WrwAAAAPrGGIjxoOvMhEhpNpc6Bg7i830w2ik1EQ2S8//ugZA+Gc1obzdM6eXhpo5m9aw8/DGhtN03ph6GejabhrD1k3sEIphcyb8mgqcAEpuXhUXTDU2TCUWIR6SrDHXWUharRZxJVOqwcoRydmOdRRFteiuoCegMvVz+ICRHxij9WhH+u9ZYoXart0o/TWgRAAAAAA/2MZ5gpWg+PWWUhQAbSAe2Bcp9aPIN3gNAkyeBmcWClIKy5Dc3BcZOVMxIUQCYbKlqJ1F1ZlVrGFeAsmxhQ0WZDlQpVLCc2JTMkdnfz0ghD31LetFtaMPpbdowP77UDfbV+BNlAHsAbhJgUFg0WBSIFxYIBSpSGTVGYHj2ExRk0sASzFCkwgYqoDDjgwgClqaihZblWxBYFDi7skeFkUVFQHBHE4sgCCKPikSTZ9BxGuVtNIVG3xY4zrF7CaF+ZFx2X2lbf+zdYBIW6qDJFg4UYUQaYWZOgvwarGFUGWgHMCmgFEdxGNwAqnwl4ocX+SOHlqaLMDER9/HYZKfwLssAqTlJEApqlVTqxSqN4q1Cx97EYlPBCILHfGF9i68GUlFQGZGHC6vfa/f9CK6P1PrAAAAA/ogThYmNGGHIHZGdQeShmoGT2DExicHYny0brRhkHOOrCaj45Etx0oedhvYuHGVWf1djsyZksbft+I7GQpSnxXNzsluLCa3FU1pAm+DSX6smSe1ab3VxFWxthj//p92SU//uAZDKEUycczdM4ZChko7m6Zwk/C+hxOaxp5WFoDub1jJmswAAAAP9jELlD+IUAhMeFPVgKqm0SSCT5dUvsBum8Svh6hdBGwOK0JeTPUHFgEdmVRB+3Hbxdi5FmrdXm4ERMOBUXR0sbYFJO8iLIoCVqpv8HFLtGTeK3mBfI1zm9ui7n026vutcAAAD/sAT5GTj4AQMZaVDHDQmGmhUubcmFoY4PC0lGIqDxk6kkWTUkPCVevotDkAZjoWSiHGX5nUaGKxOp06TcLWquZ1A3xpnB69gv/tqkiFD/2e3yc8JffeTa74rdqFAAAC9bJKRTEuU9pkEbGGMJbszIbiGmTIN4DIuER5btwJSj47eKhr/rBo1tFf1njS2uw+vSvBavUtofzkU3OU9UAjSKZOfTQjAHX3diEaPe7IrGz2ha97RBqnAAAAAAB/YwNFtFMGdX5UgBx4UEFWjaBjJnqZjiZjVgQBTAMYFCDQOUw+v/+4BkFY1DFhzN6zoaeFwDebpnBk8LBHc2bWGJIWAOJumXmeThWyD0gFb0xmStrTv62lM40akEReOQryZJjIbVL9qiFZW1RxBJ+xsyWsXFtLWNPlqrvU7Vq00KrlAAAAH+RifqUyCFnAJANRszdBCYgKBAEegIoeWCzJpLzHnP4yJ/FE5IiwtlwX+lzvRNwk538fRvnpRVZNGuxW/OSOv+A8TE0aQwk72GF7Itqoo/3/r31zvtt2ZoAPkxNBswiVIUVUtAEpJiTQggAQeCcmYYie2hNUtmaYj0lgHiTVYZL3/WMrETiWCAj8aCVgkB2blgSaLrZ/3p8GV6YPRbsf51bl29mRZruiSr8s5RhabPL2AABf2AVqjbIMiIfE0WBzwGoBxyFYMSS+LPiB1PQRKJBJ8+1QJIL4Xw/ytE6QiVFHUq1TES6lLeLOq7N07cyS/LrZbYYJDb+tRxZNG161BXS3I0d6F9d1F9AgAAAP/7kGQChFKFGU5rOEsoW8OZvWcJPQr4bzmssTBhZI4m9Yel3Ff0AEw8gPZHg9yIijjJNWJE9C4kHEI4eCqYwBF3Fu01RYsbf5hLFHQhpH8TIgSEblh9KBCCaJTC326JovS2DTjj/SvYulqal9XKb1isAAAAAP+wD8hEcYo4RCImRgQcyGmFzC1IOiT8W+i4ACg6hCJkDO3cXnJI4lKyVxoGiLuq/CgJBuyIEsF9IomWcRitkVfygr14N9M+KsaxZ6jvZx9159WhGUA9LwAAQP9sCSTiBYo2YAqxIjKOa0DMVnsjLVL9Fky65bNJODHEcCJrxBEDZ4JSIrGIk7ISiQKiImVg5B9fXZmm38bSiY+i6nm2LQxCbuRbt/cIWE64t/Wrir4AAAXd2DC+Z7khIL/GZK6wM1nbD0+S8piAOHA9R4IVCLW/Q9FFMwktJgtj+ThTHQplSfbG1HUNBhgkYVus+PjWT3GWu6rpB1FQso44iKWuxcgwqKalrtt6VXCAAAAAF/bALAfwc6qAtcMADHkRVKYQkGW+TrHipFEF2/0Wzv/7gGQSBEK5HM5rDEO4WAOJvRsMDwo4bTms4SVhVY4m/ZwkfAmEEDYdMiUsPkASCeyVyy/CSgUizjK2Z1VW9G6MJenMMXWD4QoJMTW8Zi2T9zr01/+21xiAAAAAB+sAG2nuXQKFmcjYBJw1l2h2qK8OhQioC/K8BAFWJwX9UoJNx7EgKERBWoB0dloqkgSTomoyXzzlSwhNR6p12XWCDvmCl7v7KFqCTq17dYsvufXM0AAT/qAJWqFjUR4jHA6Y4IwMdkCUAoiIKD0NhxkvkL3mXK97+SSeFQmiCA4JR0PgkPsiX8sTzetirvRaf2UMSTd9WKPVmMm9xAcyssnd3bfQUIIAAX9ZBAuJmOBJJ4IEMU2U4XJEX/BRnDbcQDnkIHBglnlJJnciL8uCTgkFBcZBEWIFVAbOm5GrhbcWkT8Tt8sIgI71IHGpD1s6URayju9Ow/u/+tVyAAAAAB/WQM7YMUPBSlDDqsQsFXCY//uAZAsEUtMdTesPQlhaI3m9YelzCSR3Oaw8x6E9Dib1hI4U0BIOZOmsY4ZxIxSgqRaU+zNCeVSvNRUNqhVSkdsh0BcKR10MC596i7KMpWHO9zUxZm2xlOtL20AuwsMRSh9Cf1Ofdd0rUAAAAAr+yCKwE1UxcEjBgEzU2kwQCFuBhCvN309RILJWAiREQqVyhqlQ86SYdExMcCp0cQQGCVsShXWNQtoUEVYbBjAST9uwXvUYYLIwHZFT6Kk/5CxDvrmZkgAnP6AAF8OOLDIrkSyiKbxWNpLErk8olSLWoI5fSwvG5DlAxMw2mxUoZBYwrTEbHHEVH/bfpVW+HIZrIz9670dBew4+yrssQ80AAX3ci4kQwTTpLtga670+UvEZ3UUHQtBolD1b2Sv66sBv7wUEolHwNvYVPiKjKNwSOEZmZIJjmheGv94xCXTiblroP0+S67qlfq+xlF55AAAC/7IHIgcLRZOVWCPJlIP/+6BECQRDQB3M0wk0mGfDuZph6VcMTLEzrDCvIY0O5nWGGhxPfVPoWgWCuELQQBJ9tOVsTUg5xHEZZGnCYqJhFKZQcJ3quN2lpy5qi8uTzc2pLgNHnTx0JnCgeKCwDKPKEmtU4ISIjGBuIlOIqGre2BQyiLlKMgxGB7QAAAD/sgcBcYwsOOt85MI1r7FTgx7ThCYfI4A/iXAMh/HWvHCYSiO5VNY0C7xkjGSViiMPDqBgQzuMqxmK8K32nLTHnzxwVOlg4XFjCXoIsZcFJMSjw7BtbyKhy3MgUPoi5SjItRgcwgAAz+xhflIM3U7AoWiiI6GC8SYgMQjuWsfhNJkDMVVhWeHZZNhJeEkSxHiEj1NS68io/2uPUq6cejiKSmKYwIHf+kqPWcllYp0KIRILjlJNEY5Z4Pa3petfBJ7klv3rvtQoAAAb/YwqCoMbM4I6QiNK4MTyS0ZjJnyZMPXR1AoFYVBYZo5AWOEoYCMgOricSisXlBTLRIfVLH6Y+IWjzUioi7okE+oSE1FgmOAIWDCwqRY02tyYgLuycxYzLhlF576LE1X1VQAAAAJ39gCpV5jARUqNpKUFCATwCxeTDWQP9EYZUeV07QFCaT6NsFqOzhWeo5NbOnzj0NIe/UkuQBIIAvGamqr637rlv5KlFNCbqqrxAABL/rgv5PxpF0dYFwjTFisya2n/+2BkMQBCZh3N6wwbuEwjWbphiHUJoHc3rLzHYUaO5vWEmdze0lii8RI7arzNicXyaTC4XgqEnNYfSHZSQgMhmEd2ma+0GEpnxru+0y8IDcVd96nLNf/u/f4uqxAAAQVf7IHRqhhpyJmGMJVg0x/QD9AIkeJkmul1g/BXi+sNmJRTRGC6oHQCbu5aF/G+PkVf0pmeMNQ/cxyd9jmLmO7dWhP6r6I7e56zAAJ/9kFaFhVx6EuwROWgWmVUcJE5MdFRIl3kx3ciJkRMjgiOic/NZx0PP4zeMjiPdo7Kj+bq2srUTvoSODgBMtc5tiX0nWdSnga/fot/u3aldQAAABLv9kBQMl3/+6BkBYACfR3N7WUgCFHiub+ssAEURMc1+byAAasOJn81kACKgAiMuaSilvWSBBjtP8ie802154KkSHiM7NGjVGBeaFNaGqT88qN0Vz2vkvsbnI7EEEZ/3ZSMr1upuz3S7f/9OuuuvMFCgoAAAAKv9ED8YmMsbM7PTHBM8AOEEIwQSxBD7MQhqDO88S3RUsUEgyxS27dUnd6CF1M6rayWqtJCZgkExcFfEOhZTcrfal7mVDosz//9HM6DYxRAFoQ0VUM56LxIGgEABpbCB44cXNIFWGGJjRhQCYKKmNChiKYYSLmJj2lNjAQdE8BHTBgDEZBwlAtiqykvQwWJiQyRScRIEwWBqBSmag18mIQqYiDsxyG85imhFp34Nwl8NyKEu87U3////nbw5zrdIg972M5dL////+c3//nQ3bFumpbnpdMRGCIMhI//6QEFQgaCX//ak8x6m////+laKgmgABQaMiGV7AoEDAAAAoCMkDSRNrZEQUyyNaBUCGTWoUmcDggKiShNMQBLvNZYiHMO+YFDCmUu6RFMhdcEsKVI0o2u8uWFMOnJtgzuyakk1LS0sW5jWrS5zJVG5L4lLfh8yFf4oaATfWoJt2XX3/2gAf1VeSJHQUAkcatdmY/jARAQEKq7AS7M2oCAmFAVjagJ7ER4Gnwad5LBV4Ablu3/AAAA//yOCjvCjQr/+xBkIQ/xkRtK7xhgCBdgCW3gAAFAAAGkAAAAIAAANIAAAAR8UXFFZBXAqkxBTUUzLjk4LjKqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqg==\n\n\n\n \"#\n \n }\n }\n}\n \n \n ", + "test-files/functions/input/named-args/single/testcase_image.baml" => "test TestImageInputBase64 {\n functions [TestImageInput]\n args {\n img {\n media_type \"image/png\"\n\n base64 iVBORw0KGgoAAAANSUhEUgAACgAAAAOxCAYAAAA5Wv7bAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0QA/wD/AP+gvaeTAACAAElEQVR42uzdebzcVX0//veZe7OzyQ4ugIobikKCQEDFDRIWW1vB9tfqt60KtUoEBLKBjrKEPZCACtrN1rZCba24L4XKDmEXXHABgRBQkD3LvfM5vz/CkpC7zMydufczd57PxwNNZs45n8/nfM585jMzr5wTAQAAAAAAAIxItXrHRL0AAACMtoouAAAAAAAAgJHZ5LHHNtILAADAaBMABAAAAAAAgBFaM3GiACAAADDqBAABAAAAAABghHor/QKAAADAqBMABAAAAAAAgBHK0buxXgAAAEabACAAAAAAAACMUJEKMwACAACjTgAQAAAAAAAARqhSSwKAAADA6H8W0QUAAAAAAAAwUtkSwAAAwKgTAAQAAAAAAIARKlLFDIAAAMCoEwAEAAAAAACAEUqpEAAEAABGnQAgAAAAAAAAjFDKaQe9AAAAjDYBQAAAAAAAABiplHfWCQAAwGgTAAQAAAAAAIARyjntnCMnPQEAAIwmAUAAAAAAAAAYue3OOP6qjXQDAAAwmgQAAQAAAAAAYASq1csmR8SUnglTN9cbAADAaBIABAAAAAAAgBHYpG/SFpEiUq0mAAgAAIwqAUAAAAAAAAAYgVqetEVERBGxhd4AAABGkwAgAAAAAAAAjEAReW3wL2czAAIAAKNKABAAAAAAAABGIq8NABapIgAIAACMKgFAAAAAAAAAGImctoyISDm21BkAAMBoEgAEAAAAAACAEUip2CEiInryS/UGAAAwmgQAAQAAAAAAYARypB0jIlLOO+gNAABgNAkAAgAAAAAAwAiknHeMiMiRBAABAIBRJQAIAAAAAAAAI5HWzgAYETvkyEmHAAAAo0UAEAAAAAAAAJp0ztFXT4mIbZ7565RF82/eUq8AAACjRQAQAAAAAAAAmtQ3YdKOEfHcrH89lT7LAAMAAKNGABAAAAAAAACalHuLHdf9e6pVBAABAIBRIwAIAAAAAAAAzcppx3X/mlISAAQAAEaNACAAAAAAAAA0KaW8XuCviEIAEAAAGDUCgAAAAAAAANCkFPGavN7f06v0CgAAMFoEAAEAAAAAAKBJOceuL3jo9XoFAAAYLQKAAAAAAAAA0ITTj79y44jY8QUPv+Sc6tWb6x0AAGA0CAACAAAAAABAEyo9E14fEemFj69ZOfF1egcAABiVzyW6AAAAAAAAABpXi8pzy//mdR5PyTLAAADA6BAABAAAAAAAgCZUIt4w0OMpZQFAAABgtD6XAAAAAAAAAI3KaeAAYIQZAAEAgNEhAAgAAAAAAADNyIMG/d6gcwAAgNEgAAgAAAAAAAANOnvh9S+NiM3XfSw//8fNFy9Ytp1eAgAA2k0AEAAAAAAAABpUK3reOOTzkd+klwAAgHYTAAQAAAAAAICG1fYZ6tkip730EQAA0G4CgAAAAAAAANCgnNK+w5SYqZcAAIB2EwAEAAAAAACABiw58q5JkWPGQM/l5/+458WHXtyjtwAAgHYSAAQAAAAAAIAGrNro0RkRMXmYYhvfs/MrdtFbAABAOwkAAgAAAAAAQANyHm7537WKwjLAAABAewkAAgAAAAAAQANS5H3qLLe33gIAANpJABAAAAAAAADqlCOnnGLm0GWelQQAAQCAthIABAAAAAAAgDqdPf/m10bEFnUVTnnnUxZcu41eAwAA2kUAEAAAAAAAAOpU5LxvI+Un1nr20msAAEC7CAACAAAAAABAnYpKnhWR6i6fK/FuvQYAALSLACAAAAAAAADU4cLDl01IOd7RYLUD9RwAANAuAoAAAAAAAABQh0e3rLw1Ijatp2x+/o87LZp34yv1HgAA0A4CgAAAAAAAAFCPopjdTLVKFLN0HgAA0A4CgAAAAAAAAFCPyrrL+aa6q6WUD9B5AABAOyRdAAAAAAAAAEM7be6yl6VK3LP+o3nIOuv8EPfU5Cc322LO0p1X60kAAKCVzAAIAAAAAAAAw0gpDs4N1lmn/LSVG/9hX70IAAC0mgAgAAAAAAAADKNIMXsk9StFsgwwAADQcgKAAAAAAAAAMIRzjr56Sop4x4bPpLrbyCMMEAIAAAxEABAAAAAAAACGsHrSxIMjYuoIm3n96cff+Fq9CQAAtJIAIAAAAAAAAAwhVeLPn/1zbrDuuuVTT+1QvQkAALSSACAAAAAAAAAMolq9dpPIMas1rSUBQAAAoKUEAAEAAAAAAGAQk9ZM+JOImDJ4idRIc68/a/61r9OrAABAqwgAAgAAAAAAwCBSzn/eyvZqqecwvQoAALSKACAAAAAAAAAM4NT5N20VEe944eO5wXbWLZ9yvF/PAgAArSIACAAAAAAAAAOopHxYRPS2uNnXnLnghtfrXQAAoCWfW3QBAAAAAAAAbKj+5X9TQ+0WkS0DDAAAtIQAIAAAAAAAALzAonk375gjZral8ZzenyMnvQwAAIyUACAAAAAAAAC8UKX4cDQ6td8Q8jp/ThGvOnP+TfvqZAAAYMQfXXQBAAAAAAAAPK9avaw35fzXQ5XJI9xGiuIjehoAABgpAUAAAAAAAABYx6RVG783IrZv5zZyxPsWzbvtRXobAAAYCQFAAAAAAAAAWEdK+YgmajVaYUpPZc1f6m0AAGAkBAABAAAAAADgGWecsOwVEekd7Wh7g2WDc7YMMAAAMCICgAAAAAAAAPCM3B8fjTqn88sj39wbzpy/bE+9DgAANEsAEAAAAAAAACJiyZF3TcopPjia2ywKswACAADNEwAEAAAAAACAiHh640ffHxFbNd9CarxGJf5sSfXaTfQ+AADQDAFAAAAAAAAAiIhcpI+2fRsbPjRt5aqeD+p9AACgGUkXAAAAAAAA0O1Om7ts31yJKyIa/wFt/fK5wfIRUcRvnp7y5Kuq1bf3OxMAAEAjzAAIAAAAAAAAlfjkmG07xU5TV210qJMAAAA0/lEGAAAAAAAAutgZJ9y8c454T2taS01VSZHm5shW7wIAABoiAAgAAAAAAEBXqxW1Y2IUfzfLAz6W33jmvBvf7WwAAACNEAAEAAAAAACga506/7otIscH1n0sN9hGbtneFHOdEQAAoBECgAAAAAAAAHStlCpHRsS0kuzNO04//sa9nBUAAKBeAoAAAAAAAAB0pWr1ssmRe/629S2npqtUUvFJZwYAAKiXACAAAAAAAABdadKqTT4YkbcZi20PtmxwTvHeM467dmdnBwAAqIcAIAAAAAAAAF3nwsOXTYgUcwd7PjfYXm7drvWknp4TnSEAAKAeAoAAAAAAAAB0nUc2T38dES8v477liL84c8GNuzpLAADAcAQAAQAAAAAA6CoXHr5sQkp53vOPpDZsZURtVnJRfMqZAgAAhv3woAsAAAAAAADoJo9sHh/JkXYq3Y6tnxn8k9OPv+HNzhYAADAUAUAAAAAAAAC6RrV62eRIMb8dbefWlk9RiaozBgAADEUAEAAAAAAAgK4xec3GR0Skl9RTNo/xvqaI2WfMv/5tzhoAADAYAUAAAAAAAAC6QrV62eSc03EDP5vasMWRt5lyOtmZAwAABiMACAAAAAAAQFeYsGbjj0XEi0u9ky/IDOaIfU8//oZ3O3sAAMBABAABAAAAAAAY96rVmzdLOc1t93ZyO8pX4vSLD724x1kEAAA2/LgAAAAAAAAA49ykVfmEiNiqLQG9NksRu939ip0+5CwCAAADfF4AAAAAAACA8eukE5a9oqeW7oiISRHD/UC2YeSv0R/UUh1tDll+4OK/mzC591VHV3d71BkFAACeZQZAAAAAAAAAxrVKEWfHM+G/jjBw4nCrvlX9n3I2AQCA4T8+AAAAAAAAwDhwyoJlb085/e+6j7V7BsAN6+QGyw9apT9VYrfjTt3jJ84sAAAQYQZAAAAAAAAAxqmLD724J+V07gsfzw22k8tzSL25iMXOLAAA8CwBQAAAAAAAAMalX77yFR+OiF0bq1X6BbTedcb8Gw92dgEAgI74BAMAAAAAAACNOv34Kzeu9Uz5RURsO9Dz7V4GONXR5rDt50EL/2ryk5vtMmfpzqudaQAA6G5mAAQAAAAAAGDcKSpTTopBwn+joa3LDOd4xaqpjx3nLAMAAGYABAAAAAAAYFxZNO/mPXIqromInqHKDf5DWW6wfD3t5wbLD1tldSXVdj920V53OuMAANC9zAAIAAAAAADAuFGtXtabe4oLY5jw39A6Yg6NSTlXvlStZr/3AQBAF/OBAAAAAAAAgHFj4uqNj40cu5Vvz1IbqqS9p6684QhnHQAAupclgAEAAAAAABgXFs27ecdcKX4SEdMiYthVd4f+oSw3WL6e9lu+DHCkyI9XeuL1nzzlzfcaAQAA0H3MAAgAAAAAAMC4kCv5ong2/NeO9ttcvkmbFLX8BWcfAAC6kwAgAAAAAAAAHe/U+cv+X4787kbqDB3Q66SFtNKBZ8y7/v1GAQAAdB9LAAMAAAAAANDRTp1/01Y55TsjYsv1fvyqYwq+si0DnOrbjReUzxERD/Wl/LoFi/Z82IgAAIDuYQZAAAAAAAAAOluKCyJiywEe7zgjWGZ46wk5fdFgAACA7iIACAAAAAAAQMc6df7NH8kRh47W9nKby4/Qe8+cf92HjAoAAOgelgAGAAAAAACgI510wrJXVIp0c0TaeO0ja+N2rVsGODdYvp72c+P7k4crv16Bp4oiTZ97xh4/N0IAAGD8MwMgAAAAAAAAHadavay3UlT+9fnwXzukcrSZGiowrVKJr1Srd0w0SgAAYPwTAAQAAAAAAKDj9PZt+umI2GvYgh24HtbIlxnO06eufvLTRgkAAIx/lgAGAAAAAACgo5y88OaZKecfR0TP+s8MsATw8w8PaugfzDpyGeCIiKKoFO+ae+pelxkxAAAwfgkAAgAAAAAA0DGq1Ts2mrBm9U0RsfPAJQYIAdYxpd7gP5p1bAAwIuK+ntX9bzxm8cxHjBwAABifLAEMAAAAAABAx5i4evVFMWj4rx1SOdpsbjdeUpvU+6Uc2aQgAAAwTgkAAgAAAAAA0BFOWXDzJ3KKP2+4YhfE3/LgB/neM+feMNfoAQCA8cm/9gEAAAAAAKD0Tp1/0945xeURMXHokgMsAfz8w4NKdbRZf/l6tjFqywBHRBQ54qDjT3vzd40kAAAYXwQAAQAAAAAAKLVTFty+TUTfjRHx4vpqDBACHD5vN8QPZ7nB8vW0P6oBwIgUj0RPnnHcyXv+xogCAIDxwxLAAAAAAAAAlFa1ellvEX1fzXWH/9ohdUibQ8ixefSl/zrn6KunGFUAADB+CAACAAAAAABQWhPWbHZGinjbiBsaD+tiDXMMebgCKd5Um9RzoVEFAADjhyWAAQAAAAAAKKWTF9743sjpa/HMb1r1/7A1wBLAzz88qFRHm/WXr2cbo7wM8HNl0hHHnrbHRUYYAAB0PgFAAAAAAAAASueUBTfumiNdFREbPftYYz9sDRACHD4bN8Q2coPl62l/bAKAEbE6p/TO4xftcZWRBgAAnc0SwAAAAAAAAJTKKQuWbVdEujTWCf9FRH3RtrZJHdJmXSalnP/n7PnXvcpoAwCAziYACAAAAAAAQGlUq8um5qh8PUW8rOWNj4e1sYY5hlz/QW5Ry+k7Zx571dZGHQAAdC4BQAAAAAAAAErh4kMv7uldU/m3iHjzeD3G3ObyjUgRL08TJlxarS6bavQBAEBnEgAEAAAAAACgFO7a+ZWLI+KPxnIfyhTQG5XjzfHmjVblf6pWs98NAQCgA7mRBwAAAAAAYMydtODGo3PEkcOVqz9wlxosX3+bUfo2G5UP3Wj1DacYhQAA0HmSLgAAAAAAAGAsnbLg5oNy5P+JiJ56ytf/A1ceuHweSft5BPszWPnc+P4Mewy5mX362LGnvflzRiQAAHQOAUAAAAAAAADGzMkLb9k3cv5eRJ5ab51ODwBuWCc3fsztCQD255zed9zpe/yPkQkAAJ3BEsAAAAAAAACMiVMW3PymnPM3ImJqmeatyG0uX2K9KeWLz5p7w2yjEwAAOoMAIAAAAAAAAKPulAW3vr6I+GFEvKjRuvUH7lKD5etvM0rfZtMmppT/85z517/NKAUAgPITAAQAAAAAAGBUVefd+Moiiu9HxBYRYzCDXhoHnTjMMeQGDzKv/+epRY5vnDXv+j2MVgAAKDcBQAAAAAAAAEZN9fhbX9JbqfwgIrbr5n7ogGWGN4kc3z973g27GbUAAFBeAoAAAAAAAACMimr11q0rvfkHOWLHsu9rBwT02i/FZkXk7y0+/prXGr0AAFBOAoAAAAAAAAC0XbW6bMueNcWPUuTXDF6q/mVr6w/cpQbL199mN0gRW9UqPd8784TrdjKKAQCgfAQAAQAAAAAAaKtTFty+Tc+anh9FxOsHK5O7vpdSG6o01uYQ5+ClqT9ddc7c63cxmgEAoFwEAAEAAAAAAGib6txlLyui/4qI2LVUO9aBk/iN8bLE2xUp/vfsude90agGAIDyEAAEAAAAAACgLU464dadent6LouInbvheMc4oDcats6pctnZx1+7l9ENAADlIAAIAAAAAABAy510wo2vjaK4Mke8vLGa7Ziab22brQ3opS49s/lFuZJ+cOa8695hlAMAwNgTAAQAAAAAAKClqgtu3T0XlR/niO0bqdcFM+gNI7WhSmpDn6aNKhGXnjX3ugOMdgAAGFsCgAAAAAAAALTMyQtv2bcSxf9GxJal39kOnMSvLCHJHDE1UnzjrPnX/4lRDwAAY0cAEAAAAAAAgJb4zMJb3lvk/L2I2LRb+6DLZjGcGDl/9ax51x5u9AMAwNhIugAAAAAAAICROmnBzZ/IEefECyagaPTHqOfL5wbL1yNvWCePZBu5Bfv0wvK58f3Jw5XPI9if4Y99bfm85InJex5drabCqwEAAEaPACAAAAAAAABNu/jQi3t+uvOrFqfIRw70fDM/Rj0TKGuwfD1aHQAcuIGRBQCH36lU32403Z/1HUMeoHz6Wlrd/4FjFs9c6ZUBAACjQwAQAAAAAACAppx57K3TVk4s/i0i3jNUueYCcaMUAKxjU2ULADZ3DKMxC2BERFxb9Pf/0XFn7fOQVwgAALSfACAAAAAAAAANq1bv2Db19V+acp6x9pHBA2bdFgBs/pjr3KEodQAwIuLXPUXlwKPO2OPnXikAANBeFV0AAAAAAABAIz574i27VPr6rk3xbPivHVLb2swN1spOeaNeXusprj5r7vVv1RUAANBeAoAAAAAAAADU7TMLbz0kirgyInZo1zY6K6CXytFmam2bIz4HOTZPKX//rLnXfsKrBgAAOusTCQAAAAAAAOPMxYde3PPTV+98YuR0YkRUnvuRKW/whwF12zLAI1sCuL5jL/kywOs+/i+xunbEMYtnrvRKAgCA1hIABAAAAAAAYEinzr9ui/7KpH/LEfs/+9h6PzLVEQLstgBg88dc5w5F5wQAn3Fz0Rt/etzJe/7GKwoAAFrHEsAAAAAAAAAM6rMn3rJbX2XSDeuG/0ZP+5bX7axlhseF3VJ/3HDW8de+W1cAAEDrCAACAAAAAAAwoM8uuOUvcxFXRsROo73tzgropQ5pc2zPWYrYIlXSd86ed101R7ZSGQAAdOUnBwAAAAAAANrqnKOvnvLElKmLI8URQ5V77oemOpYAXq98nTp9GeCRLQHcZH+WexngdVv+Wl+ufGje6TMe84oDAIDmCQACAAAAAADwnM+eeMsuuYivRMQbhyu73g9N+bn/qa98HbotALhhndz4MXdMADAiIn7bk9MHjjr9zT/2ygMAgOYIAAIAAAAAABA5cjpp4a0fyRGLI2JqPXU2DACu94ehyzfUfo6G96eOIx78GJrZRm7xMde3Qx0eAIwUUUTk8x+fvPFx1eoua7wSAQBgJJ8hAAAAAAAA6DrV6q1bR1/+hxRxUCP12h0AfL7OKM0CmEfafgmWAR7jAGCzx5wjbuit5b/4xJl73eUVCQAA9avoAgAAAAAAgO71mQW3HBB9+ZZoMPwXEQ1GyRovP+rGw9QZabhzkNpwzlIrdnuPWk+65Zy5137CqxIAALrrYwwAAAAAAAANqlaXTY01E86KlP821vnNaEQz1uXn/qe+8nW3P0ozANaxqXbPALhhna5YBviFf79kVaw5Yv5pb/mDVyoAALTqMxAAAAAAAADjwmfn3/qWohJfjIhXt2L51ue0YRngFMO32Xz7rV4GOLf4mOvbofEWAHymuQdzxPGfPH3PL3vFAgBAqz4DAQAAAAAA0LGq1Zs3i750ekT6SDz3O1G5A4DP1xmlWQDzSNsf+SyAqY42hyw/xgHA1hxzROQckfI3e4v00Tln7HWfVzAAALTmMxYAAAAAAAAd5jMLbz0k5/hcpHjJ+s+MbgCw+W10zzLAIw4ADlOl0f6s/xhaPQvgc+09FhGffnzKnkur1VR4NQMAQPOfNwAAAAAAAOgg1eod28aa/qWR4n2Dl2p1CFAAcCTHu2Gdrl0GeP0DSXFFkYrDj10082de2QAA0PznDQAAAAAAAEquWs2V6Lv9wzny6Slis6FLl3sZ4BTDt9lc+80FAIfeRm7xMde3Q10RAFxrZYpUfWzK0+dUq2/v90oHAKDbCQACAAAAAACMM9WFt8/IUTsvIs2MqOcHofEVAGxsG3mIY2i2/RIsA9xhAcBB6+RB9/MXuRJHf3LRXt/2igcAoJsJAAIAAAAAAIwTCxYs225C6q1GpA9HROXZx8sWAGx+G92zDPCIA4DDVGm0P+s/hlbPAjhskPSHkfOco8/Y+6euAAAAdCMBQAAAAAAAgA5Xrd4xsejv/2jK6bMReZMXPt9ocKv+OoOUH3jp1ha03z0BwA3rWAZ4iPJ9OcXneyfHiXOqez3uigAAQDcRAAQAAAAAAOhgn1p46yEp4tyIePlQ5bptGeB2BwCH3kZu8THXt0NdHAB81gORovriX/327w+75LCaqwMAAN1AABAAAAAAAKADnXjibdN7inx6jnhnPeW7LQDY2DbyEMfQbPslWAa4wwKAg9bJjY6jfEMu8nHHnDnz/1wpAAAY7wQAAQAAAAAAOsgJJ9z+2kouPlOJeF9u4LeesgUAm99G9ywDPOIA4DBVGu3P+o+h1bMANhkkzXFVzmn+MWfueYUrBwAA45UAIAAAAAAAQAdYuPDOHXqjf0GO+FBE9LR79rb66wxSfoilW0fWfvcEADesYxngJvv0h0Uqjv/kaTNvdiUBAGC8EQAEAAAAAAAosWr11pfkvjguRzoiIiY9/0xuTbhqPZ2wDHDnBgBH3KcCgCPpzyIivlZU0gmfXLTnL1xZAAAYLwQAAQAAAAAASmjBgtu36Y08N1J8NCImb1iiWwOAQ7fZfPt5iGNodhutXgZ4/AcAB62TWzaO+is5/VNPrf/kj5+9zz2uNAAAdDoBQAAAAAAAgBI54YRbd+rJcVSO9OGImDp4yc4PADa/jVGaBbB0AcAm+zO3rj9HfRw912TLg6RFpPztoqh85pgz9lzmygMAQKcSAAQAAAAAACiBE0/8yRtTrn0yIv155Oitp05qc3CrvjpDlB9i6daRtd+5ywC3OwDY3DF0zTLAA5TPETmuKlKcfszpe1/qSgQAQKcRAAQAAAAAABhDCxfesm8lpbkR6aDU8Cq33boMcOcGAEfcpwKAI+7P9eus1+ZNEfm87X9931cOu+SwmqsTAACdQAAQAAAAAABglB1++LIJ22wz6b2R8/ERMX3d55778UYAcJjyuUXHu+EOl3sZ4PEfABy0Th61cfSzyPmsoi/+7ZjFM1e6YgEAUGYCgAAAAAAAAKPkhBNu3rkSPR/KEX8VEdsMVKbbAoDNb2OUZgEsXQCwyf7MrevPUR9HzzU5ukHSFPFYkfNXeyrxhTmnzbzZFQwAgDISAAQAAAAAAGijI4+8a9KLNln5npzS4RH5nTHM7zONBQDbMXtbCwNr4yEAWMemyhYAbO4YumsZ4CZmVbwxUrpoVdH/73PP2PcJVzYAAMpCABAAAAAAAKAN5s+/7TU9PZW/SpE/FBFbrn20weCWZYCHKN+5AcAR96kA4Ij7c/06DS0nvSpFujRSvmjOaXv/0JUOAICxJgAIAAAAAADQIgsX3v7SlNL7Ior3R6Q9n328yaCRAOCw5XOLjnfDHW7dMsACgCM/3nWbK9U4uj1H/EeR8sXHnDbzl66AAACMBQFAAAAAAACAEahWf75lrbb6T3JOH4yImTHA7y8CgEMfTPOzt43SLIB5pO2P/jLAqb7daLo/R30cPddkaYOkd0aKS3pS5d8+vmjPX7gyAgAwWgQAAQAAAAAAGrQ29Nd3YM750IiYFRG9Q5Vveva2Dg0ADnwMeYT7NFD5zl0GuN0BwOaOobuWAW7jTJJ3RiouiVrPVz5x5l53uWICANBOAoAAAAAAAADDqFZzpVa7fbeiSAdEitlp7Ux/lXrrtzcA2Hhwa8N9GkgnLAPcuQHAEfepAOCo92fj28g5RdyYU3wncnx3u1/fd91hlxxWc0UFAKCVBAABAAAAAAAGUK3+fMu+vtVvj6i8K1I+KCJe/OxzI5oRzzLATe5Pi/oz6uvPwY+hmW0IAI78eNdtrnPG0QvKP5lTXB4Rl0YuvvuJ0/f9rSstAAAjJQAIAAAAAAAQEdXqsqmraxP3qETP/pHjgIi8W0QedJa/UQsaCQAOU2eUZgHMI21/9JcBTvXtxjrl2xsAbM0xR0Tu2ADgC7vlJxHpe5GL769M+Zq5Z+z7hCsxAADNfS4CAAAAAADoMsdXf7b9hL7+6TnFPhGxb4qYERGTNiw5xrO3dWgAcOBjyCPcp4HKd+4ywGULAK6t063LAI9JAHBdtUjx88hxYyXiykjFVR87fZ87U6QcAADQws9RAAAAAAAAHefYY2+dNmFK7+srRd47p7R3RJ4ZES9Zt0xpl2/N9bbfeE5ofCwD3D0BwBGNo7qPoVsDgPWPpZaEAHNd7T+Uc1yTKunqXNSuiVW9t85ZutfjrugAAIz0cwUAAAAAAEApVauX9a6KLV7WU1R2yZGnR06vi4hdIqdXR+Seoeq2OwC4fh3LALeiT9s9e9vgxzB240gAMIYMAJZxHKXGhsRw7T8Qqbgj5XRnRLojpeLO3imTbzqiOuNp7wAAAN1JABAAAAAAAOgoRx5516SNtujfIffnl6VK7BA5vyxyvDoidokUr47IEyIan0FvvTrrKUHQSABwmDqjNAtgHmn75V8GuN0BwNYcc0Tkrg0ADtSftYj4ZUTcHil+ETndk3L8NlK6Z3VfvvuYxTNXeucAABi/BAABAAAAAIBSmDv3V5umKU9tEbXKFjnF5ili81ykLVMlXhpFvCwqsUPKsUNEbDd0Sy+YbWzEAcDBGynXMsCdHwBsfhvdswxwuwOAa+t0wiyAAoAN1HkoIn4bKd+TIn6bc7o7RX44pXgk5crDRSUembQ6Hvnw4pmPeCcCAOg8AoAAAAAAAEBLHXvsrdN6e9PEYvLEKZVabZuISqVIaZNK1LaMiChy2qqSY+Ncie1SzjtHxKsiYqeI6Bmu7aaCRl0TAGw8uFXfMbQ6BCgAOJLjHdE4qvsYOnsZ4FFfVrmOY298JsZ2jKM83CynOXK6JyLflSJ+ESnujZyfTjk/mFMlR44/RI4/FJWcJ6XaQ32V3qcmFan/Q2fs+4R3PgCAsSMACAAAAAAAjLlq9bLeNWu23KK/EpunXNkiemKLSsTmuchbp0rlpTnnHSNipxSxY0RMHbq18RMAXK+OZYCHKT9Ks7flzhtH3RYA7IhxNMzmWvy6XBUR90QUd6ec7o6U7o3IK3KRH4meysMR+eEJPcUjL5q4xcOHVXdZ4x0JAKCzCAACAAAAAAAd5djqrVtP6uvdMVdix8hph0jFjjnSqyNi14jYasCgUd0z6A2mBEEjAcCW9Gdj28hDHEOz7ZdgGeAxDgC25pjDMsDrl/9DjrgtRfw8It+dcuXunPPdEybW7j7i1Lc+4J0DAGD8EgAEAAAAAADGjXnzbntR7unZpScV0yOl1+WIXVLEbpGHmzXweZ29DHDnBwCb30b3LAM84gBgXcfQCbMAdmUAsD8ifhuR74yIGyOnO1KluPNjp+9zZ4rU+BrgAAB0PAFAAAAAAABgXKtWL+vt799y5yJVdstF3ruS4i050usjcs9A5Ts7ANh4cKu+Y2h1CFAAcCTHO6JxVPcxdPYywKO+rHIdx95oEDOtrfTTyOmqFHFVkfpveWTK5j+tWqYXAIARfp4AAAAAAADoaNXqHRv19cWbcsr7pIh9c8S+EbFZRPkCgOvVsQzwMOVbPXtbcwHAMo6jbgsAlmscDfO6fH5z/RFxa0S6KuV85cRi4mVHnD3j967YAAC07r4UAAAAAABgHKpWL+tdVdtqt0qOfVPErIh4a0RMXr9UCYJGAoAt6c/GtpGHOIZm2y/BMsBjHABszTFHpy8D3B8prko5vhtFuiKv+sOyOUsPXO2KDABA6+/FAQAAAAAAusjRR189Zdq0zfbJKR8SOf9RROyw9plOWAa48wOAzW+je5YBHnEAsK5j6IRZADsuAPi7iLg8Ir5ZW736G0ef+/ZHXXEBABgJAUAAAAAAAIBhzKve9vLe/nRIjjg41s4OOHHd58sVAOyA2dvy8AcjANjGcVT3MXT2MsCjvqzywIqIuDnn+GFK6Zt/mLLn1dVqKlxVAQBoFQFAAAAAAACABsydu2zTnokT35uK9GeR4p0R0TuqQSPLAA9TvtWztzUXABx6GyUJrAkAtmscFRHpyhT5P6LS959zFr31d66cAAC0iwAgAAAAAABAk6rVOzZfU8sHV3L+QES8IyIq9dZtOmgkANiS/mxsG3mIY2i2/VYvAzz+A4CD1inPMsB3RopLiuj98tGn7fFrV0gAAEaDACAAAAAAAEALVKu3vqS/v/KnEXFoRMyMYX6HEQAc/mBKvQxw6QKATfZnbl1/1n8MrZ4FcEwDgD+NFBfnovbvR52x789dCQEAGG0CgAAAAAAAAC02f/5tr+npicMj0v+LiM0HKtP07G115rHaPXtb/XUGKZ+HP5hSBwDr2FS7A4AjGkd1H0N3LQNcZ38+GZG+kot80dFn7n2TKx4AAGNJABAAAAAAAKBNjjzyrkmbbLLyPSmlwyPiXes+N6LglmWAhymfW3S867fXaHhu6G2MamBt8PYFABsZRz+LFP80Mfov+rvT3vIHVzgAAMpAABAAAAAAAGAUnHDC7a9dOyNgPjwiXhRhGeDhDqbdAcDGttEJywCP/wDgoHXatwzw6oj0jZzyRUeftvcPXckAACgbAUAAAAAAAIBRdPzxP9t44sS+v4yIv0sRr1/7qABg8/s0UPluDQA22Z+5df1Z/zG0ehbAlgcAf50iPt/X3/tPx5494/euXAAAlJUAIAAAAAAAwBhZuPCOfSupmBsRB0XkYX+3aSwA2I7Z21ocWMvDH0ypA4B1bKrdAcAN61gGeIR9emOKtOTRKU//W7X69n5XKQAAyk4AEAAAAAAAYIxVF9y+ay3lj0WKD0bE5MHKNTr7XPcuA1yeAODQ28gtPOb6d0gAcANFTvnbKeI8y/wCANBpBAABAAAAAABKYsGC27fprRQfzZGOjIjNByrTbcsAN99+btHxbrjDrVsGWABw5Me7bpONjqO0OlK+uJaKU49dNPNnrkAAAHQiAUAAAAAAAICSOf74n208acLqD0VKx0bEi9d9rtsCgM1vY5RmAcwjbb/Fyyo325+5df056uPouSbrDgA+nCKf21upfP7ji/Z82BUHAIBOJgAIAAAAAABQUtXqHRNrtdpfRY5PR8T2EY0GANsxe1sLA2vjIQBYx6bKFgBs7hjGxTLAT0ROn1udehbNO33GY64wAACMBwKAAAAAAAAAJXfkkXdN2myzlf8vclRTxHbPPWEZ4CHKd24AcMR9KgD4Qk+mnC6INRNPO/rc3R51RQEAYDwRAAQAAAAAAOgQxx5767TJk+PDlUjzI2IbAcDhyucWHe+GO9y6ZYAFAEd+vOs2t95+PpVyOj/31c44ZvHMR1xBAAAYjwQAAQAAAAAAOszxx/9s48kTV8+JnI6NiM2GLt19AcDn64zSLIB5pO2P/jLAqb7daLo/R30cPddkjoh4Okc+P/dPOPPYs2f83hUDAIDxTAAQAAAAAACgQ1Wrd2xe9NeOjxxHR8TEwcqlkgW31qtTRwCwmW10+jLA7Q4ANncMpZ8FMKcc/xmpOP7o0/a+2xUCAIBuIAAIAAAAAADQ4U444dZXpxxnpUgHD/R8o8GttXWG0wnLAHduAHDEfdplAcAccUMlVY4+etEeV7kiAADQTQQAAQAAAAAAxonqCbe9q8ixOCJev/4z3bcMcIrh22y+/VYvAywAOILjvS/nWHjM6W/+lxQpuwoAANBtKroAAAAAAABgfKievOsPKxMe3i1HHBERv+vmvshtLt9aqUPaLNU5ezpHnD5p8tOv/eTpe35Z+A8AgG5lBkAAAAAAAIBxqFq9Y/Pc139KjnR4RK6UbQbA9erUMQNgM9vo9GWAR37OmujPzpgF8N/7i75j556x73KvdAAAup0AIAAAAAAAwDhWXXj7zCLyRSnyLo3WHf1lgAUAR3K8G9YZb8sAp+Up8sePOW3P//bKBgCAtSwBDAAAAAAAMI5VT3nD1St+t2a3nNO8FLG63HubOqrNdi8zbE3b5xQp0kX9xZrXCP8BAED7P/EAAAAAAABQQtV5d7wy9/RfGBHvqKf86M8AuGGbI2n/+TqjNAtgHmn7JVgGeIxnAHxhnRRxWy0Vhx+3aO/rvIIBAKA1n5MAAAAAAADoWDlVF9z2gUhxTo7YYqiS7Q4ArlenjgBgM9votmWARxwArOsYRmUZ4JURccYTkzc6tVrdZY3XLQAAtOYzEgAAAAAAAOPAggXLtpuYJvx9jpg9VLnRnwVQAHAkx7thndz4MY/9LIDXVKL2wWNOm/lLr1QAAGjVZxgAAAAAAADGmZyqC2//SEQ+J0dMG6hEpy8DnGL4Nptvv9XLAOcWH3N9O1SiAGB/ijh7o0d6Tjziohl9Xp8AANDqzzAAAAAAAACMO9X5t70mV/JXImL3Fz7X6QHA5+uM0iyAeaTtl2AZ4LEJAN4dOX/g2NP3utIrEgAA6lfRBQAAAAAAAN2tumjXn6UJj+yZUnwmRdRGc9u5zeVH3XiYfiMNdw5Si89Z/pcpkzd6g/AfAAB050cQAAAAAAAAWuTE+bftXankf42Ilz/72OjPAtjgjHV1tT9KMwDWsal2zwC4YZ2SLgOc49Ec6aPHnb7Hf3jlAQBAc8wACAAAAAAAwHNOWrTrNWlCMT1y/OfY7UXqkDabM+5mPWzO//b0VF4n/AcAAOPlkw4AAAAAAAClUl142+ER+fyImDB0yVbPALhhm61pf5RmAcwjbT+38Jjr26lRnAEwp4ilGz1SOfaIi2b0eZUBAMDICAACAAAAAAAwqBPn3/qWnkr6akTebvBSoxsAbH4b3bMM8IgDgHUdQ8MhwCcipb85dtEe/+mVBQAArWEJYAAAAAAAAAZ10qI3XhET+mdEiqsGL7V+fGxES9yavqIlSrjM8M8iFXsJ/wEAQGsJAAIAAAAAADCkanX35dH7yH6R8umjt9XUIW02p4QBvXaeyv+I/kkzjl20151eTQAAMF4/5QAAAAAAAFB6n1l465/niC9GxLT1nxndZYCbb3+UlgHOI22/BMsAj3wJ4P6IfMJxp+15ulcOAAC0hwAgAAAAAAAADfnsibfsVtTSNyPF9s8/OroBwOa3MUoBwDo2VfoA4DBVhuzPHI9Gyn963Gl7/q9XDAAAtI8lgAEAAAAAAGjIp056080xsbZHRNz0/KPrx8dGtMStKSxaIo9V+Ry/KXJtpvAfAAC0nwAgAAAAAAAADatWd18eE3rfFhHfbN9WJAHXlTtgH1OK6yf0FHvPPWPvnzpjAADQfgKAAAAAAAAANKVa3eXJ1/3i538cOV/QOXud2tZma2fc68jw438/Oany9qNO3etBrw4AAOjcTzgAAAAAAAB0mc+ccOsncs7nxDoTUDT6Q9R65fMGfxi+Tt3byM3t05DyEMfQbPu5Rcdb/06l+nZjoP5c8tTkPY6uVlPh1QAAAKNHABAAAAAAAICW+MzCW96bI/41IqY++9jIQ4AdHACsY1NlCwA2cQy1yPGJ40/f4wKvAAAAGH0CgAAAAAAAALTMZ+ff+paikr8ZEZtEtH8WwG4LAI64T1sbAFyTU/zF3EV7/KeRDwAAY6OiCwAAAAAAAGiVTy164xWVSuUdEfH78u5lalubucFaedT3s2VW5xSHCv8BAMDYEgAEAAAAAACgpT510q43RlG8LXIsb/e2csnKl19qRZWnUsTBcxft8Q2jHQAAxpYAIAAAAAAAAC1XXbT7nT2V9I4ccW8j9dYL3KVx0BEdeAx56CcfTal493Gn7fFDoxwAAMaeACAAAAAAAABtceLJb/x5bxRviYhfjqylpDPXMXazGOaHoie//bhFe17jLAAAQDkIAAIAAAAAANA2J5yy+z15woS3RMTt5dqz1LY2WxvQK034cUWqpHcef+qbbzGqAQCgPAQAAQAAAAAAaKtqdZcVeUJ6V0TcWYb9GbsZ9Mqi0VBhuj96077HnbrHT4xmAADo7Lt7AAAAAAAAaMopC27fpj/V/i8iXj1c2ed+xMob/GHo8nVqdK6++tvPA5fPI2k/t+h4G9ih5+v8rhK1/Y5dtNedRjAAAJSPGQABAAAAAAAYFQtPfcODPdHz7oi4p+5KaYM/EKM2i+FjlVyZLfwHAADlJQAIAAAAAADAqDnhlDfcW0n53RHxwNjvTWpbm+NgmeGniiIdfOxp0280agEAoLwEAAEAAAAAABhVJ568212pUjkgIj08VvvQWQG9NNptrixyHDzv9BlXGq0AAFBuAoAAAAAAAACMuk+dtOvtORfviohHB3p+HMygt77OWcF4TU7p0Pmn7XG5UQoAAOUnAAgAAAAAAMCYqJ662y2pSO+JiKeHLJg2+APRlpBkfyUXfzbv1Bnf0rsAANAZBAABAAAAAAAYM59a9MYrcor3R0RtbPagfcvrdtoshjnFUcedtud/G5UAANA5BAABAAAAAAAYU9WT3/TNyDF3tLfbWQG91NY2U8QZ807d4wKjEQAAOosAIAAAAAAAAGPu06e+6ewccf66j3XaDHrDKu8Kxv/59KQZ841CAADoPAKAAAAAAAAAlMLrfvGLo1LO3xjwyaR/WiFv2K03rJyU/l+1mgq9AwAAncdHJQAAAAAAAEqjWr1jo9TXd0VEvCniBT9m5Q3+sIFGf/xKMXybzbefY/BjaGYbucXHHL+u9E3Y+7iz3viQkQcAAJ3JDIAAAAAAAACURrW6y5N5QnFQRNw7GtvrrGWGWzq3x8PRkw8U/gMAgM4mAAgAAAAAAECpVKu7L0+V4pCIeLKzAnp1KMf6XGtyEX889+Q9fm60AQBAZxMABAAAAAAAoHQ+ddLut0bEh9d7MOmXVsiR58w7fcaVegIAADqfACAAAAAAAACl9OlT3vTVHOncDZ9pRxKwPG22c9bDHOlf5i3a40KjCwAAxgcBQAAAAAAAAMprwiPH5cg/LtMuje2yxCMKKt4yadXqIwwqAAAYP0yUDgAAAAAAQKmdsuD2bWqpdmNEvPj5NN3QsbpGfwRLdbTZXPt54PJ5JO3nZvbnkZ6e2ozjTt7zN0YUAACMH2YABAAAAAAAoNQWnvqGB6MoDo2INaa3aEqRc/oL4T8AABh/BAABAAAAAAAovU8t2v2aiDz3+UfakQQsT7qwxcsML5x/2vTvGkUAADD++DdSAAAAAAAAdIzPnnDLv0cRf7b2b4PH3ppbAnjoNpvfxgDLAOeRtl/3MsBfn7to+p+kSNnoAQCA8ccMgAAAAAAAAHSMonfCRyLil8OVa/EMeq03OtN03D9x0poPCf8BAMD4JQAIAAAAAABAx6hWd3kycv6riKjpjSEVOacPHlOd+YiuAACA8UsAEAAAAAAAgI7yqUW7XZUjndaeafRSaY5zhLMYnjH/tOn/a7QAAMD4JgAIAAAAAABAx8kTH6lGxHVjug91l0wNlq+/zUHctGrSlE8bJQAAMP4lXQAAAAAAAEAnOumE21+Ri/5bImKjwco0+mNYo1G9+tvPG5bPI20/D1T+qdSTp889eY+fGyEAADD+mQEQAAAAAACAjnTiyW/4Vcrp2I49gLZM1ZGOFv4DAIDuYQZAAAAAAAAAOtpnF9z8PxHxnoGea24GwIh6ZwEc0QyAdW4mDdPmOuW+Pm/RjPcaEQAA0D3MAAgAAAAAAEBHKyZWPhIRD5d7LxtdXLj+Np/xUO+a+IjRAAAA3UUAEAAAAAAAgI5Wrb7xoZzTcQM912jgrt3l2ybno449e8bvjQYAAOgulgAGAAAAAACg4+XI6aT5t3w/Urzrhc81twxwbrB8fXs5YPk8kvZzRE7fmX/a9AONAgAA6D5mAAQAAAAAAKDjpUi5yMVHI2Jllx36E7We2hFGAAAAdCcBQAAAAAAAAMaF6mnTf5kiTmpNa+1YSKvRuQVj+PI55p1wypvvdfYBAKA7CQACAAAAAAAwbtQmPnpmpLh53cdaGrhrQfmWyXHt6snTv+CsAwBA9xIABAAAAAAAYNyoVt/eH7U4IiJqHbPTzU02uDqn9KFqNRXOOgAAdC8BQAAAAAAAAMaVT5222w2R0wXj+iBzPmXBot3vdLYBAKC7CQACAAAAAAAw7kyqTT4hUloxslZSG/ZsbZsjWWY4R/xq2lObnuEsAwAAAoAAAAAAAACMO3PPeM0TqYhqs/Vzm8uP0FFzlu682lkGAAAEAAEAAAAAABiXXv3LX3wpRdwWMeoBvcbVP9ngDxcsmv5NZxcAAIgQAAQAAAAAAGCcOuySw2pFpKPG0SH1F6k42pkFAACeJQAIAAAAAADAuPXpU990WUR8o/kWUhv2am2bDc9KmGPpwlP3+ImzCgAAPEsAEAAAAAAAgHEtVWrHRMTqRuvlNpdv8CgeWT159cnOJgAAsC4BQAAAAAAAAMa1E0+e8avI+YJc9h0dYrLBlPP8anXmI84mAACwLgFAAAAAAAAAxr1iUjopIn7fobt/6yt+9au/dxYBAIAXEgAEAAAAAABg3KtWd3s0cpzeXO3Uhj1a22Y9sxLmFHMPu+SwmrMIAAC8kAAgAAAAAAAAXaGY9Oj5EbG8kTqNLhvc+mWG01ULT53+PWcPAAAYiAAgAAAAAAAAXaFaffuqnOLMUu/kCyYbTLl2gjMHAAAMRgAQAAAAAACArlFMePQLEXFfh+zud+eftsflzhoAADAYAUAAAAAAAAC6RrX69lURcVrjNdNo72ouKsWnnTEAAGAoAoAAAAAAAAB0ldrEiV9MEXe3q/1cd8k0VPn/PuGUPa53tgAAgKEIAAIAAAAAANBVqtVd1uSc6p4FMI/2DqYocorPOFMAAMBwBAABAAAAAADoOls/3P8PKeLXpdy5FF9ZeOr025wlAABgOAKAAAAAAAAAdJ0jLprRl3M6o7FaaTR2rYii52RnCAAAqEevLgDK5NDqHRMf3WLjLStpwot6a8WmOdImuZI3jSJtGim/KCJtknPeNCJNqqTYNIroiRSb5IgJEbFRREyMiGnrNPmiQa59xTP/xQu+sHns+cdjdUQ8nSOvrkQ8HZFWR4qnI6fVOeLpSspPRMTjEfnxIiqPR+THK1F5tFYUj0UUj0+M3kcnbb/17y85LNWcWQAAAACA8pm26ukvPzVlykkRsVWr285Rb1wwRUR+rnyO+O+Fi970C2cHAACo9xMFQFtNvzBP2KJ/+bYT+uOlRapsn1J+cc6xdUTaNiK2zJG3TBFbRsS2EbHJkI3lsb0cNnPRzBEPp4jfR06/j1T8PkV6OEd+KHI8lFLlgVoU96XU88DKjZ++//K/3mmVEQMAAAAAMHpOWnDzpyOiWk/Ztd8R1/9Fdf3fKefnyqei8ub5p+12gzMDAAC09nMHwCD2u+ChjSb3rX55JVV2Kirp5SnSTpFjh4i8fUS8OCK2iVYtOd6BAcAGPRIRyyPivhSxvIi4O0W+u4j4TW+t9ptvHv2S5ZFSNuoAAAAAAFrj1Pk3bVVL6Z6ImDJc2VEIAF624NTp73BWAACA1n/uALra/meumJamFK9ORX51JdLrckqvjMg7RY6XRxuWRhjU+A8ADmd1RNwTke6OHL/Jke+qVOJn/f09P1/9+FZ3X15N/UYrAAAAAEBjTlpw0xci0hHDlXv+O+L6vqxuNABYKWL2/NOmf9cZAQAA6iUACKznjxf/ZrOVPZPeUIn0+kjx2ijyayLFqyPiZaXYwTEOAJb8wrkmIn4dKf0scv5FyukXtci3FX3pzu8ft+1TRjcAAAAAwMBOnX/Lq2op/zSGWc2m0QDg+nWGllO+deEpu++WwiowRJz1yWVb9kxcvXOl1vPKVMnb54gpkWNK5LxZpDQ1RZoUEStzLlblSH9IEStTJVYVOT+QIn45sZZ/+dGz9nlITwIA3eKyarV3k3sf27HWG69MueeVKRXTipw3q6SYknNMiUgviohIKR4tcqxMOa9MKR7NkVZFyr+JVPvVk6s2/+Xb/6m6qtOOXQAQulS1mivXb3n/K4vc88ZKzrvmSLtG5F0jYsfS77xZABtVpBy/zhG35YifRI7bU1G7bdpLX/yrSw5LNa8GAAAAAICIzy64+esp4o+GK9e+ZYCLv1h46ox/cya6z5LjrnpFrSe9LSK9NeV4XUTaOSJv1vgYWjs21yn/RET8MkX6ec75qpTi/x6esvcd1Woq9DoA0MnuOvLISX9YM3HPKGK/lOLNOeJVsTbvMqH+e/Y80L17joj7IudfRSVuTUX6v5wqV8y46Ozfl7k/BAChSxxwwb2vTLXKHhFpRiVijxyxe0RM68iDEQBsVZ89nSNujRzLKpW4sb8WyzZ5ybY/EwoEAAAAALrRZ+ff+paUih8PV65NAcC7+yY+tnO1+vZ+Z2L8O23usk0npb73ppzeGZH3i4iXtGAMPSMPXmftUw9HjitTxGU5Vb4254y97nNGAIBOcO2Hj921pxLvzTn2ixR7RcTkwe7L65u5Ow9z35XX/cMdOeL/IufvT330Rd/d5ZLqmjL1jQAgjEPvPP++LSYWaWaktGfk2CMi9oiIF42bAxQAbGefPZUibs4535gjbqhEzzXfOnqbX3tVAQAAAADd4KQFN18XEW8eqkybAoBzFp66+1JnYPyqVi/r3XTl1AMi5w9EivekiCnRwFgawSyA6z78QkXkuDwi/UusSv81Z+lejztTAECZLDv8qO2K6Pn/UqQP5ohdB7v3ae6+venw4MOR8leLIn9ljy8uuSa1McXS4s8cQJnNXvLgKyKKfSLyvhGxT0S8dly/vsc4ANixF8/m++2BiLgmcr6qEj3XTHns9zdeUt1ljVceAAAAADDefHbBTR9Mkf55qDL1zSYyWJ0BPdVTK1487/QZjzkD48/S46/cvj/1Hh0RH4yIrZsdRy0JAA6xuRSxMnL8dyXymR87c59bnDkAYCxd95G5B0SldnTk9K4UuWe4e5/B75+aWga4jvu0/OzTv8opX7S6f/Ln9/2HM54Yq/4SAIQOdNDi5a/NlfSOnPJ+sTbwt13XdYJZAMeyz1ZFpBtz5CtTypc/3dt75eUf2/pJr0wAAAAAoNOdc/TVU56aMuW+iNh8qHKtnAUwp/SPJ5yy29/o/fFl8bxrdoxcOT5F/uscMXnwMVGaAODzQzLHNyOnUz5+1t7XOZMAwGjJEem6I459T8ppYaxd6bLOe++xCAA+8/zzRR6JiPN6+tKS3f7p3EdHu+8EAKEDHHj+8h0i53dEkd6RU7wzujHwV+cH1NG6LCZ9tq6+iHxDTpXLKkW6vDK1dvWlR2z/tFcuAAAAANCJTlpw8zkRcfRQZVoZAEw5Zi5YtPs1en58WBv8S5+OiL+IiAn1jYk8ojG0oTx4ndzANlJ8P9XSpwQBAYB2u+7w4w5NESfmiDc0fu/d9FK+MXQAsI66eYN6j0fOS/um5DP2Wrr08dHqPwFAKKH3nP67jfum9r0zImZHjndGxCv0Sv0fUEfjsigAOKQ1keK6HPGDnlp8b8bj2y6rVlNh0AIAAAAAneCkE259dRTFT2OIr4JbFwDMP1l46vQ36PXOd+HhyyY89aL+T6aIEyNiamPjYhRnAcwNt1/knC+cVJk0/wjLVAMALXbtEcftHLnyuRT5XUPdqKQmAoD13bePMDyYB72fuj9yMWf6l5b+12j0owAglMRBix98eVGpvSsiHxIpvTsiJumVpq7fo3ZZFAKse5MPp4j/TSn/sEjFt78z5yX3GcAAAAAAQJmdNP+mH0VK7xjs+VYFt3KKT5xwyu5L9HhnO2vutfumnD9fSen1jdQr8TLAA1mRc8ydc+bMLzvjAMBILTv88Am1tNkxkaMaEZOHuydKTSzl+/z9TbuWAR4yAPhs3W+movbx3f/+gnva2Z8CgDBG9vvH30ye9MTkd/ZU8iG5iNkR8TK90tDn1jG/NAoANrsH6dYc+XuRi0v3fGz7a8wOCAAAAACUzckLbz4057h4qDItmAVwVd/ESS+uVnd5RI93pjOPvXVapbLq3JTyhyIiNfq7QYcFAJ+t+M3cU/ubOYve+jsjAABoxnVHHLt35Mo/R8TOdd2kxEhn8mtXAPCZ5/Ng91PPPfFkpHzs9IuWXtiuPhUAhFG0/5krpvVMqr0jRzo0pfijiNikwe8HqO/aPyqXRgHAluzOwynHt1OKS3tW9373G3O3esLABgAAAADG2oWHL5vw0JY9d0fE9oOVGXkAMP3rwlN3+4De7kznHn/Dq4tUuyQi3jD4OW5kTOQmxtBQGg8ADr+N5yrelyMfOueMfa81EgCARlx7xPGHpxxLI2JiIzcpbV/Kt6l6zzw/fADwWV/JadXhMy666OlW96sAILTZu5f+dvveNOGPIuc/joi3R8SERj9s0fgH1NG4NAoAttzKHPGDSqRv9PXFpd8/btuHDHIAAAAAYKx8duHNp6QcCwZ7fqQBwJzibSecsvuP9XTnOXvutX+ZIr4QEdOGOseNjYlRnAUwj6T95yqvzimOnHP6Pl80IgCA4dz8V0dttnripH+MyH9c5z84GOA+JTdZb7h7rRGGB4dfBnjdv92Saz1/usc/LP51K/tXABDaYP/Pr9i60p/flyK/PyL2jYhK/Z+XaOBza5uM4wBg54y1WkT8X6R8Sf+ayn8JAwIAAAAAo6067+Ydeyrx6xjk6+ARLt9614JTd3t1iuTXgQ6y5Mi7JvVPfXhpRHykzvPcwLjoqGWAn1OJ9Pe1lY9+bM7SA1cbIQDAQK7+23m7VYr8nxHx8iHvT4a5J0pNLOX7/P1Nu5YBbiwA+Mzzj+RK/MX0C5d8t1V9LAAILXLQ5+55UdE/8ZBIxaER6YAYbKa/xq9hjEmfmQWwRIqIdE2kuCR6K1/99se2XmHwAwAAAACj4aQFN18ZEfsM9nyzswDmFJ894ZTdP62HO8eZx946rad31X9FxP6R87DnuNEx0akBwGdeA99d01f5k2MWz1xppAAA67r28OPfHpG+HhGbPH//MBYz+bUrAPjM8/UvA/ysWsr5b3b/0tIvt6KfBQBhBA49594pT/RW/riS0l/kiP2j0dBffdcwxqTfBABLqhYpXxaR/i2niV/7zpwtHvciAAAAAADa5aQFN38sIs4f7PlmA4C1nmLXT50043Y93BmWzL9pq/7o+3bkmPH8KR9uqbjGxkTUOZbaHQAcfhuD/Die0+Vp2upDPlZ9+5NGDAAQEXHtEce/L+X0rzli0vr3DiVdyrepes8833gAMCKiFrn4yPQvnf+PI+1rAUBowkHnLZ+ee+KDOcdfRMQWLWtYCLBEfSYA2AFWRcQPU8SXV0zZ9us3HpH6vCAAAAAAgFY6df5NW9VSWh4RvQM932QA8GcLT939tXq3M5w3d9nLaqn2/Yh49XMPjmEAsPFtDBICzCNpPw9WftmavnTAMYtnPmLkAEB3u+Yj8/4qpfzFge+j27UM8BiGB/NQ91JD1s058tEzvnj+eSPpbwFAqNPsJb99RUTPB1OKD+RIO7VlIwKAJeqzcRwAHJ9j7aGI/B9FpH/97lHb3eCFAQAAAAC0ykkLb/5e5Nh/oOeaW741f2bhqdOrerb8zp5/3atSjh9FxEvWeyIPfc67cxng5/52Y6VSe/ffnfaWPxhBANCdrjli3tyU82lN3Z/EcPdZjS/lu859eMN1mwkAbnh/NGzwMEfKn5x+0fmLm+1zAUAYwn7/+JvJk5+c9L4U+SMR8ZbnXzNteukIAJasz8wC2KF+miP+Pirx5e/M2e53XiQAAAAAwEh8dsHNf5UiBl2Wq9FZAIueyus/ddKb7tCz5XbOwqtfnGs9V0XEDgPPoCcAOET5K9f0pf2PWTxzpZEEAN3lmsPnfjRF+txw9zVjM5NfuwKAzzzf1DLA+fk/5PyhZpcDFgCEAcw69/5Xp0r8dUR8KFJsOWovHQHAkvWbAGCHWxMR308RX566/bb/dclhqebFAgAAAAA0qlq9dpOeNZNWRMSUgZ5vLACYf3LCqdPfoFfL7bS5yzadkGr/FxFvfP4cv/BUDn7eOz0AOPw2cj3lv/n7qWveW62+vd+IAoDucN3h8/84R/7PiOgZ7majtEv5Nn2f1mwAcL3na5HjsOlfWvpfjfa9ACA8Y/aSuyblNOU9lUiH54h3Dv36EAAsFQFAY234s3R/jvyvOccXvnv0dnd70QAAAAAAjfjsgpv/K0W8d6DnGgkApohPLTx195P0aHmdc/TVU/Kknu9HxL7rn+MXaEsAsKGx1IA8xDE0035dAcBIOf71786c+cEUyS9gADDOXXv4grenKL6TIybVd1/TrmWAxzA8OPIAYKSIlTnHAdO/tPSKRvq/YgjS7Q48f/kOs86//4ycpj6QIl2cI941/OemNn1OEclltHTdWMsvThFzKyl+eeDi5V8/6NzlB1Sr2XsgAAAAAFCn9B/DPF9fK7m4RF+WV7WaK8Wknq/GOuG/ZuQ2l2/dsG5vxZziLz93/NUCrwAwzl374QW7RhRfXz/813E3OC2Vm9ynHDElpfifZYd//DWdd9QwBmYtvXe/iHRkRPqjeG760UZeFGYBLI229plZAMfxwLkrcnyhlmv/9L1jXvqIFxIAAAAAMJhqddnUnjU9v4uIqQM9X9csgDnuOGHR7q/Xm+V11tzrFqQUpwx+jl94ToebYaZ+ZVsGONXRZp3lcyXFIX93+j7fMsIAYPy58m+O37i3t7IsIl5V943Gc/cPzc7kV/+Meg3fs49kGeA81P1R/ceaIiKn+Mnqab1vnrl48cp6zoPZj+gqs5fcNWn2kvs+OGvp/bdEVC6LSH8S64T/6FCizDQ3cHaOlM7uqUxYfuC5D148e/GD++gTAAAAAGAg1eqMp3PEZSNqpJK/oyfL6+zjr90rpag2Vmv8/kDRwlkMU5Hjy+d/8qodjDIAGH8qvZULYsDwXzvvldIY1W1X0xtWTDleP+nJ/vPqPg+GIt3gkAuXbzlr6f3VHFPvyyn9c0S8Ua8Aa+VJEfnQlPKVB5674poDz3vgsP2quVe/AAAAAADrSfHtkVTPKX1PJ5bT+fOv2yJV0iURMaEMA62u8dRgm2O8KNDmqSf+pVq9zHfvADCOXP2RBX+TIj7Q7H3GcPMDtuY+aOT1Gr1Pa+Fd4Udu+vCRf15PWQFAxrWDPvfgy2ctuf/8vjX5noj4dKTYsnWt57a9gqFE3yF0m70ip69O3ezBuw5c/OAxs5c8vIkuAQAAAAAiIlKqDDOD35Bfuj616WMbX6EXy2l1jn/KES9pZZu5zeVbN7BHp2KOeMuWKyd+2mgDgPHh2iPmvy6lvLScwYPW7lNrAoepqXo5xYU3fujvXjlcHQFAxqUDL7jvTbOW3PflWq3/55HiYxExtfQfsCipbNx0px0j5bNT0XffgeeuOG/W4gd21CUAAAAA0N1OPPmNv4mInw703LDfEad02ZylO6/Wi+Vz1rzr/jwiDh6u3IDn2D+0b0yOeZ879tpddQQAdPpbeqSc43PRQBZnkJvkEh5duZYXThEbp9TzheHKCQAyrsxeet87Zi29/0dFkW6OlD4QEaYS7xY+ZNMeG0fEnEpKdx147or/OHDxQ2/SJQAAAADQzVJTywDnnL+v78rnguplG6WIM0c4JnTks+N8+CK9RSrOy5F1GgB0sOs+Mv8vI+JtY3uvVK6g3sibTkM99c6bPvLxPx2qtgAg48KsC5bvO2vp/T/KkX4UEe/QI0Bjhv1aojci3h+puPnAc1dcOeu8Fe/UZwAAAADQfYoovtNUxUr6rt4rn1Urp54YES8u356ltrRZimWJU97vgrlXv9/oA4DOdOXfHL9xTnFaq+4bcpP3RO3Z3ljdp9W12cW3fuDYaYN+3DA06WQHLLn/XQcsXX5tFPmKGJPgX27XCxc69zuE8W+fShE/PHDxiitnn7PikMj+pSIAAAAAdIs8cdIVEfHE4CUG/LrwNyeevNtdeq9czjju2p0jxSdKNb7aXL6xYdvGijkvXnLktZsYhQDQeXp6K5+JiO1bdDPRRq3dp9YEDlPz28vx0trklfMGKy8ASAd+us5p9pL73jdr6f23pBQ/SJH3HOsPWGDcdKV9UopvHHjug9fPXvzgHwsCAgAAAMD4V63usiZH/LCxWvk7eq58enrSmRExqaEzOdCDqcHyRETaNk3pO0Y/AEBnue7DJ+wUkT7e4vuCMt6rlHSf0rE3/c3Htx/oWQFAOsr+59938AHnL78pp3RJRLxRjzA612Af0RnSjBT5v2ef+9CyA89dcbDuAAAAAIDxLeX0vYEeH+yb5JwrP9Br5bL4+GtemyPe49v/1qu3T1Okj5957Pem6TEA6By1Su2TETGhRHfmZfy00M7ZlSfn3nzUQE8IANIRZl2wfN9ZS++7vJLTpSniTXoEaL0GvupJAz2Ud48clx64eMW1s89ZcYj+BAAAAIDxqSeKKxoonnsiX6XXyqWWeo6Llv5i3I4fn9vzg/aYLTO8oS2mpY3+xmgEgM5w3cfmb5Ei/qq5+4Y0VvcbbbrXGrvgYcrpiJv/6qjNXvi4ACClduD59+45e+n9l0aRr4hIbyvnXrbpUmQxUTrhfY2B7JlSfGP24hVXzzpvxTt1BwAAAACML/MX7fbTiPjd4CXW+9L1lwsW7f47vVYepx9/0/aR8l+Udf/aG9BLTT3VdJvD7XvKx1Srl/UalQBQfkVfOjIiprXjnqDZe43cZN1mUz6tqZdGur1N8oS+I174oAAgpTR7yQOvm3X+/d8ocuXaHDEmS2qa9h3jhhHehuxdKeKHBy5e8YNDFi/fXY8AAAAAwPiQIuUc+do6C1+rx8qlJ9U+ERETm62fBz7PjZUnIlLkiB23XjnhMH0BAOW27PDq1Ij4WDvvC8p4r1LefUpz7jryyEnrPiMASKnMXvLAVrPOv/+8nIpbI4clNCnRNdhHdJr2rlpUlh24+MGLZy958BW6AwAAAAA6X4rKgMv6vvCb5FxY/rdMqtXLeiPlv1r3xwTf/rdeQ31axEf0GACUW39e/acRsaWgXgP71N7Zlbd/fGUctO4DAoCUwv5nrpg2+/z75+ZK8avIMSciTPcNjIEGvpZo7A07ReRDUy3/dPbiFRfuf+aKrfU1AAAAAHSunPOV9ZSrpLhGb5XHRiunvjMi2vT9bOqQNtu9zHCDbad46+ePvvrFRicAlFeR0vtHft+Qxux+oz33WmMbPKykWO+cCAAypvar5t7Z59/30Z7JtV/lHKdFjo31SmmuFxhrtN6EFHF4b2/62YHnPnDcftXfTNYlAAAAANB5Nntyo2URsXrwEiki8hM73/WrO/RWmdT/4/VYam9ALzX1VNNtDq9Sm5D/1NgEgHK6+kPVzVPEu8f4Hm4E90GpJfdbra2XRry9HPngWz9w7LTnbqgMVcbK7KX3vWPKFvffnHP6XI7YprM/YJkgHqOBhkbJiyKnM6ZuOvWu2ec++EH9AQAAAACdZc7SnVdHxA1Dl0rXHnbJYTW9VQ7V6h0ToxJ/1Iq2BvwdIDVYnuf6JkXxfj0BAOWUetb8SURMrLP0SLZUxqMv8z5NrU1eecizfxEAZNTNXvLbV8xacv/Xc6Qf5Uiv1yN0zjXYR3RaPqZeknL+5wMXr/j+7CUPvE5/AAAAAEDnyCkNuAxwfv7/r9VL5TFt5VMHRI7Nn38kbXDOGG3PnoO094Vzr3yZ/gCAMt70xmEDv3+X8Z6iZPuU2n1qnp/dWgCQUbPfBQ9tNGvp/Yty6rkjUmv+hRVAO94mx+A+4t2plm45aPGKxX+8+A+bOQcAAAAAUH6VSFcP/Xxco5fKI1XigFHYSoe02e5lhhsun/rzWC8tCAC80NVHHz0lUryt7Pc13btP+Z0XH3pozzOfPaDNck6zL7jvg5Nz388jYl5ETNIpHX6tAdphQkQc1R+rf37g4hUfrlaz92gAAAAAKLH+vrh5qOf7+uNWvVQiRezTSbvb3sBd+YKKOfI+BikAlOx+5Ompe0Tdy/82fx9TX700yturp14awfbSiPczRdr45S/a+o0RAoC02YHn3/eqWRcs/0HO6Z8jYvuOvKC1/dLAuHwj7MSdFjYtxbjJEVuniC/esOlD1x903vLpegUAAAAAyql6xhvvi4iHB3n6D9Uzdl+ul8phSfXaTSLFG1rZ5oC/A6QGy5fRGPxWkCMiRWVfIxUAyqWSiyben0dyM9GuG5Ey7lNrjqeS0z4RAoC0ySEXLp86a+n91SLS7RHxzlK/Lhif2jbWBD0ZLXl6FJVrDz5nxXmHXvDQRvoDAAAAAErpjoEezBG365ryWLMy7R0RPUOV8e3/WHn2B5288wXHXbat/gCAEsmVfYZ+/y7jPUXJ9im1fRMCgLTH7AvuP6SvL98ZKT4dTUwFClCCO5my3Ef05hRznl5d3DZ78QOznRcAAAAAKJeU822DPCUAWCI5pVH88bpT2mz3MsNNhCrThJlGKwCU5P4pIuWU9+qU+5qu3accb4kQAKSFZn3+gR1nn3//pTnHNyJiBz0yzq81wGheA3aqRPr2gYtX/MeBZzzkX0ACAAAAQEkUlcrAQb+c79A75ZEi3tSJ+93ewF0pg4pvMloBoByu//AJO0bE5s3OktyeemmUt1dPvTSC7aVW7Of2t/7t324tAEgLPn3kNPv85YdHrbgtRxw8Lg+x7ZcGunvclIiwadlPz/vThOKnBy1+8HC9AQAAAAAlUBQDBgBz9PxE55TKK9rR6IC/A6QGy5fRGPxW8EzfvNxQBYCS3Oamkdw/jeRmol03ImXcp9YcT3//hJcLADIiB1xw7ytnnX//ZTnyhRGxcce+LmDkH+lhtEbXZhH5woMXP/jt2Uvue4keAwAAAICxU0yadHsM8LVeManXDIAlkSOnFLFjfWUZG8/9eCgACABluYeq5JfX+f5dxnuKcu1Tm3erUskCgDRnv2runX3+/XNTrvwkUnqbHqHcnxdh/I21HHl2pdb7E7MBAgAAAMDYqVZ3eTJF/OYFD99fre7yiN4phzOOv3m7HDF18BKlXAq3tNq7LLEAIACU6E1/p/Y1LjzYyn3KOQkA0rhZFzywx+Qtl9+YI06LiEl6pIuvNTDO72g6wKYR+cKDz1lx6XuW/m575wwAAAAARl8Rsd4ywCmy5X9LJPXUdhonR1JXqdxgm3mM9nMQ21xQvWwjoxYAynDrkV7+7Pt6s/cL7amXRnl79dQb2+WFUzIDIA04tHrHxNnn33dK5OLqiNi1244/t/3SAB31HQJluj6lOLjWX7v9wHMf/FO9AQAAAACjK0X+2bp/z1H5hV4pj0rOO5Zpf9o8g14rB/aY9E1eOWEHoxYAynDTUozwPdksf62+v8uDHE/OsYMAIHXZ//MrXv/EVptdmyMtiIjecfKagrZfksVBGcU3/M1Tzv958OIHvnzoBQ/5F5IAAAAAMFpy3LP+A8U9OqU8ihybNHY6Gz39A/A7WBPWdlolx8b6AgBK8d686VjfF4x+3TbuUzvvD3NsIgDIkPar5t7Z598/t1KrLYscu+kROvTzInTNWMuRPvD0muL22Ysf3MdJAQAAAID2q6S4e70HNggEMrYnKKYNX6gdX/CO3x8o2jmLYRHFNIMWAMogTW3v/Y4ZAlu2TymmCQAyqNlLfvuKyVsuvyxHnBYRk/SIaw10n46dw3HHSuTLD1r84GnTL8wTnEcAAAAAaJ+iku9e9+85JwHAEqkUMXX8HE19PxTlBtvMY7SfA56vqAgAAkAp5Gnrvq+3btnaVtRLo7y9euqNaaBHAJCBRmdOs5fef2Su9NweEfvqkNG8NEBHfYdAufVG5LnbPr3if2cvue8lugMAAAAA2mPaU6vvjnV+GCgmVwQASySnVLoAYG5z+ZYZg98Kaik2MmoBoBRacA9llr/67u9Sk/WeqZsFAHmB2Use2GrWBcv/J6dYEhFTuuA11RkfsOjoEWHcMLbXm7RvpdZ78+zFD8zWqwAAAADQescsnrkyIh565q8rP13d9Xd6pTxSyg0HyloS0PMP7Zs5W5HG1YyNANCZcrVaiYjJY31fMDZ1O22fwhLArG/W0uUH5EpxW0QcojcYZ58XodvH2paVSN88aPGKkw+9OPc4UQAAAADQauk3z/zhtymSfxdeIjmiUt8JaccXvGk892t7ylfSBKMWAMbWjcuX99R/I1PSUFwZ9ym1rWKvACAx/cJlE2Ytvb8aKX87IrbVIwDrGjff1VUiYuHT9z/0v+9Z+rvtnVcAAAAAaKm7IyJS5Lt1RbnkHE+PryNqT1CxNN+E5+JJoxYAxtaMiy7qi4i+Dd6mm317b0u91PLtlfM+rS5PCQB2uf2XLn/Nln3bXR8pPh1rwyG07hPKOLte0HWMtfF6bXprrb920+zFK96hLwAAAACgNXJaGwDMKf1Wb5RMiqdKOWZKVn6I/hvViinSUwYtAJTCky24IYhOmuVvbAOOaSTbe1Lgq4vNWrr8Lysp35Ai3lSy11S5P8QbOhg3dP642aYS8b2DFz94jF4GAAAAgJFLRfHbtf8vAFg+ualAWUsCd/6hfcOKVBEABIAOvodq8V12Ge/8y7hPT/UasN1nv3/8zeTJT008PSLP0Rt0jRRtSlNln+DpVL058tkHnbtij8qU4kOXHrH907oEAAAAAJqTKvFQzhE54nd6o2SKylORcp3f5rftxwSizl9UimQJYAAoxft2err+JEQZ76FGsk/tOp4UkXKTTQ+5T2YA7DazPnf/qyc/NfG6iBD+A2jg9qah993OOrQ/K57uueKQ85a/zHkGAAAAgObUcuWRiIic4g96o2yKJ8Z2+6lj2hyzZYbX0ZPTE8YsAIy9FPF4K9//c5P3NbnJe6I8lj032nIWAOwmsy5Y/idRpOsiYle9MWqvsnFzvaB739XpimvV7kVRueng81a8U18AAAAAQON6o/ZwRESO4mG9US65J99b2n0rWflBpdGruLp/pWW0AaAMUtzbohuC6KSlfFsfcGykXmquXkr3CAB2gUOrd0w84Pzln4ucvxaRN+2Q11S5PywaVhg3jL9xs0Uu4rsHLX7wo3odAAAAABqTU8/DERGpWDsTICU6N7XeXzVdtxXl/UP7Rjxy9Llvf1Q3AEAp/Kocu9E54cGx+yySfi0AOM69e+lvt39iy80uT5EFOqBt12DRPsaN3oj8uYPPWXHeoRfnHt0BAAAAAPXpn/CHhyMiitxvBsCSWTVl+n0RsTqi3m/zJfbaKQ/95K/0EACUQ8rp1w3WKONRjFHdYdpt8ezKKcevBADHsdlL79+nJ3qXRcTeegNgpBoIenb490M5xZynl6/45uwlD2/ivAMAAADA8KrVt6+KiKdjyhQzAJbu3KQiIu4e271IHdPmmC0zvHbzAoAAUBLFEDMAtn6Z3DSC+w0zBKYQABy3Djj//o/llC6LlLfTG2Mtt+0VDOPwvYnSXLrSrEqt/7L3LP3d9joDAAAAAIaXIpZXq7s8qSdKeXZ+WdY9yyUrP9QAb3fFFAKAAFAiv2rhDUGMRfAgN7lPuW3bq6dearhe34R+SwCPN7OX3DXpgPPv//sUcX5EnqBHyvOBDIwbOm/c5N1r/bUbDlm8fHdnAQAAAACGVkTcpRdK65bR2tCA3+f6h/b1vYZy3KwXAKAcZm7f+5uIeLQce2OWvyFuPle8+XOfWyEAOI4c/Pl7X5wrU69MEX/TcTvvgw8dP9ZE+xi3ti+icvlBix98l64AAAAAgMGlEs8y1/XnJhdXPPvnXOfZbKw8jRisT2sTeq7UOwBQkvunarVIOa5u9I64jHfppdynFs2unFL8OCJCAHCcmHXBA3v01yrXR8QMvQGDejQi/jDAf4/rGurTwFc94yvYvHFE/taB5zxwmDEAAAAAAANLOf9WL5TTxCn5moiojfEI6ZA2x2aZ4RRx11Gn7vWg0QoA5ZEjX9nq9//c5H3N2PyjjPIveZwjXRkR0Wu4dr5Z59//Z5GLf4iIKXqj275NiPH8T89Wxdpw3iNr/z89Ein/IRXxSK6kP6QiHilS8Uglpz/UUnpkQu7/Qy4m1iIi+vOaR3snFzki4lsffdmjkVJDvVSt5soNW/920740acKEVWmjqNRelHNMK1LaqBKxUY68WeS0cUrFxhGxVY60XURstfa/tE1E3sxYYxyamFL69wMXP7DVt4/e7gLdAQAAAADrKyr5Sb1QTnOqez1+5rzrb4uI3cbD8eRo7CflxsoP8YNA078VDF8xp7jCSAWAkt3f5nxlJaVW3RC00eD7NPx90MB1G73fam29+vu4VmQBwM6/u89p9vkPfCZHPiEsolvyD1jZKXrB+0REWhER9+Qo7k2R7s0Rv00pfpsi7uut9dz7jaO2ac2/8vq7xqtUq6mIteHDiIiHGq1/aPWOiSs32WSrvtSzTaWn8uIcsVPkvEOK2CFy7JBT7JDWBgah7TcKLVZJkc4/6JwHtv7WMdt92lkBAAAAgHXkigBguV0RoxQAHPD73CF+x/UrUkTOYflfACiZx6c8ef1mqzdZHRGTWtPiSMKDnRU8HCWP/ebxFbdFCAB2rP3PXDGt54L7/zmn9Kfj5qDMMDbeFJHi7ijynRGVO1Ol+FlRpLsqPXHvgxO2W37jEalvvB74JdVd1kTE/c/8d9Ngr+HUk3es9KaXp8ivSTleU6R4bcrxmoh4keFDua/X6VMHLV6xzdQXb/OxSw5LNR0CAAAAABGVlJ/QC+WVcvpuTnlORL2Bu+d/uBLQa70X9GnR25e+r1cAoFwOXLp09dWHL7wsImY1cNcVgnp17lPKI9qtHPGDwy65pBYhANiZL7ALHto2575v5kjT9QYl0B8Rv0oRd+SIn6UUd+Scf7pRf/GzS4556UrdM7DvH7ftUxFxxzP/XfrC13jqr702R351SmmXXKTdUspvzBEb6bkyaOCrnvEdbD7iqfsf3Gy/av7Ly6up37gAAAAAoNvVsiWAy2zjP6QfPr55fjgithi7vWjHl8bt+SK6vcsMb1D3io8unnm/UQoA5ZMi/iMPEgBs/TK54y082K7jWdtuJcdXn31EALDDzF7ywOuK3PetiNhRbzAG17++iLgtIq5PKd9Q1IobN3708Z89M+MdLfLtj229IiJWRMRlzz526MW558kVK15dKfLuRVSmp5R3j7VLFWysxxjDy8/7p2324MRDq3f8mesAAAAAAN0u5R4BwBI74qIZfWfMu/5rKeLw8XA87Q3oDfHjU9O/Sw1eMaXnf7wGAMplQvR/fU30roqIyS24IWjj/c/g+zT8fdDAdVsfcGyk3rB9/MSqjXu/9exfBAA7yKyl9+6XU/FfYXnQDv2A1XETxOeIuCsibsgR10eluGHVtL6bL//rnVY566PvmWVW73zmv3+NiKhWc+XGLR54Va1Ie0fEWyJin4h4Vdt2wjLdHXS9GdWdeu/Tm27xX/tVf/O+y6uuDwAAAAB0sV4zAJZdrhT/kYrKqAQAB/w+d4jv2bt4meH+nlp8zegEgHKacdHpj119xMLvRI73tqbFMs6oN1bHMyLfmLl48XOrcgoAdojZFyz/i5zz30fEpHF9oAJGY+mpiLgyR1yZIq6v9Pbd8K2/2+EPuqW8qtVURMTPnvnvHyPWLh8cff37RIq3RKR9I+JNEdGjt2izg6ZtOuXSQy5c/keXHrH907oDAAAAgG5UKQoBwJLb6a7f/vieV+z4QERsN5pL3DKkyz561j4P6QYAKK9U5P/IKTUQABTUq3ufUm5ut4r1Z1AWAOwAB5y/fEHO+WSfK2ixvoi4LuX8o1pKP9rkkT9cZwnPzvfM8sFfe+a/eM/pv9u4b0ptv0rk/XPOB0SknfVSKzTwVU/3BJvfVXu68u33nP67Q74xd6snjBEAAAAAuk2l6BMALLnDLjmsdua8678UESfWV6MdX/B2SpuNayZUGTkuNDIBoNz+MPmJ/9ls9SYrImLb9m9NeLAOv809q7+77gMCgCV26MW55/GHHliaIn9Ub9CCa00REbekyD+KnP63f03liu8ft+1TOm98eyaIdekz/8VBix98ea7U9o9UOSByfkdEbKKXaOGl6G21ibXvHHrBQ7Mu+djWvuwEAAAAoKusmbSRfxjbCfr7zo/eCcdGxJRuO/TGAnopcuQWz06ywQ9adz08beZ/G5QAUG4HLl26+uqPLFgSKZ36wvf1ZmdJbk+9wcMzY7efjYUH19/eIHVzXjzjixf1vfDIKaHZS+6alHum/UvkfGjXHXyHzpSV2lByxP2W4v4o4tKc4ge5v3b594556SNeXTxrv2runbrZAzMjxayIyuyI/Ma6Bqhluht/Lecx2epYds1lU4u+gy455qUrjRMAAAAAoGzOmHfD51Pkv63v+9bnv+Bt9PvZQcvn3HidYcvnke3TIMeehu+WBtt/vmJO6W/nnD7TDIAA0AGu+Oi8F/XUeu6JiI1f+L6eGrlZqOc+Y8i6w/0DhaHus4bfp8Hvbxqvm+o8nhc+nYZoN0U8MmlC/w67fO5zT47kHpJRsP+ZK6ZVptS+FhEHdG0ndGDAqDQBwBS/Tjm+WeS45LtztrsqUhLXor5rz+dXbD1hdX5bTnFIRDokIm82Xl6fY/2qb3Wfdcib9w+eemzley6v7rTKWAEAAAAAymTxvBte3h/5FxHR0+i/im9JCFAAMCLiob6+tOMxi2f6h+QA0CGuPnzBORHp6Be+r7c+yJeHuZ/Jdd+7bXif0njd9gYAn3k+D3Y/lV/YayfP+OJ5J470HpI2m73kga1ypfh2RMzo6o4QAGxELSKuTEV8I6ee//nOnG1+5ZXESE2/ME/Y7ukV+xQpDkyVeG/O8cpOfn2W4ZXfdbMArj3kS6c99vD7LqnussZYAQAAAADK5My5110SKb1vTGYBzOu3OWz5utvPze3PEMfdaABw+G2srZhzXjjnzH1PNRIBoHNcefjcl1Wi966ImLju+3q5ZvJrVwCw8bptCAA+3ZfTy/f60nkPjvQekjY68PzlOxSRvxcRr+76zhAAHM7KiPyjSOnSlHq/8e2Pbb3CK4h2OuCcB3bp6YlDI+LQyPE6PdLE67kLA4DP7Ox/P/XoNoddXk39xgsAAAAAUBZnHLfsFamnuCNFTBq+9PgJADa+jTzEMTTbfr5vVfHka44764CnjEQA6CxXHb7w9BRx/AtvChpfBlh4cL269SwDnKM6/UtLPtOKe0ja5KALlr+2losfRKQX643o2BnG2hwC7IvI38spvrLxmuJ/LjnmpaZEZ0zMXvLA6yLHn6Yi/2mk9Mbu7g0BwDp9ZY/HtvlgtZoKryAAAAAAoCzOmn/9osgxb/iSoxcAHNk2OmQZ4Fz82ZFn7vtVIxAAOs+Vf3P8xpXeCT+PiO3WvSFoPAA4zH3GmAQAB6/b3mWA6woA3rN6o57Xzly8eGUr7h9pgwMvuO9NRY7vR8RWTkkD14ESak8AMF8bOb4SUfnqd+Zs9zsDg1Jdv86+71Wp0vOXOcVfRsRO3dcDYxMA7MQ38Bxx3reP3vYorxoAAAAAoCwuqN6x0dOrnvp5ith+6JLrf8HbmhBg1wYAf/zxM/beL0XKRiAAdKarj1jwwcjpn9e9IWh9kC8Pcz8zFjP5tSsA+MzzQywDnFM6bMZF513SqvtHWmz/zy2fXimK70XEFk5LQ6/lUmphAPC3kdO/p0rtH7798Zf8wmCgExx03vLpOccHI9L/FxFbds+RmwWwgX1e8M2jt13k1QIAAAAAlMVZ82/4QOT85eFLjp9lgNsdABxiG7WcatPnnP6WW408AOhcOSJdffjCH6eIfS3lO3TdFgUAr9z9i0vemoZoRNJsDB2wZPlbUqX2zYi0idPS4DWgpEYUAMzx+xz5q1HJX/nux19yjQFAp9rvH38zedpjkw/JKT4QOWZHRO/4PmIBwIau7Ck+8q2jtv17rxQAAAAAoAxy5HT23Bt+ECneOVzJZ3V6ALDxbeQhjqH+9nPkc+acsc8njToA6HxXfWTBm1JK10bEpOaXARYeXK/uwAHAlalSzNj9wqV3tu7ejpbZ//z7312J/PWImOq0NPE6LqnUTOkcV+ZKvmDj3z/6X5dUd1njxDOevGfp77av1fo/nCM+HBEvHZ9HKQDYoP6c433fPmbb//EKAQAAAADK4PTjb9q+p9J/awy5us3oBQBHto3SLgN8c1756N5zlh642ogDgPHhmiMWHpNznN18AHCY+4wxCQAOXnc0A4DP1kuRP7r7F5d8obX3drTE/uffd3Al4pKImOy0NPWaKrU6z97TEekrRS4u+N6cl5jmnHHv0Itzz9PLHzwoIh+RI2ZFRGX8HN3YBAA7/N1iZY7KzG8fvfUtXh0AAAAAQBmcPf+G9+Scvx6DfvW6/he8rQkBdk0A8KnoiRlHLpr5MyMNAMaPHJGuOWLhdyLnAwa/v2hXAHAkM/m1KwA48PN136flDe43vz79i+e9t55zUTEcR9es8+89sBLxtRg0/Mc498sc+ZhJ/Wte/J0jtz9c+I9ucclhqfato7b9xreO2u6gIscrUuRTI+LBrusI+e5n/e+0x353p24AAAAAAMrik4v2+EZEfH7wEu34gnf8fmm87s/XKaejhP8AYPxJEbm3Z8JfReSH2nO/k9q352W8f1u/6fv7J/Z/2F1lCc2+YPn+ORf/E3WF/5yaDT4ddM4F7oWKiPh2qqQL3vy77b5frabCiYWI2UvumlQpNv7LiHx0jtil429txuC61qHvFD946rGV77m8utMqrwIAAAAAoEzOOfrqKcWk3msi4o0Dlxi9ZYBH1v4ozgKYh2s/f/XIM/b5M6MLAMavq484YVbk4psR0dP4LIB5mPuSsVgGeLhZmtu+DHB/zunde3zp3MtHdK9J683+/H3vyLX4ZkRMcWoa+izRcdLzf3giIl1UqfR87lt/t82vnUwY7HWe04FLHjggchwTkd7VmRdAAcA6D/3/eqYWB156xPZPG/gAAAAAQBmdvfD6l+ZaXBsR22/47OgFAEe2jZIsA5ziur418fZjFs9caWQBwPh21eEL56TI543uMsDtCgAOXnc0AoAp4vDpXzzviyO+16S1Zi+9f59cyd+NHBs5NU3ovBDg4ynH54v+4ozvHfPSR5xAqN+scx/cNeX8sZTyB6LuwHQZjE0AsJPeLVKKayure/b/xtytnjDSAQAAAIAyO3PBDa9PRb4yIjZd/5n1v+BtTQhw3AYAf1P0VvY+6tS9HjSiAKA7XH3EgnNTjk/Ue7NQ133GMHWbn8mvXQHAgZ+v+z4tF4tmfHHJgkb7Xsqszfa/4P6ZlcjfjYiNGwt9ODUNfkYpgxUp4uyVlQlfuPxjWz/pxEHzDj7n3hcXlZ7jI9JHoiOCgA1es7tvFsBlq1dPfNcP523+mNENAAAAAHSCs+beMDtS/kZE9K7/TCcsAzzmAcBHUk/sc+SimT8zkgCge+RqtXLd8jVfyxF/XM8NQ133GcPULe1Svk3UyxFfnXHRuX+emkgUSJm10f6fWz69kosfxbr/OkgIsIkrROn38J6IOGPVRmv+4fK/3mmVEwatc+AFD20b/bXjIsffRsTUcu+tZYAHcWt/7nuHGVEBAAAAgE5z1rwbDo/IX4j1vorthADg4G2ObBt5iGN4zqrIMWvOmTP/zwgCgO6z7PDq1L605keRY6+o+94kD3Nf0gXhwRRXPLF6s/3f/k/VpnJHEmZt8u4v3Ltzby1dkSO2aeJe2+lpus9Gdcd+naOypJKf+sJ35uy82omC9jnkrOVb1nrSx6MSR0V+4ZILZSEAuOG+pZ8XfWm/bx+/9QqjGAAAAADoRGfNv+F9kfO/RMTktY+MXgBwZNsYk1kAHy1S/qOjTt/nx0YOAHSvWz9w7LSnp0z894g4JOq+N8klCwAOXrfVAcAU8cOV/RP/ZN9/OOOJZvtcwqwN3nXh8pf19hdXRsRLGxqTTk/jr+OxcUdE/sxeD7/4a9VqKpwgGD2HnLV8y1pvfDIizYnSzQg4NgHA8r5b5F/0R+9+3zt6qweMXAAAAACgk5019/q3RiX+O3JsPsAPtg0ZOAQ4LgKAy4uiMvuos/a6zYgBAC4+9NCel26+85LI8Xf13Zs0GwAcyUx+7QoADvz8QPdpKeJfcjz9oRkXXdQ3kv6WMGux2Use2Cr31H4cEa9pYkw6Pc29lkfL/Smlz678/Xb/cHk19TspMLbX2lTkEyLS30VEbzn2SgBwHb/NteKt3z52+3uMVgAAAABgPDhn3o2vLP5/9u47Xorq/v/4+zN7L03BRhN7wRJbTNQYTdHEhgK2gC2xJAqKgqAoYl1FUZCi2LGXWCCxgIg1mnxNNImxJSZRbAlIRwULcO/d+Xz/QKMCt+zuzO7M7uv5ePj7/qK7M7Ofcz7nnNn93DPKTZO0VfS7AKa+APCdjOmAU6/Y4216CgAA+LoXTzr3dDeNkxQUvpNfXAWAzR27gEf5NvHfVn2fTfhut7WGWDZb9OZjVJhFaJ+b3lmrpqH1s5J2bmZtTBPly8t66o9NNqp9fe7qyWdstJTGAJKj1zWzt8nl7DJJhyZjwOQxwJL+m5P/+PEh679PDwUAAAAAAABQSa4c+sfOlqm9V+Y//fLfxf0Y4OKO74VdT5NW+XH+dwoajhx0+Y8W0EMAAMDq/Knf8ENMdpvk6zS1xmh6bRJ98WD5CgBV5wrP3HXi1ddGFWOqyyLSZ9zMtp+01hOS/bAF62KaKP97iXJYLrfr6oNw5DOnbbiIRgCSq8eEubtb6KMk/ai8V1L1BYCzMx78eMoZnfkrTwAAAAAAAAAVKZv1YM3lfxkq1whJreIuAGz0PS06R6y7AOYkXdL13VmX9Z3cN0fPAAAATXm+37CNa5S52+U/asE6o7EFUwHva26dFddjgBt7n78TmB35nZvGvxRlfKkui0CfSZ75ZMGs30p2cAvXxTRRvkpbABjK/ddBEFzw2Gk8vhJIk4Oumttb8rEubVmeK6jexwCbNN8V7jVtSLd/0RMBAAAAAAAAVLpxZ/95lzDQryVtVYWPAZ6tUEcPunKP39MTAABAS03q0yez0bpbDpfrIkk1jawzGl2DNL2eKfQxwHEVAK763800qaFVw0m7X3PNkqhjS3VZBHpcN+sGl07OY11MExXCS3KOx11+zhODNnyNgAMpHZMnzGhtufZnyPw8SWuU9uxVWwC4yF17P3ZG17/TAwEAAAAAAABUi+uyz675+fJ2owNXP0mZlr4vzQWALn8wCBpO5pG/AACgUH/sP/z75rrZpO1WXmmUvgCwuWNHUgD4sbudvdvN426OK6ZUlxVp/2tnnWumy/J+I0WAijdmeafCOyYbOH3g+tMJNFAZekyYtaGFwWjJjiztQFp1jwH+OFD406lDur1MrwMAAAAAAABQjcae89edpXCCpB+05PX5Pga4uB0GvbDrWfVVb5pp0KArdn+SFgcAAMV6NputaTN7+QCTLnZp7a+vW6J/DHBcBYDNvjeU7I5WQTB8pxvHzI8znlSWFWH/62cebW73FBRHCgAVb8xaHNt6dx+3vH1d9rkTNltGkIHK03PcnN3CjK6Ra7fSnLGqCgA/k4c9pp3R7f/oaQAAAAAAAACq3bhhf+nl5tdI2qSp18VdAPjN9xS9C+DnMl1pn310+aBrDlxOKwMAgCj96VfZdS2z/CJJp0rKFL4LoDezZir5Y4BfdtfA3W4e96dSxJHKsgL1uG72fq7wUUm1BR2AAsCYY9YiT+TCcOBTp280g+ACla3PJM98PmfeAHe/VFKHxEyt6X4MMMV/AAAAAAAAALCSK4e+tobVLOtn0mBJGzf2uhQ8BniJu93kNTXjh4zcZQ4tCwAA4vSnfsN2MNnZko6wRmux4noMcKQFgK/IffQuG6w1ybLZsFTxo7KsAD1u+GBnD/33ktoXfBAKAEsQt0Z9IPmQxwduOJmAAtWl9zULujXkGq6S1CcRU2t6CwCXWqBej57e9Rl6FQAAAAAAAACs6qZ+L9V+uk54hMyHStpp5f+e3AJAn2NmV7f22hv7j9plMS0JAABK6fl+wzbOyAabdKJWqcuKqwCwuWO3pADQnpZp9K43jX2qHHGjsixP+17z326ZIPizpA2LPhhFgDHHbBUNcpvQamltdsqwTp8QTKB69Rg/p4eZrpO0Wdmn1/Q9Bnh5KD90+pD1p9OTAAAAAAAAAKBpLrexZ/95nyCwX7h0sL54Sk3cjwG2VQ/clHpJT0t+f/D5xw/wqF8AAFBu/3fKOevU5uw4mR8h1/e+Wt4UupNfLAWAc+T6jTJ++643jnulnPGiqiwPfcbNbPtJK3tOpt0iWvHTVLHG7BteCmSnPDaw20sEEcCXY/pnVjNMpnMktS7b9JquAsB6d/V57Iyuj9CDAAAAAAAAACA/EwbOaN3Q7qP9ZN5H0qGS1vzGCyIsAPzme1Z7zFCuF8xssmd0/+CRu8+jhQAAQBL9ZcB5G4X1DYdJ1kfmezb+Sm9mzRRJ8eCHLk0zs8mfrb/m9L2z2YYkxIiqshbKZj14ofMHk8x1eGQHpQAw5phJkj5309lPnNrtepk5AQSwsv3Hzdkuk9Ft8oiKu/Mds9PzGOCczI+aNnh9Hp8OAAAAAAAAAEUaN+RPbYNWNbuG0o+++CF7D0kdYnwM8DIz/6sUPB+6/VHLP//jkKv2/piWAAAAafLiiWdvaJnghy79QO4/lLSdpOCr9U+huwA2+t8+kPx5N/0xMH/+vUUzX+87eXIuaXGhqqyF9r9+1mVynRtpwCgAjDdupj+5hcc9cepGbxM0AE3ZK+s1a6w1Z5ibXSipVUmn13QUAIYyO27a4C730FsAAAAAAAAAIHqT+kzKfNB90x08F27j7lvIbHMz20LuW0jqIqm2Bd//1klaINO7kr9rbu9KeleBz/i4dYdXstnt6og0AACoJP93yjnr1DTou4H5Fi7fIpBt7vItJG0sad1vvrrRH+c/MWmmLHxXbu/K/V0F9m7Oav7+/RuveD8NcaCqrAX2v27WsZLujCVgFAHGEbPlLl3YoUu3sZP7Wo6AAWipA66at2Mgv1Pyb5d0ik32Y4BdppOmDe56Kz0EAAAAAAAAAMpjUp9JmYVbrN9haab1mgq9bY17e8vlPm5oZcva5HKfz2/zg8XZrIVECgAA4Cuv/WLoGss61LYJQl+rPudrSFJtxj6zXP2ST2raL9v7+uynlfA5qShrxr7XfLBnEPgzklrHEjAKAKOO2cthmDnuydO7/oNAASjEd2/y2q6fz73ATcMl1ZRkik1uAaDL/bRpZ6x/PT0DAAAAAAAAAAAAAIDkoaKsCT1vmLlBfRi8JHnX2IJGAWBEMbN6yUcuaDXnsr/136WeIAEo1oHjZu+iwO6U9K3Yp9iEPgbYZGc+OqTLOHoDAAAAAAAAAAAAAADJREVZI/a6/b02rT+r/b1Mu8UaNAoAo4jbPwPZcY8N7PYSgQEQ9VzQbnHrUZINinWKTWYB4PnThnS9jF4AAAAAAAAAAAAAAEByBYRg9Vp/XnvD6or/ystpmJUD4jZu2Zp136X4D0Acnjths2WPDe52usuOlGlxbGN20uq73S+h+A8AAAAAAAAAAAAAgORjS7nVOODamYPc7OqSBY1dAAuJ2RJz/9X0QRv+hmAAKIUDr529iRp0r2R7xDJmR1jjbcW9efy0wV3PoMUBAAAAAAAAAAAAAEg+qslWcsB1s3/gHj4jU6uSBY4CwHy9bGGu7/RBG79DKACU0l5Zr2m31tzzZbpALdpFN3UFgNdMG9J1EC0NAAAAAAAAAAAAAEA6UE32Nftd98FGJv+bpE4lDRwFgC3/9K5r5Z8PnT6o+3J6LIByOWj8nIPc7B7J145szI74Ke8FzBY3TRvc5RSZ8bx5AAAAAAAAAAAAAABSIiAEK3z3ppdqA/P71ILiP5TFJ5KOmj5wg4EU/wEot2lD1p+WC4NdJf2j6VfmUUtX1vpuu3PXxV0GUPwHAAAAAAAAAAAAAEC6UAD4hY4NXa90155lOXleRR9VWZvxTwuD3R8/bYP76akAkuKJMzq//Xlt5vtm+k26P4n95rPFnU/MZi2kVQEAAAAAAAAAAAAASBceASxp/2s/OFjmD+UbDx4DXAp+d21tcPLU/t0+p6cCSOYw5XbQ1XPPdmmkVltYX57HAFvLXvTQZx936ftc1hpoSAAAAAAAAAAAAAAA0qfqCwD3vXFm9yCnlyTrUNbgUQC4smVm3n/6qRveRZoCSIODxs85yM3ukXztgsfsiDd5berM5nq07ZJFh0/ObldH6wEAAAAAAAAAAAAAkE5VXQDYZ9zMtkva2Aty7VT24FEA+PVPN8/lhz5+2oYvkKIA0uSAqz7YOlAwTdIWBY/ZJdgF0KUnP1+89ODnspsto9UAAAAAAAAAAAAAAEivoJo//JLWurbQ4r/I5VUf4hXcKvZ3k32P4j8AafT44A3ebKi3PST9OcFj9nOZduGhFP8BAAAAAAAAAAAAAJB+VVsAeMD1s/pI9ku6QKI83lC79IePndbtP4QCQFo9eVbX+Z+vtWwvSQ8k8PJeyNRlek/t3+1zWgoAAAAAAAAAAAAAgPSrykcA73P9fzbPeOZlSWslKoDV/RjgCe07dztjcl/LkZYAKoK79bh67uUmDctrzI54w8Avz2zmr3irup9OG7DJRzQOAAAAAAAAAAAAAACVoeoKAPfKek3rTh/8QdL3ExfA6iwAbHBp8BOnbXAd6QigEh149dzT5Rqnlu66G0MBoEuvt65t+MlDp224iBYBAAAAAAAAAAAAAKByVN0jgNt0mj1CERX/RS6vmj6vhOb4UB7uS/EfgEr22Oldrzb5kZLqop8LWuQNz/g+FP8BAAAAAAAAAAAAAFB5qmoHwP2v/2AfuT+hCAsfIw9g9ewC+KZb2POJUzd6mzQEUA0OuHrOgYHbbyS1jXYuaPJAb6k+8+PHzu48lxYAAAAAAAAAAAAAAKDyVE0BYI8JczqFmdxrktZPdBCrogDQ/1pbGxw4tX+3haQggGrSc/ycvUKzKZLaRzcXNOpdzzT8ePqgDWcReQAAAAAAAAAAAAAAKlPVPALYM7nrFUPxH/JtCP+9hW33ofgPQDV6dMj6zykMf+JS3I/jnZmp0T4U/wEAAAAAAAAAAAAAUNmqogDwgOtmHe/Sz1JxsXlt6udpa4qp7eu9x/RB6y0h9QBUq8fO6PaSAv+RS7OjmQtWMS+TC/ebOrDre0QbAAAAAAAAAAAAAIDKVvGPAD7w2oRJjIIAAIAASURBVNmb5Cx8TdJaqQliZT4G+I5lC7ud9FzWGkg7AJAOuOqDrQNlnlVju9MWVuM9L5ML95o6tNu/iTAAAAAAAAAAAAAAAJWvoncAzGY9yFl4u2Is/pNSuA9fiZnr2t0XdvsVxX8A8JXHB2/wpnKZvSTNjeiQH3sY9KD4DwAAAAAAAAAAAACA6lHROwDud92sISaNS10gK2gHQJdGPXHaBueQagCwegeOm7uDB3rWpPUKnwu0WB7u89gZ3V4iogAAAAAAAAAAAAAAVI+KLQDc57rZ2wYK/2ZS21QGMv1FgG6yM6af1u0q0gwAmnbg+PnfloXPSFq3gLlgiUz7PTa465+JJAAAAAAAAAAAAAAA1aUiHwHcZ5JnMgrvLFXxH1Zm9e72c4r/AKBlHhvS+dXAraekT/J862dhEBxE8R8AAAAAAAAAAAAAANWpIgsAlyyYfaakXUt5TqcvfanOXH2fGNjtXkIBAC336JAuL0hhT0mft/AtS13q/fjpnZ8negAAAAAAAAAAAAAAVKeKewTwgdfO2qrB9Go5dv+LNJjpfATwcpeOeOK0DR4htQCgMAdcPefAwO0RSTVNzAV1Jj9s2pD1pxExAAAAAAAAAAAAAACqV0XtAJjNepAzv6UiHv2bV01fIvYf/DyUelH8BwDFefz09R8z6eQm5oJ6M/Wh+A8AAAAAAAAAAAAAAFRUAeCLHWedJtkPadaS+1QeHvTkaRs8RSgAoHjTBne9VWbZ1fynBpcfPW1w1ylECQAAAAAAAAAAAAAAVMwjgA+4Yc6mHub+LmnNigloOh4DvNTND3ri1A2fJZ0AIFoHXj3vWoV+6hf/MzSz46YN7nIPkQEAAAAAAAAAAAAAAFKl7ADobh7mblGZi/+q0DIzO4TiPwCIx+cfdR4saZokd+kkiv8AAAAAAAAAAAAAAMDXVcQOgPtfO+sXMt1VcQH1RDdnXSg//MnTNnyUNAKA+Ox35dw1amrtgMcGd/kt0QAAAAAAAAAAAAAAAF+X+gLA/W+Zua6W278kda7IgCbzMcANMjvi8VO7PUgKAQAAAAAAAAAAAAAAAEB5pP8RwHXBKCWk+E8qYNO+9HGT+lP8BwAAAAAAAAAAAAAAAADlleodAPe7dub3zOxPSlghY/keA1yK5vQzHz9tw3GkDgAAAAAAAAAAAAAAAACUV2p3ANwr6zUW2E2qhF0MIxPv/oPmNoLiPwAAAAAAAAAAAAAAAABIhtQWz7XqNGuoXDtVfAslZI9GM7tx+sBuF5IyAAAAAAAAAAAAAAAAAJAMqSwA3O+6DzYy2QVJvT6vtF7i/uD3Fqx/KukCAAAAAAAAAAAAAAAAAMmRygJAk4+V1I7mKwX/a7is5ths1kJiAQAAAAAAAAAAAAAAAADJYWm74AOum/0DV/iHpF97pBfnZTv7e/UNNd9/ZnCXeaQKAAAAAAAAAAAAAAAAACRLqnYA7DPJM67wOqWwcLEo5fm0HypQD4r/AAAAAAAAAAAAAAAAACCZUlUA+Mn8WadK2jEN1+rp7hfLZXbw4wM2eJMUAQAAAAAAAAAAAAAAAIBkSs1Oej+9dtZ6NaY3Ja1XlcH10p3ZzPpNP7XbzaQHAAAAAAAAAAAAAAAAACRXanYArDG7XCkq/ksrk42l+A8AAAAAAAAAAAAAAAAAki8VBYAHXD9zR8l/WdUtldemfgU/gPiJNTuvP4y0AAAAAAAAAAAAAAAAAIDkS8cOgK4rJWXSFlxP1+X+u0193ZGT+1qOtAAAAAAAAAAAAAAAAACA5LOkX+B+18/sYW6PEWDlWVGY15k/yZh9b9qp3f5FSgAAAAAAAAAAAAAAAABAOiR6B8A+kzwjt1E0U6zc3U6g+A8AAAAAAAAAAAAAAAAA0iXRBYCLF37wK5N2oJm+kNemft7CQ/rlTwzs9luCCwAAAAAAAAAAAAAAAADpktgCwL2um7+mubI0Uax+t2bnDS4kDAAAAAAAAAAAAAAAAACQPoktAGyj5UMlrZ/2AHtyL22mhcGRk/tajjQAAAAAAAAAAAAAAAAAgPSxJF5Ur5tmd6xrCN+V1J4gr8QjOXODzPZ+/NRuz5MCAAAAAAAAAAAAAAAAAJBOidwBsC4XnqcKKf6LXF7VhN7Iv7WLKP4DAAAAAAAAAAAAAAAAgHRLXAFgzxtmbuCu/jRNXOzZDp3XH0UcAAAAAAAAAAAAAAAAACDdElcAWB/qEpPaVlKQPTmXMt9r646Z3NdydH0AAAAAAAAAAAAAAAAASDdL0sUccP0HW7v7PyTVEOgmeEFn9lDa/8nTNniKbg8AAAAAAAAAAAAAAAAA6ZesHQDdL1UFFv9FLq9qwhXVgmY+geI/AAAAAAAAAAAAAAAAAKgciSkA7HHDBzu7dDhNEot/rrnchxMGAAAAAAAAAAAAAAAAAKgciSkADMPwIiXskcRR8vKdul4WHD/5jI2W0t0BAAAAAAAAAAAAAAAAoHIkogBw3+tmfVuy3jRH9Ex+weOnrv9XIgEAAAAAAAAAAAAAAAAAlSVIyEVcoAre/S8WLYvWC2t23nAMwQIAAAAAAAAAAAAAAACAylP2orsDrp+5o7u9qiooAIz8Azb9XOGlCmznxwds8CbdHAAAAEiu3qMWtG8wX6OVfI36IFg7CLVmYFb75X8PPbeWyf73x1tuMvNv3g2EZssysqVf/u9cqCXy3HJ3fdKqxj+tybVaPvmcdRcTbQAA8uRu/S6es15dK3X0hvo1MoHaymvaSFKDhe0DWU0QysLgm3NzYP6pwqDe5WHoucUZq/k0yPlnn7fOfXbvORt/LDMnuAD69PHMFlv8vUPYxtcIVNNGuWAtD30NM7VaMZiEa+nr9wIuM/tqvHHZ5xZq+f8OaPaRJAWZMBc0ZBY3NNR9fMUVO3wsMeYAAIB0e+TsW9trediuoS6zRk1NZi25t3ML28qVMVmHr7/WPDQ396/uz2xxThZKUsZzDRboky9eudwtt6TBWi059KoTPibKANKs/AWAN8ya7K6fyQl43pqImbmdNX3gBuz+BwAAAJRQ71EL2rsHGyvQBh6EnQJ5R4VBRzfvJFcXmTpK6ihpLUlrSOoQ533Banz+xT+LJP9Qbh+a+SJ3+9DNF5kHH5qFCySfHeTCD5av8emc6YO6L6dlAQCV6Kjs7I41NQ2bmgebmtmm8nBTyTYyeUdJ67m0nknrqZmv9Jr/vs+/8X++eP2nkuZLWiDZQjdfaKEWynyWPJhpGc3MWG7mxHM3mUuxIJAuw4fP6BTWLO8mCzZ0tw1M4QYu6yjXembWacX44ut+Mb60a3xsyS/1mxmLPpG0WPLFblpsriUmfeyy+eY+291nWyaY7fWa07p1q1nZbPcltCQAAIjbE0PvWmPp8mATV8OGLtvQLNzYXV1NQSd372imjnKtpxX3aBlr7F5rtWsib/kay//3/3wsaYlJi01a4tJiyZbIw3kKfLa7zTGFs3OB5tQ0hHN63jDgI1oRQFKUtQBwvxv+u7158JqkgALAAnij//7F9l02+MHkvpajiwMAAADR6XPd/DWXfWZbubx7IN9EgW3sbhtL2kTSRpLWKcuFxXs/Nc+kOS7NkjRb8v+Y2btu9k5NXat3Hzq3wyJ6BgAgyY7Nzt7YasMdzH0Hd9tJ0rckbS5pzdVNqoV8f2ctmai9pa//hjqTZkqaIbc3LfA3PfS3wkzNW7efv8FMWhcovWz2vTaf6PPNM8psaTnf0mVbmHxLl28uaUNJbfIfJxp7vef5+vxuHqzxU3wu0yy5zzXpHVcww9zfCoLwrUym/YxsdrNl9AQAANASDw2+fe2cZ7YOQttS8q0k7y7ZlpJvqa99l9ro2uer4rxG1jveyJqo8WIKa+Icqz9PY4WGvlTSHH35nanbDMnfUqAZdTWt32ZXQQClVNYCwP2vn3W/pCPyvI8l4E3PNctCD3Z+cmC3f9O9AQAAgML0GLVowyDTsF3gtrVk28i1lcy30ooivyTdVikB91Mfr/hR0N51C98OFPxTQfjGkk8++9dz/DAIACix47NzNvWahj1d2t1cO7lsB0lr51sYU1ihTjMTdWEFgI283iVpsVyvuenVwO3VnIevfarP/jE5u10dPQEoXp8+ntlou39vUSPbUaFv79L2knbUigLizKrFc17EONHYeyLdBXCV67Q87yW+OH4oaabc3pJ8hpn9O2cNr+aWt3519OhtPqHnAABQnbLZbLD9wq22UpDb0Vw7SdpB8h214g+nV1qnFLQ7X8wFgE2dp9ECwCbXXCZfIGmGZG+ZbEYY5v5Ra/7K/tefyh9zAYhc2X6p2v+6mVvK7N+SMi24Nybgzd+rf/k/z3vitA1H0rUBAACA5mWzHvyl/cItg5zvbKadpf/90ykFt1WN3hckRE7SuzL/u0J7Q4H/IxfYq4+d0XEGjzIEAESh300v1dYt6Ppdd33fpT204p9uxc/WHnEB4BeTdfQFgKtTJ+lvgfuLkv5oNfrTxPM2nUNvAZp3TvatzRtyDbuZ2W4u39Vk31ETj+iVJMujALCw3E9kAWBjxwxlesvcXg7lLwfS3+rrl78yatQui+ldAABUnkdOv7dLg3Lf85zvJrPdA2lXlzo0ue5oZt3U6NqnySLAfAsAV3Mez/968y40/OY5Fkp6RdIrgekVhf7Kn7vMn5HNZkN6FoBCle2Xqv2um3Wjmfq3YJwn6C27V5dkb7Rf+PF3+CtfAAAAYPV6jZnd0ax2Dw99D5P28BXFfmum9LYqrfdSiyX9TeZ/9VAv1YS5lx4evv779E4AQEscN+K/W4TKHBC49nfTTyRfI/rZOqYCwK/9n2geM9zi3cbec+n3kj9lmfCZW87bfB49CdUum3225pNct50DhT8OpR+baXdJHQvK/Rh3ASxJAWAe9xOW5w2JSe6ud8z0JzN/NpPJPZfN7szaHwCAFJo05M4NgjCzt9z3krSXZFt8tQzwSHbnK+wxwPkX5zW302B+5ymoAHB15/lU8lfN9H+h+x8alrX548G3/YrdlQFEfD8Ysf1ven995WreldSmBfeIBL1l9+ouC370+KndnqdbAwAAACv0GrNwG3m4p6Q9tWJXoK0r5LaqqXuDNFoo6UV3/cEU/N/6a6/7t4n9rZ4eDADol53dblkm/IkHdoBc+8u15Tdn35ZNgHEXADZ/jtgeA5zv9bjM/+6up83t8aDrgucm9t+FORdVwO2s7L929jDYV9KPJf1A8vbFruzjLwDMb6Gf7+POV/8ZCj2Ht/T1/5H8OffgWSl47rLLvvUf+icAAMnzyNm3tl++rPU+gewASXtL6t5UcV5+BYCrXzsUVgDY1HnyfQxwtAWAqxwnv50GGyS9Yqb/U6jfW12r5w+49cQP6ZkAorrfjMT+139wheTDWnh/SNBbcJ/ubjc/MXCDfnRpAAAAVLNDr5zbuUGZfWS+r1z7Stqggm+tKvl+6jNJL7rp/4JQf2hdu+zFyWdstJQeDgDVoU92/ppta+oPCs1+Zu4H6stHcK62eC6+wphodwFMTAHgyj6W+XSFwSNtffn0a7Ldl9ADUSnOOef1dRpqW+3rgfUw9wMkdW0uh9JeANjyc5S1AHBl77nriUzGHg4CezbLE44AACib3wy5dzvPWQ9Z2EOuH0hq1ey6JMICwBWvKWcBYFPnybcAcDXnKeBRw1+LSSi3v1sQPu5uj36yoNMLfSf3zdFrARR6v1m0fW56Z61MrtV/JevQwvtDgt7c8VzzgiC37bQBm3xElwYAAEA16ZP1VsvXnP9jebCv5Pu6tJPKUo1HAWDMlkn+Bzd7wnLBE1PPWe8Nej8AVJZjsos6ZGqX9wzdf2bSAZLaNjfXJW0XwJQWAH5dncmfdtl9rcK2D1+f7fwpPRNpMyz7xsa5XOaw0HSYSXuYlMlnAR13AWBh56j4AsCvWyJpeuD2SFBbPz2b3fljejUAAPH6zWn37aLAD3e3n8l8y6bXSY0sGrxlxXkFFwD+7+UtK85ryb3iKucpoDgvigLAllxvI+dZJGm6mU/N1Nc+se/E/ovpzUB1K/mvVAdcP2u4SyPzvEck8E3fqx//+Gkb3kl3BgAAQDU4ZPxHa+dyDT0kP1iuHpI6VOGtVbXfS82S7Em38ImwodVT04avzR9DAUAK9ZnkmTZvztrfg8wJcu9pUpt85rp0FQB+7Tq98NVD3EWAX/th6TOXHglc96rrwid5TDCSbEj2rc0zYXi4Sz+TtOvKXb9FxbnF5I3HnZclKADM434i5gLAr7+nXu7PKfCHGxpyky+//DsL6O0AAETj/tPv39VCHWEWHi5p06J3u2vhLoAtKwBs5L/lUQDYkvvF5nYaLPp6V3df2WwBYJ7X+9Xr62X6v8Dt0VwmN/nAawbNopcD1aekv1Ltdft7bVp/Xvu+TF3yvEck8I3H6y+7L9zg+9mshXRnAAAAVKqDxy7aKJfL9TbpYJn2klRbxbdW4n7qG+olf05uD9a00iMPDuk0h4wBgGQ7esTM7iY7wcyOlbRBXrNpEY8BjrsAsPlzJH8XwEZ+vJon9zssyNw88YKN36EHIwmGZN9YN8jVHCnTLyTfvei8LDZvEvQY4IIfd170LoAe8Wf+xjHrZXrMXXfMn183beJEipIBAMjXpNMnbezK/dxcv5C0zcrzd8t2u2tkzo/wMcDJLQDM83obu68s7jHAza/rXKGk35vrniCs/S07AwLVo6S/Uu1//QcnSH5bnvfbBL6paLn2fPy0DV+gKwMAAKDSHDpy1nr1rWr7BG5Hu/QDJabKLhG3V9xPrV4osxcV+sOBhQ8+fHYXihQAICF+ceXcNVTnfTz0X8p8tfN63AWA+c3WXtDsXqEFgF87mT/tFkwMOi94hF0BUWr9+r1Uu2a3NXtYzo6T+UGSWkeWl8XmTYIKAFt+jsQ+Bri5H8EXyPw+ye8YMeLbr5AZAAA0btKQSW09533Nw+Nl+pGkoMn1QIvWSfEWAK54Tb4FgE2dp/DivOILAFdznrgLAL95jmUmTfXAfr1k/sLpfSdn68gKoHKVuABw1muSdszzfpvAN3YMt3unn7bBMXRjAAAAVIo+42a2XZ5rc7CbHy33/SVrxe1VHrifWtnf3HRPzv3+x87uPJcMA4DS+8WI2duGppNNOk7SWs1NWM2O8al+DHDyCwBXvMdbEprZZn5Npja46Ybhm3xET0ecTs++s3EmrO8n6VeSusaSlyoyL/MoACzsHBQANnK21yVNrKnJ3JnNbvcp2QIAwAq/Oe3ebXKZoL9W3IetI8/38bxNrZMaewxwy4rziip2y2MXwJbcK65yngKK86IoAGzJ9Ta30+A3jrH6c3xorvul8Ib9bzz9H2QJUHlK9gvVfjfM+om5nsnjnpPgN+1zy2nr6YM25PntAAAASL1eY+b/QNKJkg6T1D6d9wYUACY40jmZPe2hft1mafjQ5GxnfhwEgBj1u8lrP18491B3P8WkH686dFdrAeDXrtMLXz2UeRfAlU/7qaTba9yuuiG7ybv0fkQlm/Xgk/Df+7qCUyT1lJQpNC+bz4MIigA97rwsQQFgHvcTcRcAFjC+fxSYbm4I7drLLtthJhkEAKhGz2afrZn30bxDTTpF0l7fnE692fm7+ALAptZq+RYANvLfPMLrVSGPAS6sOC+/AsCmzpNvAeDqz2PSc6Hr2tZdFz2ydzbbQPYAlaFkv1AdcP2sKS71yvO+k+A3/u7s46ducDFdGAAAAGm1/7jF69bk6o4NLDxJsm+l/76AAsCURPtzSQ8FplseHtrx9zJzshHV6uDLF402adMoBxrL821BbJ8uLGisWPl6QtMnvxne+Vf0lpb5RXZu57Amd6pk/SR1bbwNiigAXOntSSsAbP4cqX8M8Cqn/eL4OZcmeaARt1yw6b/IBhRqyJCZbbXm0uNkOsPk3RvreGnfBTDuxwAX/LjzoncB9Ig/c97je73JfhuajRsxYvu/klGIyqiz/7qbBRoa/zo2LCpvVntNHt0tb0uvx+U+ZNT3j6DnrN51w36/Ryb0wc3OSS38g5FgpX7T0rlo9e3b+LGCQvpzuLrzeLP92E2PHD/2wF/TW1rmnoH3dKgNak9y84Hm2qSx7tBc8diq/c3zm58jfAxwtAWAjedD/gWAeV5vY/eVcT8G2FsSe5dcsxT4jQpb3bz/jafMJ5sQtef7X3ChmbZv0boibGoe+qovF7YGa/64ha1/wmbWZfnNxe7hY7vdPO6OQuNdU4pG3ffGmd091EF074gW2K7/1tTalUQCAAAAaXTgmPk/CuT9FC4/XKY2iSici4Sr7J/FVFVFgAVqJ+mY0HVM7ysXvqkrF0zM1Le+86FzOywiNKg6pn3d9e3mhpW4R854ChqKuZ6vnS/UQjpK835++cwtPZc5M1R4nGRtkzxh5TtbJ2B2T4uMSUdZqCNOuvj9BygERL5OHf6v9VrX2gDp89MkdSYiaR3r4hjf8zpmrbsfae5HXnj+a3+Ua9Qll+00lR6BYgVBuIEr6PP1fxcqjt05i8shz/OYxeV9kwW/Ib2mif6Us43dvE/+beB5tkRTbe0tf/M3+nzTV1D8XOIrOo8bO0u3wH2D79s08GCQS79yqYO5Nd4rChpeVn1Tqe6PCjtP/h+y8fNEuaYxeYF/XBb78sm0odwuldVf8MQpV08O5Vf2uGHw62QXIuyKP5brJ6ubMwodT7yA/9L0HNVcwhQ2FnghrwhsdjHxLkkBYJDTIFmMf9RddTfvNmxq/26fEwkAAACkRY8JM1oH9WsdY64hkrZv0a0dxWyI39Zyjc1lll/We9SC38p94pRzOv+BsAAxKNOYTrFXvI65ZM6uyvjZntNhimgjnMLbrOxFJxWjyLwJviwE7Jd9//6M7AIeDYymDDnvzQ2sVsMU6peS1iDPmJ8iG7rd9pQ05cLzXn9R7udfMnKnZwgOgEq8cSpVAVNBx1rt2/jCr1i/HvSb7hkLz5X7zz2Peo/Y1xNfNO3qzxNRu5skX3GsaD5P89eVrKLH4uPYyD10a8l+HsiOeWLANQ8HoY/Y98ZBr5BtSMI8t/J7iykcjP59jX+ectzDxV4AuNf499aW2fF05Iga3PTHxwd0e0CnET8AAAAkX48JczrV1NWc4nU+QFIXIoJEMrWR6xiZHdN71MK/m8LxdW0X3zt9UPflBAdYNWHKWWRFAUQy/HzEnL3c/ELJ926u6Wiz8udQbG3Q9GkDmY7OyX/W7+L3r8t55tJbsxt9SPvjS4PP/ef6VhucI6mfu9pYwnKoagv0UlyT0UQb7C6zpy8877VnAwXnZy/b4U9kIFDlY12CBtzqLGBCoe4ffP+2Cu08WXikpEwyFwDVXOAZfxxLsDOiyf3Q0PyQJ0+5+tHAfMQ+1w/+K9kH8jMd1xR7AWDrVjXHSVqTeSESYZALB8uM6AAAACDRDhq/cNsglxvsdfYLlzf5KEC+HEQh4us3voPLbqtduvblvUctuK4+13Dj9HPXX0DEQa4l4/Utx5dLcThq5KzvW5gZ4fKflvVCKqF5v/YZkvnje2RBbiVpSMZyx/e7+P3LWq9Tf+01FNhXtdPPfbdL0Kp+mKST5Wpb6HESmTffSJu07EpaugG1/G1me4fyP1543uvTPAgvGDHi2+xqg+pYi7Msroj1Yun6W1ILmKrb/Wfcv1WYs4vl1re4py5GWSxa/CPLy7jbXZGnjeDRyP87RGIHaZPUK3Tr9eSAqx8ztxH73jDoRbIR8c971VGoF5d4H8vrbjLrT0+NbOV192MDN36JQAAAACCpeo6dt1PPK+f/xnLhP1zWTyr8R720LtoTcT+KKHSRdEltpuY/vUctuOnQUQu3JSQAqtXRl8z+7tGXzp5mYfAnlbv4rwyzddyvrxLrSBqz/KOav/fLvrsf4ag+Q4e+tsbgC9+8KGhV/45cQ1Yu/nPWsBU0NsbRmJEe8yALg79deN6rtw0f/nInWh7F5Y3FkGeJzyGUbXy26PuE0b+S7L7T7ut2/+mTb/Rc8IbJjlQztR3N9hWLuk/GO0Z5ifpjqdY08d8n2jfPYxG1ietAl7/wxMlXP/xk/6u7k5lILivTe5MzR8a6A+B+N36wtyR+JIlGfeg1FxMGAAAAJNFBYxZ8V6YL5N77iz8Xju7+iF/RUV5tJfXLyU/sPWrhbxXkLp1yVpfXCQtQuWM6O1J85aiRs7dRGIyU/JDoy3Ma7xCF73aT7t2x0iyPNususyf6Z9+bZDU1Z9x4/kYfEL3Kls168LHePL7BbYRJ3UinKMY65rNoBvfghNaBHXLh+a+d968335w4eXLfHGEBWCOlNbaNj/nR7ujneZe9Ku+nj9KvpF+f8ut1glathkka6FK7VPXHJl8e/Q6T6Xm8dcs+e5J3RjTTwTL1ePKUq6+tbR2O2PuqIR8zXqPYfMg/t4rL/XjeF933W8WKdQdAc51M543MbU8O7PoeYQAAAECS9By3cLeeY+ZPNflfzf1g8RsT0qr5nhtI3kdh8GrvK+Y/2Pvy+TsTNJAw5Tkmu7HFr0925rpHXzr7agvtdZMfunID0Qbpy6HY2qzAj+Kmvp5r+NfJF783pM8kz9AnKtOQ7Fv7LPYZr5jbrSZ1S1sOVe1Yl+I7unx3vAmldcx1/XZbbf3nCy547XtkLaoR67ryD7ge4bGS0Hbl2+ky/Z7NPltz3+DfnBq0ajVD0jA1W/yX1N3uLN7+Zkk+YPzHKvPOiK0kP6N+uc14YsBVA57NZmvIXHCjk5xriq0AcN9r/ttN0iHVeJMZw0J5eSi7jIQEAABAUvQaN2e7nmPmT1UY/llSz2JX8HyBjFR9U2B2qILgb71GL5zSe9SCXQgJKl16H5fKj0r56neT1x41Yu7A2pqaGZINklSb4NG4EmaUBOZN3EH+xjHbuzRu3X+9/3y/7HvbkIGV47Tsv7sNzs64X66nJO2Y1vmp+C5uaczLVK8piriu7wah/pQ977WJw4f/az2yGBW3FmdZXBHrxdL1t6QWMFW2+wZN/uncjxe8IvdrJa23ujhSLFrseSzCMBX/xyNfHSJtg7RJUkdzXVc/b+1XnxwwYT8yGNF2r8ov1ItLbAWAQSZzopL8JWGqVvc28clTN5hJIAAAAFBuPcct3KDnmPm3eph5TSsK/7DqAp770eqItJmrl2R/6T1q4W97j1qwNX0fQJodc9mcHp8tmPuamU+QtG6lTy7pLWytSLub6ZX+l7w7lN0A0y2bfbZmcHbG4BoP/iX3I/LOGwpUKmhsTGWhYuDSSa2Cun9kz3/9QHoDWp4HFkOepbvYF3GOzzEU5xn9q5zuOm3SZveePvlBD+xpKdg+9r5iUfbJit/tLvK+Hf994krFohZ7Xm9nYfjEkydfdd9jAyd0IqNRflam9yZjjoylAHCvrNfI/CQ6VySWem395YQBAAAA5bTPFR+u1XPs/JHy8C1Jv5RUuh9n+Q4RyWaSDpPsH71GL7rxsMsWrE9IgPSP6dVUvHVMdtaGR1029yF3PebStknpEIUXofCDeVryZqXXt5Hblev96/0/nJR9ZyuimT6nX/DW9z7WBi/JfbykDkSkJHnDfBbP+N5V7o9mz339xqFDX1uDGAGskdIS20QXMBn9amUrHvc7eWimJviHzA6tqP5opWrfKHdGLMW6yiI8T5l2RmzkUkw6srY+fOPJ/uOPYvxGvvngJc7JeN5nkZ+vELEUALbqNLuHXBvSaSPp9tc/0X/TOUQCAAAA5bBX1mt6XTl/UJuahrflGi5XO6KCSr4BK+KWv8bc+zfU2IzeVywc0WPCIn74BgkT4zEpgCheNuvBUSPmDgxrMm/I/RDFHFPaoPw5FFubRfhRXNojsOCV/he/O1DOfnBp0C87u93gi2aMtYz+KNdOSZwzijlm1Y51Kc6+fHe88dX/O3Pz/mu21isXXPDa98h0VDrWdeUfcNPzaNdkFTCl1a8HPfTdOR8t+ovLrjR99V1rZe12Z/GOFZbkA1bDzoir1cnM7n36lPFTnjl53AaM70jmAFDZjxeO6xHAJ1T7TWZEA+enuaBmNAkMAACAcug1bsGP26+54GU3XS2pIxEBWmQNmc6vXepvH3zFgv7ZrAeEBNUoOT8iUj+0OkdcMW+nN2vmvqAVj/vtEG8boKVdNJk/vpelcKudZBP6j3j/6VMvfXcTOklyDc7O2KudPn1d8jPkSsXjm73kacOupMldI7To3N2DUM9fdN7rF2ezz9aQ9Uh13rAsroj1YjpPSuf70l1D71rj3sEPjrUg/LNMO+cXrrQVi0Y5vpVptzvL/wVeNXnSxG5nrl6h7I0nTxl/oos/6kKh3auyC/XiEvkPEfvdMLezmfekV0bSga598pSu84kDAAAASqn3qAXdeo6d92sP/VmXdijVeSk8qLr70UrvN53c7MaX2y36S88rF32fDglyDUlwfPa9NkddOmdUkAtfkmk35rp484C8KTrgP2nI2ev9Ln7vOIKRLGef/e/2p1/01g2S/06uLSLNGyPPyj2gRjfWVcwNSY3kF6ph3T9ksy93o69g9XlgEeVNFd7Uo4B+E0NxXhF/lMI9ZsvcO+TBA2oa1viH5GdITf3hRAly35J6sKTudhfjY7Qtvgb2SM5RcLHoWua6+elTrn7siZOv7MwIjnLd21TbNUVeABh4w88l1dKpih76l3jr8EriAAAAgFL57k1e23PM/NPDjP9LbkeLb5uLWc8TAnzZFb4bhP7Hg0ctvOvA0fO7EhCAkbxcjrhs7vbLa9u+INPZkgrcxSjZO1nl+6Mos3Uq8qyDSXf0v+T9ycdn31ubiJXfwOyM3evaBX8z6eS8K15Qlvmpssa68s1D7vq+6jOvZs9/ZS96IcihuI+JQmNb3uI9o6usxqQhk9b99eDf3uTu013atLTtE29xnhfc3tW8w2SyHqMdWV+xRhdQBwSq+fuTA8btx5iOpjqOF92Ho3qfpfreKvICwNB0PB01gonZddUTJ270IZEAAABAKRw0dt4eXT+Z/6qkq/TFowATei8IJKivtfiW31z6RY0H/+41atHgvbLO48NQjQkT+ZjObmwt02eSZ44aOfecQP43yb9dzmtJd5tV5w/mnudHia3N3H/W2vSXftn3v8PYWx7Z7ButBmVnjAzkz8vVnRxifkrF2GXRtoFLndyDJ7LnvXoyUQZ5hnTNZxZh2yWrgCnJ7hny4HH1nnlLUr+WfvbK2u3O4h0rIt+5MspHI1Pk+DWdLbTHnjp5fHZSn0kZxnyUPy+s5NfkJbqmSAsA973xv7uYR/yIsOp8bNXiXG3dOJIWAAAAcdvvyrlr9Bw7/2pz+z+TfYuIALFay+TjO7T98K8HX7nwe4QDla6wAgh2JYnSL0bM3axmxtzn5H65pFbxtBmi7KLFt0Ecf62emLzsbuZ/6n/xuwPpNKU1MDvjWx+p9kVzHy5X6n+08zz7phfdxVM6t1m52iDx800rl92QPe+1mycMnNGaEQKpGuuMdV1q56cWj8lJLTqqrnuyu4Y+2PnXgx982Fx3SLZe1HFMXrFbKdYFZdrtzvJ/QbIfo122YtGMSRetu96sp588bVQ3Rny0rKtW76N8CxVpAaB5cAI9MZLh+uan+2+xmDgAAAAgTgddOW+fVhb8Xa5BimF38IJWwjRLNd2PVnG/8W97qD/1Hr3w2j5XfLgWHRXkGuJw1Mg5xzUEek3SDyp6nrBk5wF5E7nWJptwcva9X/fLzm5HOOJ3+oVvnhTIX5Jr55LljZFn5R5QoxvrKvqG5MQPO3z+XDb7Mj9ic39dUH/3mPMSlX5PFkNxXuS7qVXnHH7vkId7ZRr0uqSDE32PY0k9WDXsjLjSeSy+OHokh450Z8S9Mg21rz518lX7M6IjRYNcaq4psh/5ekyY0dpcR9GRilZvObuaMAAAACAuh4z/aO2eY+bfamZPStqMiMSFr+fRzP2469TlFv6r9+hFfQgHgKj0GTez7ZGXzb3V3e5wqX30Z0j2Tlb5/ijKbJ2+FZOvaN6jzZb/8cQR77OWjcmwYe+sNfiiNx+Q2US52pI3FZA3FSMZ89AXMd1d9ZnnR5z/Snd6JZwcQkLaq7zFe1a1XWXSgElr/nrwgze7h1MkdSmufcq0210B11X4zpU8IjeaXE5QX7GWncelTqZw2tP9x53OGI8o/tgh+vdZLOcrhcgKAL22zYGS1qGDFu2B6YM2nEUYAAAAEIeeY+cf2JCrf0PSL5W2b0f4PhmJ7GtF3/KvL/dJvUYtmnbYqEUbEnxUeMJEPqZ7wl5fbkePmN8983ntC1/M84mU7jaozh/MPc+P4qVrjW/XhP7SgOy7+zEWR2tI9s3dlrUNX3FZX3KoGse6ypDvjjdFtMFmOQ+ez5772neIOqo2z5C6ezeP8FjF95H0f+F39xkP7lRX2+qvLp0YRRwra7c7i3esiHznykh3u6uq+8Y8rzcj01VPnTLuhmez2RrGZ5Q+L6zk1+QluKboCgDdjkpku6VsoRxIY0lUAAAARK33qAXte46dN1GuRyXxiCIgYUx+YIP8771HLTyOaKCSFFYAwa4khThy5JyfhUH4kkw7lb7NEGUXLb4N4vhr9cTm0Lqh2WOnXPz+qXSiaJyefWtQqOB5eWXvFO559ncvOm1SOrdZudogdfNNZ5k9e/G5r+7NKILEj3XGui7Ji8HCd1OLa/Cu5gKmlvn14IdOsVzwosy3abwNrbR9JcI2SdbjoMu0210Bj4BP9mO0k1Msaq6Tc3PXeuzZwePXZh6o/DmusLdV56N8CxVJAWDvWxe0d6knHbdoTz926oavEgYAAABEqde4BT8OM/6a3E5SCr5t4wvnqrkfpd+sam1Jd/QavXDKgaPnd6XzglxDS+yV9ZqjLpt7ldwmS+qwaptVwWO4LNl5QN7E3nAZl1978sXvXdVnkmeIa2GGDn1tjdMvmvFruV0tV23Z88bIs3LnZXRjXbVs5e4d3Gx69vxXD6MfVfPUZRHlTTR5iUq/J4uhOC/y3dQqdw6fNGzSWvcMfnCyS9fLvE3kbVKK6dOSerCk7owYY9+3+OKY/J0Rfd9wmb/wTL/RWzDCI8GDXCquKZICwOXLlh9qUls6UJFNHYZjiAIAAACi0mfczLYHjZk3zkP/nVTZO3gkF1/Po4B7Q1evjAdv9Bq94CiiAaApR1/+n3W61s573KXTSzxSpeSYzNaVumJq5PWnd/zX+w8NyL6xJhHNz5Ds21vWr9nuBUlHkzdVlzdpXTEn9Zit5TYpe+5rJ9JDyUtyCNXQFwva7a4Cusq9pz+yY93y2pck+1l87VOm3e4KuK7Cd66suMfaJvtYCQi3N/7vt/Gg5sWn+o35ASN4NSr+jx080fleOtE8AtiMHyWKH+z+/vhpGz1JJAAAABCF3lfO23FprvXfTDYksnV/su4FgQT1tVi+YljX3O7tPWrBA4eM/2htGgQVOTiXaUyvlAKII0Yu2CoMW70o6adpu3Yv2evT8uO2VU6bWXnzzKVeobV77uTs250Zm1tm4IVvHRTKX3LXDunt75buvKmw+SnNS5WI2iwj08Tsua8fT+BRDRi7Eny/VbXHitfdgx85Jgz8BUlbxvnZ0/5o15KOFV97TGjyd7tL5hgb2T20FfXZO1oQPPF0/3EHMO5DCc8xL/Ca4s7pon8I7DFhTifJ90nV2iaZ/XKszFgnAwAAoGg9x847NgzsBZm2JRpA6m8W+4Z1udd6XfEhfwGLqrHiyxHL8/UtyqeKidFRl87/gXnuecm2iq8N4ns9ou+inufBvNQXWNpR5Luy4IV+I2bwCKlmDLrwrdMtsEfctVb1zjct7+9eziRP6dhUxfOTyfyW7LmvHclIg0TmjbGuS/KASwFTMj2bfbbm7iEPXyHzeyS1yz8sSX20a3IWE4neGdGS0Peroli0ncwfeerksYczJ1TmHJesexEr03ubEpTx3ZLCmrCvpBo6bFFmr9Vx8X2EAQAAAMU46PKP1+k5dv6DcrtTrnZp/ix84Zyge1n6TRJsbBY+e/Cohef1meQZOjTSlmuM6dE6YuS8/qGFv5PUqeVtUPmP4Ur6ZyBvStlwJkmbB2Hw+1MvmbEdo8aqBg6c0XrgRTPulNlVciV2beFWAXljqc0hxrriZWS6K3v+qz0Zdapt6rIY8sCqJW/Qwq4Q647XFuc4HWUBU+nce+bUjrOWLH5G0rCWfEaPN1wln/fL80d31fF4YF/tIZJaLBplX2lSK5Puf+qUcUcz6KP4nLAK+zxNCyK4tr50uOK4/JrJfberIxIAAAAoVO/R8/a0VstfletQopG8FT8QgRqXLl3+3qKneo5buAHhAKpPNuvBESPnjJX7jZJqy39FlfUYT4pW0rdiav71tkHOM384OfvubkT3K6ef+24XradnTTqWvCHPStdmVfs46Vq5Jl987ms/pfeRZ8lTPY9kpy/G235eyLFS1FXuOfPhb+XC8M9y/aj07VOC3e4smlz3gj+GxdyvC/uQpdntrgzHSkDuNf/UB5OkGnO/+6mTx57EaF4tkvjHDulb1xRVALjfDXM7y31POmNRPq218CbCAAAAgMLumN16Xjl/eBjYc3LbuMruBYEkJWOpTrR3UO+v9h61aF9iDsb0FGRsRPqMm9n2X7VzJ8vtjGodNQt/fdUWnZSvzSxRebauTE+ekn1vdwZcafD5b23rteGL5vp+y9uYHKqksZE1RznawNq4+SOXDH+F39LA3TASMs9Vw7GicfeQRw7wUH+SfPNV+3z8n73CHu0a71hhX10vj9Eu9jwWYeiKOlZg0k3PnDJ2MHMAWtLpvMQ55gXmfZw5XVQBoIX1B0slfERABf7QZ657pw3Y5COSEgAAAPnqMWFRh4PGLXxIppGSaogIUC33oNZR8um9Ry0cLndKYlGRCZPvDyqe/sRu1C+yczsHS2ufleywUp6XIpT0pZLneTBPQK6XyFpu/kT/S97/fjV3rdOzb/0orLE/Sr4pidbSPLCi88YrI4cSddkpnZ/WCAObOuL817Ym65CYvDHWdUkecClgKr+7Bj98qqRHJVsrurAk9dGuyVlMJGZnxIhOm+zHaCe3WPQbB3aN/93JYwcxP1TOHJese5HKerxwcY8AtuAwOmlxwiCYSBQAAACQr96jFmwd1DW8YO4HV+pn5AvnBN3L0m+SKCNpZO/Ri6YcMv6jtengSHquMaYXps/l87esq9Xzkr5XfBtUzmO40voZyJtSNtwqx+wQePjUKZe89+NqHEtOv/Ctw93tCbnWSd18YxWQN1YROcRYV7x1cu7Ts9mXOrLCqYapy8gbxDd2r7LbcrwTTbILmOL4vG53n/FI1syuVcEbIVl0n8eS0R/L80d3VhV57as9RFKLRa3kY4av+Oeq35089pfMHcyblTOWxHNNBRcA7nPTO2tJ/hM6WlH+9uSAbn8jDAAAAMhHz7Hzjwgz/pLJvkU00oKv5xHfkBDW5f7c64pF2xEKoLIceem8PYIw/LOk7sm9ysp6jCc/vqdvxeT5vXYNd59yyiVvf7eaYnr6hW+f6YFNltSGvEF524zHSUvaTPU1k27q91ItPZE8I4eQzL5oBTWjF9IXEthVbup3U+3dQx65010XJad9SrDbnUWT616i9q6s3e7KcKzE5J7l89/MpZue6T+uFyN7Jc9DlsD7xnStawouAAzCVj0ltaLLFtHZTez+BwAAgBbbK+s1Pa+cN1au+yWtWdXB4Ptk4Ou2MvMXD75y4aGEAozpLZfkIpSjLpu3r5s/KWldOkjhbRbvrihGG6QzzzrIg8cHjHh/28pvLLfTsjNGhuZjmt8CtLk2I4fIM9YcxbXBN06895xONdfSGABjfXkHsWrepW31Jg2YtGa7Nbo8KtkvkhTH8he7laLvs9td8s5jEYbOovo8NTJ/4Jn+Y37ELIKocz+e91nJc7rwRwCHweF0oqJ8mmloez9hAAAAQEv0HrWg/ZprLnhIZmcQDaCE8vq+q6w/v67poX7be9SCLI2GlCRMCzPK0pGBETpi5NyeoTRF0hppu3aKViLKIYuyDaw8bZDs34E7eph76rQR729WsV3J3QZd/M54k4YzD0V/TI85L6sqvAmdb0owP/W7+PzXTmfeA+s6NDXgJq+AyUrQp8oz2UwaNmmtZa3bPuGy/fJeD1j0bVK5C4CYj2XJDIeXKI6VVizaiLYym/q7U8ZU1a7u3LNV4zUVpqACwD7jZrY18/2JfVEf5L7pg9ZbQoIDAACgOT1Gz9siDPzPknpW22fnC2TQb/K9Y7aLeo1aeFufrLNjPxKXazy+o3lHXDrvGLk9JKlNHNdZFT/kGnmTziCX+pi2QS4Mnzjxsne7VNrYnM2+0WrgxW/f5/KqLS5KZJ5ZdeUlhUMt+dA+Nnv+awewokz33VeUOVSWwlY2Y03vmspWbtd4G9NL9NnLMR/ce+bUjsvq2vxO8j3i+aO2OLtKNReLRtk+CStytIReVx7niLkNO7jbY0+fNHYr5pFqmzIrrXgw+s9TUAHgkjb2E0nt6GWFC0PdSRQAAADQnINGz/9hJrAXZdqWaKRdAn7W4sv9qmDSCcvbLnry0JFL1iMaQHocMXJefzfdJakmvpnFYpgnKuvRoBStVP4K62uv717boCn9srMr5nvugRNmtP5QrX4r6Ygkr//ybjPWsBU01vE46a/JmPuvs+e8sik9krwhh5C4bxUi6xrJ7l93D/7t+g2hPyfpO9HncMs+e6l2Rmy22C2ipkp2sWiUu91FW5xX8qJHS0peF5wnnS3j054+dSTffVbgGirWua3C10oFFQC66UC6aVH9452nTuv2JwIBAACApvQaO/94C/xpSR2JRqrvu4By+HEuU/dCz9HzuxMKMKY3LinFW0eMnNffXTeowO/qqknhP77zg3n62qwkdssEy+/OZj31uXd89r02+tAeclnPlftmNG1gMbQZOZTSvKmCNUccj8NbbV6ua4FNmjBwRmsaBizuGevjim2iC5jK2FXuHvzb9d1qnpO0XXL6e3mL3WI/hxW21iz0upK3M2IpxowSFIsWFDoreu20Gltarva3k/pkeQpKha4hvMS5H8/74riPblxBX2yY6yA6XhGDptvdMuOeHAAAAI0uGHuOnT/SXbdLxg0sUG55fd+VqFu97oEHzx9y+YLv0ohIaMK0MKMsnRnYQn1Hzj/OXderQn4ppWglohyy0uVlbG2Wlh7tftg8vXdlmnvNkHEz27ZX+IikHuRQaYp9q3asS1Bee8JeX0RMd/2ww2djyF2wrsPqBlwKmOJx7+mPdHGr/Z1kWxUTx8J3U7OU5XxSH0Vr5QmtFRrbyikWTc54bz9eb901b2TO4KaiMq8pf3kXAO53w3+3l7QJsS987gyt4W6SGgAAAKvz3Zu8tueYBXfINZxofLGAJgSg3xSjcxjYswdfuXAfQoEk5FqCviROxFUccdncI+V+qxr9js5os/Q2b4W3mVXWMU1nnHzxe/3T2D/6ZWe3a1iyfIrk+zErJTxvrIJzqFrnm+iifNol577al8ytxDWHJSpvvArWTVW1cF1lN7V4GzPZBUwtd9fQBzvXB8EzLm1TivnUY+8qSS0WtWTErcXnSViRo6V1kLYStuH//njuhKdPHnM280m1TJmVVjwY7efJuwDQ3Nj9rzh/fHrAJu8SBgAAAKysz3Xz1+y2ZMEUmY4lGpUqAT9r8eV+NWrvoab1umIRPyoCSZr3L513qMvulpQpZqYo9JEo0c4TlfV43YrZVYoVVl6vN/mEky95e880fe6BE2a0bq2lD0naJ23rv7zbjDVs6sa6apkzImsP0y3Z4a9uRc8kb8ghJEOUu1Inp3/dMuTxdZWrfVotfOyvl+izJ+bRrhE1lcfVHyM5T4U9RruAz+6RXH7pCya96SNc/vQpYw5h7K6cNVSsc1sFr5WCAj7XgXTPorrFPUQBAAAAK+sxYU6npUv1OzcdQDQq7r4LSIJWZn7fwVcsPJVQgDH9m8rxJWSfy+cfYKb7JdXQ8PG3Wby7orAYibfNSjxXevCb07L/7ZaGmPa76aVafWgPNL7zn8XQBhZDm5FDKc8bFiZ5tUGTedneAp88bsif2hJ7gLG+dONTAgqYSrQUuGvoE2vUqn6aSzvE8dnjPlZy53kr6OVeojjyGO1iz2MRhs6KXjs1ITDpnmcHjP42M0tlrcO9xLkfz/viuI9uJBHyefFB1/9nHbn2oMMVrMFymQcJAwAAAL6xzh4/b/NMQ/BHSbsSDSCh8vq+K7FfywZuurbX6IXn0qBIUMK0MKMs/Rn4hSMvXbCLhT5ZUqtK7QEUrUSUQ1a6vIytzdJX29U1Zw2/HThhRuskX2SfSZ5pNWftuyUdTL6UquNZ6fKmGsNb6vnGktpmtuMnbdteTg6DdR2+PlhVZwFTEOk5b+r3Uq1yy38jaffY1gMWfZuUY9IuVbForMdKZmgT/hhtiymXSzphrRGGwW+eHTx+beYPbioq55ryk9fsmVNmHyXlL5PTGftnpw9afwHJDAAAgC/1GjdnOwv1R7m6y/iatPH7dwCR3U67Lus9akGWSKBcY3RyxvTSf7nUZ8TczUILH5W0Jm1Wcc1bhW1WsTsq7t7wUc345HYGt87/fOcWSUcwA6Uwb6wqcoj7vqKa0AZefO6rexMIlHSsYzPW9C5cLWXX28JjRTkfZLPZoM2ac+5w2QHlmnc89tBXc7FolOdJWJGjpXWQtnKea4twWXiby5nZKnrKpHiwMXkVAIYe/pTbsGJmD59EEAAAAPCl3mPn7+wePCepK9FAFd6Pxn8LRks31QkuOviKhZcRB6B0Dh05az0LbLqkLvmNX3H8AGMxzBPV/f06u+MkuQ0K+WHZTxmQffdnSfycp138zmiTjq/KvOFnvLLfPHjMeclNjiQpkOn2bPbFDvS9yri/9jz7pldXf0fkc2oMBUwWxRq2fH12s0++e4Wko8t3vZao3PcSffTq2e3OYsrleCctj+Tyo/yuIso88UOfPXnsYGYGpGcNFd015VUAaGb70CEKVt8ge4gwAAAAQJIOHLdgl9D9KUkdiUYF3rM1iZ/8kZCeaDq396hFY4gEEL8+42a2rfXaRyRtTTTKM8nn+6Mos3X5V0DlbgM33XzaiPc3S1IMT714xqmShhaUQxZVmxl5U0F5Q5tFPw95nsds5PWbWH2bq4g/d/RpXXehFH2qwgqYYup+d57x6C/ldlYxJ/aKzaEy7nZnCb2uss8PSS0WtQg/lhW9dmrhtY/63cmj92SGSfN8Z0XnVvTvsyLOV5r76BYXAB5ww3ubStqCblnwyPbMM6dtuIg4AAAA4MAx838UePg7mdYjGkCabuui+aogWfzMXlcsGEfjoswJ08K3WWwZGGvGupsta3WnJL58Tkublaq/l/yYZWqD9NYTrJ0Lw/v63fRSbRIuZuDF7xxjbtdUTt6kMYesdHmD+Mc6S3ybnZA9/7XetBhYp3FfVcqYJquAqTh3Dnl0H5du/N91WbRtEu/nqYbd7izefmBRt09SCxPLe6wEj/e1UnDf06eO5PeXFMxxyTpuuv8gouU7AIY1P62a/hDPpf6GBAYAAECvcfP2C8ynS2q/+oUjX5M2hsgAMd2vmg3pNXrh5UQCSR7T45sD4v9yqe/l84a7q0+1tUEi5u1K2MjGomyD9BZZldH3MnPWzZb7Ik69+N193f02sT1Tiuebxrp4SnPIqqzNyjUFuE8cOfzlTmQySpI3zDAVsV4s3eCd7F3a7hr86LZumiypNur8KfSjeFSf3Zr+D6UqdktWUWqZdruz/F/gBTdFHI+Tr5Sb8UYLZjeyXKu7Xc4MV5HzXmU/yrdQLS4A9EA/rZ7bqsiFgeqmEQYAAIDqdtD4efu46xFJ7YgGuB8tDe5cW9gdXOf0HrVwOJEAuRatvpfN29/dLik+pnH8AGMxzBNGHpA3CW2DInZRMZ0zIPvOD8r1mQaMeGtb83CSpFbkjfj5LgE3Dx5zXnKT8w1d6jIBu3VXwP21x1K4wYBYVZ0or34TQ3FeJLuplabP3nr2I+3DQL+RtHZy5hRLV+5HdAovURx5jHZhn90jufzSP0Y7z/j0+N3JY05ljimnIIHXVLnFgy2LtrvJtTeds2AvPnbqZnMJAwAAQPXqNWb+DyzUw5LaEA3wkz8SamTvKxadQRiAaBwxcsFWLt0vKcPIX4zovpjN90dR2qz8K6CEtEHgZrcMGTezbalP3C/7ZscgF0xVUT9gW1HplO9uNeRN+vKGNot+HvI8j9nU683184vPfe2ntAN39Glbd6EUfarCCpgsivO6Zeozt0n6VpQn9grLoViLRSN5ebJ3mIx3fkhWsWhkfaWZHbA93s8y6umTxm7FTJPG+c6Kzq3o32dFnC/+++gWFQAeeO2s7SV1pTsWvNiYShQAAACqV+/x8/b0FY/9XYNoxITvqJHIvpbCn4XMx/QavfB4GhplHZwj+iGgnAUQx2QXdQg994iK3nWiuqS7aKUydrKKrQ3Sv1bbetmSupGlPOGQcTPbtlJmqqQtKjdvKiOHKLhL8XxjKWkz8+smDJzRmpZDmtZpiH4+89S0dfn+2OauM6cPl+lnqz+PJeoR9oXGsbKKRS3efm1Rt081PEbbEtD3I+8I7SwT3japz6QM80m13AcWe9z0foHRogLAhoz2qrr+EKFMpmYKiQsAAFCdDrxy7vfCUI9JWrPla1y+VgVQvrtsc93Sa/SiwwkF4pacgonov1yqa5W7XbJtqr0NErGiqYQ/ErAo2yAtRVYJbDizQSV7FLC71S9Zfruk3ZktkjbWWQxdPKU5ZGlps4qw9UftPzubbEbsecMfV1bEerF0g3eyjnXHGdN/6u6XlKaAyQr6Tx7VZ7em/0Opit2SVZRapt3uLP8XlOox2uVfH1mSzrVnx47/4aknFTfvVe6jfAvVogJAc/9B1d5WFe/t6Sev/0/CAAAAUH0OHD//20Fgj0nqQDSiwR1IRd2P0m+SK2Pu9/a6fOFPCAXItfz97PJ5AyQdVo5B26M+Jj8Cx54H5E35Fz55tEHgslsGToh/F66BF789XNIR5E0jr2dsKnsORTfW0Zh5hP+87PBXeXxdqu+v4yjcIIeqrBPl0W9iKM6LfDe16Nw28LFOUni3pEzS2iS1+WrpimP5d0aMcX1s8TVwWotFCzmeu0Y81W/cDsw1qR9QuKYmBC07j/2ATllwGz1KEAAAAKpPrzELtwlCf0rSukQDq8dP/ki0Vgo0+dBRC7clFEDL9bli7g7mNkbSar+3q47isGTvZJXvj6LM1ulbMcX8GLGtcx9lhsZ5itMufruHy0bElkMWVRsYeUPeMA9FeMwWtEFrCzSB3k2epTOHEF8fSUkBU0uvt6B1iltQ63dJWj/Ofs9ud4Vdlxf8MdI2FqV8d00rQV+xlvRJizMurYMgd/tL/W6qZcZJ03xX+B8hxfc+S+yar9kCwH2u/8/mkrrRDQscx3Lh40QBAACguvQct3ADt9zjkjoSjVIuvgkBktjXPM0fc92c9NiBo+d3pdFR8sE5ojG9lD/M9srObqfQ7pfUlnZPR5ulYzFildNmlvaZ8Yvrd503IPv2lnEce0D27S3d7ddq6R/uV0TeVGcOsVto+rpdQtps/+z5r/2MRgOQ/Hm4dH9sc/sZ086UdECLzxP7I+yrYbe7aD+jx96tk7rbnUXQ39Jz31jeNfr/zvfdJbZkqMC8lsBrimKMavaLhIxnfkC7FTzoLm1fb38gsQAAAKrHQZd/vI4897ikTYgGgAqwaY2CR/tk569JKBCHwn5MT2aBSOtWmask+1aUx6ycNkOUXbT4Nojjr9Wr6i8x2krBdVEfdED2jTUD2UOS1iFvkj7WWTR5YxWQQ5aWNquc+ck8vCKbfaMVWYrY8sYqL28qaTFY+G5q+b2wVAVMxR7r1jOm7mSyy5S06807j6y0fUXl6CulmOfLtDNiAY+AT1bcio9jaYpFI7pu0/nPnDqG324q4abC4uxjVqb3Fqf5vyQM/AeVeZtUgm5q9ofJZ2y0lEgAAABUhz7jZra1VsunSNq++MUk62zuQJJ9f02/qaqk++7ytjapzyTPEAyQa6vXd+S8Q0x2UhIG7fwLIKJ/DFe1z3UUSSa54SyqNtvvlOy7vaO9sjY3eRT3EdUy3xh5Vu4cim6sM9osvzbYwhoaTiEOaU07iyhvoslLVObYHeujXYv4o5SoTcpOahVYcIekVlHEsVS73aXqHseSerDyHqssxXsW32dPa7FoEY91bWc5v5r5phLuTSrxmopT0+wrQv2QR2kVOHi4P0EUAAAAqsNeWa9Z6vPvl/QDooEW+lTyeZLmS7bQzRaYhwvc9Km5fSrTpxb6YkmfmAUNX91n5JbmgmCZma2dCVfcrYWeW8tkgSS5qYOZZdzVTq513HzdwG0dN60j93Vlto6kdSSt26J7QkCSZD2WvbvwSklnEAvgm/pkF6/rWn7D6lNHq3wr7crvK8Z8X5+QMUPRf70f3TGrow0qS6La7IuuaNKYPtk3Hp+c3a6u2EMOuPjt/nIdXbIciuzwjR+IPCNvmIfyP2aL28B1QTb7yp3Z7M4f09PJs/TkEFoS48L6SP7tVaq+uPrzNHO9Lfw4ny1Z83xJ35Y8os/T/InLG7fo8/Sr80SZ86seq8nP0+Sp87uu8o+x8cYx9mM18bLI+kozb19xnqZeFFlcDn725NE9977x7EeZj9Kwhvqq3QvN8+jf13RfLNd41OSPPT0mzOkUWsPWdL/CZDIZCgABAACqRPsO869zV28iUWbJ+o66QdJ7kv1THr4t2X/c7P1MJvd+XU3tf6YPWm9JOS+uzyTPfPreh+vXWsMmbsEmCm0jBeHGcttY8k1ltqlcPPY1kr5WGT+nmtmQ3qMWvjZlWMc76QAoyeAc0Zge9w+zYau6qwKpK+0cnTzaYJ5cb3tgc8x9tsvmyX2OzJYE7ovN7aN6yy1RTauclks1reoXN1gulKQ2y9uss+IQyxRmgox7poN72EEZ6+DyDhbaWhb42u7W2d27mamr5N0kW19Sm9IuRpL/I3yL2+yLj1IhhUbdO6rNaZLGFXOQAdn3vm0eXpXgPCvxaibROfSxpHfNNctNcyTNNfkCKZgfBp6TfIlLdcrZZzUKl1mmdmlQt/yzMPS6ZUFNmzatatp+daPQ0C7MZdqa59aywNaSq73JO7iCtWXe2VwbyNRZ7l0l6yqpHUWS5e92yckbX0/1NlzSMBoPQHLn4ZYdq5Cx8o4zH/2uXMPzudJvnCfG5XXzBUzRxLH8xaKrHGupXO/K/AOT5rk0z2VzAoWLQmlJ4PZJzuyjQFpiGeVWHDxcumx5sEwy1Vpd60zrVu3+d3TPtbYw065BvraF3t4Cb++htw9WrJs6u6zTivszdf7in05Nf+wV15u8YtHi+so3z5O24u1SX+8qf3hx9Z+GjHtmj/Fn8ERP5rWKuaYmCwDDmtxu4o9RCjVr+snr/5OEAgAAqHwHjZt3prv6EYmqNl/S3yS9bK7Xchb+q91nXd6anLW6pF7w5L6WkzTri3/+uMoL3O2gK+ZvlgmC7SXbLpTvaGbbSb6NpFqavGrd1GvUojenDlvvRUKBqBT2Y3oyCkT6XLbgIJf/IspjVm6bFXW69116XbK/Bwpfz5lm1Ne3entytvOnRXyMjwp94/HZ97oqaN3dzbc09y3d1F2yb0m+teLcXfdr3an4Nojjr9Wrb7cgk10wcOSMu685t/uCQt4/MDujQ07hJK2mqJQd9Mo6xv3XpDfc9He5/UOuf7dqCN+9/PJtF5Xrms499+9d6jI1m2cUbuEebBHIt/BA28q1naS2ZU6ExKR+NeWNSYMuPe/l68+/7Dv/IWsRed60aBcolGvArbQCpnxls8/WhEuW3mwFr7tLVOSYdx5Ff12x9BXXTJnekPnfFfo/FdjbDTl796hrj5pdzux4bOCE1p97+80yCjbzwDc3980l21zStyRtISmT/7iYR5s0+9I8d0Ys4/qo0P5Y6E5p5VuY2ubLluaGS7qQ+SU5c1xhb4urjxVz3PLcJDU5MZr7rm7xDRsVvmB+jigAAABUvl5j5h3irtHx3PP4FzcvSNgdSINkf5OHzyvQ84HV/O2RM9ebWXn33ObTpHe14p8pX/7rfjd57QdLPto6UMP35MEPJN9TUnf6TdVobfIHe45buOujZ3T8gHCgmnOtzxUfruVhw01lGKAV9aOpXCaL4DFcEfnc5S9K9qfA7YVluYYXJ2c3+jBJbX9HdrO5kuZK+r+v//vjs++1ydVkts+47Syzb8v1Pcm/rRb82MQcVcrOF80uKl+8fu2GuuBcSUMKuZJQwQ2WknVUIucbW3HLVOT8tFTSizJ7wc3/nKur//PVI3eYl7TPOnLFNc2T9MI35qI+ntls6ze3DILcju62o8t2Mfn3Ja1VihyKruAuyt2NqkabBgsulfQLQpG2qSuOR1oW/2g8VMj6Z5XdlmModivij1Ki+Owbf7JsoEk7xxHH0hQwRXis+O/TFsrsz+7+58DtzzWZpX859KoTPk5i1hx4zaDlkv79xT/fcPvxt7fpsIZ/KxME2yv07RXoO3LtKqlD9H0lxu9X/neZKSkWLUHcInis69m/7z/67h/fdPYM5h7m3ErQ9A6A0q4sEgvsJu6/JwoAAACVrdf4Bd/xMLxHUkA0Kloo6W/mesLMf79U/sKTZ3X9rFqDMbG/1Uv6xxf/3CpJvS+b10U1mT1d/kOZ9pD0XeXxl7VInfWDBj20V/a9Hz2X3WwZ4UDVTg65+tFmtkGzL1zNd4nVsUNRi79EdV8xzz4VKHh64Vqf/HH6oO7L09gn7lgxJr70xT+SpF+OWtA+rFu2p8l+4PIfSdpd7KRbkETlzde6t8lOHnDp2+OuP3/LvP4gZMDF7xwj19ER5FChFx777xwJHetCyf9qsicV+O/WVJsXsylez0yebDlJb37xz2RJymY9qNO/vhXmbA+X72nSTyRtWLnzTZlyKKZj5tMG5jr6kgteH33hiB3/zizB/JSOHEJLYlz+3bpKkSOF9a+bz35sQ2vwi1d3rLQWMBV3nuLzdKVi0Y/N9Ht3/527/e6ICUe8YXn9uUUynXDHCcskvfzFP5KkSX0mZVp1+exbZtrd3b4vhXtKtlWyxs4yHKsUO8A2cynNP/Uh0vmpdS6wKyQdzpxU+nkvvz5V/B87RP++5K2Vmt4B0LQrnbDgvvscQQAAAKhcPUYt2tDDhqmS1iAaib6PLNQiyaa76fFcXcOT089dfwGBbdyU87rMk/TgF//o0JFL1qvPLD/ATL0k7S9pbaJUYfswuHbt0LbDBInHnyMVY3rkGXv4pQt2MfMTKzTDS6FB0nNyezhjDQ/fdf5GFbuj6G3DOn0i6fEv/lG/K95Zq76+9b6hdKDJe0jqWnUz3So706ReG28ILpR0UkvfcHL2vU3Nw+vStjqJ/3F1sR1zmaQnXJqaa6h/NIk7/EUpm7VQX/3BzkRJOjf7z+095/u5bH+tKEZuw1RUWLdLWLFX4GF4nqQjaUAAyZyHo53Ta+r9apm1T/q9ZvMFTNFcbETFou+4+yOBB1M0157vO7lv7sv/cGQFTy9ffM6/f/HPzZL08IDbNlKgfaT//dO5mA5Uqsdol/6+KrljREHncx367Cljd9/7hjNfZPxnXivd/XY819RoAeB+17y/maROtFtBZj1x6kZvk0gAAACVab8r566RsYapkroRjYoyR9JDHoQPfvpJl98/l7UGQlKYh87tsEjSryX9ut9NXjtnyaIfyr2nTL3k2pLvDiqFn9T7ioV/mHJOx3vo9Sh1wuT7g0qkX7y7W3DFgmvcq3sH4IIKINxekPTrMOcP3JfttrAa4zbxnC0WS/qNpN/I3Y69bNauQehHyaxv02vLVR+5VnybNX2wUu0+UyEj3PH9R7wz+qYLtmj20VF9Jnkm+Oe7d+l/j2iNOM+YcL5UL9dTZrq/LggeuSbbfUk1B2Nk9ltfFgSOGzr0tTVq2tX2lHsfSQdKaltJ6+IqzJs+2eGvZ7OX7/hv0h6R5k0pdoFCwQNu8na7i7+A6bahj/1EoQ6Lpq+XqIAp79OUrLDqHTPd66FPOnLCkf8gr1Y45PpfzpR0u6TbXW5TBt76bVNwSOh+mEnbx9F8pXqMdvl3Fk30faK5h1dI2ossSMYcl6x7kXR9x9FoAaDV1Owq90jSufq6pfH4XwAAgErlbq3GLbhV8m+X6PZTctbZMd6BfGRuD0jhPd/5vPMLX+yWgQh98cjg333xzxm9Ry3YJQz8OHM7WtK6Ke03+OoG+MaDxyx6+ZGh6/2TYKCYXEtTbvYZueA4N+2eT6KUY3es/NvAZPF8qTnfXbdmanK33TOcP5j9ZjOa3yX9RdJfslk/81374MeZjB8tV19JHZjTyptDeY5dNZmcLpT0i+be0/lf754t6YckQETzjWnlB9P926VbGuqDu665vDu7eK/GmDE7fSbpAUkPfFUMqJ9rxa6kmbhziMLWyAVBJjyvJeMPkjR15ZdD5E1lyUkt+EuiItYqq+y2HG/xQjwFTN+UzWYDfRKMlcKokzGPzxNtcZ7LS/g4VUnShya7J5Tde9TVP/szmdhcWM11jV6R9Iqki6YOur17GPqhkveRtEvZ7kH+d4joi0WT9XjrYo7Xstis9L4f/+6UKw/6yQ1nTaP3V+P3BnHNk6UvHmy8ANB9V6eXFDjIhBQAAgAAVKhe4+af6dIRRCLVGmR63KU7c60WT50+qPtySZpCXEpiyrBOL0l6qceEGUNrlnXoKQXHSerR1P0pEm0Nz/mk/a6c+70nz+r6GeFApetzxYdredhwRd5vXO1TZlL2Q26+31u6/dECu/7D9p/89su5Fo374o8QnpX07IDs/CHLgrqj3fxkSTsTncKVNs/syFOyb110Q3ardxt7xcnZt7eX66L4Ei/PY5bg94gStUG9mX4r03Vjs1s/T89vua8XA5533psbNAS5E1z+y0DarPTzUyoeJ12SxMk7b1xHZs/528XZK75LoX1VzDeV1d+RthgXtiv16vt8yw+y0eLvnSBr6o+xk7ozYinGlmav94+STVy6+NNJJ9xxwjJyrjC9JpwwQ9JoSaMfHnjbtyQdKw9/brIN4s3rCItFSzIslWoXy+jHTne/PJvNTs9ms2wQUMIOlt94+tV7k/PHDsmaxxv9gSWUduWvQwodHcI/EQQAAIDK03Ps3J+6dAWRSN195Jdmm/xmhcHEKcM6zSZI5fVFMchvJf2292XzuoQ1wbGBaZBLG1bwzaIqdB+G7drkaq6XdBw9GyUc00uTsabWP7t8fp///buw/mDJulRVhucndNkjCuzK+87t8gLhKMz12c6fSpooaeIJl8z8nkynS+qrFu/MlYKZbpWdaVI4k646NtWYMmdJOmV1L89mn62ZL7tdUus0r06K/QE/4sH/Q0kTa4LgutHZ7rMYPYpz2WVbfyDp0mzWR9aFb+zrbkMl7cOaI668iTSHaoJMZrikX9GTgWr+9iC5u93lfyzf5vYzpvf52r8Y4XGsOWK811wR2/jj2Egb1rl0fxCG44685sjXyKhoHXLNL/8p6ZxJfSad17brJz8NQ51k5odoNbU3SXqMdhQdPrKdRb/x9lWPFe993+qv3WQ7/GhOu59LuoteXrkL/UL7Vjzvi34SWv253G3/G2Z9KGntKA5XllVR+Sz+/oIN1uXRYQAAAJXlwDGzNwks85KkjqVf31JOUNAdyFf3Bc+56bpu7Ts98sXjaJFQ/W7y2jkfLzpSgZ8p105l6Tex34NWdD4fP2VYxzvpyelx8BWLXpHr26XNNS92TF/NezyGDPSCMtaaOp4XPyJYnoNP/sf3vMa7rx0/59I9YZAb+cC5G75FdkXvuBH/3SIwO1vux0lq/fUN3IrPTY+4H7UwL/P6DB5R3jT/ufM6vq+Sl8saajObTzxv0zkrv/SUi98Zbq6R+beZR/iZV/PZPaqYesR9qMljzpfbmOVB/Q3XZ7f7lBEiPudm3/i2N2ioTH0l1Tabl56AvGx5P1r96z0BeVlY3tSHOd8qe8XO79Nzo3flOX8+NLTgwbza2ItcdxWUBzHMl17Q+B4OGbV7hp6zetcO+8ORQWj3NT/2eQH3K97IOssL6Ive9H2I5zPmeovWD9bEOZpfZ3qL17rW7H2aF5Bj3vi62POdSzyve0D7Kk8XS7oxE/g1fcf3/YBsK52HB9y2URD4AMlPkmu9vNswn/zxlqwdvKB8X/16yPNcYzXft62Zc7TsvjK/fGzhdz7/WVbbeusDrxnEUwwi8nz/i56R9JP81r0FtrsX3O4t6jP53sO07L5hpViYrt7tpisHFxrv1e4AeMCN72/iqlk7/8Pxt84m/zPFfwAAAJWlz7iZbZd65kGVo/hPkswpAsz/DiQ06UG3YPTUoR3/SqTS4YsCzbvlfk+vKz/cV8oNlWzfEvYbFBfYCb2u/PgPU89a+z2CgUJyrbJzMx2PZCugzUJzTQoUZu+5YIM36fXxufOCjd+R1P/YS2dekgl1tuQnS2pVPXNacnNopTZoU1PfcIaks77+mlMvmbGdhyse/cs6pCjz5bris6D9TRMv7vY54YjfyOx2r0r6+TnZf51vDeGFMh2r/+1GWngOsUaIRa0FdoakQYQiDjWS8vzpr9kUyS+H4s4b8iyJ90pFrFVW2W053m3Vo+8/ee12F3kcS7UzYlSPdnXTJwptQk0mHNd3fN8PybDSO+T6X86UNHzSkEmXtK1bcoxLwyRtGUsf+t8hot9hMlmPty7meC2LzWquY5PW9cuPlXQzvbravjeIa54s7WNNgtV29FxmJzpHwXi8CQAAQIVZ6rXXSvoOkUgDr5N8oofaZspZnftQ/JfWe3XzqWev9+TUszvvl5PvLNlvlfevLSh9u6mDhfV395nk7PQArD5HVp218p3lYn59s1/B2zf+v8+EYfCdey9Y/yiK/0rnrvM3+uD2Czc6PTR9S6YHVO5noaRhdRh73qycJHbSL0f9u/2X/yab9cDDzM0q+NG/cfwEZ/EePvo2+NRMF9cu9S3HX7L1+IlZiv9K7Yrstu9fful2v1Qmt71Jk9Xsni0RTpZVc8zi88ZMx2ezL3agx1bDfFNZ/R2Wzuu1KPq8RRgaizC3rEw5nPd5lprZqPr6zGZHT/jZ+RT/lV/f8X2X9rruxFuWzV9rG3P/uaR/RdEfvUxpXv4xzUo+dpp09qQ+k/hus4QdrNA9kT2hn6ecgtX/W6MAsPBJ+EWiAAAAUDl6jpl3jGS/JBKJVy/plpxyW00d2qX/o2d3nkFIKsNjZ3d+derZHX8WWmYnSQ8o9YWAlV6nYXsuf3/RcHouou9a6cjYKqnEelOy3veev/4+D1zY5TU6Z3ncecHG79x+wcZHuvQ9uZ5P80yX6jxb/di0VutlrY798n/M07v9JP9+Ja1OontIa3PxtZyb3xTW1245Lrt1dvTobT4h+8vr8uyO/x45Yru+rmBXVepmCFbKvIk8h9oH9a35/gKoEIWteSzC85SqiKfMN4cWdxvG8tldpnssqNn6qPGHn3PcdYctImOSpe/kvrle1/f79cudPtg+NOtr8n8mY8ywCM9jEeaeFfh5Ykn8LTut958+9OLKXeh7rDmW7/uinYSCRv79jjR+YW23vK6BAkAAAIAKceDYBVvJdAORSLScue7KhL7t1KGdT3psaLf/EJLKNO2sdf8x9exORwZBsIOkeyXlEvbdAf53Z6wLe12+cFcCgdIljOXRPVFElD836Zz2nbrucN/5XacSkWS448KN/3rbhRv9SG4nSvowjhzyNA0HSckX94FytwHZ97qadHnxU2u8r0/ooPOCy3a7KrvNyVeP3Hwe2Z4sV4zY9m+Xj/jWnib/lWQLkpjXVVzEf1o26wG9FEnMM0S5DqrK3e5iOE+JChMt0rP80Uy7HT3+Z784atwhM0mmZMtms+HB1544eY1Os3dyt5MlzWu8T8bfH8tfWJya+e0cl/ONb3onySq5plU1dhOwU1HpUL2xf/u5IZt9TEICAACk317Z99oEHj4gqX0y7i/4WnU1dx5PhUG485SzOh/38Nld3iEi1eGRoev9c+rZnY4J3XaQNLWI/oP41Fqgu3tlZ7cjFEjvTmDV+whCX/2/fCwMtN29560/amJ/q6dnJ4yZ33bRRrfWh3XbyuzuZMyB1ZVDq4np1gMufmd/Vzhe0tqsQ/JqkkUynTA+233Pq7LdXyYgiW4sHzlih9u8Pre1zG/Kt2uzy25s7bJFpuH1nsQhIXNbmX8rjiTPKH9IX79b6a2lLaqrhgImK0GervYcH0o66cirDv/hUeN/9hK5kS57Z7MNva8/8aZwadBdCi6V9Hk06ZHSR4gn/ly+07OnjDmQnpvG7lXdxYOrFAD2vnVBe0mb0zsKwhcSAAAAFWLN9u3GyPRtIpFI/3a3ntOGdt7vsTO6/p1wVKdpwzr+a+rZnXqb6ycm/Y2IJM7W1rZ2BGEAohd/wcQ3vphcZLKj7jt//YPuH77++0Q/2e7Objn/tgs2OtY87KlGdpYgb+LKm9XlUHCdSUdG8wli/sEgKb+RmD1Qo+BbV2W3uoO/gEqPK67Y8aPLL9nhZJnvL2lmMjtkdVQwfZk07j6InpmWNrOC2pgcqs71SbLa0SI8pKW2r3qJrtelu2tyuW2OvurwW4w1UqodfNuvPul13YkXqMa3lXxqssaMlXYWtXj7tkefJxHmsUnuw+mx1XATGtU1JePzrFIAWFe/fHs1vjMgmm5UCgABAAAqQK+x8w6XdCqRSJxP3G3InPaddpx2VqdphAOSNGVYp2e/83nH3czsF5L+S0QSdY98+sFXLvwecUB0XSodl+l5foYE/3oztaE2s/2953W9n86XLrdetOm0+rBuR8keTcs1p3onsEbHJk/4H9lbDG1ghY6Nc9zs4Kuy3Y8ck91yPlmcTiMv2eGpXN2yHeS6g4VJoWNXcXn5NT/Jnvva9vTK5M9nQHNjSmXtdmeFfR4rVy4mojBxjrv1Ouaqw4/te03fBeRJ5eh1df//9rquf29zO1zSB1H1oVIVikf2GG1r+ro81s/S7Hv3fKb/mB/RW5O4hrIixnsrap6I533RzTerFPqFHm5L9yp4jKAAEAAAIOV6jlu4gUsTiUTSltp6MJfLfGvaWZ2u+huPHsRKslkLp5zV8Z42Ncu2MdfFkpaXo5PG/1VB6mQ81K19st6KXooiEibyY/LIwWZ9JtMv7ztv/d6Tz+48l/6aTit2A9ywt5sGtGxetPLkDRsKMXaZP5KR73h1tvsUWjn9Ro3aZfHIy7Y/wdyPlPRJavPMUp9nZgoH0CORxPkJUa6DLMI2sMS0dVkKmCy+Ri14NzXX/bWW2/7nVx/2KMlSuXpef9KD4dLMtjJdu6K7VMNjtNMjsHAwvTS1k2SVXNNKfXbVTLRtKmK5V47YtwopAAQAAEgzd5PnbpO0bjLvearva1WX3ne3nlOHdj58+rD1ZtFJ0ZTJZ2y0dMqwTllz7STp2RTcuVaD7Za1WXgeYajy6TVhr89j4q3GY75uFu5y37nr307PrQBmfvsFG99ggf1IK+0qUZo5sLpyiOLivMP+mbv3uyq79SFjs1svJGEry2WX7fCA58LdXHojTWuKypoC7KhxQ/7Ult6YhnkoBWtxCvbT2++sHP2NAqYiz/OJmx9zzNWHH9V3fN8P6f+V7+DbfvVJr2v7DVSg/dSi3QBX7tJpG6QtNedyqdezJ47akF6atu5VvcWDwar/wrehVxTk/SdO3IhJGAAAIMV6jlswQNJ+RCIR3OQTMznjcb/I25Rhnd6celbHn5rb8ZL4QbnMzOycg6/4cAciAUQ4Scbyer+xTf3S7913brd/E+HKcuv5G/0lDHO7mPR/5E18r19p9otjRo15wi7p6uAty9n3rr5k65vJ0Mp1+eU7/rt+We57ku7NP88s7Z08CWPd2p+0W+MQemISboiaazMrtI0rax5ifVKi88RQnGdJ619W0sT2KK/X7RWF4Xd/Pv7we8mO6tPzmn5P17QKdpR8UvnGjJV2FrV4c9EjzutoH89qklTjNepH76yIm9ASXFP5P0+wmoUmBYCFDQuvEgMAAID0OnDsgq0kH00kEmGWy3tMHdql/5RhnT4hHCjsftt8yrCOd9Y0tN7G5HcRkLJq5UF4azbrAaFA8bmdjsv0PD9DmXco+lxmx95/3vqn3JHdbBmdrDLdkd1sbqbL/J+a/JZU5o0SlzepHJuau/Bo2sCaeb09nDPtOn5E9zfIzMo3ZsxOn428dLufS5ZVRW7IF8duUsXl5TeP5CfQC5M/nwHNjSnl3+0u2uI8L83HKdmjkaM6lrtdX7fOx3scM+FnM8iF6nXA+BM/7HndyUe4+3GSPiukP5blMdqRpYYVvXaKPsftpEl9sq3onUlbQxVTiG1FzRPxvC+a+eYbX773mDCjtaTN6FoFNJbZP4gCAABAOu2V9ZqMhXdJakc0ys3ursnU7jBtaJcniAWi8NC5HRZNObvzcVL4M8kXxdt9S/FVQVpvmrXry20X8hezKDRhIj8mjxD8n3c8Y3vcf26Xu+mTlW9i/13qb71wk5PkfnEhORRb3rChUHWMXaacuZ971cVbHnZNtvsSWrOq5nwfeel2F8t0vKS61OSZpTDPVvXT7LCXNqYPImnzEzIRroMswjawxLR1WQqYIluTWr5zy1KTH/vzqw899YTsCfxBFiRJva4/+S4zfV+uGXHkdaU9RjtmXTut2+5QemV8c0u6vixI9hcY3ygADINWW0qqqZjlXgljH4TGXywCAACkVPsO88911/fScb9UmV+rmrTY3I55dGinYx8ess7H9EpEberZXX5rbjua2RMJu3OtGi67rNeYJR2JRLW2f7Jen9cMlYpjFmRaECzf9YFzurxGD60ut120SdbMT3YpV5JVXhUdk+LiRi1UqB5XXbL15RV7Q4NmjRyx/V0KdIBki8mzkgmCoOZYel/FruVKmzcU7Ke331k5+lv8O+dVRAGT6b1MEOx5zFWH8wdZWMVB1/b/e+sG7SrZI8136bQN0paqc7n5AHpk2rpXdRYPfvPxO5mAx/8WKMzk2AEQAAAghQ4cN3cHd51HJMrqT/Jw56lndbqXUCBOU4Z1mj1l6Ho9zG2gpKVEpLRMWtdyy68gEkA0fOUMa/nrQ8my29R36X3v8E0+IpLV6dYLNrlJbn2Ugt244sub6F+vPPMyGceMfQXwkizz3asv2eopMg8jL9n+2dB8X0kfNZ9n5FA0H9mPdzmlWwm4GWp6vsmviZz+XtXrk+LPE0NxnpUgUdKW2M17Ilfnux417uBXyAI0Zt+J/RcfdN1Jh5r8gi/T2EvUtz2Srh7lzqJRPgK5pe/78pz2o2dPvnJ7emQix1LuGb7mGwWAHjoFgIWpX2u9T94iDAAAAOnSZ5JnArdbJLUiGmXhkq749NNOP556Vtf3CAdKc/9uPmVYx2tDy+xmLu7jSt8AJ/QatWh34oBqmeQaT4U8Xx+dxYF5r/vP63JxNmshrVTdbrtoo4dkOkJSfSryRmXLmxZOcamdm4v6DE3+UGaattTW+PHV2S3+S8bhS1eM2P6vodlPJS2qkPVtDGOdRTc2mm1x2Xl//yE9rzgNaZ6fmOwqIsbl3+0u2rb32D9OUh+NbJLk5j6y1Qf1Bx133WGL6PNovteYH3TdyZdKdrRky6PLsYgfox1jmnkJPkvznzU8id6YtO8ErOi1V/Tvs7KuEYNv3gcEW9ClChqR3prcd7s64gAAAJAuS2fOP13SbkSiLD52s0MeHdp5+HNZayAcKLVpZ637j/q2wa6SHo729jCarwoqWGDy6/pM8gy9EAV/QWvRHLMKHyE422Q/uvfc9R+j7+FLt16w8cNmdqRaWAQYW95QTxCbso11ptvX0QeHTMx2+5xWwMquGLHdKwr9J5ItSHTeWInzJiY5D/vS65C0+QbFFeCv7liemraOcheviAuYLPa4feLSYcdcfdh5fSf3zZEHyEfP6/rd7659lPcfUcT/SO7YxsdSj8dNv+7IZ7PZGnpiGto07muyxMYpWGnq2Yy+VNCU/QZJCwAAkC4HjZ+3uaRL0rnGTf3Xqq8FgXaddmanKfRElNP0QestmXpWx8Pkdq4kvngtne8sf28hfzWLZiWnQK8SHkFob1rge953XpfX6VlY2S0XbPSgmR8tqSE9/b1yKgYrsRjZTZdfne3+q2x2b/7QB40aOXKH1xXaAZItJm9iXgVIh2WzHtDrqnseiiRvKNivgi6b1EIhS1X+NHK98yzwvX9x1aEP0yFRqF7X93/eFOwh6d1i86T8RcOlzOtIztXZ57Tbj16YkjWXJXXhEu81rbzg37zc02FKvUniAQAApIi7WaiJktYgGCW/vZlsnzbsMeWMzm8TDSSjU5pPGdbxcjM7QNJCAlKywF/cY8KiDsShyqZfQhBzTBv9EvHFoD73g/uHr/8+EUNjbrlgk9+4dFJ1p2o0j9xrYV5WqtDdBk3Idj+3Ev5qCfEbOfJbL7vlDnbZ0nzyMo5cr3Dr19T//Qf0uEROM1+bP+Io3KBir7LulRL0uM7VXZeV/t6vVI9GjuBYb+dqfM9jxh76N3o7inXQdf3earD6H0r2r/iG+pV2FrV488QjzrloH+v6jR1bf04PLMMiiWtqsf8VAPaZ9EYrSRvQuQoaCWYQBAAAgBTdJI9bcIKknxKJ0q6aXX7J1DM7HTGVx4AhgR45q+PTyvn3ZaI4tTQ6t/rchxEGVPzk19R/tDxfX9j5p7VqpX3uy3ajwBnNuu3Cje9waWhF5Zniz7Pm8jodJynuMYS+4n3L5TpywiVbXkM2IR+Xj9jx9+Z+hKQU7xhpheVNHscsaqwzKefhz+htFTTfpKy/I5oYl6rYrVS7dXkh57D8P7uXqN83cZ6XPBPuefyVh75D30ZUDr524GwLan8s1yvFzUMJKiy2gnOslPPTwc//clR7emCS1lxW9Nor+vdZ2daI/ysA/PjDDptIytCdCghiQAEgAABAWhx67az1zH00kSippTIdNW1ol4tk7ASC5JoyvPPb9fUNe5j8haIOlNf3TdWbEm4acvDYRRvR86qdxfA2iy0D05Wxdsf8+i6H3H1W18/oZ2ip2y7ceJzcL4t0vM8zr1ksxjDnxj/WLQul3ldf0n0y0UYhLrts+6kmOy2ReWOx5U2pV1yH8xhgJG2+QXofkeslut6yFDBFGEozPdF6ed3ex445bD79HVE78JpfLqhr1fonJr2QtDEibWNaHudrV1drh9L70tCmcV9TXJ8niObdGffN6UuFqQspAAQAAEiL+uW1l8u0XvrXuKn5WnWhWfiTR8/s/AC9D2kw/dz1F7SqWf5TmT9INGLX1uv9UsKApiSnQC9djyA0+Y0PnNv5l89lrYFehHzdetGm57v5fdHmGY/xTMdYV5A6d//ZNdnuT5I9KMall253k6SbqyRvyqFbTf1rexCG6p6HIskbNgBMdHfySM6R1MJES1X+mHT3Z5/O69X3+r6f0sERl0OvOuFjBXUHmPRyIXlSaTuLlmIMMR4DnJ5J0pK6cInvmv5XAOgebJaM6TB1q+UPnzltw0UkHQAAQPL1HDdnN0m/IhKlWirr/SBnP5h6ZtcXiQbSZPIZGy39zmed+rjbBKIRM9PPe41e8B0CUVVzA2KNqcmk27ap73oqu+6iGDW5VidK9lo1TkxRjF3egmNWSLjqA7Mjrrlkq2lkDaKwZHHrgZK/qGrJoRLLufMY4GROM1+bP+Io3CCHKuteKUGP61zddVnp7/3K/8cpqx7Lza85ZvzBx/Wf2L+eno24HXjNoCX1tZkD5Yr4MdMrPUbbos2TwnPZYhwbmn88uUs/efK0Ud3oeSVeJHFNLfJVAaAqeAfAOBcVpreIAgAAQPJlsx6Y23Uqdg9ttNRrDRnbY8qwTm8SCqRzzLBw6rCOp7vbZUQjVkHgxmPZUb1W812iF3e4e7ap73JSNmshwUUxJma7fW4WHiopFX/4XH07gcW8o6K16OU5ST+/Krvlw2QMonLNNd2X19bUHi5pbqpzKIljnUkmO4RexnyTlv4Oi7BPWex9Pdqcsgg/jkX4eVpawOTX/2Lcwaeb+IMslM7BV580z2psf0nzyjGmJ6fgtyTzUybTYAfT65K05rKi+2L07yvPWulrP37aRnSjQgJo7xAFAACA5Ptb+/knuWwXIlESzy9rqPnxE0M6zSEUSLupwzqeL1M27zfmdY9f3d8Ju/TTQy5fsBe9rZpZSd9WbAYm9Ydfk0/Kde98PMV/iMotF2z6npsdLSksWZ5ZBcyMFVIT0UwbhCYdPyHbfRKZgqhls9vM9tB+maihwCLJmwJeH/mAssmI8/+2Lb0MYOGQjOuNcheviAuYCj/cxJ+PP/g0iv9QDgde0/+d0OxAlz4tdG1S9jHCyjk+Wh6vpACwcua88lxTXLkZfPWxfAP6UgENY/4fEhUAACDZeo2Z3dFd7OJVmoX3M3UeHvD0OesuJhaoFFPO6nSxmZ9PJOITBhpBFNCYwn5MT+fOPkV4uEPHLj+f3Ndy9BhE6bYLNn5S8quKzcsU5FBKx7r4Xt9EM7qbTro62/0eWg1xGTlyu+kun5i2PEvHwjtzAD0MReeBVVnelIpFc4DS7nZXiWvAgq/31nfXeuUUiv9QTr2u6/+yTCfl07fLv7NoGu8Tfa/HBk7oQI9LwdhsCbymGC/sawWAirEAsHLnOZcoAAQAAEj8vUHmEpnWq7zPlax1tknTPv30055PntX1MzodKs0jZ3W+TLJhRCK2EeQHB1+xaH/iUB34NWSl2bP4eE4P6xceMbG/1RNPxCEX+nmS3qjUHGrpMYsrHKqc4keTzr8m2/02MgNxa1UTDJX0TpR5CclNFACWex6yaI+Z7+5o5E0l3CtZ0V3W41yjWJzjdEILmNzueHetV/pls1l2Y0fZ9bzulPvN7aoocy55hcWF5mwxO49+472t29QvZ01Vyeu1lN7LrygAdDeXutHwBQQwF1IACAAAkGAHj5nzLVdjf/WGyG6mzR5p82mnw57LbraMaKBSTTm742i5LiYSMY0jgY+QO9tDofqspte39Etvd72ieus7ObtdHYFEXO7IbrYsDP1YSYkuMq2+nb1iLn5c3eHN77w6230kWYFSyGa3+1TuxyqCx5CXJYeSONaZJNePstmX2tHDmJ/S0N9R3uJnL1Gf8EKOZflfV1wFTCbd0+aDZSdS/Ick6ZyzsyX9X+T5m4Chv/mnPpTqIr03PS3q+cSKmIeK/2OHUhWtxymQpF4T56wnqQ1dL3+haigABAAASPJ6LbDRkmqIRKymt/ukY9/JWaP4ABVvyrBOWUk3Rn+Pzz4Mcu3ae/TCXgSiWiXxUR7RZWxMGf6BlOk1Odv5U/oP4nZ7dtOXJV1akryxCpgZK6QmYqU2+MO6qu9HNqCULrtshz/JdUua8jr6NULkA0qbzPLMXvSu0q0DgWQsHIxj5ZvfLTicu01pPWvZ8X0n983Rj5Eku0zsX59pCI6QNL/0RcMWYSqX+sYqr/Md+FK/m2rpbZVws2wR9f3yrykDSarzcAP6UmFtslZ9jgJAAACAhDpo/Lx93O0gIhHrrf3v2gbLD6f4D9Wk9aYdT5PZb4hEHIJL2AUQkcxOkvL5IqjQv0Yuo89MQe/J53f8gNZGqbRbu26UpBn5500icyjBY1dyXv+1ZpuRq2s4LMtuoyiDMMycK+nDtORZKmJqxiPrUHweWHXlTclYNAdI3uM6y1NcEXNDvGQ1rY6m+A9JdcDE/nNC08kt6dtlf4x2Ou8T11kcLPkhPS0Fk6Ql8JpiurBgxWG9BAWAFbncmz/5jI2WkmgAAADJk816YKHGVP49T/nW2W76Y517b9bEqDaT+1quvvVHP5f0LNGIfGTZqdfoRQcThypo6Zhfn7LJPN83hOZ+zAPndXqZnoRSumZQ9+XufnoF5FDBx6zSsevDnIKe112+7SKyAOVw+eXbLpL5eeV+FGaFrTwoACz3PGTRHtPzPCl5Uwn3SlZ0l41st65mLq9Uj1QscQHT+7maTK9jx+z/GT0WSdbrulMecunXUeRc8gqLCx1TrcD3re69PAa4otdrsX7nEI9AkjynDWjwgvBX1gAAAAn11/YLjpe0E5GIzT9qg9qeT57VlS+6UJWmD+q+vL5NcIjJ/0E0omXSeUQB1djxV9bEl95nP3B+10cIGsrhtos2nS5pSlKvL9kFepa+Y5rq5Paz67JbvEXvRzm99e9/3Sz5y9WblxGOdSsur3t22Esb07OYn9LQ32Gp6ruFXq8XcizL/7oiKmD6OAjCg0648qC59E+kQc3y2kGSZkeWvwkY+pt/6kNpLtJc+9DDop5PrIh5qPg/dihV0XpcghX/r3elyxVkDiEAAABInl43zW5n8hFEIrY72//mcpkeDw9Z52OCgWo2fdB6S0ILe0taGM09PvswfGGXXld82IMwVOUEU9K3FascP+SaNHHSeV3G0ldQ1kw1HyxpWax5YxUwM1ZETYSfNeGSLdnxGGU3eXLfnAfB2WnJ6+jXCDE8HiyT+QE9q3TrQCAZfTDKsaRyj+VNH67O3A//+dhD/kkvRFoccOuJH4bu/Uo7NlmEqVzqGyvL56XfenbAaGqtKuJmuTyPqo96TbmiADC0znSygjrBbGIAAACQPP5J5jRJ3YhELLdBi4NQvaYPW28W0QCkqWd1fc9DP1RSHdGIcqwJLyQKKHo98OXMldfrWzgbluXz+Eth/cKBtCzK7ZYLNn3PpBvzy5vy51Blj3XRv96kR6+5qPs1RBhJMfKS7Z6R9FyS8yZlYwcFgEDC7oKjWyol9XGd5SmuiPCzu2T9jr2q9+/or0ibnjcMmCbZw03lYokfo10p94kW5rQ3PaysYzPX9DUrHgFs1rFktxQVFXtna18AAICE6TFhUQdJZ1fVh7aSrbOXh6F6TTmry+v0NOArU8/p/Ly7DSESkdq956iFPyUMlY0f378xmTf3go/DwI6YnN2OYmMkQyZ3haTPUpRDZTtmOsc6e7++datjZcYmV0iU0Fb/RyJ01PwFsh8ShTLPGRbtMeOeb7xU0y/yaB8rust6iRqzVI9UjLOAyd1GHje+5530TqR2HeXhmSpwJ/doC4tLP2Z4pBOYrfw/f0LvSstSLcJ2T9j3Dl+t8SWZeSdavICBwnkEMAAAQNJk6huGyLQekYjhVsR08rSzO/8fkQBWNXVYx+tduolIRDXgSOY6n0Cg2vr9yvyr/8+Jvx3e5V2ChKS45bzN50m6rhI+S2kL9JJbqPg19UEQHnnD8E0+oqcjaS4fsdP/yfVUwnMoFWOdS9tls2+sS6+q1Pkm1fMQUh9jK+iyPfbPXlQB09PtPvj8Ivoi0qznDQPelWtc+YelpD5CvLC52EQBYPRrG4tkTZScPxIq3TwefPHJKQAsKHoBBYAAAAAJcui1s9aTdAaRiOUmZfTUMzvfQRyAxrX5vOMgSX8t7ijsX/K/UUfaq9eoRbsTCbS0w5RDKX7INfNrJ53f5bc0MpImE9ZeKemTpOVNombSFNZEmPycqy/c6s/0cCRYNvl5HeXj8FZ/TC/+M1hmeQOPAebODVXXB5P6uE6L8G2RL8Bm5RoyR/ed3DdHr0PatbXwckmz47yBiWxnUWv6urywASKOMWnzZ0++fFN6V1Julotv91IXHEa5pgy++L8UABYgo5BHAAMAACRIw/LasyR1IBJR8ym7fNpxOHEAmjY5a3W5XHikpI+/8R/YEKFg5n4mUai6Vo92BsvzmAn8IfflJWt+MpR+gSSamO22UK7rY/vxmfkztrGriR/yp064aMvxRBRJdtllO/xJ0ovJyZvUrClWEZooAAQSNXdbhOugKB/XaQV+nugXeKV//KjVB2ZH/PKaAxfQa1EJ9r7+1E/d/fxyPEY7beuk/D5Phl0AS8q4pkYEcjdJHcu9pEll7BtCJnsAAICEOHD0/K4uDazee57Y1tlv5lrV/CKbtZBeBjRv2vAu77rCE4lEZA7tdeXHmxGGypXeH9NL8vi0JQrsiOmDui+npyC5S9DMtZLqqygvK3asc+mDGrU6XmZsaoU0LCCuSu4aIVWB/CExKPOcYdEesyyFrRTsl/leyYrusl6ixvQS5VykBUzmZ/1iXM8/0RtRSdp1mX+3XO8k436r8XNEPWZ4jJ/HXXvTs9KyVKvs4sHgoBv+u7akWlo7f0tzuUVEAQAAIBkygQ+V1I5IROpTC3KHTx+03hJCAbTc1LO7/NZk1xCJIq347iNjuYbTCQaqrN9Lktw1YPLwzm8TFCTZLdkNZ0k2Oe2fo7QFesksVDTzU8ZnN/qQXo00qK1d+FuT/pukHErjWGfSd7LZN1rRoyp1vknXPIRKi7FFeNnRP2q4hbk1+bixva6m76HS7J3NNrj8sqLnMktWXpd27raV7qX0fXpW1Gsbi2RNFO1ayhLbT78U1AVBR7pZQeqfG7zpYsIAAABQfvuPm7mum/oRiYiZTpx6xvpvEAggf3VtPjpLrleIRCR+dcj4j9YmDGjBvFUW8fyQa1N/c36XX9OoSINAq+7EVZ68Kfz1lTg25XeJfu81F3WfSm9GWmSzezeE0rXJzus4HocXzQ+hXztUK9U1bE+PKt06EEhGH4xyfIq2iMdL83GaP6T5mw01uV/Rw1Cpmt4FsPikimxnUWv6ujzWASKv927+bL8x1F0l5ma5+HYvdcFhVGvKQPK16FgF+ZDHIQAAACRDrWoHSGpPJCJ19aNndn6AMACFmT6o+/JckDlW0opHd+b1vQO3mitZM1yeo8i7qkT7BaDnecwEZOBieXAK/QBpcfOFG//VpT+mYDioaEUUSS6oVchuu0idVjXBrZKWlSlvKmZVH0jfoTcBSZq7LcJ1UHFFDPkuyjzCYxV/nqLOUZ/L6ehfjT74E3opKtWKXQB1WXTrF4spl1PD3MLd6FklDTnXtLq1vXnQISlLmlTF3p3H/wIAACRAr5tmt5PbQCIhKaq/TzG9nGu1eBgBBYoz7ax1/2GyLJGIxMC9sl5DGCpTen9Mj+fxaS4fOvn8jh/QM5CyTL4+KTlUrWNjEREbNDa79UL6MNImm93uQ5OmJHONkKaxJqQAsMrnoUjW4hTsl7mvWGq6rJcojkUVMJku/+VVvV6mj6LSdcll7pGUwO8eLJXncnMKAFcrSGD3qtziwSBgB8ACE9gWEAUAAIDyCz+p+ZWkzkQiMp+ZB8dMH9R9OaEAirfz5+uNlul5IlGgr7772LB96w8PJiCoAs/+5twutxIGpM2SNTMPSfo4zZ8h30fbFVcwkYziR5M/OiG75f30YKQ4c+8sZw5VxlhnO9OPEnPP00ibWZFtXKr+ThVgadcncZ0nhsJES1H/Mr3arv3nl9HzUA12mdi/3kw3FpKLHklqln5n0Wgfz/rNcwYSBYBVsbawRH+eQCEFgIU1jX9EFAAAAMprr6zXmPkQIhHhOtd02tShHf9NJIBoZLMWKtSJkpYSjWLHJz+ZKKD5jpKOy2zkS+fPQvMTZcYGRkidyWdstNRNk8uQN5G9vgrHpo9D5frTe5Fmb7757ydcPruSFiae5zG9yMszaads9ll22q7W+QkVcbNT/sd1WllzKv9LaPTRyHVmueP6ZvvW0ddQLYKcTZS0PI68jqyw2Jq+Lo92gCji89puLqcaPsa1kBfYcTzR1xntGrFGgXVgtVnAOOO2mCgA6dYn+0arzzuvuQaRAFASeawcPlseLn0uu9kygta89h3m9XW3zYhEZDdekx49s/MdnsplTwAAgABJREFURAKI1pRhnd7sPWrBRTKNbvn9t4sdFFbx00NHLtjqoXM7vUUoqoEp+p9HW37MfDMwiox12fm/Hd75XdoeaRWY3+FuJ0WeN3EMB5CZzrnmom1mEwmk2eTJfXPnXfD6PXKdXcL75q+eHOZ5vD652qpu3W0k/YMeBZTe6seIrw0wRa+DVhwgmrGo+Ysp/jwt+8AtO09+wTOzi48bc/Dr9EpUk/1vPGX+9FOun+SmXxSfy/kPWMlfJ+X1mdb7Xb8rN9dEvUPPirffxP9lQRKvqWVqXL5W1f6oUETs3fwTkhFIt0/WW/dga/BJFXe3GOugGdWrqiluaZsYyxOzqliJtGl53NZsbVdKpfvyOuXjHrv/rZJQrgL/0Gxuq7q6AQQQiEfXtTteNW/xgmNdtj3RKHyEawh0sqQzCEUlTunxFtzF96VyZF/svbR9XccJv6ErIMVuPm+TF04c8Z+3JNuqDDkU8zErbWz01+Zuu+Ut9FpURJ7k/G4L7OzkrRHSI5C+IwoAq3oeiiRvKNgvc18p4lglbrsV/Sf+z55nv/7Lxu3bjqZPojqHIr9Gsl9U71wa4blMu0kUACZ+bWT64jc0T2CcilzXm1uH8i0nU3xT6UYBIIBkzp8AUs8VbkEUmnfQ2Hl7uGwXIhFRvzPr/9C5Gy4iEkA8Jva3ekkDxE8iRa1xTXZ8n3Ez2xIUVNzyL9CQbNZCQoF0j9fmMrs33cnYgsmoRa9vyfHj+BKnpce0Myb3tRydFpVg5Mid/iGzt0qbQ2lfeKz8v/3b9KTk3POsvs2sqDYuXX/nB4rSrk/iOo9F3ycs0f1rWRD68Xtn926gt6Ea9bj+1L9K9nK+ueiRpGbzb/aIx4hoH89qK/0v25keVQ1rC0vs5wnctBadppB28SUEAQBQtV8l8F1O3AsNCgBb1A1tEFGILP3vmnZmpykEAojXI2d3/j9zu5NIFGWduvp2RxIGVMJa1b+63N9MPqfz8zQcKkHgwYMJuWst6PXVMDaZ9Mi12S1/R29FRU39rocqaWHieR6z2KeDmmlbelEVz0+oiJsdj/BYhfVdK2tO5X8JXxUwmXTFsVf1/Bd9C9U9soT3xJHXkRUWW9PX5dEOEMUsSrejN8W7FvICO44n+jq/UuxfBgcWqh3dq4DctYAdAAGgsu+ZgXKiALAZPUYt2tDkhxGJSMytqak9nTAApVEX1p/t0ofxflVQ2dz9RKLAQr0UxyzRD7nLAsudTVujUky8cKO/S3o78rzhvj2ypYhl7CzCgIpbMZiVtAAw3x1vEr+qd21NLwLKmYLNLH6KXgdZScei4s8T5S5ezR7r3bb+GY/+RdULpfskRbBDeBx/+FD2lWY+L96e3lSafhP/lwXJ3eWvKYGb2tKXChkF2QEQANK5UAP9JhXrjjX3u3JuZ3pGE6GsqR8QSrVEorEA5bWj5+CHh6zzMUEDSmP6uesvMPNLiERR9ug1cuE2hIE1YXJ2WrFiPvO4+4ev/z6tjwq77XmwVDlU2mNWxNg4YcIFW8ygl6LSjBjxrb9Impm8NUJqbJLNvsRmIVU+D0WSNxTsl7mvWAneaqn67N7su3xI3/F9l9IPUe0Ouv7UuZKeSdb6yNJ4ro0eGzihAz0qBYsEq8yFS+CuNulZTiapP/inJCmA6po/+SoMKKXawLYkCqvXZ9zMtiY7iUhEYvqjZ3Z+gDAApdX68043SHqHSBS+xg0C/YKgoALMrcvYFYQBlcaD8KFUX39LJ6NmX9+S45eu+NGkhTXKXEYPRYUuFl1uj8SZQxU3Vq+8vF4adKcfJeueZ9U2s2LauKr7ewXmbAnOE0NxnkXxeaK7LndNP35czyn0LuB/q6m7881FjyQ1m3+zR3isYsYgb/6c1rZh6bfoTSVeJHFNXy3qrdp3ACw0uQOrIwoAgKr+KoHvh2Jea/AY4MYsVesjJXUkEkXfn3xuHp5KIIDSm5y1OrnOJxJFzJOmX2SzHhAJpHsq1vlThnX6hEig0txy3qZ/ljQnhXe5JUn88sXBL7oqu9nH9FBU7Lxq/kSiZ/3Ixy6LbqwzyWsCdtgu8XxTuX9uz5fG5Yqxl6i9Ev0o4ZZ/nOVWE55OXwK+0sb8YUmfRz2mR1ZYbC09T5nnpzDYjt4U73ziBXYcT8x1xtcXAxcFgAXlrQf1RAEAKv6eGSibIAwpAGx00ez9iUIUC1pdOvWsru8RCKA8pgzr+IBMfy3mq4Iqnww2eqX1op8QCBbqca/v4/oh16TXtqvrdDvti8pMW3NJT0WeZ8bMWIT/1K2/+GbCgEpWV1f7e0kl+90m3x1vkj52BW4UAAKVci+UgOv1En32gne6dI094cpeM+hjwFf2vv7UT2V6mvGxuPO5OQWAFTPnWeo+T2AUABYU+0AhBYAAUNRNF1Cl/aalXwybUQC4Gr2vnLejXN9jvCm6G76Ta714HJEAypmI5nINIxBFrR2OJwoorECvdI/cbPzlfnE2ayEtiIrNTc/3hyP+Ki/6se4b8b1iYv9d+D4bFW306G0+Mekv0eVNtQ004db0ojKvDytlfmJKL6iveOzdyZof66wcfbssx5qZyWRG0u+A1d7IPVr8+ijKnUVLOalE9pekFACmZc1llbdwCVT2AkBPaRdiB0AAlTfPVeqYDaQUBYCrEQbqRxRaOhc0PmaHZmdMH9R9OUECymvKsE7Puuk5IlHwmvfQHtlFHQhEZamSO47XJ5/T+WFaGxWdy27PlD+lS1fsW1yhUew/OMyydUN2HEW1eJoQFDhuB+wAmJB7nEjntnx3R+Pb/0q4V0rQ4zpXd11W+nu/lc/jZsOOHbP/Z/QoYFVBQ82jLU9PizCXLe9cLnYcjPaxrvb1/y8FgLHMUZW2Q2BMOSx2ACzwZihXRxQAANX8VUJi11uVswymAHAlvW6a3c6lY4hE0Z3ryf9n777j7SqrhI+vtc+9KZCElpseigoWLCDgax1RkfSAMwadsY8OkQTSqPYzVlIIJCQglrGPSlQgPcESR1RAigoIiICQ5Ca5NwmQntx79nr/INSUe/Y+uzzP3r/v5+M78zrn7rP32utZz3rOebLPkgtbFhIIwJFZ1/TLRCF233FIU087i8DAw1T+0t6fSAUK63+qR7eqyP0ernJjvb7B+SzVN1GR6Vfzj39QEjUNf+XuQE3/mA3WupeQQe7PN/40kHxonFeM839aVxZjSuNfjslfH+9920/JH2D/hn9j/DoRuSNWjdB6xnKD84M2WpsymZ8G/eaj1R5kU7rzicVMHHPmPNPJxUBMu5FWcQLHEwABoCRrZiCvprfl9OqjLBKeJ9zeNE5EDicSDem0IJhCGAB3LL60769E7Na4HxWUvn0L5RyiQKOedn+f7Bezet+Je1p+wT1FSdY0v0x8nCkzY0StW6XyLcKAsti0oeNWEdnhaqvi+Gavwy6/9I7DyCKgIGshB87XMrr2KE9GVNXPVavVkLwCDjpeFlEfG3o/tZ49jyGPijLn+TUPB6JWIZGi37ea1NgACAANL7qAkuZNfX2HHnrYIYPIiucniJ1LvWk09+w7S6b2vZ9AAI6VN9WvEIXYc+qZZ1/5xOEEgh4y+utzerKPyZerVeULJ5Sk9bRVaSyUqHX1v95EZ363etwuooey+MY3Tu1Q0Tuz7SmKY0+3bkeTRTn0h0Wcn5jS06lBmkw+WiLvoY6Ok4M+guy2j84ewa+iAF3VokCXNd7vJPlk0SwnlWTeS0M9jkzypOfSNHMs+4YoEBEHNgD6t0xqqgX8BDCAkn62wFYbILNGraZsANxr1JWtrxSRNxOJqHOBPX9e2CFa+W+CArhn0cV9l4jIn4lELN1qu2pnE4ZiKfCK4wE9vu8C7jDKosPsjw40xJkds7GNQ6l8iLOhW59u15GJKGEncWsJeop0IlersQHQBdrwC2LMT0k+tQ1p9iyW4LHqe58UNudp9mu/p/9hRPBZ8gzo2vYNR94tIk9FGdfJjGWtaywnXRuS+7vnzj8UO5ZMSmOO4gmBXXFkA6B/Oq2JJwACAAosQtvLv+hMTS2osQHw2YwMPkSuNRzEuYun9V1LIAAXPydQM7U5BCJe36Fq/Aww/JiKzb6y4BytEQmUxXerx60Xkcc8XOXGen2j81kK73HFldOG7iQTUUK3ujtQ0z9mI7UuCAI2AHow37BBD13VlPyf1pXFmNKol/Ob/7xy+C/JGaBr5yw4p2Yit8SqEVrPWG6wH9J6aobmuhhT5QmAWcwnFjNxzJnzTD4Xg73/QUQV62QDIAAASHeRYDwBUESkWrVATT9AJBpaQm1uqjRPJw6Au7bu2P4TEdkY56MC6BnjZj91JHHA/tMjp5l33//qkeD4fj/mhqCEY/DWBsbNQcc1M+NBbWu2yjcJA8qoqan51lzeuM6ew+XNXmbGBkAAji3CkjoWT/8Doo08W1W+epPk+/EEQH/uqa/ndIDZzngCYKz7tidsZgMgAHTV3tBXoCx5k1KuqbIBUETkT73Xv11E+BC6oXGlV9w49YgniQTgrlXV43ap2LeJRCzNuzo630MYaJ6i95wa8fXxz1NF5/P0P5S0Eb01z7Fe3vWyfueq6nH0/yilavUVrSryePrjLN7r3W63lM9ekMm4QdRYaoKtkqs/16mp5aCaLPnP2cP+QHYBkUb3bxuv80k+WVQ9ix9PAMwtczP8MwcOvo9AndkA6Fd72KPbrj0MIABFnedY0gOOdEdmbAB8uph9kKrUUCZtqtT0auIAeFDtwtrXRYQNQvEmzbMIQsFuabFWKNs79jT9D3cVpRSEt+Z/Etn9jKcjtSs0CeeSfCizUOx2Pi+I01LzBEBn5iFN9pj8zHCxcsXSyrsX/WliP9eZeb696HzVvkxuAdFsbW+5S0S2RBlz+f4seJLHa6QWPxuLY8mirNfoeZ6TO9cTCE8AjGW79eQJgACAgovQRvOQhrT6zdJvABw3e3VPUX0vydBAGqldufDSlq1EAnDfjZ8a+E8RWUIkovcdKnLGmGrrIQQHbnbV+v0bqzyJF+XUs0/n3SLS6eEqN9brE5/g4l3l4muqL/sH2YdSt4sm97g1LtM+ZjK1TnkCYMnnJz7gLcwC2eHcffZ8NYn30Xre6taPzR55K3kCRHPOgnNqIi9+mrtGGub51zTNs3a2LDq3yueUqcwn2sA8pDmt9bObx4O9/0FEPWtPsQEQAACk3PbxE8A7pPksEemT3bqscDZ3Njfz9D/AI2Z6kKeE8RyGgy3TtWfzGYQBB2iq8hnPe/9HIME8bgLK6upJx+9Wkb9HHDd1j2uvZ8aUapOpXEXmAXqPy+M6+c1eCRUUs37kTqJ9IOBZDma18SbLYxl9ERB35KncmV5tarBG6MFrRLrzcH3n3rPSfQBZ5NhiOYFzsoZzP10BfWi8XNrZu4mvnwHAoQmt8H0FStl3mPATwCbBf5AoDS3S5yybdNQWIgH4o8euo5aJ2CYiEWvSGEsQSt48xVqraMTXRztPFf3Vgk8f9TfuHUpdnjXqk7hYlDfgL9d84WW/IQxgLSx/bbxHSO/1Li9Hpl/yQG8yCFmMG0SNpSbYKiX5c52aYG5osnEze/zxPj1/TkYBcQeV3dF4ndfGx7Kn68SKBPzDinxWApn+mQMHf4FARGq0h9F129iTn04GwDIUILvS1vuMyzcfVtaLP+PyzYep2JnkTWzbm7p1zCcMgF8WVHWPivyUSMSho6pV41cOStwTOtoL8CReIK8ncb3wHJw9ZpK1znjKDSAiIk1Nr35URLbxeUF0e7p18GW1K/OQJnvMEm9sLWSuWFp596I/TexpXZnnm4oFOq9afUcnOQXEE6rdGWXMZTl3WOrHa6QW741FGPQni7Jeo+d5Tm5cj2MbAP3R48gKXyoAYP5ECRi5lrPuTbteVtZr79a9Y6yIdCcLYo/f79xw/hCeIgZ4KJTKD4hCrL5jwJ09N7+B4MAhj5y4p+9iwoDSd6Wh/dXr80/59cktrHVT5Uj7MRkHiFSrGprYfWk2nu4dM5napRa2kEFlmG/yy00U775Z3PPVJN7ngAfZ3qOp9i1yA4hv1PzzHxORjbHqTUNlKaufEE+5dgbGBsDU5hNtYB7SlHupfHOeDYAxbdmyjScAAgCA9Ns+DUq7AVBF3pvHuqwgahrKbMIA+GnRJUfeJiIP7f//ynMYDiYwG0MU4Er/YGLXVasaEnyUXbOF90QbO9HGtddPNEq0NtlPrp50/G4yDtg7vCynp4/WOa6Tr13JFJSaCBsAM7tngFs5m3xzkt+xVOS7H7h89BNkAdBwIbkz+UMmVCP04DUi3Xm4jnM3ZQOgO4vlRM/JGs799LABMGYuVZqb2QAIAA5NaKXoK1DKvsNESrkBcMTcTX3EZBgJEjuxfrbo4gGPEgfA1yGsJiI/IRCx+s4ziULJm6dYaxWN+Pq6zrNWCSs/4n4BIl//wrGPyfN+ipNFeUpzYCDfIwrA88aE2j8a7xHSe72znZYZGwCR2bhB1Fhqgq1Skj/XqQnmhiYRt1CCYA5ZBCTST93deJ3XuGPZ63WiivQjg3KMfoZ/5sDBnxWIiGP/EtmP9rBbyE8AAwBLepBdWXRrWsoNgFrrPEti/PwvefNMHGwuUQB8r//hzwhCLK8fM2tLX8JQ3p7QlV5AxX694LN913IHARFRNRV92IWR6eoxE6h1f7vm8y/9E8kGPK+dlsrDfF4Qq6qxAdCleUiTPSZPMSxwrqRxrH2etpzu5oXk8s1WfWzmmQ+RR0AiFeR+V8/Nsrj6xs6QJwDmskYv4jlFWQPxBMB4t72yiycAAmD+BMi1DIQvK2kqvZd7Hzt29yy5sP8fiATgt4UX9/+riDxIJCL3HYF0dryT4CD3Dk6CHxAF4PljorEnceUt2w0TGuMvjKf/AS+uO6EkWHfK8YGXiUgYsAGwPPNNufO9ePni233TBE/7hQcxU/oiILmRen/UsWiJlKXsN0In+7OuKsYGwJR7Ic2gJ8oyb5PJeTYAxs687t0JAgCAdgvph18Hl+2Sz5y5/lCxLn7Ckc8iDxabrxMEoCgzsPIUwFh1MHw3QUDO/cP2yp7wBgIOvGBS+0e6h/d4ldt4baqJdPshSQa8UGdn5WG3zzDJn8Pb/zHj1LrAlKdpF3W+ATmbS31KdhNPHdeztTnQn3PngYRqSKX24L5DvPFxndiTRfXg5xW1d0qyVpoo/6jCgz7cYv5tshtGkxOYSAc3OLowsB5EAQBKM/8DeRooZqXKxu5N+m4RodeKZ2tnUxNf/gEFUdED/QwwXyMdTBAqGwBp1COxiMe0rk/vhgXVftu4T8ALxs3D0ccl6/Y6g3DzvOrRrcQBeKEZM16xVUQ2NN4jxHi9pnP8bOq19SF7AGf6p4M3Pw33QY1tYojalGVU83724VnDtpM9QDJGXj1pi4i0Nj6W0/iHD46v0kToqTKYW/z6sCD9cwpUZJcvLY1LsbdONgACQJSazdfU8LQjcKHv6DHq8scPL9N9D0MbQ97ETqUfLpt01BaqB1AMN17S788i+k8iEXEeUDlm9Iy244lEeXvCvHuBMAy+z10DXigILMaTuNL4cNzdY8avdSE/cwcc2MN8XhBZL0KQJs3kT8rci5c6V9I4lmZ7X63B8zXR75I7QOL16IHi1sdU36s3ueNBo7Pf0/H3XxoGIrKTpIoRuCbpSRQAMH8C5FomfUf3boPKcq3VqgWiOpK7HnP4hfz8L1DAgb2EIETvO9QCngKIvFKyten4I39NJIAXrWlqtX/4fg3ZboCoe2G9vVuf7jeRYcCBRlKS/5imHB94GV9We3jPNOo9Jt+LNWYzvm8pbEzUpI5lj3z8ijN/R1YACY96tQeijuuoT0WOW28swWM1soY7wBNbe1Wr1YAMSnPtXbSn/DV+PWwAjJt0NZ4ACACg3UI2Qg0GluVa7zx8/SkiMsDb3j7fUfr7hRf3/yuRAApnMSGITs3eThSQR/9gIj9ZcI7WCDTwQk+86iVrRaSW8vjzd5UbvzatvHLaUD7fBw40ztUc/3nsNH4OTxutdTwBkPkJJc/B5OtTspsGD/g+FnxfRRlCQMLCUB5JY1xbUsfSg59X1N4pwVoZnPF4z0PJoKTngaTmO21gntSGerY0J6pAlA2AsQpdhScAAgA9CZANE2spTY9VC8Zwx2Pj6X9AAW3ZsX2ViGzb3+yAgzZxbyUGNOppHvNAI9AC40lcwH4sOEdrJrIh2jqIdXvX107NAQ4q1LWNHiL25i1N5/gZYAOgf/cMpcs3TbAP0gTzWvMcPxYG8n0yBkhhyaH2eDJjOY1/+OC2HYfwZOUs5ha/PixI95wCMVc3AJrTsQ9C4QmAABCxZvPhCDztCPLv+ULtU57FpIwmb2J5ImzesoCKARTPqupxu0TlV0QiskFnz9jwUsJQ3p4wnyet2KbKS1p+z90CDjjQYjyJK9/NvlkfM2ItqklzB08KBg42poJ9nwDI55NdYgNg6jSTP/GpF0cWN14b/lPLNN806jne+V+zhj1KzgDJC8Lg8WLXx/Teq6nGBkAvGp39no6f/9KQnwCO3XwoiyAAzJ8AMhq7YSk2AI6d3j7IRE7ihsdKkp8vm3T8buIAFHUa0JuJQvQet1arvI3gIONkXMrP/wIHrddrfb+EbDdAdPUhjt0y/9Ov3ERiAQfro4OEfwK4FB+u8kW1l/OTRnw9+e5bT5HVsbKvhZrIIc2EpyIDaQmD1XHGddSnIsetN5bgsRqpqfv7u1ArfUqfPl7NSf6fU2Ciu6hacSKnfQgCAKBcIrS9fD6UbKto5fjwNWwKz4icPeTa3tFZ+1+iABS4PoY8ATDW/KnCBkBkPB/bQqIAHGyQWGv64zDd16c7cUWe6PiiG+hCrbnW6v5ZpvFzeNpIret+3bl3NJM9zE/wdiWcYE4lWZ801TEVhnYD9x5Ix7BvnLteRHanMa4tqWPpwc8rau+UYDfKQ8VixjjJjZj1nFM275f+fBmo2Q6SLU56GhsAAYCeBMgmBVUPK8lYO4O7HUvraVsH/JYwAMW16NN9HxDb31OT+FqoC2wApFGP8Wf1H/NFI3BPzz2VldwT4KDDqzW1DRAlXLdXgpBNx0AXekjv1jya5qhPvHGtq998ZDe+rPbsnqHkayFN5ljmzfjZZ5Pzw+deOfw+cgJIq9qoicmaxGtXYebcA19TUAvYU5RT3qT/YYGL5yQSSCBbSZgYsTeeAAgA+SzuQN6Ur+8wLUHfYaYmyW4AtNKkjV5frWooAIpeKHkKYHTHj5zRNoAw0ENm0zvYqh9Vj9pC1IGDivkkrjQ+HPd+x+C9V3/u+IdJKeDgqtXjdons+x0YT2M7uN09Kt3JnrT5Nw/xuX5+uWJepaxm/qaqxlORgfStdm9eUOffywLrRur43Kr5168FYvIU7WR0IU8ABOD1hMVHAIBXzHoU/RJHzd1woogM5GbHSA+t/ZgoAGXo4YJfE4ToPW7FgjcSnALNeW6P0UXcIaDLxrW92LUomZ/cszqOqSJLSCig7tqzOZPGs1A6m0gcf9Y8z80fafy0Hj+N48v6Jqv7aankhu5zyCixCVRuJJuA1K2PM66jPhU5bu2yBI/VSH22fd5Nm0mdLOYoF/uVfM4pEDX+dXI8bAAEANCm+dZveUrFir9I6Gzg6X/lzrV/LJ428HZGCVACYfh7ghAnbnIqQUAmXXKtwgZAoOu+fXMm4zHl16ccozrP2VaRUEC948o2e3CSKdQ6jV/rdoVsAGR+gudNV3I5lWR90uTHlEr7of/c8gfuOZB6P7UxrXGd2MZirfd9sqlRIiISGj1VAzFOaiNmveeUzful2+sFYvoUiRanxrEBEADoSYBsmJbgXwmpvJs7HSs5fkIQgHJY+Kl+/xCRDdl8VFAcgcppRIFGPfqf1X/MvSPw4V989ojHuBdAF8Nu7yac1DZAlGfd3rmrZyf/MACoXy4bAKM+8catrp4NgP7dM5R+LaTJHMu8GT97L9h08TkLzqmRC0Dag7aS4NPcs1i4Zb041AP91/RU3t7TtM8pnesJVNgAGCf2GshRBAYA8lrcgbwpWd9hxd4AeMp11iyi/0LeRFcRfv4XKNnS9I9EIZpQ5FQx459y0EOm2juY6P8RaaAOQdjAJpw0Srmf04OK3PU/l75iKwkF1G1TXj2CvwuPZr6szqqiF7y3RnK5Yl6lrGb2pipyM/kBZDD8VTbmOS9k9WTRpGsbPwHsec+l/vVrgWjo+E8Au9lOmrEBEED55jk+AgDy6oaK/RPAA7evP1lEenGnI7vvposG/o0wAOURmvC0n+ht75Fnz2x7CZEoUl/k4kmFbAAE6hD03bxZCvLBQdQvoBrbaPTCY4aivyWbgCjjKUjhCYAF//clys/VubzAOXi+p/HTevx7Kl/WN1ndT0slN3SfQ9ZzPVYR+iIgk2IVtscd11Gfihy3dlmCx2qkPhs9VU5zVNGeEBhPoBbwBMB4WggBAIA2zcN+y0/FXiRY8FYP+2gXlg6LGRpA2ca93U4Uos8FYRjwM8BIN/UCYwMgUIdvjD+1Q0QyeXKd10/26mpto8YX3UAEQU4/AZz84I9TuzRWrQsqxtNqmJ9Q0AWyJXiseLmb6Ie4D358xpmt3GsgAxVtlxTHdWIbi7Xe98mkRomEARsAG4xxIhsxI5xTNu+XXq8XdFgnGwDjOWLc9VYhDABATwKkzQqefabyVu5ynJoULCMIQLl0l6a/7P9zAb4W6gIbAGnU0+zvV//8U/0f4R4AdYu1EceyHdcuq9W6yy2kERChfpjl/ytYddYmd7p6nlaT+PwEuLYWKsSVB/yjCCCrRUinbPSv3mju7xdKyD+qKPyc59Y5Bd3EniBRYt23YNv69UcSGACIhw9HQN7U33cEIrXi3lRTkXQ3ABY0b57cuqUvPwUKlMyCy458SkQeJRKRJ9aTiUH9fQc95DOvrzswPP0PiFZytsbv0flXeSLy529c9lL+QT8QpXKobM+3p/BQJxsAmYfg5bpGk8lxy2i8NPpznaHYKrICyEZzED6VbL/j7JNFkz1vFXoq3/s4TTPHkj9usKP92I3ur0PcPL2OivVloAAo2zzna80GfGYiYVGvbcwVm14uIi3c5chFfMWqqnYSB6CEo9/0bqIQeSZ9DTEoXG/kzphUNgACkcav6Xa3zkgzO2ZjG4f0mf+XJ90A0cfkjmR/CrP4wiDg169cnoc02WNaxDdl3OS1vtHMj3WwP03s5zr3d3Ct73qCCn0RkJUO022NjGv3NhYnWZ8P/HeBKD2VE2v08lxPsPeLQ54CGENFhQ2AAICSitD28o9jEwi3FfYJgKadb2NdECtySxkYQEmnhCD8M1GIOhdo37HT2wcRHKTUzLABEIg0ZGxHAVa5sV6fxNomFLmTLAKiCTXcnulAdfyYbN4q/nzDPUZXNSX/p3Ulcm0PfnzGma3cYyAbA2qVbYnUCM2gZmg9tUkz6cdCVb4h3e89TuMfKzTa9zb+jx2y/rv9Cfb+z3bSLc6IDQcSBAAAkDrVAm8A1Ldwg6N3obXmcBlhAEo6JZg8cICKSnAOGreApwAW/y5n+md7bf75p456kNgDkcTeAGgRx3URZ8ZQ+IcAQFSBiRsbj+vsOdjs5R/uAbxdC3l8vjwVGcjWqd8Y3yEiu7OpN+rosYpYj5nzinZOezcAKhsA4903niAAAA3w8sMRejfyJodcM5FagS/zjeRNxJip/GnZpIH070BZ58HA/k4UYsTNwlcThXL3uPG+TO8yMH8WVb7zBSIInrcBMKunzxTIjs2vehmbjoHolSfRDYBs0KNxBpxe12gyOe7ez3W++KlO4R/IBiDzKXB7sv1Okk8W1UwDgZL1cZrmfU/2uIGIiJl58AWig8skNZ4ACKCU85yXNRvwmRVzA+AZl28+zESO5wZHE5osIQpAeXWv7HlIREIiEbnx5QmAhWuPnDiHP3MngIi9rNp2984qu5/xbGzjkP51wTnFfTo8kNp8bbojyXEJODEPabLHtIhvyrhxO1csrbx70Z9aEseq4/T2dz2mlbvJByBz2xoZ0O5tLE5yjqTHdH+NXo7r2fsEQGsjieLcpmAwUQAAlFeE9pV/ENNYz6FWyI0ezd33nPJcP8q6oO4G3sLljAqgvBZMG7pTRB8nEhHnAhU2ACKFdlj/QhCAiCXagu1OD+uUX9/g2VFzgDgjx2op/gSwenLMPGsX8phvuMfFz4lGa0r+T+tq6D12h1sOv5+sATK3LZEa4cB3OF3/6gNfaqY/36XxjxX2PW60eajxf+yQ94bRp79w1YCfEIu3cuQJgAAAIAPaWcSrCsLgNO5t9EX21m0D+BeuQOmnBXvkAItUYnNgrxp3vVUIQ+EHR6Z/JpUam3GA6HY18scWcVx7PTO+uDZpwDoAiFM3LOh0dlw3Wuvqfj1fYqeeZ4QAmS1CijLOGzrfe8d/49QOcgjIeNSa7MxuPm2wpmme9ZG+q5wxduOceAJgA/fNVAYREABIqpmjrwAOlGsqtruQl6fGBsDoNfOPq6rF3BAKIILQ1hCEyHrseuypowkDPW70tcoBA7O75Yh+fyNKQNRxZZ2NfyZQzoKlys+OA/EkvwGQp7EByH+dkmar5OrPdT57LP5RBJBP7ek42LjO/8mifLCFdHIu/fRK7uCBiEhgsrYgLU3W+AlgAPCnZoPs8vh6dVdB7+Np5E3E5l3lFioAANNgNVGIobN2PEEod0+YcC/wt2+MV546AUSkZjVHz8zZY+6tXbWOsPs9ZBAQXaXSWatznAF+zRma7DHZ2Fqs/LO0c3mfpy2nu/HmhddjbAAE8mDSwFouyY3F2c9RlkkvAPdjrM5fTyAiEnqzAdA5vd81b81RhAEA8yfK3PGTa5kM051Fu6axV23oLyI8iSmqmrEBEICo8ATAOH2HBnYCgUGCSfZnYgDEKc/Fe5p1RhsmHv1GddAOMgiIMUat0nnQJjGNxtPJYyZSi1D8+Sb33OQec9+e97M4+/+/aoUNgEA+Q7Mz6WGef01T5jyP5juLeV8tZk742C8HIiKVUNkAGFMlCI4lCgAAIE2hFe8JgDWRk1JciBZ0fS0d0ie8lREBwFQOsgGQr/IOWEdN2ACIxPoHtfAvBA2IIWj8CYDm2Oszqk2PkjxAPM3NHW49ebTOniP52sWX2Kmv03yeb+DHIiTnnI17zgn/XGetWWp/JXeA7IVSzwbAxutaYk8W1YOfV7rzMH1X+nFy9wmB6W9wPLBARGTn5sHrRaRGgkXPJa3VjiUgAJDHQrPUa3OUrO9QDQu3AdBCeS03N3Iu3LVoPE/9ACBiGmwiCnHiZvwEcCl63GQvwg50TJWHSBggzpja9wmAqX35XKh1uz1C9gDx7NnTnMp3X2z2ApBvT9VF89NwH5Tkz3VqzOvZ77Ee/vCsYdvJACB7gUmXT1X2dGMxUqWcU4bnFIiIrKpqp4hs8Lmlya/S6bEMWgDwpGaD7PL2WrVwPwGsks8GQJ/zJjT5HSMfgIhIc0fIBsBYk4CyAZCeMMFeIGAzDhBv0Dr8j9Bd/hlPag4Qu+zYrrp+ro5PMeHlnKHJHpONrcXKP0s7l/XF75Puhgp7+i3+wf0HcuqpVBv8CeAkNxZnP0dZJr0AnI6xNnpO6V9P8Lz/nZ8BjjfUjyUGAJg/UfK5kFxLe4ia7CrgZb2aOxuxcVe7hSgAeFp3NgDG6zuOHVe1bgQGSTTAQY+djxEGIM7qsdEvjbxfFcd6PU8ABBrRM+yqSUyj8XTzmGC+ITeLdo+Le990v6etpo+SJUBuFaozjWGef01jXvNpvrOY9zXPn+XNUtPz/ve1InIaqRa5IBxHDAAAQLqNcLGeAHh61ZpE2l6ZbosmhftnyGGou0bNaj+FEQH4oznJg3U8b14I9lT2Vjk90MzBh1f7VenstvFYEfk7oUCD/cO6BdOG7iRgQIxhpmJJ9OlRZ7q0X592bVLjCYBASXuOhGvjC9+YVUMe94CVGzIqCKnmYPRzPvD7RDuWiT1MzgC5VauwvprReF177n0aPNYL/nzfY0XtnaK/OdKdB9OaQxs/p7g9XtjgmTc9L7vXkIOxvIQQAAA9CZCmIJBtRbqe3n3WvzyUoDt3NmLJUVneePvf1cqaBUGs5boV6mqyUZL5M9ERW3l+3GhAYt8T1aOFDYAl6HGTvYinP7R73jFN2IgDpNAapPLlc0HW7c08ARAoRO1icxiA9GvQ85qfhvugxjYxRG3K6nkfU9ZigDv2P65921iM/HKFc0r+nJ77CeDA/ulXS+NA7J8+lZc+/RQbAEAjNZtWDJ52BJkI1Z4q0vXUVF9L3ri6DiM65A3Im6LfEz2aKDDWGh6bARtxgAI3xC4ec/NV1eOe5N4A9O9gzmDcIJ1cUW9SViXkCYAACt4LwOkYq9v3PXjuPJUPL+Pd4G7dW9YcSyAAMH8C5Fp6wi1FuprAgldxT4E8OfQPqoDMcy1kAyASaM30UYIAoNEOq/7XU3MAPxYkLHLgZjpbxNw08t27niKrY9X3PilsTHzukNZNhL4IKMCkZYmUjK7/2BI8VpY1lfmuyP15uuf07AbAGh9exr9FJicQBQAAbRrSC2/TlmJlS5hN78RnkSjGmg1AknOQ8gRANF7TjX9EC5Ri1erOKtfWc/cAGpPkapc6WuuYn/ybn5DnWE/yfSyjc7bGj7X+w7OGbSdfAB/mLU3wfRo8lh78vCyDa0GyMbZUc3ffc7KY15NHz/bsBsCm2k4+vIwpVH05UQAAehIgvTSzLQW7Iv7xBACk3nfwtdABQngMUShLj5vek30qgT1OkgDJS20DhHofmE1kB1DAWqcRX4/CzmdA8vmmCfZBSW5iaPBpXSbsZQCc4+rGYpQ9B8vxYcG+nt0AuGzS8VtEfPowwZ2frVLhCYAAkETNplGDpx1B+g1brVacDYBmKiIvI29cXi8RHfIG5E2h8QRAxlrDr1cL2og44EzzWvhjqko79xkoTk8B5qF8jsm6l/xL8ViZPcDQ1nHPAbg3l/KkmPTjpA5eipv3PXjR//9hEi/WDX4FQQBAPwSQa2npse2JwmwAHHH15sEi0ou7CuTNnX9QBWSca0P3bkYHYtttnTyNC0AiHVY9rzeVzUQW8GVBQpsJN9PZUvlpPfLdpZ4iq2PV9z4pbExUEVOeigwUadKK+lTkuHORJXisLGsq812R+/P0zulFGwD1UVIsVlaeSBAAAKDtTakP3LWgeuKewlxPreOEjOMHkGsAnq/7e7629UjCgAZqum3p6McXT0BJVq1urHJ1I3cOoDFJtnapg7WO+cm/+QlFqin5/1xn18cKTHkqMuDVvKUJvk+Dx9KDn5dlcC1INsaWau7ue04W83qy7tmCF15s+AiJFUvLyPmPDiAMAEBPAqSwkirUF8wV0xO4qQCQVd/B10L7E0pHf6LAgGngmE+tqmonsQXSWv6k9HqP1+0ahmwABIpa6zTi61HY+QxopFmxro6nyZybZXSddsC1vNETAR7Vr/w3FoM5tOAfFuzHi54AGDxICx0vHzqk+2sZWADQeM2mUYOnHUGaNhbsXp1A3viwXiI65A1Q4HFcCdkAWNdcUPwaHfP1fOkElKJgqUNXxxMAgaL1FGAeKmIzzjgoQv6p4ykb0BMBhZvvinK+PCkm/Tipg5fi3n1vesH/r2IPSI20i9VySPgaEVlJJAB/9N60+aYd/Xrx819AxmxP94ki8iVR4ZOh+nrIov3E3DHcVcCZipz/IrUkc4EDkcbzc82EDYBoJJf40glAzHl//41PV31Cp1SoO0DG45JFDrxf8+x3HKhohNysbx1LvvvyWUJWn0s89z5J5sbTx6oEIT8BDBRs0nq2ZjRUMrr+4/prYH0nwme97s53/vQr6ZzTCzYA7tnR+WD37k1kWJzbY/IaogD4ZUH1xD0isodIANkaeeWG3jxdLFLjW6wve1SOybzP5rNIAMALBGwARPy2wtgACJRwTZbrlzsVCTdzF4DSdyAS9YONrmvXC4/JF9n+zTfcMyRdU+LlVJL16eDH4h9FAD7OW41/OZPYxuIuN8pH652Qf88btxeK9nfPnVM279eYF/wE8Kqpxz0pIutJrBg3TdkACABAnY0OX7pHane1vWAJwBMAUez1KeBcrvHB1L4hMXoRBkzsPzMRnjoBuLfGjDSufZsZu4ns4i4DBa5dGvH1cH++4Z4h67VLJsfT3Mdbc62TtRhQmvrF+aII9zT7cwr289/dT3LEum+vOuW6O5oJBgAAXUybKv2y+lCgCKxAT3sYc13rISLS16344sCDlegAKOwang2A9ceq8CJ/kauyhcQA0i0ulsIxfS6CO6Q7v14B+NAjEDLmNppxxkGO+WcZpZMl8h7xTmbnrm5PcK8Bv+a7rNZ25sRcyqZCf+PUyD8edut69rMBUB+gnYylR79w4KsZsAAAdDlz86V7lHipFuanDcIdPP0PhaljKPqan7wp+s3oRxAYaw0ULTbiAEi88TlY7RokD1J3gFR7BL6sRXnW15bKxg3GkC/rm6zup6WSGypNnb13kxFA8SatqE9Fjlu7LMFjJV2fkey98adfSf6c9tkAqGoPkDjxhLXwFKIAAEBX7czzfnaPz4fqaDBkY3FufuXoAvXRQEHwUQVK1YQ88z+PJBiI35sZG3EAOqYsO6xatfqOTu4A4Gvjme8xLeIxWR2Wer4BdaqBnNLUc11EwvHfOLWD+wb4OG85tLFYG70evmhKP5eyeMpk1L/TjN8vvn02ANZCNgDGTkrVU4kCAAAHmyxNRaSFQERoK83WFaiD5wmAKMGgJQRwMdf4WuhFDicEDJi4f6aB8tQJwMmlRrRx7dHMyKZjoAy1SyO+Hu7PN9wzZL12yeR4mun1Gz0RUPL6xfmiCPc023PaZwNg0BTeQ2LEu28qwgZAAAAOYtiVa44QkW5pHb+IH6rVKmFrYS4mlCEunhYfxh6sxyU6AArpCEIQZS4o/iVapNfyBEAgi+KS1dNnPCiCbDoGPOkR4tcu0DiXvBlHYrliGaWTJfIekU+GnggoST8Vt2CZE3Mp87a/cWrkHw+7cz37bABcMf7YdSLSVoaykcJpvGbE3Ie6M2ABADhA49HUNIAoRNO7uXltgXp67j8Kgy92SrDmJ2+K7HBCwFiLXa6MJwACSKfxOUDtYtMxkEmPwJe1KNP6Oo2f1mv8p/GQzfrGu5/rfA7rMMCZ+SX5J4tasieYQD2t7xqZ85xsdFKd39y6nn0F+38P+yuJE+vedOvU7q8hEAAA7F+lJv286LfcsXXBxH7binIxJprvBkByDTjg6ARKtG4XEenJP95D/BziCYAAHVN2HZaxARDwvvHM+5gW8ZisDos/33CP81dzvE7l/7Su/aInAryet+qsEVrP+zTYY2myvRPSyKU0/rFCo3+nGb9fPMEB/uu/kF4x60VF30QUAADYv5pqf6IQpZ3U1mJdj3H/UZbBCziYa3zN84LQ7TqMnwFmwMT8M+WLJ8BRFnFc+zAzqkgHdxagVaGrL8n8BDS6dsnseDlcv7IBEIAP9Rbc03zP6QAbAIUNgDHvm5q+hUAAAHDAqTL1DWDF+lDN1hbqakQHMgoAAC6odAaHE4VoTRyeaWiMn54CMiouWT19xvllFIBCD1oGedHuMY0zHK9BDadoTj/XafwEMODzGi//J4syP/v2eYBX5+TQpex3A6CaebgB0JllEhsAAQA4cA/EE+CidTfrinMxpirWj07Sx4FLdMibEq/5yZvCCkQOIwqMtVivN6sRXYAmJa1j0icAefYIjEsUaB7SZI8Z9ecdGTdu54qllXcv+tPEfq7z6UN0cn8Bl8qMJn7QzDcWp9ZbstnQzzV6nueU3PXsdwNg775bHuBRurENGTmv9RjCAADAfnuYY7zp1RxgooV5AuCwK9ccISLduauAuxUHKFE/IlaxQwgEACDtjokOC6Dx9OOYYH5Cee+ZehUHACXoixxodazLE6EfS39eSOMfK+x7XIuZw9bw9aVjvxsAF5xz4h4RuZ/0iqcW1HgKIAAA+2tsTF5KFCK1kv8syrU0aaW/K0EFyDWUN9f4aP15oWADIAOGmg4UsrxHG9fMjAB8bFWS3zhEs+PM/MTKDY6MS8v9nKlLQJHnucbfp8EaodQb5tBinlNwwMFjcgeJEe++mSkbAAEA2L9MNgAW5UOyUMJ/FuXGB7Wmo0h/AIAzS3cNehKFqEEjBACSWONEKy75f/kMANGx2avs95h5CC7mpyaYon7/XCeAtGmuaztjfvY+V7w8J0cu5YAbAAPVPxV/WZVaSvwLgxUAgBcaMXdTHxFpIRIRVOSxolxKTcPD6SR9XocRHfKmxGt+8qagN4GfAGasMTYB5N2kJPnFGAB6BDAPRf2TNH5aj80VvuRK6vdzn6ctkxtA8cpM8k/99HVjsTEfFmSNnuc5JXM9wYEPr7eTl7Gd+K6rNvQnDAAAPK+3qNVe4l2vlrPabi3MBsBA9EjuKOA6vtZCqfKdJwACADLpmOiwAJ9oiY8J5ieU9575+HPDAArdaznQ6liXJ0I/ltbNtIbuWfRzspjX4+L8dcANgG3BuntNZCcJGS+LK82dpxMGAACePzvaSwlCpBaybeXFA7YX6P4f4fF6AyDXUCB8tC4iIkHAEwBBTQfKPtMpMyMAf3uO5DcO0ey4thJjfoKfG/O0MNcPwM15K7Eniyr1ptjzoLtPCExzrBxwA+Cd40/tUJE/k1Rx75u9g0AAAPC8plzDTDcA+v4hmYn8s2AJcASjAADSXIMi2rzETwCXN9cYMIADa51I49IY6wAKUeuSfT1cv8fMQ3AxPzXBFPX75zoBpE1zXdsZ87P3ueLlOTlwKUEX//fbi7+sSi0l3slgBQDgeXOj6UuIQqSIPVakq7FAD6OT9H4QEwPyBuRNceJv0oMoMNYYmwAiNsSeHBMAPQKYh+r9E2UclDhXLK28e9GfJva0LgAOlhl/n/ppqR+PmufnGt3vcwq6SNI/kZexHT9yXusxhAEAgGdbnpd52avlxMT+UbDrOZK7CvgxWlm3oySNSYUgAABc7bDYYAEUbUHCIgdlmm/Idz97BO4bgIMLs66LDZUlfo7crXkuyac4JvV3mvH7ZZNrB98AqD4+AdChIqghPwMMAMBzTRBPAIzSpJk9VLDVYR+nzoc1G8g1oOyDs4kYgJoOFHr96dTrASD5niONL1Jpdnyfn8AiJO+cTb4+UZeA4s1zmuD7NHgsPfh50Tv5Pg+qs+eUVo930A2AN48f8g8RaSOpYhee4UQBAACRU66zZhEZSiTqV9Pg7wXr0Q/hrgJAqnU22mq19EKeAJhJrnERAOqdiTSfmYtyACDTWpfv65H/PQbyz09NsA9KchMDTRlQPJrg3JndE+QAn+el4ODXpCYmt9Byx86HM0+vGk8VAACUXt/t7ceISOZzotcNfiUs1AZA9WgDIAvDg91IokPegLwpSvCVDYCMNcYmUPzmtcTHBECPAOahev9EGQfkX3rH0hfnDX0PULwyo76eeAZzWkCepD5nqYOXkt85dZlxpnoLc3FsR/RoWfdGwgAAKLtAwlf62qvl1CE+sWzSwPZCXZLxBEDApwHr9ZofqC/H2AAIAHC6w2KDBVC0BQmLHJRpviHffblnxn0D4NQa5UVPFtXGj5XlvMYa7mBxye4pjhbzvrpx/4J0/zoIw1tIyQaSWcMRRAEAUHaq8mqiEKmD+HsBr8m9DYB8pgVyDSgzntaPeNg6ChR3FZby6wEg+XVkGl+ksoBlvoGnBcGZnE2+PlGXgOLNc5rg+zR4LD34edE7+T4PaurnZDH/No0er8sNgLvah94tIttIqtiVZyRBAADQm4VsAIzU+hVxA6DyBEAASH8CibRYLXmw2MaVWa5xEQCSGZepbZigHABIkTn2euR/j4H881MT7IOS3MRAUwaUZY2X/8ZioJjzUpcbAFdVtVPEbqXljp0Prxt97erBDA4AQMmbpNw2APrY4IeqBdwA6NdPALMwPNhwJjrkDcibIsQ95JsFxhpjEyjFHKglPiYAegTkz5E5Q5M9JuOgjPmnDf+ppTouAORbZtTXE2dOK8ScpQ5eSj7nFNR3fvp75uL4t7czDM4iDACAsjrlOmsWkVcQiQgNWqj3FfCyeAIgAK/X7ShaeukuogAAyBobjYCyL0hY5KAY8xOKdc+4/wDcqhkverKoNn6sLPs4aurB4qLO5ltR1LUB0EL9LSnZSDLb2UQBAFBWfbevP0FEukVq08r+eWhF7y3gVXV38qz47B3kWm5LayDnQbmTGAAAGu2A6JgA+LjYpHYxP8H/e5x1Tcn/5zr5EBfwqe+wBI9V3/togpelMa6HGuVaz2sN51S0c8rm/bpW1wbA3Yd0/NFE+HA8vtNHXfPYEYQBAFBGTYGdTBQi2dlzYMsjBbyuCrcWADIQ6bOQ8n4tZBbyGQeED2gB/8ZlahsgKAcAXOpVI9YmNns5dM9YicHBtYt1dTxN5tzIawDpL7b4hw/IOgfVg3HxnLo2AK762HG7VOz3JEbs+9Zck2AUwQAAlFEowSl5n4NnDf59C87RWpFyYNz15uXmPxaGB+txiQ55A/gt4AmACcwFxa/R1HSgKL0TP+MJgJ4CRWucmYeQR65oBn9KbgP+lplsntDGXMqc5cX91HzOKah/AOqv+NmqBs7E9D0MWABAKds1tVOIQqSIFe/nf//2N57+B6AQ6/bir1zLwwI2AAIAXJv3+QIKKMe4ZKx7qQifbGlX48C3jRswR49V3/tQCwHqT9eTVtSnIsftvSzBYzFHdhUXdTbfiqD+DYBqvyQlGzJszHWthxAGAECZVKsWiMnrYrVp5f0M4L7CXVGfPm5/TMrnTSDXcltaA7kJwx0EAQCQRAdExwTAx8UmtYv5Cf7f46xriiV4LHIXKH7fYQkeq7730QQvS2NcD180udbzWsM5Fe2csnm/g6t7A+DhRw69W0Q2k1SxHbqnIxxNGAAAZXLnUetOEJE+RCJCo2fFewLg7o4eTdxZAMhQpM9CyvnRuom2kSiIMWAAOFHDU3o95QCAi7VOI74exZufgNSaFU3w0EpeA8iofrGxGFnnoHowLp5W9wbABedoTUxWkRjx75upvp9gAADKpBYGr3flXHxp8Jua9a9Fy4OgW5O3P5TCwvBgPS7RIW8Aj+emiqwnCknMBdR0AGmMM19+cpMdgwC1i54CzEPwI//Mq2FAbgP+TnO+/Zw89aYcPVOel5Lt9QSRzi+wXxV/GZZqezXijOsePoxBCwAoCwvtjUQhknULL2hpLVy73ry9wq0FwJrfl5VrOXRohQ2AZe1PCQEAp2sRX0AB5RiXjHXWpm5eg3m3cQOW+bEc+rlOAIWpPwerN1Gfihy3dlmCx2KO7CouaT3F0cWn/GUr0gZAq+lK5uKG9Gjq7P4ewgAAKAtVeXNDbW/J+g41ubOI17Vjj7m/1qHHBRpaWgO+JbZ128gGQABAYh0QHROA/PFzeMxP3OMy3uOsa4oleCxyFyh+3+HdxmI9+HlZBteCZGNsDedUtHPK5v0OLNIGwBUTh/5DTP5OUjVQfPgZYABASZw5c/2hIvI6IlG/UPWOIl5Xbc+hNe4uwGcAcDnXSvfR+uZlk47fTZKA4gyUR90zHeUAgMetChtmPJpvuGfQzP+Q5geAr4UPKHAOJntOQYwTWExiNHDfzN515rXr+xEQAEDRdWuy00SkyaVzcv1DtcDsriLmQlDZ0+nz+fNhLAAUDk//S1IJPr+lFwDyGGeawrjkCycAfvUU9CA0zsxtyLQGaTL5aIm8B7kNUJuSrRFGvSl5z5TTOWm21xN5A6AGsrQsZSMlTRJ2foBBCwAouprqm4lC5DahkBsA92zfyRMAC7sO4+sIL1YgrPnJG7w4oTYRA2o0ALjbpPAFFOBej5DkT2GCsu/6NWTz03rIen1T0J/rBOBO/dE0xnUdG4sTnMSTntNCUsSzZs3/OSnyBsDeRz71O1HZQuI0lDYfJQoAgKILxN6SSBtdls8AVNYvntZ3bREvbevAY2ue3AMAjdZswAvhDmIAAMi7Y6LDAsqODcRwc75hfvLvHmddp/J/WheA4vUy2vDLEttYrPXUJqUfa3iea2ReyOYfK1jMxMnm/fYv8gbABeecuEdEbiYtG/LaYfNaX08YAABFdXrVmkzkrUQiUmd3Z1Evbcw64QmAAJ8BwPlcK9FH66Y7SQ5QnIEyLrmilQO+dAbgY6vCZi+P5hvuATTzP2QtBCDnedG3ekN9ZPL165yCeIPUlpIYjd03U/sIAQEAFNUhh284RUT6uL/YcMofi5oP1aqG4vnnmXwYCwDFYYGwATBpJfg8lF4AyGOcaQrjki9wAHoVv3oKehCSEci0BmkyOW6JvAfjBaA2JVsjjHpDz5THOWl21xNrA2BTWFsq3v1ktTmWGvaBcdff142BCwAoZltmpxOFaMICbwDcq5O7XNQBz9cRfqxAWPOTN3iubBkbAMFYA+B4k8IXUIB7PUKSP4UJ5DxnaLLHZBz4sr7RzI9V3/vQ9wCFqT+axriuY2NxgnMmc1rZ1+h+z0mxNgAunXjcelG5jcRpyFFPtR82ljAAAIooFHlHxGVBkfutetR6dQtuL/g17in8ugAoND76QJHwE8AAADc6JjosoPR9qSfHhGshNsdej/zvcdYJn//TugAUb1LUhl9mGZ2Kdfki+rH66nsj80I2/1jBYiZOXvNXEDvnTW4gLRuuG+OJAgCgaE65zppV5K1EIpJ7Fkzst63g17iD2wzwGQBcz7VyfLRuKttIDFCcgXKqe6bTMs2MAIrWqrDZy6P5hnsAzfwPWQsByHlezKLeqKPHKqPAwXPSwp5T/A2AFfsFydrwfXvXyHlrTiAoAIAi6b9z3ZtE5FAiEWn588cSXCQbAAEAbizLzR4jCmkElhAASGBlFLG4ZPX0GQD0KunWumRfj+TVaJxR6H4r6RTN9uc6AZSkNiVUI4x6QwOfxzlldCmxNwAuG3/0wyLylzKUjTSzI1T5JAMXAFAwI+gIovZ9we9LsHzz/ucW+cD9YElMdMibEq/5yRsPS1bwKFFAnLHG2ASQbZPCF1AAPQKQ4pyhyR6TcVCsXLG08u5Ff2pJHAuAW72TpjGuk9xYzJzGfFfccwoa/GueAtho8TD5yLjZq3sSCQBAcQTDU2mjC/wZQK0itxa/19btjA3A+9ULIUAxOpUwZAMgAIAOC2CcxeDLZl820qROiz8OmJ+4Z64kPLkIMCkm+5ZZ/Tww/Vh99T3Jpzgm9XfawPtprvNXQxsAzfgZ4ARqwpFbu+v7CAQAoAiGXdk+UMReRyQiWbdsUv+HS3Cd/jwBkHUZyDWUWuE/Wg939XqSnwAGAGa6uns1NkwA8HEdSe0q/kqMewY/N+bxYRjgr8aeLZb6k0X3eZ8Gj6UHPy/mYd/nwWI+IbCpkT9eed7R9w67ZvXfReQEkivifXvhc1Anish3CQwAwHeVoHO4GKv4SG2Bym9KcaGhbCczImXGn8zsW+VZbBVbQNiSxacrGQzPAgfZdPeyScfvJilSzDXjIgA0PtVrhHFpsVoqxjpAr+JarUv29XD9njEPId902H9+Pu9EGj6npw+QTO1ivABlKXxZre0O/D7UG/cmOhfvScxzyuBSmho9gIn9XEU/VdwWPYszslOHzV/zjhUTh/yGwQ8A8JrJCDqCyFaVpL/fUYwUzyZvVGzT4ov6f4OiAgCAW3N7jZABOEgXn/yn+Wz3AXzpEdigBy/noS7/JNoxGQfFypX67mcD/c/eP33ufdh4AxSvzCQ5rpPcWMycxnxXzHMKGj1AU0V/TOIk4mJCAADw2Yi5D3UXkeHx2ugIfVHh+s9gVUlSZDujJNK46EsMAAAAgJJ0/4QA8GicpfHhlC/HhO8h5meGuWfUFABp1QjL/i0dqWnUx8bnOY35d2nOq9rA+2luvVTDGwCXjh96j4jcS2o2bMS75685iTAAAHwV1HqdISK9iUQkrYsn93uoHF28PeHZejVXoSgbAAEAAIC0licR1wVsmADglDo/s6B2FXh+4p4hakFwJGfjnjO5DhSj5lgG7/HC99EEL1epTYXLyeJt3gwSCipPAUwglwKVaQQGAOArC+xsohB5FfLr8vQ+nm0AzL9VZAMgAMDbSYyLAND4UinauDTGOgAPhz6bvYowP3HP4G9tsq5ORJO5KMYBUM45MG7hy39jMetE9yY6Lc71pHwpiWwArITBj/yav83V03r/yHmtxzD4AQC+qVYtENPRLFgivr/Kb8uzOtTCbADMKG96jZu9uifVBQCA4veEAIqEL4uAMvcI9BTIf87QFP5EGQclzr/Un9a1z9OW6aWA4pWZ5H9uN6u5hjmNfsu3c0pkA+DS8wc9JiJ/JHka1hxqOJkwAAB8c9thrW8SkQGl7dViX4ryBEAc0LaOQ44iCgAAAEA58OUS4NM4c2TjFvKnjBu4dw+MhAdQljlDc/tj6mPieZPdz8Nbge9rkOBN+QmpmUgcz33XvDV82QsA8IqKjvNsWeCCfyyZ2v+R8jQ5Hj4BMOfevrmp1kJ1AQAAABxZ0rDKBeCd7L5IBfMT/BrreeagC+cMIL9alPqTRfd5H03wspR5tcTzoMU8pyxzJLENgLXmjutFpJPkatihTSLjCQMAwBfVqgWmjW4ALGM7qivKdL1WCZ9kKRQ1aNaXIAAAPG10uAgAmY/L1DZAUA4AepU0l/5xX6/pHB9dJ45ldY9BbcqtBmmC56TkNVAgcZ/UFrXwZbWxmNpU4iY8kXNy73oS2wD4q/96yQYR8eiLbHM3l1Qmj5u9uicFAADgg9sO23C6igzye8GSw/uqrSxVW6/B5uItdNN+DzYAAgBQ9J4QQN7jkp/xBMoh/rhk8xZKMQ8xdZF/eR5LqZ9A8cuM+nriKMQ9UQcvJZ1zChI9T5P/IfES0W9rd/0wYQAA+CBQeT+9d2Qdld2V35QpTyq7KpsZLdGEErABEAAAACgRvvgGfBpnbCBGeW6bRbxI5rP8a5fl+N4MKoB6lUWNiPpU5Lj1xhI8FrqKc3ZPcSzqfU10A2Dvli2LRaSd9EwkwS8cd71ViAQAwGXjqvd1M7F/82VZ4NA8/4eFl7ZsLVOurD28b7uIhN6duOb61v2oMgAAAIBTazlWuQA8w5fRzE/MT+6ppHAPshrr+f5cJ4Bi9B2W4LHqex9N8LKUebXEPa/FPKesciTRDYALzjlxj4j9iORKxPFbNrbyFEAAgNO29TlqmIgcSSQitqEmK8t2zXeO1w4R2cRSKEKeqB1LFAAA/k5kXASA7MdlahsgKAcAvYpDoj7xhk9ikk+ctDfccc+oTbnUlAOdiOYzbgCUpVjlu7GY2kQTXqSfFw6SD41+x8Nlkpu5ZPb5cdff140iAABwtk0L7KNFuI6sO4JAw+UlTZn1RbqYtPMmFDmOKgMAKF4nRCQAuDYu+RlPoByyG5ds9gLzEMqZf0rKAqzRDjK+fRvoFKZi3RN18FKSP6fENwAunzD0r6J2F8mXiGOfajvs44QBAOCi98xbc5SIjKL3jmztoikD7y5pb76ekRMpxdkACAAAAJQMG4EA98aZHWzlnsanAfCPFv8ajNwsUO1ytz+xQg0qgHqV9qQV9anIcSdxS/BY6CrO6my++SBIKQDfIT0TiqTK58Zc13oIkQAAuGZ3remDItLdt2WBA5P7TaJayu90TGydn/cst3ceeHr10R5UGwAAAMCldQ2rXAC+4cto5ifmJxfHpXl87snlFPUJKGvfYQkeq7730VQvi3nVv57XGs6paOeURY6ksgGwycIfmchOEiwRA/d0hucRBgCAc0w+ShBihC3URWW99sCCDSyFoq0MevfqfSxhAAAg1+mYEADeLVVTej3lAICLtU4jvh7Fm5/AEiS1ZkUTPLSS1wDFysNjsTgsT/yKcU9T2QC4ZMIxT6joT0jcxHLp0rHfbu9NoAAArhgxd+3JInZSka4pow8ftlrTU78pbeJY8X4COP28CfkZYACAvzMan4cCSKDiWCbFhZ/xBEopxWHKZq/iJ445n4zMQ6g/V8ydoQWggGu6uAPdcr8eClOpGvisz0mTv54gtUu08Nqil6cMtezZuXsygxkA4IogrPB02lj9ka1cNun43aVdFKq1kgVRB5uxARAAgCz7FUIAgFoEFFj8n+DK9othvmz2PL0Kew1Gbpa6p/Du5zoBuFN/UhnOL9qQr40fK5l6Su1qPG+0sXxL5d74cV9T2wC4fOLRf1KTO0jRhBJd5aJh31p9JJEAAOTtjMs3H2Zi/5HRsqBQfXSowU0lb2ge9/bcc8q10IQNgAAAAIBrS5uUXw8AyePLaOYn5icXx6W/90wTPD/qE1DWvsO7jcWaxPXApZ7XGs6paOeUdo4EaR48DOxaEiwxh9kuvYgwAADy1q3Hno+IyKFEIrLO7s0dS8scgEpn8E+WQpGXKmwABADAhRkZgFdS+zKdcgDAxVqnEV+P4s1PYAmSWrOiCR5ayWuAYlWgxRaLw+LFz/97muoGwMN26o9FZDPJm0wuqcqkd121oT/BAgDkO2XZuUW9tpQ/fPjNDecP2VTm3Fl4Sd91IrKbvImEDYAAAL9nND4PBZBAxbFMigs/4wmUUorDlM1exU8ccz4ZmYdQf66YO0MLQAHXdHEHelZPFjUKEw18HuekyV5PqhsAF0wbulPEvl/k8pSxQ5ua93yWAQ0AyMvwOevfZSInEolYXdzPCIGaiKwmFyI5vlq1gDAAAJAdvnwHAKDI4v8EV7ZfDPNls+fpVdhrMHKz1Osb736uE4A79SeV4fyiDfna+LGSqafUrsbzJq0Yak5/m43Uv0xUqXxd+Ow0yYh+cti8x9h4AQDIp3Ewm5LDsqAIfXRnWAlvIINEROSf/rZhubxr77v6tL+EtAEAAAD8xpPAAOSPL6OZb5hvXByX/t4zTfD8qE9AWfsO7zYWaxLXg3R7oCyeMhn17zSTHEl9A+DyCYMfFJHlpFtimlQqcwkDACBrw69a+3IRGUkkYlm1bNLAdsIgIiKPsRSKuIgwex1RAAAgb3whBRS+745YDljNAHCqdmnE18P9+YZ7Bs38DzM4HusqgGJVpBpBTSte/Py+p5n8nFhodhXJm1wumco7z7ym9WwCBgDIUkUqF2bVO+QpnQ/VdAEZ9Ewo9DHyJjI2AAIAPJ//CQGANHpuTaFHp2AB9Cqu1Tq4njhW1GQE/VaKKUqtA4rRMGU1lrNa2xnzMw18HuekyV1PJl/i3zxh6M0icp/nLY1jqRPOGjH3oe4MbABAFkbMXddiYh8kErHw878v7GMfIQqRu1Q2AAIAspt1QCQAxlnyqyAAzo7L5J7GluRPYQI5z0OawjFRmFxJ/ec693naMvkGFGbdp2mM6yQ35Gu06wFrdMdk8xQfVRORq0ikRCvlS2uVHlMJBAAgk6ncZIKI9MxxWeBvr2byW37+9zmh1R5kXRAZGwABAACAAuBnHwFEo54cE66F2Bx7PYp8z5Lc/Ex9ApgUEziWM/MwNa2R+SduDONuHreYeWgxcziteTmzn/ELOnf9QEw3kOJJljj9zLuvfnwQkQAApOnMmesPFZPziUTc+dp+RBSe09TR/OALe1s+MqzD0aO+9uQRhAEAgPw7OwDFVvfqRFnNAPC3VaF2eTTfcM8YvM4ck7UQgPRqRPY/JawJXi71sXjzi7/3NLMNgMsmHb/bVL5JAieaS72CIPgaQQMApKm52c4Xkb5luubEFhsqu3bt6f4Lsug5Cy9t2Soi64lEtEwKune8ljAAAPyezQgBgMbrgUU8GE+fAeDj0GdzmH+JY0VNRpSyNlnq55TGuAGQV1GyDN4jy7WdMT8zSeZxTgldSpDppVY6rxGRPe4miJetxofOnLf6/zG4AQBpGHNd6yEmwk/Ox3fjLy878inCsI8Hi3hRqXaSZvwMMACgCDMakQBQ0nHGl0WAy+MyuQ13SX5hDeQ8D2kKx0RhcsXSyrsX/elz7xNwa4CirPs0jXkkyY3FGu164Ol6uJjnlOlsuWL8sevE5IckeLJZoKrzq1Wj8wEAJC7cIeeKSH9HlgXe9Wpasx+QRfu9Vw8ShKgjIWQDIAAAAFCI3h4AolBPjgnfQ8yTJ4t/DyzjhCdHACQ/KWr2b9lQTWcLTyPzgcW8mXF/6tli5qHFzOE05snMM86aKjNFJCTNE3XKrS1rP0wYAABJOv07j/YwDS4iErGXIW3btg5YSST20w/aizcAmnc3N4c3PYXMAQDABRVCADTE/S9A6l6dqJerGQBFV+dnFtQu/7BBj8Gb/zHV0zgA8KGOZTVvWULn+8I/p3aRz27I/BOXleMHPSAiN5IwyeaSicw889r1/QgeACAphzzZfYKIDS7r9VvjB/jJqqp2kkn7aUDNeAJgdK8Z9bUnjyAMAACv8XkogATqgUU8mGV9ggDoVRLAZi//EifZe8Y8hHzTwVI/pyR/rhOAb31L3MKX1drOmJ89mugK9FO+CVxKkNP1Ti9TecpIXw07rqI4AACSMHZ6e29R/RSRiC+UkJ//PVAr2GT3stCN3rdr911vJXsAAN7PaEQCQGnHGV8WAUUal2zQQynyXdMbQ/A/VyytvHvRn1I/gQKuazSNeSTbjcXUpiKsh108pyDHv45pxXlDb1eRX5PkiSfovw+bt/Ys4gAAaFRnj85pItLXjbOJ0Ea706vds3TaoDvIpP1bNHnQ46L6BJGIKNS3EQQAAAAAAJKX3Je4PvyMZ1rHhO8hZmMr94yaAiCtGmHZvyU1rQC9tsW8H5b6eWrG71efIK8bXDObTpqnUcjsmtOvfPRwAgEAiOs989YcJSbTiEQDjazKt4hCFzEy+6vn69U83vPtZA4AAACQwXrFsdcDQCR8Z838xHzj7eDN6mc0Xc1ZihjAPJdFjbCkjqXUrmI3xurgOR1cbhsAb5549EpRu4uES9yg7t2av0YYAABx7e5s+oyI9CESsfu2XbWw44cEossm9C9xlnYl9/px89t6EQYAgOe9EgAKQcP1wCIWl9S+fKamAfQqKWIzsn+Jwz1AkWqTdXUims+4AeCmuE9qi1r4stpYbCwCPZro+HnhZwS5XnKoX3G5PHmcD+OHz1vzLooEACCqEXM3vFTEJhCJ+B2BivxixbShm4lel7H9K3kTWdOu3fZmsgcA4P2MRiQAlHac8WURUKRxyWYv+DdnaAp/wtxW5vxL/WldSv0ECjtHaRrzSLZzErWpCOvhYvUxuW4AXD5hyA2yz9NfkESWmsq142av7kkoAACRhOFsEenu3olFaKNz7tVqJt8mkeq5oyE9YJwhavovRAEAAAAAgOQl9yWuIxu3kD8t/jhg8wP3jDoFoN4akdWcYYmUJWqaK7123KdLWurnqRm/X9eCfMe4mqh8iVRPxfFbuwefJwwAgHqNmrPuHSoylkg01L0++v+e6r+KQHTtUKndJyKdnq9X81giv53sAQAAALJY3rn1egCIRBN7EUo2PyH/wWv5FARncpb6BLgpdKpmaILv0+CxlNpVkMY44/koneMGeYd6xSeH/MJU7iHp0iiOdtGIa9eeTCQAAF0Zd71VLLQriUSD7ZrKN6tVDYlE1xZMG7pTRP4eZ2lXcqfxlGcAgP9NEyEAoA3XA4tYXFL78pmaBtCrpIjNyP4lDvcARapN1tWJaD7jBoCb4j6pLWrhy2pjMbXJp4mOnxcWcWADoKhaYOrgUwCtCPnQFIb27VOuu6OZYgEAOJjtazd8TFRfRyQa6AhUdtUq9i0iFqkPvL30eRNd913S7W0kDwDA+xmNSAAo7ThjxyBQpHHJZi/4N2doCn/C3Fbm/Ev9aV2kF1DcOUrTGOia6bXT2xWhqBdnoglcOInl5w3+GU8BTM3JLZ0Dv0gYAAAHMnZ6e29R82CuiNBG5/OvIX+8bNLAdjIqglBuJwhxck1HEgUAAAAAANJYcyfFkY1byJ8Wfxyw+YF7Rp0CUG+NyGrOsETKEjXNlV477tMlLfXz1Izf7+ACN8a5mop+mXRPaxDZJWdeu+adRAIAsD+dPTo+JSIDiURjKhbOIwoRG9GgdlsB1qs5NHc2iuwBAAAA3MOGCQD+4Ytt5ie4OC6NHKQ+ASWeT1J/sug+79PgsZTaRc/rxjkFrlzamzYM/pmI/JnES0UgoXx/zHWtfQkFAOD5hl+57lgxnUokGl4m3LJo6qC7iEM0rYcMvEdEduSzhPTay0Ze0X4CYQAAAIDfsn86Vmob9PiOB6BEOSTqE2/4JCb5xEl7Qzj3jNqUZVGzro6n+YwbAGVppDTBuTC7J8ihSE24enM9zmwArFY1NNXPObpM8j6/VWTwns7aNykYAIAXNAIqV4hIDyLRWEegqjz9L4Y7x2uHiNxd1rxpRMVqPAUQAOD3jKZEAsC+9cDNDRD8jCdQumLkWE9BD0JuMg+hGPlH3gFlqBEW+xDq/bXD53tSjPsZuHQyK88bslhU/o/ETC3hzx4+f8144gAAEBEZdeW6USLyr/R5DWtd17P/L8ioeEztNqIQJ276HqIAAAAAAEAKa+7EXs/GLRTotmlX44DcLE7tSv+9AVCvspi0oj4VOe4kTg2Mev+1gbxRZ/PNBYFrNzsw+Twpn2oxnX3G/NZXEgkAKLex09t7m8rXWRYkckrz9z7JDvHi5/8GwHx6+7eMnNE2gAQCAAAA/F618mUR4N64LB82bjEOGDcujkvz+NyTyynqE1C8vkoTfB9N8Ho0wcuidhWh57VMxogm2ns5twFw2YShvxWR5SRfag6pSPi/I+Y+1J1QAEB51bp3flVEhhCJhm3rlI6vE4YGFldNtT+ksYQsgUArxlMAAQAA4Lnsn46V2gYIvuMBKFEOifrEGz6JST5x0t5wxz2jNmVZ1Kyr42k+4wZAWRqpfI9FbaIJ9+XnhQMXb6dJ+FnGUar5cJJVen6NwAJAOY2eve4NJnIekWi8wTeRb6+YNnQz0Ylv2aQha0TkkTLlTYIt4r+RQQAAr2c0NssA2E89cHMDBD/jCSDf7oovzArbETMPwa9GjbwDUMe4ttiHyOYJbdQ05qyi3k8nNwCunHDMnSLyM1r6VK9qyrD5q4dTAACgXE65zprDinxLRCpEo2GdodhVhCGRxmQVQYjl7e+Zub4fYQAANPDZAAAAAJ4V/ye4rI5jpnGe8DK9CnsNRm6Wek3I+hKAWzXjRU8W1caPRQ1M8v5rA3mjzuZb3gKH7/inRWQPqZ9mBur3Rsxdw88/AkCJ9N+x4SIxeU1plgVp9lsqP1s+deA/yaokYmn/V4TOKgdNnUHwfhIIAAAA8HbVGuv1ANIfl+XDxi3GAePGxXHp7z3TBM+P+gQUr6/SBN9HE7weTfCyqF1F6HktkzGiiY0tZzcArpg49B8idg0JmKp+YUUWjpu9uiehAIDiGza77WWi9jkikVCLGNqVRCEZNZXfprGELMlC+4NEAQAAAJ6vrnzou4tyKQBKJOoTb/gkxqP5hnsGzfwPMzgejRRAsaJGwOX77X4OBk6fXTf9kog8QXKnmksnb+ku8wgwABScmTYFta+LCJu+Gwnjc/PybxZPG3g7EUnG3icpPlb4vEnn6KeNmbXxFWQRAMDbGY3PbwHspx40vgFCU6ho/IwnUPbalHd3xWYvnzpiTeGeMQ8h32JoGaUTtQ4oRsOU1VjOam1nzKU08B6ck9MbAFd8YuhmFfuyTy29pwPgP8+ct+Y8CgEAFNfIq9ZPMJF3EYmkWgP9KkFIuvUtwM8A5yTUkKcAAgDitzWEAAAA4Hni/wQXXwwjQnoV+BrI9zKvCa00AwFgIku8Zmga75HkhnyNdj2oI15F26iX//UErt907dw9X0UeIf1TT+Or3n312rcQCQAonhFz171KVGYWrS3Mq99SlVuXTO3/SzIr4Tuquoq1b9yctI+Mu94qZBEAAABQilUuAMaZ8DQ4ZDUOeFJl8e9Z1nXKnScxA/Chl0l0Y7HW8z6axWVxnxueFxt5iqPG/Ls05+Nk4uT8BsBlk47fbaqfYmCkPu66BYH9fPS1qwcTDAAojlOus2YN5bvCT/8m11iaC08nLmArYk0r9u2H+ciwzlXEkJ1rNowkEAAAAPB4ReBB2x3tUljNAHCqdmnE18P9+YZ7Ro+kKRyzoH0cgDznq+Sf6AfmQM5p/wIfbuuKTw5eICJ/IL9Tf4f+HaEuGHf9fd0oJgBQDP13rv+KiJxGJJKai+3uJVMGLCUQyVs8re9aEbmXxXDcNwjOJYsAAN7OaHx+C2A/9aDxDRCaQkWjYAFlr015d1ds9vKpI9YU7hlPfkS+xdBST6c0xg2AbKYLza1vyWptZ8ylNPCOn1Pgx71Rk7BygYjUfGjpPfemp9oPm0tBAAD/jZrd+jYRmUYkEmxJLPiyqPL5Q2rtlq0gCLGDN3LkrNZjiAMAINYsQggAIM+VJiEAHB6XyW3QY6yjQKmgZbhI1oTpHoscAbCfmqFp1IgkNxZrtOtBHfEq2ka9fK8n8OXGrzh/0F2i8j8MgUzSefyw+av/i0gAgL9GXfPYERboj0SkUpJlQer9lorcd9pT/W4ku9LsQXR5ERqpvPr6QJo+QRYBAAAApVjlAmCcCU+DQ1bjgCdVFv+eZV2nyBGA/iO3Y2k9tVPduSxy5iD3qpGnOGrMv0tzPm48ToFPaRF0NH1GRJ5ggGQyCK9+99Vr30IcAMDTDwT2dLtWRIYSiUS7yS9XqxoSiPTUmrfeIiLbk2mry9i+2fjTq4/2IBAAAADwtKH1YFkY7VJYzQCgzCLV+Sbm6+HbPdYUxnXSBYECA1DL0qsRRr2hgeWc6uLVBsBlkwa2q0qV/M5E9yCwm0bOW3MCRQUA/DLiqnUfFpH3EYlE3Xvalv7XE4a0e73jd4vIKhbDsbX07tXzg2QSAMBLfH4LYD/1oPENEJpCj07BAuhV8sXmMJ/ugaZwD3jyIxzPf00mH6ldgI/9kObWh2S1tjPmUhp4h88p8O0W7dow5BpTucePZZX3jqqpLBr2rdVHUhwAwA9jrm59hYrMIxJJdwD6OZ7+l1Xra8uJQgO5qjpZzFhpAgBi9DvJvxIAUP9KCEBxxiUb9MAQQdlvvJFEAOL2QppGjUhyY7FGux54Oh/4OUd5twFwVVU7A5FJDILMnCC7gxtGzH2oO6EAALeNnd7eu1bTX4hI75IuC9Lq1e5YNqXfTWRYRi11xRayPmrIq8de0XYGYQAAAAAKv8oFkNE4S25c8uQ2+HvbmJ+KX7uMhAeQy7jO4ViUpUL0GBbzZlrq56kNvF9jW/gCHxNg+XlDV4nKjxkKmQ25f6lVen6Lp8kAgMul2rSze+d3ROSVBCPp2AafE1U+48rIosmDHhfRu1n7xhcG+mkyCQAAADTTKS0RI14Ki0kAlFk4NT/FfD3yvmfF20BMDgJlq2Wa0fskdT0N1kh6Lg8CooW7wYGv6dHZ1DFVRJ5gbGT2lh8cNr/1axQmAHDTyLkbLhWRfyMSifv90mn9+Ena7BuPG/NZ2hVlxW2nj5nV9lYCAQDwsAcAgIbrgUU8mGV9ggDoVZJY+qf8eiSfOMneM+Yh5JsO1tWJaD7jBoCbNccyOoms1nbG/OzRRFeunxf2dgPgr/7rJRtM7TPuL6uKNK7s0jPnr5lKgQEAtwyfs/5dYvZlIpFGo2SfJQo5dFtmNxb22rJ6Hw0/RSYBANKbp/gaBkB2PXF5Kg5fFgFFGpfUOuazUuQ7Uxe1seExQhIB9E/7qRmaRo3IdmMxvV0Rmgr/5qjA5xR484ah14nIbQyGTFP8imHXrP4PIgEAbhgzp/XowOzHIlIpbxQitNHRerUli6cOXEWWZW/ptAH3iMg/iERDXduIMVe2v544AAAAAIVe5QLIaJwlNy6L9zOeKM9tY34qfu0yEh5ALuM6h2OpK+eLRuYfi3k/LPXz1Fx6KK83AFarGlZq8l8i0sGQyLCSm3532PzVwwkFAORrxNyHutdMfyYiLUQjcTUN5DLCkGe37/lTANWBM7DaF0kkAAAAIIXlSsR1ARsmADiF76yZn2K+Hnnfs+JtICYHgbLVMs3ofZK6Hpqm4jehxfp54cD3FFl6wdB7xHQuYyNTzSL6s+HzW99KkQKAHKcCO3S+iJxGJFLp7r+7ZPKAewlEfsIguDGfpV2B0th01JhZbfRrAADPmlxCAEAbrgcWsbhYI+cJgF4lr3V/yq9H8omT7D1jHkK+6WBdnYjmM24AuFlzLKOTyGptZ8zPHk105fl54aAIt3q3dKuKyOPuLqsK6VCTcOmIa9a8kVAAQPZGXLXuQhH9OJFIxfam5srnCUO+/t9T/f5oIquLeG2ZdpJqXyGbgHI564pNQ8dcvulEIoH05yk+GwGQXU9cnorDl0VAkcYltY75rBT5ztRFbWx4jJBEAP3TwQ6R/M8DZzV/hyRCAZoKv+aoQmwAXDWx3zYT+SQDInO9Q5Pl77768VMJBQBkZ9RV68apygwikVKvZnLlwgtaWglUvqpVDdXsp0SiMSbyL2NmtY0gEkCJxn2tNkeC8J4xM9pvPGvmxv9HRAAAAIADrplTff2BFe9nPFGe28ZGVWoddQpAOuNas59j1JVrRyPzj8W8H5b6eWrmPVRQlGRYOWHoMhX7HsMic4cFGqx49/w1JxEKAEjfqLmtbzOV7xdpDs+3LdzHhqaOCpsrHREE9mPWvgmMDrUZp1etiYwCim/MjE1nmuh79lags0KzW8fOaP/12Omb3k10AADwa9XKBgsAqeI7a+Yb5htP75lm9jOaruYsgGLMP+m+jyb4PjRNxW9Ci/PzwoXaPNBZ6ZhsImsZNJmPhyMDkZvPvPbxVxMMAEjPsNltLzPTn4tID/rOlKY0lc8svLRlK5Fww6Kpg+4Skb9lv4QsnFf37tN2LmEAim1c1bqJhHP28396h2i4cuyM9rvPmrHxw+OutwrRgvtNGSEAoCnUg4MfLLUNE9Q0gF4lRWz28i9xuGcoUm2yrk5E8xk3ANysOXGf1Bb1JCyjC6I2lbgJd/R6CrUB8JfjX/qUWHCem8uqwud3Xw2DX434+rpXUXgAIHkj5q5raWqqLRORFqKR1rxqd5/2ZP/vEAi3mOr1hbyurN/P5EvvmbfmKDIKKK7dh2yaIiKvOEi9OcnEvrf7nxsfHDujbfKIuQ91J2pofJ7io04A7vbQ2VQofsYTKIf445LNXsxPpZiHmLqojfQ/ANIY1+prjaCmuRc7LcX9LNzPB66cOHiRmF3PwMhFv7BWu/ndX199PKEAgOScOXP9oRrKUjN5GdFIrc+zUCuTqlUNCY5jzWqg/0sUEnFk5+5unyUMQDGNnd4+yMTqHeMvFdGrmncd/vcxM9ouGFNtPYQIAgDywCYXAD7WouRqFxuI4e9tYw6n1sU/FnUKYCLLe4550ZNF1Z1rR/z7H/fpkpb6eWqm+R0UMimCbheIyEaGRy4GBTX91ZlXrz+OUABA406vWlNTN/upqJxKNFJcFqj8ePnkfrcQQ/csntzvIRG5g7VvEiPEzh87c8NrySqggFRmiEjviH91tIrO1UOaHx0zo+3TZ1/5xOEEEgAAt1atbLAAADDfcM/29yFA8vdMvcpZAHkIMhjL9dUiS/BY9b0PG/2KNOf4c05pjFIPrTxvQJuZnc/Ayc1QDTp/PWz+ap5UBQANdZamhx6x/joRGVWCniRP2y3ovJQwuLwUsO8luYQssaYwkGvFjKoBFMiYy9veaiL/0cAh+qnoV8KOzsfOmtl2+divbOhPVOFIAwCAQpBCPTj4wVLbMEFNA+hVUhS7dlGbckscNuihSLXJujoR9fCiAKQ2PC3xca0Jzp3ZPUEORZoT3Pl54aCot33lxKN/Kio/dmtZVZL8ftqxInrLsHmtr6cIAUCcKcZ05Nz115jIfxKM1OfSy5dNGrKGQLirQzr/V0R2FW6Y5/O2bx5zxYaPk1VAMZx7nTVLRed1tTKss970MdNLpTn451kz2+aPmclT3eH4jAaAiuNMheJnPIFyiD8u2ezF/FSKeYipi9pI/wMgjXGtvtYIapp7sdPC38+gyGmxe1fnBBFZzQDJTX/R8LfDr358GKEAgGhGzlk/XUQ+SSTS7R9V5B87ntw5i2C4bcW0oZtF5EYikQxTnT5i7roWIgH4b/2TGz8jJq9L+LA9zHSCWuUfY2e0Lxozo51/1FXW+YIQAKDWAKAWpVy72EAMbhvKUOtefCwSHiheHdGM3ifZiTeZpyJT01z5nCDu0yUt9fPMLkcKvQFw1dTjngzNPiF8lpSnXqbBwjPnr30foQCA+oyYs26mqFxMJNJvC011wqrqcbuImwdUv+3vuTt3RkdWOoMrSCrAbyNntJ1kKp9O+fOC0Spyx9gZ7TeeNXPj/yPqAABkvWoFAMDN+Yn5LO97oCncA/UqBwHkQTMYy/XVIkvwWPW9Dxv9ijTn5HlOac53QdHT5uaJR68UkWsYQLmOk24q9uNh89dcSDAA4OBGzFn/ZRW5qBB9kvt+vHRK/5sJgx+WTOn3KxF5JP32uCRMPjRm1oazCQTgp9Or1lQR/baINGeyohM5y8xuHTuj/ZazZraPETM6DwBARrKfclLbAMHsCcCpjwWoTb7NbWzQg8PtU9cnooW5KABOFqt8j8WcW9qJLqFzSu56gjLc/m6VyiUi8iD5nftZzjpz/to5fFkEAPs3cs66qop9hkhkYktTpXIRYfCp31Ez1e8X7bJyXRiqXDPqa08eQXIB/undc+PnRSSPn+Z9i5ksHDtz411nzdj44XHXW4W7gVRnND49ALCfetD4BghffnKTIgj4VJvy7q744tm/jticT0bmIdSfK9QggH4oygssvTdzrD8KyI8yNfAOKEXGLRo/aIeF8hER6cy/pS99CzjpzGvWfPP0qjURDQB4zoir1n9aRL5AJLJhYp9ZeEFLK5HwSyWofUdEQiKRWBc7ULrtmUkkAL+MmdH+elG5LOeV60lm9r1dj268Z+z0jR859zpr5s4Udq4AAGoNADxLY9cuq+OYaZwnvEwvrgGF7NOMJAIKXhc0vfdJpTToC99HGz8Wkrz/jTwxOa2nOKrzOVKaLacrzx96m4p+nqHiQv+vH+/ed+3Px81e3ZNoAMDTm/9U7StEIrOPEu7oNWjAtcTJP4smD3rcRJZ42gA5elr2n6NmbRhGdgGe9AxzH+ouYt+TbH76t57S9koR++6GJzc+NGZG2wVjqq2HcJcAAEhg1QqAcQl4MA4YN/mvyv29Z0pOAcwnkWtEvPfRBK+HjX5ZzAU+nZPlNkb2r1TPnHxj2+DpKvJrBpIT42bslu76yzOvXd+PYAAobwdsOuKq9VcmtvmPvrMenRYE5y44R2uEwk8V0Xnptsfl68pU5X/eM2/NUYQCcF/TriM+L6KvdmRN91xLI3KMms7Vns2PjpnR9umzr3zicO4WACCVSSer5Xpar2fdDsAhyTzxBlnObWzQK9G4zK190vRynVoDsD4r8LGYc4v/OUG655TM9ZRqA2C1qmGtZh8SkXby2wlv1lrnn949f81JFCgAZXPKddY8cu7676naFKKR6Xw5c9mkfncTCH8tmtrvZhV9sEjX5MDCcFDH7ubryC7AbaNmtL1NxC5x/DT7qelXwt2dj42Z0fa1sV/Z0J87VyYpzWh8SQRgP/Wg8Q0QvvzkJkUQ8Kk25d1d8cWzfx2xOZ+MzEOoP1eoQQD9UJQXWHpvRn9UlmaZ/mYfQdnS6+YLjm41kY8kO9YpGw2MraMDkT+eOX/1BwgGgLIYMfeh7v13rv+JiHyIaGQ66Ty4o8/OLxIH32+jmqnNJxCJ+7cxV7R9lDAAbnrPzPX9AtEfi0iTFytXlT5qepk0BY+fNb39+6NntB3PXfQXn3gAoNYAwAub3bi1y+o4ZhrnCS/Ti2tAIfs0I4mAgtcFTe99UikN+sL30caPheTmEWvoiclpPcVRnc6RoIwJtnLC0GWiMpeh5oweKvqD4fNXV8WMygig0EZd89gRGvb+laj8K9HItJ0MQ9VPrPrYcbuIjf/CSvP3RGSrdyeuro8amzPqyg0vIcMAt1SrFnRY5UciMtjD0+9mIh8KTP921vSN3x9z+aYTuaMAABxg1QqAcQl4OA4YN3lTj++ZklMA80nkGhHvfTTB62E7SxZzgU/nZLmNkX0FZU2joGPXpSLCTwA6NIpM9AvDr1l7/Zkz1x9KOAAU0dir2wdZR7ffitpbStUnudGqXbN8cr9biEQxLJt01BYR+R4fByWuTxDaT0fMfag7oQDccVfPjZ9XkTNcnWDr1GRiH1K1e8bO2HjjWTM3/j/uLADA9cVual+ms24H4JBknnhTBhX37llKr4d/9zj5niPpgqD0QQDrs5IfC0X5nMD1cyrtBsBlk47fLSbniMhT5LdTTe179ZDOW864rvVoChaAIhk2u+1lnWHnLSLyGqKR+eTyWGV35dMEoliCMJwvBfoM05w5Dz210tF7FhkGuOGsmRvPMJXPFeiSVEzOslBuHTtj46/GTt/0bu4y6swcANinHjS+AYKf3ARQvKHPZi+f7oGmcM+Yh0ANAuBqP6S51YyivQ/NMud0IEGZ02zFxKH/ULEPJzMWGc4JOqnSGd45/OrVpxMKAEUwfE7rWytB7fcichzRyFxoIv+58NKWrYSiWBZdNOgBE1lMJFJZZJw/Zvb6/yAOQL5GzmgbEJr9IOl1uzMrV5N3itjKsdM33X3WjI0fHne9Vbjr7jL/MgxAoWsNAOS+bo5du6yOY1Ib4Wq+p/knKEKf5tbPdQIoxvrN9lsakn/SnyV4LCSZL0XbqJfu9QRlT7TlE45eqGpXMeSc09dUVwybt/oThAKAz0bOaf1kIPprUelHNHJoJ02uXjZ1wK+JRUHvsOp0705avQnuNWNnt72MLAPycXrVmppErxeRASWo5ieZyfd2PbrpnrHTN37k3OusmQwAAABAbt1poa6GL6G5bdmMAzaqcs+STnhyCmAiy+1YynxXhN7cYuaPxcw9y/j6DiQgZUTag7ZLReQPRMK5uaGbqH5z2Pw13ztz5vpDCQgAn5xynTWPnLNuvoheKyLZfpHNZ3vPuP9Q6/gUYSiuZVP7/17Efk8kUllUHRaa3TBuflsvogFkr/chGy83kbd5sm6LVl0OfJhXish3Nzy56aExMzZeMKbaegiZAADwbbFrES+FL5AAUGYJUKrzTczXw7d7rCmkrRZ2/ADIblxbgseq/33UiWtHVvHk54Wfjw2AInLn+FM7gk59n4i0s/5w0of1kM47h81d8zqyFYAPhs1efeSAXeuXicgEopGbziCUjy6YNnQnoSg4kxnFuRTnvHrnLvuBmLGaBTI0dkbbf4rIheUt63KMmszVns2PjZ3eXh31tSePICsgIny2CmC/9aDxDRCaQo9OwQLoVXLvqVN9PZKMqaZwD5iH4Hj+k6JAifshza0PyWptR1/lU/Ev3oTEBsC9lk0asiY0+6CIhFmXDdTl5VaRPw6bv/q/CAUAlw2bve7ESqXpdhN5F9HItWf78uJpA28nEMW3ZFr/RSLyNyKRmrNHz26/jDAA2Rg9feO7TPTrab+PHytX7SuiX6ho5z/HzNj4tbFf2dCfDMmXFSzDAPheawAgUm+Z6jGT23DHT2GiTGMIxezTNPNjASj++s32WxqS/3lgS/BYKHof4uZ9ZgPg89w88eiVKvpZIuHssO4pot8YNn/1/479dntvIgLANSOvWj+6UpE/iMhLiUauE8btO54Y8BUCUZb7raais1irpLq8/vKome2jSDYgXaOmb3ylqv1MRJqJxgtqZh81uUyaKo+eNX3j/DEznzyOoAAAACDSqjbl17veUIPbxrih1rl9z9j8DDCROXYsZb5zYZ5K5u8aeYqjpnSemlpOsQHwRZafN/hyEVlAJJyeMP59967dd464du3JxAKAC6pVC0bOWfcFUbtJRPoQkVxtNQ3+Y1VVOwlFefTc0v4jE11NJFITaBD+eOSVbScRCiAdI766riVQWywih/u5RIvy4tgfafQ0kQkadv79rOkbvz/m8k0nkjkAUEbub2SxiJfCF0gAKLMEKNX5ptGVGDy5x5pC2mphxw+A7Ma1JXgst+Y5alqyYdKC3Yt8zokNgPvcB7U+u+QjonYX6w+nHR+G9sdh81dPJmkB5GnMrNa+tx25fqmIVJ2aV0vad6rYhGWT+j9MZpbLguqJewKxrxbhWhz+MLZ3ENqSs65YO5SMA5J1evXRHpXm5htF5CVEoy5NJvIhVbtn7PSNi0bP3PQmQlKqZg8AGq4HFvFglvUJAqBXSQCbw3y6B5rCPWAeguP5T4oCJe6HNIM+JMknizbyBDm4X/yLNSGxAXA/FkwburNmNk5ENgvD2WXdVfSq4fPXLBh1zWNHEA4AWRs1t/Vttebgz2oyjGg44ftLpgz6IWEop55bNv6PiDxGJFI1qCZNN42b39aLUAAJMdNePXt9R83enPlb+x89FZHRQWh/GDtj46/GTt/0bhLKpbzhsxEA2c1RVBwA9beP6R0zudrFT2EWZX5iDIFcSWJMkXcA8+N+3kfTqBFJbsindpWjD3HvnNgAeAC/nHDMI6HZv4tIjWg47701q9w77Jo1owgFgGy6TNMRc9ZdYqa/FrHBBMSJm/LQjubKROJQXguqJ+4Rla8SidSdvHO3XX/KddZMKIDGjZ7V/hVVeT+RaLQNkHeK2MqxMzbePnb6xn+tVo3POgAAANBgi1kkfAnNbWPccIOTuWdGwgPIZVyr36ePhueRxv5OHTxPTWV+5UPxg7h54tErzewyIuGFQWqyePj8Nd8547qHDyMcANIybPbqI0fOXb9QRaaLSBMRccIeVfn3VRP7bSMU5bb+kH7fEZF/lm7tm/0KbcTAbW3fZYMN0JgxMzZepqafKufVW1qHPU1Efn5Xz43/J2Z8TAcAcH+m01RnRgDpd6BAoccB48a3e6aZ/YwmtRtAlDqRy1MCU6xr5kiNLGMu+XVO2V8PX9p1YeXEo2eJ6ncZG940vh9t6ux+7/CrH+fnOAEkbvTcdW+oVJruEpHRzAUOXabZpUsmD7qTDMWd47VDxL5MJDLxH3f03nAlYQDiGTOzbZKIfa1YE7JD60STG0WV7wkK2/wRAgDacD2wiMXFGjlPAPQqefXFKb+em5z8MblnKFJtsq5OhFYJKG4hiTG+4z6pLepJZLW2Y47Oeg7ya6NeWtgAWIc+Rz01XlT+j+HsjSESBMuGzV/7jRFzN/UhHAAadXrVmkbMWfe50OQWETmGiDjl50umDJxDGPCM9Yf2/76IPOLzNfjTSeqkUVds+BxZB0Qzemb7f4npVdSb1KzeumvbPDLNhbzhsxEA2c1RVBwAda5jnTomtY75qUz5Dupt/DFC3gH0ZAc7RPKbBum5XL33WsxcThAbAOuw4JwT90izvEdEHiIa/lQOFfsvq+z867Br1p5BOADENWLuhpf2PGL9b0TkiyLSTERcYg/t2dX94zzhB89353jtMDE2pWW3tPni6CvaPkUkgPqMnbnxg2rydeHT6/S6A5XPr6oet4tIAAAAoOHeMuXXH3S1ncYKHv7R4o8bbnCZax11Cih+z5Ts5rzM5xjN7Y/psRP/O3XwPDXx+ZUNgHVa8Ymhm1WCMSLyBNHwyjFqtnL4vDXXjf12e2/CAaD+2dl0xJzWc8XCv4jIWwmIc3ZZYO/75WVHPkUo8GJLp/b/sYj83vkTLcz6z7466oq2S8k84OBGz9z4HjP7DuvwZ2tHGke8f+uOo35IbAEAPs50bJgAfOxAAeYnuHbP0tggo17lLIA8qDNjOasni5ojNbKMueTXOWV7PXzxEMHyCYMfFAnOEZEOxoZXja+Kyrl7du3+67B5a88ikwF0ZeS81mOGz13/KxG9TkQO9XqhWdC5QFU+uWzS4LvJVhwgQSxUuVT4fCjDUmNfGz277XwiAezfmBnto9XsJyLSVPBikKvA7NJVVe0k40ox8QCgEDRcDyxicbFGzpOaBtCr5ITNXj7dZOWelUStRLXJujoR+iCguPNfjPEd90ltUU/C0r525BS+ov28cHRsAIxoxYTBvzTROr7cpOV20LGqduPw+WsWj7rmsZcQDgD7M2Lu+v+0mv5VRd5BNFztEfWbSyYP/B6RwMEsm9r/96LyM1/P33wcmmZzx1zRNonsA15ozIz20SKyQES6UW9SLUO/u+mylkVknGt5w2cjALKbo6g4AOpdvrp0TGod81OZ8h3U2/hjhLwD6MkOdojkNw3Sc7l677WYuZwQNgDGsHLCkG+I2FeJhLdG1axy3/D5a79w+nce7UE4AIg8/dS/EXPWLRKzb4tIHyLirNvCYOsFhAF1ukxEdhOG7FY5JjZn9BVtnyIUwNNGT2//gIj8QkRYd6QrNA2nEAYAAAAkLb/NXmzcgr+3jU0T/t1gdza2UqeA4vVMyW7Oy3yOoSw51Ss09nfq4Hkmm2BsAIxpxXlDPyuq3yUS3uohYtUeO5vvHXbNmlGEAyiv06vWNHJO62Sr6T0iMpqIOG29BbX3Lpt0PBu6UJclU/s/IiZXO32ShVw82lfHXLHhcjIQZTd2xsbzVOX7ItJMNFIvpt9adEnLXcQBAOB9J00IAMYZwLhBw/cgjQ0y7IAB4M98ktWTRY0amRKe8hcXGwBj31+1jcH6c8X0ZoLh8WRh8lI1WTxs/uobRs5rPYZIAuUybG7r23oese5uE7lKRHrTJzltd2DBvy6bNGQNmYsomoNuX1GRNiKReW926egr1l9drRrrDZTS2JntnzOxa0q55o7UdyTysd9TlaDjc2RdCfHZKoAcno6V2tNxqGkAJcohHdy93OehtJ/Gxoa+/FmR0jbWtSp9EFCGeVETPFbChc9yPy9SpDxNeHbnxBdyDbhz/Kkd3Xt0/zcRudvZFpoaVGeY9OxQw/uHz19dHTH3oe5EBCi2Udc8dsTIq1rnBCarROTVUWo2H47kw8QuWDy1/x+JBKK6ceoRT4roZX7mvfcd1vl39G77+bjZq3uSiSjPhGU6Zkb7TDP5IvUmo0qj+t83XDyAjd5kGIAy0/gVx7I+QQDuFQ4PxzqbvfzrcI18B/UWQGHmvnQ351nsQ1BvmB/yPCc3rocNgA1a+PGWrVKpjRKRx4iG93qK6Bes0vPeEVevfZ+YMUsAhetOTUfOaf1E2NH8kKlMYh70pgecv2zKoG8SCMS1eGrLd0Xk90QiF2fvtG4rh81efSShQNGdXrWmMTM3/Y+IXEQ0MvNg/8OOnEcYcmqtCQGAGEJqDQD6pAivZ+MWuG3wsXaxvgSoI+lOZOnXjBc9kZd52Il557m/0wbeT53NtySw8SEBK8Yfu65mtREispFoFMLLLLCfDJ/fevvweWveRTiAYhh+1brThs9dd4uJfFNEjiIi3vjNhh4DphIGNNY7q6nJRBHpdPP8Cn8H3tps3W8ZM3P9cSQjimrc7NU9ex+ycYGIfZRoZFrfp3xjvPILZQCAQuELcMC9cca4BBgHKS9uU7gHmsI9U6fiAaCs80mSNVMTvB5qV/HnAs0416NjA2BCfjnx2PtD03eLyJNEoyiLDztVRH45fP6am4fNa309EQb8NGZO69Ej5rRep2q3qsib6ZO88qB22/Nvd/LFPhKw+ML+f1Gxa4hEbp3aK031T6OuWPcOYoGiGTu9fdCuzh6/FZGziUacviP2v/W8fuElRy0n2OQaAApB1sdMbeMQNQ2gRIGb/Lxjpr1RlQ19+bMipW2sa1XqJcC8mOuxLPfzIkXK04Rnc05sAEzQzROH/FlV3iMiu5xqoalBjXYo1+TNAAA/rElEQVSlZ6iEdwyfv+b6YfNXv4yAAH4YNnv1kSOuWnd5p8iDInJufXOe1VkWkMEHApsCrYxZMuGYJ4gGklJrav6ciKzzbCwUaWF3lEqwcvQVbRPJRhTFyBltJ5nKH0XktALMvT6d7JawWaeRgWQYADyv14xdcSzrEwTgXuHwcKyz2cu/DtfId1BvARRm7tMES4A2Pmcq9Yb5wYVzyv962ACYsOXnDV0lob1fXP2JOcQfrSbj1PS+4fPWzh0xd10LIQHcdPp3Hu0xfO66i4NK5R+idqmI9CAq3tltamcvntzvIUKBJC2bdNQWMbmESOSqScTmjb5i/ZzTq9ZEOOCz0TPa3lcR/YOIHE00smUqn1o8re9aIuHAvSAEADKoHdQaAOWudWzcArcN5ejT6PmAotcRzeh9kp14jXm4QUEq99Fi3hCLeTOzyrd0o41YVpx/9E1i+nF6lUIuprqJ2AUW1B4ePn/tF86+8tHDCRTghmrVguFXtX6w55buD6jZDBE5gqh4ujZQ/c/lkwfdQiiQhiUX9v+hmKzwpO8ocqM1qVfvtt+Mnd4+iKyEfzOV6Zjp7V9U0R+LSE8CknmncNspO4/6OoEAABR7ugPg2jhjXAKMg3RpCvdAPb5n7LQBmE+yqpma4PVQu4o/F2jGuR4NGwBTsmLikO+ryhQiUVi9xay6q7npseFXr/3au67a0J+QAPmoVi0YMXfde28/Yt1dqvIDETmGqPi7ZlaR6tLJA/6Xm4VUF5dWGy8i24hE7t4aNoV3jZm5/p2EAr4YU209ZOysTdeLyueET3QS7Dvq/iikM5Ta+GpVQwIMAEh3savJzFxRX093AVCiwE1+3jHT3qjKhr78mXdpqwlfq1IvAebFXI9luZ8XKVKeJjz9c2IDYIqWnzd0roh+hkVmkRtl7SNqlzU3dTw64uq1V58xp5Wf/wIyMu56q4yc0/oftx2x7h4xW2AiryvFwrzQ/Z5+c8mUgV8kEkjb0osGPSaqn6a/cUJ/C3Tl6NnrPzvuequQnXDZmMs3Hy2HNP/OzN5LNHJrFmYvvqz/XwgEK/YX5QUA7FMP3NwAQcECnC4cJeiu+DyzsB1xjvnO3AZyBSjvXKYJlgBNcM6k3jA/lHfOYgNgylZMGPJVEWMzQ/H1NJXzmyryj+Hz1nx/1PzWVxISIB3VqgXDr143btv6dfeZyI9E5FVpta7I1OLtT/afQBiQldOeapkvKvzUtBsqYvqlnavbbhl15YaXEA64aPTM9jES1O4WkdcX+Tqd7oJUHujetLNKNpI3AMpZO6g1APyhKdQ6Nm7RC3PbUI5xQM8HFL0uaHrvk8oc+aIn8jIPOzWPWMwbYqneTM3pb5/GBsAMrJgw9Asi8lUi4fVavc5SYc0i+qGa2b0j5q1dNHz+utMIIpCMU66z5hFz1334tiPXPaBm14vIy4lKYdzW2aHvX1XVTkKBrFSrGtY0+ISI7PKz7yikNwah3DV61oYPkKFwxelVaxo7s72qIjeKyJFEJDe1wOQjC6YN3UkoAAAAkBQ2IwPpjxtEkc5mX39rHR+WAmi8RliCx6rvfahdycbXnXjGvcdZzqtsAMzIiglDPiMis4lEaQQmMlosvG34vNYlw+aveQchAeI547rNhw2/unVqv93rHhax74nI8USlUGvm+2th58iVFw/Yzs1B1pZPaXlQxL5EJNxhIoeJyg9Hz97w/VFfe/IIIoI8jbpyw0t6H7rxDybyBdbOWfQdB/23wbNuvLTv7QQUAFiY+rTYrX+m2/+lsMECAMo+t6U838R8PQp0z9SVfGezDFDGedESPBb1htbJn/ud7jnxJUaGVpw3+CIVvZr1h1uNcvpRt5Fq+uvh89beO2LemvPGfru9N6MB6NrIeWtOGDF33dXNu3etVpPZIjKUelO47m5tRW34imlDNxML5GX7lv4zROQ2+hvnLvhDQbfd942ZteFsshR5GD2r7b1BZ3CXiPBE7/zrwd/29HziCwSCFXtXK28AeHE9aPzLdE2holGwAKcLh4dvwWavInfEmsI94+ekkW+9NdIJKNhcplFKQOQXWObXw/xX2H68JPeXDYCZ5oja8vMGTRaRrxOMUjrRRK/Zs3PPmuHz1s498+rWVxAS4MUdlunIOa3DR8xtXWph8ICInS8ivbOfe/koLAPtFtiZiyYPepxQIE+rqtqpFf2QiPAUSvc+RBhoKjeMntX24zGzWvsSEWTh9OqjPcbMbJuvpgtE5LACrPl974I6A5WPLZt0/G6yk7wBQO2g1gDwh6ZQ6/iSmV6YVEA5xgE9H1D0uqDpvY+m8R4v2pDPPOzUPGIxb0i6c00jSdLYFj42AGbemKutOG/wBDGbRzC8W6snVSr6iMgFgdrfhs9fe/OIq1vPHne9VQg0yuz0+W29hl+9bsKIq9fdbyrLRGQELVSh6+pTFbPhyyYN/BvBgAsWT+73kIpc5F/fUZaaYe83qTwwZtb6T1SrxvoFqRlz+aYT+xza648iOoFouMK+xk//AgAAINWOM+XXO77gJgGQybhB3uNSPa511CkAjdcIS/BY9b0PtSvZ+Koz5xT3Hmc1r/IFWi65rbZiwpBJIjKbYJS8ypmcYWo3bGtrfWT4vNZPjZi7roWwoEyGzV3zuhFzWq/qWetco2bzReTlRKXwa+btFoajFk0ddBc3Ai5ZPLXfdSK2lEg4W7eOMtVv3tGr7ZaRV7adRECQpGrVgtEz26dJJbzDRMivXPuOF3yE8sctO/t+kQACABOEL4vdaDOd95cCAHC4ePOUXf/kds/UlXyn+QHKOC9agsei3tA6+XO/0zunJrIqr3uqtkLkwuHz1+4xtcsyzaUSdPLmWek2kaNF7KsW2BeGz1t7Uyj2g03N61fcOf7UDgYLiuZd89Yc1RwGH1CRj4rIyb73Wb7Vm5ztFgnes2zqwN8TCrjYm9mMto9rk90jIk7+3Cz1RkRU3hSEdsfoK9Zf29y9s3rD+UM2kbxoxNlfW3fsnU0bv6sibycaThW8LWGl6QOrqtpJMFixR5gj+OYSwD71IGrF2ff1By8u8SoaBQtwunB4+BaN1zq42xE/nTjJ3rM0kpG5DfXninX1g42kE+DZXBZh0Hb50n1fkFXfwtquBP14Ce4vTwDM2fKJgz8lYjzVAM/oLiLnBKKLWjoGrhkxf81VZ17Tegphge/GXW+VYXPXjRoxp/Vn3cKgVUXmiMjJic29qbV6SFCnqL5v6ZT+NxMKuGrpJf3Wq8i5RMJ5FRE9v2N380Ojr9gwbVz1vm6EBHF6k7Gz2ibXmpr+KlE2/5XkW7LcuyC1CYsuPvxRMpW8AQBqDQB/aezaZWVfkDA/AYwpQgAwluO+j6bRNym1yZO+u+znxAZAB6yYMPQLZvJZIlGUmpFY6e9nppOD0O4YPm/tfSPmrb10xNw1Q7gZ8MmoK1tfOWLOuunb1q9bHYgtFpV/ExE2apRPp6h8YOnkATcRCrhu8bT+N4jINUTCC0eIyBU7e/e9b8wVG/5NzPgmBHUZM6P99bse23irmV4lIr2JiHNLrx8svLTlR0QCAMqBL1AA+FiLilW7WEpz21CWG2yOvZ6EB6hz3h6LspRKfOPOI439nTbwfprJeUbBTwA7YuXEIV8ZNn/1NlG9kpKB/XiViVwugX51+Py1v1axH+yUbr9YNbHfNkID14y6svWVYZO+V0zeG4q9lo/zS6+mqh9aMnnA9YQCvti+ZceFvfoc8iZL6kmlcdZAlM4oXmYiPxt9RfufddaG/150Yb+bRJUIYh/jLt982K6g9gVRuYC1sLN17eE9PfV8AgYATBBFbqbr/mkp1gUAABfnp5ivR973wIe+i+YHKOOar/5a1liNyP6nhKlpyd7WosUznevhSw+HrJg4dM6w+WueEJVvp3pvSlJrCrr4CMTkDBM9o4d0XDN8futSC+XGWredS345/qVPMYqQl1Fz1r/apPZeU31vKHKiWLkaGi/rTTZzQU1MP7RkyoCfMErgk1XV43aNntP2PqnZncLTwXxykoneMPqK9rt15vr/XnRR/4VsBISIyOlVa+rVa+MndlntiyLSQkSctctUzlk26agthAKO97gACl4P9l3jH/xg8T4ToGAB1KZ8sXnLp5v89DGT3RzGPIR806HLfCZFAS/E2uwWY3wn37fs/yRY2xV1QmrkuH7dX34C2DErJg75vpn+q4nsJBrowqFiNk7VftTU0WPT8Hlrbxl2devk0deuHkxokIVh89adOHLO2uqIq1v/Fmp4j6l+QUROzK0fSK11RUw1UfvY0qkDfkwo4KPFk/s9ZKKfcHFBjQPNBc9G52TT4MYxV7T/ZdQVbeP4aeByO2vmxjN6H7rxTjW5VpLa/FeSjLLs33DSokta7iJry5I3zGgAspujqDgA8mv0NYXapdQ65qcSjSGUud5S14Cy1vp472H7PUTyPw9MbaIPcfmceAKgg1ZOHLxo2Pw1o0TlJuGpM26Nz7oreub/fq4iIm9Rtbd01oLZw69ee7uJ3FBRu3Hp+UP+zs1DEkZd89gRtc7md6jIGSJypoT2UlOl08H+1FTso0smD/ohoYDPlk7rd/2o2RveJSLnEg3/mMhr1OT60Ve03ykz2/978UV9F/NEwPIYM6vtrWL6pVDsdKLhw4C17y+8rN83CQQAlLZvY8sAAO9qUbFqF0+u4bahLDc47VqXXm3kmUZA8XqsJOtcDsdiHk4lvnHnkcb+LvrNjPtTz2mvIdgA6KgVE4f8Zvj8x99lGiwVkb5EBJG6YJU3qsgbQ9Hpw+et/ZuK3SimS3duGnTbqqp2EiLUY1z1vm7bjjzyTaL2bhE5I+yUU/XpzabAwXSI6UeWTB3Ik/9QCIfInik7pNsbROQkh9ZAiOYUUVs46oq2v+msDVfvMfvByosHbCcsxTTmik1vlLD232J6JtFwzAHrmt5juzrOI0AAwARRpma67g/92RkJAHBxfor5euR9D8rZdwFwf81Xfy1rrOZkNW8xP/r0+UGxrocNgA5bPvHoP50xv/VfKhouFZFjGRsU15heZaKvEpVP9+jbunXEvLW/DU1/aU3Br1aeN+BewoNnjLveKtvXrn1N2BS8Q0XO2GbydhE7lLVbgetN8nPBbhU9Z8nUAQvJCBTFgmlDd46Zuf5fw4r+SUSOIiI+L6X0VSJybTfVr46a2f7t5qbO+TdOHfhPIlMMY2dterdZ7SIJwzNZAXjVQG2phPbeG6qDdhAMONzjAihhPdh3jZ/GUwooWAC1Ke92nNWTPzf56WMmuzmMeQj5psP+8/N5J0KKAl6I9SS0GOM7+b5l/yfB2i7vOSitWDZyXH/uLxsAHffLiYPuH3bdP98staYlInIyEUGDepvIaFUbrbWaDJ+3dr2I/ErUfqk1+eWySUPWEKLyOH1+W68enXv+nwSVt6rZm7etX/dGqQR9vP1xxNTmXj4Kq9N2keA9S6b0v5lQoGgWXTzg0VFXbni/mCwXB56ESlU62FxgItZldI5QtYs6a5Wpo69oWyihzl18ccsqguefc6+z5nVbN71fzC40C1+X6cjgH1Qlcnit6EdvuKzv38nmsuYNMxqA7OYoKg6A/Br9+Mek1jE/MYZQ9npLXQOoEbHn4WcPkfzPA1Ob6ENcPSc2AHpgxfhj1439dvvb9+ze9TMTfsqquEu9XAwQkQ+I6QcsEBk+b+2DIvJLNfmdqt669PxBj3Efi2PE3DVDRPUtIsFbxOwtUut8rWjQJMaCHA33Lk+FYqOXT+5/C8FAUS2Z2v+Xo67ccJmYzCQahVERk/eI2ntGz2r7q4nOb640XX/j1COeJDRuGz1742Cp2SfWbdn4XyIymIh42j6oVG+6uO8NRAIAIMKXuwDKUbuSq3X8jCe4bdzgMtQ6AEWpTQeuC8lvzmMe9j+H4s4jjf1dknmd3zzJBkBPLPx4y9ZTrrtjdEttwDdN5CNEhMVUSl4uIi83lYkm9swTAm830dtUwts07PmnZZOO2kIiuO/Mq9cfF1h4cvD0k0NPNpHXi8jAp/OXTgSJLv43BWLDlk8edCfRQNEtmdLvilFXtp8iYu+n7yic16rYdZ21jjmjZ7UtVgt/2GN7/2ULqrqH0LihWrXgrkPazzTR8VILR4soa1m/F1YLbrr4qC/JJUQCAFDexpcvxwHGJVCEccC48e2eqZhYJj+jCQBR6kRW80l979N4XWN+LNPnB+78vDBfmnjkzvGndojZx4Z9fe0aMfkMEaG4ZmCAiIxVsbEiKhbsCofPW3u/itwuoreGYXjb7s2D71tV1U5ClY/Tq9Z06GHrjrcmOdnEThaT14voyWLhEcKSC+n3FY8HZsOXTBl0P4FEOcaLWsfM9Z9orugrReR1BKSQeojIe02D9+7s1b5p1Ky2n4raj5ZM6/dHUWVazcHYmRteG2rwgTut/d9FZCjdTSH6jrtt556PMqbgcI8LoEiFoIF6sO9nimk8pYCCBdCr5IvvT3y6yfF+dpB77J/c7lkOtWn/1/q8E6FVAopbt2KM77hPaot6EqztijoHubNRLy1sAPQu8dVWiHx22DWr/ymi14hIcxEWmfBGICInmsiJIvYxDVR69G3dPWze2vvV5H5TvVdVHggsvHfHxsGPsDEwOWOnt/fuPKTj5aHIK9TklWLyclF5hci640ORbk+PZZbxebeuJfsw5V4LaiOWThqyhvxAmay8eMD24VeuO7tiwa0i0t+rBXVp+mUTsUSic5SKTBDTCWOuaH/YZm74YSDyi4UX9/8rQU7X6Bltxwcq7zWR/zCRV6uxaHG/C6rbBrPK2YuqLTuILHnDjAYg6zmKigOgzkWluPTzutQ65qcy5Tuot9Q1gD4q0WM9ewjPf2qYPPL8/mR3TmwA9NSKCUO/dea1ax5Rk5+JyBFEBDnqriInicpJKiZiIqE8vTFw+Ly1D4jI/Wp2r1lwf6jytz29dv9z1ceO20XY9jVi7roWVTsmNDlaAznaQntZIPpyE3lFh3QMeeYfrj87T4CeK78w3yLd9oxdOuGYJ4gGymj51IH/HHnV+rM01N+ISE8iUnwm8lJR/UIo8oXRV2x4XCxYqipLZGvHrxdVB7GRqeEAm46esek0CcKzVewsEXmVFx//0ndEtUvD8F8XXtbyOKEAADg6uwNA6rUruVrHxi1w21CGWgegKJPPgetCspvzkv+Z8y6uh3n4oMKY9z3uPNLY3yWZ1/nMk2wA9NjK84b8euS8NW+sBbJYRI4nIi7OZ6VucbvL0z+P+DrTp4MWiEiPbd1k+NVr20TkcRFZrWKPiwb/DE1Wa6CPB1JZvXRiv/VFCkS1asFdh7e17G4K+6pJS6A21EyOFpGjReSYvf/zWBHraSKiz/xKjarwwBs4uNBfeGjY+f4FE47ZSTRQZkunDLht9JVtHzazn8rTT8h1ZR2N1AuhHi1inzSTT0qvpl2jZ7X9RlSWaBguXXTxgEcJUH3+9cr2gR218Aw1PcNmtb9bAhn4XNKjgEIV++hNl/X/A6EAAND4vmCNTfcDMC4B78cB4yb/HinaPUhjgwwfYgJovE5kNZ/U9z6N17WQm16izw/ceGohGwA9t/T8IX8f9q3Vb5Q9+jMReQcRYfHhiX57/3OqiYrY3oVGaBJKKMOvXrtLRB4XkzZR2SwqmyXUzarh0/+76eaaymYV3aQdulkr3TYvm3TUlrRP+uwrHz18d6W5V02DXk0ivWpmhweqvUykl6r2FpEWMen79LVZfxFpEZGW22RdXxEJgr11m0198LZPUvvWzicGnreMn/cGRERk8dR+Pxt1RdunRe1yolFaPURkhJiMMA1k9My2+1Xtd6HoHyo1vXXhpS0PEqKnnXXFpqG1Wu3NqvJmUX1XR6ed+PQHzijJguyymy7t91MCASd7XADFLwQN1IN9P1NM5ykFAOhV8m3XqV3+3OSnj8kGvTIso3O6ZznUpv1f6/NOhLUdwFS5T81I/yd949VhCpb7c1Cx7xEbAAtgxSeGbj7lujuG9a0NvEbEPkF+owAFu4eInCAqJzw3w+7990h7j/H0ZjoTaTIx2SXDr14rIrJLRJ55Ktl2Eduz9823qkqniIiF8uSLvmvuriqHPDuZm/QQsZ7PnbYeIiK9RKTX7r3/XWXvAjvQp89BhXHEktuBhXnaF6/66aWTB7LJCXiRJRf2mz5qdtvxIvZxN6tSWfsOE7EcoqPyShN9pYqcG1ZMRs9q2ygifxSTP4Yqv69s67yjDD8ZfPaVTxze2dl5koqcJGpvVJO3hGFtiOpzDReK2AUdYFioXXPTJf1mEkXyhhkNgAtzlJsVhw9oASnFuIx/TDZ7MT/5me8AfRBQzrkv/c158Q5BvSnP/JDWvXbxnF6IDYAFcef4UztE5L+GXbPmPhGZyb1FSfXY+x8RkSOev8h89nvm/aw79/0OmsUp60U8zy5R+cjSyQOuJxTA/q0/tOW8/tvbhqrImUQDL9JXRMaIyphARKRXU8foWW33itr9Kvo3EXsgsKb7u2078h8LqrrHt4sbO729d60iJ1RMjjcLXykavE7UXlfr7Dj22W7K0pyWHfhai76jqzu0qPsxLZOIBADAo9kdAFKvXcnVOjZuZaUmIoHLJ8jaFIWudfyMJlCUyefAdSHZTYPJ/8z5/s/32ethHk7lvsedRxr7uyTzOrt58hlsEiuYFROGXDVs/pq/iMr18vQXjsh9PuOjS7Bwh7faAgvOXjyl/x8JBXBgd47XjnHz2/5tx277lYi8gbkAB+kKm0XkZDE92fbe3JrUZGev9s7Rs9oeEZX7xORBNfmHBLohNFmnga5fd+hRbXeO146sz3fU1548ItCdg6SpcrSIDpYwHCqBHi0ix4jJCSY2OHhmg5/uTVRyFc/l++27tfbvi87RGtEAAND4Asi5N+UJegDjpvA9UrR7kMYGGXo5oMhCSWIzfNd1Iqv5pL73oa7x+UFW55TM9bABsIBWTBzym5HzWk+tBeENInIyEQFcXA4DzvckD6gFoxZP7f8IwQG6tmBiv21jZrWOCoPgdyL6CiKCGOuyE8TkBJG9v15sez+EDU0Gbm230bPa2lSkzURaxWSDBPKkiuyU0PaEottFtVNEtgYiYaj21P7eJAilT6haCcS6i8khonK4qBwiJoeIyRGicpSY9BV55j97mkQqe+cHe3qTH593oD5/k6Bj1MqLBm0nFAAA1xa7aR+TDRMAci1RKM08xHxTfLndsxxq0/6v9XknQvICSLVYuXosbitNeDRsACyopecPemzc7NVv2do9+KapfYAaxOKmPAWbvEH+GeF73pjIiu626/03Tj3uSe45UL9FFw3aOGZO67BarekWFRvKPJV332F7d9IVpovqbyL9ReQ18vyH7anuzQF7LicO0G+ZPvPvu/c+sE+e15uRSEjOo2GTnrl42qCNhAK5z2h85gpgP/XAzQ0TFCzA6cJRgu6KzxfKfg+Yh0C9BZDk3BdhXHf50n1fEHnOfPYQ0eoN/RHzQ7LnlP71BCRNcS2YNnTn8omDP6giF4pIJxEBUKp+AHFjN7vXoAGj2PwHxLNo8qDHVTuHicgmogHQdxSJ1feidYGE7148re9aEgN15w0ANFg7qDUAfFw8JFfr0liQNHOrfJxv+EwcjBsAHkw+WfU0ltG1G/NwqvfdYr+fNnCe6mC+1YcNgCWwfMKQ2YHYGSKyjmjkNZ/R4gJw3i5V+ejSyQMvXHCO1ggHEN+SqYPut8BGici2HNfRQElyjT7boTuxuRZUzrzxkv4PEw0AAI0vAN9XDmxGBlihF79HUmodACdrQOPvowm+D2vUcs2N2Z5T0mOKDYAlsWzC0N9WrOP1IrKKaACetT30FUjfOjE9fcnkgd8jFEAylk4ZcJsFOkpEthMNACWwtWI6YsnFR95LKAAA7tHMj8mX6QByLVEozTzExtbiy+2eafb5bhRJgHmRY3HPMwufFnJssAGwRJZOPG59n76DzzCRr+3TR/GzVfB5rUvegLxpxG1BrfO0pVMG3MZdAxLuvab0+79QbayI7KTe5NV3EB3yBhn099sstJE3Xtr3doIBJysTn7kC2E89cHMDBAULcLpwlKC7Yp1Y9nvAPATyD0CSc58mWAK08TlT49Ub+iPmh2TPKd3rYQNgySw4R2srJwz5tIiMEZHNRAQA/UD81tX/Jly/cegTm/9l8bSha0kYIB3Lpg74tYVylojsIhoAfYf/vcM+dgQiYxZd1u8WkgDF754BuFw7qDUAfFw8JFfr2DhDb0sqgHEDwJ/JJ6uexjK6dmMeTvV+xP87beD91MF86xobAEtqxYQhSyph8HoR4YlPmc1ntLgAnLFdRD+wbPKA8QuqJ+4hHEC6ll7U/+ZQ9V9FZHfG62igJLlGn51TnmxTseE3XtyyimAAAACgiCsHNiMDrNBdW4incUxqHYD6ZLu1qPFaowm+D1/OuDu/+f+EQPN2lMIpS88f9NjGyvq37f1J4JCIAA4vb+krkJwHazX5f0snD/hfQgFkZ9nUfstUbJyIsOkWQBFsF7VRN13S73eEAgCQPPXkmAfHl+kAABfnNuYn/+R2z9SVfOcLMsDnmpT+uC7DsUrYC6mD5+QBNgCW3J3jT+1YOWHIp03l3aZSip+AZLEC8galzRuVBU27mk5bMW3gfdwdIHuLpw1YFKqeLSI7macAeGy7iYxaeFG//yMU8KaD5jNXAPupB41/mV6MjYoAHBiXKb4Fm72K3xGbb/kOHCT/qEFA0eYyjVICIr/AMr8eFLYfL0jPxAZAiIjIyvOG/Lp7JThJTBYSDZS0HoJcK3Krt0tEpyydNPCchZe2bCUxgPwsm9pvmYgOE5EtRCOruYDleWFmM3pcFzwpEg5bdEnLb7nhoN4AcK12UGsA+Lh4SK7W8aE78xOpANaEAPLvbVyrC7bf00z+SX/UuXTve/y/K9fmQTYA4lmLxg/auOL8IWeJyEdEZAcRSWN8UvoBZO6BQIM3Lp08YA6hANywZFq/30kYvFNENjm0LgBK+tEBImirib1j4SX9f08oAAAAwEqDlQnAOMiDOnHPuMcANciP98jhWHyHk8O9Sj7oFvO4FvOckppX2QCIfayYOOT7QaVymojcSTSAkvVUKJofdO7RUxdP6v8XQgG4ZclFLXcGEr5dRNYRDdB3wAOP1yrytqWX9PszoQAA+NuMuN/g8GU6wDgDc5uL44BxU/R7pimkLR8sAdSkxuuEJXis+t+H+lWu1qlY95sNgNivZZ8c+LeNTevfJCJfEZFOJiUgSt6QYcg9G7aI6AeWTh744ZUXD9jOXQDctGjawPuCsPJOE11NfwPAVWrydwkrb1t6YcvfiQb8TmZCAGDfetD4l+maQo9OwQLoVVB2UTc8GMlY4HtMbAD4PpYjzCsa/QW5/JRw3diOlVyPUa6f8o2LjMMB3Tn+1I4VE4d8NlB5m4jwZQ+KXg9BrhVjGWr6ew2Dk5dOHvC/3HzAfYsu6vuANVXeLCL3EI005wI+OvRsNqPvcOdy/iyd4b8suuzIx7m5yK7eUJkAxK8IVBAA/jT6mkKtU2oj81Mh16Yo07gheYEy9Uu5bN7TNOqNZno9ZeujGs+X8mweZAMgurRswpBb++y2k8R0uoiERKTR8UnpB5CKThH570MH9X/7kqn9HyEcgEe91qSj1lQ6greYyEpv1yqA1x8d4AB+1T2snL7wM/03EAoAAACw0mBlAsAV6Xw4SK0DUMw6l8Ox+A4nh3ulic9XFvOcLOb1JDGvsgEQdVkwbejOFecPvsxMh4vIP4kIUKh1HXxPC5X7TMM3LJ08sLrgHK0REcA/Cy9t2WpNW8aa6k+JBug7kP+tt+8PPKzviAWXHfkU0QAAFKsZcb/B4ct0gHEG5jYXxwHjpuj3TFNIWz5YAoo5jSX5tLuu64QleKz634f6Va7WqTj3mw2AiGTl+YNv7tYUnLj3aYBebzJhsYJ084YMQybZYCb6jaC7vWHZpMF3E2nAb8smHb976ZSWf1eT/6a/AZBf46JzF17c8tFvjNcOgoHC4fNbAPupB41/ma4p9OgULIBeBaVfmkVMHCMZC3yPiQ0A38dyhHlFo78gl58SRg49Rnl+yjcuNgAiskXjB+1Ycf7gy1SC00XkQSIC1pAob67l2uo9HITyzmWTB4xfNH7QDm4yUJR6pbb4wv5VM50snv9jC/diy/LcydmMvsMlNVH55KJL+04WZcAg73pDCgKIXxGoIAD8afQ1hVqn1EbmJ8DzccOXh0CZ+qVcNu9pGvVGM72esvVRjedLOTYPsgEQsS2fOOiW3Yd0nKSil4tIJxFhqQcgE6GIzan0sNcunjpwFeEAimnphf3mSiCjRORJogHQZ2dgq4icvejilusIBQCA2RoAqHUoAPZQcYMzqF3UOgB+1LkcjsU87PX89sK/y25ja9jgdbIBEA1Z9bHjdi2fOPhTpsEbReQuahFAriFVD1oQ/svSyYOm8NQ/oPiWTOm/IggrbxKRh5gLQN+BFD0aauXNiy5pWUwoAAA0I27gy3TAvXHGuAQYB8WvXek+6RRAkZZoST7trus6YQkei3mu8MlZ6nNiAyASsXLCoDv7tAx+g5pNFrEtLFbAAosMQ6LZUBOTmYfWOk9edsHg3xNNoDwWXdT3gU7Z80YR+RXRAJBCg/J/EnS8YcnFR95LMFAafP8E4JlC0EA9sIjFxRo5TwD0KuAm13nMZDeHkYzZLMupTd7HBkCdYzlCIdFG3ifdwkdtymFS0SwmJM3pb5PFBkAkZsE5Wlt+/tC5YWivFJEFRASe1UPA1WXonyqhvWHplIGXLJg2dCfxBspnxbShm7dv6TdcVK51oip53XcQHfKGHvd5vtVjZ993L7po0EZuGNysN1QmANn1NlQcAPk1+vGPSa0r/nzDPQP1FgBSqhGaRr1J8smI9FHlmFuSPacm0gpJu/mCo1tF5Jxh81cPF9V5YvJSonKgkkYDC2Q6f/rVcT1lJp/tNWjAtQvO0Ro3ECi3VVXtFJEJo2e3/cnE5otIT6IC0GfH1KliFy28pN8cQgEA8GW2ZnYHQK2Lwr8PQpESUoEb7GDtoq8DqE3114Uk65yKiWVbf3gcWyo5FHceaezvksxrUg4eWjFx6PI+u+w1IvIlEdlVmloEkGto3PVNQdOrlk0ZOI/NfwCeb/G0ft8x1TeLyCPMBaDvQAxtanImm/8AADQj7mO/BuDeOGNcAoyD4tcut550CsDlJVqST7vruk5Ygsdq/H2oa44nZ2nPiQ2ASNWCaUN3rpg45PMWNr3KRG9gsYLyLbDIMETKhodFbMTSyQPft/CCllYiBmB/lk7t9+dm7XaKiS4iGgAidCJ/7LTglIWXtvyGWKD0+JwWwDOFoIF6YBGLizVyngDoVcBNrvOYyW4OIxkzWa1Tm/yPDYA6x3KEQqKNvE+6hY/alMOkog6ek4M9ExsAkYmVFwx4dOXEwf8qIu80kXuICFhDgiX6C+wQkf/e0WfXq5dOHrSceALoyo1Tj3hy6dSWs9Rsioh0sgCN0ncQndRmM7jc436jx46W05ddetQabgz8qjdUJgDZ9TZUHAD5Nfrxj0mtK/58wz0D9RYAUqoRmka9SfLJiPRRyd/7Yj8hkA2AyNSKiUN+s6d98OtFbIqIPElEKP1AydeLZiI/Ma29fOnkgdVVHztuFzcJQP01TW3xRQPmiIRnishaAgLQZ+/HDlX90KJLWsYvqOoewgEA8Hm2ZnYHQK2Lgo0zIBW4wfR1APypTZZJnVPqT0FyKO59bOzvNLP3i4sNgMjcqqp2rpg4dE5Qq5wgKtfKfp5aQ68NkGsl8FcxO33Z5IH/vmzSEJ7GAyC2JRcO/E237h2vE5GbiAboO/A89wdh7Y0LL+77Q0IBAKAZAYD9Y9MKkP64gW/3TDP7GU0AxVinWYLHcmH+sYTOF/nmZRnPiQ2AyM2ySQPbV0wYMsHC4DUilusX1ixWQIYhQxtE7LxDBw54/dIpg/6PcABIwg3nD9m05ML+Z4vKRBHZSUSA0ref396ttdNuumzAPQQDOAA+pwXwTCHQFI55wCk6mpCbBNCrgJsc45hsbPVxGe/JPVP3YwOgQPUgxntY4ien1CZXbrAWJbHTwwZA5G7lBYMeWDFx6NmByptU5fdEhPpe1AUZSr9E3yEm0027nbB08qCvLzhHa8QMQNKWTOt/jQS1U0TkL8xTB+s7iA79TWFtMZMPLrq05RMrLx6wnXCAygQA6VYcKhRQ2kWlU8ekdjHf+JfvAPkHlHfuS39zXrxDUG/KMz9oYc+JDYBwxrIJQ25dft7gt5no+0XsUSICoCDrxVBEvlOpdZ6wbMrAy5ZNOmoLNwFAmpZMHXT/IbrnTSo2V3hoCErNga+1su07bg9r4cmLL235EfcejFAARa0FbHIBQK1zd0HCPXYYqYBC1zoARZl8LKOJzBy89jLnQdz7bhnff0s8r5PHBkA4Nv7VVk4c/NM+LVteIaIXiMi64s9ntLigfyjwgne5WXDysskD/3PxtKFriQiArCyYNnTn4gsHTFYN3ikijxAR0HcUWmgiMwYe1vetSz7Vn/EOAKAZAYCI2LQC5iGUITct4jGNMQQgwtjOqj+yhM43mfehrtG3uXVObACEkxacc+KeFRMHz+vWFLxMxKaIyAb3JwuADMOzbpVA37V88sARy6f0/yvhAJCXRdNafqu9aq9RkenC0wCBInrMVN61+JKWS78xXjsIBxARn9MCeKYQaArHPAA+IQJAr4J0b3K8jRhshM2fN/dA3Y8NgIwGv7r8Hun/1DC1KYdJRR08J4ewARBOWzR+0I4VE4fO2S3dXiZql4nIk0SF+u7zggyFX6LfaybnLJs88E3LLhjwa+IBwJV+atGF/S9T07eLyD+IyDN9B7M4/Y33vfMP1OQ1iy9uWUUwQGUCgPwqDhUK8KN5LvoxqV3MN/6NIYD8A8o796W7Oc9iH4J6U575QQt5TmwAhBdWTey3bcWEodM7TV4mYjNEZBtRAeDKnK4iD6jo+5ZNGvja5VMGLiDAAFy06KJ+t9Sam04Rk68LTwNEaTjwtVbynyWsF5Exiy5u+fDCS1u2co/BCAVQtlrAJhcA1Lp8FyTwdL4hFVDoWgegKJOPZTSRmYPXXuY8iHvfLeP7b4nndbLYAAiv/Or8IZtWTBx6abem4DhR+aqIbSnGfEaLC/oHT90vKh88dODAVy+dPPB6UR4nBcBtyyYdtWXxRf3PM5G3ici9RAT0HZ6FX/VnEnS8ZtElLYuJBgCAZgQAksOmFTAPoQy5aRGPaYwhABHGdlb9kSV0vsm8D3WNvs2dc2IDILy0aPygjSsmDPlMUDtk6N6fBn7CjckCIMNK4l4x/UivgQNfs2zSoB8tOEdrhASAT5Zc2P8P27b2O1nMpghPVgZ8aCPXmdm4hRf3HbfookEbCQiQID6nBZDDz3jyCREAehVkMQ/xlF0fl/+e3ANqE8CclVo9UK+OxVyYw31SB8/JEU0kE3y2bNJRW0Rk+hnXPfz1po7uF5jKFBE5ish4Xt89mymNtU6Z8vMuqcmXlk0ZeBNP+wPgu1VV7RSROSNmbFhcqcg1InJm+eq6iRizOJwWqti1HT0rn9679gFKjJUXgNTX/M9+JhW14lChAM8GudPHpLuCq/fM73xHEWo4gGLNZRHmlS5fuu8L4s+ZzHf0+P6eExsAUQi/HP/Sp0Tky6fPb7uqu+z+uIhOFZFjiAyAROZelVWiOmPZ+QOWi6rJVMIHoDiWXdL/YREZNmr2+verBTNEbChRAV8EObHmvy8Iw3Nvuqz/HwggqDcA0FjtoNYA8HHxkFyt44ts5idSAawJAeQ1XqNPPln1NC94H+bI3JuQuPNB/L/TWD92//T7JZnXL45TfPwEMApl1cR+21ZMHDpnd/vgl5nYB0Xkz7nXsUhDHoBDQhH5mZm+YdmkQe9YdsHAZTz1D0CRLZk24Cfaq/MVZvJFEdlJRFAc3k3fO1Xl8z129H09m/8AAMzWAFCc2kWt8xw7lOB8QqVzTGodABcnSsvofM3Baye3fG/g0jsnngCIQtr7k3Y/EpEfDZ/f+lbT8FIxGUX1Rf5S+rdM/KuEJO0xkZ+GgXx15QWDHiAcAMpk0fhBO0TkCyOmb/pmpbnzq2LyQfon0HdkanGl1nnBjZ8a+E9CAQBAls1I9g0OT7sB3MO4RJnmoaTGAePGv3uQ2D2LnbZ8sAQUeWpMpsYkWSdcPRYaim0mt8K/+80GQBTe8omDbhGRW4bNa329SjjJVN4vIt1ZrCDPBRmctN5Ev97Ngq8vnNJ/A+EAUGbLLj1qjYh8ePTMdf8jQXCViLyuuOtKEzFmceTeTN4dqk1eckm/3xEMIIeVF5/fAthPPWj8y3SKC+D0IPepkUjxLfhcu8gd8dOJk+w9Zm4jlADQeAF7bm6KcKwuX7rvC+LPgdGukX6KSdWVc+IngFEaK84fdNfy84d81IKmo0XtMhFZTVQcrtFAVrmmcpeIjO9Vq71k+eSB/83mPwB4zuKLB646dWu/15voOSryMBEpFz6HzqLHtU0qNqXHcX1PY/MfqDcAkG7toNYA8HHxkFyt40N35idSAawJAeQ1XjXB99H0roc5MvcmxDLNSxGLedMt8bxOBk8AROmsPG9Am4hMH3f9fVc+1d5nnIpOFpHTUq1jFmXIM7MAGeg0sV+oytxlFwz+PeEAgAOrVjUUkQXjqvfdtLPXUeeJ6mdEpIXI/P/27j24ruq64/hvnXMl+SUZbEm2hR2iALEnDmagwaQuST1MApbBTsPETmca0vaPhDYOCjiAIdOZinQ6GXscd+LEJDhQCg0ZWoWJQTHC1EyUAIGKAdxgHh3LdbH8tiWwJctGuues/oEajJ+674e+nxn9I13pnrv23muvfc7WOSgtRVdnD8j8h2OixPda75p0mPYBAICzYgBGR+4i15U47tqGou9QufmbnuIWCXIdQF4rp+MdWU6jSCjevjV67hDIBkCMWq1LZw9KekTSI0337vp07LpZ0lJJ44gOcovHVhVwLt1tsd/v5vc/1Tx9FwEBgBRqp5bZg5J+sHjlwX+OE/FySd+WVE1kWG8jJYNuvj52/eOTd9TvIxwAABRTMZL/AoeL40DxYVxiNM1D2RoHjJvSa4OstVna3ZYTS0A5T43ZyTHnzhMjf59s5hzyV9HUV3lpitJqbzYAApLavzH9RUkvfu6+7beG0ZivuPxr5rqMyCCXCzLkTezS04H7TwZ6GzZ2tFiSkABA+p5YUdcn6Z6mtXvvDYaCO036G0kTSntd6ZIziyOnIpn9a5gcumfD3dP+l3AARbjy4vwtgNPkg8wvppNcgGIb1yW7cSuHb8F57XKuiN/vONltY+Y2QgkAmSewD+amFP7WOV966gvSnwNT+4zUU0yqxXBMbAAETrD55osOS1onad11P+6ea7G+LtmXVeoXtcnRGJ32uenBWMFPn75l6g7CAQDZ1d487aCkOxat3rMytsStJr9FUg2RKS+cuMhYLLPH4kh/v3FF7ZuEAyDfAChs7iDXACgdH5wgz16u46Q78xPAmhBA4WubYssLH3ofyqWC94P8zwfl0+hsAATOYNPfzuiU1Nm0tme5h8eXSPFfSnZ1WvkmpZxBiQtkYFCuNpk/dKy3oZ27/QFA7rXd3nBI0t9d/713v2+V7zVLapY0icig+OS1zh6S2SNxpFVs/AMAoEhnawAoUO4i15W4crhGzOaGMm+M3DQwuQ5A8YzvYn2kLxNsIds93X6Z2e9lsrE1+/2FDYDAObQ3Tz4i6QFJD1z7w32NYRjd5O43SbqY6ICFe9F4We4PDYb+82e+Ob2HjgAA+bfx7vPekXTP4pUH10QJ/4bJmyU1EBnqjlFmQLL7FQXfb7tr0k7CAQBAqRUjFDhAOWLTCpiHGDfkukxff5a+mXa3pe4CynNqzObj57N5t7jMcg7zXKmXY5m0f+nMV2wABFIw/BjR78r9H5p+tGeem3/VTUtNOo/oILXJnzIhC3aa/N/Mw4c3fmvqVsIBAMXhiRV1fZJWLml5/Z8GqmuXmnSbpCuIDMrcO+a2big5tLb9O9MOEg6gRHH9CUAW8sGpZ3xyc5cCAJmM6xKd9KlVkNb8kc2NGHTGfI5ragQA5V6YpHUntHO+9NQXZD+fnv4gyNuF7lfFWJ/k95jYAAikNU7N26XnJT3ftHZbs8Jx17r5Erl/QbIaAsQaEjnT69JGlz+86ZaGZ2RGDwGAItXaMntQ0s8k/WzR6gNXy7zZpRslhcVZd/jwfyfiZJy4OKv/NvMfV43VA63L6voJB5CvfENmApC/2oaMA2CEi0rl8m5w2ctdXLBmvgEAoHTqpXzNjx96nz8cJpsVclMPZfPOjsVcy+cfGwCBDLU3X/KepDZJbUvWdI89UuELLbAvS7pe0rj0cgZLPeAE75p8Q2z26PGeac90tFhSktRMYACgVLTdXv+cpOduWHXgEiW0TO5flXQ+kUGxnHJIUdJkG2L5ul/dUddBTAEAKOxszVk0AOQu5L2Ny+EaMXsayrwxctPAuc515EagfGuf4s6dxfq3kGp80+2Xmf1eJhtbs9tf2AAIZFHr8hnHJD0m6bH56w5MGONDN8j8RkkLJFUTIbBwH7F9Jj0em35Z3fPOr4fvIgUAKHG/urN+m6Rbl6zpvntAVUvN/euS5hEZ6o6S4Npvsp8Oud3XvmLyLhofAIByLUa4YAOUZznPJhSwKGbckOsyez11F4CRDutsPn4+m3eLyyznMM+VejlWbo8XPhUbAIEc6VhW3y/pUUmPNq3dVhUnxn3GXIsk/5KkBiLEAosy4RRvm/R4JG97r7eh4w93+gMAlJ3hf5p4SNJDi1YfmiWL/sqlr0maRHRQZCKXfh24r586sW7D+pttiJAAZY7rTwCykA9OPeOTm7sUAMhkXJfopE+twgSU1vyRzY0YdMZ8NnnJ1Ah0B4AElqa07oSWxttmP5+e/iBY2xW6XxXjhJS/Y2IDIJAHw48J3ixpc0uL3/a7uj2fDjz+M8kWS5pJhFg0jFKRpBfctFFR9ORTt874PSEBgNGn7fbatyTdtei+Pd/1vvCLZvqKS5+XFOa/7vDh/07EyUbbiQuTtsj8X4YGo5+3f2faQXoAynh0PyazzmLLN8V8EIHFXfQbIJPhZa+5+foRzMWpzt3ZrwZOyAfp1EKeYoY7/d/3Q/QaIDNDQ4PHrbJy/emHoqc4jguRu05zgnyEB3bm3GVn/bwVFdpHzzkpNu47ZLY+nbkgyGQeykGR6ym+jaU4SkySe8BVHZ1tTRFsj6X1J3WyHCxnPCe9zQozCHfTc4DCMvP/iD04eGo+8LNmo+zkDEsx45mkOOX89aF520byW36u779CDaWNLu9Kpx46cx01kpbMVoU/0nk39WOy0/zMZC/kYqQAyJPr7337Y5EnFph7k0vXSBrHEM15Hs59EVToNFy8MTtkrqdi+UaP4qc3LZ/RSwcHAJxs4aoDUy2M/9xkN0m6Ir91B/VXylWLl8enMWmXu1oj+cNP3lm/hRYHAAAAAAAAAAClgKtbQBGZ/+COMWMHqj7rcbxApibJZhEVsQGwtOP2nqQXXdpsCjZPmDrlpdalFtGpAQAj9YXVez8RB+FfuPuXJH0893UHS6S0qhYv2U/TLdcvgjD+xePL61+QGXcpAAAAAAAAAAAAJYWrW0ARW7juwNQ4HvyMTJ+T7FpJHx2VgSjRy7Cj9i6Apv+RtNllm80rN7U3Tz7CaAYAZMOiNXtnxx7eIPkik+blZBJlA2B6FUtp1WvdUvBLWdza9u2659n0BwAAAAAAAAAAShlXt4AS8vkfdF8SJuwauV0jab6k+lHz4bkLYLHGLCnpVXM954F+O2jxs898c3oPoxUAkGuL1xy4OI79Rpm+KGmupCB7cyjLpJSrluKu1SJJL5q0Melq5/G+AAAAAAAAAACgnHBlCyhhC+7dPdMjzZPp6uG74JTvI4PZAFgsMRuQ9JJcv7XQnx2wihc6ltX3MxoBAIW0aPWeWgXBtS5bINd1yvSfJNgAmHrVUny12iHJnpLpycGgctOm5RN7aT0AAAAAAAAAAFCOuLIFlJGmtXvr4iCeZ9KfSPpjSZdLGl8WH44NgIWIWyTpLbl1uvl/mrzzWG/Dax0tlmS0AQCKVUuLB501h64IFC2Q23UmXeVSRWrzJ8uktKqWwtZrRyQ96/LfmIUdf9Q/+eWWFotpMQAAAAAAAAAAUO64sgWUsSX/7uHR/bs+ESn4lMyuNPmVkuZIqiy5D+Ol2QYldBfAWNI2ybbI4ldcQWflQOLlJ1bU9TGSAAClbNF9e8bFA+G8INZnXZqv9x8XXHX2+ZNlUloVS37rtcMyPavYf2MedFQ11r7autQiWggAAAAAAAAAAIw2XNkCRpklLa9X9tVNuszcL3f5HJculTTHpPOK/uC5C2C2YnZM0uuSXnWzLWEcbzmaqPg9j/IFAIyKWmhN99hjUeIqBcGfynSVYs2VafKpcyhLpZSrltzVakmTtrp7p8w6gzDurJw+5Q02/AEAAAAAAAAAALABEMCwhT/ac2FS8aWmYI7JL5M0c/hrTNEcJBsAU33zPsV6y+Svu+lNud6UEm9c1Vu/g0fiAQDwgaZV+y9KBD43DuxKueaadLncxhGZFKuW7NRqSUnbXPovM+uU/CX1J19pa2kYIPIAAAAAAAAAAACnYgMggDNqafHgd5P3X2hBPDNwzXJplqSPyzVL5tPyfkBsADydY5K2S+qSvMvduhTEXRVRsK3tWw076cUAAKRufosnqmv2zXQPP2muOS7/pGSXSvooa6hsPgbYd0q2VdJrJt+adNs6fqDujdYWG6QXAgAAAAAAAAAAjAwbAAGkZcma7rH9iURjFEQfC90aXdbogTeaq1FSo6SarL9pWW8APOOrj0p62107zdTtrp0m2ynpbSna3n7LBbtl5vRIAAByb/HKg9WeiGYrDma76WLpQ18TWESepl5z7ZepS1KXm7oCty432x6G4bYNt53/Lr0KAAAAAAAAAAAgM2wABJAT89cdmDBeyRlxHE9ToOnuwQWST5P0EbmmyDRFUp1SvVheLpsATX1y7TVpf+zaGwTaJ9m+WLbHXAc8TO7249q1afmMXnoTAADFb+GqA1NNuiQIdZHLLpTiC8ytQdJHXH6BZJPKcCHZJ9cuN9sduO9xqdtde4PQupOR70y4bX9iRV0fvQMAAAAAAAAAACB32AAIoKDmP7hjzNi+ilrJ6uLQplisWjPVuvlEudXIfKJkNZKfL7caafj78jGSTZC8ogCHPaj378zXL6lPsn7Jj5j8sCvol3u/zI+4q0dmvaGpNzbrsch6LQx79yd29rx886eGaH0AAEaPJWu6xx71MTPkPtXktVJQK3mtuU82s8mSal2aLOk8ycZKXmPSBJdyWuuYNORSv8z75Hb8/dpGfXL1uPxQYNbjZj3u3mNuvR7EPWEy6Kma4Ltbl9X307IAAAAAAAAAAACFxQZAACVv8cqD1VH1QMLjihoLwjBOJidGbsH//zwRRokoDqrPmgwDPxpHweCJ3wst+W6QqPI4GfcFicHk0bHxsY6/bjxOxAEAQL7Mb/HE+KrD1YnKaIJbVBXFNvHEn7t8vLlXnvx7gcI4Nj984vcSCo4lw+TxeDAxGMTh0XEXTTzSutQiogwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArt/wBQqoPCJ89/4AAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyNC0wMi0yMlQwNzo0Nzo1NSswMDowMEK7CccAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjQtMDItMjJUMDc6NDc6NTUrMDA6MDAz5rF7AAAAAElFTkSuQmCC\n }\n }\n}\n\ntest TestBase64URLEscape{\n functions [TestImageInput]\n args{\n img{\n url \"\"\n }\n }\n}\n", "test-files/functions/input/named-args/syntax.baml" => "function TestFnNamedArgsSyntax {\n input (myVar: string, var_with_underscores: string)\n output string\n}\n// TODO: we don't support numbers in named args yet!\n// TODO: we also allow dashes but python fails.", "test-files/functions/output/boolean.baml" => "function FnOutputBool(input: string) -> bool {\n client GPT35\n prompt #\"\n Return a true: {{ ctx.output_format}}\n \"#\n}\n\ntest FnOutputBool {\n functions [FnOutputBool]\n args {\n input \"example input\"\n }\n}\n", "test-files/functions/output/class-dynamic.baml" => "class Person {\n name string?\n hair_color Color?\n\n @@dynamic\n}\n\nenum Color {\n RED\n BLUE\n GREEN\n YELLOW\n BLACK\n WHITE\n\n @@dynamic\n}\n\nfunction ExtractPeople(text: string) -> Person[] {\n client GPT4\n prompt #\"\n {{ _.role('system') }}\n\t\t You are an expert extraction algorithm. Only extract relevant information from the text. If you do not know the value of an attribute asked to extract, return null for the attribute's value.\n\t\t \n\t\t {# This is a special macro that prints out the output schema of the function #}\n\t\t {{ ctx.output_format }} \n\t\t \n\t\t {{ _.role('user') }}\n\t\t {{text}}\n \"#\n}\n\nenum Hobby {\n SPORTS\n MUSIC\n READING\n\n @@dynamic\n}\n", @@ -53,10 +57,10 @@ module Inlined "test-files/functions/output/optional.baml" => "class OptionalTest_Prop1 {\n omega_a string\n omega_b int\n}\n\nenum OptionalTest_CategoryType {\n Aleph\n Beta\n Gamma\n}\n \nclass OptionalTest_ReturnType {\n omega_1 OptionalTest_Prop1?\n omega_2 string?\n omega_3 (OptionalTest_CategoryType?)[]\n} \n \nfunction OptionalTest_Function(input: string) -> (OptionalTest_ReturnType?)[]\n{\n client GPT35\n prompt #\"\n Return a JSON blob with this schema: \n {{ctx.output_format}}\n\n JSON:\n \"#\n}\n\ntest OptionalTest_Function {\n functions [OptionalTest_Function]\n args {\n input \"example input\"\n }\n}\n", "test-files/functions/output/string-list.baml" => "function FnOutputStringList(input: string) -> string[] {\n client GPT35\n prompt #\"\n Return a list of strings in json format like [\"string1\", \"string2\", \"string3\"].\n\n JSON:\n \"#\n}\n\ntest FnOutputStringList {\n functions [FnOutputStringList]\n args {\n input \"example input\"\n }\n}\n", "test-files/functions/output/unions.baml" => "class UnionTest_ReturnType {\n prop1 string | bool\n prop2 (float | bool)[]\n prop3 (bool[] | int[])\n}\n\nfunction UnionTest_Function(input: string | bool) -> UnionTest_ReturnType {\n client GPT35\n prompt #\"\n Return a JSON blob with this schema: \n {{ctx.output_format}}\n\n JSON:\n \"#\n}\n\ntest UnionTest_Function {\n functions [UnionTest_Function]\n args {\n input \"example input\"\n }\n}\n", - "test-files/functions/prompts/no-chat-messages.baml" => "\n\nfunction PromptTestClaude(input: string) -> string {\n client Claude\n prompt #\"\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestOpenAI(input: string) -> string {\n client GPT35\n prompt #\"\n Tell me a haiku about {{ input }}\n \"#\n}", - "test-files/functions/prompts/with-chat-messages.baml" => "\nfunction PromptTestOpenAIChat(input: string) -> string {\n client GPT35\n prompt #\"\n {{ _.role(\"system\") }}\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestOpenAIChatNoSystem(input: string) -> string {\n client GPT35\n prompt #\"\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestClaudeChat(input: string) -> string {\n client Claude\n prompt #\"\n {{ _.role(\"system\") }}\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestClaudeChatNoSystem(input: string) -> string {\n client Claude\n prompt #\"\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\ntest PromptTestOpenAIChat {\n functions [PromptTestClaude, PromptTestOpenAI, PromptTestOpenAIChat, PromptTestOpenAIChatNoSystem, PromptTestClaudeChat, PromptTestClaudeChatNoSystem]\n args {\n input \"cats\"\n }\n}\n\ntest TestClaude {\n functions [PromptTestClaudeChatNoSystem]\n args {\n input \"lion\"\n }\n}", + "test-files/functions/prompts/no-chat-messages.baml" => "\n\nfunction PromptTestClaude(input: string) -> string {\n client Claude\n prompt #\"\n Tell me a haiku about {{ input }}\n \"#\n}\n\n\nfunction PromptTestStreaming(input: string) -> string {\n client GPT35\n prompt #\"\n Tell me a short story about {{ input }}\n \"#\n}\n\ntest TestName {\n functions [PromptTestStreaming]\n args {\n input #\"\n hello world\n \"#\n }\n}\n", + "test-files/functions/prompts/with-chat-messages.baml" => "\nfunction PromptTestOpenAIChat(input: string) -> string {\n client GPT35\n prompt #\"\n {{ _.role(\"system\") }}\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestOpenAIChatNoSystem(input: string) -> string {\n client GPT35\n prompt #\"\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestClaudeChat(input: string) -> string {\n client Claude\n prompt #\"\n {{ _.role(\"system\") }}\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestClaudeChatNoSystem(input: string) -> string {\n client Claude\n prompt #\"\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\ntest TestSystemAndNonSystemChat1 {\n functions [PromptTestClaude, PromptTestOpenAI, PromptTestOpenAIChat, PromptTestOpenAIChatNoSystem, PromptTestClaudeChat, PromptTestClaudeChatNoSystem]\n args {\n input \"cats\"\n }\n}\n\ntest TestSystemAndNonSystemChat2 {\n functions [PromptTestClaude, PromptTestOpenAI, PromptTestOpenAIChat, PromptTestOpenAIChatNoSystem, PromptTestClaudeChat, PromptTestClaudeChatNoSystem]\n args {\n input \"lion\"\n }\n}", "test-files/functions/v2/basic.baml" => "\n\nfunction ExtractResume2(resume: string) -> Resume {\n client GPT4\n prompt #\"\n {{ _.role('system') }}\n\n Extract the following information from the resume:\n\n Resume:\n <<<<\n {{ resume }}\n <<<<\n\n Output JSON schema:\n {{ ctx.output_format }}\n\n JSON:\n \"#\n}\n\n\nclass WithReasoning {\n value string\n reasoning string @description(#\"\n Why the value is a good fit.\n \"#)\n}\n\n\nclass SearchParams {\n dateRange int? @description(#\"\n In ISO duration format, e.g. P1Y2M10D.\n \"#)\n location string[]\n jobTitle WithReasoning? @description(#\"\n An exact job title, not a general category.\n \"#)\n company WithReasoning? @description(#\"\n The exact name of the company, not a product or service.\n \"#)\n description WithReasoning[] @description(#\"\n Any specific projects or features the user is looking for.\n \"#)\n tags (Tag | string)[]\n}\n\nenum Tag {\n Security\n AI\n Blockchain\n}\n\nfunction GetQuery(query: string) -> SearchParams {\n client GPT4\n prompt #\"\n Extract the following information from the query:\n\n Query:\n <<<<\n {{ query }}\n <<<<\n\n OUTPUT_JSON_SCHEMA:\n {{ ctx.output_format }}\n\n Before OUTPUT_JSON_SCHEMA, list 5 intentions the user may have.\n --- EXAMPLES ---\n 1. \n 2. \n 3. \n 4. \n 5. \n\n {\n ... // OUTPUT_JSON_SCHEMA\n }\n \"#\n}\n\nclass RaysData {\n dataType DataType\n value Resume | Event\n}\n\nenum DataType {\n Resume\n Event\n}\n\nclass Event {\n title string\n date string\n location string\n description string\n}\n\nfunction GetDataType(text: string) -> RaysData {\n client GPT4\n prompt #\"\n Extract the relevant info.\n\n Text:\n <<<<\n {{ text }}\n <<<<\n\n Output JSON schema:\n {{ ctx.output_format }}\n\n JSON:\n \"#\n}", - "test-files/providers/providers.baml" => "function TestAnthropic(input: string) -> string {\n client Claude\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOpenAI(input: string) -> string {\n client GPT35\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestAzure(input: string) -> string {\n client GPT35Azure\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOllama(input: string) -> string {\n client Ollama\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestGemini(input: string) -> string {\n client Gemini\n prompt #\"\n Write a nice short story about {{ input }}\n \"#\n}\n\n\ntest TestProvider {\n functions [TestAnthropic, TestOpenAI, TestAzure, TestOllama, TestGemini]\n args {\n input \"Donkey kong and peanut butter\"\n }\n}\n\n\n", + "test-files/providers/providers.baml" => "function TestAnthropic(input: string) -> string {\n client Claude\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOpenAI(input: string) -> string {\n client GPT35\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOpenAILegacyProvider(input: string) -> string {\n client GPT35LegacyProvider\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestAzure(input: string) -> string {\n client GPT35Azure\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOllama(input: string) -> string {\n client Ollama\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestGemini(input: string) -> string {\n client Gemini\n prompt #\"\n Write a nice short story about {{ input }}\n \"#\n}\n\nfunction TestAws(input: string) -> string {\n client AwsBedrock\n prompt #\"\n Write a nice short story about {{ input }}\n \"#\n}\n\n\ntest TestProvider {\n functions [TestAnthropic, TestOpenAI, TestAzure, TestOllama, TestGemini, TestAws]\n args {\n input \"Donkey kong and peanut butter\"\n }\n}\n\n\n", "test-files/strategies/fallback.baml" => "\nclient FaultyClient {\n provider openai\n options {\n model unknown-model\n api_key env.OPENAI_API_KEY\n }\n}\n\n\nclient FallbackClient {\n provider fallback\n options {\n // first 2 clients are expected to fail.\n strategy [\n FaultyClient,\n RetryClientConstant,\n GPT35\n ]\n }\n}\n\nfunction TestFallbackClient() -> string {\n client FallbackClient\n // TODO make it return the client name instead\n prompt #\"\n Say a haiku about mexico.\n \"#\n}", "test-files/strategies/retry.baml" => "\nretry_policy Exponential {\n max_retries 3\n strategy {\n type exponential_backoff\n }\n}\n\nretry_policy Constant {\n max_retries 3\n strategy {\n type constant_delay\n delay_ms 100\n }\n}\n\nclient RetryClientConstant {\n provider openai\n retry_policy Constant\n options {\n model \"gpt-3.5-turbo\"\n api_key \"blah\"\n }\n}\n\nclient RetryClientExponential {\n provider openai\n retry_policy Exponential\n options {\n model \"gpt-3.5-turbo\"\n api_key \"blahh\"\n }\n}\n\nfunction TestRetryConstant() -> string {\n client RetryClientConstant\n prompt #\"\n Say a haiku\n \"#\n}\n\nfunction TestRetryExponential() -> string {\n client RetryClientExponential\n prompt #\"\n Say a haiku\n \"#\n}\n", "test-files/strategies/roundrobin.baml" => "", diff --git a/integ-tests/ruby/baml_client/partial-types.rb b/integ-tests/ruby/baml_client/partial-types.rb index 1697d7c55..e80d0cfde 100644 --- a/integ-tests/ruby/baml_client/partial-types.rb +++ b/integ-tests/ruby/baml_client/partial-types.rb @@ -25,6 +25,7 @@ class Blah < T::Struct; end class ClassOptionalOutput < T::Struct; end class ClassOptionalOutput2 < T::Struct; end class ClassWithImage < T::Struct; end + class DynInputOutput < T::Struct; end class DynamicClassOne < T::Struct; end class DynamicClassTwo < T::Struct; end class DynamicOutput < T::Struct; end @@ -40,6 +41,8 @@ class OptionalTest_ReturnType < T::Struct; end class OrderInfo < T::Struct; end class Person < T::Struct; end class RaysData < T::Struct; end + class ReceiptInfo < T::Struct; end + class ReceiptItem < T::Struct; end class Resume < T::Struct; end class SearchParams < T::Struct; end class SomeClassNestedDynamic < T::Struct; end @@ -70,6 +73,10 @@ class ClassWithImage < T::Struct const :param2, T.nilable(String) const :fake_image, Baml::PartialTypes::FakeImage end + class DynInputOutput < T::Struct + include T::Struct::ActsAsComparable + const :testKey, T.nilable(String) + end class DynamicClassOne < T::Struct include T::Struct::ActsAsComparable end @@ -151,6 +158,18 @@ class RaysData < T::Struct const :dataType, T.nilable(Baml::Types::DataType) const :value, T.nilable(T.any(Baml::PartialTypes::Resume, Baml::PartialTypes::Event)) end + class ReceiptInfo < T::Struct + include T::Struct::ActsAsComparable + const :items, T::Array[Baml::PartialTypes::ReceiptItem] + const :total_cost, T.nilable(Float) + end + class ReceiptItem < T::Struct + include T::Struct::ActsAsComparable + const :name, T.nilable(String) + const :description, T.nilable(String) + const :quantity, T.nilable(Integer) + const :price, T.nilable(Float) + end class Resume < T::Struct include T::Struct::ActsAsComparable const :name, T.nilable(String) diff --git a/integ-tests/ruby/baml_client/types.rb b/integ-tests/ruby/baml_client/types.rb index 5b299b8ef..284546a38 100644 --- a/integ-tests/ruby/baml_client/types.rb +++ b/integ-tests/ruby/baml_client/types.rb @@ -135,6 +135,7 @@ class Blah < T::Struct; end class ClassOptionalOutput < T::Struct; end class ClassOptionalOutput2 < T::Struct; end class ClassWithImage < T::Struct; end + class DynInputOutput < T::Struct; end class DynamicClassOne < T::Struct; end class DynamicClassTwo < T::Struct; end class DynamicOutput < T::Struct; end @@ -150,6 +151,8 @@ class OptionalTest_ReturnType < T::Struct; end class OrderInfo < T::Struct; end class Person < T::Struct; end class RaysData < T::Struct; end + class ReceiptInfo < T::Struct; end + class ReceiptItem < T::Struct; end class Resume < T::Struct; end class SearchParams < T::Struct; end class SomeClassNestedDynamic < T::Struct; end @@ -180,6 +183,10 @@ class ClassWithImage < T::Struct const :param2, String const :fake_image, Baml::Types::FakeImage end + class DynInputOutput < T::Struct + include T::Struct::ActsAsComparable + const :testKey, String + end class DynamicClassOne < T::Struct include T::Struct::ActsAsComparable end @@ -261,6 +268,18 @@ class RaysData < T::Struct const :dataType, Baml::Types::DataType const :value, T.any(Baml::Types::Resume, Baml::Types::Event) end + class ReceiptInfo < T::Struct + include T::Struct::ActsAsComparable + const :items, T::Array[Baml::Types::ReceiptItem] + const :total_cost, T.nilable(Float) + end + class ReceiptItem < T::Struct + include T::Struct::ActsAsComparable + const :name, String + const :description, T.nilable(String) + const :quantity, Integer + const :price, Float + end class Resume < T::Struct include T::Struct::ActsAsComparable const :name, String diff --git a/integ-tests/ruby/streaming-example.rb b/integ-tests/ruby/streaming-example.rb new file mode 100644 index 000000000..e9dfb349b --- /dev/null +++ b/integ-tests/ruby/streaming-example.rb @@ -0,0 +1,57 @@ +require_relative "baml_client/client" + +$b = Baml.Client + +# Using both iteration and get_final_response() from a stream +def example1(receipt) + stream = $b.stream.ExtractReceiptInfo(receipt) + + stream.each do |partial| + puts "partial: #{partial.items&.length} items" + end + + final = stream.get_final_response + puts "final: #{final.items.length} items" +end + +# Using only iteration of a stream +def example2(receipt) + $b.stream.ExtractReceiptInfo(receipt).each do |partial| + puts "partial: #{partial.items&.length} items" + end +end + +# Using only get_final_response() of a stream +# +# In this case, you should just use BamlClient.ExtractReceiptInfo(receipt) instead, +# which is faster and more efficient. +def example3(receipt) + final = $b.stream.ExtractReceiptInfo(receipt).get_final_response + puts "final: #{final.items.length} items" +end + +receipt = <<~RECEIPT + 04/14/2024 1:05 pm + + Ticket: 220000082489 + Register: Shop Counter + Employee: Connor + Customer: Sam + Item # Price + Guide leash (1 Pair) uni UNI + 1 $34.95 + The Index Town Walls + 1 $35.00 + Boot Punch + 3 $60.00 + Subtotal $129.95 + Tax ($129.95 @ 9%) $11.70 + Total Tax $11.70 + Total $141.65 +RECEIPT + +if __FILE__ == $0 + example1(receipt) + example2(receipt) + example3(receipt) +end diff --git a/integ-tests/typescript/baml_client/client.ts b/integ-tests/typescript/baml_client/client.ts index 86adda985..3a1cbd0ad 100644 --- a/integ-tests/typescript/baml_client/client.ts +++ b/integ-tests/typescript/baml_client/client.ts @@ -15,8 +15,13 @@ $ pnpm add @boundaryml/baml // @ts-nocheck // biome-ignore format: autogenerated code /* eslint-disable */ +<<<<<<< HEAD import { BamlRuntime, FunctionResult, BamlCtxManager, BamlStream, Image, ClientBuilder } from "@boundaryml/baml" import {Blah, ClassOptionalOutput, ClassOptionalOutput2, ClassWithImage, DynamicClassOne, DynamicClassTwo, DynamicOutput, Education, Email, Event, FakeImage, InnerClass, InnerClass2, NamedArgsSingleClass, OptionalTest_Prop1, OptionalTest_ReturnType, OrderInfo, Person, RaysData, Resume, SearchParams, SomeClassNestedDynamic, TestClassAlias, TestClassNested, TestClassWithEnum, TestOutputClass, UnionTest_ReturnType, WithReasoning, Category, Category2, Category3, Color, DataType, DynEnumOne, DynEnumTwo, EnumInClass, EnumOutput, Hobby, NamedArgsSingleEnum, NamedArgsSingleEnumList, OptionalTest_CategoryType, OrderStatus, Tag, TestEnum} from "./types" +======= +import { BamlRuntime, FunctionResult, BamlCtxManager, BamlStream, Image } from "@boundaryml/baml" +import {Blah, ClassOptionalOutput, ClassOptionalOutput2, ClassWithImage, DynInputOutput, DynamicClassOne, DynamicClassTwo, DynamicOutput, Education, Email, Event, FakeImage, InnerClass, InnerClass2, NamedArgsSingleClass, OptionalTest_Prop1, OptionalTest_ReturnType, OrderInfo, Person, RaysData, ReceiptInfo, ReceiptItem, Resume, SearchParams, SomeClassNestedDynamic, TestClassAlias, TestClassNested, TestClassWithEnum, TestOutputClass, UnionTest_ReturnType, WithReasoning, Category, Category2, Category3, Color, DataType, DynEnumOne, DynEnumTwo, EnumInClass, EnumOutput, Hobby, NamedArgsSingleEnum, NamedArgsSingleEnumList, OptionalTest_CategoryType, OrderStatus, Tag, TestEnum} from "./types" +>>>>>>> canary import TypeBuilder from "./type_builder" export type RecursivePartialNull = T extends object @@ -26,9 +31,13 @@ export type RecursivePartialNull = T extends object : T | null; export class BamlClient { + private runtime: BamlRuntime + private ctx_manager: BamlCtxManager private stream_client: BamlStreamClient - constructor(private runtime: BamlRuntime, private ctx_manager: BamlCtxManager) { + constructor(runtime: BamlRuntime, ctx_manager: BamlCtxManager) { + this.runtime = runtime + this.ctx_manager = ctx_manager this.stream_client = new BamlStreamClient(runtime, ctx_manager) } @@ -37,6 +46,21 @@ export class BamlClient { } + async AudioInput( + aud: Audio, + __baml_options__?: { tb?: TypeBuilder } + ): Promise { + const raw = await this.runtime.callFunction( + "AudioInput", + { + "aud": aud + }, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return raw.parsed() as string + } + async ClassifyMessage( input: string, __baml_options__?: { tb?: TypeBuilder, cb?: ClientBuilder } @@ -46,7 +70,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -62,7 +86,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -78,7 +102,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -94,7 +118,7 @@ export class BamlClient { { "img": img }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -110,7 +134,7 @@ export class BamlClient { { "classWithImage": classWithImage,"img2": img2 }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -126,7 +150,7 @@ export class BamlClient { { "classWithImage": classWithImage,"img2": img2 }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -142,7 +166,7 @@ export class BamlClient { { "classWithImage": classWithImage,"img2": img2 }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -158,13 +182,43 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) return raw.parsed() as DynamicClassTwo } + async DynamicInputOutput( + input: DynInputOutput, + __baml_options__?: { tb?: TypeBuilder } + ): Promise { + const raw = await this.runtime.callFunction( + "DynamicInputOutput", + { + "input": input + }, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return raw.parsed() as DynInputOutput + } + + async DynamicListInputOutput( + input: DynInputOutput[], + __baml_options__?: { tb?: TypeBuilder } + ): Promise { + const raw = await this.runtime.callFunction( + "DynamicListInputOutput", + { + "input": input + }, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return raw.parsed() as DynInputOutput[] + } + async ExtractNames( input: string, __baml_options__?: { tb?: TypeBuilder, cb?: ClientBuilder } @@ -174,7 +228,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -190,13 +244,28 @@ export class BamlClient { { "text": text }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) return raw.parsed() as Person[] } + async ExtractReceiptInfo( + email: string, + __baml_options__?: { tb?: TypeBuilder } + ): Promise { + const raw = await this.runtime.callFunction( + "ExtractReceiptInfo", + { + "email": email + }, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return raw.parsed() as ReceiptInfo + } + async ExtractResume( resume: string,img?: Image | null, __baml_options__?: { tb?: TypeBuilder, cb?: ClientBuilder } @@ -206,7 +275,7 @@ export class BamlClient { { "resume": resume,"img": img?? null }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -222,7 +291,7 @@ export class BamlClient { { "resume": resume }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -238,7 +307,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -254,7 +323,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -270,7 +339,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -286,7 +355,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -302,7 +371,7 @@ export class BamlClient { { "myString": myString?? null }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -318,7 +387,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -334,7 +403,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -350,7 +419,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -366,7 +435,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -382,7 +451,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -398,7 +467,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -414,7 +483,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -430,7 +499,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -446,7 +515,7 @@ export class BamlClient { { "myArg": myArg }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -462,7 +531,7 @@ export class BamlClient { { "text": text }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -478,7 +547,7 @@ export class BamlClient { { "email": email }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -494,7 +563,7 @@ export class BamlClient { { "query": query }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -510,7 +579,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -526,7 +595,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -542,7 +611,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -558,7 +627,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -574,6 +643,7 @@ export class BamlClient { { "input": input }, +<<<<<<< HEAD this.ctx_manager.get(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, @@ -591,6 +661,9 @@ export class BamlClient { "input": input }, this.ctx_manager.get(), +======= + this.ctx_manager.cloneContext(), +>>>>>>> canary __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -606,7 +679,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -622,7 +695,22 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return raw.parsed() as string + } + + async PromptTestStreaming( + input: string, + __baml_options__?: { tb?: TypeBuilder } + ): Promise { + const raw = await this.runtime.callFunction( + "PromptTestStreaming", + { + "input": input + }, + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -638,7 +726,22 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return raw.parsed() as string + } + + async TestAws( + input: string, + __baml_options__?: { tb?: TypeBuilder } + ): Promise { + const raw = await this.runtime.callFunction( + "TestAws", + { + "input": input + }, + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -654,7 +757,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -670,7 +773,7 @@ export class BamlClient { { }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -686,7 +789,7 @@ export class BamlClient { { "myBool": myBool }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -702,7 +805,7 @@ export class BamlClient { { "myArg": myArg }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -718,7 +821,7 @@ export class BamlClient { { "myArg": myArg }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -734,7 +837,7 @@ export class BamlClient { { "myFloat": myFloat }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -750,7 +853,7 @@ export class BamlClient { { "myInt": myInt }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -766,7 +869,7 @@ export class BamlClient { { "myString": myString }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -782,7 +885,7 @@ export class BamlClient { { "myStringArray": myStringArray }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -798,7 +901,7 @@ export class BamlClient { { "myArg": myArg }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -814,7 +917,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -830,7 +933,7 @@ export class BamlClient { { "img": img }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -846,7 +949,7 @@ export class BamlClient { { "myArg": myArg,"myArg2": myArg2 }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -862,7 +965,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -878,7 +981,22 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return raw.parsed() as string + } + + async TestOpenAILegacyProvider( + input: string, + __baml_options__?: { tb?: TypeBuilder } + ): Promise { + const raw = await this.runtime.callFunction( + "TestOpenAILegacyProvider", + { + "input": input + }, + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -894,7 +1012,7 @@ export class BamlClient { { }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -910,7 +1028,7 @@ export class BamlClient { { }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -926,7 +1044,7 @@ export class BamlClient { { "input": input }, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -939,6 +1057,28 @@ class BamlStreamClient { constructor(private runtime: BamlRuntime, private ctx_manager: BamlCtxManager) {} + AudioInput( + aud: Audio, + __baml_options__?: { tb?: TypeBuilder } + ): BamlStream, string> { + const raw = this.runtime.streamFunction( + "AudioInput", + { + "aud": aud + }, + undefined, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return new BamlStream, string>( + raw, + (a): a is RecursivePartialNull => a, + (a): a is string => a, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + } + ClassifyMessage( input: string, __baml_options__?: { tb?: TypeBuilder, cb?: ClientBuilder } @@ -949,7 +1089,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -957,7 +1097,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is Category => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -972,7 +1112,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -980,7 +1120,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is Category => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -995,7 +1135,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1003,7 +1143,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is Category => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1018,7 +1158,7 @@ class BamlStreamClient { "img": img }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1026,7 +1166,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1041,7 +1181,7 @@ class BamlStreamClient { "classWithImage": classWithImage,"img2": img2 }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1049,7 +1189,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1064,7 +1204,7 @@ class BamlStreamClient { "classWithImage": classWithImage,"img2": img2 }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1072,7 +1212,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1087,7 +1227,7 @@ class BamlStreamClient { "classWithImage": classWithImage,"img2": img2 }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1095,7 +1235,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1110,7 +1250,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1118,7 +1258,51 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is DynamicClassTwo => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + } + + DynamicInputOutput( + input: DynInputOutput, + __baml_options__?: { tb?: TypeBuilder } + ): BamlStream, DynInputOutput> { + const raw = this.runtime.streamFunction( + "DynamicInputOutput", + { + "input": input + }, + undefined, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return new BamlStream, DynInputOutput>( + raw, + (a): a is RecursivePartialNull => a, + (a): a is DynInputOutput => a, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + } + + DynamicListInputOutput( + input: DynInputOutput[], + __baml_options__?: { tb?: TypeBuilder } + ): BamlStream, DynInputOutput[]> { + const raw = this.runtime.streamFunction( + "DynamicListInputOutput", + { + "input": input + }, + undefined, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return new BamlStream, DynInputOutput[]>( + raw, + (a): a is RecursivePartialNull => a, + (a): a is DynInputOutput[] => a, + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1133,7 +1317,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1141,7 +1325,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string[] => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1156,7 +1340,7 @@ class BamlStreamClient { "text": text }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1164,7 +1348,29 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is Person[] => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + } + + ExtractReceiptInfo( + email: string, + __baml_options__?: { tb?: TypeBuilder } + ): BamlStream, ReceiptInfo> { + const raw = this.runtime.streamFunction( + "ExtractReceiptInfo", + { + "email": email + }, + undefined, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return new BamlStream, ReceiptInfo>( + raw, + (a): a is RecursivePartialNull => a, + (a): a is ReceiptInfo => a, + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1179,7 +1385,7 @@ class BamlStreamClient { "resume": resume,"img": img ?? null }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1187,7 +1393,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is Resume => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1202,7 +1408,7 @@ class BamlStreamClient { "resume": resume }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1210,7 +1416,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is Resume => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1225,7 +1431,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1233,7 +1439,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is ClassOptionalOutput | null => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1248,7 +1454,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1256,7 +1462,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is ClassOptionalOutput2 | null => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1271,7 +1477,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1279,7 +1485,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is EnumOutput[] => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1294,7 +1500,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1302,7 +1508,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is EnumOutput => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1317,7 +1523,7 @@ class BamlStreamClient { "myString": myString ?? null }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1325,7 +1531,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1340,7 +1546,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1348,7 +1554,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is boolean => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1363,7 +1569,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1371,7 +1577,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is TestOutputClass => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1386,7 +1592,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1394,7 +1600,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is TestOutputClass[] => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1409,7 +1615,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1417,7 +1623,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is TestClassNested => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1432,7 +1638,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1440,7 +1646,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is TestClassWithEnum => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1455,7 +1661,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1463,7 +1669,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string[] => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1478,7 +1684,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1486,7 +1692,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is TestEnum => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1501,7 +1707,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1509,7 +1715,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is TestClassAlias => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1524,7 +1730,7 @@ class BamlStreamClient { "myArg": myArg }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1532,7 +1738,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1547,7 +1753,7 @@ class BamlStreamClient { "text": text }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1555,7 +1761,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is RaysData => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1570,7 +1776,7 @@ class BamlStreamClient { "email": email }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1578,7 +1784,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is OrderInfo => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1593,7 +1799,7 @@ class BamlStreamClient { "query": query }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1601,7 +1807,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is SearchParams => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1616,7 +1822,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1624,7 +1830,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is DynamicOutput => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1639,7 +1845,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1647,7 +1853,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull<(OptionalTest_ReturnType | null)[]> => a, (a): a is (OptionalTest_ReturnType | null)[] => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1662,7 +1868,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1670,7 +1876,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1685,7 +1891,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1693,7 +1899,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1708,7 +1914,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1716,6 +1922,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, +<<<<<<< HEAD this.ctx_manager.get(), __baml_options__?.tb?.__tb(), ) @@ -1740,6 +1947,9 @@ class BamlStreamClient { (a): a is RecursivePartialNull => a, (a): a is string => a, this.ctx_manager.get(), +======= + this.ctx_manager.cloneContext(), +>>>>>>> canary __baml_options__?.tb?.__tb(), ) } @@ -1754,7 +1964,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1762,7 +1972,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1777,7 +1987,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1785,7 +1995,29 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + } + + PromptTestStreaming( + input: string, + __baml_options__?: { tb?: TypeBuilder } + ): BamlStream, string> { + const raw = this.runtime.streamFunction( + "PromptTestStreaming", + { + "input": input + }, + undefined, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return new BamlStream, string>( + raw, + (a): a is RecursivePartialNull => a, + (a): a is string => a, + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1800,7 +2032,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1808,7 +2040,29 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + } + + TestAws( + input: string, + __baml_options__?: { tb?: TypeBuilder } + ): BamlStream, string> { + const raw = this.runtime.streamFunction( + "TestAws", + { + "input": input + }, + undefined, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return new BamlStream, string>( + raw, + (a): a is RecursivePartialNull => a, + (a): a is string => a, + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1823,7 +2077,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1831,7 +2085,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1846,7 +2100,7 @@ class BamlStreamClient { }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1854,7 +2108,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1869,7 +2123,7 @@ class BamlStreamClient { "myBool": myBool }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1877,7 +2131,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1892,7 +2146,7 @@ class BamlStreamClient { "myArg": myArg }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1900,7 +2154,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1915,7 +2169,7 @@ class BamlStreamClient { "myArg": myArg }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1923,7 +2177,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1938,7 +2192,7 @@ class BamlStreamClient { "myFloat": myFloat }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1946,7 +2200,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1961,7 +2215,7 @@ class BamlStreamClient { "myInt": myInt }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1969,7 +2223,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -1984,7 +2238,7 @@ class BamlStreamClient { "myString": myString }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -1992,7 +2246,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -2007,7 +2261,7 @@ class BamlStreamClient { "myStringArray": myStringArray }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -2015,7 +2269,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -2030,7 +2284,7 @@ class BamlStreamClient { "myArg": myArg }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -2038,7 +2292,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -2053,7 +2307,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -2061,7 +2315,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -2076,7 +2330,7 @@ class BamlStreamClient { "img": img }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -2084,7 +2338,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -2099,7 +2353,7 @@ class BamlStreamClient { "myArg": myArg,"myArg2": myArg2 }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -2107,7 +2361,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -2122,7 +2376,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -2130,7 +2384,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -2145,7 +2399,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -2153,7 +2407,29 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + } + + TestOpenAILegacyProvider( + input: string, + __baml_options__?: { tb?: TypeBuilder } + ): BamlStream, string> { + const raw = this.runtime.streamFunction( + "TestOpenAILegacyProvider", + { + "input": input + }, + undefined, + this.ctx_manager.cloneContext(), + __baml_options__?.tb?.__tb(), + ) + return new BamlStream, string>( + raw, + (a): a is RecursivePartialNull => a, + (a): a is string => a, + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -2168,7 +2444,7 @@ class BamlStreamClient { }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -2176,7 +2452,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -2191,7 +2467,7 @@ class BamlStreamClient { }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -2199,7 +2475,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is string => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } @@ -2214,7 +2490,7 @@ class BamlStreamClient { "input": input }, undefined, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), __baml_options__?.cb, ) @@ -2222,7 +2498,7 @@ class BamlStreamClient { raw, (a): a is RecursivePartialNull => a, (a): a is UnionTest_ReturnType => a, - this.ctx_manager.get(), + this.ctx_manager.cloneContext(), __baml_options__?.tb?.__tb(), ) } diff --git a/integ-tests/typescript/baml_client/globals.ts b/integ-tests/typescript/baml_client/globals.ts index c69e3cb1d..b447f4cc7 100644 --- a/integ-tests/typescript/baml_client/globals.ts +++ b/integ-tests/typescript/baml_client/globals.ts @@ -20,10 +20,10 @@ import { BamlClient } from './client' import { getBamlFiles } from './inlinedbaml' -const _DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME = BamlRuntime.fromFiles( +export const DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME = BamlRuntime.fromFiles( 'baml_src', getBamlFiles(), process.env ) -export const DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX = new BamlCtxManager(_DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME) -export const b = new BamlClient(_DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME, DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) \ No newline at end of file +export const DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX = new BamlCtxManager(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME) +export const b = new BamlClient(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME, DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) \ No newline at end of file diff --git a/integ-tests/typescript/baml_client/inlinedbaml.ts b/integ-tests/typescript/baml_client/inlinedbaml.ts index dc0601810..c1f3ddfe6 100644 --- a/integ-tests/typescript/baml_client/inlinedbaml.ts +++ b/integ-tests/typescript/baml_client/inlinedbaml.ts @@ -17,29 +17,33 @@ $ pnpm add @boundaryml/baml /* eslint-disable */ const fileMap = { - "clients.baml": "retry_policy Bar {\n max_retries 3\n strategy {\n type exponential_backoff\n }\n}\n\nretry_policy Foo {\n max_retries 3\n strategy {\n type constant_delay\n delay_ms 100\n }\n}\n\nclient GPT4 {\n provider baml-openai-chat\n options {\n model gpt-4\n api_key env.OPENAI_API_KEY\n }\n} \n\n\nclient GPT4o {\n provider baml-openai-chat\n options {\n model gpt-4o\n api_key env.OPENAI_API_KEY\n }\n} \n\n\nclient GPT4Turbo {\n retry_policy Bar\n provider baml-openai-chat\n options {\n model gpt-4-turbo\n api_key env.OPENAI_API_KEY\n }\n} \n\nclient GPT35 {\n provider baml-openai-chat\n options {\n model \"gpt-3.5-turbo\"\n api_key env.OPENAI_API_KEY\n }\n}\n\nclient Ollama {\n provider ollama\n options {\n model llama2\n }\n}\n\nclient GPT35Azure {\n provider azure-openai\n options {\n resource_name \"west-us-azure-baml\"\n deployment_id \"gpt-35-turbo-default\"\n // base_url \"https://west-us-azure-baml.openai.azure.com/openai/deployments/gpt-35-turbo-default\"\n api_version \"2024-02-01\"\n api_key env.AZURE_OPENAI_API_KEY\n }\n}\n\nclient Gemini {\n provider google-ai\n options{\n model \"gemini-1.5-pro-001\"\n api_key env.GOOGLE_API_KEY\n }\n}\n\n\nclient Claude {\n provider anthropic\n options {\n model claude-3-haiku-20240307\n api_key env.ANTHROPIC_API_KEY\n max_tokens 1000\n }\n}\n\nclient Resilient_SimpleSyntax {\n retry_policy Foo\n provider baml-fallback\n options {\n strategy [\n GPT4Turbo\n GPT35\n Lottery_SimpleSyntax\n ]\n }\n} \n \nclient Lottery_SimpleSyntax {\n provider baml-round-robin\n options {\n start 0\n strategy [\n GPT35\n Claude\n ]\n }\n}\n", + "clients.baml": "retry_policy Bar {\n max_retries 3\n strategy {\n type exponential_backoff\n }\n}\n\nretry_policy Foo {\n max_retries 3\n strategy {\n type constant_delay\n delay_ms 100\n }\n}\n\nclient GPT4 {\n provider openai\n options {\n model gpt-4o\n api_key env.OPENAI_API_KEY\n }\n} \n\n\nclient GPT4o {\n provider openai\n options {\n model gpt-4o\n api_key env.OPENAI_API_KEY\n }\n} \n\n\nclient GPT4Turbo {\n retry_policy Bar\n provider openai\n options {\n model gpt-4-turbo\n api_key env.OPENAI_API_KEY\n }\n} \n\nclient GPT35 {\n provider openai\n options {\n model \"gpt-3.5-turbo\"\n api_key env.OPENAI_API_KEY\n }\n}\n\nclient GPT35LegacyProvider {\n provider openai\n options {\n model \"gpt-3.5-turbo\"\n api_key env.OPENAI_API_KEY\n }\n}\n\n\nclient Ollama {\n provider ollama\n options {\n model llama2\n }\n}\n\nclient GPT35Azure {\n provider azure-openai\n options {\n resource_name \"west-us-azure-baml\"\n deployment_id \"gpt-35-turbo-default\"\n // base_url \"https://west-us-azure-baml.openai.azure.com/openai/deployments/gpt-35-turbo-default\"\n api_version \"2024-02-01\"\n api_key env.AZURE_OPENAI_API_KEY\n }\n}\n\nclient Gemini {\n provider google-ai\n options {\n model \"gemini-1.5-pro-001\"\n api_key env.GOOGLE_API_KEY\n }\n}\n\nclient AwsBedrock {\n provider aws-bedrock\n options {\n inference_configuration {\n max_tokens 100\n }\n model_id \"anthropic.claude-3-haiku-20240307-v1:0\"\n // model_id \"meta.llama3-8b-instruct-v1:0\"\n // model_id \"mistral.mistral-7b-instruct-v0:2\"\n api_key \"\"\n }\n}\n\nclient Claude {\n provider anthropic\n options {\n model claude-3-haiku-20240307\n api_key env.ANTHROPIC_API_KEY\n max_tokens 1000\n }\n}\n\nclient Resilient_SimpleSyntax {\n retry_policy Foo\n provider baml-fallback\n options {\n strategy [\n GPT4Turbo\n GPT35\n Lottery_SimpleSyntax\n ]\n }\n} \n \nclient Lottery_SimpleSyntax {\n provider baml-round-robin\n options {\n start 0\n strategy [\n GPT35\n Claude\n ]\n }\n}\n", "fiddle-examples/chain-of-thought.baml": "class Email {\n subject string\n body string\n from_address string\n}\n\nenum OrderStatus {\n ORDERED\n SHIPPED\n DELIVERED\n CANCELLED\n}\n\nclass OrderInfo {\n order_status OrderStatus\n tracking_number string?\n estimated_arrival_date string?\n}\n\nfunction GetOrderInfo(email: Email) -> OrderInfo {\n client GPT4\n prompt #\"\n Given the email below:\n\n ```\n from: {{email.from_address}}\n Email Subject: {{email.subject}}\n Email Body: {{email.body}}\n ```\n\n Extract this info from the email in JSON format:\n {{ ctx.output_format }}\n\n Before you output the JSON, please explain your\n reasoning step-by-step. Here is an example on how to do this:\n 'If we think step by step we can see that ...\n therefore the output JSON is:\n {\n ... the json schema ...\n }'\n \"#\n}", "fiddle-examples/chat-roles.baml": "// This will be available as an enum in your Python and Typescript code.\nenum Category2 {\n Refund\n CancelOrder\n TechnicalSupport\n AccountIssue\n Question\n}\n\nfunction ClassifyMessage2(input: string) -> Category {\n client GPT4\n\n prompt #\"\n {{ _.role(\"system\") }}\n // You can use _.role(\"system\") to indicate that this text should be a system message\n\n Classify the following INPUT into ONE\n of the following categories:\n\n {{ ctx.output_format }}\n\n {{ _.role(\"user\") }}\n // And _.role(\"user\") to indicate that this text should be a user message\n\n INPUT: {{ input }}\n\n Response:\n \"#\n}", "fiddle-examples/classify-message.baml": "// This will be available as an enum in your Python and Typescript code.\nenum Category {\n Refund\n CancelOrder\n TechnicalSupport\n AccountIssue\n Question\n}\n\nfunction ClassifyMessage(input: string) -> Category {\n client GPT4\n\n prompt #\"\n Classify the following INPUT into ONE\n of the following categories:\n\n INPUT: {{ input }}\n\n {{ ctx.output_format }}\n\n Response:\n \"#\n}", "fiddle-examples/extract-names.baml": "function ExtractNames(input: string) -> string[] {\n client GPT4\n prompt #\"\n Extract the names from this INPUT:\n \n INPUT:\n ---\n {{ input }}\n ---\n\n {{ ctx.output_format }}\n\n Response:\n \"#\n}\n", - "fiddle-examples/images/image.baml": "function DescribeImage(img: image) -> string {\n client GPT4Turbo\n prompt #\"\n {{ _.role(\"user\") }}\n\n\n Describe the image below in 5 words:\n {{ img }}\n \"#\n\n}\n\nclass FakeImage {\n url string\n}\n\nclass ClassWithImage {\n myImage image\n param2 string\n fake_image FakeImage\n}\n\n// chat role user present\nfunction DescribeImage2(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n {{ _.role(\"user\") }}\n You should return 2 answers that answer the following commands.\n\n 1. Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n 2. Also tell me what's happening here in one sentence:\n {{ img2 }}\n \"#\n}\n\n// no chat role\nfunction DescribeImage3(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}:\n {{ img2 }}\n \"#\n}\n\n\n// system prompt and chat prompt\nfunction DescribeImage4(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n {{ _.role(\"system\")}}\n\n Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}:\n {{ img2 }}\n \"#\n}", + "fiddle-examples/extract-receipt-info.baml": "class ReceiptItem {\n name string\n description string?\n quantity int\n price float\n}\n\nclass ReceiptInfo {\n items ReceiptItem[]\n total_cost float?\n}\n\nfunction ExtractReceiptInfo(email: string) -> ReceiptInfo {\n client GPT4o\n prompt #\"\n Given the receipt below:\n\n ```\n {{email}}\n ```\n\n {{ ctx.output_format }}\n \"#\n}\n\n", + "fiddle-examples/images/image.baml": "function DescribeImage(img: image) -> string {\n client AwsBedrock\n prompt #\"\n {{ _.role(\"user\") }}\n\n\n Describe the image below in 20 words:\n {{ img }}\n \"#\n\n}\n\nclass FakeImage {\n url string\n}\n\nclass ClassWithImage {\n myImage image\n param2 string\n fake_image FakeImage\n}\n\n// chat role user present\nfunction DescribeImage2(classWithImage: ClassWithImage, img2: image) -> string { \n client GPT4Turbo\n prompt #\"\n {{ _.role(\"user\") }}\n You should return 2 answers that answer the following commands.\n\n 1. Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n 2. Also tell me what's happening here in one sentence:\n {{ img2 }}\n \"#\n}\n\n// no chat role\nfunction DescribeImage3(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}:\n {{ img2 }}\n \"#\n}\n\n\n// system prompt and chat prompt\nfunction DescribeImage4(classWithImage: ClassWithImage, img2: image) -> string {\n client GPT4Turbo\n prompt #\"\n {{ _.role(\"system\")}}\n\n Describe this in 5 words:\n {{ classWithImage.myImage }}\n\n Tell me also what's happening here in one sentence and relate it to the word {{ classWithImage.param2 }}:\n {{ img2 }}\n \"#\n}\n\ntest TestName {\n functions [DescribeImage]\n args {\n img { url \"https://imgs.xkcd.com/comics/standards.png\"}\n }\n}\n", "fiddle-examples/symbol-tuning.baml": "enum Category3 {\n Refund @alias(\"k1\")\n @description(\"Customer wants to refund a product\")\n\n CancelOrder @alias(\"k2\")\n @description(\"Customer wants to cancel an order\")\n\n TechnicalSupport @alias(\"k3\")\n @description(\"Customer needs help with a technical issue unrelated to account creation or login\")\n\n AccountIssue @alias(\"k4\")\n @description(\"Specifically relates to account-login or account-creation\")\n\n Question @alias(\"k5\")\n @description(\"Customer has a question\")\n}\n\nfunction ClassifyMessage3(input: string) -> Category {\n client GPT4\n\n prompt #\"\n Classify the following INPUT into ONE\n of the following categories:\n\n INPUT: {{ input }}\n\n {{ ctx.output_format }}\n\n Response:\n \"#\n}", "main.baml": "generator lang_python {\n output_type python/pydantic\n output_dir \"../python\"\n}\n\ngenerator lang_typescript {\n output_type typescript\n output_dir \"../typescript\"\n}\n\ngenerator lang_ruby {\n output_type ruby/sorbet\n output_dir \"../ruby\"\n}\n", "test-files/aliases/classes.baml": "class TestClassAlias {\n key string @alias(\"key-dash\") @description(#\"\n This is a description for key\n af asdf\n \"#)\n key2 string @alias(\"key21\")\n key3 string @alias(\"key with space\")\n key4 string //unaliased\n key5 string @alias(\"key.with.punctuation/123\")\n}\n\nfunction FnTestClassAlias(input: string) -> TestClassAlias {\n client GPT35\n prompt #\"\n {{ctx.output_format}}\n \"#\n}\n\ntest FnTestClassAlias {\n functions [FnTestClassAlias]\n args {\n input \"example input\"\n }\n}\n", "test-files/aliases/enums.baml": "enum TestEnum {\n A @alias(\"k1\") @description(#\"\n User is angry\n \"#)\n B @alias(\"k22\") @description(#\"\n User is happy\n \"#)\n // tests whether k1 doesnt incorrectly get matched with k11\n C @alias(\"k11\") @description(#\"\n User is sad\n \"#)\n D @alias(\"k44\") @description(\n User is confused\n )\n E @description(\n User is excited\n )\n F @alias(\"k5\") // only alias\n \n G @alias(\"k6\") @description(#\"\n User is bored\n With a long description\n \"#)\n \n @@alias(\"Category\")\n}\n\nfunction FnTestAliasedEnumOutput(input: string) -> TestEnum {\n client GPT35\n prompt #\"\n Classify the user input into the following category\n \n {{ ctx.output_format }}\n\n {{ _.role('user') }}\n {{input}}\n\n {{ _.role('assistant') }}\n Category ID:\n \"#\n}\n\ntest FnTestAliasedEnumOutput {\n functions [FnTestAliasedEnumOutput]\n args {\n input \"mehhhhh\"\n }\n}", "test-files/comments/comments.baml": "// add some functions, classes, enums etc with comments all over.", - "test-files/dynamic/dynamic.baml": "class DynamicClassOne {\n @@dynamic\n}\n\nenum DynEnumOne {\n @@dynamic\n}\n\nenum DynEnumTwo {\n @@dynamic\n}\n\nclass SomeClassNestedDynamic {\n hi string\n @@dynamic\n\n}\n\nclass DynamicClassTwo {\n hi string\n some_class SomeClassNestedDynamic\n status DynEnumOne\n @@dynamic\n}\n\nfunction DynamicFunc(input: DynamicClassOne) -> DynamicClassTwo {\n client GPT35\n prompt #\"\n Please extract the schema from \n {{ input }}\n\n {{ ctx.output_format }}\n \"#\n}\n\nclass DynamicOutput {\n @@dynamic\n}\n \nfunction MyFunc(input: string) -> DynamicOutput {\n client GPT4\n prompt #\"\n Given a string, extract info using the schema:\n\n {{ input}}\n\n {{ ctx.output_format }}\n \"#\n}", + "test-files/dynamic/dynamic.baml": "class DynamicClassOne {\n @@dynamic\n}\n\nenum DynEnumOne {\n @@dynamic\n}\n\nenum DynEnumTwo {\n @@dynamic\n}\n\nclass SomeClassNestedDynamic {\n hi string\n @@dynamic\n\n}\n\nclass DynamicClassTwo {\n hi string\n some_class SomeClassNestedDynamic\n status DynEnumOne\n @@dynamic\n}\n\nfunction DynamicFunc(input: DynamicClassOne) -> DynamicClassTwo {\n client GPT35\n prompt #\"\n Please extract the schema from \n {{ input }}\n\n {{ ctx.output_format }}\n \"#\n}\n\nclass DynInputOutput {\n testKey string\n @@dynamic\n}\n\nfunction DynamicInputOutput(input: DynInputOutput) -> DynInputOutput {\n client GPT35\n prompt #\"\n Here is some input data:\n ----\n {{ input }}\n ----\n\n Extract the information.\n {{ ctx.output_format }}\n \"#\n}\n\nfunction DynamicListInputOutput(input: DynInputOutput[]) -> DynInputOutput[] {\n client GPT35\n prompt #\"\n Here is some input data:\n ----\n {{ input }}\n ----\n\n Extract the information.\n {{ ctx.output_format }}\n \"#\n}\n\n\n\nclass DynamicOutput {\n @@dynamic\n}\n \nfunction MyFunc(input: string) -> DynamicOutput {\n client GPT35\n prompt #\"\n Given a string, extract info using the schema:\n\n {{ input}}\n\n {{ ctx.output_format }}\n \"#\n}\n\n", + "test-files/functions/input/named-args/single/named-audio.baml": "function AudioInput(aud: audio) -> string{\n client Gemini\n prompt #\"\n {{ _.role(\"user\") }}\n\n Does this sound like a roar? Yes or no? One word no other characters.\n \n {{ aud }}\n \"#\n}\n\n\ntest TestURLAudioInput{\n functions [AudioInput]\n args {\n aud{ \n url https://actions.google.com/sounds/v1/emergency/beeper_emergency_call.ogg\n }\n } \n}\n\n\n", "test-files/functions/input/named-args/single/named-boolean.baml": "\n\nfunction TestFnNamedArgsSingleBool(myBool: bool) -> string{\n client GPT35\n prompt #\"\n Return this value back to me: {{myBool}}\n \"#\n}\n\ntest TestFnNamedArgsSingleBool {\n functions [TestFnNamedArgsSingleBool]\n args {\n myBool true\n }\n}", "test-files/functions/input/named-args/single/named-class-list.baml": "\n\n\nfunction TestFnNamedArgsSingleStringList(myArg: string[]) -> string{\n client GPT35\n prompt #\"\n Return this value back to me: {{myArg}}\n \"#\n}\n\ntest TestFnNamedArgsSingleStringList {\n functions [TestFnNamedArgsSingleStringList]\n args {\n myArg [\"hello\", \"world\"]\n }\n}", "test-files/functions/input/named-args/single/named-class.baml": "class NamedArgsSingleClass {\n key string\n key_two bool\n key_three int\n // TODO: doesn't work with keys with numbers\n // key2 bool\n // key3 int\n}\n\nfunction TestFnNamedArgsSingleClass(myArg: NamedArgsSingleClass) -> string {\n client GPT35\n prompt #\"\n Print these values back to me:\n {{myArg.key}}\n {{myArg.key_two}}\n {{myArg.key_three}}\n \"#\n}\n\ntest TestFnNamedArgsSingleClass {\n functions [TestFnNamedArgsSingleClass]\n args {\n myArg {\n key \"example\",\n key_two true,\n key_three 42\n }\n }\n}\n\nfunction TestMulticlassNamedArgs(myArg: NamedArgsSingleClass, myArg2: NamedArgsSingleClass) -> string {\n client GPT35\n prompt #\"\n Print these values back to me:\n {{myArg.key}}\n {{myArg.key_two}}\n {{myArg.key_three}}\n {{myArg2.key}}\n {{myArg2.key_two}}\n {{myArg2.key_three}}\n \"#\n}", "test-files/functions/input/named-args/single/named-enum-list.baml": "enum NamedArgsSingleEnumList {\n ONE\n TWO\n}\n\nfunction TestFnNamedArgsSingleEnumList(myArg: NamedArgsSingleEnumList[]) -> string {\n client GPT35\n prompt #\"\n Print these values back to me:\n {{myArg}}\n \"#\n}\n\ntest TestFnNamedArgsSingleEnumList {\n functions [TestFnNamedArgsSingleEnumList]\n args {\n myArg [ONE, TWO]\n }\n}", "test-files/functions/input/named-args/single/named-enum.baml": "enum NamedArgsSingleEnum {\n ONE\n TWO\n}\n\nfunction FnTestNamedArgsSingleEnum(myArg: NamedArgsSingleEnum) -> string {\n client GPT35\n prompt #\"\n Print these values back to me:\n {{myArg}}\n \"#\n}\n\ntest FnTestNamedArgsSingleEnum {\n functions [FnTestNamedArgsSingleEnum]\n args {\n myArg ONE\n }\n}", "test-files/functions/input/named-args/single/named-float.baml": "function TestFnNamedArgsSingleFloat(myFloat: float) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myFloat}}\n \"#\n}\n\ntest TestFnNamedArgsSingleFloat {\n functions [TestFnNamedArgsSingleFloat]\n args {\n myFloat 3.14\n }\n}\n", - "test-files/functions/input/named-args/single/named-image.baml": "function TestImageInput(img: image) -> string{\n client GPT4o\n prompt #\"\n {{ _.role(\"user\") }}\n\n Describe this in 4 words {{img}}\n \"#\n}\n\ntest TestImageInput {\n functions [TestImageInput]\n args {\n img {\n url \"https://www.google.com/images/branding/googlelogo/2x/googlelogo_color_92x30dp.png\"\n }\n }\n}\n\ntest shrek {\n functions [TestImageInput]\n args {\n img {\n url \"https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png\"\n }\n }\n}\n\n\n// double check this before adding it. Probably n ot right.\n// function TestImageInputAnthropic(img: image) -> string{\n// client GPT4o\n// prompt #\"\n// {{ _.role(\"user\") }}\n\n// Describe this in 4 words {{img}}\n// \"#\n// }\n\n// test TestImageInputAnthropic {\n// functions [TestImageInputAnthropic]\n// args {\n// img {\n// base64 iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAApgAAAKYB3X3/OAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAANCSURBVEiJtZZPbBtFFMZ/M7ubXdtdb1xSFyeilBapySVU8h8OoFaooFSqiihIVIpQBKci6KEg9Q6H9kovIHoCIVQJJCKE1ENFjnAgcaSGC6rEnxBwA04Tx43t2FnvDAfjkNibxgHxnWb2e/u992bee7tCa00YFsffekFY+nUzFtjW0LrvjRXrCDIAaPLlW0nHL0SsZtVoaF98mLrx3pdhOqLtYPHChahZcYYO7KvPFxvRl5XPp1sN3adWiD1ZAqD6XYK1b/dvE5IWryTt2udLFedwc1+9kLp+vbbpoDh+6TklxBeAi9TL0taeWpdmZzQDry0AcO+jQ12RyohqqoYoo8RDwJrU+qXkjWtfi8Xxt58BdQuwQs9qC/afLwCw8tnQbqYAPsgxE1S6F3EAIXux2oQFKm0ihMsOF71dHYx+f3NND68ghCu1YIoePPQN1pGRABkJ6Bus96CutRZMydTl+TvuiRW1m3n0eDl0vRPcEysqdXn+jsQPsrHMquGeXEaY4Yk4wxWcY5V/9scqOMOVUFthatyTy8QyqwZ+kDURKoMWxNKr2EeqVKcTNOajqKoBgOE28U4tdQl5p5bwCw7BWquaZSzAPlwjlithJtp3pTImSqQRrb2Z8PHGigD4RZuNX6JYj6wj7O4TFLbCO/Mn/m8R+h6rYSUb3ekokRY6f/YukArN979jcW+V/S8g0eT/N3VN3kTqWbQ428m9/8k0P/1aIhF36PccEl6EhOcAUCrXKZXXWS3XKd2vc/TRBG9O5ELC17MmWubD2nKhUKZa26Ba2+D3P+4/MNCFwg59oWVeYhkzgN/JDR8deKBoD7Y+ljEjGZ0sosXVTvbc6RHirr2reNy1OXd6pJsQ+gqjk8VWFYmHrwBzW/n+uMPFiRwHB2I7ih8ciHFxIkd/3Omk5tCDV1t+2nNu5sxxpDFNx+huNhVT3/zMDz8usXC3ddaHBj1GHj/As08fwTS7Kt1HBTmyN29vdwAw+/wbwLVOJ3uAD1wi/dUH7Qei66PfyuRj4Ik9is+hglfbkbfR3cnZm7chlUWLdwmprtCohX4HUtlOcQjLYCu+fzGJH2QRKvP3UNz8bWk1qMxjGTOMThZ3kvgLI5AzFfo379UAAAAASUVORK5CYII=\n// media_type \"png\"\n// }\n// }\n// }", + "test-files/functions/input/named-args/single/named-image.baml": "function TestImageInput(img: image) -> string{\n client AwsBedrock\n prompt #\"\n {{ _.role(\"user\") }}\n\n Describe this in 4 words. One word must be the color {{img}}\n \"#\n}\n\ntest TestImageInput {\n functions [TestImageInput]\n args {\n img {\n url \"https://www.google.com/images/branding/googlelogo/2x/googlelogo_color_92x30dp.png\"\n }\n }\n}\n\ntest shrek {\n functions [TestImageInput]\n args {\n img {\n url \"https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png\"\n }\n }\n}\n\n\n\n// double check this before adding it. Probably n ot right.\n// function TestImageInputAnthropic(img: image) -> string{\n// client GPT4o\n// prompt #\"\n// {{ _.role(\"user\") }}\n\n// Describe this in 4 words {{img}}\n// \"#\n// }\n\n// test TestImageInputAnthropic {\n// functions [TestImageInputAnthropic]\n// args {\n// img {\n// base64 iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAApgAAAKYB3X3/OAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAANCSURBVEiJtZZPbBtFFMZ/M7ubXdtdb1xSFyeilBapySVU8h8OoFaooFSqiihIVIpQBKci6KEg9Q6H9kovIHoCIVQJJCKE1ENFjnAgcaSGC6rEnxBwA04Tx43t2FnvDAfjkNibxgHxnWb2e/u992bee7tCa00YFsffekFY+nUzFtjW0LrvjRXrCDIAaPLlW0nHL0SsZtVoaF98mLrx3pdhOqLtYPHChahZcYYO7KvPFxvRl5XPp1sN3adWiD1ZAqD6XYK1b/dvE5IWryTt2udLFedwc1+9kLp+vbbpoDh+6TklxBeAi9TL0taeWpdmZzQDry0AcO+jQ12RyohqqoYoo8RDwJrU+qXkjWtfi8Xxt58BdQuwQs9qC/afLwCw8tnQbqYAPsgxE1S6F3EAIXux2oQFKm0ihMsOF71dHYx+f3NND68ghCu1YIoePPQN1pGRABkJ6Bus96CutRZMydTl+TvuiRW1m3n0eDl0vRPcEysqdXn+jsQPsrHMquGeXEaY4Yk4wxWcY5V/9scqOMOVUFthatyTy8QyqwZ+kDURKoMWxNKr2EeqVKcTNOajqKoBgOE28U4tdQl5p5bwCw7BWquaZSzAPlwjlithJtp3pTImSqQRrb2Z8PHGigD4RZuNX6JYj6wj7O4TFLbCO/Mn/m8R+h6rYSUb3ekokRY6f/YukArN979jcW+V/S8g0eT/N3VN3kTqWbQ428m9/8k0P/1aIhF36PccEl6EhOcAUCrXKZXXWS3XKd2vc/TRBG9O5ELC17MmWubD2nKhUKZa26Ba2+D3P+4/MNCFwg59oWVeYhkzgN/JDR8deKBoD7Y+ljEjGZ0sosXVTvbc6RHirr2reNy1OXd6pJsQ+gqjk8VWFYmHrwBzW/n+uMPFiRwHB2I7ih8ciHFxIkd/3Omk5tCDV1t+2nNu5sxxpDFNx+huNhVT3/zMDz8usXC3ddaHBj1GHj/As08fwTS7Kt1HBTmyN29vdwAw+/wbwLVOJ3uAD1wi/dUH7Qei66PfyuRj4Ik9is+hglfbkbfR3cnZm7chlUWLdwmprtCohX4HUtlOcQjLYCu+fzGJH2QRKvP3UNz8bWk1qMxjGTOMThZ3kvgLI5AzFfo379UAAAAASUVORK5CYII=\n// media_type \"image/png\"\n// }\n// }\n// }", "test-files/functions/input/named-args/single/named-int.baml": "// test for int\nfunction TestFnNamedArgsSingleInt(myInt: int) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myInt}}\n \"#\n}\n\ntest TestFnNamedArgsSingleInt {\n functions [TestFnNamedArgsSingleInt]\n args {\n myInt 42\n }\n}\n", "test-files/functions/input/named-args/single/named-string-list.baml": "// string[]\nfunction TestFnNamedArgsSingleStringArray(myStringArray: string[]) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myStringArray}}\n \"#\n}\n\ntest TestFnNamedArgsSingleStringArray {\n functions [TestFnNamedArgsSingleStringArray]\n args {\n myStringArray [\"example1\", \"example2\", \"example3\"]\n }\n}\n", "test-files/functions/input/named-args/single/named-string-optional.baml": "\n\n // string[]\nfunction FnNamedArgsSingleStringOptional(myString: string?) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myString}}\n \"#\n}\n\ntest FnNamedArgsSingleStringOptional {\n functions [FnNamedArgsSingleStringOptional]\n args {\n myString \"example string\"\n }\n}\n\ntest FnNamedArgsSingleStringOptional2 {\n functions [FnNamedArgsSingleStringOptional]\n args {\n \n }\n}\n", "test-files/functions/input/named-args/single/named-string.baml": "// test string\nfunction TestFnNamedArgsSingleString(myString: string) -> string {\n client GPT35\n prompt #\"\n Return this value back to me: {{myString}}\n \"#\n}\n\ntest TestFnNamedArgsSingleString {\n functions [TestFnNamedArgsSingleString]\n args {\n myString \"example string\"\n }\n}\n", + "test-files/functions/input/named-args/single/testcase_audio.baml": "test TestAudioInput {\n functions [AudioInput]\n args {\n aud {\n media_type \"audio/mp3\"\n base64 #\"\n //uQZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWGluZwAAAA8AAABRAACbvAACBAgKDQ0QExcZGRweIiQkJyouMTQ0ODs+QkJFSUxPT1NWWl1dYGRna25ucXV4e3t/goaJiYyPkpaWmJyfoqamqq2ws7O3ur3BwcTHy87O0tbZ3eHh5Ofq7e3v8vT29vr7//8AAAA8TEFNRTMuOThyBK8AAAAAAAAAADQgJATvTQABzAAAm7x1lCT3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//twRAAAASMHzuhDEEgnoLnaCGMFC2CpO6wMT2EoDCd1hI00AAAAEQIDYHAsIIQAAEoGVMIIxHu2NU7D//6gx93/////b/rA4AABkADS8C7uaACBBcE4PiDEHG1v///8H4nB8CAgcnAfD/+XeJ//kJECiCQEJfI6HOSeUxLVpnrJo2rNIWOyh0ICisofyinwxQgwhC62QhoOq/VUc83SH50lBBW/zGlu7+rRJASS9aBdydWL4sDQNcGniICjWjQVUyz/r9Svasqk8mh2IEEAAF/3UCwpAWzBRxYSYYCG20kc8DZACBhYYL23pA9szuRYqDCiBhWU248WncakPjwAC//nqPjvVXbWoPCK5RxQpjrEb97tLtAAAAQCp/rY1YKFgEQGMiBKAl8eUUGLqIoKGJ8ymCSMEwbECv/7kGQSAELxHk7rCRtIUwN5zWEjdw641TWtYKfpzSHmqYYV5Tii6JucjDmcIwNidRSd8wROBJyGzaGHgEKFeKnm7nRASdEp9w0vMPKtoFqO0i8msqeRPqJvXWtGr/RegAAAAQf64JA85lKUzT1BLCVKxy3bzsmdNx7sBs/i9VAmPriMqzNVjGmwuiQIBz3xikXxobjFRgiHndkmCCWkzSFpKpQkWj7iK9vZoTq226qlyCgAAAAAK/1mAxhkJhwxggAiPFC86QFrpheGHGVl9CarY31L4s6dty4Uu1ptLBMgt1oI1194JiUBOVS/2DCiqTtsQqB1y7f1e3IvSt7LMcvV1V3nxbVrft1t9tYuR4hXw3i//Y/k/rKdc7774/xl8PzPwUaUb/bAAJf+11ymYAvCQjJBrYY8YCnDgQHRym2vv8v59AIgJeHcj2pdsuqSQRB/XGYAZBZjmcToT75GoqmPEUAc4k3+0t3tqieurldHetVIRirRUdybkWtkvcip8dZb3/jWz7A94WhLxHjLylb6kCt/8D25Xz2hqtgQAAACJ//7oGQDAANlHk1taYAIZgOZray8AQzEeTdZvAABnhJmtzWAAPZIEFDZvQUJMuOAwMwPMyI4BAwqzSXR8EIhNtYNWtp7TH+CgJDcSxKAuSHys6vLviQgE0SzUt/MwOpdg/KWnZpToR+hXxdcxRIW2TD+u8ji46iPZJCHTY6/IMD7TSrE+m7sjEDXs2bAAAAAAn/VwrHMcQxxTHqSGBjZtFl0H0DiVfjo7XX8V8+6fcfQ9DhI2JOQFtnzPpmiHUh6wxrbTfPzPW9PnOs3hbe57ODrvZvT1y765AQ3Ldn1mLQYFlQeKWqb7vfoin7YEY3oFkgQgAYJbTfgAAAAAF7QocrjMWjmvhWQUBEiUwIrMCOTOx0wgJTWHgQRlRgAGJIgGB0uZsK5MYGOIAWsNKa/FUd1lOC1VkM7WoKyNE3Xp2hxCOxV+LFM/UJVxMMikDjPZ3chjr9116cEACAACAALIPwAAAAACJSbr48SeTwAhSRg0hzTjgMBGA40UDARfAoLAIgCjbkv+/g0QDXa112Hf0zRyAKFxWeRa3C8KrdGpQRCl+yKDHem8Got6xG7TTay5czfkMO7J////8v/Wvs7asAAAAA+sjBwaYAQI6mAiwFATV7w2pETXlQyIg0BJhgy4VbIFAdIZ+4sh8kKPinBCNslLIrLvv87MeX4/7aOC48X3Z5jW3E5yL/ruv/7kGQlhEOdHkzXbwAIZaO5muy8AQ1MdzWtPSthgQ7mqMwkfMalWWXs6e/c76CiVNONeXdeTShNm2w+LD3b1Lm9rxUP4FM2YHX//+5UAAAAEfSQJ1u5BM+XAN1Q4DRZJAKDkU90eAug7K0V7OWomGGpQzR2FhQ9Ww1lAptDDLJ4cp1GSnlHG/snkIaFG5SarjEaFuEpE/R0/oiwqboZk0si7dH6ss5bZm8QaagzUYbaVPqgAAAC/1gMOpXWX3AR8u6aAAfRK3QiGGXCoBwqwCPgTA6BMRwB/hmDCE8IKj1Cn2M0Hz1cIaohiEpXR/VT32xIoot89VJd0MLhJ7uXU1IsLZkMjGmb1WPFQM0aEDReiEGT6yVwq5WErD3TToAAF/rAgiMKy4gHC1y0olOVr1QEgpYX2tRNBWlZCRL7MEZYk85Tyz0rCgyacRhAOioFiMG5/8hGxOh2WdL0U3pYox8IqkHxQNrW8qGE0zNsfDaA5a1TFjEFAYShfXV2V1AAAAACB/ZIJBSGoGARQTaeCJc3oDLvgww+hOVYwAcRBWcBZP/7kGQSBGNuG81reEnYZGNpumHpaQ3UbzW1t4Ahd47mtrDwBIAow+wQ4ocu5Sa94y7JMFxouRhUTCImQBWW+kC5dMT3npMnTxzgf8+LQy9YpAAic1oKtYg9lJZ4dnWVoSkeJsXYyqLe60v+n+uswAAAAf7aL1iEwylSsEcaKxP+XTLnFnVDhAOHjYHjGKETkYrIN9VKZdtCXfPFSdKGJo4HqirfSEESQMadz1LQ82UP/paw3WuEFPZcoAoFnvbmTMyQUwVQFxiiinB5DjaDNqj6SkYAAAH1kbghwKOBQ4RAIHNKiTIykQhphYuYQYhQCLrFUhfZFxCUwpPkDKAkCXJihigY1WhyHTKpQqBCTIUTOro3vizPSrdL9+a1nUEDnPUPMJJIi/1m2MoQJZ0udLT7mNRq08YtcOGWOEspV2+/odAA9sDfQhA+feIuAdvjdUAo1RlyAZbsOK7LgypfJ0j/JwrzSXR+oecrKm1yzl1VhYnpqNrl72Y2itMV3+8iXjx4nj7+pwpbPiZiVOgI/EOPYvILYq6eQJ1hj6kKoHKAAP/7oGQBAANzHk1ubwAAc6SZrc3gAA0cezVZvAABnZDmtzWAAAAAAAoD9gagAAAAAKERjdOUDwrIl4QstmvlqCUFcxgyCaibhgKZyLtDMLJDBwAGAIIFAyb7GyhP4BOQ+ghFZnC9QqALnQFJvORIqSORBHCrQV1lyHr/EQWZtHVBD7JWsucivJMZIyWxB37EvZwyAggAAiA8rfQAAAAAZQImH2b4AwOHiUSSzSwExIPNFPgINmPiAhDTASsVFBImCC0GhJedb6xACwuyXpY45cCsHfVHUeaWhEYVjPu0OvNItNOuuRJoH26tanpGBuOjmm7DyFgQqw+LN3+s9///+f//87NLwAAFCa9d+AAAAAACFEyWhHQ0SbKYVNjEyAEE5npCYYAmmiDM27AIhKI0xsJGmAqgT9oaEJB5Ja5mKynicJmj0IMJeK/XPAcN9lyD7TpRt3Ych2AmXEICBTAYDbC5TD3It1JXD7WqbmnRAAAAUQAmQa98AAAAAAUHDlBVpGHHw+QJzzlB0GY8sjmc4qhmTN2sDw4WAjRQKBmaJhl+w5kNFwZS5L6zq9gwjBC4oyB5G25OszkFiBG0gerEezLqzU/ZwQ8XWUKilxrLqOJ3///v5WrEVEgJjEaLqDgAAAAAAChQaqLpglIgnM5INOGLkCE0FSRl15pyysF0eEr3NQIHjbhvnGG5l//7kGQagAL8HlNuawCQbqSZnc3gAA7MdzVdt4Ahig6mt7DwBChprBITCZppqukxkjl4yaDr9tl8pft02TQfq/BMzjHN6vX7eFC/FBRwvvwCgDAAAAAIP+AAAAAAEKiMN7nCIYcsAmASOAgHMSXwSToEDDAkmEAESBQDBA4tIw4NgxQdTtoZhaAINDiECtfRyZSzFBcwQbq/VucbNTv/CEF6WVMsg7UL7CZNcdyAK+daVp3zUs///4X/679uhuAAAAAf6SAIcGQlrg4ICA0NBtB5WMKBhAAu8NBABKDGAcKAaihgQADg4eAkeXEXpYy1SyPMo/Each7TpALQcagTrVGvBbYOG66JktF8aPPM2uFWOG/xWPau8Ji1671OQ1yyVD+84lDCobahNCOVn6K3/2a7a7KVAAAAAAB/rA9LivIDjv+EhdMtmNDBxVkrxUCDjrAJcOS1s/DkSJ0lGfKKlfM5AUSaJZEbBtE2PfcV5FYbR0i56zefDxrTWbI9UN6Pxrz2uNtYbSR7s6kgbbOcWIvG1stdq510AAAAAA/2RhzRhf/7oGQFhWPkL8zrWDn4Z6PJvWXpkwy4dzVNYSfhiw4m6YYZ3IgDEBklMm0+HxJiWUg2ZjgjBj4DFs2B2jNVAE4LLTWBP1mg09VrMZW2zgNTVlbsWrIwrPbWYi544FxEHwKDIQGEUDaigMDg+FhqKCo8/+5iURnop2yvonNlwAPFzSLCyBslQpOfA7e/dw7ugMv9On++yIAAAAAAf2QM5Q8UajjIzTOOZ5OpUjcmdKbl6081lpqIlK/YUn3Qug8L7OFOrkyw6RiI8NENJTKBD2hxHITDYdHSLat9ETZHQyIBftZ5/OFL0IYBSRdQrXbaRnTrt7HWuFJzWrRXhQ3IAABxwEYoMMBwUDMMnNnCNGMByQoeJelYNwSCSHS2fQWWLEf2C0vk90Fl4xGLP67MFS1/nIRXYc06R5yiQCtk4VcRbRrlUjc3ygjH/bIXFtYbemhm5oD1vD5nXk22sTOVcU6VkTniHtlaavByr7NAIQPmU1gJSlFQtygujVInZIjs0EovhKXAlaLpkaDknFpiFBUJ4MCwWeCHhiIkGMpD76khEixY/0Rj7lu9KDAi6EUbX0sQQPOWZLuHe9tss5Gna4lWnQNDmLWEAAAAABb2xhU8QQBYwGsAxIylTOpGo6iHBSgtYJkBjGGcjsXUfAgA9JmqNDzTTadcHyAVpJimLeySXEZhY5NeLLRiUv/7kGQiBGNZHc1rL0rYagPJrWMMHwyEcTWsbSPhcg7maZexXIWnj10Si9ehBqhyw3rJKiz7AmSqVYt09EK5UyTWb4bXpbsUn/6fi7oAAAAAA/sjf9TAqvQFq+FRhH2dChWbycEPPJFY1RQ+sE47LKrbsriD/MgnjA2EtGJR4aCovkxQvMWMgVsKU1ejfTp05m42Jd3f6Hzkz6ouw4LtnyUWjmqT572HWNLtnhx0KLYD7z3X/dVGAgAB/YwJqIFGlxE1X4EwzHCgKByJYUA1DwYBFCYqBMVE1C++4b/q9SdQJOU5TzEaMKgiCIBSQEgSPosu4rwhNpd6TYeJWpCKgaD3rJAodoJxosGylBLGzMKMkxbrbt1L/oZjsAPIwupyKVswiDKmoGOW+uxcjBRAeOdMIcN45SGE9LqnlaLkwsTM8OoLlAjgOHI/jV0bg/2aLl6ZREoYW5QkFUkqI1j/kQ5FnsrOEwi9Yy7voTe3zrUqldu3j9xVvAAAAAAH9tA4PRhMwMNQYTbMpBEY1LlA9QUn4CkaL4fRULbxevIy4aRasf/7kGQVhGL4Hc3rT2IoZiO5rWHsVQyEdzWsPSyhXQ1mtYelHFLnXSyugSEM1XQQRa4s1s7c78eX+t2+xvvO6918hdXX7njnNllKTFJYCqYw+2pVDHIpgSpdkgAAAAf2x45puA+AGOIJhHmfpHQIFgl3QqU4aZfk2TdFkBSYmQ0xFvzaqAyQXB3EVbBLF+YW3dJZ+/Q8U3qseggd+D21GbQzGNOE0rkVMVci04g/UlKYbekiSam6o2R1nkf/7/XEAQABvZI/wYlgwI0wg0CJ7UwMC5Clq+QaYKgViPQJg4SGIk7HFPmir0eiHTwocWAoDZ5qZiGPQMA7rCbqcUXFbE3k58b8lroc0VLXNMyd70XMFH55XT4u7RYy22xtffth/3tlXAEPZJHIBEYC5yyUTFmwUniUIPENIDMrYiIGFAUz1LkpACQOH5HyrkyZkLMKniZvyLwlTJppFvPjB9CP2uLvG1hFw9FVOlVDHcBFdvStL+llHtRstT+ipXAAAAAAB/bAosLGIZJalyyCBON2ioJ538RPIoOa8zvylVQSU5fCZv/7gGQThHLLHc3rDEO4WoOZvWGIaQtUdzesPSqhcg5mkYelFEhEVHeq5yrL5kgMNmMlFHqIbvXSMHoTWS7CTwqhRt/FTSyzXP+n59Y0KgUvlirXP/91TrJIAAAA/tkiTZx0QloANEEBGG8qs3Rs0Ptnai86GE4qHVOQimdryVNjw5dUnril1tdKuhZ6uQrBFSsMIqj1fU8pUducPRC9u0axBy300VJNFrm7EOSTSbs/0VhMABf22GJ4dchKF7CIAXYAlKBoIUI3MWSH2jiYqYcaqYmBFKsuuhF3SY+KiJYgxllDFEtuiZVr/O2fRvR5Abd71Isi7ZKx96VX2aUJYtKepve3OpTfkUsajpiYpQ6suWKn+DlkjkbHQMZTKYeAii+TE6XyQsRMgAcIyJAyxAjXiUJpj0mRGko2hmYTOzW3V7SY2Zpf1Bge4zS9zwhFH2oawi7Hqhaw8oeHL2vbxbV2dWntRdtvm3AQAAAA//ugZAKEQxYczWsPYphmI6mqPwkLDEhzN6xpI2F4D2b1hiWMB/bGYAE2DUgOIquI4JtItJhIrPYIikGPA6UWjSjSpgEFV5CVLki1YXieVqEGmuQrjSUli68YmL+0vdQwf3fG/DN2cHtEZw6xd9dwsmu88lNDHP0mQgmNb1Ftzfp/r8wAAAL/SQ1SsWFTTR3L8kS0qVgxYzqQIpS/7/JkAgJVhICTzJcTQGSdGoSPCh+AqNxOji48SpE4yM4miWNLwkQMhrqQtwx5iYMpSaFkKlh0qZH7HenGyQxIo9AKKW1WoSFvv/rR3xgAABf62BZYYwMMPZMcUAEQeeg4A4ICIL1Qkjwxw1gFbG1ionBQGQwukY0PEJFI0JQoZWaetIshUR1BsnaxlQcI1hUKQ2LfOxe6vuVZh190IVAqZ1t6OBVLxAjYi9SPq7q1RkBgAf6StxJRwCywvI64RV1iECpl2rHRXaVEQeDkSRKK8IZgnQnYOCNkjiPhc3BMkSvyXInLskQIQRMI3SUJDzMHfjR8VLw6jSkpz00qRFDaX/87zn79hV7drW9GxaqIAAAAAAf2MGIYQIHRI4GPCHVHnAHmHJioEaomEChQqj4TA4sr5+lYFtMeiLXWO/YphgEWkQkKEgylZdCyCD1ECsz4iRDAyRBIoCOCrC/psFDo4euoVODbZhGLPCUSmu3N//uAZDCGYzgdTWsaSPhkw9mtZwk5DQh3Naxpg2G2j2a1PCQ8bUJo1/2OcAAAAAAH9sD6tQBIZCSzoatD0JGVUA7AQgLigBeqh6q8CrXXfF1bV6Duti6hdGnN4hJ4WHoowfkjUTNJi4hGFiawphY7JJs9+Z4sLKrehy1OcuZ23OSRAVrBSEFtVFrXUoGj76ZAAPHIb0pDnIId8ROzuvzZai2AybMuOQ2LLlrHIQ7EQlY9COYCAID3eA9pJYuWlg8kepLPlMKYhoJ2qQ1a9hGZlYnlF1YWFy55t/RaE1x1TS5kANLnq9dCrl/6rdeLXLKvCEKfX9WxKHACPbIQoTguo0RLgFmSxsAvZuk/QGUzMFeNyRyeK9HI2vOhDRUYU65YMD4kCpAFRMCYpD4gZQLyRDpMCVIScLjB5c6GA+F2f3HQRYMHi6XNGDD4fqatbGqeXJHbjLshpELybWubMojFieO//jNdAA/sgbOVB7X/+6BkBAdjXRzNG1hJyGajuaMnDA8O5Hc0jHMCoacPJvWEvhTjHDjEoztnzUHyBKDjmMReA6hGptSSWKhS37IGnyRgcXJQuTnAooqIxCLBgVCkvFQbEwuTjBMLB4SBsMp4FAwFwEEDib+A2JwSSpQXcfD+dShLAwUNLYLd9XG1YQMXuatxVaCIAH9kFgO6afg44EVELilQ6ZCtNNTFWoIIvJPaHHbiBABenBJWFtYXRJK4kPGIek0qolLYOCQ27ETSoIZUEcsFYriQXHE5fJBVJL+C2AryRRb0se0wZQ1ROFfgDx7Pih4VEEtY2JnF1QAF5GLRyEYTipFNORYSGBi4DFUIhzkD/C3T0gW+Z1nA4G8WBNYcYIFBCcMPxavMP/EX8iUgdV/pA4jpSd/4nJnDae7cYZJDcSaNBsTb+dht/Je/8amjnDpd4hLtAw4f1rS9ZqbL1NtNkyH3tZNXB8KOFnoQ60P2gAe2BWsAODelflLiNxtUPEGdm1smHYJLOYCRsCZK9bN1lqikpGPCkQkgZeCQJyCxGkJxlWjzWYZyLKuYF0hqHNI6D8VG4ynkL8hrLP7VjAGysm8ReYuGLXuW05UKDVigolLmvN0evWgLqoAAAAA/lgIgkhJAgDBBeY0GGAMgD4QKLmDEBpy2cxzCDyTSGS8Ciar1gi0YhPWEV6OlDmZDWt/pPpr/+5BkHQZzeR7N03l6OGfj2bpjLzkOOHk3TeXqoZ0PJuGNZIRcnmsocpVKXVPEsaSwHNET4txlkgN5SZOpUPnBSIY7ZnX7wfxZ7LYYsQ9H/zS270p/dRzaS3gAAAAf2QQaIyJdig26GI4xYm6aoxwBi8ZMMYRAKHdlPpPOIl2W5iQ8yqMvmRXqxTpNTqC6HrKGMSejF+OckyVMAbgNtJvQci0TIhyo2k2MniNULv9r2aEraZW0yl9s2y19u/m9FWnr0A+sCYqF4CUwYFmNDJ4M4asRmLCRkqecQFHAsJh5AWRASCAk87EeAqapMwgxol3jFaSxJ+G1K1nY2ksBfUPUWWNsQw/iEGahplDlFStoxTKVCqWlcmVmQ910EA0dzqJoVilLJ5Wq1Yr2cgb/e+xNIphukB94DKTmM4MEYzHMRmHJkgJuIHgsOGhQ0WGAygVQDimlNMTGcZ624RSjpZLZg2GX+fKSsAdmG8Ja6LhxtwF6RVkcYThfx/lgHIhuQXpK+SY7I4xR/qFszTvZxvdYdWOu9EgL/obf6cAAAf2AJXD/+6BkA4ZjlB3NuxzQqG9jybpjeiENqHc5TeHqocKPJumsvXQJ5mUS3MBDkxVPTPAvM4jowqlTRQZA3IygMAhAcpEJYzEFMAQBU+wqdEg6VrLl/w47HYbf1t56HI8w1AOt+Vv60drMUfJnjRIcYmsZDjBEANApqsxHnBtP5H3dYulNW00AzGlVsv2+m/VJPskAAAAD+wCqy9SwwfLsm0RyZGYoHmwRGyHAWCVCSOY4EBRI1A8aRxKaGBz/JePPD7vzjc4OkbuuNDL/LQYy/kpZgoLEoEcBpq63/f5Vy831hh8FfxSPx13ncaa/1/w0hjEDCzVrcxu29UVzBP/SJB+AH1AfZxDBhMw9RMBNTQPkyyeBB4aQ7mwiQP6TOCJsIy02AP6AGUhGtQBIGjMubE83JVJlhVCQAzrklhrESprnIT9wL2OtJhmEbHrElHYWJtWlVaAr0KSaJdu8UnJpmMbXIXt7ygFcl71tUwK1+AeyCDmAGGGo6GjOmBUnbxn/BgZ8cBmDYAQzSsMoIEhGHoTHrBjxwqc1BxYo/zsyd3HlZkXfjceZswV+X+f+cUwV87z/s1YsnCMw6GIEiEaU65UbGqFGrVpGf3GhtkayK0LpNVF1o5FKJyl7FqQR2EKAAAAAAAf2AAcqa6IIIRhmZw1oWMnHeJqdObognRUAAiSJyARQZCRhxGZQgl7/+6BkFoZjzB3N61vBSHCjubpreUEOIHc47W8EobOO5umd4JTy/pgMhzf0eQ0uOs8lL+o6LBhY7TWnoaLhXLL4orA1WGndZ4CgKPNJiT/PElSmGxSHY+/7/P/DruWnegPtUkSosm27maRlvoZj1vvavQAAAAP4IEIVYEwlEiasCaYM0HAjAK2Yl6cArKosnMIIK5g8FAOIA0NwYfPKWyB/WeUiUjd0AhaxVJeilxMPGIo5y9VDG6xgWHYu0xdiQ7YXYLYOgsh9F8v8/rrKXLygV/faMbmdc87FN3Z//9WvuZfB9QCIWjebsOYyIfPWFWxpeYa1FmAoJyyyfyfCEZEYjLs3MAhEPw4QKYlE3Fm8tgcgROPAkal82JCJdbkEw0Bi32WQA5L9s1Xqsdmyg0WZ8PCpnXh5uzzw4/tJSsDsek2YcxjNqGdaVhTYcKz2W2q1yEAHsAYtRtLEbAX0NCQyrTMdDwsaGK2htMK0ccQRTMRwd8zlRmMz0WlTq8TLi68H9VucJyRERkaBipouhspWzYZG/zKGqp0sPQdQdaYGUQRtxXwrC68hb+AYfhtwov4qItE2h7D/Y+tlO+7SuyuAAAAAP5AEVjIixMAbfMZ1RpkMPGAp+ZAIJjU4nQzEaGbI8TwgwuuFjUFzBCHTwVYdApgBJrjoKlIyc1gRADAZjjGEEnwkS6AKCDD/+6BkJYZj9x3N01zIuHVDubpnWTMPbHc5TecKIbMO5zWs4JS4gxULjyuGUThikEHIIgVOIjoNBo48Cul83ShtQ934csxCTekUm3ECO4Vrtvr9HfMRRMtVAAAAAH8kDts9TKHZE6DHrTaCkJsx5nJ5kvQGNhw4OrQecNOYqHGFaW4diOMsYQ1tbCc47EymGhGWiusMrwSNCwbtDwj3Q1IzOiIljDCMaNpIgHAhY44j4mAyNpL3tFj73p9NTf2TujsLRzNf/qWmtXmdK0/0YAfWAt6YgJCikZemm0jRp3yao0gwYMJKjPJE0RcCxMFJQoOdEQgQetErgjoHsgjf1d7ilBniCjgEYGqS/B9Udy4iQ5h0QilSVj3TjSxhxF8eKWhTAB0FQF1mRuO/0ub2HJRNNNlv1WKucecfrrBbWhX30OZZbT+vh9a5qAAD6AOclkhNSmMGHBk8iLH5SR80/jeqOIoZSDpmMoCcPuRbPShp6DjgMkU3QpAIxCcGmM9RyL+PUk0r8t+1t/BYWUTTIPbDY9YAdQODI0Fpki4msCkepQ/7S3FV7Aj3P6V/H1z2V5iyl9P9m6qAAAH1kDQWRmHy0YkR6hIsHzCebMUmoeYZvhZH9RmoDBnQGIDXESImFhYMUn3gO6/tJEoyBKRpYBpBA84PKVEBADFL4CRVUZMXGlMbUoMblntLC+n/+6BkKgZj4R3Nu5rCKHLDucpvWDEP/Hc5recKIdYO5umsZUxa2KkVSIKbKwjtP/CoyyZ/FXSf3qEo94LOqVc6x7t+z2Uqoci9Dd31eAAAAB/qBNwQFUICAV0DIpwb6aERGORHPuA14Y8QHJrqQO1RZgIyDfoQDUn4iidBvcmKqso8FpwyqxeKK0FF1Fkt6hJd+Xl9zE8cKgFfQu8bAhoFYVIIOIgwfDiuY6qd2ZjxfM3JxNjyxhKr2WEKU+OlXQAAfSARg6Pph6CYEunBBxnSgbBMhpMZ0NntkRrVmXyOOk92y8htcDjktU6FfL4jxfQqrKgUjAEo5ECi3fHlOAsxB8ttDTF09Xad+LochpAwQScDRQ0mMxVJtFZ3JS7EbcqIyqR+TYrWpYaKJABgoPq1mokePH99qdSX30q0YrSrED2MN0UdWykQYsgbuiagiB6B3ZYCjgy4akGB8m9KoiQBPRk4+MVhgwN3XBFrEd2/HgU5TQOTSewdGESkhBgsRW4pU7q91IFV4aCMUpkQmMXGBqiYidpIy6TFn8f5pbtSaHfJY3zL1LDbL3wwhPSpL31Pp9yqqsAAAAA/tAZkABJmFpgSov8OeIMRBY0GCBGPjakPNrZcc/pYKrQgKKEUSwsDFkjdl+L4Zev5nKtZd9dJahAGAADJxEGB0OAHVeZugKAqgcmXR8aBA4D/+6BkKo9jyB3OU1zRGG8jucpreDMPfHk4DfMmocaPJymNZIw8ySTsqJiwJBDm+0vp26QEx2Mfx9TkobaqQXWm6wIOTwIL7urAAAAAP7QH+ZM9bVg4eMUzL0zXJTDTYzGEMcMCEBNLUxQVBBRDNsrDpAvVa6YAFCpczNUjIDK5GRGuGQi5eBE7J7bCgCkGtBwTcMaEjgATAUKwwtgme2ZVzwyR45LHIRLPak81zmXWrYilPs41f/Y5QKQgYfChccESmSQZp1wHWZm8pmHrsYPAgXBoKahaAHCYwYguOFCgwgWFCAQaERFgZ0EgQ6kkDqGiiVwOREBK1R7IwD4bo2Zg5pYirjnDERYKCAR5QVLAESQgKrKv+NqqP28TMJXLf+QdppRi4eXASyzk0CsSpo7LHsaNgA4sEqf4dDEEzzlcHUTilTgIjI7wRARGGKA0UQBO8gBS0YSsMrYvwu4ayyiiche2JEoxQ6k0xwRwBwrO6CdUSSdU0U+YI4IkISCbhY4iPAoQFDctvGXRBgd2XumlrLf8zQEGumtGn//PzMg66wb3XepVgAAAAAAH+oCzTGBgw8WMaSho3MaoDM6I50lMmWDq1s6oQEj805QA4LGBB6Nhc5LEAgI4CRQV0KBAcevlaYAAjmDvF4y6hjMJuAAnuguLA4rrq9FJlJguodQX+MRFg1osoetzqqv/+6BkMoZj/x3Oa3nCuHkDubovWQUP0Hc3TPMiodKO5yms4US4HmnNaRI/QtzhhnIPmIBQre/MuuG7GrSzSl8AAAAAf2ADgZI+iEYRCDK1gsoOiyNwM5lAYMY8B4HmQiBiQ60USS0YYieEWD0g80YyASCzZRZSmHRwVXsDgIsiLByUgdgdDIokf1wmFg/yc5olg5IvAEeKAjIaiT/P+0yIrbLrpSPn7lRKUJxO1KViuftdTCKv7vrdAB5ABJ0LpmPSdjhmUZA6RmRBUEes0gMzNFFDhSN0ooHbhU4xEzVZLrkRxAaCsQdsaAZUQCQ3FZADsF9pmqiAy4OgEYhkAMckAFbMgMehTfM1NIpO9FEuAW6CGhJZbQ6FOsrbDDr+JymAHSv7DoNoi7j59Re28/RH7E9aql5NOAHsgbi3BwBkshCa4qF6hqxJo0ph2h+w7XzvgDKTVEjasTTS0I68IGQDLnInj7H9SfHBQ4NHXiFADRmhA7ddbCSAFGPNd9CSYwFEDG5DRuAdUt8o+o7DqwLQptPVxU9ZC/tfHdArEca5zX8WtXaz09fV1J2MwAAAAD+wBlwGEEGJmXBkMMUTEziOzeZaLpmRh+fCRxFAtIu0BrTVUXUXSmFNSjUzOTdFDzhwYlCHgVgU0lVWml9RKIs8IUbLWwUir5p0YdUISVGnK8o0eWjQtY00WWP/+6BkL4ZjxR5OUzzIqH3jucpneSUO+Hc47fMoIdsO5ym8aVRZeOVytKdRR2OcuiLNR0DIvGGPyC9NuyyvVgAAAAH9kDQo6+YyIc6oB0MPID6wkyg6BC+baBgo6PYkKAAqk0SAglT8qJTxEUBBhhQ2VTfBaUrhP12CI9iQw8zgxoRoSLpOFzh5IhCXgFWgQqbAJdgoREQqAlmS2E+p6DIlI2Qpquk+hnpuqKRbxk7htDJO56mdOMavd+q+iD2wNxZiKmIhRDVTU4jCD14y4cOdSjRVUFqwtyah4JTK2wQAJJv4IAWUFtwrgAYwCgOHqKIGlwkA6RCjoMAInmcqyOez1S9f8dcMlRKOgEw9pMe1xHlZz1QTTr6kzurZkY8Czl/0czaF5pdpNBDZtb5D6rP0rpmaoAPbBJJlXC8iIdMJFjAVs5dAOBizSRc3slLPm+xjMg0SFRIZqj8zEFZQRJmAcmmwl+YgCnKjeTDlVTAqBY4gTdK4vcsgy5OV9UiS8Szy844EX8XSaE/yll7B+EEb8NTTwaz6XL3RSQe/1WofQNvl3MrZLanJ/4+QAAAAP7IC9VgLB0BE4w6MBDfDBhkM5Dc18xTVAEB70JgIWAZhxAK8kAQYMBw52FDgEeGTg9YOIcMAIViJlGAgxFPFRY30Lxl3GbR5fbBUngUNPxNIJshJQ0eMVmRHXKn/+6BEMAf0RB3N05rCuIVDqbpzOIUPwHc2rm8kofUO5sG+ZQS/Fs6ZzZYz5KpyWJP4ys4+giUMXqJiwwlXeJgCooMJVjqRUVIu2ev+mAAAAAP7IB4BNBJBSChWZpLwXrhiU9HJyqYcNsAnUDGzowmFxgMrUQ2L5qqJ3y1JIEEIDbl4WYkozqoMCgZGA8JrpicRhhMfpy8wjHYWAlAKafKIcHYMoBCw6BJqJOTcDymSwOsRNJkjOhkSIx54/xcYIxV1qVh44wOCpmRZGCwuYxT7f74IIiAMApMPjKQSMjwA5SCODATOGY3p8McnQuHKDGeUDjSQhnqZiBlUFIDBASoFJTJPCP0NlniAloDACssIeTycilTNMEgEkxtkbMToBJXRokEgDS4JFLSNZifwBVijBoCGgI27wiemX13EKYVMnZKKKMpo4+o0XZciT30Waq2zuEAA0aVhr0BPMD0U/O8MQzwWCnA0fSAwoeQDjgAAMxmseuV/U3Sx0MlBq404DRA4JRUKFoyqqGBGZwgJBAIFIMGgoEus1mUDRYgPL/ApAhBvApBWFYIupTXq8CNegJy9O8LnoEfFkuJzcWNnpCKrMJo42s0XbeiQ3U266sAAAAA/sgStNNQwMDvMM0j0yKhTfhYNBEgqMgxogzpJ0GA8WQShFkgNCmDBBgJmqLANCBSALUGBDwkmRO//+6BkHoZkHR3OUzzQuHajucpjeSUPUHU5rHMhIdgO5ym84VwKhQALbgQBhoqUeBIomHDqJyJhQLZRF30IVCHFOhejY1qPTKF/zlNWTDbG3CC73tMsZemLpnBcgKLT0CuOD9nqXFHp372fZYAAAAH9oDsqdg1hg2W0MMTBSMF/5r5gcGTGdtokPgQsILeUCCyJdaPkOF7woaVQDnCEYrOGgg0Feyq5KGigDpggNXEvC4oiOQ6NifZhwHfIAy9YkKoSCngUqwhoV+5NooKeR+Utom8zdPV4QpQhGlP0I0ouobrgAA+oA8Y02BheMBgcxCCDEN/M4LYw+kTDsYMEk02kLjFQHQVgQW0AhhcYCrqEkzAjDJfDWDd0UGD21axAmqup8kGIvBlFOZLlmzI1Hos7VZrhh0rtKDFfovs6gHNtrN2AFyMieps7vmBR2scFTlTxA66fdLLGnnXP9SoAPbA30AKBMSAAOYkmmKPpvjgZLpmFkpvJsUB7Fi3qfYVOQAmAMqRVd91DBNwQripijRQI2GElQEo2VFQekaXrbo6a1GEPpplYbmChqYFQisHzR6ICLPw+uCjtEWQr+/7bbEtENCkmENGivuX1ZqqhqXIf0fUhgAAAAD+wAIEqPBgEhCwRMmEEwhfx53G/14ZPB5p06HIjmYCAY81UNLwg4cAhgMLFQIAho8YBrY7/+6BkHAZj8R1OU5rKuHuDubpvOlsQPHc5THNBIdcOpx284OwIcy5NDuEZx6scBHgy3yhhFaAZkwgIFJEJpYMVhf9pIODL4qjUgFBCsBERpEPsdos4kyNkV5cZ/paxeev1XITfaTG/b96UQAAAAB/YBONTUMRUQsBpuDlc7rRMElzbBM7oAIAIQBg5xFMrHR3CG1E3aQdJMheUyjklhJ4eEMNZdT+wwY4KuxgGAWKBAKQQUEtlh0tAI5Q8MdZHUiHgrsoeQglfUWEYMIGfweAtKt/JIYM2oUXcl1qlij1Tp6nzEZurfgB9YDnUOMCCwLAAxqODGk3I1ccoIJmRzmUwSHn8BBAEiTCHWAA5RLAKgVih4xpgyZMP7jxBL4ONPEIw7N03i5hoAhgCLIlsM1R3QTBAa9QIaCEkX/aSxpSxDq/LVWCRSvHGANehl/u+8/e9zT8uqLoCSdg0iWAynoW9rn9oy2rd/pw9kFmyIQRmYFCo6DY0NEzQOM2wyNVNi7w4gYohqBJdJHkRwQaDhgZcJjmqg7RRkDjovreLrusBmHQibqjws1H8PeEOoVlCw1ByOLiKWIOlgT/QevCvQXxo63HDab+9jEJQosuFxqxJmlQkkKf9d3bdUxqCC0oVgAAAAD+RgtkqoYBKxioLmTyyYUYJ1sbG4x+ZSU5olDnFhSIQSbUYND0Lldj/+6BkFgbkOh1N05rC2HfjqcpvOFcPhHU3rmsqobIOZs284VwwOKAB5+OAgYOGhJwHgJzGPGmDShwcBAFiqrhQADoYgDl3guDg9YMyiBxZmHzMQwGEttPEIFeC64wyFGuE6iTxQtiryu8gKNTLOI2LOtT7W7OxPNERRCXM+7nK4AAAAA/1gY6udDx/zDBOBgdDmgDojbDkC4XSiINXYRJAlAEkixgEIQwBJBeAyHhXwKCh6ohUTCWWn0y9qYU6YQCMI0kiGQzgoODbZmwkRLZokyy8wJZpORGWwf1uENtATihfqUAypWXe33zqc/OX16sqTQPoZbjFQAAetgmDpgsXg0gGARWZAGw6gTaI0BknMvsI1W0jKjgDAKVhjBDBLWVRScsNGTCgIWgEMfONog1zAccAt0LgaMBCQyd/DIjDuUEAKDXGXFCoiErruBGRiBq8h5cSDi6oDhhakOdjzT4fUjIfTA74ZOJRS3H2nhnd/+z/an0AJnwLdR6ASgYOZnBgZwICbSWGVxZrRwDAdEsu4ieBnAgBsJEUgDSRTpANKIoCiUGWWMVIABVa3wYc12NIwlBRAUeZSpzXH9MfQEdFJPFMIHbEYp+OBgm2uwwaiuG/jfWxtY7WPWTFxCZF/6mAAAAAP9YChgigC+Q/0YPx4aGxjWcAdRkFKHhAOaXAhMvQ4GigwMNgQqD/+6BkFQ9j1R1OUzzBOHZDqbpjeB0O7Hc4DfMmYcuOZs284VxUmXYR1Y0k0aamHI0ZFUosyIYmWtOiYEK4GZr1KTaUsKn8iLUf8RTI2qEP5XYqmqllDTTncwj0OxaIxT5s3SotQtelvQKIC1xLZZqemz93p24AAAAB/Ywn05RAMVYmUF3MeljoEEyUKMtWAJNhUCQAKGoXNLaSX0BQAm8leYIdq9RnIyAZQjE6L/opQeFHCEqcaABkwYsLuRRkDvmACewQ6HJsYKqRSdM4C3o67rFIDXrPfQXLsYo4eF5Hex3mZZsZZsezVTpSpECiJCRAKmMqUzIvI65MOOpApHSQpmCWWYWEKhwysrSbJKCRH8gEpioUfxRwumGIBnwCIHIqlSrW+RJmA4ICFBmZiMlAar5j1eSpKpVID4cZlI5x2MX5ltJE2bs+lr23vak48ghDPFqJ7AdMKmaNUpVc4giY1ft8jGUkU7ZeDQAxonNkUDWzciEQntMjRQc9LlQTtEGQiYRkwsKXDh0RBrNAWwLQNMZ1E+1KBJJoGedEpACFYEFABtQcoiNDjgqTYGSkiEiESGaE3qZgrJoJdlna93j+42LCoFSVEEycWXa1lZ/q+Q+qj9n2qoAAAf2wE4wQhlxlkOCExEFWOGE8yisRBZzUoINsE0DJNW0R6IegwkDICzbTFrgAIkINLs3/+6BkGgZjvB3OOxzISHUDqcpneRcPoHk5Tmsq4ecO5ym9ZOw2zBmEJAO0d5gkLDkDJiGmUjnPaEZABMPAtSMImk1rKItMJfP2/PaarAEZcty6Ol75uo0LMKjp9UjmmWf1dlFur60epwAAAAP7AJe0dqB7hJtGHLxxCecsOGZjAeChSuMBBJlVZwKJNCIp0kJrBSBQ6MiywYeYupdYISV+rCnUaMZjEiT7QEJgNGX1K0i2kEQqOyvH8jAjAL+swh+Nv7HXdCBGxLegd/0n7grCSXPeHhbpl9lv5luinAD2ADQCFhuOhEITRh8bgWbG3g0Dv4YPf5mUaG0YwRA0eDhUmNDUTU01E0agqFQBFxQJOMOfHgAVOjwCsCVS8EzDHpESg8AIThEqJPAJeSTsiYUsC3CBoqjYgKQvfxgMZghYBOp1JXIr/+fsPqIQYAq6j7BRd9TiKfYP7zKIAPrAmstxLdPFDMLwB6RUAgc0aI0QsyqsBFF1GEEKkS3Ys6aDIWLF5hZQCwQKImpDmiNg6dM9BlnpACZEZkmswRfAoAUGAoDAw4ZQdkgQioFAkOjQSA0oQfmApmVp3vK3KA3mv/m2WXlQ0XrcRNIWL4lOLqLdgrzvxSqAAAAAAAf6AKtNShwGgJPGBA4CI8bOE51FWmC2aZjF5lCQjQgYgYUj+GMMs0aPQBilCwg+8a//+6BkGw5jzB1OaxzISIBDubpvWTsQAHU4bPNC4aoO52msMlx5wwngUdUBYMHkY2siwahQKSf0qtw8nGpKFzz0JdL2TlU5qjoyh6Fy8muv7KodYJWzaZ/61raZTrvZcVchqhjcpoGhHAAAAAP7GGoF0lVWmpWjsMdUFGEMxsUZtJxtiygqXYBIF8U0gMIf0IBCxsUKBgg8E8yRU04IZRGKUpk0FDui+YeQULG2EIFdBBKlrJShlBwhAQxiS/IdAB6RLOWxLyJg4bTbCG2bROUY+3c5hAelCn7QP41orPm01NQmxOt3p9ev2AGgGY4g4SHzgUcmBKUZ0Ap0q+GIkyZPARm+RIq3gcPGQ40VTJBxRAEFmrEA7MaagYMGCxphQQsrIlKDCZCsAOjGDQFAMYHO8PBlYXPhhsKfieZghTnxVaSKqZjprAxV92QP4ymNO673taFlEJ4BABgqDByDl6doHlXbtTChBqIAPhRchLltcRuEGg+Qs2N8EPzqCTcvUOw8Pcthq53FlTtpcjBRrpxYxgBoQ7AB0NTFlV0j2apvl9RMrAl9j0XcZbZaECEIdQwb20ipmcDR27vCsaUwKPOWnIsr86A6NDrdbfrojv/6EpV6KsAAAAA/sABgLGAMQgMIOY4KDAmiMJBg5jdQKVQdZzIEnEQJf4wAJCyGH9UbTOACQwRwDBzq0zD/+6BkG45j+x3OU5rCuHiDqcpvWTsP3Hc4bmNKoc2O5ynNYOxBw8CZ4IFXD3FIImP8Yj0EST3QcJtl4oNeBiCZwk5NOH80yUPSIr+yVvIbhptYw/0Da9u43eFhwjabUwuhblrPISq6udpXeEVQAAAAB/ZA9VtVNgaH45CGyEZqU8agAco6bSMIQQ0OWS7YkqmIeQ2d4gQItHeoiEmPUwIgLzyhgKpxoQwIKdgqf4gLB5IykJDqhZah8HJqBw7Kxg+XjyUZm3Vp03kY4tSNWf0UDiqjtqnypQViCKXJIbVi6Lf7/V/R7IGzLvBoVDkGYJIIN5BlwNG+rQYvPZtMAmM20Dg0/5rmOCWEbsXtHznUpk0fUHAaEAc6AcFNwYJDAgOEqqJxGVCIDkrEhFGk8zBAVtww0klAjwIvA879IyKCjxCVwavxwIcXDEp6f/1JAPWjnXpaSetK4yMFlKpr4Se9X3ewUsA+kEqrigXFhMg4FkUZyKxoCFiys5w8GxRCGX9ElFxIE+Cjq73DBihdhn4hVAkIUCpX9eVVZ/QgAk1WUIQuwd2iiu8adA0WHAE70LpbD5IRJVp0vfGlf1kStcZjje4eS19yEqsvvuDChswkdo+z/VsSxkjVwAAAAD+wAeEYOCg6MR5TGIA8Dd4Z4EZyWlmFiGEbYw0zRIPOEcDwMARYJQWQkVZpKIz/+6BkGQ1j+h1OU5nSqHljucpvOjkPJHM2bmsK4cEO5zW9YLQmAGd0QYoMcoGPMVBkhEf3MWDCwNcawSdTgIBhAOXigqpYpSmAx6PO0v9uY8VhmVqcO/C2gU1PFn+hxodSYat6CaRSMZ2BYa9lLR0ZaogAAAAP7YOYiMLKCMCjQxHHFB5uewfYacBscDJz8lzWfkwa+34Ig1Agt4YAIArhdCNHTFHk31OA4i7jFGFK3goo7ZCRBQskAOwp5+FjgqMySKNff9kicEZfeEy5yFNLMFXf8YsCpSNFKpM8rK70arCReM4EIvqT/r9IAGJhUYvA5KRx5DGHx2Yl3yAE4dSgsFDdpLMwPYw2Gg5IaUaX4WHWEbgnkYccWlEII7jsEHAdZDr7dSaCo0m0xDHAv4DpGQrIgqAANiJZWFsLImt5KJc+61CIs5LlOHVcmLx+VnPe/MOStQSdOYr7FrxirWwQVFn3MOAA4kGtgQvNhDxCJjEQPaTqVTDvzZjjJsywMHgidqAceNsASeSCHEY6ifwK0CwZEpBlwJbxWBahQQHHLyF3lkI4KzpNheKwjTVzqrpSOvDEOPyFBJwytx7My84sXCYg/vmwTqN5bbcR//Z5db//9unAAAAAP7IHsBwxFB+YtDhlYRmM28CoGdJS5iRUGjj8aFTQOaJmlmNGOlkZ1JOyiOOcB1TIkGD/+6BkGwdz7x3OU5nCiGijqcdvGUsO5HU4rXMkodMOpyG84RxC5CPBkItBUAgEX+AEyiZnelUKod5gIcyTvKuZprqvPcXy/rgQ7I5Ep54nfcyZkcm5995AUcAvSh2vJVqyahp2kq5l9X007jUAAAP7ILdZO1b5CBiO2MeFTZwQyRVNzSTd0O0EKjxZuAmrqmWIj4DrDDCRqBpKcwNNpS8BpAkaanFriMkoGSFYqx4HGLEeKA4YQJMUuooUrMJLDM/neWEfS5Zo/T21Lqj1etPy/9H//sgaCUEwRVM2IDtZidBuc9nAiEaReQMRJ3h7mEgyFYBSwRDiXy9SBlAEXuAiAHcEsxIk5Az/nDKRCYjensneG3CsQUNTxZamWoExtckNAo99nkqqUoVtEaHDsKe1o8ReaxCoO+GRkl+zWxW8U5a6hXFS7E13XK6/dABXtM+bsRFpkcwPdZkByBjcwWFN3pOw02xotFoIbUFcMIBROVVMqQ9vC6x/xkKI1FzCsqVaDg00GhhJCciI01TNLluF4a6UNlMGsOVgL5IE37eWD7i6mH/Sxd3rT7ioq2TDK1gKoWHIEWuLtY6jrc5ztWL9KsAAAAA+sYL3lA0ZumFBGQOiso7WAjRJqMJIg34iDG5oMGgUzCzA/CqoVCQ4F7EqwuqVBmlmHyBBS9xnHLULeFlYaBhgBaI6BAr/+6BEJIZz6hzN01zJKILDqbpzGlMOnHM3rmsmYeoO5tGuaIzD6aRgkIOFn2ZTqA8HCwLJWvKWorIXR+lkU64MPSyj+iSTSe1KsNKbWhNwLnV77EP2VP6acAAAAA/sYQDhwVMAl0BB4yMDTBgwA4rEvcY9JR8IGmlxkHG8lMZHmYYWMPAMZhwMYhklccVQQNSgqClDVjDgg4YVSoQNHERMEBrUwIIdDgEFDYBCq+cJRVOZVSLR1goVFv4vdx41DsOPcw2afqW+m5J9YBH0uc6pqdfMIs/q81+jfc2AAD2ADQKEiOOmMeNaB5maQHcRQcYHJv/R5hwgAmonmAcPnGeuClggVQ1UQO8LdDrQCiWESLEVAMCdkwhnXXgBqAqCoOXHMYAKDKHo+LrcFyk0ZZXUeS0TWjU271x/ndkkeo/3EH1Lsrt0E0865wvWrXTvYp9AABmQgO3gzeRhwdTMVWNolk6UMAcjjT58B9wx7ckBi3cVUqHmCCuOOBDCCZMIA5o0I8JaIaYsChygQgDhBYw4QzA49JooCJhEhkt+JHn5EQRKlSLIF+RNiQ4H606KwJdd5knONtFbHmaNrmUu8olFDmqmXKv1vQPe0vWAAAAAP7IB4qKGzEKTawzIoIILocpORqlHGMD4NKcDZADHQtCJACpAqkHFjIiVy0hUsIQA3aUKPZ6WhUNOaAX/+6BEH4d0JhzN01zIuInDqbNzeTUQIHM3DesIojiXpqHMqewCi7QtONOAI4YWi7NVqpbsHVCjgqnFqduiGokfLJmC4ruG6axLPuAbg0UcNSZAwNLkRPNpKmgyMQcLuY2VWZoGv23d3U+sAD+yBLEhA5gAZmUSaZLH5hBPGfw8dNFhvFcbccHHFhmQWaQEmbAAKITJUS6YAtJuKExSAInU6DAgFedToYAZ4qA12CyZFINPGcUm+oEl+TGF5HTLYo/oUU0BwEnzCJU7NWPxWMPFDT7u6IKoeHTTDIYBg6wePOFHPDIBNNAsOKXnST5gnrp6PIbMADHAElCCqQBzmaYcHp2J48Md1bmqhR8Uqcu2ZpoZsCPnh4kYBSJH0foUXjGgH5IQ0mGw46UGhB6U9Ek1DyosQsMKEh1AWfJvNGDnsUaC38LtINJms8lt14d0rAobXNSgx4sFgnHtQLk2OGAcqeaMZHRmLFS7bGKAEg+e92cqKx74ADDwBGAMBDELHIzUdgFKwYjTnhrM7qI2QoTIQqMcE0xSGjBpCHgqYVIYYDQcUouKjAkEFQCMIEhpvGYQZLIOSCoZFkbwolMCRwrMgHQ4MtHBh4NGpxn8cN7byVDTmh3qB94bbIsK4YA8TRDr/0PU1N1TZVVkvdHPLAytArS0u2ppwI1Kkj6kSvoym08kmsAAAAA/sgT/+6BkA4Zz0R3OU3nCmHoDqbNreUMPuHc3rPMDIaKOpyG9YNRaMHGhDGAxELBCZBmm6yhvsgbcBHtsITIi1sA3zoPB2g+EPGhAkMAA4VMfBnbQyIeMslHEGHTmLjoZmeAPoskWLBLfIPytZXons8X9TNbSGj/LiwTvv9EYaf3GW1nffjI5yaLzIvmWO2rdpH+Y11X67djHgAf2MbiakRI+FiphnIhaHhkDzE3xo48lNdCjAkgwoFFjYAHDywFOpigVV7rgHQOnMoY1BiKtroGGBzhEOqmGjAYoaMVaW9f9k7Ji8Ccivmkv4OAorQ3zWchcd3YbikHxZvUhFCRGE0teNBIGmFbD70shtIpz2mRTQ7TAAB62DdNMcAjnEAoKBBpU7mzz0dQlpoARGexQcKJoGpZksRGWQOFQydaBV4hFDCYadqHMI8JOAUjBawAmopv+xUXKNcMEwCAaWriHFFC/sSTQZBHrLgvvDHZh33/j8FR1wopNw3/U0MjoSLC7Qm58MmQ1tc4U/us+3v1sc5+AC7ZgKiL/puGUMocXnotZpVAKnHpqGDBGJejykwYiBEHHti6RzjjyXVhgUOhNQcTaA2ETlMgCcKDRWMZUzEtGHF2C9iqbGYlA6nl8LyjWqkrh2ijDsunJ5r6n70HVld0PN1sT3L7szqrAAAAAPrGF3FzjARRKp7MpoYz/+6BkCQ5j/B3N05vBuG/jucpjeCcNEHc4bXMkocQPJumN4JwC+DYMSOinY11WNyED+Ig3RINAMwQVmgDZlgMOhEXIgsdTWLjqGISl8KxDxi2445CSIDHUgFmjoDwI+BzGBO0hKZW0hdryT+TXqLk0/sbhpnsJgOQSONP5x9plZPxSpECpUuES/fs0LQrR3e+2jAAAAAP7IF2rKM3jSYdEYdmGDZs0YYSPGIjoiGzIgAHQoMEDDwgecmanHZVmSIQkiF4jSGPNFRw5M1ty8axBgo6cu0b3LQJnpStsvZNaHZQ/kCqry6L8uRH6WK0EkpX9kPvV77zbMZ+/db9evvSvpT6AAwCMGjYVjBKTBOgKYB0iNfFpAMYukZmpGmFBGCozV3IFTVVSLASDbuyj83UEClukVkgFgYwPEIPMzIA2QpzKWBcJbikH/htyVg3GpYXE4DgT9RKfj87Jo/8di/3Ntri6nOxXI2UI04gexhe46AziORwFIDpMpBjBI0wILMLBTNzUcRTDCRwzAA4HLFlDNGQrbR4ASxxwimg6pgH2ZypFxF7nNbqiFY8MxjQeac/qk3bfkOG0h/4FZE/d+5LI1EK0rfSVyCUc6m7xT62uRt/GM9+xNrPTamvTwAAAAD+wAFBdnJlcfBC5MIog4yFQYjG0hx4Qua2EnmYJ+YkZKTGBFBswoNfA3j3/+6BkF47j1x5N05vBOHJjycprDHkOTHc4beWNYakO5w28JXStkBZZhzjgdKvR1BuQD0qGBAUThQQNKNGRxEJXFUwbxYFbinKEhcEfhUOv48l6vKOxiVRWQRaJym31orY+WqY1gvXNBtKUitDtbNXVAAAAAH+oDYHJEIktYjIWlPOxDuo8mMTTADw7Ikw6YRq0wA6SMEjIDydQoNrSAYzIaGj0FkoaCzhwSsMDIQl6GaqgSYL1xkQIa0xMaezqFMfKw8lr8u0ZHDZ+NxrKv+1dm6r1OJqFxZw6hZczUlAqEaNqvoAWoBByYrGmZGZp4mehqg6rNcLThUYxSbO6FQcsGDmZkjea4Fm2WlWBSx8wviyZWYOjVmMMUx3iuhpDngZcGgkTZEOUEJ2NgJFXribzO2aILiszjy4SiLfizx1y2JeEwDH910OzeKxuUdKPpJyQ4/6Yp7IJE3WTIYmMhhNGhVBONRR4cMjBzWygUGjo0/bFDLONMC6gME6T+l7yE8QUOBLhKChCggBXDQyImcGNImqSb5SQqqFqOFJVIJSsSYCw5l4mIRAMggJ2QDHPfCWx/oUFLtnvf4tyXorZs9rAAAAAP7AFAx0PNEKTBQ04BMNPxzR0ojCBUQMwZzrConqTqbHKTKCNkQxLwuiZwSIrwhAIeEHKgwYQKmoIZIisSl4JAGIEcjUQSTX/+6BEJYd0BjHN03k6+H4HOadvLW0PQMU2jeDvIeAO5oHM4UwsFDEouiAhQcDFP9UThp2s0urlX7EekoAgPRsAst/R0W6mLbZTWRKW5WepZLUTcq95lD79yaYAAAf2ALTKgGZ4VJjnALwKejIpwisghgMPtzpgc1QDRdM2QzFAALxg7daCkRg9DBf5CQDCFhgQxJEFAUfDgcEIBQhgt+DzxwA2gVn0suJDRhBXaaNPSwtoFu5P/T0to2GQIGKJe/qrVZSSr7qRZSqrfTXVq32foGF5tLr9yaYAAGwgAYT2MKPjS0EXhQdlCy6BTwyzJMAXjLycWkDCwFKswggMOAAMMmMQqt1CYgcH0FAo4wITxe8iGwE3oIoJ2oAAwYWCt9nCwTuJUsDarA5QF4TnxlBsUHwBBoNAYf/dD0Zj1Vmom1U9qmSy0+k4uLcKlxGTF1tOJlbRAQGTDgqMjhc2kRDJoXNdDYyGMhDZzNDsMWigBEDyBMme0xhnGWe6ZGcPICxqblyWQEtD0BDuk1KRElFkwgPYggYCOI1tTWyl4jaDQrYS7b6PvizSe/WqszFpVTtBb45xwVNDkvFrhbcJu/wLatuhgQDQ9oqWvoAAAAA/sYQmsGM/TzAUE3x9MA5TCiIzK1HRU/8TPSNASrGFmg9OBnGb3YMXGQTjVC7DSUKYhSKHA14c0ZCr4ub/+6BEIA5kHh5M03nDGIBDybpvKWsPHHk2bWHw4fWPJqm84UyDUMCfUgOZjBFwgBdJiCa7AQuhVicykMHRYZjux8zUoncZZLH8nvEwjPQSFngU5dCgtaGGIw6XMmUbDUacqY1SEo/bvgAAAAD+yBHmDzOTsZOTejsyt9D4g2cYMeRhtfPIUzFB8w47MOTASEGHQAXQsCCQnzGA0eS87QiQAEHgUVNaBVY6KAA7tAaELqqjYUQVpac6lxnak5VJCBTVv+xRGwFA8GmegTCY5Ea4EPPcoIC1pJqXQ8XNGkbTEceqY1aUp/Zv9kEDKlVETgDkgCB6cSMRUiBqbFubd+IKx4ZYdZMWKCHBkRpqihxwJjCqrEy1BlMFMAIBSDzB7E+X5aQF3DAmzt0TuWHdVLSDDAFrRa+V3wLTE8XECE9bka0HZE6QCFCccGXqFROZrOl13DV9rKaIEeyKPLo9ytCqVYAexhoZghGYeFmXCJz7UYAVCFuBKuIFg3vJP/eyZgPJIASmE6aBJs+Ar07WFcjBA5JFxoBYcRPLnAhAOoqcOYyo1vIhhCmHBlWhrGWEZZA0rUDZr8fZda/9443H/kUAtBs9AECZKNI1iwjNVHFruGL7WUUQHbF3FU+5WlVK6oAAAf2QZEICZibiI9NYgThmc4YCMaHREfAy7AxSZKGmlHpjg2HFK6TRQAr/+6BEFYZz1R7Nu3h7WHrjybpvWEUQFHs1TW8oIfOPZpW9ZKSGpJ5loSKAk1hSrBAlLozPZSqFn6qy0liBAxlhhGW8UhLH2LpM9ZRWfwJFj78+Ib43x9szh+IAoSZkbVqCCCYAFRwkHtFZSF2K9bdX3e+zRAAAAAH9kEaZ6wcwAhNsoTmkUGAp0bUEU5xHyeYuW2EyhgKY8GMEAMEuNHiQ2KMo+o3DKGVpjNdVOwBHyhVE8w0JW8OGBoBag10Omne+tPKqWmyiL7f//z7kBrmSMZJY5QEo3U4exoiIDTQQICofFlNnirXt8V7fR6K++AD2MKkAAQ4C0xYYZiGrHmwegb2dJAegCYRTGqhhn0A0Q1jyMYQjhNIhKFkw583BRtIRFqgBDiecDLRnYfEgUJAGaYAIwTBIMAFdKP0DOTD0FQHavylqH5fjqtjDbG5mTf5wqtYuF1rXU01B+eEaSg8TLEhWWYymYW5oS9LkqZXKwRAUDgC9mEFhUeDi0A590/ccwT45R89Wg9LU8rQHITQnUwEJxi85vwOOPDMCDFVIDrChqKRa5K2pIx40PKBRY8YMFHEMgULBJrrrf9kEpeXt6JY/r9/Wuu1AbDb3+dLLiEIqUqNYbg1PCIwXHidYmKy7WUzQx7R3oelbK5WAAAH9gC6SwSGTrBlBYYNBmpkh5CuaQonrGnk7GIX/+6BEDwZDxh7NO3rByHQj2bdvDWsPHLc3TWFPIfSPJum8JeSgUOBMxiGYuXMskVhHTxnEQINmpDQekWDkjKx0A4xExIOauGUwWKLPSMBC2yAd4tdSyec5OVWJmNLnHWrf/5fhlKXpzov9IArVHsBh5AMlGMn3zCssvxQzFBEiAAAH9gDukAEYmSAI8MChTaToyI7OUgCwJGuDBiDQY0VGuHpCPgkYJ4DQRPJwWBXwYXLXOGNGQiITlpv3IecovEJTBwAWhgQyF/AYBnr8yNgi/KczMil+kPwdRilA/9AFqHxjBM4gHyjGTrphTpRfixiKiBMAHsgcpbBIwBaUwiIGoD8FDHWTo+z9bjX1jDWTAkjG3QksZQSCWCqCl5pOTka4X4WqGQTCQwXdCLtK3ECnSyS3Ejlmw4o8py45Aq2HIcIwqFCFL5UfwnEYU5v9c21n7+yHvLSEXeZWGB8dWDx/tdRPTuUvF+KjHvcnAACD/WBL4iADFFgOmQIvAEOM7DSH9ONpTOi85MoMKOQcvm3iojCDIBMwNAMVIEU0U0gXFM3TAwCXIjAw5eyBq9KqoQAGoEhS/gFMZQpvKGZRJdEpULRmlmP/6hKwTCrXKTrjFOND9T1kUOExpqWRIBupO8vL84hbNZIglF2AAAH9jCOQsMGAiJsQOTMBjCAcEYhtWYYJmEXQWZzcxA7/+6BEEIdT3h5NO3hLyIJDyaprmScPnLM0DeVPIi2XZqnMteQ+mShBy2YQMGAo5ADmcCXq2QAUdSH1R6CPkjiJco5WYipu2inCUCwRLyPPM+kSQ1R/esjRIWf/+EuKgbOt9Dws8VLCr2mErhpIAbDBTumWdB8gMssQmKxep12uAAAAAP7GCyRnARsa55BBukZMCMAlM3G0jBBnMQ0owEhzFJXMLKxL4xGNwTSOvnmenUZ0apizBUBBoSbhE2CKGnxSdrIcw6UiNS0TuBQIcDDqABN5oSGDPHqjEUv/////uC2qsCz6XBBwupj2GUrhlIHbDBTumGdDiY+2xCIpF63XaoMEAcAJc0QoMBKTIGEz89NqNjMXsyMfOeNTq4oMSBARmirgXNw53GIAa4bobaqqhoHJaGoAIQQVWRBkwuHsWNuMmRsJ0DRAFha2Xpa4g4o8xEIiD8hKH+iSgHArE3+yrddaX0XYuA2lgO8BnklXriUHk0MSlDAJIiqz32MVgABh3QMJEYwMrTLg4Ag8M8IkyUWQWOTKZhM+tczkhzBpcMRokKDcKDYwGNTEZKM/Bw/FDaTLRC1pgEmUwqmIDRGQPdy3KnYWPnnUWagwKbBSxlhHIQguoIhZEh1kOcBXjgX458wUakcEhb/dSrK1Vnm1q3sgo6UAQ4AnEF3riIGU0NSlECSSln/sYpX/+6BkAA3TiR5OU3k7WG3jybdrJ2sMlHc4beTtYagPJs2sHeTAAAAGP7YAglAJcYGNnOC4onm3N5h6eRK4Z0mw1RpSAa40gAzAWgX7EQR+HhjqlZxloAUTRYcHRLdZsKGp1sVv7dAlaRYCEC+jiBAjps+SZf9WJkScoljUef5qBYAgIm+u6xaY6LuEIt1ntVnXWurq9MAACP7IHyUdCwox4kygoOtiJec8inKbO6Y56dIybK6YV8FR4w0PhGIeHUHIegaOkPqQmiyKda+l6JmX6chAFqgNiXGTshsLlA4ZM5qMSLxqPRMTlHO/UVgeN267WE3WOlwnoOHaL5rb1U/u9vTqAQ4kBGAiIcGGEIJjAKYqIkCUYPDiMAMYpTbCkgHgE0mgGhjYaCjgkYyJEzwwVB5kT0IrhQgVJRAVWhyWzBUDQpJhAx9cNSCyI1S9CS/qaqfUeER/9TgEgf7q97ltHWsMEKSdPGAA+UxQYEFohIeDTRqAImlMeDMCWOAsBMkxrQ2bYyBEGIxKkFwacbEiAqXrjpUsWLysuRPXDSzCWoMWKUTpDIDhx05M4xLV/FEm04RY4kV/wNBEl6R9LT4ZXGlKTA9zOK+7Y3uTZVXrr7y6gAAAAABH9oAsHEQqYcnmampoMKZMOHNh54JuL0Jhk8c52GWn5gpKYq5F9TalCxgOzBVZuNrJXYP/+6BkHARTjx3Oa3k7WGxjubprCnkPYHc27XNIIZqPJvWsNhzUFgUiLDmQJIHPSGYkMlAT6CYQoK2voXpIgo4sCTFpfryS5GF/4XACAc/0dEkxx1A7au/TvG921U7RAAAAAH9kEO5L3MGGMEaHlxvwByYJjQJqV6CAIdmQIlDYxxsDRhksnAEfCugYgGJVAtA5vTpHlDy7FJApVcKnGxQyCoDxE6EVV2Bhk4YZV+GMGhp/+xUFPx826wrJ0j3OaNpp1Id92n4v2XX7oAEP7IHxKpweMmOZG4Zha4QNTIGgmketqZVoZm0JGDfHXYmSDC2EGnzngAEJMSHFQwEEsmUPMMDBwY0JIrTyyaf9fIjClgSGJE0gCQe9MtIVHley7GQNipL/P////+CW0sO9DTp6cO2Jm075cRk4oqh17suvPJJJfYb6zAAAGP9cEIyh4ZkqDTwGBGmRGaZmsIHqAmIumzNmeHmMQo8FUK2hgRy7wMiB0BN9kQVeBDmfprJT0ENovJ7BRbglrDdsrsk8kkqs9INRJxpJOY1f+YB7Dib6NbqWBeOWx1Nuj/kfGcAAAAI/tAa6Cg4zNBMYPDIloaajDIA3hjNjNzDkAy1oMAAz3xJhyNAeCEPQNPREUmaSTI58cFBJpfxGkHLRHb3MrailiiuvgeEcBk8RYayRUEUaaOJ/2EkCvllvG7f/+4BkLwZTPh5OU3k66GPDucNnCnkNhHk27eVvIYgPJymsHTygv2ddrR6/qW2gBD+2DCSTiHEuikEZ7x6nH0eDdzopOMwKDK+DzTHHNupKpeTK0qmPphKXrHT7Dmg5SSEvfp0kqgNgdK8BnKhkmI8cSUmp9esOkBT76GAYCy7veXQKedvQKt19NiP/LV7F0zduqDSAOyIw8ZVB0jBSIDuwwg0MKbTCQc4hnMW5TXjQxQ7FGo1lBMLEDA0MAiiB6u1NQqGEOv6ApDPHEKiARlElig6SJjCEVg40QWnAX7M2drdfiOtQXoxnf6N+RAGhqZ1lLlXv+2Xs1eldPnNgtwAAR6BF4xQMLGB5+hoXeBg07o8xDIJ2FoAWRusRoHonkod9WlSIAGslN5vVPhBDMIDrTfqxSH0EabhneDjA4h0G/Sh0Ct+wtDF/DEbxS+JgCQDCHpQUZTHlhA64TpTpnFSCwAAABD+2BGEEJxElM//7oGQGhEOVHk5TXMIYccPJumsNeQ+AeTdN4RDhuQ8nKawh5LBEHUzA4BbzXGiRufzAYXhRlIBg4WmPxsMiBPkCFLgqXAggISCBrACFA8gHCC9gc1W1h8vUNFyCKo+CMIyg5Slq+2gRYWG0mHcu///9bv/G2bPde+hDfVaYvJet6a0/3LYu3u6vRIAAAAH9gGKqwjRByk2YEcUGYqGxEmdMGIumCbmIGGstGXmmJSGCBmgVr3Aa1mgVpacFPXi94RMGIKDGMCpHVaYD1FnFgUAJCwLuMY051eyEs63NqDo/H56JSBLArZryi9tCKDCbksPlj67V71PXlqdlMAAEH9kCdJKSkRABQI7YLN5pDGjU4nCN+mzaNQ6qBN9ODThs3NUMyByoSI6AQkA0AYORmDgaPJjaFBhtgfgwnLBkVwsCRx4iMDmwaRfEZwrBB12ZDNqwqbxc9yf6AZD4ZAiJX+OeI5eLDLVuQvZW1aGvzDEpJsEFDv168bAAAx/hBUZQDUQCGGUeGpNmVlDKk2Ag9is2BwARzINgFnGhJnyoCQiUYFKHYlk1AlsKZF0QYB8XSDqJbxgYYX/EbgSECJdwGhXiueBcWJvA0E4an+ShbCGANIndoDJ9abHe9s8q7POas4d//+hXXcAAAAA/sgBoCoUIIgIPjD8wy4lEYeY/8nmOp8Iof2NGaApgR//7oGQSBkPQHk3TeVvIb0O5ymsPdw60eTmt8yghkA9naawdrOegQhlIEFRp42KKRsLqcIADEaLOJfGGGFSDL1Hkw4pmb8o7jzxqpiWo0eXPHtFMX8kNyaf91zdv/3azxsAZBAM/jiZBXXZuRGUeNY9mdagLrTFv9DORgAAABj/WCQwwVE6QhoyoNVnKEEAUgZnuemMKkSswiIFrjKgjRHjhCTHiX8L2FsnLAgEAC/SBJs6dCA5K8sBGJSAGSDCFwxLhQiAHNFqKgnj91Gm//kmeXjmIdzPGCnGJ7/KOkDau7pUx9TP/YpljIAAPrAu8RCRjNYacUhYMMiHR6vOKXzfRIxgwOZNEwMMgduZCrNCJ4ffAqY82OjgwElFFo38XciqZj5WC/yKL/pkvelC2jvGmEYIyfEOSbNrzyyLHP///mPo8YecZ/LD/1MRGHlGgsw4A1dK5FfyO5Oarr+KW2MAAIf2gV3fAC8LmQs1B0k5c43esaxEC4xbQO0mJDnBFhwkiyaDsiBwC6oQEMODGiEKsQZB/xNhQNHqimSwY0DgZoReVZpKBpk7NL7cCRKnxXHhqNgiACFv/V7U6nVL+j8c2HiKAAAAAP7YFMgARGSBxzAMZGgmRoQQ6mUDRrIMLVplNocargoOAwKOhg0fmGEARQH8YOm2pxAlIZ0iTAggR8s8/xZ9ccIOZif/7kGQjjWO6Hk5TeFvIZOPJ2mcPdw8AeThtc0ThnI8nDay9rISmJKxDmreGNfflWaUUrFrGf7mHFCUDwIZZ9aQHqDFwoNUFTe9rnVKvTqaM/xb/ajAAAAAP9AIGRfL1EAaT4xCZ44eqhicm4e8iwfqocmGfIbHeIZMCYLPA7UjISozmUAOUqVTdeBciKOkl6XjZkAxo4A4wWho6hmGTSZ3H//8GdjgPydE1r1V/Vtc02lRlJPa1fT/0AEceEhcUYMMf48cw0BrRm8KGhQ2Y1G5iIomzIyaDCJs8nAxEmICAEDAaSN28NSSCwI2AEEjy0o8NBIYoUnEQA4KmCnsp9VBVMvUYMKkMYIgZciLBGSfQF/SgJIqGf7//+dnsQiqvNUXoY4qhSdTFXNVpoLVWu6LV+0DrdRCJAoNYAQ2geQGkACPG6JmTOGoCGKnhKgSZs5HDjiVT3ATgQogqh4g+KhmsGETD1xQGqOQxYZSBoKfIcWY+QClROk1q6yEGiKQWqf/+m04plK0Don6brq7Ncah+8lWbSvZ5auqAAAAAAAfyQP/7oGQEBmPEHk5rHMjIcUO5zW8rXQ7gdzlN6e0huI7nKZ3kpEtwYw6PAbDEpLNHnIxGODBioMPF8y+GjRcuM+hgxkEzI5JAwrNYcyhhO80jkAaOYKSFRg4AsBmOEus1T0+oAl0iJwxCELIo5hwAFOU1g/GswYVAWu0zff//u8oI48Usfqd6VCtWowiiTd+7/7/6+764gAAAAAB/YAvpKsvSDicsDRhSsaWKgQZQlmhGZgEwbEPDzRukKMAIMsACTgZCjmXnMNQwxBpAWHBsZgFmgEPBA4dv7IXAOWseXM1QO2YepwRD9qP6iChACc6v9SyekcEhC/T7exiWUBIypcZsPOpR16cAPZACk8RDyDISUFgmNfFDlgEyUeNsZjKks0s8AHIdwcGCnhqzE0QIijtc9woaIgIqAn6wZh3YCGAo2RFDggmuAQaxZQ0eIGCAhFgxh4CFAUYAWBwrICEFcSIjMb///w3MsCIR7fqXHsHMeD6VenfbMK/ubb//pwA9EDTYBFHAEOCqjWwMNjjATIZDjgQoy9bNFISdJMrKDHUoMBgCqAwyBRqdxoHCMcGEggceGL4nfygoLAARiBqFDZPINTQfHlw0AxgWuZ3H/TgVIv+xz//+/M2KR25N98z9cXcNEvsbqt//+2/dgAAAAAAH+sABDzYzGZrNdAcHCoxqKTRQxMRHsx1AjP/7oGQPh2Q8Hs5rm8o4bEPJw28vaw4QeTsNcyahsA8m3Z3k3PRbPSPTB50Co5zE2aa2GPDBh5qcMZBF6Dg8xMoBg8ZIIMBNoczXjo1PkYSRC6i4oyKimqOA5SwgOMA0dtVYa02leqoo02aRZ9///Gkiepe/8j/03qVnoDQhLRWmr7u+aJzzLPirVxaioAD8UD4ohOLhmKCCuB6AEQeYSIHMmCEwyYaIC40QNMaFQUaGWn74pMx1RwYu24pnvGSov8wCQamVqLAPYyMgGHiAF2Ym5sjDzkPv/YiaM5dVwBGp77//6kbWdfQy30FgkhKCqsYfOf/149FWTgAJgIJJhTCZyWaEYc2mb5WbFsAhwapLZmllHHxsYXF5l0bgoTmCcY5AdsHcpGggkDXjjZIKdYIJADuyJuG0GqR3CyCRpkIg1gQnj2aSMVtTKwqey+IE1h3///ziNaAKeT9bbCjn3f5CgrZ3etbepfpg9gEibgiap9C089ztFFFgFBD3oYeXGqTYOBDMwcFCpihaaIFmXl6dBEgRHGQGPEmEEcghjGml6AqyINX7+rHVnqmeAOhDxZYhApzjcsperXUXiF6Md///79DSP4l9IPqXWYcq1rm3Nkr3fspVgAAAAD+xhBcdDwQlhxSa6IGbzpgAsYkHgwiP6YjmaM5lSLxHRln1onpHGAvmTJqwMLTyB//7oEQaBsQqHk1TesqYgcWZo28teQ9ceTZt6ypiCpimzcy15DoBocQIMMsE58wQ0W1XpK2XlugAAOAlh82wxJteCcFeVJ6oQwcqepBVj///syl/4KZ9OP1CAXU4UWUcUG0MPuQgLj1GTDz6Bbehx1RLTs2d2sAD+xhg5CHlhHEiw2VIM2HTFXg+J9OjLjXhMDfxltgZinGtvZoa+EZ5o4aERw0sjykkfppkjiEkQOAowmBNSIwAiJBgBZxEw31DRVQXS4Z+BSWBSyA1UmAuSOYvv/NE3MxTb9a0VKqepOui+i6z8YWTcVJNJGjBeptE2VcKGfXr6ez2gOQSBZmLeYSRmcKZm02csWmOKZmEOfevHPURjy6amUaKyes6bFUIAB506oiCAVaM94YoM2sLBFVM6FRik5A3gctb44SniTcB1RiRmCol0lBZ4WAC3KXa5MonZ///8o5clDzyZ+hSXB6IUqaOqFjg/epy1adzJJTmY9YFH9oEBDARMalUhDZh4kmKFGZGMZmdGgkQnHz4AoYZcUpjAPmiEGZ3AZg8AmOR+YOI41cX5G1xjYmqXUfxA0+HIgtIFGK7aI086SxhRo7CBAWdxoABQXpdAoQFJuqJcXxlmf0SYo4CsCKb9+7U31J2rVdU7WtaMxVvW5a9G5kip7cctcAAAAA+sADg0Gg5pTCDyI2aYNBBjf/7oGQKjnO6Hk3TeVvIfoPJumd5KQ8oeTZt5S8hro9nIbzhjHpUyy8NRwj7L48tZBh2c1mmSupp4SOihZ4e/DjCZEYrRAQsECqwOcKFkAhznw0l9IU9yIAwRguoY7wNHM41Q2HLsEL/QAFrAcmRS//8lHycHo95Rq4so5osXNoTuw6S/s678AAAAA/sgmBGGPOkUQ7AZ7R2RaBUNbxusIbUgmNgxiYsYqUFQULUiJOIEAH9FpS7hCCZEhihnMwIThHGbYxhjOmvlQwhGMMhB4RElxAghItVsOQalSvRnDNJZM5////3JHaWBirO5yhZSRVplZSeXTJuDI9hByXJvNfvGfRsu9gBiYmDiccMTZwM496NBlzZUA+99NciztLM0vjGTww9ON8ojhyww4PESQZe+GAweLQAGNxgwJjRcI5DEgMN80SYep2CtMHlC8hqNJ1Dy5niJWRfB3FUVMIdHVCj///zrAyFM+Bo96hdw4YcNq4EH0sMEFXurYgh4sqACDaVpr0A0fMJEjQUsFLJhBoYClGbFRhJQcE8mGhxhASgMMdY1fzPiBW5iQFxgRYYohLG/ARIl8kALTZ6NINNGfiSjG89EWKJcLw08DNdFSi3IpL6l////+5yhZ7b5xFaeRu6PR/V//2ez1KAAAH9jBECgoATDqfFk6Y8KZgeMmx0MZAFZtccmMAia//7sEQQDuRZME07mVPIhybZunMnaw9BCTZt5O1h7w8mjby1rFqRjVfG6xkbNURlUDGCC4YsKhjIMHI6URAIc43SkMxHDGPawaywsujcJHMCGgUJgyUFuS6YIMKFkSCsCF0CAYgEJRQgH4+f8w4QA2E9v7TnWzTnNMPszK5ZiA18uEFq0JX2Cgo/irlx39P3YAAAAB/ZANCIwAETGbFBQ5MIEUGKcwUHDQBtMeo8yuYzLF4MFGoW0ZplrGIxEZoYBFPGk0CRYw5UjHQIYBGQeKZoxAkwbUYOtN3QCkAwWSIDwiAFfGCsLNKD1GX+6qP46LT/5qjwBIIP/eeyWd3ZDD7M6vdj2lShq0r9ijm6li6esnOIb/f6PZAmAIA8yVnMiLzG1wFPJgCIZHKGXL5rzOEOZvziI6AxIVGnEG2lBpkjCVYsMTZDNyGCAwlQBB4pQEMuCIQJGxRQUDQJBoqigI0i9ielyZVkSiTKCQl/43Fgu/rnsY6Iy+17lqqbaZe6efpc+jHKze/VlKs+H/9+bZq9jBawkLwQ6mdJoBjhYAMJXjO5Iw/DGSU3q2P4NzARo1FFNwMhsYQ0mloQ0nACa44RcIbDRqJWidNCUTes3JEVjgx4yDTJSEBYKPCJgsACkmUU7SiQAElMmHYPE//3FMbeqHgyLj9z3LESCyUslbB6wERfRUMS+Gf92YbrgAAAAH+yAFDhiAwTRBroGHEwVZDNSg01MCpaaA6G7DQrSjqyZJMGqHaZYNEggFD8jMXcU2ghFkNSiQSHI00h4gt6j+qZD5OoRhgwUeEV4NOrASWKVYNXwgJdicw/////92H6PdAG//uQRDMAA9MdzdVvIAh248m3reQBDVBxPnm9AAHpEmbPOaAAZAK0RztWo/c1OUa/svtnB7P9vYLQAAA/sAQoMCIhY9B32YiNGHERhjQac0GxHpkn0cA1mKpBg7WY0xEScYQIA5pMIDC26AIFpG4er+Gxw4IUYCTKMTHBn+WorsEEEgZcN+i7aVzRIcXqspJtTqVxe///////Qv7O/HioRnW3Gq0J3SDNyXM8DgLdct1ccAAAAAACgxmpSCScxszHB84ULA8CZKimDHxmCAeIummyRmZoZuFGgEKVJqjSCoA48wzAcDDDGBQSLQhLvlBFtQCeIirnmKFAI6iOi205q0EKHpLy2GQsAfSD3+c3/1SqnnuVnWYNKv+5gfcAAAAAAlIhpMpGCQSZ1AEHGxXIbWk5ihmmfTkZ1U50qYmp50ZkBBIKDNiiMyFQ7oRzUAjOHMNDJJiYIBG9SmJLmxbh6FuIUEhJVTQBRApDRaK1asDNFhTEHUiHJL7KAkBWyFgRMH7/vo1L/+bTP//pJz///z///6PAAAABP7AErgAHmtHx//ugRAaFU+wdzddvIAiAo8m97mQBDqR3N1W8gCHdC+bqt5AEvYcYOfmNgR/AeaMoGBwJgJADJs4eUMNIjjS00YGFWEwNFMaMQKQZy5cAHKtiG9hBIAtQAOcbZhhK9ccwzlWLIHxwG64YVCR4op66/qzx41wop3H////96e8BdThyb1smRGZaLFsMsdO3sRp0h1aFptgAAAAAAf9gBhMDDoyMrEozyDjIJVMbgcy2KDP4DMlhYzCljAx7MkpI5GnTAxUMBjIwqKQYAzDZpCLgdAbQQLSZODaBDUcgZEWa5iDqayFShxEaoqeYipTpDhhQ5iMij0PDASN4se/2Xf////13Gyd1uF5KpPRahA+8iukVCimfCEAAAfU1CokYy2GHNxmwmbCTm/PBkugcYKmKDYMmjVTk2vMNOODKAUxkMMkJwEmA5UyESLVR81UUVgiIMQLDRpCJFrUacDRg4xxAbcVVE9IfLmv/F5h2IcLUxtzLH/////rktP+w0NFFqzW5iKtDmBwON1qZUnAAAfq0mAlhj78Y0zGhQJmqWbRLGmzxqheZSnBEuFF8+wiByIYqFrAhhoa4SnVAIqQIqYDgKOHnx09yT0NATKsawDkCAJlZCSbAhnBA4ZIlYEIEjWMGrQCR2VSIMfLEmWPWvW9RQuh8S3jkMQTCj2gW+l4nGrj5OpwAEAEr4AAA//ugRAQAAwIc0lZrAABXI4q9zWAAD5B3Nn28gCIbDCXPu6AEAAAAFfEKogDhZ6KNxVWLUTp1zlJTEHTGHD7hzSiyzwCGgxWUKAckLPQSlM3wOmjg4KhDwglbTn6T4Wu/iu2JTz5hYL7Tr+KoM9hKsw8Dn/aFQ02P2ShV++3ooAEEDY3XgAAAAAABGswSQRGTDMyGedYODogluGloEHgA8DvSYycgiDoikIRtHLn+uQ57WFPMv0y2B5WAHoBIJHAKX3YjBEQ7MqpNk1abN//7UP//ZqAL/Yw00YBTKW8043NAQTKsU9Q8MyGDMCQUZzTi0zmYErUyIuB04Yk2jyEZoTDgxmvGyEShgkkepNSMV1UsNU8DTKTf9I8DFBQIErJzrOBo7gLEnqB+lADMEHQn+nvx////3jS/Hl1kjJsUF0IWo2YdtuFKGo36wjLxrv8eAPq0AiiMA6YcnSZfD6Y+DODj9M4DqMTg3AhUGK0UmcBmmlhhGfh8mMwFGYRVmHA9mAwZmNIdGWoHoDghcKoDPmhHEM3bQeM9AGSJuggKgjwpMMBygayNy9FSxnz40vMsWHismjrSRAOMuZHjL/4g15pNVAGBgeERZ8+sn3+faO23XJUfqY1NgAAP/IA4pgAaCGMyosNaFDUgsXjDqb0DIJtdkZ60GxxxhbQa88hBgSqnimbzRjEAHUwm//ugZBmOY6IYTTt50yhxowmja3lFDqxhNG3zROGwC+adreUUTPpBQQJeCwpMKYYcdgIHK2dKDISy/AEOHDnN0HQqG4FAq+/ctW8W2RPo6TybH6nvJy8g62pmG07kvfFtKkLMF3vAH/sYqRNgRiygiKGUugrYcAmcWCcMSQWwc8mKWIMXx6HNTWDFTMmEUNTVQDPjJBKBzLcEYAGhARQF2SNAAKpC5yFKGgcIUBiIgOCEaJfi9gz9MSMp6sUp2868bZsTQxwlV21qa0emfUkImD5H3J/Z5RWjAbGUDwVSz0RY61BMrKThxbDk6IxaaXHZ2kKmJCiLSgWmJiYxnADnbDmGmm0DmQYmIEkIoIPGGumXSmjeP+ZsYFTgCEDR4ChxwmRBjgswqVWeXfAINYkg7BSP77Ikxed8IXkUDhdoaUfJe9lnWYrw+l9/2tvg8gD8NYMsYEYwx48xPE4gAFAzEpQewOOlTU0UgKjBRxJ8ZRCEVBRQjybhw6wHRmqFLUhTrILXgX0WfX4gARyNIUcSOJk501SMwBw7FopnAIwcggYM6wf6rmil7kuTY17VvuQ+++5Hx2qxqkrVgAAPtGARAaOGFEoDj8GVAyhCTuQWMtkI08DDGRvORp81ACTiZ7M6JswApDAK9MHjkzSLQUkM2aPuJECMHOgxsPOzCWSk4IExoh5jBzkmBAma//ugRCiEZB0YTDuaw7iC5tmtbyJ7D80JM03hVGoOlKZdzQm0UIymTxGISIKmAo30unB2U6g8DnM1Gg0/tchSlppaMB0jygDUeDEedNKc6fS3fUHjQ5tkAAAAAAH/sAMpCi8ppDYa+QEV4ZBLmQJRs42RQps1Sa1EnWSJxLccqHmYNBp7iZEYmhjo0ay0xYhcGIJaEZI8mdX50RArUzHA4ohJGAgAeeGQgVDExkIWEW/jyVVxkhTYaGbTn////1v0JNo62Q5lbquzHVDSPup7tFuiXj9OJTZsXqgAAE+sAig6DmKRBmYkaejmG14wmA04NWEwKxnGFhnaeZgNms8poaeF4gyFoIE8xQSMDOTLkQKARjhC10aNDCQc0E+K0IxQzRXWqGGGDlxGXHw5KVM8I0tidrMIMDQMgDwAIoqGv+Z/pY/dX7r0vRrN17z+2v13t/NqUlc9eXcGjAjad4ILxkkNGSSKYgJZgk1GCAyZmG5nEUHBHuZ/FJo5EmhWSYxC53kRogYxHCAIyVMEGC5AAEiEKa0CMGwaiMXDCFSQw0QJAYAAgiMNOTNJg6MaA0CQDXb9SAA4GMgVyrUfWkxw5//QlUkJWtzbI3cRtcRS+y87crFbnc+wg9wYIJWAAAAAv7IHBU3EEAaiGGOSAUnTFCgwdzLIG0JpqH0THh7sOHpoCrjQG8zucHrk//ugRBcN09kdzdN6U8iF40m6b5pDDsh5Nm5rKmG4jSbNvLHkyog0Y8HSDOAwMWHAYGzg4+hKNDMATQte6K5h4MVA6KoRUHE7jmcBLlt+o0qoPBw0BtEW5RCT6Ev4vDplFkvW2tmXvCfQQz5kv//oNrbAAAAA39kCuUAYUkDiRo1pMM5lz7hU05rMDCzZjkG0AyAFzm4yMEI0wIDjPwQtyBLEyZUqCR4qFzYoWBpUEygEEBSU2ighDhzRdJUBg5kXGAQdAKYEWEKFyIVYdn1gwgIlUrAq+H8aaQdV1Kgm6deYHNaLuj2MMJARcuh7ntyw6fPj1XdH6wAOxBqBg04BhmMqgIwk+TSw6MXi0weHTLApMNQsyMXTwHj1ljukj+2jgqQr1CqxnkFVA21jFCLghgg5SIBhwMW5TCcFKUAAvaShCqYoSsGGVA4C/7Rmlg5RlbSX9sUEsu////0f/Hxbu9ah7Ng0zCpzpU2kO0KAH72MdMDjCJSOVMDMIUdHTCgsKCZI2mDRJjE2eAgmrrRl6EyYxJFMzJDbQIRjDDK4wu0mADIU0xRUk2RuSOYsmSDoQpGDigRAt1WBIYHD51Y0w4KEgoJRKJr5UW7zn2s7GuAElc9X0v2ocllz/UqAAAAAP7IIPTgBQsZ8EGSJpihqZBMgI5MNIDDw4xayIoI+Qkzw85aM2zMw08zc//ugRBcMQ+gdzdN6yph8A0mqb1lTDvh3NnW9ACHbDWbet5AEwgRWkDEBwYEFmCENVGGQYIQEvCCVL39RVQBjoYOjDj0HQdklYibzCVNyMINrKKz+XZJFZP////LPWTYasetcVND6nr0IaxHObyRr2vTRl8AAAAH/sYgYxAAMhFBo2NmgzSQ84J7NkDgIfm8jh0IIaWRH3zFhuZuCYGIYj2apycJBxAlqyUYhYOEUzyAQGYAgExDj1etpKTBTQ1NBdL8MIDiQ4EHBW7jQWfDSTbQPArpUkto5dKxGOK7XrWL80hhStWS0VrXz+6z+r+kAL6wBCeYiNmAxJFXmnpYWKTISQwxANFdzsGAmszMtgxoTIqULBxlhMFxowUHOWTEnJewaVJrGUMBUAY8GJFjRpwiOgpRoMIWsIlhqQ5ihjtBC5ByHJRVaRFVgFL4rIpJI5rDn/36/lnVJV79lDmsbe17/Y6Dz1FIAAfrAFUzAwcwmXMZOjWTMdKTizQ1MjM/PzvBY3gONkMjmn8xBOMYDjGEEyMiMcHRT4ADhigdQIijsFCxlMDyGumMoOEv+/6QiAY3ETROCU0Ja8l1xu07z+uW/rdHUieL/P5w4GPlhYhSSV6kRRSWASES66VfQuo8wQAKiAxf8AAAAAAACWsAzkibJhSs1ZzJxNi5R0dIASRZ1BhOpL1Ncv+yh//uQRBYAAqodVm5nAAJi47pKzWAADkh3Nv28gCHkDWbPuZAEQt9yBQ8jjPrMGZSGT8dmD7LkV5BqAovzsDRKniEFQHh+m5U/623kT0UDACAADs4AAAAAAAIT4gHkpsx44QTTPrwrlFMgqZMrsNiYBv8J1GVKGhAGJEAKK4rQ0Qg5a+k1kTmkOW09CUHCcNq7An0UPeOT3InC8403AeDGWIqhaO8vPa5GYp3x5xgC/tJAAAH+wBqRggiBVMfFgQKGcHhzBaaPKkTSCCMzt7GCM0MiQQjQIccSGLjQ4SQ8FCWFmGQYqiKRZMHVqohbJGJ+FGEjxElFDAZHtFrImgJgaCyzeqhwe1pT7LWf6LSypcv5XdUvyI2et06gCL73GJvbss0AC/2AOcYAA4VH5lUNGHiAY0A5hQ+mK0CYvKpjIwme3qYpeByAIGFTWFxyieIR6KEwjDELI0C/oVKcQwxkHQqGDFDtER+JgX2M8QGjAwUBXpvpeg4lyJFLo9IXSduZXfHH8XjRyk8CqP2P0lRQADVBU3yVrlCIUv+tFYAABf2A//ugZAKEQ74dzbt5fDh0o7m6b1lTELh3N03zKOHUjWbpneSkNwBAkZVWnTmxlJUZonGOroLRzD08x4rM5DzBJM+OLMRTgdKm9gZjQ4d0gGjiQMFEeE0jcCNpsxwgSoMBnJkOHKGrrlLxIhFgwBaq8biTDp2yPUtjaYK2bqjTI4URFZvvz7n/FlWuZiioslCePo891h+drYAAAAL+yCOxYygtBQsCA8rBzdBkGH5jColgYcyHWBhp8ZhzxjA5q45k2oKNGSGFmzFNHpk1TWTGBGxjBAaM8pqCSCIN3T1BgjUwhVu5f1Uk7ZnWsNMUtf2dkEhhL2Vu9+1lf8J8rU8xsZ13JoM3+nPy39e9eAAAH9kCPJMFmM44YzmW0ZjwQfWnHSAxtZ+cMQmSpgbtGRrhMGZ2gYyF491TFYdM1EE1qGzDApThUkFkxo8WLAboimTXLJhYArHQvYOASwqWLOmEbDAOSbu9+ptprQ49HJDF3KlE/S0XfvVMvDetQjYne8qofv4VJ7HzjVsSrU7PRbklNvXgAAB/YxJWBmOcbg5vIBSw0kzOHKx7iFCkFmRhEEbrGmUoYyCGHtBKRi2iOtj4hqjmESWHxaooIMIoFJhHB2RmgCv1IKWqWJYBSgerSvCBguVAmGTNnekyxU9px/rMhfxKC3si9lrLWJcPvIHEtRl29WzJf/oVwAAA//uwRAGGREEdzVNc0TiHg6mqa5kpEAB3NUzvJSISDuadrmSkAD+xgtaOETcczTyjpWzhsDW4iDkSaKBRpwBAKkHNSWHGAmgpjklGlQmLIGLGnTDmIECgkiaJiCIoOABqiZMQZ+ICz8BMMHgDLBCHMIUGjJYEysHAS0DyZVZhplJSqlVLQtOfualP6zpb3iCXDAMiqAE84x+Qaoy97lvae9cgTYx3+vXcpMAAAAA/2MJWipczns6sI9Uk5YUycuDL4VM/Lcy2IjAI+P4m00mKjPhwCAkZJAhgAlGZxGbCwgAGuQQobMqwKthEYDkwjgkKlz7RMCADoJnRGEqukGLjQBYdJi8biwVqndiGVcxGBKa7j+8LL+s9CoaCjQOHyoonWMkTaUSayn2qGj1J/7dibXQAeyBiIhDC75xzEooFmAqUaCLmmkhisQRFR3oqcKjm6GpqwMYyDGYoJpwcexIjLQiI4At0MQkNBxDms4MHpwIGo7ixZfdB9K41DHdPoBRYiHbWftsxiO5c77UJHA7vRXDDnyf/PTKBgxhYwBxRgLJZP21dLtT6wa5HsI0HRSP4pAAB/ZA+INIgDCcE8aeCYcWYDDh19BGc1KcLGxoEJHBzMY3TpnIcjgUMemswWGjBRJMqULJk0APFLooliMccALSFDokqOlxOVhVAUOEijsnR2aYpYPGFZd6nYHT6l6hk5Eo9K4tfzz+j/z80l4xhYwGhaCxNk/ZX0O1PrBrke0hQdFY/iyqAAAH9gDXQuGTAw9QkGWjSZEWhkdSG/IOZ/PR0NTHMpJoBSYitGGkoMFzZ6xehIJm7EhhwMZcBjwmfJ5n/+6BkHg5D9h1OO5vKOHgDicpneTcQdHc2bm8q4i6Opg3N6OzBD0wCQBxZ9jhcxoqHYOMUXDAgViYxIiaUwCw6qjT56WKdU+c/A7+uLItVYvz9yz8fbDa3ixdV50VsYlF98500oK5CAAAABP9YKzFgZUaQwJUMT49NTNMOBXRKAMOSzSDc3cwApGNUpzqaQjRlI0WhAgBR6nSYTICYV6WWM6EzoA44NEgR2QsArGvgYKDwQUgNUKpqWy7cu1UpYEllFAkYfmBNUiPnqVo0uu9CMYNWUPi0f0k6uptrt7+v2MPqMAFeBsoLGTi+VGEY/b5owEmTbaaEYBNvziQUMykwweBb6cAnnXFpkQmb7HmAngNGC3hIgmPgZh6OYAHg+UG3A2kLqEwxdwxpCywOtEJ5MeEHhh48a52EWZjfo4ZWRDyk0wIvJYY1zV3/QCVwq1ceRuwNSyG5VCwJ1LVYkl9fu31gD7NoZrAjggBTDMKgceLZq9YHCBcZ+CGf1RuSeekyGRHxk4KbkLmzApl6oZe+G6pooHmOoKLBkSIY2IAGsGT8lAH5oGkOlheFxpow5hVRhBBhFRlAB7CRg1I9GM0raHGIfdOLPJTN3W7VWmzkqjZupLHuu0jBRby+JCJGdt7npY9CGXSH3V/5zUdvmsAAAAE/sAMCAQwMAAoLTNAHCw0IA+ZeUphqFGH/+6BEDgAEFB1OVXMgCIHjqbqt6AEOQHdPWc0CQfgPKbc5skCgyYsNBpctGiTWY8QhgQimUxoZsIJiAVhBKNp4z2zcLQFhRM4YjHjNw9Fc1DzJyGi03hYQgEV8YzBgNBMqao6MLGIS4Eksnh+N+4KjT/LAT7E2aW6X6b+1s89JW883jnJzTiX1zNTsAAAAE/sYAwQ2gygnJHIyMiy4bPVmnTBh9OQNRwMAR5ZKnD3qZ23GUrJiQaY9QG4nGAcAY8EXjGWTQoR6uODE1IbBg8SUhAVuBAMTTN2YC8E4rcxw0IMkI9x77oxfUDXlcuE/5EHh5YklwtfTfkkFEDsdncu95umLXH32ruW64uK9yQAEEAFSH4AAAAACfxgwQgUGGPkksABSOYODRhgLGXEYYwUglSjDgDMViMMFBpAdLiOPAUw6ZkrR4MIxxgyoHhwIgDV215kJNHRSM2FIry22hymdviMSVnIBtAwmGMGhO40qtZ7xh1O6MU3POIv2HWadAEAAAAAAAZf/AAAAAAC7zJSNMCh0ysmBAITEhINLD44YcDNDAADMMaiUQlQw2GgYGRg6GPRGFA0AQUcAegpANEFTQydeoYAmMiokzBgyLBYNB0ATSplWYLBxo4Y06suUmR2a0wwCBAHnOOU/r34ZusFwCVSuYdMlB0hm2qvzNcAAAAA/sYBQeMCjAUH/+7BkBo50lB1N13NgCIlDubrt6AEQJHc4bmsOofKPJxGt6YQBpgNmPhya9KxhK1Gg0iC4iPE460ZDf7PNWt8x+STQJWOFCEzYZjcLKM7rAVdCIRckyoBGhUBHxnIyLBRggyYKLmakZbAaRgCLmFhpmBMFwASKgCGkIYKAhgIIqxE+HYxYiTUFJyks4pCJTlb9VD39sWGhwJJNrNuIipeKCkzcU7HxR3/+vAAAAAP7GEwkJwUFAMdmDI5p4AZVhhwKHS5ig2FhYzB+B0EAB42fDO6ojI1Q2eXPGkNsGCFhlEgJPmUTBHwGtzEoTYEGFmwGCSoLATNBiaCdkaZdGZZKY4SCnxlQ5gQSMMTfjdDq5E0QgaPfRJpGqls9r4/EinmSd/RPo4aUP4GKOrPIpcytEtQj2QL4EYDSpEkuYFDRjkaELxMLT84eQjo6kNpUQxvBjh4pEYZNAKM0e+wEPgonjYzzhHjakgcvAS1QMx7ECBlUTUolBhIqZcOMPD4Hf5nmLlfNurOAURMZKFSh7605XIhxhRgY6uClgTX/QTnpetSa7W1JTelefE7q19q0b93+7LORGABeGEgVWA6WIDRnVZ1/xlOhoqgNonLKGhtHDanAiDMo1eXMpOAKTla1AeasgTRTBlh0gbYQ4RkxJmxAIKExoSQGrIB05iYNBmqtk18w5oaUmIMIbIwxiH8dTbQnYbouSRA0DA83/JLA/eq2hj4am1FB5FXRMdP1qYSsHqXAAAAAP7IGWjIGIFwbchCRmgIxxkyZW4nEmxwxcYWNjhOFRIzgfHEs2y4M9WwQDmZkDSjaVHYDxKNuo26TqHCBQv/7oGQghuQ7Hc5TedOofEO5ymd5KQ/4dztObych7g7mzZ3ojJWEHCSxjiMkQDGGBj5SeFB4wOQMHlzB2grBv5a5HVINLLeqryqDmzW+5yS772vSqLqoGjVJFE2z1Th0h01pNJsVY9j/Jbm4AAAAB/YBHxkBxwMYIewRKb8KmOnJ9zWaOVmAG5hxgb+bg4zNHRjidgwcsISk0yUrwQKLHiq4DfCMQo8FCTCjBko8qZoawxZEgQBgwF1DUhbZRgiMf9xYs/nfiL+v+sEoBMP4hfVosYLak/paoiKsE6Uv1CrDXi0z+jFMdAB9YEkRCEwMHwwqGHwoZqARla4GY3EfV5DfKZJ5GZGxgR2a0DmCBhtN2Iy8xdIIh8AgAtMjxS/gASCpYQ6PEHOiQBoeqrjq6AYIcLBAOeLyBCwXBRoh6jlEO4fcf1wVAmmxCAIrel/cpG/sWPudDYDYLn3X73aWmfXya0f27606xiaQRqKICgrmaI4iRTWoU12aMuBjDFzc1TaqDJyh0iZf6cEiNgzEDhrSYg8Z8MZQKERR4KNBDKAzHCTYnhGgBYA1xpBoUDuKYE+c86kilaiusHG3Dabh+ClkVcNxn8cFST8P/GHhgb29hpehi7VI2LPoCYvDKOqz1M/cgAAB/Iw1AwAA8wyBExgAUwzVkwOCcw8E0yZiM0MHUylEswBYY0UCE//7oGQUBmScRE27uzr4e8O5ymd6JRDEdzdNcyNh3I7m6c1lTMRdM4PThgsG/pjqKauBm3ggNKjIQxM1CoqDQGCzZwMwsYBhKZ2LDAELMbJFDAYBAUiBIENBIWA1+l+mRKrq5ZP35JgofI3RcCNv+/gkuFwmf/rdj9t0m60rsq7f/t1v9K+eqmVL26KWWp8argAAAAP7YIfFASwEZaRlOADEylaMsojT6A1Y9NZmSd+EQk3gU4Z48/g2sUeBAI+hihiAUCNtGAgBUFgYiSDykuZMAzEwxkxA60sOW4NucCxpuKpWRDIBTaF/uggN9oZbvLFjKIRWIxeCaju9jl3c172u/XX1DYgGXfRvcvAD2MDgMCwFVjnKANKDFobMXLc3l1TIAYM5hsz2BzfhPOatoxKGh0vGESeaDKZmkpHrSE1nCeSxHRIYRBhFD/ZjpmkGTDKDICjcgMBQPkHYQV0ZgQNaAzo4PFnATqfT/uYkALMZJI2l0D9TeoNlnm0XNoSga5LalRVRQgJ0pIP9goS/nPq9MAHsAqSmCzEIOUYBA6NZMcy6vzDylMcCIzZCTKobMx7DXycQG5Cbs6JsowM9Y4xioiYJhdgcpByRESBBjTWMooySh5M4mwx1wRzQ02BxYHmgoQVIUOht7s/mo1H3ejmkLVLH/ZM/1eTO7XNSJPtK2JDXoXKov9i6gP/7sGQAh2RKHc3rmsqYdMO5s2t5Uw/kdzcNcyNh3Y7m6b1hXAAAAAAH9jAGCxALzIIgMtBs0avjEgmMthwIJQ+1hZNmlhqAiWbTmV2jZgzXwT63DtYTdyFvxk02j0aQckDlDPNCwghyNMRQgIKbqf5aNJjnGmacpws2RhA96GnvHjX9wqbtuyosz6GJPFY6/s5HYQ7xpNiZlwWxcUYBoyVVz8UWhXcLOoIVN3tAA/kAm9oCyQKSmQKDPmuB+UwS09Y8HOyDUZ6uHEFRjBsZGvBJGYWGITD1DAU4jDS8VEjOOHhw5jnCYxIOtsw0xOBVMelGXjcjAzaP6EqHy4C9IO7cvUkph5624KcuVG3dYrQ3fUUP60UlWKehtd35ztigdhjAAIHGGLmuZnACGDo6YcHARACGFmS2GcyVJmgomzigcCMJjIgmGiKMGYxSRjGpMQdGIwYADhgdCTCBiRzrDRRmHD6KWzATDOHBoZBWwVDDiYZHnxZaNvy3Rxt1qeakkejdR4Iw/sXk3Ir9DcMCtd/P2tlkMTN6+BqXPWLU7LbXYAexiNIc0bSYJCw0EEoWIjq4A3EpIX44ciAQ8ZrCdw8NPji3jLjjXhDAHkgB5kgCBSpNAQAytCFSjTS/qwSK5WcznDPCXALZgIhGA1AZ4UCiEqB/79yjx03RwJE2d54ce2fobnuqeRpHVWrMrr1T+udxldf/i/6agAAAAD+wBM4ChxiR8jSAHw2hONqJTfJkzFAOALwpBHug5sSYRLIw/gVMBggSUaHwuYRrCOtlESTQwxOAZTSQ5YAhR4xxIxpoCVokszoGVGh8Gy13lpqwf1z9//ugRC0GY+0yTNN4O9h647mXbyxrDhR3NO3nCmHBDuaprDIcW2CsRikkdyJAFAwxv/WjsphymPduyp+iZc9UICkeljuK2UdUAAAP7AGDGAixkwoUAQ5CGsARhhMIUU1QeNTwDF2M1E5OOFzPgIO/hTUwTQXWIpjnJSeMg0UkMNohoXkLjA94ECp7iCZTIkONRdCALIokoZKXpwspVmXXFZNiwY2dFQ4J1ZkYvtFH7SA4HxE9FArxBL4udPoYNT1MXv7IPYxacgWLjGw8ytDNAajMwsz+AMPTgAGAGaDn08SgOyZTR2CmjOESMOMxA46joFCDQB1AccHUJFhU4iqHKQxdFVhe5gaOD/JWV4lVdF+b0y81eYa7As9GMpFTVK3PqY1I8fqTDsMRndp/nX0RcC/WtWAHsYd0AFjQjA52YX6Yxkbaga0KeKOHMTOLD+Vz9qgaSM0WrgsILHjWCxoGs1k4HWXoADDegSUIrnBDvIpO6twFLTgeA+hLepmwOtrUiZjelII/hcAK0YHy5pZeP6mC6B491aIZgtd3aP51/FgN9alVjAAAAAAH9gAcRLTgE+ARxwEBkSZf8zZUZQm1dGIyxpiqacGEQSOIgPPM0cEnl2FFE9V5MPWBESRVNEA0OtLQ5Ewi20QRodInIuwrxSMocOlaQ0+XxO9PU0dlETk9mxaiv/dY5qbj//uQZDMGc64dTetbyhh2Y3m9Z3kzDaxzN01l7KGnjubRrCV0kSpOJS4RMZipZTOm0EvJKMAAAAAAH9jEy2MRSAAYFQC44FDMO04IpZGYKOGgmQUaN4o2Dzo1EAAwGaoadYwMPBBQ5SlZIGEHlknkMkBSMCsrLYm1dpqwi91LmpQxA6vZFOx2mh2SYxGVu9L6wNivtxUutq4xqWqvHvyg5q0CXWx2qwqnr/RIB7GG5P0CkgKBGNaCQY0cAyusxs81LoKTj4QDn/h5WcEovoRtntkFJAhBC2DhJdPtFYaEUQgSccRrhhTIQ9aScgM6tbzlTpxr25lSyKZUqrTg1+8Qh7j+XGUDRHMPanHpa8UhNSHpujaXRzf49UACPOSCCIY0A0ceKBRGapGdhSYZQYxOCwYRY7JUrYOIoJWmmZEgIKyFayKqwZEcHSkrJlsxlZqDqnSt1MkPFH+fx/1MYnG6UUoDY0CY0FwSF0MSJJ/paohZiybvfY9EYrvLXVbW0VIT/WrwAAAAPrGGIjxoOvMhEhpNpc6Bg7i830w2ik1EQ2S8//ugZA+Gc1obzdM6eXhpo5m9aw8/DGhtN03ph6GejabhrD1k3sEIphcyb8mgqcAEpuXhUXTDU2TCUWIR6SrDHXWUharRZxJVOqwcoRydmOdRRFteiuoCegMvVz+ICRHxij9WhH+u9ZYoXart0o/TWgRAAAAAA/2MZ5gpWg+PWWUhQAbSAe2Bcp9aPIN3gNAkyeBmcWClIKy5Dc3BcZOVMxIUQCYbKlqJ1F1ZlVrGFeAsmxhQ0WZDlQpVLCc2JTMkdnfz0ghD31LetFtaMPpbdowP77UDfbV+BNlAHsAbhJgUFg0WBSIFxYIBSpSGTVGYHj2ExRk0sASzFCkwgYqoDDjgwgClqaihZblWxBYFDi7skeFkUVFQHBHE4sgCCKPikSTZ9BxGuVtNIVG3xY4zrF7CaF+ZFx2X2lbf+zdYBIW6qDJFg4UYUQaYWZOgvwarGFUGWgHMCmgFEdxGNwAqnwl4ocX+SOHlqaLMDER9/HYZKfwLssAqTlJEApqlVTqxSqN4q1Cx97EYlPBCILHfGF9i68GUlFQGZGHC6vfa/f9CK6P1PrAAAAA/ogThYmNGGHIHZGdQeShmoGT2DExicHYny0brRhkHOOrCaj45Etx0oedhvYuHGVWf1djsyZksbft+I7GQpSnxXNzsluLCa3FU1pAm+DSX6smSe1ab3VxFWxthj//p92SU//uAZDKEUycczdM4ZChko7m6Zwk/C+hxOaxp5WFoDub1jJmswAAAAP9jELlD+IUAhMeFPVgKqm0SSCT5dUvsBum8Svh6hdBGwOK0JeTPUHFgEdmVRB+3Hbxdi5FmrdXm4ERMOBUXR0sbYFJO8iLIoCVqpv8HFLtGTeK3mBfI1zm9ui7n026vutcAAAD/sAT5GTj4AQMZaVDHDQmGmhUubcmFoY4PC0lGIqDxk6kkWTUkPCVevotDkAZjoWSiHGX5nUaGKxOp06TcLWquZ1A3xpnB69gv/tqkiFD/2e3yc8JffeTa74rdqFAAAC9bJKRTEuU9pkEbGGMJbszIbiGmTIN4DIuER5btwJSj47eKhr/rBo1tFf1njS2uw+vSvBavUtofzkU3OU9UAjSKZOfTQjAHX3diEaPe7IrGz2ha97RBqnAAAAAAB/YwNFtFMGdX5UgBx4UEFWjaBjJnqZjiZjVgQBTAMYFCDQOUw+v/+4BkFY1DFhzN6zoaeFwDebpnBk8LBHc2bWGJIWAOJumXmeThWyD0gFb0xmStrTv62lM40akEReOQryZJjIbVL9qiFZW1RxBJ+xsyWsXFtLWNPlqrvU7Vq00KrlAAAAH+RifqUyCFnAJANRszdBCYgKBAEegIoeWCzJpLzHnP4yJ/FE5IiwtlwX+lzvRNwk538fRvnpRVZNGuxW/OSOv+A8TE0aQwk72GF7Itqoo/3/r31zvtt2ZoAPkxNBswiVIUVUtAEpJiTQggAQeCcmYYie2hNUtmaYj0lgHiTVYZL3/WMrETiWCAj8aCVgkB2blgSaLrZ/3p8GV6YPRbsf51bl29mRZruiSr8s5RhabPL2AABf2AVqjbIMiIfE0WBzwGoBxyFYMSS+LPiB1PQRKJBJ8+1QJIL4Xw/ytE6QiVFHUq1TES6lLeLOq7N07cyS/LrZbYYJDb+tRxZNG161BXS3I0d6F9d1F9AgAAAP/7kGQChFKFGU5rOEsoW8OZvWcJPQr4bzmssTBhZI4m9Yel3Ff0AEw8gPZHg9yIijjJNWJE9C4kHEI4eCqYwBF3Fu01RYsbf5hLFHQhpH8TIgSEblh9KBCCaJTC326JovS2DTjj/SvYulqal9XKb1isAAAAAP+wD8hEcYo4RCImRgQcyGmFzC1IOiT8W+i4ACg6hCJkDO3cXnJI4lKyVxoGiLuq/CgJBuyIEsF9IomWcRitkVfygr14N9M+KsaxZ6jvZx9159WhGUA9LwAAQP9sCSTiBYo2YAqxIjKOa0DMVnsjLVL9Fky65bNJODHEcCJrxBEDZ4JSIrGIk7ISiQKiImVg5B9fXZmm38bSiY+i6nm2LQxCbuRbt/cIWE64t/Wrir4AAAXd2DC+Z7khIL/GZK6wM1nbD0+S8piAOHA9R4IVCLW/Q9FFMwktJgtj+ThTHQplSfbG1HUNBhgkYVus+PjWT3GWu6rpB1FQso44iKWuxcgwqKalrtt6VXCAAAAAF/bALAfwc6qAtcMADHkRVKYQkGW+TrHipFEF2/0Wzv/7gGQSBEK5HM5rDEO4WAOJvRsMDwo4bTms4SVhVY4m/ZwkfAmEEDYdMiUsPkASCeyVyy/CSgUizjK2Z1VW9G6MJenMMXWD4QoJMTW8Zi2T9zr01/+21xiAAAAAB+sAG2nuXQKFmcjYBJw1l2h2qK8OhQioC/K8BAFWJwX9UoJNx7EgKERBWoB0dloqkgSTomoyXzzlSwhNR6p12XWCDvmCl7v7KFqCTq17dYsvufXM0AAT/qAJWqFjUR4jHA6Y4IwMdkCUAoiIKD0NhxkvkL3mXK97+SSeFQmiCA4JR0PgkPsiX8sTzetirvRaf2UMSTd9WKPVmMm9xAcyssnd3bfQUIIAAX9ZBAuJmOBJJ4IEMU2U4XJEX/BRnDbcQDnkIHBglnlJJnciL8uCTgkFBcZBEWIFVAbOm5GrhbcWkT8Tt8sIgI71IHGpD1s6URayju9Ow/u/+tVyAAAAAB/WQM7YMUPBSlDDqsQsFXCY//uAZAsEUtMdTesPQlhaI3m9YelzCSR3Oaw8x6E9Dib1hI4U0BIOZOmsY4ZxIxSgqRaU+zNCeVSvNRUNqhVSkdsh0BcKR10MC596i7KMpWHO9zUxZm2xlOtL20AuwsMRSh9Cf1Ofdd0rUAAAAAr+yCKwE1UxcEjBgEzU2kwQCFuBhCvN309RILJWAiREQqVyhqlQ86SYdExMcCp0cQQGCVsShXWNQtoUEVYbBjAST9uwXvUYYLIwHZFT6Kk/5CxDvrmZkgAnP6AAF8OOLDIrkSyiKbxWNpLErk8olSLWoI5fSwvG5DlAxMw2mxUoZBYwrTEbHHEVH/bfpVW+HIZrIz9670dBew4+yrssQ80AAX3ci4kQwTTpLtga670+UvEZ3UUHQtBolD1b2Sv66sBv7wUEolHwNvYVPiKjKNwSOEZmZIJjmheGv94xCXTiblroP0+S67qlfq+xlF55AAAC/7IHIgcLRZOVWCPJlIP/+6BECQRDQB3M0wk0mGfDuZph6VcMTLEzrDCvIY0O5nWGGhxPfVPoWgWCuELQQBJ9tOVsTUg5xHEZZGnCYqJhFKZQcJ3quN2lpy5qi8uTzc2pLgNHnTx0JnCgeKCwDKPKEmtU4ISIjGBuIlOIqGre2BQyiLlKMgxGB7QAAAD/sgcBcYwsOOt85MI1r7FTgx7ThCYfI4A/iXAMh/HWvHCYSiO5VNY0C7xkjGSViiMPDqBgQzuMqxmK8K32nLTHnzxwVOlg4XFjCXoIsZcFJMSjw7BtbyKhy3MgUPoi5SjItRgcwgAAz+xhflIM3U7AoWiiI6GC8SYgMQjuWsfhNJkDMVVhWeHZZNhJeEkSxHiEj1NS68io/2uPUq6cejiKSmKYwIHf+kqPWcllYp0KIRILjlJNEY5Z4Pa3petfBJ7klv3rvtQoAAAb/YwqCoMbM4I6QiNK4MTyS0ZjJnyZMPXR1AoFYVBYZo5AWOEoYCMgOricSisXlBTLRIfVLH6Y+IWjzUioi7okE+oSE1FgmOAIWDCwqRY02tyYgLuycxYzLhlF576LE1X1VQAAAAJ39gCpV5jARUqNpKUFCATwCxeTDWQP9EYZUeV07QFCaT6NsFqOzhWeo5NbOnzj0NIe/UkuQBIIAvGamqr637rlv5KlFNCbqqrxAABL/rgv5PxpF0dYFwjTFisya2n/+2BkMQBCZh3N6wwbuEwjWbphiHUJoHc3rLzHYUaO5vWEmdze0lii8RI7arzNicXyaTC4XgqEnNYfSHZSQgMhmEd2ma+0GEpnxru+0y8IDcVd96nLNf/u/f4uqxAAAQVf7IHRqhhpyJmGMJVg0x/QD9AIkeJkmul1g/BXi+sNmJRTRGC6oHQCbu5aF/G+PkVf0pmeMNQ/cxyd9jmLmO7dWhP6r6I7e56zAAJ/9kFaFhVx6EuwROWgWmVUcJE5MdFRIl3kx3ciJkRMjgiOic/NZx0PP4zeMjiPdo7Kj+bq2srUTvoSODgBMtc5tiX0nWdSnga/fot/u3aldQAAABLv9kBQMl3/+6BkBYACfR3N7WUgCFHiub+ssAEURMc1+byAAasOJn81kACKgAiMuaSilvWSBBjtP8ie802154KkSHiM7NGjVGBeaFNaGqT88qN0Vz2vkvsbnI7EEEZ/3ZSMr1upuz3S7f/9OuuuvMFCgoAAAAKv9ED8YmMsbM7PTHBM8AOEEIwQSxBD7MQhqDO88S3RUsUEgyxS27dUnd6CF1M6rayWqtJCZgkExcFfEOhZTcrfal7mVDosz//9HM6DYxRAFoQ0VUM56LxIGgEABpbCB44cXNIFWGGJjRhQCYKKmNChiKYYSLmJj2lNjAQdE8BHTBgDEZBwlAtiqykvQwWJiQyRScRIEwWBqBSmag18mIQqYiDsxyG85imhFp34Nwl8NyKEu87U3////nbw5zrdIg972M5dL////+c3//nQ3bFumpbnpdMRGCIMhI//6QEFQgaCX//ak8x6m////+laKgmgABQaMiGV7AoEDAAAAoCMkDSRNrZEQUyyNaBUCGTWoUmcDggKiShNMQBLvNZYiHMO+YFDCmUu6RFMhdcEsKVI0o2u8uWFMOnJtgzuyakk1LS0sW5jWrS5zJVG5L4lLfh8yFf4oaATfWoJt2XX3/2gAf1VeSJHQUAkcatdmY/jARAQEKq7AS7M2oCAmFAVjagJ7ER4Gnwad5LBV4Ablu3/AAAA//yOCjvCjQr/+xBkIQ/xkRtK7xhgCBdgCW3gAAFAAAGkAAAAIAAANIAAAAR8UXFFZBXAqkxBTUUzLjk4LjKqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqg==\n\n\n\n \"#\n \n }\n }\n}\n \n \n ", + "test-files/functions/input/named-args/single/testcase_image.baml": "test TestImageInputBase64 {\n functions [TestImageInput]\n args {\n img {\n media_type \"image/png\"\n\n base64 iVBORw0KGgoAAAANSUhEUgAACgAAAAOxCAYAAAA5Wv7bAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAABmJLR0QA/wD/AP+gvaeTAACAAElEQVR42uzdebzcVX0//veZe7OzyQ4ugIobikKCQEDFDRIWW1vB9tfqt60KtUoEBLKBjrKEPZCACtrN1rZCba24L4XKDmEXXHABgRBQkD3LvfM5vz/CkpC7zMydufczd57PxwNNZs45n8/nfM585jMzr5wTAQAAAAAAAIxItXrHRL0AAACMtoouAAAAAAAAgJHZ5LHHNtILAADAaBMABAAAAAAAgBFaM3GiACAAADDqBAABAAAAAABghHor/QKAAADAqBMABAAAAAAAgBHK0buxXgAAAEabACAAAAAAAACMUJEKMwACAACjTgAQAAAAAAAARqhSSwKAAADA6H8W0QUAAAAAAAAwUtkSwAAAwKgTAAQAAAAAAIARKlLFDIAAAMCoEwAEAAAAAACAEUqpEAAEAABGnQAgAAAAAAAAjFDKaQe9AAAAjDYBQAAAAAAAABiplHfWCQAAwGgTAAQAAAAAAIARyjntnCMnPQEAAIwmAUAAAAAAAAAYue3OOP6qjXQDAAAwmgQAAQAAAAAAYASq1csmR8SUnglTN9cbAADAaBIABAAAAAAAgBHYpG/SFpEiUq0mAAgAAIwqAUAAAAAAAAAYgVqetEVERBGxhd4AAABGkwAgAAAAAAAAjEAReW3wL2czAAIAAKNKABAAAAAAAABGIq8NABapIgAIAACMKgFAAAAAAAAAGImctoyISDm21BkAAMBoEgAEAAAAAACAEUip2CEiInryS/UGAAAwmgQAAQAAAAAAYARypB0jIlLOO+gNAABgNAkAAgAAAAAAwAiknHeMiMiRBAABAIBRJQAIAAAAAAAAI5HWzgAYETvkyEmHAAAAo0UAEAAAAAAAAJp0ztFXT4mIbZ7565RF82/eUq8AAACjRQAQAAAAAAAAmtQ3YdKOEfHcrH89lT7LAAMAAKNGABAAAAAAAACalHuLHdf9e6pVBAABAIBRIwAIAAAAAAAAzcppx3X/mlISAAQAAEaNACAAAAAAAAA0KaW8XuCviEIAEAAAGDUCgAAAAAAAANCkFPGavN7f06v0CgAAMFoEAAEAAAAAAKBJOceuL3jo9XoFAAAYLQKAAAAAAAAA0ITTj79y44jY8QUPv+Sc6tWb6x0AAGA0CAACAAAAAABAEyo9E14fEemFj69ZOfF1egcAABiVzyW6AAAAAAAAABpXi8pzy//mdR5PyTLAAADA6BAABAAAAAAAgCZUIt4w0OMpZQFAAABgtD6XAAAAAAAAAI3KaeAAYIQZAAEAgNEhAAgAAAAAAADNyIMG/d6gcwAAgNEgAAgAAAAAAAANOnvh9S+NiM3XfSw//8fNFy9Ytp1eAgAA2k0AEAAAAAAAABpUK3reOOTzkd+klwAAgHYTAAQAAAAAAICG1fYZ6tkip730EQAA0G4CgAAAAAAAANCgnNK+w5SYqZcAAIB2EwAEAAAAAACABiw58q5JkWPGQM/l5/+458WHXtyjtwAAgHYSAAQAAAAAAIAGrNro0RkRMXmYYhvfs/MrdtFbAABAOwkAAgAAAAAAQANyHm7537WKwjLAAABAewkAAgAAAAAAQANS5H3qLLe33gIAANpJABAAAAAAAADqlCOnnGLm0GWelQQAAQCAthIABAAAAAAAgDqdPf/m10bEFnUVTnnnUxZcu41eAwAA2kUAEAAAAAAAAOpU5LxvI+Un1nr20msAAEC7CAACAAAAAABAnYpKnhWR6i6fK/FuvQYAALSLACAAAAAAAADU4cLDl01IOd7RYLUD9RwAANAuAoAAAAAAAABQh0e3rLw1Ijatp2x+/o87LZp34yv1HgAA0A4CgAAAAAAAAFCPopjdTLVKFLN0HgAA0A4CgAAAAAAAAFCPyrrL+aa6q6WUD9B5AABAOyRdAAAAAAAAAEM7be6yl6VK3LP+o3nIOuv8EPfU5Cc322LO0p1X60kAAKCVzAAIAAAAAAAAw0gpDs4N1lmn/LSVG/9hX70IAAC0mgAgAAAAAAAADKNIMXsk9StFsgwwAADQcgKAAAAAAAAAMIRzjr56Sop4x4bPpLrbyCMMEAIAAAxEABAAAAAAAACGsHrSxIMjYuoIm3n96cff+Fq9CQAAtJIAIAAAAAAAAAwhVeLPn/1zbrDuuuVTT+1QvQkAALSSACAAAAAAAAAMolq9dpPIMas1rSUBQAAAoKUEAAEAAAAAAGAQk9ZM+JOImDJ4idRIc68/a/61r9OrAABAqwgAAgAAAAAAwCBSzn/eyvZqqecwvQoAALSKACAAAAAAAAAM4NT5N20VEe944eO5wXbWLZ9yvF/PAgAArSIACAAAAAAAAAOopHxYRPS2uNnXnLnghtfrXQAAoCWfW3QBAAAAAAAAbKj+5X9TQ+0WkS0DDAAAtIQAIAAAAAAAALzAonk375gjZral8ZzenyMnvQwAAIyUACAAAAAAAAC8UKX4cDQ6td8Q8jp/ThGvOnP+TfvqZAAAYMQfXXQBAAAAAAAAPK9avaw35fzXQ5XJI9xGiuIjehoAABgpAUAAAAAAAABYx6RVG783IrZv5zZyxPsWzbvtRXobAAAYCQFAAAAAAAAAWEdK+YgmajVaYUpPZc1f6m0AAGAkBAABAAAAAADgGWecsOwVEekd7Wh7g2WDc7YMMAAAMCICgAAAAAAAAPCM3B8fjTqn88sj39wbzpy/bE+9DgAANEsAEAAAAAAAACJiyZF3TcopPjia2ywKswACAADNEwAEAAAAAACAiHh640ffHxFbNd9CarxGJf5sSfXaTfQ+AADQDAFAAAAAAAAAiIhcpI+2fRsbPjRt5aqeD+p9AACgGUkXAAAAAAAA0O1Om7ts31yJKyIa/wFt/fK5wfIRUcRvnp7y5Kuq1bf3OxMAAEAjzAAIAAAAAAAAlfjkmG07xU5TV210qJMAAAA0/lEGAAAAAAAAutgZJ9y8c454T2taS01VSZHm5shW7wIAABoiAAgAAAAAAEBXqxW1Y2IUfzfLAz6W33jmvBvf7WwAAACNEAAEAAAAAACga506/7otIscH1n0sN9hGbtneFHOdEQAAoBECgAAAAAAAAHStlCpHRsS0kuzNO04//sa9nBUAAKBeAoAAAAAAAAB0pWr1ssmRe/629S2npqtUUvFJZwYAAKiXACAAAAAAAABdadKqTT4YkbcZi20PtmxwTvHeM467dmdnBwAAqIcAIAAAAAAAAF3nwsOXTYgUcwd7PjfYXm7drvWknp4TnSEAAKAeAoAAAAAAAAB0nUc2T38dES8v477liL84c8GNuzpLAADAcAQAAQAAAAAA6CoXHr5sQkp53vOPpDZsZURtVnJRfMqZAgAAhv3woAsAAAAAAADoJo9sHh/JkXYq3Y6tnxn8k9OPv+HNzhYAADAUAUAAAAAAAAC6RrV62eRIMb8dbefWlk9RiaozBgAADEUAEAAAAAAAgK4xec3GR0Skl9RTNo/xvqaI2WfMv/5tzhoAADAYAUAAAAAAAAC6QrV62eSc03EDP5vasMWRt5lyOtmZAwAABiMACAAAAAAAQFeYsGbjj0XEi0u9ky/IDOaIfU8//oZ3O3sAAMBABAABAAAAAAAY96rVmzdLOc1t93ZyO8pX4vSLD724x1kEAAA2/LgAAAAAAAAA49ykVfmEiNiqLQG9NksRu939ip0+5CwCAAADfF4AAAAAAACA8eukE5a9oqeW7oiISRHD/UC2YeSv0R/UUh1tDll+4OK/mzC591VHV3d71BkFAACeZQZAAAAAAAAAxrVKEWfHM+G/jjBw4nCrvlX9n3I2AQCA4T8+AAAAAAAAwDhwyoJlb085/e+6j7V7BsAN6+QGyw9apT9VYrfjTt3jJ84sAAAQYQZAAAAAAAAAxqmLD724J+V07gsfzw22k8tzSL25iMXOLAAA8CwBQAAAAAAAAMalX77yFR+OiF0bq1X6BbTedcb8Gw92dgEAgI74BAMAAAAAAACNOv34Kzeu9Uz5RURsO9Dz7V4GONXR5rDt50EL/2ryk5vtMmfpzqudaQAA6G5mAAQAAAAAAGDcKSpTTopBwn+joa3LDOd4xaqpjx3nLAMAAGYABAAAAAAAYFxZNO/mPXIqromInqHKDf5DWW6wfD3t5wbLD1tldSXVdj920V53OuMAANC9zAAIAAAAAADAuFGtXtabe4oLY5jw39A6Yg6NSTlXvlStZr/3AQBAF/OBAAAAAAAAgHFj4uqNj40cu5Vvz1IbqqS9p6684QhnHQAAupclgAEAAAAAABgXFs27ecdcKX4SEdMiYthVd4f+oSw3WL6e9lu+DHCkyI9XeuL1nzzlzfcaAQAA0H3MAAgAAAAAAMC4kCv5ong2/NeO9ttcvkmbFLX8BWcfAAC6kwAgAAAAAAAAHe/U+cv+X4787kbqDB3Q66SFtNKBZ8y7/v1GAQAAdB9LAAMAAAAAANDRTp1/01Y55TsjYsv1fvyqYwq+si0DnOrbjReUzxERD/Wl/LoFi/Z82IgAAIDuYQZAAAAAAAAAOluKCyJiywEe7zgjWGZ46wk5fdFgAACA7iIACAAAAAAAQMc6df7NH8kRh47W9nKby4/Qe8+cf92HjAoAAOgelgAGAAAAAACgI510wrJXVIp0c0TaeO0ja+N2rVsGODdYvp72c+P7k4crv16Bp4oiTZ97xh4/N0IAAGD8MwMgAAAAAAAAHadavay3UlT+9fnwXzukcrSZGiowrVKJr1Srd0w0SgAAYPwTAAQAAAAAAKDj9PZt+umI2GvYgh24HtbIlxnO06eufvLTRgkAAIx/lgAGAAAAAACgo5y88OaZKecfR0TP+s8MsATw8w8PaugfzDpyGeCIiKKoFO+ae+pelxkxAAAwfgkAAgAAAAAA0DGq1Ts2mrBm9U0RsfPAJQYIAdYxpd7gP5p1bAAwIuK+ntX9bzxm8cxHjBwAABifLAEMAAAAAABAx5i4evVFMWj4rx1SOdpsbjdeUpvU+6Uc2aQgAAAwTgkAAgAAAAAA0BFOWXDzJ3KKP2+4YhfE3/LgB/neM+feMNfoAQCA8cm/9gEAAAAAAKD0Tp1/0945xeURMXHokgMsAfz8w4NKdbRZf/l6tjFqywBHRBQ54qDjT3vzd40kAAAYXwQAAQAAAAAAKLVTFty+TUTfjRHx4vpqDBACHD5vN8QPZ7nB8vW0P6oBwIgUj0RPnnHcyXv+xogCAIDxwxLAAAAAAAAAlFa1ellvEX1fzXWH/9ohdUibQ8ixefSl/zrn6KunGFUAADB+CAACAAAAAABQWhPWbHZGinjbiBsaD+tiDXMMebgCKd5Um9RzoVEFAADjhyWAAQAAAAAAKKWTF9743sjpa/HMb1r1/7A1wBLAzz88qFRHm/WXr2cbo7wM8HNl0hHHnrbHRUYYAAB0PgFAAAAAAAAASueUBTfumiNdFREbPftYYz9sDRACHD4bN8Q2coPl62l/bAKAEbE6p/TO4xftcZWRBgAAnc0SwAAAAAAAAJTKKQuWbVdEujTWCf9FRH3RtrZJHdJmXSalnP/n7PnXvcpoAwCAziYACAAAAAAAQGlUq8um5qh8PUW8rOWNj4e1sYY5hlz/QW5Ry+k7Zx571dZGHQAAdC4BQAAAAAAAAErh4kMv7uldU/m3iHjzeD3G3ObyjUgRL08TJlxarS6bavQBAEBnEgAEAAAAAACgFO7a+ZWLI+KPxnIfyhTQG5XjzfHmjVblf6pWs98NAQCgA7mRBwAAAAAAYMydtODGo3PEkcOVqz9wlxosX3+bUfo2G5UP3Wj1DacYhQAA0HmSLgAAAAAAAGAsnbLg5oNy5P+JiJ56ytf/A1ceuHweSft5BPszWPnc+P4Mewy5mX362LGnvflzRiQAAHQOAUAAAAAAAADGzMkLb9k3cv5eRJ5ab51ODwBuWCc3fsztCQD255zed9zpe/yPkQkAAJ3BEsAAAAAAAACMiVMW3PymnPM3ImJqmeatyG0uX2K9KeWLz5p7w2yjEwAAOoMAIAAAAAAAAKPulAW3vr6I+GFEvKjRuvUH7lKD5etvM0rfZtMmppT/85z517/NKAUAgPITAAQAAAAAAGBUVefd+Moiiu9HxBYRYzCDXhoHnTjMMeQGDzKv/+epRY5vnDXv+j2MVgAAKDcBQAAAAAAAAEZN9fhbX9JbqfwgIrbr5n7ogGWGN4kc3z973g27GbUAAFBeAoAAAAAAAACMimr11q0rvfkHOWLHsu9rBwT02i/FZkXk7y0+/prXGr0AAFBOAoAAAAAAAAC0XbW6bMueNcWPUuTXDF6q/mVr6w/cpQbL199mN0gRW9UqPd8784TrdjKKAQCgfAQAAQAAAAAAaKtTFty+Tc+anh9FxOsHK5O7vpdSG6o01uYQ5+ClqT9ddc7c63cxmgEAoFwEAAEAAAAAAGib6txlLyui/4qI2LVUO9aBk/iN8bLE2xUp/vfsude90agGAIDyEAAEAAAAAACgLU464dadent6LouInbvheMc4oDcats6pctnZx1+7l9ENAADlIAAIAAAAAABAy510wo2vjaK4Mke8vLGa7Ziab22brQ3opS49s/lFuZJ+cOa8695hlAMAwNgTAAQAAAAAAKClqgtu3T0XlR/niO0bqdcFM+gNI7WhSmpDn6aNKhGXnjX3ugOMdgAAGFsCgAAAAAAAALTMyQtv2bcSxf9GxJal39kOnMSvLCHJHDE1UnzjrPnX/4lRDwAAY0cAEAAAAAAAgJb4zMJb3lvk/L2I2LRb+6DLZjGcGDl/9ax51x5u9AMAwNhIugAAAAAAAICROmnBzZ/IEefECyagaPTHqOfL5wbL1yNvWCePZBu5Bfv0wvK58f3Jw5XPI9if4Y99bfm85InJex5drabCqwEAAEaPACAAAAAAAABNu/jQi3t+uvOrFqfIRw70fDM/Rj0TKGuwfD1aHQAcuIGRBQCH36lU32403Z/1HUMeoHz6Wlrd/4FjFs9c6ZUBAACjQwAQAAAAAACAppx57K3TVk4s/i0i3jNUueYCcaMUAKxjU2ULADZ3DKMxC2BERFxb9Pf/0XFn7fOQVwgAALSfACAAAAAAAAANq1bv2Db19V+acp6x9pHBA2bdFgBs/pjr3KEodQAwIuLXPUXlwKPO2OPnXikAANBeFV0AAAAAAABAIz574i27VPr6rk3xbPivHVLb2swN1spOeaNeXusprj5r7vVv1RUAANBeAoAAAAAAAADU7TMLbz0kirgyInZo1zY6K6CXytFmam2bIz4HOTZPKX//rLnXfsKrBgAAOusTCQAAAAAAAOPMxYde3PPTV+98YuR0YkRUnvuRKW/whwF12zLAI1sCuL5jL/kywOs+/i+xunbEMYtnrvRKAgCA1hIABAAAAAAAYEinzr9ui/7KpH/LEfs/+9h6PzLVEQLstgBg88dc5w5F5wQAn3Fz0Rt/etzJe/7GKwoAAFrHEsAAAAAAAAAM6rMn3rJbX2XSDeuG/0ZP+5bX7axlhseF3VJ/3HDW8de+W1cAAEDrCAACAAAAAAAwoM8uuOUvcxFXRsROo73tzgropQ5pc2zPWYrYIlXSd86ed101R7ZSGQAAdOUnBwAAAAAAANrqnKOvnvLElKmLI8URQ5V77oemOpYAXq98nTp9GeCRLQHcZH+WexngdVv+Wl+ufGje6TMe84oDAIDmCQACAAAAAADwnM+eeMsuuYivRMQbhyu73g9N+bn/qa98HbotALhhndz4MXdMADAiIn7bk9MHjjr9zT/2ygMAgOYIAAIAAAAAABA5cjpp4a0fyRGLI2JqPXU2DACu94ehyzfUfo6G96eOIx78GJrZRm7xMde3Qx0eAIwUUUTk8x+fvPFx1eoua7wSAQBgJJ8hAAAAAAAA6DrV6q1bR1/+hxRxUCP12h0AfL7OKM0CmEfafgmWAR7jAGCzx5wjbuit5b/4xJl73eUVCQAA9avoAgAAAAAAgO71mQW3HBB9+ZZoMPwXEQ1GyRovP+rGw9QZabhzkNpwzlIrdnuPWk+65Zy5137CqxIAALrrYwwAAAAAAAANqlaXTY01E86KlP821vnNaEQz1uXn/qe+8nW3P0ozANaxqXbPALhhna5YBviFf79kVaw5Yv5pb/mDVyoAALTqMxAAAAAAAADjwmfn3/qWohJfjIhXt2L51ue0YRngFMO32Xz7rV4GOLf4mOvbofEWAHymuQdzxPGfPH3PL3vFAgBAqz4DAQAAAAAA0LGq1Zs3i750ekT6SDz3O1G5A4DP1xmlWQDzSNsf+SyAqY42hyw/xgHA1hxzROQckfI3e4v00Tln7HWfVzAAALTmMxYAAAAAAAAd5jMLbz0k5/hcpHjJ+s+MbgCw+W10zzLAIw4ADlOl0f6s/xhaPQvgc+09FhGffnzKnkur1VR4NQMAQPOfNwAAAAAAAOgg1eod28aa/qWR4n2Dl2p1CFAAcCTHu2Gdrl0GeP0DSXFFkYrDj10082de2QAA0PznDQAAAAAAAEquWs2V6Lv9wzny6Slis6FLl3sZ4BTDt9lc+80FAIfeRm7xMde3Q10RAFxrZYpUfWzK0+dUq2/v90oHAKDbCQACAAAAAACMM9WFt8/IUTsvIs2MqOcHofEVAGxsG3mIY2i2/RIsA9xhAcBB6+RB9/MXuRJHf3LRXt/2igcAoJsJAAIAAAAAAIwTCxYs225C6q1GpA9HROXZx8sWAGx+G92zDPCIA4DDVGm0P+s/hlbPAjhskPSHkfOco8/Y+6euAAAAdCMBQAAAAAAAgA5Xrd4xsejv/2jK6bMReZMXPt9ocKv+OoOUH3jp1ha03z0BwA3rWAZ4iPJ9OcXneyfHiXOqez3uigAAQDcRAAQAAAAAAOhgn1p46yEp4tyIePlQ5bptGeB2BwCH3kZu8THXt0NdHAB81gORovriX/327w+75LCaqwMAAN1AABAAAAAAAKADnXjibdN7inx6jnhnPeW7LQDY2DbyEMfQbPslWAa4wwKAg9bJjY6jfEMu8nHHnDnz/1wpAAAY7wQAAQAAAAAAOsgJJ9z+2kouPlOJeF9u4LeesgUAm99G9ywDPOIA4DBVGu3P+o+h1bMANhkkzXFVzmn+MWfueYUrBwAA45UAIAAAAAAAQAdYuPDOHXqjf0GO+FBE9LR79rb66wxSfoilW0fWfvcEADesYxngJvv0h0Uqjv/kaTNvdiUBAGC8EQAEAAAAAAAosWr11pfkvjguRzoiIiY9/0xuTbhqPZ2wDHDnBgBH3KcCgCPpzyIivlZU0gmfXLTnL1xZAAAYLwQAAQAAAAAASmjBgtu36Y08N1J8NCImb1iiWwOAQ7fZfPt5iGNodhutXgZ4/AcAB62TWzaO+is5/VNPrf/kj5+9zz2uNAAAdDoBQAAAAAAAgBI54YRbd+rJcVSO9OGImDp4yc4PADa/jVGaBbB0AcAm+zO3rj9HfRw912TLg6RFpPztoqh85pgz9lzmygMAQKcSAAQAAAAAACiBE0/8yRtTrn0yIv155Oitp05qc3CrvjpDlB9i6daRtd+5ywC3OwDY3DF0zTLAA5TPETmuKlKcfszpe1/qSgQAQKcRAAQAAAAAABhDCxfesm8lpbkR6aDU8Cq33boMcOcGAEfcpwKAI+7P9eus1+ZNEfm87X9931cOu+SwmqsTAACdQAAQAAAAAABglB1++LIJ22wz6b2R8/ERMX3d55778UYAcJjyuUXHu+EOl3sZ4PEfABy0Th61cfSzyPmsoi/+7ZjFM1e6YgEAUGYCgAAAAAAAAKPkhBNu3rkSPR/KEX8VEdsMVKbbAoDNb2OUZgEsXQCwyf7MrevPUR9HzzU5ukHSFPFYkfNXeyrxhTmnzbzZFQwAgDISAAQAAAAAAGijI4+8a9KLNln5npzS4RH5nTHM7zONBQDbMXtbCwNr4yEAWMemyhYAbO4YumsZ4CZmVbwxUrpoVdH/73PP2PcJVzYAAMpCABAAAAAAAKAN5s+/7TU9PZW/SpE/FBFbrn20weCWZYCHKN+5AcAR96kA4Ij7c/06DS0nvSpFujRSvmjOaXv/0JUOAICxJgAIAAAAAADQIgsX3v7SlNL7Ior3R6Q9n328yaCRAOCw5XOLjnfDHW7dMsACgCM/3nWbK9U4uj1H/EeR8sXHnDbzl66AAACMBQFAAAAAAACAEahWf75lrbb6T3JOH4yImTHA7y8CgEMfTPOzt43SLIB5pO2P/jLAqb7daLo/R30cPddkaYOkd0aKS3pS5d8+vmjPX7gyAgAwWgQAAQAAAAAAGrQ29Nd3YM750IiYFRG9Q5Vveva2Dg0ADnwMeYT7NFD5zl0GuN0BwOaOobuWAW7jTJJ3RiouiVrPVz5x5l53uWICANBOAoAAAAAAAADDqFZzpVa7fbeiSAdEitlp7Ux/lXrrtzcA2Hhwa8N9GkgnLAPcuQHAEfepAOCo92fj28g5RdyYU3wncnx3u1/fd91hlxxWc0UFAKCVBAABAAAAAAAGUK3+fMu+vtVvj6i8K1I+KCJe/OxzI5oRzzLATe5Pi/oz6uvPwY+hmW0IAI78eNdtrnPG0QvKP5lTXB4Rl0YuvvuJ0/f9rSstAAAjJQAIAAAAAAAQEdXqsqmraxP3qETP/pHjgIi8W0QedJa/UQsaCQAOU2eUZgHMI21/9JcBTvXtxjrl2xsAbM0xR0Tu2ADgC7vlJxHpe5GL769M+Zq5Z+z7hCsxAADNfS4CAAAAAADoMsdXf7b9hL7+6TnFPhGxb4qYERGTNiw5xrO3dWgAcOBjyCPcp4HKd+4ywGULAK6t063LAI9JAHBdtUjx88hxYyXiykjFVR87fZ87U6QcAADQws9RAAAAAAAAHefYY2+dNmFK7+srRd47p7R3RJ4ZES9Zt0xpl2/N9bbfeE5ofCwD3D0BwBGNo7qPoVsDgPWPpZaEAHNd7T+Uc1yTKunqXNSuiVW9t85ZutfjrugAAIz0cwUAAAAAAEApVauX9a6KLV7WU1R2yZGnR06vi4hdIqdXR+Seoeq2OwC4fh3LALeiT9s9e9vgxzB240gAMIYMAJZxHKXGhsRw7T8Qqbgj5XRnRLojpeLO3imTbzqiOuNp7wAAAN1JABAAAAAAAOgoRx5516SNtujfIffnl6VK7BA5vyxyvDoidokUr47IEyIan0FvvTrrKUHQSABwmDqjNAtgHmn75V8GuN0BwNYcc0Tkrg0ADtSftYj4ZUTcHil+ETndk3L8NlK6Z3VfvvuYxTNXeucAABi/BAABAAAAAIBSmDv3V5umKU9tEbXKFjnF5ili81ykLVMlXhpFvCwqsUPKsUNEbDd0Sy+YbWzEAcDBGynXMsCdHwBsfhvdswxwuwOAa+t0wiyAAoAN1HkoIn4bKd+TIn6bc7o7RX44pXgk5crDRSUembQ6Hvnw4pmPeCcCAOg8AoAAAAAAAEBLHXvsrdN6e9PEYvLEKZVabZuISqVIaZNK1LaMiChy2qqSY+Ncie1SzjtHxKsiYqeI6Bmu7aaCRl0TAGw8uFXfMbQ6BCgAOJLjHdE4qvsYOnsZ4FFfVrmOY298JsZ2jKM83CynOXK6JyLflSJ+ESnujZyfTjk/mFMlR44/RI4/FJWcJ6XaQ32V3qcmFan/Q2fs+4R3PgCAsSMACAAAAAAAjLlq9bLeNWu23KK/EpunXNkiemKLSsTmuchbp0rlpTnnHSNipxSxY0RMHbq18RMAXK+OZYCHKT9Ks7flzhtH3RYA7IhxNMzmWvy6XBUR90QUd6ec7o6U7o3IK3KRH4meysMR+eEJPcUjL5q4xcOHVXdZ4x0JAKCzCAACAAAAAAAd5djqrVtP6uvdMVdix8hph0jFjjnSqyNi14jYasCgUd0z6A2mBEEjAcCW9Gdj28hDHEOz7ZdgGeAxDgC25pjDMsDrl/9DjrgtRfw8It+dcuXunPPdEybW7j7i1Lc+4J0DAGD8EgAEAAAAAADGjXnzbntR7unZpScV0yOl1+WIXVLEbpGHmzXweZ29DHDnBwCb30b3LAM84gBgXcfQCbMAdmUAsD8ifhuR74yIGyOnO1KluPNjp+9zZ4rU+BrgAAB0PAFAAAAAAABgXKtWL+vt799y5yJVdstF3ruS4i050usjcs9A5Ts7ANh4cKu+Y2h1CFAAcCTHO6JxVPcxdPYywKO+rHIdx95oEDOtrfTTyOmqFHFVkfpveWTK5j+tWqYXAIARfp4AAAAAAADoaNXqHRv19cWbcsr7pIh9c8S+EbFZRPkCgOvVsQzwMOVbPXtbcwHAMo6jbgsAlmscDfO6fH5z/RFxa0S6KuV85cRi4mVHnD3j967YAAC07r4UAAAAAABgHKpWL+tdVdtqt0qOfVPErIh4a0RMXr9UCYJGAoAt6c/GtpGHOIZm2y/BMsBjHABszTFHpy8D3B8prko5vhtFuiKv+sOyOUsPXO2KDABA6+/FAQAAAAAAusjRR189Zdq0zfbJKR8SOf9RROyw9plOWAa48wOAzW+je5YBHnEAsK5j6IRZADsuAPi7iLg8Ir5ZW736G0ef+/ZHXXEBABgJAUAAAAAAAIBhzKve9vLe/nRIjjg41s4OOHHd58sVAOyA2dvy8AcjANjGcVT3MXT2MsCjvqzywIqIuDnn+GFK6Zt/mLLn1dVqKlxVAQBoFQFAAAAAAACABsydu2zTnokT35uK9GeR4p0R0TuqQSPLAA9TvtWztzUXABx6GyUJrAkAtmscFRHpyhT5P6LS959zFr31d66cAAC0iwAgAAAAAABAk6rVOzZfU8sHV3L+QES8IyIq9dZtOmgkANiS/mxsG3mIY2i2/VYvAzz+A4CD1inPMsB3RopLiuj98tGn7fFrV0gAAEaDACAAAAAAAEALVKu3vqS/v/KnEXFoRMyMYX6HEQAc/mBKvQxw6QKATfZnbl1/1n8MrZ4FcEwDgD+NFBfnovbvR52x789dCQEAGG0CgAAAAAAAAC02f/5tr+npicMj0v+LiM0HKtP07G115rHaPXtb/XUGKZ+HP5hSBwDr2FS7A4AjGkd1H0N3LQNcZ38+GZG+kot80dFn7n2TKx4AAGNJABAAAAAAAKBNjjzyrkmbbLLyPSmlwyPiXes+N6LglmWAhymfW3S867fXaHhu6G2MamBt8PYFABsZRz+LFP80Mfov+rvT3vIHVzgAAMpAABAAAAAAAGAUnHDC7a9dOyNgPjwiXhRhGeDhDqbdAcDGttEJywCP/wDgoHXatwzw6oj0jZzyRUeftvcPXckAACgbAUAAAAAAAIBRdPzxP9t44sS+v4yIv0sRr1/7qABg8/s0UPluDQA22Z+5df1Z/zG0ehbAlgcAf50iPt/X3/tPx5494/euXAAAlJUAIAAAAAAAwBhZuPCOfSupmBsRB0XkYX+3aSwA2I7Z21ocWMvDH0ypA4B1bKrdAcAN61gGeIR9emOKtOTRKU//W7X69n5XKQAAyk4AEAAAAAAAYIxVF9y+ay3lj0WKD0bE5MHKNTr7XPcuA1yeAODQ28gtPOb6d0gAcANFTvnbKeI8y/wCANBpBAABAAAAAABKYsGC27fprRQfzZGOjIjNByrTbcsAN99+btHxbrjDrVsGWABw5Me7bpONjqO0OlK+uJaKU49dNPNnrkAAAHQiAUAAAAAAAICSOf74n208acLqD0VKx0bEi9d9rtsCgM1vY5RmAcwjbb/Fyyo325+5df056uPouSbrDgA+nCKf21upfP7ji/Z82BUHAIBOJgAIAAAAAABQUtXqHRNrtdpfRY5PR8T2EY0GANsxe1sLA2vjIQBYx6bKFgBs7hjGxTLAT0ROn1udehbNO33GY64wAACMBwKAAAAAAAAAJXfkkXdN2myzlf8vclRTxHbPPWEZ4CHKd24AcMR9KgD4Qk+mnC6INRNPO/rc3R51RQEAYDwRAAQAAAAAAOgQxx5767TJk+PDlUjzI2IbAcDhyucWHe+GO9y6ZYAFAEd+vOs2t95+PpVyOj/31c44ZvHMR1xBAAAYjwQAAQAAAAAAOszxx/9s48kTV8+JnI6NiM2GLt19AcDn64zSLIB5pO2P/jLAqb7daLo/R30cPddkjoh4Okc+P/dPOPPYs2f83hUDAIDxTAAQAAAAAACgQ1Wrd2xe9NeOjxxHR8TEwcqlkgW31qtTRwCwmW10+jLA7Q4ANncMpZ8FMKcc/xmpOP7o0/a+2xUCAIBuIAAIAAAAAADQ4U444dZXpxxnpUgHD/R8o8GttXWG0wnLAHduAHDEfdplAcAccUMlVY4+etEeV7kiAADQTQQAAQAAAAAAxonqCbe9q8ixOCJev/4z3bcMcIrh22y+/VYvAywAOILjvS/nWHjM6W/+lxQpuwoAANBtKroAAAAAAABgfKievOsPKxMe3i1HHBERv+vmvshtLt9aqUPaLNU5ezpHnD5p8tOv/eTpe35Z+A8AgG5lBkAAAAAAAIBxqFq9Y/Pc139KjnR4RK6UbQbA9erUMQNgM9vo9GWAR37OmujPzpgF8N/7i75j556x73KvdAAAup0AIAAAAAAAwDhWXXj7zCLyRSnyLo3WHf1lgAUAR3K8G9YZb8sAp+Up8sePOW3P//bKBgCAtSwBDAAAAAAAMI5VT3nD1St+t2a3nNO8FLG63HubOqrNdi8zbE3b5xQp0kX9xZrXCP8BAED7P/EAAAAAAABQQtV5d7wy9/RfGBHvqKf86M8AuGGbI2n/+TqjNAtgHmn7JVgGeIxnAHxhnRRxWy0Vhx+3aO/rvIIBAKA1n5MAAAAAAADoWDlVF9z2gUhxTo7YYqiS7Q4ArlenjgBgM9votmWARxwArOsYRmUZ4JURccYTkzc6tVrdZY3XLQAAtOYzEgAAAAAAAOPAggXLtpuYJvx9jpg9VLnRnwVQAHAkx7thndz4MY/9LIDXVKL2wWNOm/lLr1QAAGjVZxgAAAAAAADGmZyqC2//SEQ+J0dMG6hEpy8DnGL4Nptvv9XLAOcWH3N9O1SiAGB/ijh7o0d6Tjziohl9Xp8AANDqzzAAAAAAAACMO9X5t70mV/JXImL3Fz7X6QHA5+uM0iyAeaTtl2AZ4LEJAN4dOX/g2NP3utIrEgAA6lfRBQAAAAAAAN2tumjXn6UJj+yZUnwmRdRGc9u5zeVH3XiYfiMNdw5Si89Z/pcpkzd6g/AfAAB050cQAAAAAAAAWuTE+bftXankf42Ilz/72OjPAtjgjHV1tT9KMwDWsal2zwC4YZ2SLgOc49Ec6aPHnb7Hf3jlAQBAc8wACAAAAAAAwHNOWrTrNWlCMT1y/OfY7UXqkDabM+5mPWzO//b0VF4n/AcAAOPlkw4AAAAAAAClUl142+ER+fyImDB0yVbPALhhm61pf5RmAcwjbT+38Jjr26lRnAEwp4ilGz1SOfaIi2b0eZUBAMDICAACAAAAAAAwqBPn3/qWnkr6akTebvBSoxsAbH4b3bMM8IgDgHUdQ8MhwCcipb85dtEe/+mVBQAArWEJYAAAAAAAAAZ10qI3XhET+mdEiqsGL7V+fGxES9yavqIlSrjM8M8iFXsJ/wEAQGsJAAIAAAAAADCkanX35dH7yH6R8umjt9XUIW02p4QBvXaeyv+I/kkzjl20151eTQAAMF4/5QAAAAAAAFB6n1l465/niC9GxLT1nxndZYCbb3+UlgHOI22/BMsAj3wJ4P6IfMJxp+15ulcOAAC0hwAgAAAAAAAADfnsibfsVtTSNyPF9s8/OroBwOa3MUoBwDo2VfoA4DBVhuzPHI9Gyn963Gl7/q9XDAAAtI8lgAEAAAAAAGjIp056080xsbZHRNz0/KPrx8dGtMStKSxaIo9V+Ry/KXJtpvAfAAC0nwAgAAAAAAAADatWd18eE3rfFhHfbN9WJAHXlTtgH1OK6yf0FHvPPWPvnzpjAADQfgKAAAAAAAAANKVa3eXJ1/3i538cOV/QOXud2tZma2fc68jw438/Oany9qNO3etBrw4AAOjcTzgAAAAAAAB0mc+ccOsncs7nxDoTUDT6Q9R65fMGfxi+Tt3byM3t05DyEMfQbPu5Rcdb/06l+nZjoP5c8tTkPY6uVlPh1QAAAKNHABAAAAAAAICW+MzCW96bI/41IqY++9jIQ4AdHACsY1NlCwA2cQy1yPGJ40/f4wKvAAAAGH0CgAAAAAAAALTMZ+ff+paikr8ZEZtEtH8WwG4LAI64T1sbAFyTU/zF3EV7/KeRDwAAY6OiCwAAAAAAAGiVTy164xWVSuUdEfH78u5lalubucFaedT3s2VW5xSHCv8BAMDYEgAEAAAAAACgpT510q43RlG8LXIsb/e2csnKl19qRZWnUsTBcxft8Q2jHQAAxpYAIAAAAAAAAC1XXbT7nT2V9I4ccW8j9dYL3KVx0BEdeAx56CcfTal493Gn7fFDoxwAAMaeACAAAAAAAABtceLJb/x5bxRviYhfjqylpDPXMXazGOaHoie//bhFe17jLAAAQDkIAAIAAAAAANA2J5yy+z15woS3RMTt5dqz1LY2WxvQK034cUWqpHcef+qbbzGqAQCgPAQAAQAAAAAAaKtqdZcVeUJ6V0TcWYb9GbsZ9Mqi0VBhuj96077HnbrHT4xmAADo7Lt7AAAAAAAAaMopC27fpj/V/i8iXj1c2ed+xMob/GHo8nVqdK6++tvPA5fPI2k/t+h4G9ih5+v8rhK1/Y5dtNedRjAAAJSPGQABAAAAAAAYFQtPfcODPdHz7oi4p+5KaYM/EKM2i+FjlVyZLfwHAADlJQAIAAAAAADAqDnhlDfcW0n53RHxwNjvTWpbm+NgmeGniiIdfOxp0280agEAoLwEAAEAAAAAABhVJ568212pUjkgIj08VvvQWQG9NNptrixyHDzv9BlXGq0AAFBuAoAAAAAAAACMuk+dtOvtORfviohHB3p+HMygt77OWcF4TU7p0Pmn7XG5UQoAAOUnAAgAAAAAAMCYqJ662y2pSO+JiKeHLJg2+APRlpBkfyUXfzbv1Bnf0rsAANAZBAABAAAAAAAYM59a9MYrcor3R0RtbPagfcvrdtoshjnFUcedtud/G5UAANA5BAABAAAAAAAYU9WT3/TNyDF3tLfbWQG91NY2U8QZ807d4wKjEQAAOosAIAAAAAAAAGPu06e+6ewccf66j3XaDHrDKu8Kxv/59KQZ841CAADoPAKAAAAAAAAAlMLrfvGLo1LO3xjwyaR/WiFv2K03rJyU/l+1mgq9AwAAncdHJQAAAAAAAEqjWr1jo9TXd0VEvCniBT9m5Q3+sIFGf/xKMXybzbefY/BjaGYbucXHHL+u9E3Y+7iz3viQkQcAAJ3JDIAAAAAAAACURrW6y5N5QnFQRNw7GtvrrGWGWzq3x8PRkw8U/gMAgM4mAAgAAAAAAECpVKu7L0+V4pCIeLKzAnp1KMf6XGtyEX889+Q9fm60AQBAZxMABAAAAAAAoHQ+ddLut0bEh9d7MOmXVsiR58w7fcaVegIAADqfACAAAAAAAACl9OlT3vTVHOncDZ9pRxKwPG22c9bDHOlf5i3a40KjCwAAxgcBQAAAAAAAAMprwiPH5cg/LtMuje2yxCMKKt4yadXqIwwqAAAYP0yUDgAAAAAAQKmdsuD2bWqpdmNEvPj5NN3QsbpGfwRLdbTZXPt54PJ5JO3nZvbnkZ6e2ozjTt7zN0YUAACMH2YABAAAAAAAoNQWnvqGB6MoDo2INaa3aEqRc/oL4T8AABh/BAABAAAAAAAovU8t2v2aiDz3+UfakQQsT7qwxcsML5x/2vTvGkUAADD++DdSAAAAAAAAdIzPnnDLv0cRf7b2b4PH3ppbAnjoNpvfxgDLAOeRtl/3MsBfn7to+p+kSNnoAQCA8ccMgAAAAAAAAHSMonfCRyLil8OVa/EMeq03OtN03D9x0poPCf8BAMD4JQAIAAAAAABAx6hWd3kycv6riKjpjSEVOacPHlOd+YiuAACA8UsAEAAAAAAAgI7yqUW7XZUjndaeafRSaY5zhLMYnjH/tOn/a7QAAMD4JgAIAAAAAABAx8kTH6lGxHVjug91l0wNlq+/zUHctGrSlE8bJQAAMP4lXQAAAAAAAEAnOumE21+Ri/5bImKjwco0+mNYo1G9+tvPG5bPI20/D1T+qdSTp889eY+fGyEAADD+mQEQAAAAAACAjnTiyW/4Vcrp2I49gLZM1ZGOFv4DAIDuYQZAAAAAAAAAOtpnF9z8PxHxnoGea24GwIh6ZwEc0QyAdW4mDdPmOuW+Pm/RjPcaEQAA0D3MAAgAAAAAAEBHKyZWPhIRD5d7LxtdXLj+Np/xUO+a+IjRAAAA3UUAEAAAAAAAgI5Wrb7xoZzTcQM912jgrt3l2ybno449e8bvjQYAAOgulgAGAAAAAACg4+XI6aT5t3w/Urzrhc81twxwbrB8fXs5YPk8kvZzRE7fmX/a9AONAgAA6D5mAAQAAAAAAKDjpUi5yMVHI2Jllx36E7We2hFGAAAAdCcBQAAAAAAAAMaF6mnTf5kiTmpNa+1YSKvRuQVj+PI55p1wypvvdfYBAKA7CQACAAAAAAAwbtQmPnpmpLh53cdaGrhrQfmWyXHt6snTv+CsAwBA9xIABAAAAAAAYNyoVt/eH7U4IiJqHbPTzU02uDqn9KFqNRXOOgAAdC8BQAAAAAAAAMaVT5222w2R0wXj+iBzPmXBot3vdLYBAKC7CQACAAAAAAAw7kyqTT4hUloxslZSG/ZsbZsjWWY4R/xq2lObnuEsAwAAAoAAAAAAAACMO3PPeM0TqYhqs/Vzm8uP0FFzlu682lkGAAAEAAEAAAAAABiXXv3LX3wpRdwWMeoBvcbVP9ngDxcsmv5NZxcAAIgQAAQAAAAAAGCcOuySw2pFpKPG0SH1F6k42pkFAACeJQAIAAAAAADAuPXpU990WUR8o/kWUhv2am2bDc9KmGPpwlP3+ImzCgAAPEsAEAAAAAAAgHEtVWrHRMTqRuvlNpdv8CgeWT159cnOJgAAsC4BQAAAAAAAAMa1E0+e8avI+YJc9h0dYrLBlPP8anXmI84mAACwLgFAAAAAAAAAxr1iUjopIn7fobt/6yt+9au/dxYBAIAXEgAEAAAAAABg3KtWd3s0cpzeXO3Uhj1a22Y9sxLmFHMPu+SwmrMIAAC8kAAgAAAAAAAAXaGY9Oj5EbG8kTqNLhvc+mWG01ULT53+PWcPAAAYiAAgAAAAAAAAXaFaffuqnOLMUu/kCyYbTLl2gjMHAAAMRgAQAAAAAACArlFMePQLEXFfh+zud+eftsflzhoAADAYAUAAAAAAAAC6RrX69lURcVrjNdNo72ouKsWnnTEAAGAoAoAAAAAAAAB0ldrEiV9MEXe3q/1cd8k0VPn/PuGUPa53tgAAgKEIAAIAAAAAANBVqtVd1uSc6p4FMI/2DqYocorPOFMAAMBwBAABAAAAAADoOls/3P8PKeLXpdy5FF9ZeOr025wlAABgOAKAAAAAAAAAdJ0jLprRl3M6o7FaaTR2rYii52RnCAAAqEevLgDK5NDqHRMf3WLjLStpwot6a8WmOdImuZI3jSJtGim/KCJtknPeNCJNqqTYNIroiRSb5IgJEbFRREyMiGnrNPmiQa59xTP/xQu+sHns+cdjdUQ8nSOvrkQ8HZFWR4qnI6fVOeLpSspPRMTjEfnxIiqPR+THK1F5tFYUj0UUj0+M3kcnbb/17y85LNWcWQAAAACA8pm26ukvPzVlykkRsVWr285Rb1wwRUR+rnyO+O+Fi970C2cHAACo9xMFQFtNvzBP2KJ/+bYT+uOlRapsn1J+cc6xdUTaNiK2zJG3TBFbRsS2EbHJkI3lsb0cNnPRzBEPp4jfR06/j1T8PkV6OEd+KHI8lFLlgVoU96XU88DKjZ++//K/3mmVEQMAAAAAMHpOWnDzpyOiWk/Ztd8R1/9Fdf3fKefnyqei8ub5p+12gzMDAAC09nMHwCD2u+ChjSb3rX55JVV2Kirp5SnSTpFjh4i8fUS8OCK2iVYtOd6BAcAGPRIRyyPivhSxvIi4O0W+u4j4TW+t9ptvHv2S5ZFSNuoAAAAAAFrj1Pk3bVVL6Z6ImDJc2VEIAF624NTp73BWAACA1n/uALra/meumJamFK9ORX51JdLrckqvjMg7RY6XRxuWRhjU+A8ADmd1RNwTke6OHL/Jke+qVOJn/f09P1/9+FZ3X15N/UYrAAAAAEBjTlpw0xci0hHDlXv+O+L6vqxuNABYKWL2/NOmf9cZAQAA6iUACKznjxf/ZrOVPZPeUIn0+kjx2ijyayLFqyPiZaXYwTEOAJb8wrkmIn4dKf0scv5FyukXtci3FX3pzu8ft+1TRjcAAAAAwMBOnX/Lq2op/zSGWc2m0QDg+nWGllO+deEpu++WwiowRJz1yWVb9kxcvXOl1vPKVMnb54gpkWNK5LxZpDQ1RZoUEStzLlblSH9IEStTJVYVOT+QIn45sZZ/+dGz9nlITwIA3eKyarV3k3sf27HWG69MueeVKRXTipw3q6SYknNMiUgviohIKR4tcqxMOa9MKR7NkVZFyr+JVPvVk6s2/+Xb/6m6qtOOXQAQulS1mivXb3n/K4vc88ZKzrvmSLtG5F0jYsfS77xZABtVpBy/zhG35YifRI7bU1G7bdpLX/yrSw5LNa8GAAAAAICIzy64+esp4o+GK9e+ZYCLv1h46ox/cya6z5LjrnpFrSe9LSK9NeV4XUTaOSJv1vgYWjs21yn/RET8MkX6ec75qpTi/x6esvcd1Woq9DoA0MnuOvLISX9YM3HPKGK/lOLNOeJVsTbvMqH+e/Y80L17joj7IudfRSVuTUX6v5wqV8y46Ozfl7k/BAChSxxwwb2vTLXKHhFpRiVijxyxe0RM68iDEQBsVZ89nSNujRzLKpW4sb8WyzZ5ybY/EwoEAAAAALrRZ+ff+paUih8PV65NAcC7+yY+tnO1+vZ+Z2L8O23usk0npb73ppzeGZH3i4iXtGAMPSMPXmftUw9HjitTxGU5Vb4254y97nNGAIBOcO2Hj921pxLvzTn2ixR7RcTkwe7L65u5Ow9z35XX/cMdOeL/IufvT330Rd/d5ZLqmjL1jQAgjEPvPP++LSYWaWaktGfk2CMi9oiIF42bAxQAbGefPZUibs4535gjbqhEzzXfOnqbX3tVAQAAAADd4KQFN18XEW8eqkybAoBzFp66+1JnYPyqVi/r3XTl1AMi5w9EivekiCnRwFgawSyA6z78QkXkuDwi/UusSv81Z+lejztTAECZLDv8qO2K6Pn/UqQP5ohdB7v3ae6+venw4MOR8leLIn9ljy8uuSa1McXS4s8cQJnNXvLgKyKKfSLyvhGxT0S8dly/vsc4ANixF8/m++2BiLgmcr6qEj3XTHns9zdeUt1ljVceAAAAADDefHbBTR9Mkf55qDL1zSYyWJ0BPdVTK1487/QZjzkD48/S46/cvj/1Hh0RH4yIrZsdRy0JAA6xuRSxMnL8dyXymR87c59bnDkAYCxd95G5B0SldnTk9K4UuWe4e5/B75+aWga4jvu0/OzTv8opX7S6f/Ln9/2HM54Yq/4SAIQOdNDi5a/NlfSOnPJ+sTbwt13XdYJZAMeyz1ZFpBtz5CtTypc/3dt75eUf2/pJr0wAAAAAoNOdc/TVU56aMuW+iNh8qHKtnAUwp/SPJ5yy29/o/fFl8bxrdoxcOT5F/uscMXnwMVGaAODzQzLHNyOnUz5+1t7XOZMAwGjJEem6I459T8ppYaxd6bLOe++xCAA+8/zzRR6JiPN6+tKS3f7p3EdHu+8EAKEDHHj+8h0i53dEkd6RU7wzujHwV+cH1NG6LCZ9tq6+iHxDTpXLKkW6vDK1dvWlR2z/tFcuAAAAANCJTlpw8zkRcfRQZVoZAEw5Zi5YtPs1en58WBv8S5+OiL+IiAn1jYk8ojG0oTx4ndzANlJ8P9XSpwQBAYB2u+7w4w5NESfmiDc0fu/d9FK+MXQAsI66eYN6j0fOS/um5DP2Wrr08dHqPwFAKKH3nP67jfum9r0zImZHjndGxCv0Sv0fUEfjsigAOKQ1keK6HPGDnlp8b8bj2y6rVlNh0AIAAAAAneCkE259dRTFT2OIr4JbFwDMP1l46vQ36PXOd+HhyyY89aL+T6aIEyNiamPjYhRnAcwNt1/knC+cVJk0/wjLVAMALXbtEcftHLnyuRT5XUPdqKQmAoD13bePMDyYB72fuj9yMWf6l5b+12j0owAglMRBix98eVGpvSsiHxIpvTsiJumVpq7fo3ZZFAKse5MPp4j/TSn/sEjFt78z5yX3GcAAAAAAQJmdNP+mH0VK7xjs+VYFt3KKT5xwyu5L9HhnO2vutfumnD9fSen1jdQr8TLAA1mRc8ydc+bMLzvjAMBILTv88Am1tNkxkaMaEZOHuydKTSzl+/z9TbuWAR4yAPhs3W+movbx3f/+gnva2Z8CgDBG9vvH30ye9MTkd/ZU8iG5iNkR8TK90tDn1jG/NAoANrsH6dYc+XuRi0v3fGz7a8wOCAAAAACUzckLbz4057h4qDItmAVwVd/ESS+uVnd5RI93pjOPvXVapbLq3JTyhyIiNfq7QYcFAJ+t+M3cU/ubOYve+jsjAABoxnVHHLt35Mo/R8TOdd2kxEhn8mtXAPCZ5/Ng91PPPfFkpHzs9IuWXtiuPhUAhFG0/5krpvVMqr0jRzo0pfijiNikwe8HqO/aPyqXRgHAluzOwynHt1OKS3tW9373G3O3esLABgAAAADG2oWHL5vw0JY9d0fE9oOVGXkAMP3rwlN3+4De7kznHn/Dq4tUuyQi3jD4OW5kTOQmxtBQGg8ADr+N5yrelyMfOueMfa81EgCARlx7xPGHpxxLI2JiIzcpbV/Kt6l6zzw/fADwWV/JadXhMy666OlW96sAILTZu5f+dvveNOGPIuc/joi3R8SERj9s0fgH1NG4NAoAttzKHPGDSqRv9PXFpd8/btuHDHIAAAAAYKx8duHNp6QcCwZ7fqQBwJzibSecsvuP9XTnOXvutX+ZIr4QEdOGOseNjYlRnAUwj6T95yqvzimOnHP6Pl80IgCA4dz8V0dttnripH+MyH9c5z84GOA+JTdZb7h7rRGGB4dfBnjdv92Saz1/usc/LP51K/tXABDaYP/Pr9i60p/flyK/PyL2jYhK/Z+XaOBza5uM4wBg54y1WkT8X6R8Sf+ayn8JAwIAAAAAo6067+Ydeyrx6xjk6+ARLt9614JTd3t1iuTXgQ6y5Mi7JvVPfXhpRHykzvPcwLjoqGWAn1OJ9Pe1lY9+bM7SA1cbIQDAQK7+23m7VYr8nxHx8iHvT4a5J0pNLOX7/P1Nu5YBbiwA+Mzzj+RK/MX0C5d8t1V9LAAILXLQ5+55UdE/8ZBIxaER6YAYbKa/xq9hjEmfmQWwRIqIdE2kuCR6K1/99se2XmHwAwAAAACj4aQFN18ZEfsM9nyzswDmFJ894ZTdP62HO8eZx946rad31X9FxP6R87DnuNEx0akBwGdeA99d01f5k2MWz1xppAAA67r28OPfHpG+HhGbPH//MBYz+bUrAPjM8/UvA/ysWsr5b3b/0tIvt6KfBQBhBA49594pT/RW/riS0l/kiP2j0dBffdcwxqTfBABLqhYpXxaR/i2niV/7zpwtHvciAAAAAADa5aQFN38sIs4f7PlmA4C1nmLXT50043Y93BmWzL9pq/7o+3bkmPH8KR9uqbjGxkTUOZbaHQAcfhuD/Die0+Vp2upDPlZ9+5NGDAAQEXHtEce/L+X0rzli0vr3DiVdyrepes8833gAMCKiFrn4yPQvnf+PI+1rAUBowkHnLZ+ee+KDOcdfRMQWLWtYCLBEfSYA2AFWRcQPU8SXV0zZ9us3HpH6vCAAAAAAgFY6df5NW9VSWh4RvQM932QA8GcLT939tXq3M5w3d9nLaqn2/Yh49XMPjmEAsPFtDBICzCNpPw9WftmavnTAMYtnPmLkAEB3u+Yj8/4qpfzFge+j27UM8BiGB/NQ91JD1s058tEzvnj+eSPpbwFAqNPsJb99RUTPB1OKD+RIO7VlIwKAJeqzcRwAHJ9j7aGI/B9FpH/97lHb3eCFAQAAAAC0ykkLb/5e5Nh/oOeaW741f2bhqdOrerb8zp5/3atSjh9FxEvWeyIPfc67cxng5/52Y6VSe/ffnfaWPxhBANCdrjli3tyU82lN3Z/EcPdZjS/lu859eMN1mwkAbnh/NGzwMEfKn5x+0fmLm+1zAUAYwn7/+JvJk5+c9L4U+SMR8ZbnXzNteukIAJasz8wC2KF+miP+Pirx5e/M2e53XiQAAAAAwEh8dsHNf5UiBl2Wq9FZAIueyus/ddKb7tCz5XbOwqtfnGs9V0XEDgPPoCcAOET5K9f0pf2PWTxzpZEEAN3lmsPnfjRF+txw9zVjM5NfuwKAzzzf1DLA+fk/5PyhZpcDFgCEAcw69/5Xp0r8dUR8KFJsOWovHQHAkvWbAGCHWxMR308RX566/bb/dclhqebFAgAAAAA0qlq9dpOeNZNWRMSUgZ5vLACYf3LCqdPfoFfL7bS5yzadkGr/FxFvfP4cv/BUDn7eOz0AOPw2cj3lv/n7qWveW62+vd+IAoDucN3h8/84R/7PiOgZ7majtEv5Nn2f1mwAcL3na5HjsOlfWvpfjfa9ACA8Y/aSuyblNOU9lUiH54h3Dv36EAAsFQFAY234s3R/jvyvOccXvnv0dnd70QAAAAAAjfjsgpv/K0W8d6DnGgkApohPLTx195P0aHmdc/TVU/Kknu9HxL7rn+MXaEsAsKGx1IA8xDE0035dAcBIOf71786c+cEUyS9gADDOXXv4grenKL6TIybVd1/TrmWAxzA8OPIAYKSIlTnHAdO/tPSKRvq/YgjS7Q48f/kOs86//4ycpj6QIl2cI941/OemNn1OEclltHTdWMsvThFzKyl+eeDi5V8/6NzlB1Sr2XsgAAAAAFCn9B/DPF9fK7m4RF+WV7WaK8Wknq/GOuG/ZuQ2l2/dsG5vxZziLz93/NUCrwAwzl374QW7RhRfXz/813E3OC2Vm9ynHDElpfifZYd//DWdd9QwBmYtvXe/iHRkRPqjeG760UZeFGYBLI229plZAMfxwLkrcnyhlmv/9L1jXvqIFxIAAAAAMJhqddnUnjU9v4uIqQM9X9csgDnuOGHR7q/Xm+V11tzrFqQUpwx+jl94ToebYaZ+ZVsGONXRZp3lcyXFIX93+j7fMsIAYPy58m+O37i3t7IsIl5V943Gc/cPzc7kV/+Meg3fs49kGeA81P1R/ceaIiKn+Mnqab1vnrl48cp6zoPZj+gqs5fcNWn2kvs+OGvp/bdEVC6LSH8S64T/6FCizDQ3cHaOlM7uqUxYfuC5D148e/GD++gTAAAAAGAg1eqMp3PEZSNqpJK/oyfL6+zjr90rpag2Vmv8/kDRwlkMU5Hjy+d/8qodjDIAGH8qvZULYsDwXzvvldIY1W1X0xtWTDleP+nJ/vPqPg+GIt3gkAuXbzlr6f3VHFPvyyn9c0S8Ua8Aa+VJEfnQlPKVB5674poDz3vgsP2quVe/AAAAAADrSfHtkVTPKX1PJ5bT+fOv2yJV0iURMaEMA62u8dRgm2O8KNDmqSf+pVq9zHfvADCOXP2RBX+TIj7Q7H3GcPMDtuY+aOT1Gr1Pa+Fd4Udu+vCRf15PWQFAxrWDPvfgy2ctuf/8vjX5noj4dKTYsnWt57a9gqFE3yF0m70ip69O3ezBuw5c/OAxs5c8vIkuAQAAAAAiIlKqDDOD35Bfuj616WMbX6EXy2l1jn/KES9pZZu5zeVbN7BHp2KOeMuWKyd+2mgDgPHh2iPmvy6lvLScwYPW7lNrAoepqXo5xYU3fujvXjlcHQFAxqUDL7jvTbOW3PflWq3/55HiYxExtfQfsCipbNx0px0j5bNT0XffgeeuOG/W4gd21CUAAAAA0N1OPPmNv4mInw703LDfEad02ZylO6/Wi+Vz1rzr/jwiDh6u3IDn2D+0b0yOeZ879tpddQQAdPpbeqSc43PRQBZnkJvkEh5duZYXThEbp9TzheHKCQAyrsxeet87Zi29/0dFkW6OlD4QEaYS7xY+ZNMeG0fEnEpKdx147or/OHDxQ2/SJQAAAADQzVJTywDnnL+v78rnguplG6WIM0c4JnTks+N8+CK9RSrOy5F1GgB0sOs+Mv8vI+JtY3uvVK6g3sibTkM99c6bPvLxPx2qtgAg48KsC5bvO2vp/T/KkX4UEe/QI0Bjhv1aojci3h+puPnAc1dcOeu8Fe/UZwAAAADQfYoovtNUxUr6rt4rn1Urp54YES8u356ltrRZimWJU97vgrlXv9/oA4DOdOXfHL9xTnFaq+4bcpP3RO3Z3ljdp9W12cW3fuDYaYN+3DA06WQHLLn/XQcsXX5tFPmKGJPgX27XCxc69zuE8W+fShE/PHDxiitnn7PikMj+pSIAAAAAdIs8cdIVEfHE4CUG/LrwNyeevNtdeq9czjju2p0jxSdKNb7aXL6xYdvGijkvXnLktZsYhQDQeXp6K5+JiO1bdDPRRq3dp9YEDlPz28vx0trklfMGKy8ASAd+us5p9pL73jdr6f23pBQ/SJH3HOsPWGDcdKV9UopvHHjug9fPXvzgHwsCAgAAAMD4V63usiZH/LCxWvk7eq58enrSmRExqaEzOdCDqcHyRETaNk3pO0Y/AEBnue7DJ+wUkT7e4vuCMt6rlHSf0rE3/c3Htx/oWQFAOsr+59938AHnL78pp3RJRLxRjzA612Af0RnSjBT5v2ef+9CyA89dcbDuAAAAAIDxLeX0vYEeH+yb5JwrP9Br5bL4+GtemyPe49v/1qu3T1Okj5957Pem6TEA6By1Su2TETGhRHfmZfy00M7ZlSfn3nzUQE8IANIRZl2wfN9ZS++7vJLTpSniTXoEaL0GvupJAz2Ud48clx64eMW1s89ZcYj+BAAAAIDxqSeKKxoonnsiX6XXyqWWeo6Llv5i3I4fn9vzg/aYLTO8oS2mpY3+xmgEgM5w3cfmb5Ei/qq5+4Y0VvcbbbrXGrvgYcrpiJv/6qjNXvi4ACClduD59+45e+n9l0aRr4hIbyvnXrbpUmQxUTrhfY2B7JlSfGP24hVXzzpvxTt1BwAAAACML/MX7fbTiPjd4CXW+9L1lwsW7f47vVYepx9/0/aR8l+Udf/aG9BLTT3VdJvD7XvKx1Srl/UalQBQfkVfOjIiprXjnqDZe43cZN1mUz6tqZdGur1N8oS+I174oAAgpTR7yQOvm3X+/d8ocuXaHDEmS2qa9h3jhhHehuxdKeKHBy5e8YNDFi/fXY8AAAAAwPiQIuUc+do6C1+rx8qlJ9U+ERETm62fBz7PjZUnIlLkiB23XjnhMH0BAOW27PDq1Ij4WDvvC8p4r1LefUpz7jryyEnrPiMASKnMXvLAVrPOv/+8nIpbI4clNCnRNdhHdJr2rlpUlh24+MGLZy958BW6AwAAAAA6X4rKgMv6vvCb5FxY/rdMqtXLeiPlv1r3xwTf/rdeQ31axEf0GACUW39e/acRsaWgXgP71N7Zlbd/fGUctO4DAoCUwv5nrpg2+/z75+ZK8avIMSciTPcNjIEGvpZo7A07ReRDUy3/dPbiFRfuf+aKrfU1AAAAAHSunPOV9ZSrpLhGb5XHRiunvjMi2vT9bOqQNtu9zHCDbad46+ePvvrFRicAlFeR0vtHft+Qxux+oz33WmMbPKykWO+cCAAypvar5t7Z59/30Z7JtV/lHKdFjo31SmmuFxhrtN6EFHF4b2/62YHnPnDcftXfTNYlAAAAANB5Nntyo2URsXrwEiki8hM73/WrO/RWmdT/4/VYam9ALzX1VNNtDq9Sm5D/1NgEgHK6+kPVzVPEu8f4Hm4E90GpJfdbra2XRry9HPngWz9w7LTnbqgMVcbK7KX3vWPKFvffnHP6XI7YprM/YJkgHqOBhkbJiyKnM6ZuOvWu2ec++EH9AQAAAACdZc7SnVdHxA1Dl0rXHnbJYTW9VQ7V6h0ToxJ/1Iq2BvwdIDVYnuf6JkXxfj0BAOWUetb8SURMrLP0SLZUxqMv8z5NrU1eecizfxEAZNTNXvLbV8xacv/Xc6Qf5Uiv1yN0zjXYR3RaPqZeknL+5wMXr/j+7CUPvE5/AAAAAEDnyCkNuAxwfv7/r9VL5TFt5VMHRI7Nn38kbXDOGG3PnoO094Vzr3yZ/gCAMt70xmEDv3+X8Z6iZPuU2n1qnp/dWgCQUbPfBQ9tNGvp/Yty6rkjUmv+hRVAO94mx+A+4t2plm45aPGKxX+8+A+bOQcAAAAAUH6VSFcP/Xxco5fKI1XigFHYSoe02e5lhhsun/rzWC8tCAC80NVHHz0lUryt7Pc13btP+Z0XH3pozzOfPaDNck6zL7jvg5Nz388jYl5ETNIpHX6tAdphQkQc1R+rf37g4hUfrlaz92gAAAAAKLH+vrh5qOf7+uNWvVQiRezTSbvb3sBd+YKKOfI+BikAlOx+5Ompe0Tdy/82fx9TX700yturp14awfbSiPczRdr45S/a+o0RAoC02YHn3/eqWRcs/0HO6Z8jYvuOvKC1/dLAuHwj7MSdFjYtxbjJEVuniC/esOlD1x903vLpegUAAAAAyql6xhvvi4iHB3n6D9Uzdl+ul8phSfXaTSLFG1rZ5oC/A6QGy5fRGPxWkCMiRWVfIxUAyqWSiyben0dyM9GuG5Ey7lNrjqeS0z4RAoC0ySEXLp86a+n91SLS7RHxzlK/Lhif2jbWBD0ZLXl6FJVrDz5nxXmHXvDQRvoDAAAAAErpjoEezBG365ryWLMy7R0RPUOV8e3/WHn2B5288wXHXbat/gCAEsmVfYZ+/y7jPUXJ9im1fRMCgLTH7AvuP6SvL98ZKT4dTUwFClCCO5my3Ef05hRznl5d3DZ78QOznRcAAAAAKJeU822DPCUAWCI5pVH88bpT2mz3MsNNhCrThJlGKwCU5P4pIuWU9+qU+5qu3accb4kQAKSFZn3+gR1nn3//pTnHNyJiBz0yzq81wGheA3aqRPr2gYtX/MeBZzzkX0ACAAAAQEkUlcrAQb+c79A75ZEi3tSJ+93ewF0pg4pvMloBoByu//AJO0bE5s3OktyeemmUt1dPvTSC7aVW7Of2t/7t324tAEgLPn3kNPv85YdHrbgtRxw8Lg+x7ZcGunvclIiwadlPz/vThOKnBy1+8HC9AQAAAAAlUBQDBgBz9PxE55TKK9rR6IC/A6QGy5fRGPxW8EzfvNxQBYCS3Oamkdw/jeRmol03ImXcp9YcT3//hJcLADIiB1xw7ytnnX//ZTnyhRGxcce+LmDkH+lhtEbXZhH5woMXP/jt2Uvue4keAwAAAICxU0yadHsM8LVeManXDIAlkSOnFLFjfWUZG8/9eCgACABluYeq5JfX+f5dxnuKcu1Tm3erUskCgDRnv2runX3+/XNTrvwkUnqbHqHcnxdh/I21HHl2pdb7E7MBAgAAAMDYqVZ3eTJF/OYFD99fre7yiN4phzOOv3m7HDF18BKlXAq3tNq7LLEAIACU6E1/p/Y1LjzYyn3KOQkA0rhZFzywx+Qtl9+YI06LiEl6pIuvNTDO72g6wKYR+cKDz1lx6XuW/m575wwAAAAARl8Rsd4ywCmy5X9LJPXUdhonR1JXqdxgm3mM9nMQ21xQvWwjoxYAynDrkV7+7Pt6s/cL7amXRnl79dQb2+WFUzIDIA04tHrHxNnn33dK5OLqiNi1244/t/3SAB31HQJluj6lOLjWX7v9wHMf/FO9AQAAAACjK0X+2bp/z1H5hV4pj0rOO5Zpf9o8g14rB/aY9E1eOWEHoxYAynDTUozwPdksf62+v8uDHE/OsYMAIHXZ//MrXv/EVptdmyMtiIjecfKagrZfksVBGcU3/M1Tzv958OIHvnzoBQ/5F5IAAAAAMFpy3LP+A8U9OqU8ihybNHY6Gz39A/A7WBPWdlolx8b6AgBK8d686VjfF4x+3TbuUzvvD3NsIgDIkPar5t7Z598/t1KrLYscu+kROvTzInTNWMuRPvD0muL22Ysf3MdJAQAAAID2q6S4e70HNggEMrYnKKYNX6gdX/CO3x8o2jmLYRHFNIMWAMogTW3v/Y4ZAlu2TymmCQAyqNlLfvuKyVsuvyxHnBYRk/SIaw10n46dw3HHSuTLD1r84GnTL8wTnEcAAAAAaJ+iku9e9+85JwHAEqkUMXX8HE19PxTlBtvMY7SfA56vqAgAAkAp5Gnrvq+3btnaVtRLo7y9euqNaaBHAJCBRmdOs5fef2Su9NweEfvqkNG8NEBHfYdAufVG5LnbPr3if2cvue8lugMAAAAA2mPaU6vvjnV+GCgmVwQASySnVLoAYG5z+ZYZg98Kaik2MmoBoBRacA9llr/67u9Sk/WeqZsFAHmB2Use2GrWBcv/J6dYEhFTuuA11RkfsOjoEWHcMLbXm7RvpdZ78+zFD8zWqwAAAADQescsnrkyIh565q8rP13d9Xd6pTxSyg0HyloS0PMP7Zs5W5HG1YyNANCZcrVaiYjJY31fMDZ1O22fwhLArG/W0uUH5EpxW0QcojcYZ58XodvH2paVSN88aPGKkw+9OPc4UQAAAADQauk3z/zhtymSfxdeIjmiUt8JaccXvGk892t7ylfSBKMWAMbWjcuX99R/I1PSUFwZ9ym1rWKvACAx/cJlE2Ytvb8aKX87IrbVIwDrGjff1VUiYuHT9z/0v+9Z+rvtnVcAAAAAaKm7IyJS5Lt1RbnkHE+PryNqT1CxNN+E5+JJoxYAxtaMiy7qi4i+Dd6mm317b0u91PLtlfM+rS5PCQB2uf2XLn/Nln3bXR8pPh1rwyG07hPKOLte0HWMtfF6bXprrb920+zFK96hLwAAAACgNXJaGwDMKf1Wb5RMiqdKOWZKVn6I/hvViinSUwYtAJTCky24IYhOmuVvbAOOaSTbe1Lgq4vNWrr8Lysp35Ai3lSy11S5P8QbOhg3dP642aYS8b2DFz94jF4GAAAAgJFLRfHbtf8vAFg+ualAWUsCd/6hfcOKVBEABIAOvodq8V12Ge/8y7hPT/UasN1nv3/8zeTJT008PSLP0Rt0jRRtSlNln+DpVL058tkHnbtij8qU4kOXHrH907oEAAAAAJqTKvFQzhE54nd6o2SKylORcp3f5rftxwSizl9UimQJYAAoxft2err+JEQZ76FGsk/tOp4UkXKTTQ+5T2YA7DazPnf/qyc/NfG6iBD+A2jg9qah993OOrQ/K57uueKQ85a/zHkGAAAAgObUcuWRiIic4g96o2yKJ8Z2+6lj2hyzZYbX0ZPTE8YsAIy9FPF4K9//c5P3NbnJe6I8lj032nIWAOwmsy5Y/idRpOsiYle9MWqvsnFzvaB739XpimvV7kVRueng81a8U18AAAAAQON6o/ZwRESO4mG9US65J99b2n0rWflBpdGruLp/pWW0AaAMUtzbohuC6KSlfFsfcGykXmquXkr3CAB2gUOrd0w84Pzln4ucvxaRN+2Q11S5PywaVhg3jL9xs0Uu4rsHLX7wo3odAAAAABqTU8/DERGpWDsTICU6N7XeXzVdtxXl/UP7Rjxy9Llvf1Q3AEAp/Kocu9E54cGx+yySfi0AOM69e+lvt39iy80uT5EFOqBt12DRPsaN3oj8uYPPWXHeoRfnHt0BAAAAAPXpn/CHhyMiitxvBsCSWTVl+n0RsTqi3m/zJfbaKQ/95K/0EACUQ8rp1w3WKONRjFHdYdpt8ezKKcevBADHsdlL79+nJ3qXRcTeegNgpBoIenb490M5xZynl6/45uwlD2/ivAMAAADA8KrVt6+KiKdjyhQzAJbu3KQiIu4e271IHdPmmC0zvHbzAoAAUBLFEDMAtn6Z3DSC+w0zBKYQABy3Djj//o/llC6LlLfTG2Mtt+0VDOPwvYnSXLrSrEqt/7L3LP3d9joDAAAAAIaXIpZXq7s8qSdKeXZ+WdY9yyUrP9QAb3fFFAKAAFAiv2rhDUGMRfAgN7lPuW3bq6dearhe34R+SwCPN7OX3DXpgPPv//sUcX5EnqBHyvOBDIwbOm/c5N1r/bUbDlm8fHdnAQAAAACGVkTcpRdK65bR2tCA3+f6h/b1vYZy3KwXAKAcZm7f+5uIeLQce2OWvyFuPle8+XOfWyEAOI4c/Pl7X5wrU69MEX/TcTvvgw8dP9ZE+xi3ti+icvlBix98l64AAAAAgMGlEs8y1/XnJhdXPPvnXOfZbKw8jRisT2sTeq7UOwBQkvunarVIOa5u9I64jHfppdynFs2unFL8OCJCAHCcmHXBA3v01yrXR8QMvQGDejQi/jDAf4/rGurTwFc94yvYvHFE/taB5zxwmDEAAAAAAANLOf9WL5TTxCn5moiojfEI6ZA2x2aZ4RRx11Gn7vWg0QoA5ZEjX9nq9//c5H3N2PyjjPIveZwjXRkR0Wu4dr5Z59//Z5GLf4iIKXqj275NiPH8T89Wxdpw3iNr/z89Ein/IRXxSK6kP6QiHilS8Uglpz/UUnpkQu7/Qy4m1iIi+vOaR3snFzki4lsffdmjkVJDvVSt5soNW/920740acKEVWmjqNRelHNMK1LaqBKxUY68WeS0cUrFxhGxVY60XURstfa/tE1E3sxYYxyamFL69wMXP7DVt4/e7gLdAQAAAADrKyr5Sb1QTnOqez1+5rzrb4uI3cbD8eRo7CflxsoP8YNA078VDF8xp7jCSAWAkt3f5nxlJaVW3RC00eD7NPx90MB1G73fam29+vu4VmQBwM6/u89p9vkPfCZHPiEsolvyD1jZKXrB+0REWhER9+Qo7k2R7s0Rv00pfpsi7uut9dz7jaO2ac2/8vq7xqtUq6mIteHDiIiHGq1/aPWOiSs32WSrvtSzTaWn8uIcsVPkvEOK2CFy7JBT7JDWBgah7TcKLVZJkc4/6JwHtv7WMdt92lkBAAAAgHXkigBguV0RoxQAHPD73CF+x/UrUkTOYflfACiZx6c8ef1mqzdZHRGTWtPiSMKDnRU8HCWP/ebxFbdFCAB2rP3PXDGt54L7/zmn9Kfj5qDMMDbeFJHi7ijynRGVO1Ol+FlRpLsqPXHvgxO2W37jEalvvB74JdVd1kTE/c/8d9Ngr+HUk3es9KaXp8ivSTleU6R4bcrxmoh4keFDua/X6VMHLV6xzdQXb/OxSw5LNR0CAAAAABGVlJ/QC+WVcvpuTnlORL2Bu+d/uBLQa70X9GnR25e+r1cAoFwOXLp09dWHL7wsImY1cNcVgnp17lPKI9qtHPGDwy65pBYhANiZL7ALHto2575v5kjT9QYl0B8Rv0oRd+SIn6UUd+Scf7pRf/GzS4556UrdM7DvH7ftUxFxxzP/XfrC13jqr702R351SmmXXKTdUspvzBEb6bkyaOCrnvEdbD7iqfsf3Gy/av7Ly6up37gAAAAAoNvVsiWAy2zjP6QfPr55fjgithi7vWjHl8bt+SK6vcsMb1D3io8unnm/UQoA5ZMi/iMPEgBs/TK54y082K7jWdtuJcdXn31EALDDzF7ywOuK3PetiNhRbzAG17++iLgtIq5PKd9Q1IobN3708Z89M+MdLfLtj229IiJWRMRlzz526MW558kVK15dKfLuRVSmp5R3j7VLFWysxxjDy8/7p2324MRDq3f8mesAAAAAAN0u5R4BwBI74qIZfWfMu/5rKeLw8XA87Q3oDfHjU9O/Sw1eMaXnf7wGAMplQvR/fU30roqIyS24IWjj/c/g+zT8fdDAdVsfcGyk3rB9/MSqjXu/9exfBAA7yKyl9+6XU/FfYXnQDv2A1XETxOeIuCsibsgR10eluGHVtL6bL//rnVY566PvmWVW73zmv3+NiKhWc+XGLR54Va1Ie0fEWyJin4h4Vdt2wjLdHXS9GdWdeu/Tm27xX/tVf/O+y6uuDwAAAAB0sV4zAJZdrhT/kYrKqAQAB/w+d4jv2bt4meH+nlp8zegEgHKacdHpj119xMLvRI73tqbFMs6oN1bHMyLfmLl48XOrcgoAdojZFyz/i5zz30fEpHF9oAJGY+mpiLgyR1yZIq6v9Pbd8K2/2+EPuqW8qtVURMTPnvnvHyPWLh8cff37RIq3RKR9I+JNEdGjt2izg6ZtOuXSQy5c/keXHrH907oDAAAAgG5UKQoBwJLb6a7f/vieV+z4QERsN5pL3DKkyz561j4P6QYAKK9U5P/IKTUQABTUq3ufUm5ut4r1Z1AWAOwAB5y/fEHO+WSfK2ixvoi4LuX8o1pKP9rkkT9cZwnPzvfM8sFfe+a/eM/pv9u4b0ptv0rk/XPOB0SknfVSKzTwVU/3BJvfVXu68u33nP67Q74xd6snjBEAAAAAuk2l6BMALLnDLjmsdua8678UESfWV6MdX/B2SpuNayZUGTkuNDIBoNz+MPmJ/9ls9SYrImLb9m9NeLAOv809q7+77gMCgCV26MW55/GHHliaIn9Ub9CCa00REbekyD+KnP63f03liu8ft+1TOm98eyaIdekz/8VBix98ea7U9o9UOSByfkdEbKKXaOGl6G21ibXvHHrBQ7Mu+djWvuwEAAAAoKusmbSRfxjbCfr7zo/eCcdGxJRuO/TGAnopcuQWz06ywQ9adz08beZ/G5QAUG4HLl26+uqPLFgSKZ36wvf1ZmdJbk+9wcMzY7efjYUH19/eIHVzXjzjixf1vfDIKaHZS+6alHum/UvkfGjXHXyHzpSV2lByxP2W4v4o4tKc4ge5v3b594556SNeXTxrv2runbrZAzMjxayIyuyI/Ma6Bqhluht/Lecx2epYds1lU4u+gy455qUrjRMAAAAAoGzOmHfD51Pkv63v+9bnv+Bt9PvZQcvn3HidYcvnke3TIMeehu+WBtt/vmJO6W/nnD7TDIAA0AGu+Oi8F/XUeu6JiI1f+L6eGrlZqOc+Y8i6w/0DhaHus4bfp8Hvbxqvm+o8nhc+nYZoN0U8MmlC/w67fO5zT47kHpJRsP+ZK6ZVptS+FhEHdG0ndGDAqDQBwBS/Tjm+WeS45LtztrsqUhLXor5rz+dXbD1hdX5bTnFIRDokIm82Xl6fY/2qb3Wfdcib9w+eemzley6v7rTKWAEAAAAAymTxvBte3h/5FxHR0+i/im9JCFAAMCLiob6+tOMxi2f6h+QA0CGuPnzBORHp6Be+r7c+yJeHuZ/Jdd+7bXif0njd9gYAn3k+D3Y/lV/YayfP+OJ5J470HpI2m73kga1ypfh2RMzo6o4QAGxELSKuTEV8I6ee//nOnG1+5ZXESE2/ME/Y7ukV+xQpDkyVeG/O8cpOfn2W4ZXfdbMArj3kS6c99vD7LqnussZYAQAAAADK5My5110SKb1vTGYBzOu3OWz5utvPze3PEMfdaABw+G2srZhzXjjnzH1PNRIBoHNcefjcl1Wi966ImLju+3q5ZvJrVwCw8bptCAA+3ZfTy/f60nkPjvQekjY68PzlOxSRvxcRr+76zhAAHM7KiPyjSOnSlHq/8e2Pbb3CK4h2OuCcB3bp6YlDI+LQyPE6PdLE67kLA4DP7Ox/P/XoNoddXk39xgsAAAAAUBZnHLfsFamnuCNFTBq+9PgJADa+jTzEMTTbfr5vVfHka44764CnjEQA6CxXHb7w9BRx/AtvChpfBlh4cL269SwDnKM6/UtLPtOKe0ja5KALlr+2losfRKQX643o2BnG2hwC7IvI38spvrLxmuJ/LjnmpaZEZ0zMXvLA6yLHn6Yi/2mk9Mbu7g0BwDp9ZY/HtvlgtZoKryAAAAAAoCzOmn/9osgxb/iSoxcAHNk2OmQZ4Fz82ZFn7vtVIxAAOs+Vf3P8xpXeCT+PiO3WvSFoPAA4zH3GmAQAB6/b3mWA6woA3rN6o57Xzly8eGUr7h9pgwMvuO9NRY7vR8RWTkkD14ESak8AMF8bOb4SUfnqd+Zs9zsDg1Jdv86+71Wp0vOXOcVfRsRO3dcDYxMA7MQ38Bxx3reP3vYorxoAAAAAoCwuqN6x0dOrnvp5ith+6JLrf8HbmhBg1wYAf/zxM/beL0XKRiAAdKarj1jwwcjpn9e9IWh9kC8Pcz8zFjP5tSsA+MzzQywDnFM6bMZF513SqvtHWmz/zy2fXimK70XEFk5LQ6/lUmphAPC3kdO/p0rtH7798Zf8wmCgExx03vLpOccHI9L/FxFbds+RmwWwgX1e8M2jt13k1QIAAAAAlMVZ82/4QOT85eFLjp9lgNsdABxiG7WcatPnnP6WW408AOhcOSJdffjCH6eIfS3lO3TdFgUAr9z9i0vemoZoRNJsDB2wZPlbUqX2zYi0idPS4DWgpEYUAMzx+xz5q1HJX/nux19yjQFAp9rvH38zedpjkw/JKT4QOWZHRO/4PmIBwIau7Ck+8q2jtv17rxQAAAAAoAxy5HT23Bt+ECneOVzJZ3V6ALDxbeQhjqH+9nPkc+acsc8njToA6HxXfWTBm1JK10bEpOaXARYeXK/uwAHAlalSzNj9wqV3tu7ejpbZ//z7312J/PWImOq0NPE6LqnUTOkcV+ZKvmDj3z/6X5dUd1njxDOevGfp77av1fo/nCM+HBEvHZ9HKQDYoP6c433fPmbb//EKAQAAAADK4PTjb9q+p9J/awy5us3oBQBHto3SLgN8c1756N5zlh642ogDgPHhmiMWHpNznN18AHCY+4wxCQAOXnc0A4DP1kuRP7r7F5d8obX3drTE/uffd3Al4pKImOy0NPWaKrU6z97TEekrRS4u+N6cl5jmnHHv0Itzz9PLHzwoIh+RI2ZFRGX8HN3YBAA7/N1iZY7KzG8fvfUtXh0AAAAAQBmcPf+G9+Scvx6DfvW6/he8rQkBdk0A8KnoiRlHLpr5MyMNAMaPHJGuOWLhdyLnAwa/v2hXAHAkM/m1KwA48PN136flDe43vz79i+e9t55zUTEcR9es8+89sBLxtRg0/Mc498sc+ZhJ/Wte/J0jtz9c+I9ucclhqfato7b9xreO2u6gIscrUuRTI+LBrusI+e5n/e+0x353p24AAAAAAMrik4v2+EZEfH7wEu34gnf8fmm87s/XKaejhP8AYPxJEbm3Z8JfReSH2nO/k9q352W8f1u/6fv7J/Z/2F1lCc2+YPn+ORf/E3WF/5yaDT4ddM4F7oWKiPh2qqQL3vy77b5frabCiYWI2UvumlQpNv7LiHx0jtil429txuC61qHvFD946rGV77m8utMqrwIAAAAAoEzOOfrqKcWk3msi4o0Dlxi9ZYBH1v4ozgKYh2s/f/XIM/b5M6MLAMavq484YVbk4psR0dP4LIB5mPuSsVgGeLhZmtu+DHB/zunde3zp3MtHdK9J683+/H3vyLX4ZkRMcWoa+izRcdLzf3giIl1UqfR87lt/t82vnUwY7HWe04FLHjggchwTkd7VmRdAAcA6D/3/eqYWB156xPZPG/gAAAAAQBmdvfD6l+ZaXBsR22/47OgFAEe2jZIsA5ziur418fZjFs9caWQBwPh21eEL56TI543uMsDtCgAOXnc0AoAp4vDpXzzviyO+16S1Zi+9f59cyd+NHBs5NU3ovBDg4ynH54v+4ozvHfPSR5xAqN+scx/cNeX8sZTyB6LuwHQZjE0AsJPeLVKKayure/b/xtytnjDSAQAAAIAyO3PBDa9PRb4yIjZd/5n1v+BtTQhw3AYAf1P0VvY+6tS9HjSiAKA7XH3EgnNTjk/Ue7NQ133GMHWbn8mvXQHAgZ+v+z4tF4tmfHHJgkb7Xsqszfa/4P6ZlcjfjYiNGwt9ODUNfkYpgxUp4uyVlQlfuPxjWz/pxEHzDj7n3hcXlZ7jI9JHoiOCgA1es7tvFsBlq1dPfNcP523+mNENAAAAAHSCs+beMDtS/kZE9K7/TCcsAzzmAcBHUk/sc+SimT8zkgCge+RqtXLd8jVfyxF/XM8NQ133GcPULe1Svk3UyxFfnXHRuX+emkgUSJm10f6fWz69kosfxbr/OkgIsIkrROn38J6IOGPVRmv+4fK/3mmVEwatc+AFD20b/bXjIsffRsTUcu+tZYAHcWt/7nuHGVEBAAAAgE5z1rwbDo/IX4j1vorthADg4G2ObBt5iGN4zqrIMWvOmTP/zwgCgO6z7PDq1L605keRY6+o+94kD3Nf0gXhwRRXPLF6s/3f/k/VpnJHEmZt8u4v3Ltzby1dkSO2aeJe2+lpus9Gdcd+naOypJKf+sJ35uy82omC9jnkrOVb1nrSx6MSR0V+4ZILZSEAuOG+pZ8XfWm/bx+/9QqjGAAAAADoRGfNv+F9kfO/RMTktY+MXgBwZNsYk1kAHy1S/qOjTt/nx0YOAHSvWz9w7LSnp0z894g4JOq+N8klCwAOXrfVAcAU8cOV/RP/ZN9/OOOJZvtcwqwN3nXh8pf19hdXRsRLGxqTTk/jr+OxcUdE/sxeD7/4a9VqKpwgGD2HnLV8y1pvfDIizYnSzQg4NgHA8r5b5F/0R+9+3zt6qweMXAAAAACgk5019/q3RiX+O3JsPsAPtg0ZOAQ4LgKAy4uiMvuos/a6zYgBAC4+9NCel26+85LI8Xf13Zs0GwAcyUx+7QoADvz8QPdpKeJfcjz9oRkXXdQ3kv6WMGux2Use2Cr31H4cEa9pYkw6Pc29lkfL/Smlz678/Xb/cHk19TspMLbX2lTkEyLS30VEbzn2SgBwHb/NteKt3z52+3uMVgAAAABgPDhn3o2vLP5/9u47Xorq/v/4+zN7L03BRhN7wRJbTNQYTdHEhgK2gC2xJAqKgqAoYl1FUZCi2LGXWCCxgIg1mnxNNImxJSZRbAlIRwULcO/d+Xz/QKMCt+zuzO7M7uv5ePj7/qK7M7Ofcz7nnNn93DPKTZO0VfS7AKa+APCdjOmAU6/Y4216CgAA+LoXTzr3dDeNkxQUvpNfXAWAzR27gEf5NvHfVn2fTfhut7WGWDZb9OZjVJhFaJ+b3lmrpqH1s5J2bmZtTBPly8t66o9NNqp9fe7qyWdstJTGAJKj1zWzt8nl7DJJhyZjwOQxwJL+m5P/+PEh679PDwUAAAAAAABQSa4c+sfOlqm9V+Y//fLfxf0Y4OKO74VdT5NW+XH+dwoajhx0+Y8W0EMAAMDq/Knf8ENMdpvk6zS1xmh6bRJ98WD5CgBV5wrP3HXi1ddGFWOqyyLSZ9zMtp+01hOS/bAF62KaKP97iXJYLrfr6oNw5DOnbbiIRgCSq8eEubtb6KMk/ai8V1L1BYCzMx78eMoZnfkrTwAAAAAAAAAVKZv1YM3lfxkq1whJreIuAGz0PS06R6y7AOYkXdL13VmX9Z3cN0fPAAAATXm+37CNa5S52+U/asE6o7EFUwHva26dFddjgBt7n78TmB35nZvGvxRlfKkui0CfSZ75ZMGs30p2cAvXxTRRvkpbABjK/ddBEFzw2Gk8vhJIk4Oumttb8rEubVmeK6jexwCbNN8V7jVtSLd/0RMBAAAAAAAAVLpxZ/95lzDQryVtVYWPAZ6tUEcPunKP39MTAABAS03q0yez0bpbDpfrIkk1jawzGl2DNL2eKfQxwHEVAK763800qaFVw0m7X3PNkqhjS3VZBHpcN+sGl07OY11MExXCS3KOx11+zhODNnyNgAMpHZMnzGhtufZnyPw8SWuU9uxVWwC4yF17P3ZG17/TAwEAAAAAAABUi+uyz675+fJ2owNXP0mZlr4vzQWALn8wCBpO5pG/AACgUH/sP/z75rrZpO1WXmmUvgCwuWNHUgD4sbudvdvN426OK6ZUlxVp/2tnnWumy/J+I0WAijdmeafCOyYbOH3g+tMJNFAZekyYtaGFwWjJjiztQFp1jwH+OFD406lDur1MrwMAAAAAAABQjcae89edpXCCpB+05PX5Pga4uB0GvbDrWfVVb5pp0KArdn+SFgcAAMV6NputaTN7+QCTLnZp7a+vW6J/DHBcBYDNvjeU7I5WQTB8pxvHzI8znlSWFWH/62cebW73FBRHCgAVb8xaHNt6dx+3vH1d9rkTNltGkIHK03PcnN3CjK6Ra7fSnLGqCgA/k4c9pp3R7f/oaQAAAAAAAACq3bhhf+nl5tdI2qSp18VdAPjN9xS9C+DnMl1pn310+aBrDlxOKwMAgCj96VfZdS2z/CJJp0rKFL4LoDezZir5Y4BfdtfA3W4e96dSxJHKsgL1uG72fq7wUUm1BR2AAsCYY9YiT+TCcOBTp280g+ACla3PJM98PmfeAHe/VFKHxEyt6X4MMMV/AAAAAAAAALCSK4e+tobVLOtn0mBJGzf2uhQ8BniJu93kNTXjh4zcZQ4tCwAA4vSnfsN2MNnZko6wRmux4noMcKQFgK/IffQuG6w1ybLZsFTxo7KsAD1u+GBnD/33ktoXfBAKAEsQt0Z9IPmQxwduOJmAAtWl9zULujXkGq6S1CcRU2t6CwCXWqBej57e9Rl6FQAAAAAAAACs6qZ+L9V+uk54hMyHStpp5f+e3AJAn2NmV7f22hv7j9plMS0JAABK6fl+wzbOyAabdKJWqcuKqwCwuWO3pADQnpZp9K43jX2qHHGjsixP+17z326ZIPizpA2LPhhFgDHHbBUNcpvQamltdsqwTp8QTKB69Rg/p4eZrpO0Wdmn1/Q9Bnh5KD90+pD1p9OTAAAAAAAAAKBpLrexZ/95nyCwX7h0sL54Sk3cjwG2VQ/clHpJT0t+f/D5xw/wqF8AAFBu/3fKOevU5uw4mR8h1/e+Wt4UupNfLAWAc+T6jTJ++643jnulnPGiqiwPfcbNbPtJK3tOpt0iWvHTVLHG7BteCmSnPDaw20sEEcCXY/pnVjNMpnMktS7b9JquAsB6d/V57Iyuj9CDAAAAAAAAACA/EwbOaN3Q7qP9ZN5H0qGS1vzGCyIsAPzme1Z7zFCuF8xssmd0/+CRu8+jhQAAQBL9ZcB5G4X1DYdJ1kfmezb+Sm9mzRRJ8eCHLk0zs8mfrb/m9L2z2YYkxIiqshbKZj14ofMHk8x1eGQHpQAw5phJkj5309lPnNrtepk5AQSwsv3Hzdkuk9Ft8oiKu/Mds9PzGOCczI+aNnh9Hp8OAAAAAAAAAEUaN+RPbYNWNbuG0o+++CF7D0kdYnwM8DIz/6sUPB+6/VHLP//jkKv2/piWAAAAafLiiWdvaJnghy79QO4/lLSdpOCr9U+huwA2+t8+kPx5N/0xMH/+vUUzX+87eXIuaXGhqqyF9r9+1mVynRtpwCgAjDdupj+5hcc9cepGbxM0AE3ZK+s1a6w1Z5ibXSipVUmn13QUAIYyO27a4C730FsAAAAAAAAAIHqT+kzKfNB90x08F27j7lvIbHMz20LuW0jqIqm2Bd//1klaINO7kr9rbu9KeleBz/i4dYdXstnt6og0AACoJP93yjnr1DTou4H5Fi7fIpBt7vItJG0sad1vvrrRH+c/MWmmLHxXbu/K/V0F9m7Oav7+/RuveD8NcaCqrAX2v27WsZLujCVgFAHGEbPlLl3YoUu3sZP7Wo6AAWipA66at2Mgv1Pyb5d0ik32Y4BdppOmDe56Kz0EAAAAAAAAAMpjUp9JmYVbrN9haab1mgq9bY17e8vlPm5oZcva5HKfz2/zg8XZrIVECgAA4Cuv/WLoGss61LYJQl+rPudrSFJtxj6zXP2ST2raL9v7+uynlfA5qShrxr7XfLBnEPgzklrHEjAKAKOO2cthmDnuydO7/oNAASjEd2/y2q6fz73ATcMl1ZRkik1uAaDL/bRpZ6x/PT0DAAAAAAAAAAAAAIDkoaKsCT1vmLlBfRi8JHnX2IJGAWBEMbN6yUcuaDXnsr/136WeIAEo1oHjZu+iwO6U9K3Yp9iEPgbYZGc+OqTLOHoDAAAAAAAAAAAAAADJREVZI/a6/b02rT+r/b1Mu8UaNAoAo4jbPwPZcY8N7PYSgQEQ9VzQbnHrUZINinWKTWYB4PnThnS9jF4AAAAAAAAAAAAAAEByBYRg9Vp/XnvD6or/ystpmJUD4jZu2Zp136X4D0Acnjths2WPDe52usuOlGlxbGN20uq73S+h+A8AAAAAAAAAAAAAgORjS7nVOODamYPc7OqSBY1dAAuJ2RJz/9X0QRv+hmAAKIUDr529iRp0r2R7xDJmR1jjbcW9efy0wV3PoMUBAAAAAAAAAAAAAEg+qslWcsB1s3/gHj4jU6uSBY4CwHy9bGGu7/RBG79DKACU0l5Zr2m31tzzZbpALdpFN3UFgNdMG9J1EC0NAAAAAAAAAAAAAEA6UE32Nftd98FGJv+bpE4lDRwFgC3/9K5r5Z8PnT6o+3J6LIByOWj8nIPc7B7J145szI74Ke8FzBY3TRvc5RSZ8bx5AAAAAAAAAAAAAABSIiAEK3z3ppdqA/P71ILiP5TFJ5KOmj5wg4EU/wEot2lD1p+WC4NdJf2j6VfmUUtX1vpuu3PXxV0GUPwHAAAAAAAAAAAAAEC6UAD4hY4NXa90155lOXleRR9VWZvxTwuD3R8/bYP76akAkuKJMzq//Xlt5vtm+k26P4n95rPFnU/MZi2kVQEAAAAAAAAAAAAASBceASxp/2s/OFjmD+UbDx4DXAp+d21tcPLU/t0+p6cCSOYw5XbQ1XPPdmmkVltYX57HAFvLXvTQZx936ftc1hpoSAAAAAAAAAAAAAAA0qfqCwD3vXFm9yCnlyTrUNbgUQC4smVm3n/6qRveRZoCSIODxs85yM3ukXztgsfsiDd5berM5nq07ZJFh0/ObldH6wEAAAAAAAAAAAAAkE5VXQDYZ9zMtkva2Aty7VT24FEA+PVPN8/lhz5+2oYvkKIA0uSAqz7YOlAwTdIWBY/ZJdgF0KUnP1+89ODnspsto9UAAAAAAAAAAAAAAEivoJo//JLWurbQ4r/I5VUf4hXcKvZ3k32P4j8AafT44A3ebKi3PST9OcFj9nOZduGhFP8BAAAAAAAAAAAAAJB+VVsAeMD1s/pI9ku6QKI83lC79IePndbtP4QCQFo9eVbX+Z+vtWwvSQ8k8PJeyNRlek/t3+1zWgoAAAAAAAAAAAAAgPSrykcA73P9fzbPeOZlSWslKoDV/RjgCe07dztjcl/LkZYAKoK79bh67uUmDctrzI54w8Avz2zmr3irup9OG7DJRzQOAAAAAAAAAAAAAACVoeoKAPfKek3rTh/8QdL3ExfA6iwAbHBp8BOnbXAd6QigEh149dzT5Rqnlu66G0MBoEuvt65t+MlDp224iBYBAAAAAAAAAAAAAKByVN0jgNt0mj1CERX/RS6vmj6vhOb4UB7uS/EfgEr22Oldrzb5kZLqop8LWuQNz/g+FP8BAAAAAAAAAAAAAFB5qmoHwP2v/2AfuT+hCAsfIw9g9ewC+KZb2POJUzd6mzQEUA0OuHrOgYHbbyS1jXYuaPJAb6k+8+PHzu48lxYAAAAAAAAAAAAAAKDyVE0BYI8JczqFmdxrktZPdBCrogDQ/1pbGxw4tX+3haQggGrSc/ycvUKzKZLaRzcXNOpdzzT8ePqgDWcReQAAAAAAAAAAAAAAKlPVPALYM7nrFUPxH/JtCP+9hW33ofgPQDV6dMj6zykMf+JS3I/jnZmp0T4U/wEAAAAAAAAAAAAAUNmqogDwgOtmHe/Sz1JxsXlt6udpa4qp7eu9x/RB6y0h9QBUq8fO6PaSAv+RS7OjmQtWMS+TC/ebOrDre0QbAAAAAAAAAAAAAIDKVvGPAD7w2oRJjIIAAIAASURBVNmb5Cx8TdJaqQliZT4G+I5lC7ud9FzWGkg7AJAOuOqDrQNlnlVju9MWVuM9L5ML95o6tNu/iTAAAAAAAAAAAAAAAJWvoncAzGY9yFl4u2Is/pNSuA9fiZnr2t0XdvsVxX8A8JXHB2/wpnKZvSTNjeiQH3sY9KD4DwAAAAAAAAAAAACA6lHROwDud92sISaNS10gK2gHQJdGPXHaBueQagCwegeOm7uDB3rWpPUKnwu0WB7u89gZ3V4iogAAAAAAAAAAAAAAVI+KLQDc57rZ2wYK/2ZS21QGMv1FgG6yM6af1u0q0gwAmnbg+PnfloXPSFq3gLlgiUz7PTa465+JJAAAAAAAAAAAAAAA1aUiHwHcZ5JnMgrvLFXxH1Zm9e72c4r/AKBlHhvS+dXAraekT/J862dhEBxE8R8AAAAAAAAAAAAAANWpIgsAlyyYfaakXUt5TqcvfanOXH2fGNjtXkIBAC336JAuL0hhT0mft/AtS13q/fjpnZ8negAAAAAAAAAAAAAAVKeKewTwgdfO2qrB9Go5dv+LNJjpfATwcpeOeOK0DR4htQCgMAdcPefAwO0RSTVNzAV1Jj9s2pD1pxExAAAAAAAAAAAAAACqV0XtAJjNepAzv6UiHv2bV01fIvYf/DyUelH8BwDFefz09R8z6eQm5oJ6M/Wh+A8AAAAAAAAAAAAAAFRUAeCLHWedJtkPadaS+1QeHvTkaRs8RSgAoHjTBne9VWbZ1fynBpcfPW1w1ylECQAAAAAAAAAAAAAAVMwjgA+4Yc6mHub+LmnNigloOh4DvNTND3ri1A2fJZ0AIFoHXj3vWoV+6hf/MzSz46YN7nIPkQEAAAAAAAAAAAAAAFKl7ADobh7mblGZi/+q0DIzO4TiPwCIx+cfdR4saZokd+kkiv8AAAAAAAAAAAAAAMDXVcQOgPtfO+sXMt1VcQH1RDdnXSg//MnTNnyUNAKA+Ox35dw1amrtgMcGd/kt0QAAAAAAAAAAAAAAAF+X+gLA/W+Zua6W278kda7IgCbzMcANMjvi8VO7PUgKAQAAAAAAAAAAAAAAAEB5pP8RwHXBKCWk+E8qYNO+9HGT+lP8BwAAAAAAAAAAAAAAAADlleodAPe7dub3zOxPSlghY/keA1yK5vQzHz9tw3GkDgAAAAAAAAAAAAAAAACUV2p3ANwr6zUW2E2qhF0MIxPv/oPmNoLiPwAAAAAAAAAAAAAAAABIhtQWz7XqNGuoXDtVfAslZI9GM7tx+sBuF5IyAAAAAAAAAAAAAAAAAJAMqSwA3O+6DzYy2QVJvT6vtF7i/uD3Fqx/KukCAAAAAAAAAAAAAAAAAMmRygJAk4+V1I7mKwX/a7is5ths1kJiAQAAAAAAAAAAAAAAAADJYWm74AOum/0DV/iHpF97pBfnZTv7e/UNNd9/ZnCXeaQKAAAAAAAAAAAAAAAAACRLqnYA7DPJM67wOqWwcLEo5fm0HypQD4r/AAAAAAAAAAAAAAAAACCZUlUA+Mn8WadK2jEN1+rp7hfLZXbw4wM2eJMUAQAAAAAAAAAAAAAAAIBkSs1Oej+9dtZ6NaY3Ja1XlcH10p3ZzPpNP7XbzaQHAAAAAAAAAAAAAAAAACRXanYArDG7XCkq/ksrk42l+A8AAAAAAAAAAAAAAAAAki8VBYAHXD9zR8l/WdUtldemfgU/gPiJNTuvP4y0AAAAAAAAAAAAAAAAAIDkS8cOgK4rJWXSFlxP1+X+u0193ZGT+1qOtAAAAAAAAAAAAAAAAACA5LOkX+B+18/sYW6PEWDlWVGY15k/yZh9b9qp3f5FSgAAAAAAAAAAAAAAAABAOiR6B8A+kzwjt1E0U6zc3U6g+A8AAAAAAAAAAAAAAAAA0iXRBYCLF37wK5N2oJm+kNemft7CQ/rlTwzs9luCCwAAAAAAAAAAAAAAAADpktgCwL2um7+mubI0Uax+t2bnDS4kDAAAAAAAAAAAAAAAAACQPoktAGyj5UMlrZ/2AHtyL22mhcGRk/tajjQAAAAAAAAAAAAAAAAAgPSxJF5Ur5tmd6xrCN+V1J4gr8QjOXODzPZ+/NRuz5MCAAAAAAAAAAAAAAAAAJBOidwBsC4XnqcKKf6LXF7VhN7Iv7WLKP4DAAAAAAAAAAAAAAAAgHRLXAFgzxtmbuCu/jRNXOzZDp3XH0UcAAAAAAAAAAAAAAAAACDdElcAWB/qEpPaVlKQPTmXMt9r646Z3NdydH0AAAAAAAAAAAAAAAAASDdL0sUccP0HW7v7PyTVEOgmeEFn9lDa/8nTNniKbg8AAAAAAAAAAAAAAAAA6ZesHQDdL1UFFv9FLq9qwhXVgmY+geI/AAAAAAAAAAAAAAAAAKgciSkA7HHDBzu7dDhNEot/rrnchxMGAAAAAAAAAAAAAAAAAKgciSkADMPwIiXskcRR8vKdul4WHD/5jI2W0t0BAAAAAAAAAAAAAAAAoHIkogBw3+tmfVuy3jRH9Ex+weOnrv9XIgEAAAAAAAAAAAAAAAAAlSVIyEVcoAre/S8WLYvWC2t23nAMwQIAAAAAAAAAAAAAAACAylP2orsDrp+5o7u9qiooAIz8Azb9XOGlCmznxwds8CbdHAAAAEiu3qMWtG8wX6OVfI36IFg7CLVmYFb75X8PPbeWyf73x1tuMvNv3g2EZssysqVf/u9cqCXy3HJ3fdKqxj+tybVaPvmcdRcTbQAA8uRu/S6es15dK3X0hvo1MoHaymvaSFKDhe0DWU0QysLgm3NzYP6pwqDe5WHoucUZq/k0yPlnn7fOfXbvORt/LDMnuAD69PHMFlv8vUPYxtcIVNNGuWAtD30NM7VaMZiEa+nr9wIuM/tqvHHZ5xZq+f8OaPaRJAWZMBc0ZBY3NNR9fMUVO3wsMeYAAIB0e+TsW9trediuoS6zRk1NZi25t3ML28qVMVmHr7/WPDQ396/uz2xxThZKUsZzDRboky9eudwtt6TBWi059KoTPibKANKs/AWAN8ya7K6fyQl43pqImbmdNX3gBuz+BwAAAJRQ71EL2rsHGyvQBh6EnQJ5R4VBRzfvJFcXmTpK6ihpLUlrSOoQ533Banz+xT+LJP9Qbh+a+SJ3+9DNF5kHH5qFCySfHeTCD5av8emc6YO6L6dlAQCV6Kjs7I41NQ2bmgebmtmm8nBTyTYyeUdJ67m0nknrqZmv9Jr/vs+/8X++eP2nkuZLWiDZQjdfaKEWynyWPJhpGc3MWG7mxHM3mUuxIJAuw4fP6BTWLO8mCzZ0tw1M4QYu6yjXembWacX44ut+Mb60a3xsyS/1mxmLPpG0WPLFblpsriUmfeyy+eY+291nWyaY7fWa07p1q1nZbPcltCQAAIjbE0PvWmPp8mATV8OGLtvQLNzYXV1NQSd372imjnKtpxX3aBlr7F5rtWsib/kay//3/3wsaYlJi01a4tJiyZbIw3kKfLa7zTGFs3OB5tQ0hHN63jDgI1oRQFKUtQBwvxv+u7158JqkgALAAnij//7F9l02+MHkvpajiwMAAADR6XPd/DWXfWZbubx7IN9EgW3sbhtL2kTSRpLWKcuFxXs/Nc+kOS7NkjRb8v+Y2btu9k5NXat3Hzq3wyJ6BgAgyY7Nzt7YasMdzH0Hd9tJ0rckbS5pzdVNqoV8f2ctmai9pa//hjqTZkqaIbc3LfA3PfS3wkzNW7efv8FMWhcovWz2vTaf6PPNM8psaTnf0mVbmHxLl28uaUNJbfIfJxp7vef5+vxuHqzxU3wu0yy5zzXpHVcww9zfCoLwrUym/YxsdrNl9AQAANASDw2+fe2cZ7YOQttS8q0k7y7ZlpJvqa99l9ro2uer4rxG1jveyJqo8WIKa+Icqz9PY4WGvlTSHH35nanbDMnfUqAZdTWt32ZXQQClVNYCwP2vn3W/pCPyvI8l4E3PNctCD3Z+cmC3f9O9AQAAgML0GLVowyDTsF3gtrVk28i1lcy30ooivyTdVikB91Mfr/hR0N51C98OFPxTQfjGkk8++9dz/DAIACix47NzNvWahj1d2t1cO7lsB0lr51sYU1ihTjMTdWEFgI283iVpsVyvuenVwO3VnIevfarP/jE5u10dPQEoXp8+ntlou39vUSPbUaFv79L2knbUigLizKrFc17EONHYeyLdBXCV67Q87yW+OH4oaabc3pJ8hpn9O2cNr+aWt3519OhtPqHnAABQnbLZbLD9wq22UpDb0Vw7SdpB8h214g+nV1qnFLQ7X8wFgE2dp9ECwCbXXCZfIGmGZG+ZbEYY5v5Ra/7K/tefyh9zAYhc2X6p2v+6mVvK7N+SMi24Nybgzd+rf/k/z3vitA1H0rUBAACA5mWzHvyl/cItg5zvbKadpf/90ykFt1WN3hckRE7SuzL/u0J7Q4H/IxfYq4+d0XEGjzIEAESh300v1dYt6Ppdd33fpT204p9uxc/WHnEB4BeTdfQFgKtTJ+lvgfuLkv5oNfrTxPM2nUNvAZp3TvatzRtyDbuZ2W4u39Vk31ETj+iVJMujALCw3E9kAWBjxwxlesvcXg7lLwfS3+rrl78yatQui+ldAABUnkdOv7dLg3Lf85zvJrPdA2lXlzo0ue5oZt3U6NqnySLAfAsAV3Mez/968y40/OY5Fkp6RdIrgekVhf7Kn7vMn5HNZkN6FoBCle2Xqv2um3Wjmfq3YJwn6C27V5dkb7Rf+PF3+CtfAAAAYPV6jZnd0ax2Dw99D5P28BXFfmum9LYqrfdSiyX9TeZ/9VAv1YS5lx4evv779E4AQEscN+K/W4TKHBC49nfTTyRfI/rZOqYCwK/9n2geM9zi3cbec+n3kj9lmfCZW87bfB49CdUum3225pNct50DhT8OpR+baXdJHQvK/Rh3ASxJAWAe9xOW5w2JSe6ud8z0JzN/NpPJPZfN7szaHwCAFJo05M4NgjCzt9z3krSXZFt8tQzwSHbnK+wxwPkX5zW302B+5ymoAHB15/lU8lfN9H+h+x8alrX548G3/YrdlQFEfD8Ysf1ven995WreldSmBfeIBL1l9+ouC370+KndnqdbAwAAACv0GrNwG3m4p6Q9tWJXoK0r5LaqqXuDNFoo6UV3/cEU/N/6a6/7t4n9rZ4eDADol53dblkm/IkHdoBc+8u15Tdn35ZNgHEXADZ/jtgeA5zv9bjM/+6up83t8aDrgucm9t+FORdVwO2s7L929jDYV9KPJf1A8vbFruzjLwDMb6Gf7+POV/8ZCj2Ht/T1/5H8OffgWSl47rLLvvUf+icAAMnzyNm3tl++rPU+gewASXtL6t5UcV5+BYCrXzsUVgDY1HnyfQxwtAWAqxwnv50GGyS9Yqb/U6jfW12r5w+49cQP6ZkAorrfjMT+139wheTDWnh/SNBbcJ/ubjc/MXCDfnRpAAAAVLNDr5zbuUGZfWS+r1z7Stqggm+tKvl+6jNJL7rp/4JQf2hdu+zFyWdstJQeDgDVoU92/ppta+oPCs1+Zu4H6stHcK62eC6+wphodwFMTAHgyj6W+XSFwSNtffn0a7Ldl9ADUSnOOef1dRpqW+3rgfUw9wMkdW0uh9JeANjyc5S1AHBl77nriUzGHg4CezbLE44AACib3wy5dzvPWQ9Z2EOuH0hq1ey6JMICwBWvKWcBYFPnybcAcDXnKeBRw1+LSSi3v1sQPu5uj36yoNMLfSf3zdFrARR6v1m0fW56Z61MrtV/JevQwvtDgt7c8VzzgiC37bQBm3xElwYAAEA16ZP1VsvXnP9jebCv5Pu6tJPKUo1HAWDMlkn+Bzd7wnLBE1PPWe8Nej8AVJZjsos6ZGqX9wzdf2bSAZLaNjfXJW0XwJQWAH5dncmfdtl9rcK2D1+f7fwpPRNpMyz7xsa5XOaw0HSYSXuYlMlnAR13AWBh56j4AsCvWyJpeuD2SFBbPz2b3fljejUAAPH6zWn37aLAD3e3n8l8y6bXSY0sGrxlxXkFFwD+7+UtK85ryb3iKucpoDgvigLAllxvI+dZJGm6mU/N1Nc+se/E/ovpzUB1K/mvVAdcP2u4SyPzvEck8E3fqx//+Gkb3kl3BgAAQDU4ZPxHa+dyDT0kP1iuHpI6VOGtVbXfS82S7Em38ImwodVT04avzR9DAUAK9ZnkmTZvztrfg8wJcu9pUpt85rp0FQB+7Tq98NVD3EWAX/th6TOXHglc96rrwid5TDCSbEj2rc0zYXi4Sz+TtOvKXb9FxbnF5I3HnZclKADM434i5gLAr7+nXu7PKfCHGxpyky+//DsL6O0AAETj/tPv39VCHWEWHi5p06J3u2vhLoAtKwBs5L/lUQDYkvvF5nYaLPp6V3df2WwBYJ7X+9Xr62X6v8Dt0VwmN/nAawbNopcD1aekv1Ltdft7bVp/Xvu+TF3yvEck8I3H6y+7L9zg+9mshXRnAAAAVKqDxy7aKJfL9TbpYJn2klRbxbdW4n7qG+olf05uD9a00iMPDuk0h4wBgGQ7esTM7iY7wcyOlbRBXrNpEY8BjrsAsPlzJH8XwEZ+vJon9zssyNw88YKN36EHIwmGZN9YN8jVHCnTLyTfvei8LDZvEvQY4IIfd170LoAe8Wf+xjHrZXrMXXfMn183beJEipIBAMjXpNMnbezK/dxcv5C0zcrzd8t2u2tkzo/wMcDJLQDM83obu68s7jHAza/rXKGk35vrniCs/S07AwLVo6S/Uu1//QcnSH5bnvfbBL6paLn2fPy0DV+gKwMAAKDSHDpy1nr1rWr7BG5Hu/QDJabKLhG3V9xPrV4osxcV+sOBhQ8+fHYXihQAICF+ceXcNVTnfTz0X8p8tfN63AWA+c3WXtDsXqEFgF87mT/tFkwMOi94hF0BUWr9+r1Uu2a3NXtYzo6T+UGSWkeWl8XmTYIKAFt+jsQ+Bri5H8EXyPw+ye8YMeLbr5AZAAA0btKQSW09533Nw+Nl+pGkoMn1QIvWSfEWAK54Tb4FgE2dp/DivOILAFdznrgLAL95jmUmTfXAfr1k/sLpfSdn68gKoHKVuABw1muSdszzfpvAN3YMt3unn7bBMXRjAAAAVIo+42a2XZ5rc7CbHy33/SVrxe1VHrifWtnf3HRPzv3+x87uPJcMA4DS+8WI2duGppNNOk7SWs1NWM2O8al+DHDyCwBXvMdbEprZZn5Npja46Ybhm3xET0ecTs++s3EmrO8n6VeSusaSlyoyL/MoACzsHBQANnK21yVNrKnJ3JnNbvcp2QIAwAq/Oe3ebXKZoL9W3IetI8/38bxNrZMaewxwy4rziip2y2MXwJbcK65yngKK86IoAGzJ9Ta30+A3jrH6c3xorvul8Ib9bzz9H2QJUHlK9gvVfjfM+om5nsnjnpPgN+1zy2nr6YM25PntAAAASL1eY+b/QNKJkg6T1D6d9wYUACY40jmZPe2hft1mafjQ5GxnfhwEgBj1u8lrP18491B3P8WkH686dFdrAeDXrtMLXz2UeRfAlU/7qaTba9yuuiG7ybv0fkQlm/Xgk/Df+7qCUyT1lJQpNC+bz4MIigA97rwsQQFgHvcTcRcAFjC+fxSYbm4I7drLLtthJhkEAKhGz2afrZn30bxDTTpF0l7fnE692fm7+ALAptZq+RYANvLfPMLrVSGPAS6sOC+/AsCmzpNvAeDqz2PSc6Hr2tZdFz2ydzbbQPYAlaFkv1AdcP2sKS71yvO+k+A3/u7s46ducDFdGAAAAGm1/7jF69bk6o4NLDxJsm+l/76AAsCURPtzSQ8FplseHtrx9zJzshHV6uDLF402adMoBxrL821BbJ8uLGisWPl6QtMnvxne+Vf0lpb5RXZu57Amd6pk/SR1bbwNiigAXOntSSsAbP4cqX8M8Cqn/eL4OZcmeaARt1yw6b/IBhRqyJCZbbXm0uNkOsPk3RvreGnfBTDuxwAX/LjzoncB9Ig/c97je73JfhuajRsxYvu/klGIyqiz/7qbBRoa/zo2LCpvVntNHt0tb0uvx+U+ZNT3j6DnrN51w36/Ryb0wc3OSS38g5FgpX7T0rlo9e3b+LGCQvpzuLrzeLP92E2PHD/2wF/TW1rmnoH3dKgNak9y84Hm2qSx7tBc8diq/c3zm58jfAxwtAWAjedD/gWAeV5vY/eVcT8G2FsSe5dcsxT4jQpb3bz/jafMJ5sQtef7X3ChmbZv0boibGoe+qovF7YGa/64ha1/wmbWZfnNxe7hY7vdPO6OQuNdU4pG3ffGmd091EF074gW2K7/1tTalUQCAAAAaXTgmPk/CuT9FC4/XKY2iSici4Sr7J/FVFVFgAVqJ+mY0HVM7ysXvqkrF0zM1Le+86FzOywiNKg6pn3d9e3mhpW4R854ChqKuZ6vnS/UQjpK835++cwtPZc5M1R4nGRtkzxh5TtbJ2B2T4uMSUdZqCNOuvj9BygERL5OHf6v9VrX2gDp89MkdSYiaR3r4hjf8zpmrbsfae5HXnj+a3+Ua9Qll+00lR6BYgVBuIEr6PP1fxcqjt05i8shz/OYxeV9kwW/Ib2mif6Us43dvE/+beB5tkRTbe0tf/M3+nzTV1D8XOIrOo8bO0u3wH2D79s08GCQS79yqYO5Nd4rChpeVn1Tqe6PCjtP/h+y8fNEuaYxeYF/XBb78sm0odwuldVf8MQpV08O5Vf2uGHw62QXIuyKP5brJ6ubMwodT7yA/9L0HNVcwhQ2FnghrwhsdjHxLkkBYJDTIFmMf9RddTfvNmxq/26fEwkAAACkRY8JM1oH9WsdY64hkrZv0a0dxWyI39Zyjc1lll/We9SC38p94pRzOv+BsAAxKNOYTrFXvI65ZM6uyvjZntNhimgjnMLbrOxFJxWjyLwJviwE7Jd9//6M7AIeDYymDDnvzQ2sVsMU6peS1iDPmJ8iG7rd9pQ05cLzXn9R7udfMnKnZwgOgEq8cSpVAVNBx1rt2/jCr1i/HvSb7hkLz5X7zz2Peo/Y1xNfNO3qzxNRu5skX3GsaD5P89eVrKLH4uPYyD10a8l+HsiOeWLANQ8HoY/Y98ZBr5BtSMI8t/J7iykcjP59jX+ectzDxV4AuNf499aW2fF05Iga3PTHxwd0e0CnET8AAAAkX48JczrV1NWc4nU+QFIXIoJEMrWR6xiZHdN71MK/m8LxdW0X3zt9UPflBAdYNWHKWWRFAUQy/HzEnL3c/ELJ926u6Wiz8udQbG3Q9GkDmY7OyX/W7+L3r8t55tJbsxt9SPvjS4PP/ef6VhucI6mfu9pYwnKoagv0UlyT0UQb7C6zpy8877VnAwXnZy/b4U9kIFDlY12CBtzqLGBCoe4ffP+2Cu08WXikpEwyFwDVXOAZfxxLsDOiyf3Q0PyQJ0+5+tHAfMQ+1w/+K9kH8jMd1xR7AWDrVjXHSVqTeSESYZALB8uM6AAAACDRDhq/cNsglxvsdfYLlzf5KEC+HEQh4us3voPLbqtduvblvUctuK4+13Dj9HPXX0DEQa4l4/Utx5dLcThq5KzvW5gZ4fKflvVCKqF5v/YZkvnje2RBbiVpSMZyx/e7+P3LWq9Tf+01FNhXtdPPfbdL0Kp+mKST5Wpb6HESmTffSJu07EpaugG1/G1me4fyP1543uvTPAgvGDHi2+xqg+pYi7Msroj1Yun6W1ILmKrb/Wfcv1WYs4vl1re4py5GWSxa/CPLy7jbXZGnjeDRyP87RGIHaZPUK3Tr9eSAqx8ztxH73jDoRbIR8c971VGoF5d4H8vrbjLrT0+NbOV192MDN36JQAAAACCpeo6dt1PPK+f/xnLhP1zWTyr8R720LtoTcT+KKHSRdEltpuY/vUctuOnQUQu3JSQAqtXRl8z+7tGXzp5mYfAnlbv4rwyzddyvrxLrSBqz/KOav/fLvrsf4ag+Q4e+tsbgC9+8KGhV/45cQ1Yu/nPWsBU0NsbRmJEe8yALg79deN6rtw0f/nInWh7F5Y3FkGeJzyGUbXy26PuE0b+S7L7T7ut2/+mTb/Rc8IbJjlQztR3N9hWLuk/GO0Z5ifpjqdY08d8n2jfPYxG1ietAl7/wxMlXP/xk/6u7k5lILivTe5MzR8a6A+B+N36wtyR+JIlGfeg1FxMGAAAAJNFBYxZ8V6YL5N77iz8Xju7+iF/RUV5tJfXLyU/sPWrhbxXkLp1yVpfXCQtQuWM6O1J85aiRs7dRGIyU/JDoy3Ma7xCF73aT7t2x0iyPNususyf6Z9+bZDU1Z9x4/kYfEL3Kls168LHePL7BbYRJ3UinKMY65rNoBvfghNaBHXLh+a+d968335w4eXLfHGEBWCOlNbaNj/nR7ujneZe9Ku+nj9KvpF+f8ut1glathkka6FK7VPXHJl8e/Q6T6Xm8dcs+e5J3RjTTwTL1ePKUq6+tbR2O2PuqIR8zXqPYfMg/t4rL/XjeF933W8WKdQdAc51M543MbU8O7PoeYQAAAECS9By3cLeeY+ZPNflfzf1g8RsT0qr5nhtI3kdh8GrvK+Y/2Pvy+TsTNJAw5Tkmu7HFr0925rpHXzr7agvtdZMfunID0Qbpy6HY2qzAj+Kmvp5r+NfJF783pM8kz9AnKtOQ7Fv7LPYZr5jbrSZ1S1sOVe1Yl+I7unx3vAmldcx1/XZbbf3nCy547XtkLaoR67ryD7ge4bGS0Hbl2+ky/Z7NPltz3+DfnBq0ajVD0jA1W/yX1N3uLN7+Zkk+YPzHKvPOiK0kP6N+uc14YsBVA57NZmvIXHCjk5xriq0AcN9r/ttN0iHVeJMZw0J5eSi7jIQEAABAUvQaN2e7nmPmT1UY/llSz2JX8HyBjFR9U2B2qILgb71GL5zSe9SCXQgJKl16H5fKj0r56neT1x41Yu7A2pqaGZINklSb4NG4EmaUBOZN3EH+xjHbuzRu3X+9/3y/7HvbkIGV47Tsv7sNzs64X66nJO2Y1vmp+C5uaczLVK8piriu7wah/pQ977WJw4f/az2yGBW3FmdZXBHrxdL1t6QWMFW2+wZN/uncjxe8IvdrJa23ujhSLFrseSzCMBX/xyNfHSJtg7RJUkdzXVc/b+1XnxwwYT8yGNF2r8ov1ItLbAWAQSZzopL8JWGqVvc28clTN5hJIAAAAFBuPcct3KDnmPm3eph5TSsK/7DqAp770eqItJmrl2R/6T1q4W97j1qwNX0fQJodc9mcHp8tmPuamU+QtG6lTy7pLWytSLub6ZX+l7w7lN0A0y2bfbZmcHbG4BoP/iX3I/LOGwpUKmhsTGWhYuDSSa2Cun9kz3/9QHoDWp4HFkOepbvYF3GOzzEU5xn9q5zuOm3SZveePvlBD+xpKdg+9r5iUfbJit/tLvK+Hf994krFohZ7Xm9nYfjEkydfdd9jAyd0IqNRflam9yZjjoylAHCvrNfI/CQ6VySWem395YQBAAAA5bTPFR+u1XPs/JHy8C1Jv5RUuh9n+Q4RyWaSDpPsH71GL7rxsMsWrE9IgPSP6dVUvHVMdtaGR1029yF3PebStknpEIUXofCDeVryZqXXt5Hblev96/0/nJR9ZyuimT6nX/DW9z7WBi/JfbykDkSkJHnDfBbP+N5V7o9mz339xqFDX1uDGAGskdIS20QXMBn9amUrHvc7eWimJviHzA6tqP5opWrfKHdGLMW6yiI8T5l2RmzkUkw6srY+fOPJ/uOPYvxGvvngJc7JeN5nkZ+vELEUALbqNLuHXBvSaSPp9tc/0X/TOUQCAAAA5bBX1mt6XTl/UJuahrflGi5XO6KCSr4BK+KWv8bc+zfU2IzeVywc0WPCIn74BgkT4zEpgCheNuvBUSPmDgxrMm/I/RDFHFPaoPw5FFubRfhRXNojsOCV/he/O1DOfnBp0C87u93gi2aMtYz+KNdOSZwzijlm1Y51Kc6+fHe88dX/O3Pz/mu21isXXPDa98h0VDrWdeUfcNPzaNdkFTCl1a8HPfTdOR8t+ovLrjR99V1rZe12Z/GOFZbkA1bDzoir1cnM7n36lPFTnjl53AaM70jmAFDZjxeO6xHAJ1T7TWZEA+enuaBmNAkMAACAcug1bsGP26+54GU3XS2pIxEBWmQNmc6vXepvH3zFgv7ZrAeEBNUoOT8iUj+0OkdcMW+nN2vmvqAVj/vtEG8boKVdNJk/vpelcKudZBP6j3j/6VMvfXcTOklyDc7O2KudPn1d8jPkSsXjm73kacOupMldI7To3N2DUM9fdN7rF2ezz9aQ9Uh13rAsroj1YjpPSuf70l1D71rj3sEPjrUg/LNMO+cXrrQVi0Y5vpVptzvL/wVeNXnSxG5nrl6h7I0nTxl/oos/6kKh3auyC/XiEvkPEfvdMLezmfekV0bSga598pSu84kDAAAASqn3qAXdeo6d92sP/VmXdijVeSk8qLr70UrvN53c7MaX2y36S88rF32fDglyDUlwfPa9NkddOmdUkAtfkmk35rp484C8KTrgP2nI2ev9Ln7vOIKRLGef/e/2p1/01g2S/06uLSLNGyPPyj2gRjfWVcwNSY3kF6ph3T9ksy93o69g9XlgEeVNFd7Uo4B+E0NxXhF/lMI9ZsvcO+TBA2oa1viH5GdITf3hRAly35J6sKTudhfjY7Qtvgb2SM5RcLHoWua6+elTrn7siZOv7MwIjnLd21TbNUVeABh4w88l1dKpih76l3jr8EriAAAAgFL57k1e23PM/NPDjP9LbkeLb5uLWc8TAnzZFb4bhP7Hg0ctvOvA0fO7EhCAkbxcjrhs7vbLa9u+INPZkgrcxSjZO1nl+6Mos3Uq8qyDSXf0v+T9ycdn31ubiJXfwOyM3evaBX8z6eS8K15Qlvmpssa68s1D7vq+6jOvZs9/ZS96IcihuI+JQmNb3uI9o6usxqQhk9b99eDf3uTu013atLTtE29xnhfc3tW8w2SyHqMdWV+xRhdQBwSq+fuTA8btx5iOpjqOF92Ho3qfpfreKvICwNB0PB01gonZddUTJ270IZEAAABAKRw0dt4eXT+Z/6qkq/TFowATei8IJKivtfiW31z6RY0H/+41atHgvbLO48NQjQkT+ZjObmwt02eSZ44aOfecQP43yb9dzmtJd5tV5w/mnudHia3N3H/W2vSXftn3v8PYWx7Z7ButBmVnjAzkz8vVnRxifkrF2GXRtoFLndyDJ7LnvXoyUQZ5hnTNZxZh2yWrgCnJ7hny4HH1nnlLUr+WfvbK2u3O4h0rIt+5MspHI1Pk+DWdLbTHnjp5fHZSn0kZxnyUPy+s5NfkJbqmSAsA973xv7uYR/yIsOp8bNXiXG3dOJIWAAAAcdvvyrlr9Bw7/2pz+z+TfYuIALFay+TjO7T98K8HX7nwe4QDla6wAgh2JYnSL0bM3axmxtzn5H65pFbxtBmi7KLFt0Ecf62emLzsbuZ/6n/xuwPpNKU1MDvjWx+p9kVzHy5X6n+08zz7phfdxVM6t1m52iDx800rl92QPe+1mycMnNGaEQKpGuuMdV1q56cWj8lJLTqqrnuyu4Y+2PnXgx982Fx3SLZe1HFMXrFbKdYFZdrtzvJ/QbIfo122YtGMSRetu96sp588bVQ3Rny0rKtW76N8CxVpAaB5cAI9MZLh+uan+2+xmDgAAAAgTgddOW+fVhb8Xa5BimF38IJWwjRLNd2PVnG/8W97qD/1Hr3w2j5XfLgWHRXkGuJw1Mg5xzUEek3SDyp6nrBk5wF5E7nWJptwcva9X/fLzm5HOOJ3+oVvnhTIX5Jr55LljZFn5R5QoxvrKvqG5MQPO3z+XDb7Mj9ic39dUH/3mPMSlX5PFkNxXuS7qVXnHH7vkId7ZRr0uqSDE32PY0k9WDXsjLjSeSy+OHokh450Z8S9Mg21rz518lX7M6IjRYNcaq4psh/5ekyY0dpcR9GRilZvObuaMAAAACAuh4z/aO2eY+bfamZPStqMiMSFr+fRzP2469TlFv6r9+hFfQgHgKj0GTez7ZGXzb3V3e5wqX30Z0j2Tlb5/ijKbJ2+FZOvaN6jzZb/8cQR77OWjcmwYe+sNfiiNx+Q2US52pI3FZA3FSMZ89AXMd1d9ZnnR5z/Snd6JZwcQkLaq7zFe1a1XWXSgElr/nrwgze7h1MkdSmufcq0210B11X4zpU8IjeaXE5QX7GWncelTqZw2tP9x53OGI8o/tgh+vdZLOcrhcgKAL22zYGS1qGDFu2B6YM2nEUYAAAAEIeeY+cf2JCrf0PSL5W2b0f4PhmJ7GtF3/KvL/dJvUYtmnbYqEUbEnxUeMJEPqZ7wl5fbkePmN8983ntC1/M84mU7jaozh/MPc+P4qVrjW/XhP7SgOy7+zEWR2tI9s3dlrUNX3FZX3KoGse6ypDvjjdFtMFmOQ+ez5772neIOqo2z5C6ezeP8FjF95H0f+F39xkP7lRX2+qvLp0YRRwra7c7i3esiHznykh3u6uq+8Y8rzcj01VPnTLuhmez2RrGZ5Q+L6zk1+QluKboCgDdjkpku6VsoRxIY0lUAAAARK33qAXte46dN1GuRyXxiCIgYUx+YIP8771HLTyOaKCSFFYAwa4khThy5JyfhUH4kkw7lb7NEGUXLb4N4vhr9cTm0Lqh2WOnXPz+qXSiaJyefWtQqOB5eWXvFO559ncvOm1SOrdZudogdfNNZ5k9e/G5r+7NKILEj3XGui7Ji8HCd1OLa/Cu5gKmlvn14IdOsVzwosy3abwNrbR9JcI2SdbjoMu0210Bj4BP9mO0k1Msaq6Tc3PXeuzZwePXZh6o/DmusLdV56N8CxVJAWDvWxe0d6knHbdoTz926oavEgYAAABEqde4BT8OM/6a3E5SCr5t4wvnqrkfpd+sam1Jd/QavXDKgaPnd6XzglxDS+yV9ZqjLpt7ldwmS+qwaptVwWO4LNl5QN7E3nAZl1978sXvXdVnkmeIa2GGDn1tjdMvmvFruV0tV23Z88bIs3LnZXRjXbVs5e4d3Gx69vxXD6MfVfPUZRHlTTR5iUq/J4uhOC/y3dQqdw6fNGzSWvcMfnCyS9fLvE3kbVKK6dOSerCk7owYY9+3+OKY/J0Rfd9wmb/wTL/RWzDCI8GDXCquKZICwOXLlh9qUls6UJFNHYZjiAIAAACi0mfczLYHjZk3zkP/nVTZO3gkF1/Po4B7Q1evjAdv9Bq94CiiAaApR1/+n3W61s573KXTSzxSpeSYzNaVumJq5PWnd/zX+w8NyL6xJhHNz5Ds21vWr9nuBUlHkzdVlzdpXTEn9Zit5TYpe+5rJ9JDyUtyCNXQFwva7a4Cusq9pz+yY93y2pck+1l87VOm3e4KuK7Cd66suMfaJvtYCQi3N/7vt/Gg5sWn+o35ASN4NSr+jx080fleOtE8AtiMHyWKH+z+/vhpGz1JJAAAABCF3lfO23FprvXfTDYksnV/su4FgQT1tVi+YljX3O7tPWrBA4eM/2htGgQVOTiXaUyvlAKII0Yu2CoMW70o6adpu3Yv2evT8uO2VU6bWXnzzKVeobV77uTs250Zm1tm4IVvHRTKX3LXDunt75buvKmw+SnNS5WI2iwj08Tsua8fT+BRDRi7Eny/VbXHitfdgx85Jgz8BUlbxvnZ0/5o15KOFV97TGjyd7tL5hgb2T20FfXZO1oQPPF0/3EHMO5DCc8xL/Ca4s7pon8I7DFhTifJ90nV2iaZ/XKszFgnAwAAoGg9x847NgzsBZm2JRpA6m8W+4Z1udd6XfEhfwGLqrHiyxHL8/UtyqeKidFRl87/gXnuecm2iq8N4ns9ou+inufBvNQXWNpR5Luy4IV+I2bwCKlmDLrwrdMtsEfctVb1zjct7+9eziRP6dhUxfOTyfyW7LmvHclIg0TmjbGuS/KASwFTMj2bfbbm7iEPXyHzeyS1yz8sSX20a3IWE4neGdGS0Peroli0ncwfeerksYczJ1TmHJesexEr03ubEpTx3ZLCmrCvpBo6bFFmr9Vx8X2EAQAAAMU46PKP1+k5dv6DcrtTrnZp/ix84Zyge1n6TRJsbBY+e/Cohef1meQZOjTSlmuM6dE6YuS8/qGFv5PUqeVtUPmP4Ur6ZyBvStlwJkmbB2Hw+1MvmbEdo8aqBg6c0XrgRTPulNlVciV2beFWAXljqc0hxrriZWS6K3v+qz0Zdapt6rIY8sCqJW/Qwq4Q647XFuc4HWUBU+nce+bUjrOWLH5G0rCWfEaPN1wln/fL80d31fF4YF/tIZJaLBplX2lSK5Puf+qUcUcz6KP4nLAK+zxNCyK4tr50uOK4/JrJfberIxIAAAAoVO/R8/a0VstfletQopG8FT8QgRqXLl3+3qKneo5buAHhAKpPNuvBESPnjJX7jZJqy39FlfUYT4pW0rdiav71tkHOM384OfvubkT3K6ef+24XradnTTqWvCHPStdmVfs46Vq5Jl987ms/pfeRZ8lTPY9kpy/G235eyLFS1FXuOfPhb+XC8M9y/aj07VOC3e4smlz3gj+GxdyvC/uQpdntrgzHSkDuNf/UB5OkGnO/+6mTx57EaF4tkvjHDulb1xRVALjfDXM7y31POmNRPq218CbCAAAAgMLumN16Xjl/eBjYc3LbuMruBYEkJWOpTrR3UO+v9h61aF9iDsb0FGRsRPqMm9n2X7VzJ8vtjGodNQt/fdUWnZSvzSxRebauTE+ekn1vdwZcafD5b23rteGL5vp+y9uYHKqksZE1RznawNq4+SOXDH+F39LA3TASMs9Vw7GicfeQRw7wUH+SfPNV+3z8n73CHu0a71hhX10vj9Eu9jwWYeiKOlZg0k3PnDJ2MHMAWtLpvMQ55gXmfZw5XVQBoIX1B0slfERABf7QZ657pw3Y5COSEgAAAPnqMWFRh4PGLXxIppGSaogIUC33oNZR8um9Ry0cLndKYlGRCZPvDyqe/sRu1C+yczsHS2ufleywUp6XIpT0pZLneTBPQK6XyFpu/kT/S97/fjV3rdOzb/0orLE/Sr4pidbSPLCi88YrI4cSddkpnZ/WCAObOuL817Ym65CYvDHWdUkecClgKr+7Bj98qqRHJVsrurAk9dGuyVlMJGZnxIhOm+zHaCe3WPQbB3aN/93JYwcxP1TOHJese5HKerxwcY8AtuAwOmlxwiCYSBQAAACQr96jFmwd1DW8YO4HV+pn5AvnBN3L0m+SKCNpZO/Ri6YcMv6jtengSHquMaYXps/l87esq9Xzkr5XfBtUzmO40voZyJtSNtwqx+wQePjUKZe89+NqHEtOv/Ctw93tCbnWSd18YxWQN1YROcRYV7x1cu7Ts9mXOrLCqYapy8gbxDd2r7LbcrwTTbILmOL4vG53n/FI1syuVcEbIVl0n8eS0R/L80d3VhV57as9RFKLRa3kY4av+Oeq35089pfMHcyblTOWxHNNBRcA7nPTO2tJ/hM6WlH+9uSAbn8jDAAAAMhHz7Hzjwgz/pLJvkU00oKv5xHfkBDW5f7c64pF2xEKoLIceem8PYIw/LOk7sm9ysp6jCc/vqdvxeT5vXYNd59yyiVvf7eaYnr6hW+f6YFNltSGvEF524zHSUvaTPU1k27q91ItPZE8I4eQzL5oBTWjF9IXEthVbup3U+3dQx65010XJad9SrDbnUWT616i9q6s3e7KcKzE5J7l89/MpZue6T+uFyN7Jc9DlsD7xnStawouAAzCVj0ltaLLFtHZTez+BwAAgBbbK+s1Pa+cN1au+yWtWdXB4Ptk4Ou2MvMXD75y4aGEAozpLZfkIpSjLpu3r5s/KWldOkjhbRbvrihGG6QzzzrIg8cHjHh/28pvLLfTsjNGhuZjmt8CtLk2I4fIM9YcxbXBN06895xONdfSGABjfXkHsWrepW31Jg2YtGa7Nbo8KtkvkhTH8he7laLvs9td8s5jEYbOovo8NTJ/4Jn+Y37ELIKocz+e91nJc7rwRwCHweF0oqJ8mmloez9hAAAAQEv0HrWg/ZprLnhIZmcQDaCE8vq+q6w/v67poX7be9SCLI2GlCRMCzPK0pGBETpi5NyeoTRF0hppu3aKViLKIYuyDaw8bZDs34E7eph76rQR729WsV3J3QZd/M54k4YzD0V/TI85L6sqvAmdb0owP/W7+PzXTmfeA+s6NDXgJq+AyUrQp8oz2UwaNmmtZa3bPuGy/fJeD1j0bVK5C4CYj2XJDIeXKI6VVizaiLYym/q7U8ZU1a7u3LNV4zUVpqACwD7jZrY18/2JfVEf5L7pg9ZbQoIDAACgOT1Gz9siDPzPknpW22fnC2TQb/K9Y7aLeo1aeFufrLNjPxKXazy+o3lHXDrvGLk9JKlNHNdZFT/kGnmTziCX+pi2QS4Mnzjxsne7VNrYnM2+0WrgxW/f5/KqLS5KZJ5ZdeUlhUMt+dA+Nnv+awewokz33VeUOVSWwlY2Y03vmspWbtd4G9NL9NnLMR/ce+bUjsvq2vxO8j3i+aO2OLtKNReLRtk+CStytIReVx7niLkNO7jbY0+fNHYr5pFqmzIrrXgw+s9TUAHgkjb2E0nt6GWFC0PdSRQAAADQnINGz/9hJrAXZdqWaKRdAn7W4sv9qmDSCcvbLnry0JFL1iMaQHocMXJefzfdJakmvpnFYpgnKuvRoBStVP4K62uv717boCn9srMr5nvugRNmtP5QrX4r6Ygkr//ybjPWsBU01vE46a/JmPuvs+e8sik9krwhh5C4bxUi6xrJ7l93D/7t+g2hPyfpO9HncMs+e6l2Rmy22C2ipkp2sWiUu91FW5xX8qJHS0peF5wnnS3j054+dSTffVbgGirWua3C10oFFQC66UC6aVH9452nTuv2JwIBAACApvQaO/94C/xpSR2JRqrvu4By+HEuU/dCz9HzuxMKMKY3LinFW0eMnNffXTeowO/qqknhP77zg3n62qwkdssEy+/OZj31uXd89r02+tAeclnPlftmNG1gMbQZOZTSvKmCNUccj8NbbV6ua4FNmjBwRmsaBizuGevjim2iC5jK2FXuHvzb9d1qnpO0XXL6e3mL3WI/hxW21iz0upK3M2IpxowSFIsWFDoreu20Gltarva3k/pkeQpKha4hvMS5H8/74riPblxBX2yY6yA6XhGDptvdMuOeHAAAAI0uGHuOnT/SXbdLxg0sUG55fd+VqFu97oEHzx9y+YLv0ohIaMK0MKMsnRnYQn1Hzj/OXderQn4ppWglohyy0uVlbG2Wlh7tftg8vXdlmnvNkHEz27ZX+IikHuRQaYp9q3asS1Bee8JeX0RMd/2ww2djyF2wrsPqBlwKmOJx7+mPdHGr/Z1kWxUTx8J3U7OU5XxSH0Vr5QmtFRrbyikWTc54bz9eb901b2TO4KaiMq8pf3kXAO53w3+3l7QJsS987gyt4W6SGgAAAKvz3Zu8tueYBXfINZxofLGAJgSg3xSjcxjYswdfuXAfQoEk5FqCviROxFUccdncI+V+qxr9js5os/Q2b4W3mVXWMU1nnHzxe/3T2D/6ZWe3a1iyfIrk+zErJTxvrIJzqFrnm+iifNol577al8ytxDWHJSpvvArWTVW1cF1lN7V4GzPZBUwtd9fQBzvXB8EzLm1TivnUY+8qSS0WtWTErcXnSViRo6V1kLYStuH//njuhKdPHnM280m1TJmVVjwY7efJuwDQ3Nj9rzh/fHrAJu8SBgAAAKysz3Xz1+y2ZMEUmY4lGpUqAT9r8eV+NWrvoab1umIRPyoCSZr3L513qMvulpQpZqYo9JEo0c4TlfV43YrZVYoVVl6vN/mEky95e880fe6BE2a0bq2lD0naJ23rv7zbjDVs6sa6apkzImsP0y3Z4a9uRc8kb8ghJEOUu1Inp3/dMuTxdZWrfVotfOyvl+izJ+bRrhE1lcfVHyM5T4U9RruAz+6RXH7pCya96SNc/vQpYw5h7K6cNVSsc1sFr5WCAj7XgXTPorrFPUQBAAAAK+sxYU6npUv1OzcdQDQq7r4LSIJWZn7fwVcsPJVQgDH9m8rxJWSfy+cfYKb7JdXQ8PG3Wby7orAYibfNSjxXevCb07L/7ZaGmPa76aVafWgPNL7zn8XQBhZDm5FDKc8bFiZ5tUGTedneAp88bsif2hJ7gLG+dONTAgqYSrQUuGvoE2vUqn6aSzvE8dnjPlZy53kr6OVeojjyGO1iz2MRhs6KXjs1ITDpnmcHjP42M0tlrcO9xLkfz/viuI9uJBHyefFB1/9nHbn2oMMVrMFymQcJAwAAAL6xzh4/b/NMQ/BHSbsSDSCh8vq+K7FfywZuurbX6IXn0qBIUMK0MKMs/Rn4hSMvXbCLhT5ZUqtK7QEUrUSUQ1a6vIytzdJX29U1Zw2/HThhRuskX2SfSZ5pNWftuyUdTL6UquNZ6fKmGsNb6vnGktpmtuMnbdteTg6DdR2+PlhVZwFTEOk5b+r3Uq1yy38jaffY1gMWfZuUY9IuVbForMdKZmgT/hhtiymXSzphrRGGwW+eHTx+beYPbioq55ryk9fsmVNmHyXlL5PTGftnpw9afwHJDAAAgC/1GjdnOwv1R7m6y/iatPH7dwCR3U67Lus9akGWSKBcY3RyxvTSf7nUZ8TczUILH5W0Jm1Wcc1bhW1WsTsq7t7wUc345HYGt87/fOcWSUcwA6Uwb6wqcoj7vqKa0AZefO6rexMIlHSsYzPW9C5cLWXX28JjRTkfZLPZoM2ac+5w2QHlmnc89tBXc7FolOdJWJGjpXWQtnKea4twWXiby5nZKnrKpHiwMXkVAIYe/pTbsGJmD59EEAAAAPCl3mPn7+wePCepK9FAFd6Pxn8LRks31QkuOviKhZcRB6B0Dh05az0LbLqkLvmNX3H8AGMxzBPV/f06u+MkuQ0K+WHZTxmQffdnSfycp138zmiTjq/KvOFnvLLfPHjMeclNjiQpkOn2bPbFDvS9yri/9jz7pldXf0fkc2oMBUwWxRq2fH12s0++e4Wko8t3vZao3PcSffTq2e3OYsrleCctj+Tyo/yuIso88UOfPXnsYGYGpGcNFd015VUAaGb70CEKVt8ge4gwAAAAQJIOHLdgl9D9KUkdiUYF3rM1iZ/8kZCeaDq396hFY4gEEL8+42a2rfXaRyRtTTTKM8nn+6Mos3X5V0DlbgM33XzaiPc3S1IMT714xqmShhaUQxZVmxl5U0F5Q5tFPw95nsds5PWbWH2bq4g/d/RpXXehFH2qwgqYYup+d57x6C/ldlYxJ/aKzaEy7nZnCb2uss8PSS0WtQg/lhW9dmrhtY/63cmj92SGSfN8Z0XnVvTvsyLOV5r76BYXAB5ww3ubStqCblnwyPbMM6dtuIg4AAAA4MAx838UePg7mdYjGkCabuui+aogWfzMXlcsGEfjoswJ08K3WWwZGGvGupsta3WnJL58Tkublaq/l/yYZWqD9NYTrJ0Lw/v63fRSbRIuZuDF7xxjbtdUTt6kMYesdHmD+Mc6S3ybnZA9/7XetBhYp3FfVcqYJquAqTh3Dnl0H5du/N91WbRtEu/nqYbd7izefmBRt09SCxPLe6wEj/e1UnDf06eO5PeXFMxxyTpuuv8gouU7AIY1P62a/hDPpf6GBAYAAECvcfP2C8ynS2q/+oUjX5M2hsgAMd2vmg3pNXrh5UQCSR7T45sD4v9yqe/l84a7q0+1tUEi5u1K2MjGomyD9BZZldH3MnPWzZb7Ik69+N193f02sT1Tiuebxrp4SnPIqqzNyjUFuE8cOfzlTmQySpI3zDAVsV4s3eCd7F3a7hr86LZumiypNur8KfSjeFSf3Zr+D6UqdktWUWqZdruz/F/gBTdFHI+Tr5Sb8UYLZjeyXKu7Xc4MV5HzXmU/yrdQLS4A9EA/rZ7bqsiFgeqmEQYAAIDqdtD4efu46xFJ7YgGuB8tDe5cW9gdXOf0HrVwOJEAuRatvpfN29/dLik+pnH8AGMxzBNGHpA3CW2DInZRMZ0zIPvOD8r1mQaMeGtb83CSpFbkjfj5LgE3Dx5zXnKT8w1d6jIBu3VXwP21x1K4wYBYVZ0or34TQ3FeJLuplabP3nr2I+3DQL+RtHZy5hRLV+5HdAovURx5jHZhn90jufzSP0Y7z/j0+N3JY05ljimnIIHXVLnFgy2LtrvJtTeds2AvPnbqZnMJAwAAQPXqNWb+DyzUw5LaEA3wkz8SamTvKxadQRiAaBwxcsFWLt0vKcPIX4zovpjN90dR2qz8K6CEtEHgZrcMGTezbalP3C/7ZscgF0xVUT9gW1HplO9uNeRN+vKGNot+HvI8j9nU683184vPfe2ntAN39Glbd6EUfarCCpgsivO6Zeozt0n6VpQn9grLoViLRSN5ebJ3mIx3fkhWsWhkfaWZHbA93s8y6umTxm7FTJPG+c6Kzq3o32dFnC/+++gWFQAeeO2s7SV1pTsWvNiYShQAAACqV+/x8/b0FY/9XYNoxITvqJHIvpbCn4XMx/QavfB4GhplHZwj+iGgnAUQx2QXdQg994iK3nWiuqS7aKUydrKKrQ3Sv1bbetmSupGlPOGQcTPbtlJmqqQtKjdvKiOHKLhL8XxjKWkz8+smDJzRmpZDmtZpiH4+89S0dfn+2OauM6cPl+lnqz+PJeoR9oXGsbKKRS3efm1Rt081PEbbEtD3I+8I7SwT3japz6QM80m13AcWe9z0foHRogLAhoz2qrr+EKFMpmYKiQsAAFCdDrxy7vfCUI9JWrPla1y+VgVQvrtsc93Sa/SiwwkF4pacgonov1yqa5W7XbJtqr0NErGiqYQ/ErAo2yAtRVYJbDizQSV7FLC71S9Zfruk3ZktkjbWWQxdPKU5ZGlps4qw9UftPzubbEbsecMfV1bEerF0g3eyjnXHGdN/6u6XlKaAyQr6Tx7VZ7em/0Opit2SVZRapt3uLP8XlOox2uVfH1mSzrVnx47/4aknFTfvVe6jfAvVogJAc/9B1d5WFe/t6Sev/0/CAAAAUH0OHD//20Fgj0nqQDSiwR1IRd2P0m+SK2Pu9/a6fOFPCAXItfz97PJ5AyQdVo5B26M+Jj8Cx54H5E35Fz55tEHgslsGToh/F66BF789XNIR5E0jr2dsKnsORTfW0Zh5hP+87PBXeXxdqu+v4yjcIIeqrBPl0W9iKM6LfDe16Nw28LFOUni3pEzS2iS1+WrpimP5d0aMcX1s8TVwWotFCzmeu0Y81W/cDsw1qR9QuKYmBC07j/2ATllwGz1KEAAAAKpPrzELtwlCf0rSukQDq8dP/ki0Vgo0+dBRC7clFEDL9bli7g7mNkbSar+3q47isGTvZJXvj6LM1ulbMcX8GLGtcx9lhsZ5itMufruHy0bElkMWVRsYeUPeMA9FeMwWtEFrCzSB3k2epTOHEF8fSUkBU0uvt6B1iltQ63dJWj/Ofs9ud4Vdlxf8MdI2FqV8d00rQV+xlvRJizMurYMgd/tL/W6qZcZJ03xX+B8hxfc+S+yar9kCwH2u/8/mkrrRDQscx3Lh40QBAACguvQct3ADt9zjkjoSjVIuvgkBktjXPM0fc92c9NiBo+d3pdFR8sE5ojG9lD/M9srObqfQ7pfUlnZPR5ulYzFildNmlvaZ8Yvrd503IPv2lnEce0D27S3d7ddq6R/uV0TeVGcOsVto+rpdQtps/+z5r/2MRgOQ/Hm4dH9sc/sZ086UdECLzxP7I+yrYbe7aD+jx96tk7rbnUXQ39Jz31jeNfr/zvfdJbZkqMC8lsBrimKMavaLhIxnfkC7FTzoLm1fb38gsQAAAKrHQZd/vI4897ikTYgGgAqwaY2CR/tk569JKBCHwn5MT2aBSOtWmask+1aUx6ycNkOUXbT4Nojjr9Wr6i8x2krBdVEfdED2jTUD2UOS1iFvkj7WWTR5YxWQQ5aWNquc+ck8vCKbfaMVWYrY8sYqL28qaTFY+G5q+b2wVAVMxR7r1jOm7mSyy5S06807j6y0fUXl6CulmOfLtDNiAY+AT1bcio9jaYpFI7pu0/nPnDqG324q4abC4uxjVqb3Fqf5vyQM/AeVeZtUgm5q9ofJZ2y0lEgAAABUhz7jZra1VsunSNq++MUk62zuQJJ9f02/qaqk++7ytjapzyTPEAyQa6vXd+S8Q0x2UhIG7fwLIKJ/DFe1z3UUSSa54SyqNtvvlOy7vaO9sjY3eRT3EdUy3xh5Vu4cim6sM9osvzbYwhoaTiEOaU07iyhvoslLVObYHeujXYv4o5SoTcpOahVYcIekVlHEsVS73aXqHseSerDyHqssxXsW32dPa7FoEY91bWc5v5r5phLuTSrxmopT0+wrQv2QR2kVOHi4P0EUAAAAqsNeWa9Z6vPvl/QDooEW+lTyeZLmS7bQzRaYhwvc9Km5fSrTpxb6YkmfmAUNX91n5JbmgmCZma2dCVfcrYWeW8tkgSS5qYOZZdzVTq513HzdwG0dN60j93Vlto6kdSSt26J7QkCSZD2WvbvwSklnEAvgm/pkF6/rWn7D6lNHq3wr7crvK8Z8X5+QMUPRf70f3TGrow0qS6La7IuuaNKYPtk3Hp+c3a6u2EMOuPjt/nIdXbIciuzwjR+IPCNvmIfyP2aL28B1QTb7yp3Z7M4f09PJs/TkEFoS48L6SP7tVaq+uPrzNHO9Lfw4ny1Z83xJ35Y8os/T/InLG7fo8/Sr80SZ86seq8nP0+Sp87uu8o+x8cYx9mM18bLI+kozb19xnqZeFFlcDn725NE9977x7EeZj9Kwhvqq3QvN8+jf13RfLNd41OSPPT0mzOkUWsPWdL/CZDIZCgABAACqRPsO869zV28iUWbJ+o66QdJ7kv1THr4t2X/c7P1MJvd+XU3tf6YPWm9JOS+uzyTPfPreh+vXWsMmbsEmCm0jBeHGcttY8k1ltqlcPPY1kr5WGT+nmtmQ3qMWvjZlWMc76QAoyeAc0Zge9w+zYau6qwKpK+0cnTzaYJ5cb3tgc8x9tsvmyX2OzJYE7ovN7aN6yy1RTauclks1reoXN1gulKQ2y9uss+IQyxRmgox7poN72EEZ6+DyDhbaWhb42u7W2d27mamr5N0kW19Sm9IuRpL/I3yL2+yLj1IhhUbdO6rNaZLGFXOQAdn3vm0eXpXgPCvxaibROfSxpHfNNctNcyTNNfkCKZgfBp6TfIlLdcrZZzUKl1mmdmlQt/yzMPS6ZUFNmzatatp+daPQ0C7MZdqa59aywNaSq73JO7iCtWXe2VwbyNRZ7l0l6yqpHUWS5e92yckbX0/1NlzSMBoPQHLn4ZYdq5Cx8o4zH/2uXMPzudJvnCfG5XXzBUzRxLH8xaKrHGupXO/K/AOT5rk0z2VzAoWLQmlJ4PZJzuyjQFpiGeVWHDxcumx5sEwy1Vpd60zrVu3+d3TPtbYw065BvraF3t4Cb++htw9WrJs6u6zTivszdf7in05Nf+wV15u8YtHi+so3z5O24u1SX+8qf3hx9Z+GjHtmj/Fn8ERP5rWKuaYmCwDDmtxu4o9RCjVr+snr/5OEAgAAqHwHjZt3prv6EYmqNl/S3yS9bK7Xchb+q91nXd6anLW6pF7w5L6WkzTri3/+uMoL3O2gK+ZvlgmC7SXbLpTvaGbbSb6NpFqavGrd1GvUojenDlvvRUKBqBT2Y3oyCkT6XLbgIJf/IspjVm6bFXW69116XbK/Bwpfz5lm1Ne3entytvOnRXyMjwp94/HZ97oqaN3dzbc09y3d1F2yb0m+teLcXfdr3an4Nojjr9Wrb7cgk10wcOSMu685t/uCQt4/MDujQ07hJK2mqJQd9Mo6xv3XpDfc9He5/UOuf7dqCN+9/PJtF5Xrms499+9d6jI1m2cUbuEebBHIt/BA28q1naS2ZU6ExKR+NeWNSYMuPe/l68+/7Dv/IWsRed60aBcolGvArbQCpnxls8/WhEuW3mwFr7tLVOSYdx5Ff12x9BXXTJnekPnfFfo/FdjbDTl796hrj5pdzux4bOCE1p97+80yCjbzwDc3980l21zStyRtISmT/7iYR5s0+9I8d0Ys4/qo0P5Y6E5p5VuY2ubLluaGS7qQ+SU5c1xhb4urjxVz3PLcJDU5MZr7rm7xDRsVvmB+jigAAABUvl5j5h3irtHx3PP4FzcvSNgdSINkf5OHzyvQ84HV/O2RM9ebWXn33ObTpHe14p8pX/7rfjd57QdLPto6UMP35MEPJN9TUnf6TdVobfIHe45buOujZ3T8gHCgmnOtzxUfruVhw01lGKAV9aOpXCaL4DFcEfnc5S9K9qfA7YVluYYXJ2c3+jBJbX9HdrO5kuZK+r+v//vjs++1ydVkts+47Syzb8v1Pcm/rRb82MQcVcrOF80uKl+8fu2GuuBcSUMKuZJQwQ2WknVUIucbW3HLVOT8tFTSizJ7wc3/nKur//PVI3eYl7TPOnLFNc2T9MI35qI+ntls6ze3DILcju62o8t2Mfn3Ja1VihyKruAuyt2NqkabBgsulfQLQpG2qSuOR1oW/2g8VMj6Z5XdlmModivij1Ki+Owbf7JsoEk7xxHH0hQwRXis+O/TFsrsz+7+58DtzzWZpX859KoTPk5i1hx4zaDlkv79xT/fcPvxt7fpsIZ/KxME2yv07RXoO3LtKqlD9H0lxu9X/neZKSkWLUHcInis69m/7z/67h/fdPYM5h7m3ErQ9A6A0q4sEgvsJu6/JwoAAACVrdf4Bd/xMLxHUkA0Kloo6W/mesLMf79U/sKTZ3X9rFqDMbG/1Uv6xxf/3CpJvS+b10U1mT1d/kOZ9pD0XeXxl7VInfWDBj20V/a9Hz2X3WwZ4UDVTg65+tFmtkGzL1zNd4nVsUNRi79EdV8xzz4VKHh64Vqf/HH6oO7L09gn7lgxJr70xT+SpF+OWtA+rFu2p8l+4PIfSdpd7KRbkETlzde6t8lOHnDp2+OuP3/LvP4gZMDF7xwj19ER5FChFx777xwJHetCyf9qsicV+O/WVJsXsylez0yebDlJb37xz2RJymY9qNO/vhXmbA+X72nSTyRtWLnzTZlyKKZj5tMG5jr6kgteH33hiB3/zizB/JSOHEJLYlz+3bpKkSOF9a+bz35sQ2vwi1d3rLQWMBV3nuLzdKVi0Y/N9Ht3/527/e6ICUe8YXn9uUUynXDHCcskvfzFP5KkSX0mZVp1+exbZtrd3b4vhXtKtlWyxs4yHKsUO8A2cynNP/Uh0vmpdS6wKyQdzpxU+nkvvz5V/B87RP++5K2Vmt4B0LQrnbDgvvscQQAAAKhcPUYt2tDDhqmS1iAaib6PLNQiyaa76fFcXcOT089dfwGBbdyU87rMk/TgF//o0JFL1qvPLD/ATL0k7S9pbaJUYfswuHbt0LbDBInHnyMVY3rkGXv4pQt2MfMTKzTDS6FB0nNyezhjDQ/fdf5GFbuj6G3DOn0i6fEv/lG/K95Zq76+9b6hdKDJe0jqWnUz3So706ReG28ILpR0UkvfcHL2vU3Nw+vStjqJ/3F1sR1zmaQnXJqaa6h/NIk7/EUpm7VQX/3BzkRJOjf7z+095/u5bH+tKEZuw1RUWLdLWLFX4GF4nqQjaUAAyZyHo53Ta+r9apm1T/q9ZvMFTNFcbETFou+4+yOBB1M0157vO7lv7sv/cGQFTy9ffM6/f/HPzZL08IDbNlKgfaT//dO5mA5Uqsdol/6+KrljREHncx367Cljd9/7hjNfZPxnXivd/XY819RoAeB+17y/maROtFtBZj1x6kZvk0gAAACVab8r566RsYapkroRjYoyR9JDHoQPfvpJl98/l7UGQlKYh87tsEjSryX9ut9NXjtnyaIfyr2nTL3k2pLvDiqFn9T7ioV/mHJOx3vo9Sh1wuT7g0qkX7y7W3DFgmvcq3sH4IIKINxekPTrMOcP3JfttrAa4zbxnC0WS/qNpN/I3Y69bNauQehHyaxv02vLVR+5VnybNX2wUu0+UyEj3PH9R7wz+qYLtmj20VF9Jnkm+Oe7d+l/j2iNOM+YcL5UL9dTZrq/LggeuSbbfUk1B2Nk9ltfFgSOGzr0tTVq2tX2lHsfSQdKaltJ6+IqzJs+2eGvZ7OX7/hv0h6R5k0pdoFCwQNu8na7i7+A6bahj/1EoQ6Lpq+XqIAp79OUrLDqHTPd66FPOnLCkf8gr1Y45PpfzpR0u6TbXW5TBt76bVNwSOh+mEnbx9F8pXqMdvl3Fk30faK5h1dI2ossSMYcl6x7kXR9x9FoAaDV1Owq90jSufq6pfH4XwAAgErlbq3GLbhV8m+X6PZTctbZMd6BfGRuD0jhPd/5vPMLX+yWgQh98cjg333xzxm9Ry3YJQz8OHM7WtK6Ke03+OoG+MaDxyx6+ZGh6/2TYKCYXEtTbvYZueA4N+2eT6KUY3es/NvAZPF8qTnfXbdmanK33TOcP5j9ZjOa3yX9RdJfslk/81374MeZjB8tV19JHZjTyptDeY5dNZmcLpT0i+be0/lf754t6YckQETzjWnlB9P926VbGuqDu665vDu7eK/GmDE7fSbpAUkPfFUMqJ9rxa6kmbhziMLWyAVBJjyvJeMPkjR15ZdD5E1lyUkt+EuiItYqq+y2HG/xQjwFTN+UzWYDfRKMlcKokzGPzxNtcZ7LS/g4VUnShya7J5Tde9TVP/szmdhcWM11jV6R9Iqki6YOur17GPqhkveRtEvZ7kH+d4joi0WT9XjrYo7Xstis9L4f/+6UKw/6yQ1nTaP3V+P3BnHNk6UvHmy8ANB9V6eXFDjIhBQAAgAAVKhe4+af6dIRRCLVGmR63KU7c60WT50+qPtySZpCXEpiyrBOL0l6qceEGUNrlnXoKQXHSerR1P0pEm0Nz/mk/a6c+70nz+r6GeFApetzxYdredhwRd5vXO1TZlL2Q26+31u6/dECu/7D9p/89su5Fo374o8QnpX07IDs/CHLgrqj3fxkSTsTncKVNs/syFOyb110Q3ardxt7xcnZt7eX66L4Ei/PY5bg94gStUG9mX4r03Vjs1s/T89vua8XA5533psbNAS5E1z+y0DarPTzUyoeJ12SxMk7b1xHZs/528XZK75LoX1VzDeV1d+RthgXtiv16vt8yw+y0eLvnSBr6o+xk7ozYinGlmav94+STVy6+NNJJ9xxwjJyrjC9JpwwQ9JoSaMfHnjbtyQdKw9/brIN4s3rCItFSzIslWoXy+jHTne/PJvNTs9ms2wQUMIOlt94+tV7k/PHDsmaxxv9gSWUduWvQwodHcI/EQQAAIDK03Ps3J+6dAWRSN195Jdmm/xmhcHEKcM6zSZI5fVFMchvJf2292XzuoQ1wbGBaZBLG1bwzaIqdB+G7drkaq6XdBw9GyUc00uTsabWP7t8fp///buw/mDJulRVhucndNkjCuzK+87t8gLhKMz12c6fSpooaeIJl8z8nkynS+qrFu/MlYKZbpWdaVI4k646NtWYMmdJOmV1L89mn62ZL7tdUus0r06K/QE/4sH/Q0kTa4LgutHZ7rMYPYpz2WVbfyDp0mzWR9aFb+zrbkMl7cOaI668iTSHaoJMZrikX9GTgWr+9iC5u93lfyzf5vYzpvf52r8Y4XGsOWK811wR2/jj2Egb1rl0fxCG44685sjXyKhoHXLNL/8p6ZxJfSad17brJz8NQ51k5odoNbU3SXqMdhQdPrKdRb/x9lWPFe993+qv3WQ7/GhOu59LuoteXrkL/UL7Vjzvi34SWv253G3/G2Z9KGntKA5XllVR+Sz+/oIN1uXRYQAAAJXlwDGzNwks85KkjqVf31JOUNAdyFf3Bc+56bpu7Ts98sXjaJFQ/W7y2jkfLzpSgZ8p105l6Tex34NWdD4fP2VYxzvpyelx8BWLXpHr26XNNS92TF/NezyGDPSCMtaaOp4XPyJYnoNP/sf3vMa7rx0/59I9YZAb+cC5G75FdkXvuBH/3SIwO1vux0lq/fUN3IrPTY+4H7UwL/P6DB5R3jT/ufM6vq+Sl8saajObTzxv0zkrv/SUi98Zbq6R+beZR/iZV/PZPaqYesR9qMljzpfbmOVB/Q3XZ7f7lBEiPudm3/i2N2ioTH0l1Tabl56AvGx5P1r96z0BeVlY3tSHOd8qe8XO79Nzo3flOX8+NLTgwbza2ItcdxWUBzHMl17Q+B4OGbV7hp6zetcO+8ORQWj3NT/2eQH3K97IOssL6Ive9H2I5zPmeovWD9bEOZpfZ3qL17rW7H2aF5Bj3vi62POdSzyve0D7Kk8XS7oxE/g1fcf3/YBsK52HB9y2URD4AMlPkmu9vNswn/zxlqwdvKB8X/16yPNcYzXft62Zc7TsvjK/fGzhdz7/WVbbeusDrxnEUwwi8nz/i56R9JP81r0FtrsX3O4t6jP53sO07L5hpViYrt7tpisHFxrv1e4AeMCN72/iqlk7/8Pxt84m/zPFfwAAAJWlz7iZbZd65kGVo/hPkswpAsz/DiQ06UG3YPTUoR3/SqTS4YsCzbvlfk+vKz/cV8oNlWzfEvYbFBfYCb2u/PgPU89a+z2CgUJyrbJzMx2PZCugzUJzTQoUZu+5YIM36fXxufOCjd+R1P/YS2dekgl1tuQnS2pVPXNacnNopTZoU1PfcIaks77+mlMvmbGdhyse/cs6pCjz5bris6D9TRMv7vY54YjfyOx2r0r6+TnZf51vDeGFMh2r/+1GWngOsUaIRa0FdoakQYQiDjWS8vzpr9kUyS+H4s4b8iyJ90pFrFVW2W053m3Vo+8/ee12F3kcS7UzYlSPdnXTJwptQk0mHNd3fN8PybDSO+T6X86UNHzSkEmXtK1bcoxLwyRtGUsf+t8hot9hMlmPty7meC2LzWquY5PW9cuPlXQzvbravjeIa54s7WNNgtV29FxmJzpHwXi8CQAAQIVZ6rXXSvoOkUgDr5N8oofaZspZnftQ/JfWe3XzqWev9+TUszvvl5PvLNlvlfevLSh9u6mDhfV395nk7PQArD5HVp218p3lYn59s1/B2zf+v8+EYfCdey9Y/yiK/0rnrvM3+uD2Czc6PTR9S6YHVO5noaRhdRh73qycJHbSL0f9u/2X/yab9cDDzM0q+NG/cfwEZ/EePvo2+NRMF9cu9S3HX7L1+IlZiv9K7Yrstu9fful2v1Qmt71Jk9Xsni0RTpZVc8zi88ZMx2ezL3agx1bDfFNZ/R2Wzuu1KPq8RRgaizC3rEw5nPd5lprZqPr6zGZHT/jZ+RT/lV/f8X2X9rruxFuWzV9rG3P/uaR/RdEfvUxpXv4xzUo+dpp09qQ+k/hus4QdrNA9kT2hn6ecgtX/W6MAsPBJ+EWiAAAAUDl6jpl3jGS/JBKJVy/plpxyW00d2qX/o2d3nkFIKsNjZ3d+derZHX8WWmYnSQ8o9YWAlV6nYXsuf3/RcHouou9a6cjYKqnEelOy3veev/4+D1zY5TU6Z3ncecHG79x+wcZHuvQ9uZ5P80yX6jxb/di0VutlrY798n/M07v9JP9+Ja1OontIa3PxtZyb3xTW1245Lrt1dvTobT4h+8vr8uyO/x45Yru+rmBXVepmCFbKvIk8h9oH9a35/gKoEIWteSzC85SqiKfMN4cWdxvG8tldpnssqNn6qPGHn3PcdYctImOSpe/kvrle1/f79cudPtg+NOtr8n8mY8ywCM9jEeaeFfh5Ykn8LTut958+9OLKXeh7rDmW7/uinYSCRv79jjR+YW23vK6BAkAAAIAKceDYBVvJdAORSLScue7KhL7t1KGdT3psaLf/EJLKNO2sdf8x9exORwZBsIOkeyXlEvbdAf53Z6wLe12+cFcCgdIljOXRPVFElD836Zz2nbrucN/5XacSkWS448KN/3rbhRv9SG4nSvowjhzyNA0HSckX94FytwHZ97qadHnxU2u8r0/ooPOCy3a7KrvNyVeP3Hwe2Z4sV4zY9m+Xj/jWnib/lWQLkpjXVVzEf1o26wG9FEnMM0S5DqrK3e5iOE+JChMt0rP80Uy7HT3+Z784atwhM0mmZMtms+HB1544eY1Os3dyt5MlzWu8T8bfH8tfWJya+e0cl/ONb3onySq5plU1dhOwU1HpUL2xf/u5IZt9TEICAACk317Z99oEHj4gqX0y7i/4WnU1dx5PhUG485SzOh/38Nld3iEi1eGRoev9c+rZnY4J3XaQNLWI/oP41Fqgu3tlZ7cjFEjvTmDV+whCX/2/fCwMtN29560/amJ/q6dnJ4yZ33bRRrfWh3XbyuzuZMyB1ZVDq4np1gMufmd/Vzhe0tqsQ/JqkkUynTA+233Pq7LdXyYgiW4sHzlih9u8Pre1zG/Kt2uzy25s7bJFpuH1nsQhIXNbmX8rjiTPKH9IX79b6a2lLaqrhgImK0GervYcH0o66cirDv/hUeN/9hK5kS57Z7MNva8/8aZwadBdCi6V9Hk06ZHSR4gn/ly+07OnjDmQnpvG7lXdxYOrFAD2vnVBe0mb0zsKwhcSAAAAFWLN9u3GyPRtIpFI/3a3ntOGdt7vsTO6/p1wVKdpwzr+a+rZnXqb6ycm/Y2IJM7W1rZ2BGEAohd/wcQ3vphcZLKj7jt//YPuH77++0Q/2e7Objn/tgs2OtY87KlGdpYgb+LKm9XlUHCdSUdG8wli/sEgKb+RmD1Qo+BbV2W3uoO/gEqPK67Y8aPLL9nhZJnvL2lmMjtkdVQwfZk07j6InpmWNrOC2pgcqs71SbLa0SI8pKW2r3qJrtelu2tyuW2OvurwW4w1UqodfNuvPul13YkXqMa3lXxqssaMlXYWtXj7tkefJxHmsUnuw+mx1XATGtU1JePzrFIAWFe/fHs1vjMgmm5UCgABAAAqQK+x8w6XdCqRSJxP3G3InPaddpx2VqdphAOSNGVYp2e/83nH3czsF5L+S0QSdY98+sFXLvwecUB0XSodl+l5foYE/3oztaE2s/2953W9n86XLrdetOm0+rBuR8keTcs1p3onsEbHJk/4H9lbDG1ghY6Nc9zs4Kuy3Y8ck91yPlmcTiMv2eGpXN2yHeS6g4VJoWNXcXn5NT/Jnvva9vTK5M9nQHNjSmXtdmeFfR4rVy4mojBxjrv1Ouaqw4/te03fBeRJ5eh1df//9rquf29zO1zSB1H1oVIVikf2GG1r+ro81s/S7Hv3fKb/mB/RW5O4hrIixnsrap6I533RzTerFPqFHm5L9yp4jKAAEAAAIOV6jlu4gUsTiUTSltp6MJfLfGvaWZ2u+huPHsRKslkLp5zV8Z42Ncu2MdfFkpaXo5PG/1VB6mQ81K19st6KXooiEibyY/LIwWZ9JtMv7ztv/d6Tz+48l/6aTit2A9ywt5sGtGxetPLkDRsKMXaZP5KR73h1tvsUWjn9Ro3aZfHIy7Y/wdyPlPRJavPMUp9nZgoH0CORxPkJUa6DLMI2sMS0dVkKmCy+Ri14NzXX/bWW2/7nVx/2KMlSuXpef9KD4dLMtjJdu6K7VMNjtNMjsHAwvTS1k2SVXNNKfXbVTLRtKmK5V47YtwopAAQAAEgzd5PnbpO0bjLvearva1WX3ne3nlOHdj58+rD1ZtFJ0ZTJZ2y0dMqwTllz7STp2RTcuVaD7Za1WXgeYajy6TVhr89j4q3GY75uFu5y37nr307PrQBmfvsFG99ggf1IK+0qUZo5sLpyiOLivMP+mbv3uyq79SFjs1svJGEry2WX7fCA58LdXHojTWuKypoC7KhxQ/7Ult6YhnkoBWtxCvbT2++sHP2NAqYiz/OJmx9zzNWHH9V3fN8P6f+V7+DbfvVJr2v7DVSg/dSi3QBX7tJpG6QtNedyqdezJ47akF6atu5VvcWDwar/wrehVxTk/SdO3IhJGAAAIMV6jlswQNJ+RCIR3OQTMznjcb/I25Rhnd6celbHn5rb8ZL4QbnMzOycg6/4cAciAUQ4Scbyer+xTf3S7913brd/E+HKcuv5G/0lDHO7mPR/5E18r19p9otjRo15wi7p6uAty9n3rr5k65vJ0Mp1+eU7/rt+We57ku7NP88s7Z08CWPd2p+0W+MQemISboiaazMrtI0rax5ifVKi88RQnGdJ619W0sT2KK/X7RWF4Xd/Pv7we8mO6tPzmn5P17QKdpR8UvnGjJV2FrV4c9EjzutoH89qklTjNepH76yIm9ASXFP5P0+wmoUmBYCFDQuvEgMAAID0OnDsgq0kH00kEmGWy3tMHdql/5RhnT4hHCjsftt8yrCOd9Y0tN7G5HcRkLJq5UF4azbrAaFA8bmdjsv0PD9DmXco+lxmx95/3vqn3JHdbBmdrDLdkd1sbqbL/J+a/JZU5o0SlzepHJuau/Bo2sCaeb09nDPtOn5E9zfIzMo3ZsxOn428dLufS5ZVRW7IF8duUsXl5TeP5CfQC5M/nwHNjSnl3+0u2uI8L83HKdmjkaM6lrtdX7fOx3scM+FnM8iF6nXA+BM/7HndyUe4+3GSPiukP5blMdqRpYYVvXaKPsftpEl9sq3onUlbQxVTiG1FzRPxvC+a+eYbX773mDCjtaTN6FoFNJbZP4gCAABAOu2V9ZqMhXdJakc0ys3ursnU7jBtaJcniAWi8NC5HRZNObvzcVL4M8kXxdt9S/FVQVpvmrXry20X8hezKDRhIj8mjxD8n3c8Y3vcf26Xu+mTlW9i/13qb71wk5PkfnEhORRb3rChUHWMXaacuZ971cVbHnZNtvsSWrOq5nwfeel2F8t0vKS61OSZpTDPVvXT7LCXNqYPImnzEzIRroMswjawxLR1WQqYIluTWr5zy1KTH/vzqw899YTsCfxBFiRJva4/+S4zfV+uGXHkdaU9RjtmXTut2+5QemV8c0u6vixI9hcY3ygADINWW0qqqZjlXgljH4TGXywCAACkVPsO88911/fScb9UmV+rmrTY3I55dGinYx8ess7H9EpEberZXX5rbjua2RMJu3OtGi67rNeYJR2JRLW2f7Jen9cMlYpjFmRaECzf9YFzurxGD60ut120SdbMT3YpV5JVXhUdk+LiRi1UqB5XXbL15RV7Q4NmjRyx/V0KdIBki8mzkgmCoOZYel/FruVKmzcU7Ke331k5+lv8O+dVRAGT6b1MEOx5zFWH8wdZWMVB1/b/e+sG7SrZI8136bQN0paqc7n5AHpk2rpXdRYPfvPxO5mAx/8WKMzk2AEQAAAghQ4cN3cHd51HJMrqT/Jw56lndbqXUCBOU4Z1mj1l6Ho9zG2gpKVEpLRMWtdyy68gEkA0fOUMa/nrQ8my29R36X3v8E0+IpLV6dYLNrlJbn2Ugt244sub6F+vPPMyGceMfQXwkizz3asv2eopMg8jL9n+2dB8X0kfNZ9n5FA0H9mPdzmlWwm4GWp6vsmviZz+XtXrk+LPE0NxnpUgUdKW2M17Ilfnux417uBXyAI0Zt+J/RcfdN1Jh5r8gi/T2EvUtz2Srh7lzqJRPgK5pe/78pz2o2dPvnJ7emQix1LuGb7mGwWAHjoFgIWpX2u9T94iDAAAAOnSZ5JnArdbJLUiGmXhkq749NNOP556Vtf3CAdKc/9uPmVYx2tDy+xmLu7jSt8AJ/QatWh34oBqmeQaT4U8Xx+dxYF5r/vP63JxNmshrVTdbrtoo4dkOkJSfSryRmXLmxZOcamdm4v6DE3+UGaattTW+PHV2S3+S8bhS1eM2P6vodlPJS2qkPVtDGOdRTc2mm1x2Xl//yE9rzgNaZ6fmOwqIsbl3+0u2rb32D9OUh+NbJLk5j6y1Qf1Bx133WGL6PNovteYH3TdyZdKdrRky6PLsYgfox1jmnkJPkvznzU8id6YtO8ErOi1V/Tvs7KuEYNv3gcEW9ClChqR3prcd7s64gAAAJAuS2fOP13SbkSiLD52s0MeHdp5+HNZayAcKLVpZ637j/q2wa6SHo729jCarwoqWGDy6/pM8gy9EAV/QWvRHLMKHyE422Q/uvfc9R+j7+FLt16w8cNmdqRaWAQYW95QTxCbso11ptvX0QeHTMx2+5xWwMquGLHdKwr9J5ItSHTeWInzJiY5D/vS65C0+QbFFeCv7liemraOcheviAuYLPa4feLSYcdcfdh5fSf3zZEHyEfP6/rd7659lPcfUcT/SO7YxsdSj8dNv+7IZ7PZGnpiGto07muyxMYpWGnq2Yy+VNCU/QZJCwAAkC4HjZ+3uaRL0rnGTf3Xqq8FgXaddmanKfRElNP0QestmXpWx8Pkdq4kvngtne8sf28hfzWLZiWnQK8SHkFob1rge953XpfX6VlY2S0XbPSgmR8tqSE9/b1yKgYrsRjZTZdfne3+q2x2b/7QB40aOXKH1xXaAZItJm9iXgVIh2WzHtDrqnseiiRvKNivgi6b1EIhS1X+NHK98yzwvX9x1aEP0yFRqF7X93/eFOwh6d1i86T8RcOlzOtIztXZ57Tbj16YkjWXJXXhEu81rbzg37zc02FKvUniAQAApIi7WaiJktYgGCW/vZlsnzbsMeWMzm8TDSSjU5pPGdbxcjM7QNJCAlKywF/cY8KiDsShyqZfQhBzTBv9EvHFoD73g/uHr/8+EUNjbrlgk9+4dFJ1p2o0j9xrYV5WqtDdBk3Idj+3Ev5qCfEbOfJbL7vlDnbZ0nzyMo5cr3Dr19T//Qf0uEROM1+bP+Io3KBir7LulRL0uM7VXZeV/t6vVI9GjuBYb+dqfM9jxh76N3o7inXQdf3earD6H0r2r/iG+pV2FrV488QjzrloH+v6jR1bf04PLMMiiWtqsf8VAPaZ9EYrSRvQuQoaCWYQBAAAgBTdJI9bcIKknxKJ0q6aXX7J1DM7HTGVx4AhgR45q+PTyvn3ZaI4tTQ6t/rchxEGVPzk19R/tDxfX9j5p7VqpX3uy3ajwBnNuu3Cje9waWhF5Zniz7Pm8jodJynuMYS+4n3L5TpywiVbXkM2IR+Xj9jx9+Z+hKQU7xhpheVNHscsaqwzKefhz+htFTTfpKy/I5oYl6rYrVS7dXkh57D8P7uXqN83cZ6XPBPuefyVh75D30ZUDr524GwLan8s1yvFzUMJKiy2gnOslPPTwc//clR7emCS1lxW9Nor+vdZ2daI/ysA/PjDDptIytCdCghiQAEgAABAWhx67az1zH00kSippTIdNW1ol4tk7ASC5JoyvPPb9fUNe5j8haIOlNf3TdWbEm4acvDYRRvR86qdxfA2iy0D05Wxdsf8+i6H3H1W18/oZ2ip2y7ceJzcL4t0vM8zr1ksxjDnxj/WLQul3ldf0n0y0UYhLrts+6kmOy2ReWOx5U2pV1yH8xhgJG2+QXofkeslut6yFDBFGEozPdF6ed3ex445bD79HVE78JpfLqhr1fonJr2QtDEibWNaHudrV1drh9L70tCmcV9TXJ8niObdGffN6UuFqQspAAQAAEiL+uW1l8u0XvrXuKn5WnWhWfiTR8/s/AC9D2kw/dz1F7SqWf5TmT9INGLX1uv9UsKApiSnQC9djyA0+Y0PnNv5l89lrYFehHzdetGm57v5fdHmGY/xTMdYV5A6d//ZNdnuT5I9KMall253k6SbqyRvyqFbTf1rexCG6p6HIskbNgBMdHfySM6R1MJES1X+mHT3Z5/O69X3+r6f0sERl0OvOuFjBXUHmPRyIXlSaTuLlmIMMR4DnJ5J0pK6cInvmv5XAOgebJaM6TB1q+UPnzltw0UkHQAAQPL1HDdnN0m/IhKlWirr/SBnP5h6ZtcXiQbSZPIZGy39zmed+rjbBKIRM9PPe41e8B0CUVVzA2KNqcmk27ap73oqu+6iGDW5VidK9lo1TkxRjF3egmNWSLjqA7Mjrrlkq2lkDaKwZHHrgZK/qGrJoRLLufMY4GROM1+bP+Io3CCHKuteKUGP61zddVnp7/3K/8cpqx7Lza85ZvzBx/Wf2L+eno24HXjNoCX1tZkD5Yr4MdMrPUbbos2TwnPZYhwbmn88uUs/efK0Ud3oeSVeJHFNLfJVAaAqeAfAOBcVpreIAgAAQPJlsx6Y23Uqdg9ttNRrDRnbY8qwTm8SCqRzzLBw6rCOp7vbZUQjVkHgxmPZUb1W812iF3e4e7ap73JSNmshwUUxJma7fW4WHiopFX/4XH07gcW8o6K16OU5ST+/Krvlw2QMonLNNd2X19bUHi5pbqpzKIljnUkmO4RexnyTlv4Oi7BPWex9Pdqcsgg/jkX4eVpawOTX/2Lcwaeb+IMslM7BV580z2psf0nzyjGmJ6fgtyTzUybTYAfT65K05rKi+2L07yvPWulrP37aRnSjQgJo7xAFAACA5Ptb+/knuWwXIlESzy9rqPnxE0M6zSEUSLupwzqeL1M27zfmdY9f3d8Ju/TTQy5fsBe9rZpZSd9WbAYm9Ydfk0/Kde98PMV/iMotF2z6npsdLSksWZ5ZBcyMFVIT0UwbhCYdPyHbfRKZgqhls9vM9tB+maihwCLJmwJeH/mAssmI8/+2Lb0MYOGQjOuNcheviAuYCj/cxJ+PP/g0iv9QDgde0/+d0OxAlz4tdG1S9jHCyjk+Wh6vpACwcua88lxTXLkZfPWxfAP6UgENY/4fEhUAACDZeo2Z3dFd7OJVmoX3M3UeHvD0OesuJhaoFFPO6nSxmZ9PJOITBhpBFNCYwn5MT+fOPkV4uEPHLj+f3Ndy9BhE6bYLNn5S8quKzcsU5FBKx7r4Xt9EM7qbTro62/0eWg1xGTlyu+kun5i2PEvHwjtzAD0MReeBVVnelIpFc4DS7nZXiWvAgq/31nfXeuUUiv9QTr2u6/+yTCfl07fLv7NoGu8Tfa/HBk7oQI9LwdhsCbymGC/sawWAirEAsHLnOZcoAAQAAEj8vUHmEpnWq7zPlax1tknTPv30055PntX1MzodKs0jZ3W+TLJhRCK2EeQHB1+xaH/iUB34NWSl2bP4eE4P6xceMbG/1RNPxCEX+nmS3qjUHGrpMYsrHKqc4keTzr8m2/02MgNxa1UTDJX0TpR5CclNFACWex6yaI+Z7+5o5E0l3CtZ0V3W41yjWJzjdEILmNzueHetV/pls1l2Y0fZ9bzulPvN7aoocy55hcWF5mwxO49+472t29QvZ01Vyeu1lN7LrygAdDeXutHwBQQwF1IACAAAkGAHj5nzLVdjf/WGyG6mzR5p82mnw57LbraMaKBSTTm742i5LiYSMY0jgY+QO9tDofqspte39Etvd72ieus7ObtdHYFEXO7IbrYsDP1YSYkuMq2+nb1iLn5c3eHN77w6230kWYFSyGa3+1TuxyqCx5CXJYeSONaZJNePstmX2tHDmJ/S0N9R3uJnL1Gf8EKOZflfV1wFTCbd0+aDZSdS/Ick6ZyzsyX9X+T5m4Chv/mnPpTqIr03PS3q+cSKmIeK/2OHUhWtxymQpF4T56wnqQ1dL3+haigABAAASPJ6LbDRkmqIRKymt/ukY9/JWaP4ABVvyrBOWUk3Rn+Pzz4Mcu3ae/TCXgSiWiXxUR7RZWxMGf6BlOk1Odv5U/oP4nZ7dtOXJV1akryxCpgZK6QmYqU2+MO6qu9HNqCULrtshz/JdUua8jr6NULkA0qbzPLMXvSu0q0DgWQsHIxj5ZvfLTicu01pPWvZ8X0n983Rj5Eku0zsX59pCI6QNL/0RcMWYSqX+sYqr/Md+FK/m2rpbZVws2wR9f3yrykDSarzcAP6UmFtslZ9jgJAAACAhDpo/Lx93O0gIhHrrf3v2gbLD6f4D9Wk9aYdT5PZb4hEHIJL2AUQkcxOkvL5IqjQv0Yuo89MQe/J53f8gNZGqbRbu26UpBn5500icyjBY1dyXv+1ZpuRq2s4LMtuoyiDMMycK+nDtORZKmJqxiPrUHweWHXlTclYNAdI3uM6y1NcEXNDvGQ1rY6m+A9JdcDE/nNC08kt6dtlf4x2Ou8T11kcLPkhPS0Fk6Ql8JpiurBgxWG9BAWAFbncmz/5jI2WkmgAAADJk816YKHGVP49T/nW2W76Y517b9bEqDaT+1quvvVHP5f0LNGIfGTZqdfoRQcThypo6Zhfn7LJPN83hOZ+zAPndXqZnoRSumZQ9+XufnoF5FDBx6zSsevDnIKe112+7SKyAOVw+eXbLpL5eeV+FGaFrTwoACz3PGTRHtPzPCl5Uwn3SlZ0l41st65mLq9Uj1QscQHT+7maTK9jx+z/GT0WSdbrulMecunXUeRc8gqLCx1TrcD3re69PAa4otdrsX7nEI9AkjynDWjwgvBX1gAAAAn11/YLjpe0E5GIzT9qg9qeT57VlS+6UJWmD+q+vL5NcIjJ/0E0omXSeUQB1djxV9bEl95nP3B+10cIGsrhtos2nS5pSlKvL9kFepa+Y5rq5Paz67JbvEXvRzm99e9/3Sz5y9WblxGOdSsur3t22Esb07OYn9LQ32Gp6ruFXq8XcizL/7oiKmD6OAjCg0648qC59E+kQc3y2kGSZkeWvwkY+pt/6kNpLtJc+9DDop5PrIh5qPg/dihV0XpcghX/r3elyxVkDiEAAABInl43zW5n8hFEIrY72//mcpkeDw9Z52OCgWo2fdB6S0ILe0taGM09PvswfGGXXld82IMwVOUEU9K3FascP+SaNHHSeV3G0ldQ1kw1HyxpWax5YxUwM1ZETYSfNeGSLdnxGGU3eXLfnAfB2WnJ6+jXCDE8HiyT+QE9q3TrQCAZfTDKsaRyj+VNH67O3A//+dhD/kkvRFoccOuJH4bu/Uo7NlmEqVzqGyvL56XfenbAaGqtKuJmuTyPqo96TbmiADC0znSygjrBbGIAAACQPP5J5jRJ3YhELLdBi4NQvaYPW28W0QCkqWd1fc9DP1RSHdGIcqwJLyQKKHo98OXMldfrWzgbluXz+Eth/cKBtCzK7ZYLNn3PpBvzy5vy51Blj3XRv96kR6+5qPs1RBhJMfKS7Z6R9FyS8yZlYwcFgEDC7oKjWyol9XGd5SmuiPCzu2T9jr2q9+/or0ibnjcMmCbZw03lYokfo10p94kW5rQ3PaysYzPX9DUrHgFs1rFktxQVFXtna18AAICE6TFhUQdJZ1fVh7aSrbOXh6F6TTmry+v0NOArU8/p/Ly7DSESkdq956iFPyUMlY0f378xmTf3go/DwI6YnN2OYmMkQyZ3haTPUpRDZTtmOsc6e7++datjZcYmV0iU0Fb/RyJ01PwFsh8ShTLPGRbtMeOeb7xU0y/yaB8rust6iRqzVI9UjLOAyd1GHje+5530TqR2HeXhmSpwJ/doC4tLP2Z4pBOYrfw/f0LvSstSLcJ2T9j3Dl+t8SWZeSdavICBwnkEMAAAQNJk6huGyLQekYjhVsR08rSzO/8fkQBWNXVYx+tduolIRDXgSOY6n0Cg2vr9yvyr/8+Jvx3e5V2ChKS45bzN50m6rhI+S2kL9JJbqPg19UEQHnnD8E0+oqcjaS4fsdP/yfVUwnMoFWOdS9tls2+sS6+q1Pkm1fMQUh9jK+iyPfbPXlQB09PtPvj8Ivoi0qznDQPelWtc+YelpD5CvLC52EQBYPRrG4tkTZScPxIq3TwefPHJKQAsKHoBBYAAAAAJcui1s9aTdAaRiOUmZfTUMzvfQRyAxrX5vOMgSX8t7ijsX/K/UUfaq9eoRbsTCbS0w5RDKX7INfNrJ53f5bc0MpImE9ZeKemTpOVNombSFNZEmPycqy/c6s/0cCRYNvl5HeXj8FZ/TC/+M1hmeQOPAebODVXXB5P6uE6L8G2RL8Bm5RoyR/ed3DdHr0PatbXwckmz47yBiWxnUWv6urywASKOMWnzZ0++fFN6V1Julotv91IXHEa5pgy++L8UABYgo5BHAAMAACRIw/LasyR1IBJR8ym7fNpxOHEAmjY5a3W5XHikpI+/8R/YEKFg5n4mUai6Vo92BsvzmAn8IfflJWt+MpR+gSSamO22UK7rY/vxmfkztrGriR/yp064aMvxRBRJdtllO/xJ0ovJyZvUrClWEZooAAQSNXdbhOugKB/XaQV+nugXeKV//KjVB2ZH/PKaAxfQa1EJ9r7+1E/d/fxyPEY7beuk/D5Phl0AS8q4pkYEcjdJHcu9pEll7BtCJnsAAICEOHD0/K4uDazee57Y1tlv5lrV/CKbtZBeBjRv2vAu77rCE4lEZA7tdeXHmxGGypXeH9NL8vi0JQrsiOmDui+npyC5S9DMtZLqqygvK3asc+mDGrU6XmZsaoU0LCCuSu4aIVWB/CExKPOcYdEesyyFrRTsl/leyYrusl6ixvQS5VykBUzmZ/1iXM8/0RtRSdp1mX+3XO8k436r8XNEPWZ4jJ/HXXvTs9KyVKvs4sHgoBv+u7akWlo7f0tzuUVEAQAAIBkygQ+V1I5IROpTC3KHTx+03hJCAbTc1LO7/NZk1xCJIq347iNjuYbTCQaqrN9Lktw1YPLwzm8TFCTZLdkNZ0k2Oe2fo7QFesksVDTzU8ZnN/qQXo00qK1d+FuT/pukHErjWGfSd7LZN1rRoyp1vknXPIRKi7FFeNnRP2q4hbk1+bixva6m76HS7J3NNrj8sqLnMktWXpd27raV7qX0fXpW1Gsbi2RNFO1ayhLbT78U1AVBR7pZQeqfG7zpYsIAAABQfvuPm7mum/oRiYiZTpx6xvpvEAggf3VtPjpLrleIRCR+dcj4j9YmDGjBvFUW8fyQa1N/c36XX9OoSINAq+7EVZ68Kfz1lTg25XeJfu81F3WfSm9GWmSzezeE0rXJzus4HocXzQ+hXztUK9U1bE+PKt06EEhGH4xyfIq2iMdL83GaP6T5mw01uV/Rw1Cpmt4FsPikimxnUWv6ujzWASKv927+bL8x1F0l5ma5+HYvdcFhVGvKQPK16FgF+ZDHIQAAACRDrWoHSGpPJCJ19aNndn6AMACFmT6o+/JckDlW0opHd+b1vQO3mitZM1yeo8i7qkT7BaDnecwEZOBieXAK/QBpcfOFG//VpT+mYDioaEUUSS6oVchuu0idVjXBrZKWlSlvKmZVH0jfoTcBSZq7LcJ1UHFFDPkuyjzCYxV/nqLOUZ/L6ehfjT74E3opKtWKXQB1WXTrF4spl1PD3MLd6FklDTnXtLq1vXnQISlLmlTF3p3H/wIAACRAr5tmt5PbQCIhKaq/TzG9nGu1eBgBBYoz7ax1/2GyLJGIxMC9sl5DGCpTen9Mj+fxaS4fOvn8jh/QM5CyTL4+KTlUrWNjEREbNDa79UL6MNImm93uQ5OmJHONkKaxJqQAsMrnoUjW4hTsl7mvWGq6rJcojkUVMJku/+VVvV6mj6LSdcll7pGUwO8eLJXncnMKAFcrSGD3qtziwSBgB8ACE9gWEAUAAIDyCz+p+ZWkzkQiMp+ZB8dMH9R9OaEAirfz5+uNlul5IlGgr7772LB96w8PJiCoAs/+5twutxIGpM2SNTMPSfo4zZ8h30fbFVcwkYziR5M/OiG75f30YKQ4c+8sZw5VxlhnO9OPEnPP00ibWZFtXKr+ThVgadcncZ0nhsJES1H/Mr3arv3nl9HzUA12mdi/3kw3FpKLHklqln5n0Wgfz/rNcwYSBYBVsbawRH+eQCEFgIU1jX9EFAAAAMprr6zXmPkQIhHhOtd02tShHf9NJIBoZLMWKtSJkpYSjWLHJz+ZKKD5jpKOy2zkS+fPQvMTZcYGRkidyWdstNRNk8uQN5G9vgrHpo9D5frTe5Fmb7757ydcPruSFiae5zG9yMszaads9ll22q7W+QkVcbNT/sd1WllzKv9LaPTRyHVmueP6ZvvW0ddQLYKcTZS0PI68jqyw2Jq+Lo92gCji89puLqcaPsa1kBfYcTzR1xntGrFGgXVgtVnAOOO2mCgA6dYn+0arzzuvuQaRAFASeawcPlseLn0uu9kygta89h3m9XW3zYhEZDdekx49s/MdnsplTwAAgABJREFURAKI1pRhnd7sPWrBRTKNbvn9t4sdFFbx00NHLtjqoXM7vUUoqoEp+p9HW37MfDMwiox12fm/Hd75XdoeaRWY3+FuJ0WeN3EMB5CZzrnmom1mEwmk2eTJfXPnXfD6PXKdXcL75q+eHOZ5vD652qpu3W0k/YMeBZTe6seIrw0wRa+DVhwgmrGo+Ysp/jwt+8AtO09+wTOzi48bc/Dr9EpUk/1vPGX+9FOun+SmXxSfy/kPWMlfJ+X1mdb7Xb8rN9dEvUPPirffxP9lQRKvqWVqXL5W1f6oUETs3fwTkhFIt0/WW/dga/BJFXe3GOugGdWrqiluaZsYyxOzqliJtGl53NZsbVdKpfvyOuXjHrv/rZJQrgL/0Gxuq7q6AQQQiEfXtTteNW/xgmNdtj3RKHyEawh0sqQzCEUlTunxFtzF96VyZF/svbR9XccJv6ErIMVuPm+TF04c8Z+3JNuqDDkU8zErbWz01+Zuu+Ut9FpURJ7k/G4L7OzkrRHSI5C+IwoAq3oeiiRvKNgvc18p4lglbrsV/Sf+z55nv/7Lxu3bjqZPojqHIr9Gsl9U71wa4blMu0kUACZ+bWT64jc0T2CcilzXm1uH8i0nU3xT6UYBIIBkzp8AUs8VbkEUmnfQ2Hl7uGwXIhFRvzPr/9C5Gy4iEkA8Jva3ekkDxE8iRa1xTXZ8n3Ez2xIUVNzyL9CQbNZCQoF0j9fmMrs33cnYgsmoRa9vyfHj+BKnpce0Myb3tRydFpVg5Mid/iGzt0qbQ2lfeKz8v/3b9KTk3POsvs2sqDYuXX/nB4rSrk/iOo9F3ycs0f1rWRD68Xtn926gt6Ea9bj+1L9K9nK+ueiRpGbzb/aIx4hoH89qK/0v25keVQ1rC0vs5wnctBadppB28SUEAQBQtV8l8F1O3AsNCgBb1A1tEFGILP3vmnZmpykEAojXI2d3/j9zu5NIFGWduvp2RxIGVMJa1b+63N9MPqfz8zQcKkHgwYMJuWst6PXVMDaZ9Mi12S1/R29FRU39rocqaWHieR6z2KeDmmlbelEVz0+oiJsdj/BYhfVdK2tO5X8JXxUwmXTFsVf1/Bd9C9U9soT3xJHXkRUWW9PX5dEOEMUsSrejN8W7FvICO44n+jq/UuxfBgcWqh3dq4DctYAdAAGgsu+ZgXKiALAZPUYt2tDkhxGJSMytqak9nTAApVEX1p/t0ofxflVQ2dz9RKLAQr0UxyzRD7nLAsudTVujUky8cKO/S3o78rzhvj2ypYhl7CzCgIpbMZiVtAAw3x1vEr+qd21NLwLKmYLNLH6KXgdZScei4s8T5S5ezR7r3bb+GY/+RdULpfskRbBDeBx/+FD2lWY+L96e3lSafhP/lwXJ3eWvKYGb2tKXChkF2QEQANK5UAP9JhXrjjX3u3JuZ3pGE6GsqR8QSrVEorEA5bWj5+CHh6zzMUEDSmP6uesvMPNLiERR9ug1cuE2hIE1YXJ2WrFiPvO4+4ev/z6tjwq77XmwVDlU2mNWxNg4YcIFW8ygl6LSjBjxrb9Impm8NUJqbJLNvsRmIVU+D0WSNxTsl7mvWAneaqn67N7su3xI3/F9l9IPUe0Ouv7UuZKeSdb6yNJ4ro0eGzihAz0qBYsEq8yFS+CuNulZTiapP/inJCmA6po/+SoMKKXawLYkCqvXZ9zMtiY7iUhEYvqjZ3Z+gDAApdX68043SHqHSBS+xg0C/YKgoALMrcvYFYQBlcaD8KFUX39LJ6NmX9+S45eu+NGkhTXKXEYPRYUuFl1uj8SZQxU3Vq+8vF4adKcfJeueZ9U2s2LauKr7ewXmbAnOE0NxnkXxeaK7LndNP35czyn0LuB/q6m7881FjyQ1m3+zR3isYsYgb/6c1rZh6bfoTSVeJHFNXy3qrdp3ACw0uQOrIwoAgKr+KoHvh2Jea/AY4MYsVesjJXUkEkXfn3xuHp5KIIDSm5y1OrnOJxJFzJOmX2SzHhAJpHsq1vlThnX6hEig0txy3qZ/ljQnhXe5JUn88sXBL7oqu9nH9FBU7Lxq/kSiZ/3Ixy6LbqwzyWsCdtgu8XxTuX9uz5fG5Yqxl6i9Ev0o4ZZ/nOVWE55OXwK+0sb8YUmfRz2mR1ZYbC09T5nnpzDYjt4U73ziBXYcT8x1xtcXAxcFgAXlrQf1RAEAKv6eGSibIAwpAGx00ez9iUIUC1pdOvWsru8RCKA8pgzr+IBMfy3mq4Iqnww2eqX1op8QCBbqca/v4/oh16TXtqvrdDvti8pMW3NJT0WeZ8bMWIT/1K2/+GbCgEpWV1f7e0kl+90m3x1vkj52BW4UAAKVci+UgOv1En32gne6dI094cpeM+hjwFf2vv7UT2V6mvGxuPO5OQWAFTPnWeo+T2AUABYU+0AhBYAAUNRNF1Cl/aalXwybUQC4Gr2vnLejXN9jvCm6G76Ta714HJEAypmI5nINIxBFrR2OJwoorECvdI/cbPzlfnE2ayEtiIrNTc/3hyP+Ki/6se4b8b1iYv9d+D4bFW306G0+Mekv0eVNtQ004db0ojKvDytlfmJKL6iveOzdyZof66wcfbssx5qZyWRG0u+A1d7IPVr8+ijKnUVLOalE9pekFACmZc1llbdwCVT2AkBPaRdiB0AAlTfPVeqYDaQUBYCrEQbqRxRaOhc0PmaHZmdMH9R9OUECymvKsE7Puuk5IlHwmvfQHtlFHQhEZamSO47XJ5/T+WFaGxWdy27PlD+lS1fsW1yhUew/OMyydUN2HEW1eJoQFDhuB+wAmJB7nEjntnx3R+Pb/0q4V0rQ4zpXd11W+nu/lc/jZsOOHbP/Z/QoYFVBQ82jLU9PizCXLe9cLnYcjPaxrvb1/y8FgLHMUZW2Q2BMOSx2ACzwZihXRxQAANX8VUJi11uVswymAHAlvW6a3c6lY4hE0Z3ryf9n777j7SqrhI+vtc+9KZCElpseigoWLCDgax1RkfSAMwadsY8OkQTSqPYzVlIIJCQglrGPSlQgPcESR1RAigoIiICQ5Ca5NwmQntx79nr/INSUe/Y+uzzP3r/v5+M78zrn7rP32utZz3rOebLPkgtbFhIIwJFZ1/TLRCF233FIU087i8DAw1T+0t6fSAUK63+qR7eqyP0ernJjvb7B+SzVN1GR6Vfzj39QEjUNf+XuQE3/mA3WupeQQe7PN/40kHxonFeM839aVxZjSuNfjslfH+9920/JH2D/hn9j/DoRuSNWjdB6xnKD84M2WpsymZ8G/eaj1R5kU7rzicVMHHPmPNPJxUBMu5FWcQLHEwABoCRrZiCvprfl9OqjLBKeJ9zeNE5EDicSDem0IJhCGAB3LL60769E7Na4HxWUvn0L5RyiQKOedn+f7Bezet+Je1p+wT1FSdY0v0x8nCkzY0StW6XyLcKAsti0oeNWEdnhaqvi+Gavwy6/9I7DyCKgIGshB87XMrr2KE9GVNXPVavVkLwCDjpeFlEfG3o/tZ49jyGPijLn+TUPB6JWIZGi37ea1NgACAANL7qAkuZNfX2HHnrYIYPIiucniJ1LvWk09+w7S6b2vZ9AAI6VN9WvEIXYc+qZZ1/5xOEEgh4y+utzerKPyZerVeULJ5Sk9bRVaSyUqHX1v95EZ363etwuooey+MY3Tu1Q0Tuz7SmKY0+3bkeTRTn0h0Wcn5jS06lBmkw+WiLvoY6Ok4M+guy2j84ewa+iAF3VokCXNd7vJPlk0SwnlWTeS0M9jkzypOfSNHMs+4YoEBEHNgD6t0xqqgX8BDCAkn62wFYbILNGraZsANxr1JWtrxSRNxOJqHOBPX9e2CFa+W+CArhn0cV9l4jIn4lELN1qu2pnE4ZiKfCK4wE9vu8C7jDKosPsjw40xJkds7GNQ6l8iLOhW59u15GJKGEncWsJeop0IlersQHQBdrwC2LMT0k+tQ1p9iyW4LHqe58UNudp9mu/p/9hRPBZ8gzo2vYNR94tIk9FGdfJjGWtaywnXRuS+7vnzj8UO5ZMSmOO4gmBXXFkA6B/Oq2JJwACAAosQtvLv+hMTS2osQHw2YwMPkSuNRzEuYun9V1LIAAXPydQM7U5BCJe36Fq/Aww/JiKzb6y4BytEQmUxXerx60Xkcc8XOXGen2j81kK73HFldOG7iQTUUK3ujtQ0z9mI7UuCAI2AHow37BBD13VlPyf1pXFmNKol/Ob/7xy+C/JGaBr5yw4p2Yit8SqEVrPWG6wH9J6aobmuhhT5QmAWcwnFjNxzJnzTD4Xg73/QUQV62QDIAAASHeRYDwBUESkWrVATT9AJBpaQm1uqjRPJw6Au7bu2P4TEdkY56MC6BnjZj91JHHA/tMjp5l33//qkeD4fj/mhqCEY/DWBsbNQcc1M+NBbWu2yjcJA8qoqan51lzeuM6ew+XNXmbGBkAAji3CkjoWT/8Doo08W1W+epPk+/EEQH/uqa/ndIDZzngCYKz7tidsZgMgAHTV3tBXoCx5k1KuqbIBUETkT73Xv11E+BC6oXGlV9w49YgniQTgrlXV43ap2LeJRCzNuzo630MYaJ6i95wa8fXxz1NF5/P0P5S0Eb01z7Fe3vWyfueq6nH0/yilavUVrSryePrjLN7r3W63lM9ekMm4QdRYaoKtkqs/16mp5aCaLPnP2cP+QHYBkUb3bxuv80k+WVQ9ix9PAMwtczP8MwcOvo9AndkA6Fd72KPbrj0MIABFnedY0gOOdEdmbAB8uph9kKrUUCZtqtT0auIAeFDtwtrXRYQNQvEmzbMIQsFuabFWKNs79jT9D3cVpRSEt+Z/Etn9jKcjtSs0CeeSfCizUOx2Pi+I01LzBEBn5iFN9pj8zHCxcsXSyrsX/WliP9eZeb696HzVvkxuAdFsbW+5S0S2RBlz+f4seJLHa6QWPxuLY8mirNfoeZ6TO9cTCE8AjGW79eQJgACAgovQRvOQhrT6zdJvABw3e3VPUX0vydBAGqldufDSlq1EAnDfjZ8a+E8RWUIkovcdKnLGmGrrIQQHbnbV+v0bqzyJF+XUs0/n3SLS6eEqN9brE5/g4l3l4muqL/sH2YdSt4sm97g1LtM+ZjK1TnkCYMnnJz7gLcwC2eHcffZ8NYn30Xre6taPzR55K3kCRHPOgnNqIi9+mrtGGub51zTNs3a2LDq3yueUqcwn2sA8pDmt9bObx4O9/0FEPWtPsQEQAACk3PbxE8A7pPksEemT3bqscDZ3Njfz9D/AI2Z6kKeE8RyGgy3TtWfzGYQBB2iq8hnPe/9HIME8bgLK6upJx+9Wkb9HHDd1j2uvZ8aUapOpXEXmAXqPy+M6+c1eCRUUs37kTqJ9IOBZDma18SbLYxl9ERB35KncmV5tarBG6MFrRLrzcH3n3rPSfQBZ5NhiOYFzsoZzP10BfWi8XNrZu4mvnwHAoQmt8H0FStl3mPATwCbBf5AoDS3S5yybdNQWIgH4o8euo5aJ2CYiEWvSGEsQSt48xVqraMTXRztPFf3Vgk8f9TfuHUpdnjXqk7hYlDfgL9d84WW/IQxgLSx/bbxHSO/1Li9Hpl/yQG8yCFmMG0SNpSbYKiX5c52aYG5osnEze/zxPj1/TkYBcQeV3dF4ndfGx7Kn68SKBPzDinxWApn+mQMHf4FARGq0h9F129iTn04GwDIUILvS1vuMyzcfVtaLP+PyzYep2JnkTWzbm7p1zCcMgF8WVHWPivyUSMSho6pV41cOStwTOtoL8CReIK8ncb3wHJw9ZpK1znjKDSAiIk1Nr35URLbxeUF0e7p18GW1K/OQJnvMEm9sLWSuWFp596I/TexpXZnnm4oFOq9afUcnOQXEE6rdGWXMZTl3WOrHa6QW741FGPQni7Jeo+d5Tm5cj2MbAP3R48gKXyoAYP5ECRi5lrPuTbteVtZr79a9Y6yIdCcLYo/f79xw/hCeIgZ4KJTKD4hCrL5jwJ09N7+B4MAhj5y4p+9iwoDSd6Wh/dXr80/59cktrHVT5Uj7MRkHiFSrGprYfWk2nu4dM5napRa2kEFlmG/yy00U775Z3PPVJN7ngAfZ3qOp9i1yA4hv1PzzHxORjbHqTUNlKaufEE+5dgbGBsDU5hNtYB7SlHupfHOeDYAxbdmyjScAAgCA9Ns+DUq7AVBF3pvHuqwgahrKbMIA+GnRJUfeJiIP7f//ynMYDiYwG0MU4Er/YGLXVasaEnyUXbOF90QbO9HGtddPNEq0NtlPrp50/G4yDtg7vCynp4/WOa6Tr13JFJSaCBsAM7tngFs5m3xzkt+xVOS7H7h89BNkAdBwIbkz+UMmVCP04DUi3Xm4jnM3ZQOgO4vlRM/JGs799LABMGYuVZqb2QAIAA5NaKXoK1DKvsNESrkBcMTcTX3EZBgJEjuxfrbo4gGPEgfA1yGsJiI/IRCx+s4ziULJm6dYaxWN+Pq6zrNWCSs/4n4BIl//wrGPyfN+ipNFeUpzYCDfIwrA88aE2j8a7xHSe72znZYZGwCR2bhB1Fhqgq1Skj/XqQnmhiYRt1CCYA5ZBCTST93deJ3XuGPZ63WiivQjg3KMfoZ/5sDBnxWIiGP/EtmP9rBbyE8AAwBLepBdWXRrWsoNgFrrPEti/PwvefNMHGwuUQB8r//hzwhCLK8fM2tLX8JQ3p7QlV5AxX694LN913IHARFRNRV92IWR6eoxE6h1f7vm8y/9E8kGPK+dlsrDfF4Qq6qxAdCleUiTPSZPMSxwrqRxrH2etpzu5oXk8s1WfWzmmQ+RR0AiFeR+V8/Nsrj6xs6QJwDmskYv4jlFWQPxBMB4t72yiycAAmD+BMi1DIQvK2kqvZd7Hzt29yy5sP8fiATgt4UX9/+riDxIJCL3HYF0dryT4CD3Dk6CHxAF4PljorEnceUt2w0TGuMvjKf/AS+uO6EkWHfK8YGXiUgYsAGwPPNNufO9ePni233TBE/7hQcxU/oiILmRen/UsWiJlKXsN0In+7OuKsYGwJR7Ic2gJ8oyb5PJeTYAxs687t0JAgCAdgvph18Hl+2Sz5y5/lCxLn7Ckc8iDxabrxMEoCgzsPIUwFh1MHw3QUDO/cP2yp7wBgIOvGBS+0e6h/d4ldt4baqJdPshSQa8UGdn5WG3zzDJn8Pb/zHj1LrAlKdpF3W+ATmbS31KdhNPHdeztTnQn3PngYRqSKX24L5DvPFxndiTRfXg5xW1d0qyVpoo/6jCgz7cYv5tshtGkxOYSAc3OLowsB5EAQBKM/8DeRooZqXKxu5N+m4RodeKZ2tnUxNf/gEFUdED/QwwXyMdTBAqGwBp1COxiMe0rk/vhgXVftu4T8ALxs3D0ccl6/Y6g3DzvOrRrcQBeKEZM16xVUQ2NN4jxHi9pnP8bOq19SF7AGf6p4M3Pw33QY1tYojalGVU83724VnDtpM9QDJGXj1pi4i0Nj6W0/iHD46v0kToqTKYW/z6sCD9cwpUZJcvLY1LsbdONgACQJSazdfU8LQjcKHv6DHq8scPL9N9D0MbQ97ETqUfLpt01BaqB1AMN17S788i+k8iEXEeUDlm9Iy244lEeXvCvHuBMAy+z10DXigILMaTuNL4cNzdY8avdSE/cwcc2MN8XhBZL0KQJs3kT8rci5c6V9I4lmZ7X63B8zXR75I7QOL16IHi1sdU36s3ueNBo7Pf0/H3XxoGIrKTpIoRuCbpSRQAMH8C5FomfUf3boPKcq3VqgWiOpK7HnP4hfz8L1DAgb2EIETvO9QCngKIvFKyten4I39NJIAXrWlqtX/4fg3ZboCoe2G9vVuf7jeRYcCBRlKS/5imHB94GV9We3jPNOo9Jt+LNWYzvm8pbEzUpI5lj3z8ijN/R1YACY96tQeijuuoT0WOW28swWM1soY7wBNbe1Wr1YAMSnPtXbSn/DV+PWwAjJt0NZ4ACACg3UI2Qg0GluVa7zx8/SkiMsDb3j7fUfr7hRf3/yuRAApnMSGITs3eThSQR/9gIj9ZcI7WCDTwQk+86iVrRaSW8vjzd5UbvzatvHLaUD7fBw40ztUc/3nsNH4OTxutdTwBkPkJJc/B5OtTspsGD/g+FnxfRRlCQMLCUB5JY1xbUsfSg59X1N4pwVoZnPF4z0PJoKTngaTmO21gntSGerY0J6pAlA2AsQpdhScAAgA9CZANE2spTY9VC8Zwx2Pj6X9AAW3ZsX2ViGzb3+yAgzZxbyUGNOppHvNAI9AC40lcwH4sOEdrJrIh2jqIdXvX107NAQ4q1LWNHiL25i1N5/gZYAOgf/cMpcs3TbAP0gTzWvMcPxYG8n0yBkhhyaH2eDJjOY1/+OC2HYfwZOUs5ha/PixI95wCMVc3AJrTsQ9C4QmAABCxZvPhCDztCPLv+ULtU57FpIwmb2J5ImzesoCKARTPqupxu0TlV0QiskFnz9jwUsJQ3p4wnyet2KbKS1p+z90CDjjQYjyJK9/NvlkfM2ItqklzB08KBg42poJ9nwDI55NdYgNg6jSTP/GpF0cWN14b/lPLNN806jne+V+zhj1KzgDJC8Lg8WLXx/Teq6nGBkAvGp39no6f/9KQnwCO3XwoiyAAzJ8AMhq7YSk2AI6d3j7IRE7ihsdKkp8vm3T8buIAFHUa0JuJQvQet1arvI3gIONkXMrP/wIHrddrfb+EbDdAdPUhjt0y/9Ov3ERiAQfro4OEfwK4FB+u8kW1l/OTRnw9+e5bT5HVsbKvhZrIIc2EpyIDaQmD1XHGddSnIsetN5bgsRqpqfv7u1ArfUqfPl7NSf6fU2Ciu6hacSKnfQgCAKBcIrS9fD6UbKto5fjwNWwKz4icPeTa3tFZ+1+iABS4PoY8ATDW/KnCBkBkPB/bQqIAHGyQWGv64zDd16c7cUWe6PiiG+hCrbnW6v5ZpvFzeNpIret+3bl3NJM9zE/wdiWcYE4lWZ801TEVhnYD9x5Ix7BvnLteRHanMa4tqWPpwc8rau+UYDfKQ8VixjjJjZj1nFM275f+fBmo2Q6SLU56GhsAAYCeBMgmBVUPK8lYO4O7HUvraVsH/JYwAMW16NN9HxDb31OT+FqoC2wApFGP8Wf1H/NFI3BPzz2VldwT4KDDqzW1DRAlXLdXgpBNx0AXekjv1jya5qhPvHGtq998ZDe+rPbsnqHkayFN5ljmzfjZZ5Pzw+deOfw+cgJIq9qoicmaxGtXYebcA19TUAvYU5RT3qT/YYGL5yQSSCBbSZgYsTeeAAgA+SzuQN6Ur+8wLUHfYaYmyW4AtNKkjV5frWooAIpeKHkKYHTHj5zRNoAw0ENm0zvYqh9Vj9pC1IGDivkkrjQ+HPd+x+C9V3/u+IdJKeDgqtXjdons+x0YT2M7uN09Kt3JnrT5Nw/xuX5+uWJepaxm/qaqxlORgfStdm9eUOffywLrRur43Kr5168FYvIU7WR0IU8ABOD1hMVHAIBXzHoU/RJHzd1woogM5GbHSA+t/ZgoAGXo4YJfE4ToPW7FgjcSnALNeW6P0UXcIaDLxrW92LUomZ/cszqOqSJLSCig7tqzOZPGs1A6m0gcf9Y8z80fafy0Hj+N48v6Jqv7aankhu5zyCixCVRuJJuA1K2PM66jPhU5bu2yBI/VSH22fd5Nm0mdLOYoF/uVfM4pEDX+dXI8bAAEANCm+dZveUrFir9I6Gzg6X/lzrV/LJ428HZGCVACYfh7ghAnbnIqQUAmXXKtwgZAoOu+fXMm4zHl16ccozrP2VaRUEC948o2e3CSKdQ6jV/rdoVsAGR+gudNV3I5lWR90uTHlEr7of/c8gfuOZB6P7UxrXGd2MZirfd9sqlRIiISGj1VAzFOaiNmveeUzful2+sFYvoUiRanxrEBEADoSYBsmJbgXwmpvJs7HSs5fkIQgHJY+Kl+/xCRDdl8VFAcgcppRIFGPfqf1X/MvSPw4V989ojHuBdAF8Nu7yac1DZAlGfd3rmrZyf/MACoXy4bAKM+8catrp4NgP7dM5R+LaTJHMu8GT97L9h08TkLzqmRC0Dag7aS4NPcs1i4Zb041AP91/RU3t7TtM8pnesJVNgAGCf2GshRBAYA8lrcgbwpWd9hxd4AeMp11iyi/0LeRFcRfv4XKNnS9I9EIZpQ5FQx459y0EOm2juY6P8RaaAOQdjAJpw0Srmf04OK3PU/l75iKwkF1G1TXj2CvwuPZr6szqqiF7y3RnK5Yl6lrGb2pipyM/kBZDD8VTbmOS9k9WTRpGsbPwHsec+l/vVrgWjo+E8Au9lOmrEBEED55jk+AgDy6oaK/RPAA7evP1lEenGnI7vvposG/o0wAOURmvC0n+ht75Fnz2x7CZEoUl/k4kmFbAAE6hD03bxZCvLBQdQvoBrbaPTCY4aivyWbgCjjKUjhCYAF//clys/VubzAOXi+p/HTevx7Kl/WN1ndT0slN3SfQ9ZzPVYR+iIgk2IVtscd11Gfihy3dlmCx2qkPhs9VU5zVNGeEBhPoBbwBMB4WggBAIA2zcN+y0/FXiRY8FYP+2gXlg6LGRpA2ca93U4Uos8FYRjwM8BIN/UCYwMgUIdvjD+1Q0QyeXKd10/26mpto8YX3UAEQU4/AZz84I9TuzRWrQsqxtNqmJ9Q0AWyJXiseLmb6Ie4D358xpmt3GsgAxVtlxTHdWIbi7Xe98mkRomEARsAG4xxIhsxI5xTNu+XXq8XdFgnGwDjOWLc9VYhDABATwKkzQqefabyVu5ynJoULCMIQLl0l6a/7P9zAb4W6gIbAGnU0+zvV//8U/0f4R4AdYu1EceyHdcuq9W6yy2kERChfpjl/ytYddYmd7p6nlaT+PwEuLYWKsSVB/yjCCCrRUinbPSv3mju7xdKyD+qKPyc59Y5Bd3EniBRYt23YNv69UcSGACIhw9HQN7U33cEIrXi3lRTkXQ3ABY0b57cuqUvPwUKlMyCy458SkQeJRKRJ9aTiUH9fQc95DOvrzswPP0PiFZytsbv0flXeSLy529c9lL+QT8QpXKobM+3p/BQJxsAmYfg5bpGk8lxy2i8NPpznaHYKrICyEZzED6VbL/j7JNFkz1vFXoq3/s4TTPHkj9usKP92I3ur0PcPL2OivVloAAo2zzna80GfGYiYVGvbcwVm14uIi3c5chFfMWqqnYSB6CEo9/0bqIQeSZ9DTEoXG/kzphUNgACkcav6Xa3zkgzO2ZjG4f0mf+XJ90A0cfkjmR/CrP4wiDg169cnoc02WNaxDdl3OS1vtHMj3WwP03s5zr3d3Ct73qCCn0RkJUO022NjGv3NhYnWZ8P/HeBKD2VE2v08lxPsPeLQ54CGENFhQ2AAICSitD28o9jEwi3FfYJgKadb2NdECtySxkYQEmnhCD8M1GIOhdo37HT2wcRHKTUzLABEIg0ZGxHAVa5sV6fxNomFLmTLAKiCTXcnulAdfyYbN4q/nzDPUZXNSX/p3Ulcm0PfnzGma3cYyAbA2qVbYnUCM2gZmg9tUkz6cdCVb4h3e89TuMfKzTa9zb+jx2y/rv9Cfb+z3bSLc6IDQcSBAAAkDrVAm8A1Ldwg6N3obXmcBlhAEo6JZg8cICKSnAOGreApwAW/y5n+md7bf75p456kNgDkcTeAGgRx3URZ8ZQ+IcAQFSBiRsbj+vsOdjs5R/uAbxdC3l8vjwVGcjWqd8Y3yEiu7OpN+rosYpYj5nzinZOezcAKhsA4903niAAAA3w8sMRejfyJodcM5FagS/zjeRNxJip/GnZpIH070BZ58HA/k4UYsTNwlcThXL3uPG+TO8yMH8WVb7zBSIInrcBMKunzxTIjs2vehmbjoHolSfRDYBs0KNxBpxe12gyOe7ez3W++KlO4R/IBiDzKXB7sv1Okk8W1UwDgZL1cZrmfU/2uIGIiJl58AWig8skNZ4ACKCU85yXNRvwmRVzA+AZl28+zESO5wZHE5osIQpAeXWv7HlIREIiEbnx5QmAhWuPnDiHP3MngIi9rNp2984qu5/xbGzjkP51wTnFfTo8kNp8bbojyXEJODEPabLHtIhvyrhxO1csrbx70Z9aEseq4/T2dz2mlbvJByBz2xoZ0O5tLE5yjqTHdH+NXo7r2fsEQGsjieLcpmAwUQAAlFeE9pV/ENNYz6FWyI0ezd33nPJcP8q6oO4G3sLljAqgvBZMG7pTRB8nEhHnAhU2ACKFdlj/QhCAiCXagu1OD+uUX9/g2VFzgDgjx2op/gSwenLMPGsX8phvuMfFz4lGa0r+T+tq6D12h1sOv5+sATK3LZEa4cB3OF3/6gNfaqY/36XxjxX2PW60eajxf+yQ94bRp79w1YCfEIu3cuQJgAAAIAPaWcSrCsLgNO5t9EX21m0D+BeuQOmnBXvkAItUYnNgrxp3vVUIQ+EHR6Z/JpUam3GA6HY18scWcVx7PTO+uDZpwDoAiFM3LOh0dlw3Wuvqfj1fYqeeZ4QAmS1CijLOGzrfe8d/49QOcgjIeNSa7MxuPm2wpmme9ZG+q5wxduOceAJgA/fNVAYREABIqpmjrwAOlGsqtruQl6fGBsDoNfOPq6rF3BAKIILQ1hCEyHrseuypowkDPW70tcoBA7O75Yh+fyNKQNRxZZ2NfyZQzoKlys+OA/EkvwGQp7EByH+dkmar5OrPdT57LP5RBJBP7ek42LjO/8mifLCFdHIu/fRK7uCBiEhgsrYgLU3W+AlgAPCnZoPs8vh6dVdB7+Np5E3E5l3lFioAANNgNVGIobN2PEEod0+YcC/wt2+MV546AUSkZjVHz8zZY+6tXbWOsPs9ZBAQXaXSWatznAF+zRma7DHZ2Fqs/LO0c3mfpy2nu/HmhddjbAAE8mDSwFouyY3F2c9RlkkvAPdjrM5fTyAiEnqzAdA5vd81b81RhAEA8yfK3PGTa5kM051Fu6axV23oLyI8iSmqmrEBEICo8ATAOH2HBnYCgUGCSfZnYgDEKc/Fe5p1RhsmHv1GddAOMgiIMUat0nnQJjGNxtPJYyZSi1D8+Sb33OQec9+e97M4+/+/aoUNgEA+Q7Mz6WGef01T5jyP5juLeV8tZk742C8HIiKVUNkAGFMlCI4lCgAAIE2hFe8JgDWRk1JciBZ0fS0d0ie8lREBwFQOsgGQr/IOWEdN2ACIxPoHtfAvBA2IIWj8CYDm2Oszqk2PkjxAPM3NHW49ebTOniP52sWX2Kmv03yeb+DHIiTnnI17zgn/XGetWWp/JXeA7IVSzwbAxutaYk8W1YOfV7rzMH1X+nFy9wmB6W9wPLBARGTn5sHrRaRGgkXPJa3VjiUgAJDHQrPUa3OUrO9QDQu3AdBCeS03N3Iu3LVoPE/9ACBiGmwiCnHiZvwEcCl63GQvwg50TJWHSBggzpja9wmAqX35XKh1uz1C9gDx7NnTnMp3X2z2ApBvT9VF89NwH5Tkz3VqzOvZ77Ee/vCsYdvJACB7gUmXT1X2dGMxUqWcU4bnFIiIrKpqp4hs8Lmlya/S6bEMWgDwpGaD7PL2WrVwPwGsks8GQJ/zJjT5HSMfgIhIc0fIBsBYk4CyAZCeMMFeIGAzDhBv0Dr8j9Bd/hlPag4Qu+zYrrp+ro5PMeHlnKHJHpONrcXKP0s7l/XF75Puhgp7+i3+wf0HcuqpVBv8CeAkNxZnP0dZJr0AnI6xNnpO6V9P8Lz/nZ8BjjfUjyUGAJg/UfK5kFxLe4ia7CrgZb2aOxuxcVe7hSgAeFp3NgDG6zuOHVe1bgQGSTTAQY+djxEGIM7qsdEvjbxfFcd6PU8ABBrRM+yqSUyj8XTzmGC+ITeLdo+Le990v6etpo+SJUBuFaozjWGef01jXvNpvrOY9zXPn+XNUtPz/ve1InIaqRa5IBxHDAAAQLqNcLGeAHh61ZpE2l6ZbosmhftnyGGou0bNaj+FEQH4oznJg3U8b14I9lT2Vjk90MzBh1f7VenstvFYEfk7oUCD/cO6BdOG7iRgQIxhpmJJ9OlRZ7q0X592bVLjCYBASXuOhGvjC9+YVUMe94CVGzIqCKnmYPRzPvD7RDuWiT1MzgC5VauwvprReF177n0aPNYL/nzfY0XtnaK/OdKdB9OaQxs/p7g9XtjgmTc9L7vXkIOxvIQQAAA9CZCmIJBtRbqe3n3WvzyUoDt3NmLJUVneePvf1cqaBUGs5boV6mqyUZL5M9ERW3l+3GhAYt8T1aOFDYAl6HGTvYinP7R73jFN2IgDpNAapPLlc0HW7c08ARAoRO1icxiA9GvQ85qfhvugxjYxRG3K6nkfU9ZigDv2P65921iM/HKFc0r+nJ77CeDA/ulXS+NA7J8+lZc+/RQbAEAjNZtWDJ52BJkI1Z4q0vXUVF9L3ri6DiM65A3Im6LfEz2aKDDWGh6bARtxgAI3xC4ec/NV1eOe5N4A9O9gzmDcIJ1cUW9SViXkCYAACt4LwOkYq9v3PXjuPJUPL+Pd4G7dW9YcSyAAMH8C5Fp6wi1FuprAgldxT4E8OfQPqoDMcy1kAyASaM30UYIAoNEOq/7XU3MAPxYkLHLgZjpbxNw08t27niKrY9X3PilsTHzukNZNhL4IKMCkZYmUjK7/2BI8VpY1lfmuyP15uuf07AbAGh9exr9FJicQBQAAbRrSC2/TlmJlS5hN78RnkSjGmg1AknOQ8gRANF7TjX9EC5Ri1erOKtfWc/cAGpPkapc6WuuYn/ybn5DnWE/yfSyjc7bGj7X+w7OGbSdfAB/mLU3wfRo8lh78vCyDa0GyMbZUc3ffc7KY15NHz/bsBsCm2k4+vIwpVH05UQAAehIgvTSzLQW7Iv7xBACk3nfwtdABQngMUShLj5vek30qgT1OkgDJS20DhHofmE1kB1DAWqcRX4/CzmdA8vmmCfZBSW5iaPBpXSbsZQCc4+rGYpQ9B8vxYcG+nt0AuGzS8VtEfPowwZ2frVLhCYAAkETNplGDpx1B+g1brVacDYBmKiIvI29cXi8RHfIG5E2h8QRAxlrDr1cL2og44EzzWvhjqko79xkoTk8B5qF8jsm6l/xL8ViZPcDQ1nHPAbg3l/KkmPTjpA5eipv3PXjR//9hEi/WDX4FQQBAPwSQa2npse2JwmwAHHH15sEi0ou7CuTNnX9QBWSca0P3bkYHYtttnTyNC0AiHVY9rzeVzUQW8GVBQpsJN9PZUvlpPfLdpZ4iq2PV9z4pbExUEVOeigwUadKK+lTkuHORJXisLGsq812R+/P0zulFGwD1UVIsVlaeSBAAAKDtTakP3LWgeuKewlxPreOEjOMHkGsAnq/7e7629UjCgAZqum3p6McXT0BJVq1urHJ1I3cOoDFJtnapg7WO+cm/+QlFqin5/1xn18cKTHkqMuDVvKUJvk+Dx9KDn5dlcC1INsaWau7ue04W83qy7tmCF15s+AiJFUvLyPmPDiAMAEBPAqSwkirUF8wV0xO4qQCQVd/B10L7E0pHf6LAgGngmE+tqmonsQXSWv6k9HqP1+0ahmwABIpa6zTi61HY+QxopFmxro6nyZybZXSddsC1vNETAR7Vr/w3FoM5tOAfFuzHi54AGDxICx0vHzqk+2sZWADQeM2mUYOnHUGaNhbsXp1A3viwXiI65A1Q4HFcCdkAWNdcUPwaHfP1fOkElKJgqUNXxxMAgaL1FGAeKmIzzjgoQv6p4ykb0BMBhZvvinK+PCkm/Tipg5fi3n1vesH/r2IPSI20i9VySPgaEVlJJAB/9N60+aYd/Xrx819AxmxP94ki8iVR4ZOh+nrIov3E3DHcVcCZipz/IrUkc4EDkcbzc82EDYBoJJf40glAzHl//41PV31Cp1SoO0DG45JFDrxf8+x3HKhohNysbx1LvvvyWUJWn0s89z5J5sbTx6oEIT8BDBRs0nq2ZjRUMrr+4/prYH0nwme97s53/vQr6ZzTCzYA7tnR+WD37k1kWJzbY/IaogD4ZUH1xD0isodIANkaeeWG3jxdLFLjW6wve1SOybzP5rNIAMALBGwARPy2wtgACJRwTZbrlzsVCTdzF4DSdyAS9YONrmvXC4/JF9n+zTfcMyRdU+LlVJL16eDH4h9FAD7OW41/OZPYxuIuN8pH652Qf88btxeK9nfPnVM279eYF/wE8Kqpxz0pIutJrBg3TdkACABAnY0OX7pHane1vWAJwBMAUez1KeBcrvHB1L4hMXoRBkzsPzMRnjoBuLfGjDSufZsZu4ns4i4DBa5dGvH1cH++4Z4h67VLJsfT3Mdbc62TtRhQmvrF+aII9zT7cwr289/dT3LEum+vOuW6O5oJBgAAXUybKv2y+lCgCKxAT3sYc13rISLS16344sCDlegAKOwang2A9ceq8CJ/kauyhcQA0i0ulsIxfS6CO6Q7v14B+NAjEDLmNppxxkGO+WcZpZMl8h7xTmbnrm5PcK8Bv+a7rNZ25sRcyqZCf+PUyD8edut69rMBUB+gnYylR79w4KsZsAAAdDlz86V7lHipFuanDcIdPP0PhaljKPqan7wp+s3oRxAYaw0ULTbiAEi88TlY7RokD1J3gFR7BL6sRXnW15bKxg3GkC/rm6zup6WSGypNnb13kxFA8SatqE9Fjlu7LMFjJV2fkey98adfSf6c9tkAqGoPkDjxhLXwFKIAAEBX7czzfnaPz4fqaDBkY3FufuXoAvXRQEHwUQVK1YQ88z+PJBiI35sZG3EAOqYsO6xatfqOTu4A4Gvjme8xLeIxWR2Wer4BdaqBnNLUc11EwvHfOLWD+wb4OG85tLFYG70evmhKP5eyeMpk1L/TjN8vvn02ANZCNgDGTkrVU4kCAAAHmyxNRaSFQERoK83WFaiD5wmAKMGgJQRwMdf4WuhFDicEDJi4f6aB8tQJwMmlRrRx7dHMyKZjoAy1SyO+Hu7PN9wzZL12yeR4mun1Gz0RUPL6xfmiCPc023PaZwNg0BTeQ2LEu28qwgZAAAAOYtiVa44QkW5pHb+IH6rVKmFrYS4mlCEunhYfxh6sxyU6AArpCEIQZS4o/iVapNfyBEAgi+KS1dNnPCiCbDoGPOkR4tcu0DiXvBlHYrliGaWTJfIekU+GnggoST8Vt2CZE3Mp87a/cWrkHw+7cz37bABcMf7YdSLSVoaykcJpvGbE3Ie6M2ABADhA49HUNIAoRNO7uXltgXp67j8Kgy92SrDmJ2+K7HBCwFiLXa6MJwACSKfxOUDtYtMxkEmPwJe1KNP6Oo2f1mv8p/GQzfrGu5/rfA7rMMCZ+SX5J4tasieYQD2t7xqZ85xsdFKd39y6nn0F+38P+yuJE+vedOvU7q8hEAAA7F+lJv286LfcsXXBxH7binIxJprvBkByDTjg6ARKtG4XEenJP95D/BziCYAAHVN2HZaxARDwvvHM+5gW8ZisDos/33CP81dzvE7l/7Su/aInAryet+qsEVrP+zTYY2myvRPSyKU0/rFCo3+nGb9fPMEB/uu/kF4x60VF30QUAADYv5pqf6IQpZ3U1mJdj3H/UZbBCziYa3zN84LQ7TqMnwFmwMT8M+WLJ8BRFnFc+zAzqkgHdxagVaGrL8n8BDS6dsnseDlcv7IBEIAP9Rbc03zP6QAbAIUNgDHvm5q+hUAAAHDAqTL1DWDF+lDN1hbqakQHMgoAAC6odAaHE4VoTRyeaWiMn54CMiouWT19xvllFIBCD1oGedHuMY0zHK9BDadoTj/XafwEMODzGi//J4syP/v2eYBX5+TQpex3A6CaebgB0JllEhsAAQA4cA/EE+CidTfrinMxpirWj07Sx4FLdMibEq/5yZvCCkQOIwqMtVivN6sRXYAmJa1j0icAefYIjEsUaB7SZI8Z9ecdGTdu54qllXcv+tPEfq7z6UN0cn8Bl8qMJn7QzDcWp9ZbstnQzzV6nueU3PXsdwNg775bHuBRurENGTmv9RjCAADAfnuYY7zp1RxgooV5AuCwK9ccISLduauAuxUHKFE/IlaxQwgEACDtjokOC6Dx9OOYYH5Cee+ZehUHACXoixxodazLE6EfS39eSOMfK+x7XIuZw9bw9aVjvxsAF5xz4h4RuZ/0iqcW1HgKIAAA+2tsTF5KFCK1kv8syrU0aaW/K0EFyDWUN9f4aP15oWADIAOGmg4UsrxHG9fMjAB8bFWS3zhEs+PM/MTKDY6MS8v9nKlLQJHnucbfp8EaodQb5tBinlNwwMFjcgeJEe++mSkbAAEA2L9MNgAW5UOyUMJ/FuXGB7Wmo0h/AIAzS3cNehKFqEEjBACSWONEKy75f/kMANGx2avs95h5CC7mpyaYon7/XCeAtGmuaztjfvY+V7w8J0cu5YAbAAPVPxV/WZVaSvwLgxUAgBcaMXdTHxFpIRIRVOSxolxKTcPD6SR9XocRHfKmxGt+8qagN4GfAGasMTYB5N2kJPnFGAB6BDAPRf2TNH5aj80VvuRK6vdzn6ctkxtA8cpM8k/99HVjsTEfFmSNnuc5JXM9wYEPr7eTl7Gd+K6rNvQnDAAAPK+3qNVe4l2vlrPabi3MBsBA9EjuKOA6vtZCqfKdJwACADLpmOiwAJ9oiY8J5ieU9575+HPDAArdaznQ6liXJ0I/ltbNtIbuWfRzspjX4+L8dcANgG3BuntNZCcJGS+LK82dpxMGAACePzvaSwlCpBaybeXFA7YX6P4f4fF6AyDXUCB8tC4iIkHAEwBBTQfKPtMpMyMAf3uO5DcO0ey4thJjfoKfG/O0MNcPwM15K7Eniyr1ptjzoLtPCExzrBxwA+Cd40/tUJE/k1Rx75u9g0AAAPC8plzDTDcA+v4hmYn8s2AJcASjAADSXIMi2rzETwCXN9cYMIADa51I49IY6wAKUeuSfT1cv8fMQ3AxPzXBFPX75zoBpE1zXdsZ87P3ueLlOTlwKUEX//fbi7+sSi0l3slgBQDgeXOj6UuIQqSIPVakq7FAD6OT9H4QEwPyBuRNceJv0oMoMNYYmwAiNsSeHBMAPQKYh+r9E2UclDhXLK28e9GfJva0LgAOlhl/n/ppqR+PmufnGt3vcwq6SNI/kZexHT9yXusxhAEAgGdbnpd52avlxMT+UbDrOZK7CvgxWlm3oySNSYUgAABc7bDYYAEUbUHCIgdlmm/Idz97BO4bgIMLs66LDZUlfo7crXkuyac4JvV3mvH7ZZNrB98AqD4+AdChIqghPwMMAMBzTRBPAIzSpJk9VLDVYR+nzoc1G8g1oOyDs4kYgJoOFHr96dTrASD5niONL1Jpdnyfn8AiJO+cTb4+UZeA4s1zmuD7NHgsPfh50Tv5Pg+qs+eUVo930A2AN48f8g8RaSOpYhee4UQBAACRU66zZhEZSiTqV9Pg7wXr0Q/hrgJAqnU22mq19EKeAJhJrnERAOqdiTSfmYtyACDTWpfv65H/PQbyz09NsA9KchMDTRlQPJrg3JndE+QAn+el4ODXpCYmt9Byx86HM0+vGk8VAACUXt/t7ceISOZzotcNfiUs1AZA9WgDIAvDg91IokPegLwpSvCVDYCMNcYmUPzmtcTHBECPAOahev9EGQfkX3rH0hfnDX0PULwyo76eeAZzWkCepD5nqYOXkt85dZlxpnoLc3FsR/RoWfdGwgAAKLtAwlf62qvl1CE+sWzSwPZCXZLxBEDApwHr9ZofqC/H2AAIAHC6w2KDBVC0BQmLHJRpviHffblnxn0D4NQa5UVPFtXGj5XlvMYa7mBxye4pjhbzvrpx/4J0/zoIw1tIyQaSWcMRRAEAUHaq8mqiEKmD+HsBr8m9DYB8pgVyDSgzntaPeNg6ChR3FZby6wEg+XVkGl+ksoBlvoGnBcGZnE2+PlGXgOLNc5rg+zR4LD34edE7+T4PaurnZDH/No0er8sNgLvah94tIttIqtiVZyRBAADQm4VsAIzU+hVxA6DyBEAASH8CibRYLXmw2MaVWa5xEQCSGZepbZigHABIkTn2euR/j4H881MT7IOS3MRAUwaUZY2X/8ZioJjzUpcbAFdVtVPEbqXljp0Prxt97erBDA4AQMmbpNw2APrY4IeqBdwA6NdPALMwPNhwJjrkDcibIsQ95JsFxhpjEyjFHKglPiYAegTkz5E5Q5M9JuOgjPmnDf+ppTouAORbZtTXE2dOK8ScpQ5eSj7nFNR3fvp75uL4t7czDM4iDACAsjrlOmsWkVcQiQgNWqj3FfCyeAIgAK/X7ShaeukuogAAyBobjYCyL0hY5KAY8xOKdc+4/wDcqhkverKoNn6sLPs4aurB4qLO5ltR1LUB0EL9LSnZSDLb2UQBAFBWfbevP0FEukVq08r+eWhF7y3gVXV38qz47B3kWm5LayDnQbmTGAAAGu2A6JgA+LjYpHYxP8H/e5x1Tcn/5zr5EBfwqe+wBI9V3/togpelMa6HGuVaz2sN51S0c8rm/bpW1wbA3Yd0/NFE+HA8vtNHXfPYEYQBAFBGTYGdTBQi2dlzYMsjBbyuCrcWADIQ6bOQ8n4tZBbyGQeED2gB/8ZlahsgKAcAXOpVI9YmNns5dM9YicHBtYt1dTxN5tzIawDpL7b4hw/IOgfVg3HxnLo2AK762HG7VOz3JEbs+9Zck2AUwQAAlFEowSl5n4NnDf59C87RWpFyYNz15uXmPxaGB+txiQ55A/gt4AmACcwFxa/R1HSgKL0TP+MJgJ4CRWucmYeQR65oBn9KbgP+lplsntDGXMqc5cX91HzOKah/AOqv+NmqBs7E9D0MWABAKds1tVOIQqSIFe/nf//2N57+B6AQ6/bir1zLwwI2AAIAXJv3+QIKKMe4ZKx7qQifbGlX48C3jRswR49V3/tQCwHqT9eTVtSnIsftvSzBYzFHdhUXdTbfiqD+DYBqvyQlGzJszHWthxAGAECZVKsWiMnrYrVp5f0M4L7CXVGfPm5/TMrnTSDXcltaA7kJwx0EAQCQRAdExwTAx8UmtYv5Cf7f46xriiV4LHIXKH7fYQkeq7730QQvS2NcD180udbzWsM5Fe2csnm/g6t7A+DhRw69W0Q2k1SxHbqnIxxNGAAAZXLnUetOEJE+RCJCo2fFewLg7o4eTdxZAMhQpM9CyvnRuom2kSiIMWAAOFHDU3o95QCAi7VOI74exZufgNSaFU3w0EpeA8iofrGxGFnnoHowLp5W9wbABedoTUxWkRjx75upvp9gAADKpBYGr3flXHxp8Jua9a9Fy4OgW5O3P5TCwvBgPS7RIW8Aj+emiqwnCknMBdR0AGmMM19+cpMdgwC1i54CzEPwI//Mq2FAbgP+TnO+/Zw89aYcPVOel5Lt9QSRzi+wXxV/GZZqezXijOsePoxBCwAoCwvtjUQhknULL2hpLVy73ry9wq0FwJrfl5VrOXRohQ2AZe1PCQEAp2sRX0AB5RiXjHXWpm5eg3m3cQOW+bEc+rlOAIWpPwerN1Gfihy3dlmCx2KO7CouaT3F0cWn/GUr0gZAq+lK5uKG9Gjq7P4ewgAAKAtVeXNDbW/J+g41ubOI17Vjj7m/1qHHBRpaWgO+JbZ128gGQABAYh0QHROA/PFzeMxP3OMy3uOsa4oleCxyFyh+3+HdxmI9+HlZBteCZGNsDedUtHPK5v0OLNIGwBUTh/5DTP5OUjVQfPgZYABASZw5c/2hIvI6IlG/UPWOIl5Xbc+hNe4uwGcAcDnXSvfR+uZlk47fTZKA4gyUR90zHeUAgMetChtmPJpvuGfQzP+Q5geAr4UPKHAOJntOQYwTWExiNHDfzN515rXr+xEQAEDRdWuy00SkyaVzcv1DtcDsriLmQlDZ0+nz+fNhLAAUDk//S1IJPr+lFwDyGGeawrjkCycAfvUU9CA0zsxtyLQGaTL5aIm8B7kNUJuSrRFGvSl5z5TTOWm21xN5A6AGsrQsZSMlTRJ2foBBCwAouprqm4lC5DahkBsA92zfyRMAC7sO4+sIL1YgrPnJG7w4oTYRA2o0ALjbpPAFFOBej5DkT2GCsu/6NWTz03rIen1T0J/rBOBO/dE0xnUdG4sTnMSTntNCUsSzZs3/OSnyBsDeRz71O1HZQuI0lDYfJQoAgKILxN6SSBtdls8AVNYvntZ3bREvbevAY2ue3AMAjdZswAvhDmIAAMi7Y6LDAsqODcRwc75hfvLvHmddp/J/WheA4vUy2vDLEttYrPXUJqUfa3iea2ReyOYfK1jMxMnm/fYv8gbABeecuEdEbiYtG/LaYfNaX08YAABFdXrVmkzkrUQiUmd3Z1Evbcw64QmAAJ8BwPlcK9FH66Y7SQ5QnIEyLrmilQO+dAbgY6vCZi+P5hvuATTzP2QtBCDnedG3ekN9ZPL165yCeIPUlpIYjd03U/sIAQEAFNUhh284RUT6uL/YcMofi5oP1aqG4vnnmXwYCwDFYYGwATBpJfg8lF4AyGOcaQrjki9wAHoVv3oKehCSEci0BmkyOW6JvAfjBaA2JVsjjHpDz5THOWl21xNrA2BTWFsq3v1ktTmWGvaBcdff142BCwAoZltmpxOFaMICbwDcq5O7XNQBz9cRfqxAWPOTN3iubBkbAMFYA+B4k8IXUIB7PUKSP4UJ5DxnaLLHZBz4sr7RzI9V3/vQ9wCFqT+axriuY2NxgnMmc1rZ1+h+z0mxNgAunXjcelG5jcRpyFFPtR82ljAAAIooFHlHxGVBkfutetR6dQtuL/g17in8ugAoND76QJHwE8AAADc6JjosoPR9qSfHhGshNsdej/zvcdYJn//TugAUb1LUhl9mGZ2Kdfki+rH66nsj80I2/1jBYiZOXvNXEDvnTW4gLRuuG+OJAgCgaE65zppV5K1EIpJ7Fkzst63g17iD2wzwGQBcz7VyfLRuKttIDFCcgXKqe6bTMs2MAIrWqrDZy6P5hnsAzfwPWQsByHlezKLeqKPHKqPAwXPSwp5T/A2AFfsFydrwfXvXyHlrTiAoAIAi6b9z3ZtE5FAiEWn588cSXCQbAAEAbizLzR4jCmkElhAASGBlFLG4ZPX0GQD0KunWumRfj+TVaJxR6H4r6RTN9uc6AZSkNiVUI4x6QwOfxzlldCmxNwAuG3/0wyLylzKUjTSzI1T5JAMXAFAwI+gIovZ9we9LsHzz/ucW+cD9YElMdMibEq/5yRsPS1bwKFFAnLHG2ASQbZPCF1AAPQKQ4pyhyR6TcVCsXLG08u5Ff2pJHAuAW72TpjGuk9xYzJzGfFfccwoa/GueAtho8TD5yLjZq3sSCQBAcQTDU2mjC/wZQK0itxa/19btjA3A+9ULIUAxOpUwZAMgAIAOC2CcxeDLZl820qROiz8OmJ+4Z64kPLkIMCkm+5ZZ/Tww/Vh99T3Jpzgm9XfawPtprvNXQxsAzfgZ4ARqwpFbu+v7CAQAoAiGXdk+UMReRyQiWbdsUv+HS3Cd/jwBkHUZyDWUWuE/Wg939XqSnwAGAGa6uns1NkwA8HEdSe0q/kqMewY/N+bxYRjgr8aeLZb6k0X3eZ8Gj6UHPy/mYd/nwWI+IbCpkT9eed7R9w67ZvXfReQEkivifXvhc1Anish3CQwAwHeVoHO4GKv4SG2Bym9KcaGhbCczImXGn8zsW+VZbBVbQNiSxacrGQzPAgfZdPeyScfvJilSzDXjIgA0PtVrhHFpsVoqxjpAr+JarUv29XD9njEPId902H9+Pu9EGj6npw+QTO1ivABlKXxZre0O/D7UG/cmOhfvScxzyuBSmho9gIn9XEU/VdwWPYszslOHzV/zjhUTh/yGwQ8A8JrJCDqCyFaVpL/fUYwUzyZvVGzT4ov6f4OiAgCAW3N7jZABOEgXn/yn+Wz3AXzpEdigBy/noS7/JNoxGQfFypX67mcD/c/eP33ufdh4AxSvzCQ5rpPcWMycxnxXzHMKGj1AU0V/TOIk4mJCAADw2Yi5D3UXkeHx2ugIfVHh+s9gVUlSZDujJNK46EsMAAAAgJJ0/4QA8GicpfHhlC/HhO8h5meGuWfUFABp1QjL/i0dqWnUx8bnOY35d2nOq9rA+2luvVTDGwCXjh96j4jcS2o2bMS75685iTAAAHwV1HqdISK9iUQkrYsn93uoHF28PeHZejVXoSgbAAEAAIC0licR1wVsmADglDo/s6B2FXh+4p4hakFwJGfjnjO5DhSj5lgG7/HC99EEL1epTYXLyeJt3gwSCipPAUwglwKVaQQGAOArC+xsohB5FfLr8vQ+nm0AzL9VZAMgAMDbSYyLAND4UinauDTGOgAPhz6bvYowP3HP4G9tsq5ORJO5KMYBUM45MG7hy39jMetE9yY6Lc71pHwpiWwArITBj/yav83V03r/yHmtxzD4AQC+qVYtENPRLFgivr/Kb8uzOtTCbADMKG96jZu9uifVBQCA4veEAIqEL4uAMvcI9BTIf87QFP5EGQclzr/Un9a1z9OW6aWA4pWZ5H9uN6u5hjmNfsu3c0pkA+DS8wc9JiJ/JHka1hxqOJkwAAB8c9thrW8SkQGl7dViX4ryBEAc0LaOQ44iCgAAAEA58OUS4NM4c2TjFvKnjBu4dw+MhAdQljlDc/tj6mPieZPdz8Nbge9rkOBN+QmpmUgcz33XvDV82QsA8IqKjvNsWeCCfyyZ2v+R8jQ5Hj4BMOfevrmp1kJ1AQAAABxZ0rDKBeCd7L5IBfMT/BrreeagC+cMIL9alPqTRfd5H03wspR5tcTzoMU8pyxzJLENgLXmjutFpJPkatihTSLjCQMAwBfVqgWmjW4ALGM7qivKdL1WCZ9kKRQ1aNaXIAAAPG10uAgAmY/L1DZAUA4AepU0l/5xX6/pHB9dJ45ldY9BbcqtBmmC56TkNVAgcZ/UFrXwZbWxmNpU4iY8kXNy73oS2wD4q/96yQYR8eiLbHM3l1Qmj5u9uicFAADgg9sO23C6igzye8GSw/uqrSxVW6/B5uItdNN+DzYAAgBQ9J4QQN7jkp/xBMoh/rhk8xZKMQ8xdZF/eR5LqZ9A8cuM+nriKMQ9UQcvJZ1zChI9T5P/IfES0W9rd/0wYQAA+CBQeT+9d2Qdld2V35QpTyq7KpsZLdGEErABEAAAACgRvvgGfBpnbCBGeW6bRbxI5rP8a5fl+N4MKoB6lUWNiPpU5Lj1xhI8FrqKc3ZPcSzqfU10A2Dvli2LRaSd9EwkwS8cd71ViAQAwGXjqvd1M7F/82VZ4NA8/4eFl7ZsLVOurD28b7uIhN6duOb61v2oMgAAAIBTazlWuQA8w5fRzE/MT+6ppHAPshrr+f5cJ4Bi9B2W4LHqex9N8LKUebXEPa/FPKesciTRDYALzjlxj4j9iORKxPFbNrbyFEAAgNO29TlqmIgcSSQitqEmK8t2zXeO1w4R2cRSKEKeqB1LFAAA/k5kXASA7MdlahsgKAcAvYpDoj7xhk9ikk+ctDfccc+oTbnUlAOdiOYzbgCUpVjlu7GY2kQTXqSfFw6SD41+x8Nlkpu5ZPb5cdff140iAABwtk0L7KNFuI6sO4JAw+UlTZn1RbqYtPMmFDmOKgMAKF4nRCQAuDYu+RlPoByyG5ds9gLzEMqZf0rKAqzRDjK+fRvoFKZi3RN18FKSP6fENwAunzD0r6J2F8mXiGOfajvs44QBAOCi98xbc5SIjKL3jmztoikD7y5pb76ekRMpxdkACAAAAJQMG4EA98aZHWzlnsanAfCPFv8ajNwsUO1ytz+xQg0qgHqV9qQV9anIcSdxS/BY6CrO6my++SBIKQDfIT0TiqTK58Zc13oIkQAAuGZ3remDItLdt2WBA5P7TaJayu90TGydn/cst3ceeHr10R5UGwAAAMCldQ2rXAC+4cto5ifmJxfHpXl87snlFPUJKGvfYQkeq7730VQvi3nVv57XGs6paOeURY6ksgGwycIfmchOEiwRA/d0hucRBgCAc0w+ShBihC3URWW99sCCDSyFoq0MevfqfSxhAAAg1+mYEADeLVVTej3lAICLtU4jvh7Fm5/AEiS1ZkUTPLSS1wDFysNjsTgsT/yKcU9T2QC4ZMIxT6joT0jcxHLp0rHfbu9NoAAArhgxd+3JInZSka4pow8ftlrTU78pbeJY8X4COP28CfkZYACAvzMan4cCSKDiWCbFhZ/xBEopxWHKZq/iJ445n4zMQ6g/V8ydoQWggGu6uAPdcr8eClOpGvisz0mTv54gtUu08Nqil6cMtezZuXsygxkA4IogrPB02lj9ka1cNun43aVdFKq1kgVRB5uxARAAgCz7FUIAgFoEFFj8n+DK9othvmz2PL0Kew1Gbpa6p/Du5zoBuFN/UhnOL9qQr40fK5l6Su1qPG+0sXxL5d74cV9T2wC4fOLRf1KTO0jRhBJd5aJh31p9JJEAAOTtjMs3H2Zi/5HRsqBQfXSowU0lb2ge9/bcc8q10IQNgAAAAIBrS5uUXw8AyePLaOYn5icXx6W/90wTPD/qE1DWvsO7jcWaxPXApZ7XGs6paOeUdo4EaR48DOxaEiwxh9kuvYgwAADy1q3Hno+IyKFEIrLO7s0dS8scgEpn8E+WQpGXKmwABADAhRkZgFdS+zKdcgDAxVqnEV+P4s1PYAmSWrOiCR5ayWuAYlWgxRaLw+LFz/97muoGwMN26o9FZDPJm0wuqcqkd121oT/BAgDkO2XZuUW9tpQ/fPjNDecP2VTm3Fl4Sd91IrKbvImEDYAAAL9nND4PBZBAxbFMigs/4wmUUorDlM1exU8ccz4ZmYdQf66YO0MLQAHXdHEHelZPFjUKEw18HuekyV5PqhsAF0wbulPEvl/k8pSxQ5ua93yWAQ0AyMvwOevfZSInEolYXdzPCIGaiKwmFyI5vlq1gDAAAJAdvnwHAKDI4v8EV7ZfDPNls+fpVdhrMHKz1Osb736uE4A79SeV4fyiDfna+LGSqafUrsbzJq0Yak5/m43Uv0xUqXxd+Ow0yYh+cti8x9h4AQDIp3Ewm5LDsqAIfXRnWAlvIINEROSf/rZhubxr77v6tL+EtAEAAAD8xpPAAOSPL6OZb5hvXByX/t4zTfD8qE9AWfsO7zYWaxLXg3R7oCyeMhn17zSTHEl9A+DyCYMfFJHlpFtimlQqcwkDACBrw69a+3IRGUkkYlm1bNLAdsIgIiKPsRSKuIgwex1RAAAgb3whBRS+745YDljNAHCqdmnE18P9+YZ7Bs38DzM4HusqgGJVpBpBTSte/Py+p5n8nFhodhXJm1wumco7z7ym9WwCBgDIUkUqF2bVO+QpnQ/VdAEZ9Ewo9DHyJjI2AAIAPJ//CQGANHpuTaFHp2AB9Cqu1Tq4njhW1GQE/VaKKUqtA4rRMGU1lrNa2xnzMw18HuekyV1PJl/i3zxh6M0icp/nLY1jqRPOGjH3oe4MbABAFkbMXddiYh8kErHw878v7GMfIQqRu1Q2AAIAspt1QCQAxlnyqyAAzo7L5J7GluRPYQI5z0OawjFRmFxJ/ec693naMvkGFGbdp2mM6yQ35Gu06wFrdMdk8xQfVRORq0ikRCvlS2uVHlMJBAAgk6ncZIKI9MxxWeBvr2byW37+9zmh1R5kXRAZGwABAACAAuBnHwFEo54cE66F2Bx7PYp8z5Lc/Ex9ApgUEziWM/MwNa2R+SduDONuHreYeWgxcziteTmzn/ELOnf9QEw3kOJJljj9zLuvfnwQkQAApOnMmesPFZPziUTc+dp+RBSe09TR/OALe1s+MqzD0aO+9uQRhAEAgPw7OwDFVvfqRFnNAPC3VaF2eTTfcM8YvM4ck7UQgPRqRPY/JawJXi71sXjzi7/3NLMNgMsmHb/bVL5JAieaS72CIPgaQQMApKm52c4Xkb5luubEFhsqu3bt6f4Lsug5Cy9t2Soi64lEtEwKune8ljAAAPyezQgBgMbrgUU8GE+fAeDj0GdzmH+JY0VNRpSyNlnq55TGuAGQV1GyDN4jy7WdMT8zSeZxTgldSpDppVY6rxGRPe4miJetxofOnLf6/zG4AQBpGHNd6yEmwk/Ox3fjLy878inCsI8Hi3hRqXaSZvwMMACgCDMakQBQ0nHGl0WAy+MyuQ13SX5hDeQ8D2kKx0RhcsXSyrsX/elz7xNwa4CirPs0jXkkyY3FGu164Ol6uJjnlOlsuWL8sevE5IckeLJZoKrzq1Wj8wEAJC7cIeeKSH9HlgXe9Wpasx+QRfu9Vw8ShKgjIWQDIAAAAFCI3h4AolBPjgnfQ8yTJ4t/DyzjhCdHACQ/KWr2b9lQTWcLTyPzgcW8mXF/6tli5qHFzOE05snMM86aKjNFJCTNE3XKrS1rP0wYAABJOv07j/YwDS4iErGXIW3btg5YSST20w/aizcAmnc3N4c3PYXMAQDABRVCADTE/S9A6l6dqJerGQBFV+dnFtQu/7BBj8Gb/zHV0zgA8KGOZTVvWULn+8I/p3aRz27I/BOXleMHPSAiN5IwyeaSicw889r1/QgeACAphzzZfYKIDS7r9VvjB/jJqqp2kkn7aUDNeAJgdK8Z9bUnjyAMAACv8XkogATqgUU8mGV9ggDoVRLAZi//EifZe8Y8hHzTwVI/pyR/rhOAb31L3MKX1drOmJ89mugK9FO+CVxKkNP1Ti9TecpIXw07rqI4AACSMHZ6e29R/RSRiC+UkJ//PVAr2GT3stCN3rdr911vJXsAAN7PaEQCQGnHGV8WAUUal2zQQynyXdMbQ/A/VyytvHvRn1I/gQKuazSNeSTbjcXUpiKsh108pyDHv45pxXlDb1eRX5PkiSfovw+bt/Ys4gAAaFRnj85pItLXjbOJ0Ea706vds3TaoDvIpP1bNHnQ46L6BJGIKNS3EQQAAAAAAJKX3Je4PvyMZ1rHhO8hZmMr94yaAiCtGmHZvyU1rQC9tsW8H5b6eWrG71efIK8bXDObTpqnUcjsmtOvfPRwAgEAiOs989YcJSbTiEQDjazKt4hCFzEy+6vn69U83vPtZA4AAACQwXrFsdcDQCR8Z838xHzj7eDN6mc0Xc1ZihjAPJdFjbCkjqXUrmI3xurgOR1cbhsAb5549EpRu4uES9yg7t2av0YYAABx7e5s+oyI9CESsfu2XbWw44cEossm9C9xlnYl9/px89t6EQYAgOe9EgAKQcP1wCIWl9S+fKamAfQqKWIzsn+Jwz1AkWqTdXUims+4AeCmuE9qi1r4stpYbCwCPZro+HnhZwS5XnKoX3G5PHmcD+OHz1vzLooEACCqEXM3vFTEJhCJ+B2BivxixbShm4lel7H9K3kTWdOu3fZmsgcA4P2MRiQAlHac8WURUKRxyWYv+DdnaAp/wtxW5vxL/WldSv0ECjtHaRrzSLZzErWpCOvhYvUxuW4AXD5hyA2yz9NfkESWmsq142av7kkoAACRhOFsEenu3olFaKNz7tVqJt8mkeq5oyE9YJwhavovRAEAAAAAgOQl9yWuIxu3kD8t/jhg8wP3jDoFoN4akdWcYYmUJWqaK7123KdLWurnqRm/X9eCfMe4mqh8iVRPxfFbuwefJwwAgHqNmrPuHSoylkg01L0++v+e6r+KQHTtUKndJyKdnq9X81giv53sAQAAALJY3rn1egCIRBN7EUo2PyH/wWv5FARncpb6BLgpdKpmaILv0+CxlNpVkMY44/koneMGeYd6xSeH/MJU7iHp0iiOdtGIa9eeTCQAAF0Zd71VLLQriUSD7ZrKN6tVDYlE1xZMG7pTRP4eZ2lXcqfxlGcAgP9NEyEAoA3XA4tYXFL78pmaBtCrpIjNyP4lDvcARapN1tWJaD7jBoCb4j6pLWrhy2pjMbXJp4mOnxcWcWADoKhaYOrgUwCtCPnQFIb27VOuu6OZYgEAOJjtazd8TFRfRyQa6AhUdtUq9i0iFqkPvL30eRNd913S7W0kDwDA+xmNSAAo7ThjxyBQpHHJZi/4N2doCn/C3Fbm/Ev9aV2kF1DcOUrTGOia6bXT2xWhqBdnoglcOInl5w3+GU8BTM3JLZ0Dv0gYAAAHMnZ6e29R82CuiNBG5/OvIX+8bNLAdjIqglBuJwhxck1HEgUAAAAAANJYcyfFkY1byJ8Wfxyw+YF7Rp0CUG+NyGrOsETKEjXNlV477tMlLfXz1Izf7+ACN8a5mop+mXRPaxDZJWdeu+adRAIAsD+dPTo+JSIDiURjKhbOIwoRG9GgdlsB1qs5NHc2iuwBAAAA3MOGCQD+4Ytt5ie4OC6NHKQ+ASWeT1J/sug+79PgsZTaRc/rxjkFrlzamzYM/pmI/JnES0UgoXx/zHWtfQkFAOD5hl+57lgxnUokGl4m3LJo6qC7iEM0rYcMvEdEduSzhPTay0Ze0X4CYQAAAIDfsn86Vmob9PiOB6BEOSTqE2/4JCb5xEl7Qzj3jNqUZVGzro6n+YwbAGVppDTBuTC7J8ihSE24enM9zmwArFY1NNXPObpM8j6/VWTwns7aNykYAIAXNAIqV4hIDyLRWEegqjz9L4Y7x2uHiNxd1rxpRMVqPAUQAOD3jKZEAsC+9cDNDRD8jCdQumLkWE9BD0JuMg+hGPlH3gFlqBEW+xDq/bXD53tSjPsZuHQyK88bslhU/o/ETC3hzx4+f8144gAAEBEZdeW6USLyr/R5DWtd17P/L8ioeEztNqIQJ276HqIAAAAAAEAKa+7EXs/GLRTotmlX44DcLE7tSv+9AVCvspi0oj4VOe4kTg2Mev+1gbxRZ/PNBYFrNzsw+Twpn2oxnX3G/NZXEgkAKLex09t7m8rXWRYkckrz9z7JDvHi5/8GwHx6+7eMnNE2gAQCAAAA/F618mUR4N64LB82bjEOGDcujkvz+NyTyynqE1C8vkoTfB9N8Ho0wcuidhWh57VMxogm2ns5twFw2YShvxWR5SRfag6pSPi/I+Y+1J1QAEB51bp3flVEhhCJhm3rlI6vE4YGFldNtT+ksYQsgUArxlMAAQAA4Lnsn46V2gYIvuMBKFEOifrEGz6JST5x0t5wxz2jNmVZ1Kyr42k+4wZAWRqpfI9FbaIJ9+XnhQMXb6dJ+FnGUar5cJJVen6NwAJAOY2eve4NJnIekWi8wTeRb6+YNnQz0Ylv2aQha0TkkTLlTYIt4r+RQQAAr2c0NssA2E89cHMDBD/jCSDf7oovzArbETMPwa9GjbwDUMe4ttiHyOYJbdQ05qyi3k8nNwCunHDMnSLyM1r6VK9qyrD5q4dTAACgXE65zprDinxLRCpEo2GdodhVhCGRxmQVQYjl7e+Zub4fYQAANPDZAAAAAJ4V/ye4rI5jpnGe8DK9CnsNRm6Wek3I+hKAWzXjRU8W1caPRQ1M8v5rA3mjzuZb3gKH7/inRWQPqZ9mBur3Rsxdw88/AkCJ9N+x4SIxeU1plgVp9lsqP1s+deA/yaokYmn/V4TOKgdNnUHwfhIIAAAA8HbVGuv1ANIfl+XDxi3GAePGxXHp7z3TBM+P+gQUr6/SBN9HE7weTfCyqF1F6HktkzGiiY0tZzcArpg49B8idg0JmKp+YUUWjpu9uiehAIDiGza77WWi9jkikVCLGNqVRCEZNZXfprGELMlC+4NEAQAAAJ6vrnzou4tyKQBKJOoTb/gkxqP5hnsGzfwPMzgejRRAsaJGwOX77X4OBk6fXTf9kog8QXKnmksnb+ku8wgwABScmTYFta+LCJu+Gwnjc/PybxZPG3g7EUnG3icpPlb4vEnn6KeNmbXxFWQRAMDbGY3PbwHspx40vgFCU6ho/IwnUPbalHd3xWYvnzpiTeGeMQ8h32JoGaUTtQ4oRsOU1VjOam1nzKU08B6ck9MbAFd8YuhmFfuyTy29pwPgP8+ct+Y8CgEAFNfIq9ZPMJF3EYmkWgP9KkFIuvUtwM8A5yTUkKcAAgDitzWEAAAA4Hni/wQXXwwjQnoV+BrI9zKvCa00AwFgIku8Zmga75HkhnyNdj2oI15F26iX//UErt907dw9X0UeIf1TT+Or3n312rcQCQAonhFz171KVGYWrS3Mq99SlVuXTO3/SzIr4Tuquoq1b9yctI+Mu94qZBEAAABQilUuAMaZ8DQ4ZDUOeFJl8e9Z1nXKnScxA/Chl0l0Y7HW8z6axWVxnxueFxt5iqPG/Ls05+Nk4uT8BsBlk47fbaqfYmCkPu66BYH9fPS1qwcTDAAojlOus2YN5bvCT/8m11iaC08nLmArYk0r9u2H+ciwzlXEkJ1rNowkEAAAAPB4ReBB2x3tUljNAHCqdmnE18P9+YZ7Ro+kKRyzoH0cgDznq+Sf6AfmQM5p/wIfbuuKTw5eICJ/IL9Tf4f+HaEuGHf9fd0oJgBQDP13rv+KiJxGJJKai+3uJVMGLCUQyVs8re9aEbmXxXDcNwjOJYsAAN7OaHx+C2A/9aDxDRCaQkWjYAFlr015d1ds9vKpI9YU7hlPfkS+xdBST6c0xg2AbKYLza1vyWptZ8ylNPCOn1Pgx71Rk7BygYjUfGjpPfemp9oPm0tBAAD/jZrd+jYRmUYkEmxJLPiyqPL5Q2rtlq0gCLGDN3LkrNZjiAMAINYsQggAIM+VJiEAHB6XyW3QY6yjQKmgZbhI1oTpHoscAbCfmqFp1IgkNxZrtOtBHfEq2ka9fK8n8OXGrzh/0F2i8j8MgUzSefyw+av/i0gAgL9GXfPYERboj0SkUpJlQer9lorcd9pT/W4ku9LsQXR5ERqpvPr6QJo+QRYBAAAApVjlAmCcCU+DQ1bjgCdVFv+eZV2nyBGA/iO3Y2k9tVPduSxy5iD3qpGnOGrMv0tzPm48ToFPaRF0NH1GRJ5ggGQyCK9+99Vr30IcAMDTDwT2dLtWRIYSiUS7yS9XqxoSiPTUmrfeIiLbk2mry9i+2fjTq4/2IBAAAADwtKH1YFkY7VJYzQCgzCLV+Sbm6+HbPdYUxnXSBYECA1DL0qsRRr2hgeWc6uLVBsBlkwa2q0qV/M5E9yCwm0bOW3MCRQUA/DLiqnUfFpH3EYlE3Xvalv7XE4a0e73jd4vIKhbDsbX07tXzg2QSAMBLfH4LYD/1oPENEJpCj07BAuhV8sXmMJ/ugaZwD3jyIxzPf00mH6ldgI/9kObWh2S1tjPmUhp4h88p8O0W7dow5BpTucePZZX3jqqpLBr2rdVHUhwAwA9jrm59hYrMIxJJdwD6OZ7+l1Xra8uJQgO5qjpZzFhpAgBi9DvJvxIAUP9KCEBxxiUb9MAQQdlvvJFEAOL2QppGjUhyY7FGux54Oh/4OUd5twFwVVU7A5FJDILMnCC7gxtGzH2oO6EAALeNnd7eu1bTX4hI75IuC9Lq1e5YNqXfTWRYRi11xRayPmrIq8de0XYGYQAAAAAKv8oFkNE4S25c8uQ2+HvbmJ+KX7uMhAeQy7jO4ViUpUL0GBbzZlrq56kNvF9jW/gCHxNg+XlDV4nKjxkKmQ25f6lVen6Lp8kAgMul2rSze+d3ROSVBCPp2AafE1U+48rIosmDHhfRu1n7xhcG+mkyCQAAADTTKS0RI14Ki0kAlFk4NT/FfD3yvmfF20BMDgJlq2Wa0fskdT0N1kh6Lg8CooW7wYGv6dHZ1DFVRJ5gbGT2lh8cNr/1axQmAHDTyLkbLhWRfyMSifv90mn9+Ena7BuPG/NZ2hVlxW2nj5nV9lYCAQDwsAcAgIbrgUU8mGV9ggDoVZJY+qf8eiSfOMneM+Yh5JsO1tWJaD7jBoCbNccyOoms1nbG/OzRRFeunxf2dgPgr/7rJRtM7TPuL6uKNK7s0jPnr5lKgQEAtwyfs/5dYvZlIpFGo2SfJQo5dFtmNxb22rJ6Hw0/RSYBANKbp/gaBkB2PXF5Kg5fFgFFGpfUOuazUuQ7Uxe1seExQhIB9E/7qRmaRo3IdmMxvV0Rmgr/5qjA5xR484ah14nIbQyGTFP8imHXrP4PIgEAbhgzp/XowOzHIlIpbxQitNHRerUli6cOXEWWZW/ptAH3iMg/iERDXduIMVe2v544AAAAAIVe5QLIaJwlNy6L9zOeKM9tY34qfu0yEh5ALuM6h2OpK+eLRuYfi3k/LPXz1Fx6KK83AFarGlZq8l8i0sGQyLCSm3532PzVwwkFAORrxNyHutdMfyYiLUQjcTUN5DLCkGe37/lTANWBM7DaF0kkAAAAIIXlSsR1ARsmADiF76yZn2K+Hnnfs+JtICYHgbLVMs3ofZK6Hpqm4jehxfp54cD3FFl6wdB7xHQuYyNTzSL6s+HzW99KkQKAHKcCO3S+iJxGJFLp7r+7ZPKAewlEfsIguDGfpV2B0th01JhZbfRrAADPmlxCAEAbrgcWsbhYI+cJgF4lr3V/yq9H8omT7D1jHkK+6WBdnYjmM24AuFlzLKOTyGptZ8zPHk105fl54aAIt3q3dKuKyOPuLqsK6VCTcOmIa9a8kVAAQPZGXLXuQhH9OJFIxfam5srnCUO+/t9T/f5oIquLeG2ZdpJqXyGbgHI564pNQ8dcvulEIoH05yk+GwGQXU9cnorDl0VAkcYltY75rBT5ztRFbWx4jJBEAP3TwQ6R/M8DZzV/hyRCAZoKv+aoQmwAXDWx3zYT+SQDInO9Q5Pl77768VMJBQBkZ9RV68apygwikVKvZnLlwgtaWglUvqpVDdXsp0SiMSbyL2NmtY0gEkCJxn2tNkeC8J4xM9pvPGvmxv9HRAAAAIADrplTff2BFe9nPFGe28ZGVWoddQpAOuNas59j1JVrRyPzj8W8H5b6eWrmPVRQlGRYOWHoMhX7HsMic4cFGqx49/w1JxEKAEjfqLmtbzOV7xdpDs+3LdzHhqaOCpsrHREE9mPWvgmMDrUZp1etiYwCim/MjE1nmuh79lags0KzW8fOaP/12Omb3k10AADwa9XKBgsAqeI7a+Yb5htP75lm9jOaruYsgGLMP+m+jyb4PjRNxW9Ci/PzwoXaPNBZ6ZhsImsZNJmPhyMDkZvPvPbxVxMMAEjPsNltLzPTn4tID/rOlKY0lc8svLRlK5Fww6Kpg+4Skb9lv4QsnFf37tN2LmEAim1c1bqJhHP28396h2i4cuyM9rvPmrHxw+OutwrRgvtNGSEAoCnUg4MfLLUNE9Q0gF4lRWz28i9xuGcoUm2yrk5E8xk3ANysOXGf1Bb1JCyjC6I2lbgJd/R6CrUB8JfjX/qUWHCem8uqwud3Xw2DX434+rpXUXgAIHkj5q5raWqqLRORFqKR1rxqd5/2ZP/vEAi3mOr1hbyurN/P5EvvmbfmKDIKKK7dh2yaIiKvOEi9OcnEvrf7nxsfHDujbfKIuQ91J2pofJ7io04A7vbQ2VQofsYTKIf445LNXsxPpZiHmLqojfQ/ANIY1+prjaCmuRc7LcX9LNzPB66cOHiRmF3PwMhFv7BWu/ndX199PKEAgOScOXP9oRrKUjN5GdFIrc+zUCuTqlUNCY5jzWqg/0sUEnFk5+5unyUMQDGNnd4+yMTqHeMvFdGrmncd/vcxM9ouGFNtPYQIAgDywCYXAD7WouRqFxuI4e9tYw6n1sU/FnUKYCLLe4550ZNF1Z1rR/z7H/fpkpb6eWqm+R0UMimCbheIyEaGRy4GBTX91ZlXrz+OUABA406vWlNTN/upqJxKNFJcFqj8ePnkfrcQQ/csntzvIRG5g7VvEiPEzh87c8NrySqggFRmiEjviH91tIrO1UOaHx0zo+3TZ1/5xOEEEgAAt1atbLAAADDfcM/29yFA8vdMvcpZAHkIMhjL9dUiS/BY9b0PG/2KNOf4c05pjFIPrTxvQJuZnc/Ayc1QDTp/PWz+ap5UBQANdZamhx6x/joRGVWCniRP2y3ovJQwuLwUsO8luYQssaYwkGvFjKoBFMiYy9veaiL/0cAh+qnoV8KOzsfOmtl2+divbOhPVOFIAwCAQpBCPTj4wVLbMEFNA+hVUhS7dlGbckscNuihSLXJujoR9fCiAKQ2PC3xca0Jzp3ZPUEORZoT3Pl54aCot33lxKN/Kio/dmtZVZL8ftqxInrLsHmtr6cIAUCcKcZ05Nz115jIfxKM1OfSy5dNGrKGQLirQzr/V0R2FW6Y5/O2bx5zxYaPk1VAMZx7nTVLRed1tTKss970MdNLpTn451kz2+aPmclT3eH4jAaAiuNMheJnPIFyiD8u2ezF/FSKeYipi9pI/wMgjXGtvtYIapp7sdPC38+gyGmxe1fnBBFZzQDJTX/R8LfDr358GKEAgGhGzlk/XUQ+SSTS7R9V5B87ntw5i2C4bcW0oZtF5EYikQxTnT5i7roWIgH4b/2TGz8jJq9L+LA9zHSCWuUfY2e0Lxozo51/1FXW+YIQAKDWAKAWpVy72EAMbhvKUOtefCwSHiheHdGM3ifZiTeZpyJT01z5nCDu0yUt9fPMLkcKvQFw1dTjngzNPiF8lpSnXqbBwjPnr30foQCA+oyYs26mqFxMJNJvC011wqrqcbuImwdUv+3vuTt3RkdWOoMrSCrAbyNntJ1kKp9O+fOC0Spyx9gZ7TeeNXPj/yPqAABkvWoFAMDN+Yn5LO97oCncA/UqBwHkQTMYy/XVIkvwWPW9Dxv9ijTn5HlOac53QdHT5uaJR68UkWsYQLmOk24q9uNh89dcSDAA4OBGzFn/ZRW5qBB9kvt+vHRK/5sJgx+WTOn3KxF5JP32uCRMPjRm1oazCQTgp9Or1lQR/baINGeyohM5y8xuHTuj/ZazZraPETM6DwBARrKfclLbAMHsCcCpjwWoTb7NbWzQg8PtU9cnooW5KABOFqt8j8WcW9qJLqFzSu56gjLc/m6VyiUi8iD5nftZzjpz/to5fFkEAPs3cs66qop9hkhkYktTpXIRYfCp31Ez1e8X7bJyXRiqXDPqa08eQXIB/undc+PnRSSPn+Z9i5ksHDtz411nzdj44XHXW4W7gVRnND49ALCfetD4BghffnKTIgj4VJvy7q744tm/jticT0bmIdSfK9QggH4oygssvTdzrD8KyI8yNfAOKEXGLRo/aIeF8hER6cy/pS99CzjpzGvWfPP0qjURDQB4zoir1n9aRL5AJLJhYp9ZeEFLK5HwSyWofUdEQiKRWBc7ULrtmUkkAL+MmdH+elG5LOeV60lm9r1dj268Z+z0jR859zpr5s4Udq4AAGoNADxLY9cuq+OYaZwnvEwvrgGF7NOMJAIKXhc0vfdJpTToC99HGz8Wkrz/jTwxOa2nOKrzOVKaLacrzx96m4p+nqHiQv+vH+/ed+3Px81e3ZNoAMDTm/9U7StEIrOPEu7oNWjAtcTJP4smD3rcRJZ42gA5elr2n6NmbRhGdgGe9AxzH+ouYt+TbH76t57S9koR++6GJzc+NGZG2wVjqq2HcJcAAEhg1QqAcQl4MA4YN/mvyv29Z0pOAcwnkWtEvPfRBK+HjX5ZzAU+nZPlNkb2r1TPnHxj2+DpKvJrBpIT42bslu76yzOvXd+PYAAobwdsOuKq9VcmtvmPvrMenRYE5y44R2uEwk8V0Xnptsfl68pU5X/eM2/NUYQCcF/TriM+L6KvdmRN91xLI3KMms7Vns2PjpnR9umzr3zicO4WACCVSSer5Xpar2fdDsAhyTzxBlnObWzQK9G4zK190vRynVoDsD4r8LGYc4v/OUG655TM9ZRqA2C1qmGtZh8SkXby2wlv1lrnn949f81JFCgAZXPKddY8cu7676naFKKR6Xw5c9mkfncTCH8tmtrvZhV9sEjX5MDCcFDH7ubryC7AbaNmtL1NxC5x/DT7qelXwt2dj42Z0fa1sV/Z0J87VyYpzWh8SQRgP/Wg8Q0QvvzkJkUQ8Kk25d1d8cWzfx2xOZ+MzEOoP1eoQQD9UJQXWHpvRn9UlmaZ/mYfQdnS6+YLjm41kY8kO9YpGw2MraMDkT+eOX/1BwgGgLIYMfeh7v13rv+JiHyIaGQ66Ty4o8/OLxIH32+jmqnNJxCJ+7cxV7R9lDAAbnrPzPX9AtEfi0iTFytXlT5qepk0BY+fNb39+6NntB3PXfQXn3gAoNYAwAub3bi1y+o4ZhrnCS/Ti2tAIfs0I4mAgtcFTe99UikN+sL30caPheTmEWvoiclpPcVRnc6RoIwJtnLC0GWiMpeh5oweKvqD4fNXV8WMygig0EZd89gRGvb+laj8K9HItJ0MQ9VPrPrYcbuIjf/CSvP3RGSrdyeuro8amzPqyg0vIcMAt1SrFnRY5UciMtjD0+9mIh8KTP921vSN3x9z+aYTuaMAABxg1QqAcQl4OA4YN3lTj++ZklMA80nkGhHvfTTB62E7SxZzgU/nZLmNkX0FZU2joGPXpSLCTwA6NIpM9AvDr1l7/Zkz1x9KOAAU0dir2wdZR7ffitpbStUnudGqXbN8cr9biEQxLJt01BYR+R4fByWuTxDaT0fMfag7oQDccVfPjZ9XkTNcnWDr1GRiH1K1e8bO2HjjWTM3/j/uLADA9cVual+ms24H4JBknnhTBhX37llKr4d/9zj5niPpgqD0QQDrs5IfC0X5nMD1cyrtBsBlk47fLSbniMhT5LdTTe179ZDOW864rvVoChaAIhk2u+1lnWHnLSLyGqKR+eTyWGV35dMEoliCMJwvBfoM05w5Dz210tF7FhkGuOGsmRvPMJXPFeiSVEzOslBuHTtj46/GTt/0bu4y6swcANinHjS+AYKf3ARQvKHPZi+f7oGmcM+Yh0ANAuBqP6S51YyivQ/NMud0IEGZ02zFxKH/ULEPJzMWGc4JOqnSGd45/OrVpxMKAEUwfE7rWytB7fcichzRyFxoIv+58NKWrYSiWBZdNOgBE1lMJFJZZJw/Zvb6/yAOQL5GzmgbEJr9IOl1uzMrV5N3itjKsdM33X3WjI0fHne9Vbjr7jL/MgxAoWsNAOS+bo5du6yOY1Ib4Wq+p/knKEKf5tbPdQIoxvrN9lsakn/SnyV4LCSZL0XbqJfu9QRlT7TlE45eqGpXMeSc09dUVwybt/oThAKAz0bOaf1kIPprUelHNHJoJ02uXjZ1wK+JRUHvsOp0705avQnuNWNnt72MLAPycXrVmppErxeRASWo5ieZyfd2PbrpnrHTN37k3OusmQwAAABAbt1poa6GL6G5bdmMAzaqcs+STnhyCmAiy+1YynxXhN7cYuaPxcw9y/j6DiQgZUTag7ZLReQPRMK5uaGbqH5z2Pw13ztz5vpDCQgAn5xynTWPnLNuvoheKyLZfpHNZ3vPuP9Q6/gUYSiuZVP7/17Efk8kUllUHRaa3TBuflsvogFkr/chGy83kbd5sm6LVl0OfJhXish3Nzy56aExMzZeMKbaegiZAADwbbFrES+FL5AAUGYJUKrzTczXw7d7rCmkrRZ2/ADIblxbgseq/33UiWtHVvHk54Wfjw2AInLn+FM7gk59n4i0s/5w0of1kM47h81d8zqyFYAPhs1efeSAXeuXicgEopGbziCUjy6YNnQnoSg4kxnFuRTnvHrnLvuBmLGaBTI0dkbbf4rIheUt63KMmszVns2PjZ3eXh31tSePICsgIny2CmC/9aDxDRCaQo9OwQLoVXLvqVN9PZKMqaZwD5iH4Hj+k6JAifshza0PyWptR1/lU/Ev3oTEBsC9lk0asiY0+6CIhFmXDdTl5VaRPw6bv/q/CAUAlw2bve7ESqXpdhN5F9HItWf78uJpA28nEMW3ZFr/RSLyNyKRmrNHz26/jDAA2Rg9feO7TPTrab+PHytX7SuiX6ho5z/HzNj4tbFf2dCfDMmXFSzDAPheawAgUm+Z6jGT23DHT2GiTGMIxezTNPNjASj++s32WxqS/3lgS/BYKHof4uZ9ZgPg89w88eiVKvpZIuHssO4pot8YNn/1/479dntvIgLANSOvWj+6UpE/iMhLiUauE8btO54Y8BUCUZb7raais1irpLq8/vKome2jSDYgXaOmb3ylqv1MRJqJxgtqZh81uUyaKo+eNX3j/DEznzyOoAAAACDSqjbl17veUIPbxrih1rl9z9j8DDCROXYsZb5zYZ5K5u8aeYqjpnSemlpOsQHwRZafN/hyEVlAJJyeMP59967dd464du3JxAKAC6pVC0bOWfcFUbtJRPoQkVxtNQ3+Y1VVOwlFefTc0v4jE11NJFITaBD+eOSVbScRCiAdI766riVQWywih/u5RIvy4tgfafQ0kQkadv79rOkbvz/m8k0nkjkAUEbub2SxiJfCF0gAKLMEKNX5ptGVGDy5x5pC2mphxw+A7Ma1JXgst+Y5alqyYdKC3Yt8zokNgPvcB7U+u+QjonYX6w+nHR+G9sdh81dPJmkB5GnMrNa+tx25fqmIVJ2aV0vad6rYhGWT+j9MZpbLguqJewKxrxbhWhz+MLZ3ENqSs65YO5SMA5J1evXRHpXm5htF5CVEoy5NJvIhVbtn7PSNi0bP3PQmQlKqZg8AGq4HFvFglvUJAqBXSQCbw3y6B5rCPWAeguP5T4oCJe6HNIM+JMknizbyBDm4X/yLNSGxAXA/FkwburNmNk5ENgvD2WXdVfSq4fPXLBh1zWNHEA4AWRs1t/Vttebgz2oyjGg44ftLpgz6IWEop55bNv6PiDxGJFI1qCZNN42b39aLUAAJMdNePXt9R83enPlb+x89FZHRQWh/GDtj46/GTt/0bhLKpbzhsxEA2c1RVBwA9beP6R0zudrFT2EWZX5iDIFcSWJMkXcA8+N+3kfTqBFJbsindpWjD3HvnNgAeAC/nHDMI6HZv4tIjWg47701q9w77Jo1owgFgGy6TNMRc9ZdYqa/FrHBBMSJm/LQjubKROJQXguqJ+4Rla8SidSdvHO3XX/KddZMKIDGjZ7V/hVVeT+RaLQNkHeK2MqxMzbePnb6xn+tVo3POgAAANBgi1kkfAnNbWPccIOTuWdGwgPIZVyr36ePhueRxv5OHTxPTWV+5UPxg7h54tErzewyIuGFQWqyePj8Nd8547qHDyMcANIybPbqI0fOXb9QRaaLSBMRccIeVfn3VRP7bSMU5bb+kH7fEZF/lm7tm/0KbcTAbW3fZYMN0JgxMzZepqafKufVW1qHPU1Efn5Xz43/J2Z8TAcAcH+m01RnRgDpd6BAoccB48a3e6aZ/YwmtRtAlDqRy1MCU6xr5kiNLGMu+XVO2V8PX9p1YeXEo2eJ6ncZG940vh9t6ux+7/CrH+fnOAEkbvTcdW+oVJruEpHRzAUOXabZpUsmD7qTDMWd47VDxL5MJDLxH3f03nAlYQDiGTOzbZKIfa1YE7JD60STG0WV7wkK2/wRAgDacD2wiMXFGjlPAPQqefXFKb+em5z8MblnKFJtsq5OhFYJKG4hiTG+4z6pLepJZLW2Y47Oeg7ya6NeWtgAWIc+Rz01XlT+j+HsjSESBMuGzV/7jRFzN/UhHAAadXrVmkbMWfe50OQWETmGiDjl50umDJxDGPCM9Yf2/76IPOLzNfjTSeqkUVds+BxZB0Qzemb7f4npVdSb1KzeumvbPDLNhbzhsxEA2c1RVBwAda5jnTomtY75qUz5Dupt/DFC3gH0ZAc7RPKbBum5XL33WsxcThAbAOuw4JwT90izvEdEHiIa/lQOFfsvq+z867Br1p5BOADENWLuhpf2PGL9b0TkiyLSTERcYg/t2dX94zzhB89353jtMDE2pWW3tPni6CvaPkUkgPqMnbnxg2rydeHT6/S6A5XPr6oet4tIAAAAoOHeMuXXH3S1ncYKHv7R4o8bbnCZax11Cih+z5Ts5rzM5xjN7Y/psRP/O3XwPDXx+ZUNgHVa8Ymhm1WCMSLyBNHwyjFqtnL4vDXXjf12e2/CAaD+2dl0xJzWc8XCv4jIWwmIc3ZZYO/75WVHPkUo8GJLp/b/sYj83vkTLcz6z7466oq2S8k84OBGz9z4HjP7DuvwZ2tHGke8f+uOo35IbAEAPs50bJgAfOxAAeYnuHbP0tggo17lLIA8qDNjOasni5ojNbKMueTXOWV7PXzxEMHyCYMfFAnOEZEOxoZXja+Kyrl7du3+67B5a88ikwF0ZeS81mOGz13/KxG9TkQO9XqhWdC5QFU+uWzS4LvJVhwgQSxUuVT4fCjDUmNfGz277XwiAezfmBnto9XsJyLSVPBikKvA7NJVVe0k40ox8QCgEDRcDyxicbFGzpOaBtCr5ITNXj7dZOWelUStRLXJujoR+iCguPNfjPEd90ltUU/C0r525BS+ov28cHRsAIxoxYTBvzTROr7cpOV20LGqduPw+WsWj7rmsZcQDgD7M2Lu+v+0mv5VRd5BNFztEfWbSyYP/B6RwMEsm9r/96LyM1/P33wcmmZzx1zRNonsA15ozIz20SKyQES6UW9SLUO/u+mylkVknGt5w2cjALKbo6g4AOpdvrp0TGod81OZ8h3U2/hjhLwD6MkOdojkNw3Sc7l677WYuZwQNgDGsHLCkG+I2FeJhLdG1axy3/D5a79w+nce7UE4AIg8/dS/EXPWLRKzb4tIHyLirNvCYOsFhAF1ukxEdhOG7FY5JjZn9BVtnyIUwNNGT2//gIj8QkRYd6QrNA2nEAYAAAAkLb/NXmzcgr+3jU0T/t1gdza2UqeA4vVMyW7Oy3yOoSw51Ss09nfq4Hkmm2BsAIxpxXlDPyuq3yUS3uohYtUeO5vvHXbNmlGEAyiv06vWNHJO62Sr6T0iMpqIOG29BbX3Lpt0PBu6UJclU/s/IiZXO32ShVw82lfHXLHhcjIQZTd2xsbzVOX7ItJMNFIvpt9adEnLXcQBAOB9J00IAMYZwLhBw/cgjQ0y7IAB4M98ktWTRY0amRKe8hcXGwBj31+1jcH6c8X0ZoLh8WRh8lI1WTxs/uobRs5rPYZIAuUybG7r23oese5uE7lKRHrTJzltd2DBvy6bNGQNmYsomoNuX1GRNiKReW926egr1l9drRrrDZTS2JntnzOxa0q55o7UdyTysd9TlaDjc2RdCfHZKoAcno6V2tNxqGkAJcohHdy93OehtJ/Gxoa+/FmR0jbWtSp9EFCGeVETPFbChc9yPy9SpDxNeHbnxBdyDbhz/Kkd3Xt0/zcRudvZFpoaVGeY9OxQw/uHz19dHTH3oe5EBCi2Udc8dsTIq1rnBCarROTVUWo2H47kw8QuWDy1/x+JBKK6ceoRT4roZX7mvfcd1vl39G77+bjZq3uSiSjPhGU6Zkb7TDP5IvUmo0qj+t83XDyAjd5kGIAy0/gVx7I+QQDuFQ4PxzqbvfzrcI18B/UWQGHmvnQ351nsQ1BvmB/yPCc3rocNgA1a+PGWrVKpjRKRx4iG93qK6Bes0vPeEVevfZ+YMUsAhetOTUfOaf1E2NH8kKlMYh70pgecv2zKoG8SCMS1eGrLd0Xk90QiF2fvtG4rh81efSShQNGdXrWmMTM3/Y+IXEQ0MvNg/8OOnEcYcmqtCQGAGEJqDQD6pAivZ+MWuG3wsXaxvgSoI+lOZOnXjBc9kZd52Il557m/0wbeT53NtySw8SEBK8Yfu65mtREispFoFMLLLLCfDJ/fevvweWveRTiAYhh+1brThs9dd4uJfFNEjiIi3vjNhh4DphIGNNY7q6nJRBHpdPP8Cn8H3tps3W8ZM3P9cSQjimrc7NU9ex+ycYGIfZRoZFrfp3xjvPILZQCAQuELcMC9cca4BBgHKS9uU7gHmsI9U6fiAaCs80mSNVMTvB5qV/HnAs0416NjA2BCfjnx2PtD03eLyJNEoyiLDztVRH45fP6am4fNa309EQb8NGZO69Ej5rRep2q3qsib6ZO88qB22/Nvd/LFPhKw+ML+f1Gxa4hEbp3aK031T6OuWPcOYoGiGTu9fdCuzh6/FZGziUacviP2v/W8fuElRy0n2OQaAApB1sdMbeMQNQ2gRIGb/Lxjpr1RlQ19+bMipW2sa1XqJcC8mOuxLPfzIkXK04Rnc05sAEzQzROH/FlV3iMiu5xqoalBjXYo1+TNAAA/rElEQVSlZ6iEdwyfv+b6YfNXv4yAAH4YNnv1kSOuWnd5p8iDInJufXOe1VkWkMEHApsCrYxZMuGYJ4gGklJrav6ciKzzbCwUaWF3lEqwcvQVbRPJRhTFyBltJ5nKH0XktALMvT6d7JawWaeRgWQYADyv14xdcSzrEwTgXuHwcKyz2cu/DtfId1BvARRm7tMES4A2Pmcq9Yb5wYVzyv962ACYsOXnDV0lob1fXP2JOcQfrSbj1PS+4fPWzh0xd10LIQHcdPp3Hu0xfO66i4NK5R+idqmI9CAq3tltamcvntzvIUKBJC2bdNQWMbmESOSqScTmjb5i/ZzTq9ZEOOCz0TPa3lcR/YOIHE00smUqn1o8re9aIuHAvSAEADKoHdQaAOWudWzcArcN5ejT6PmAotcRzeh9kp14jXm4QUEq99Fi3hCLeTOzyrd0o41YVpx/9E1i+nF6lUIuprqJ2AUW1B4ePn/tF86+8tHDCRTghmrVguFXtX6w55buD6jZDBE5gqh4ujZQ/c/lkwfdQiiQhiUX9v+hmKzwpO8ocqM1qVfvtt+Mnd4+iKyEfzOV6Zjp7V9U0R+LSE8CknmncNspO4/6OoEAABR7ugPg2jhjXAKMg3RpCvdAPb5n7LQBmE+yqpma4PVQu4o/F2jGuR4NGwBTsmLikO+ryhQiUVi9xay6q7npseFXr/3au67a0J+QAPmoVi0YMXfde28/Yt1dqvIDETmGqPi7ZlaR6tLJA/6Xm4VUF5dWGy8i24hE7t4aNoV3jZm5/p2EAr4YU209ZOysTdeLyueET3QS7Dvq/iikM5Ta+GpVQwIMAEh3savJzFxRX093AVCiwE1+3jHT3qjKhr78mXdpqwlfq1IvAebFXI9luZ8XKVKeJjz9c2IDYIqWnzd0roh+hkVmkRtl7SNqlzU3dTw64uq1V58xp5Wf/wIyMu56q4yc0/oftx2x7h4xW2AiryvFwrzQ/Z5+c8mUgV8kEkjb0osGPSaqn6a/cUJ/C3Tl6NnrPzvuequQnXDZmMs3Hy2HNP/OzN5LNHJrFmYvvqz/XwgEK/YX5QUA7FMP3NwAQcECnC4cJeiu+DyzsB1xjvnO3AZyBSjvXKYJlgBNcM6k3jA/lHfOYgNgylZMGPJVEWMzQ/H1NJXzmyryj+Hz1nx/1PzWVxISIB3VqgXDr143btv6dfeZyI9E5FVpta7I1OLtT/afQBiQldOeapkvKvzUtBsqYvqlnavbbhl15YaXEA64aPTM9jES1O4WkdcX+Tqd7oJUHujetLNKNpI3AMpZO6g1APyhKdQ6Nm7RC3PbUI5xQM8HFL0uaHrvk8oc+aIn8jIPOzWPWMwbYqneTM3pb5/GBsAMrJgw9Asi8lUi4fVavc5SYc0i+qGa2b0j5q1dNHz+utMIIpCMU66z5hFz1334tiPXPaBm14vIy4lKYdzW2aHvX1XVTkKBrFSrGtY0+ISI7PKz7yikNwah3DV61oYPkKFwxelVaxo7s72qIjeKyJFEJDe1wOQjC6YN3UkoAAAAkBQ2IwPpjxtEkc5mX39rHR+WAmi8RliCx6rvfahdycbXnXjGvcdZzqtsAMzIiglDPiMis4lEaQQmMlosvG34vNYlw+aveQchAeI547rNhw2/unVqv93rHhax74nI8USlUGvm+2th58iVFw/Yzs1B1pZPaXlQxL5EJNxhIoeJyg9Hz97w/VFfe/IIIoI8jbpyw0t6H7rxDybyBdbOWfQdB/23wbNuvLTv7QQUAFiY+rTYrX+m2/+lsMECAMo+t6U838R8PQp0z9SVfGezDFDGedESPBb1htbJn/ud7jnxJUaGVpw3+CIVvZr1h1uNcvpRt5Fq+uvh89beO2LemvPGfru9N6MB6NrIeWtOGDF33dXNu3etVpPZIjKUelO47m5tRW34imlDNxML5GX7lv4zROQ2+hvnLvhDQbfd942ZteFsshR5GD2r7b1BZ3CXiPBE7/zrwd/29HziCwSCFXtXK28AeHE9aPzLdE2holGwAKcLh4dvwWavInfEmsI94+ekkW+9NdIJKNhcplFKQOQXWObXw/xX2H68JPeXDYCZ5oja8vMGTRaRrxOMUjrRRK/Zs3PPmuHz1s498+rWVxAS4MUdlunIOa3DR8xtXWph8ICInS8ivbOfe/koLAPtFtiZiyYPepxQIE+rqtqpFf2QiPAUSvc+RBhoKjeMntX24zGzWvsSEWTh9OqjPcbMbJuvpgtE5LACrPl974I6A5WPLZt0/G6yk7wBQO2g1gDwh6ZQ6/iSmV6YVEA5xgE9H1D0uqDpvY+m8R4v2pDPPOzUPGIxb0i6c00jSdLYFj42AGbemKutOG/wBDGbRzC8W6snVSr6iMgFgdrfhs9fe/OIq1vPHne9VQg0yuz0+W29hl+9bsKIq9fdbyrLRGQELVSh6+pTFbPhyyYN/BvBgAsWT+73kIpc5F/fUZaaYe83qTwwZtb6T1SrxvoFqRlz+aYT+xza648iOoFouMK+xk//AgAAINWOM+XXO77gJgGQybhB3uNSPa511CkAjdcIS/BY9b0PtSvZ+Koz5xT3Hmc1r/IFWi65rbZiwpBJIjKbYJS8ypmcYWo3bGtrfWT4vNZPjZi7roWwoEyGzV3zuhFzWq/qWetco2bzReTlRKXwa+btFoajFk0ddBc3Ai5ZPLXfdSK2lEg4W7eOMtVv3tGr7ZaRV7adRECQpGrVgtEz26dJJbzDRMivXPuOF3yE8sctO/t+kQACABOEL4vdaDOd95cCAHC4ePOUXf/kds/UlXyn+QHKOC9agsei3tA6+XO/0zunJrIqr3uqtkLkwuHz1+4xtcsyzaUSdPLmWek2kaNF7KsW2BeGz1t7Uyj2g03N61fcOf7UDgYLiuZd89Yc1RwGH1CRj4rIyb73Wb7Vm5ztFgnes2zqwN8TCrjYm9mMto9rk90jIk7+3Cz1RkRU3hSEdsfoK9Zf29y9s3rD+UM2kbxoxNlfW3fsnU0bv6sibycaThW8LWGl6QOrqtpJMFixR5gj+OYSwD71IGrF2ff1By8u8SoaBQtwunB4+BaN1zq42xE/nTjJ3rM0kpG5DfXninX1g42kE+DZXBZh0Hb50n1fkFXfwtquBP14Ce4vTwDM2fKJgz8lYjzVAM/oLiLnBKKLWjoGrhkxf81VZ17Tegphge/GXW+VYXPXjRoxp/Vn3cKgVUXmiMjJic29qbV6SFCnqL5v6ZT+NxMKuGrpJf3Wq8i5RMJ5FRE9v2N380Ojr9gwbVz1vm6EBHF6k7Gz2ibXmpr+KlE2/5XkW7LcuyC1CYsuPvxRMpW8AQBqDQB/aezaZWVfkDA/AYwpQgAwluO+j6bRNym1yZO+u+znxAZAB6yYMPQLZvJZIlGUmpFY6e9nppOD0O4YPm/tfSPmrb10xNw1Q7gZ8MmoK1tfOWLOuunb1q9bHYgtFpV/ExE2apRPp6h8YOnkATcRCrhu8bT+N4jINUTCC0eIyBU7e/e9b8wVG/5NzPgmBHUZM6P99bse23irmV4lIr2JiHNLrx8svLTlR0QCAMqBL1AA+FiLilW7WEpz21CWG2yOvZ6EB6hz3h6LspRKfOPOI439nTbwfprJeUbBTwA7YuXEIV8ZNn/1NlG9kpKB/XiViVwugX51+Py1v1axH+yUbr9YNbHfNkID14y6svWVYZO+V0zeG4q9lo/zS6+mqh9aMnnA9YQCvti+ZceFvfoc8iZL6kmlcdZAlM4oXmYiPxt9RfufddaG/150Yb+bRJUIYh/jLt982K6g9gVRuYC1sLN17eE9PfV8AgYATBBFbqbr/mkp1gUAABfnp5ivR973wIe+i+YHKOOar/5a1liNyP6nhKlpyd7WosUznevhSw+HrJg4dM6w+WueEJVvp3pvSlJrCrr4CMTkDBM9o4d0XDN8futSC+XGWredS345/qVPMYqQl1Fz1r/apPZeU31vKHKiWLkaGi/rTTZzQU1MP7RkyoCfMErgk1XV43aNntP2PqnZncLTwXxykoneMPqK9rt15vr/XnRR/4VsBISIyOlVa+rVa+MndlntiyLSQkSctctUzlk26agthAKO97gACl4P9l3jH/xg8T4ToGAB1KZ8sXnLp5v89DGT3RzGPIR806HLfCZFAS/E2uwWY3wn37fs/yRY2xV1QmrkuH7dX34C2DErJg75vpn+q4nsJBrowqFiNk7VftTU0WPT8Hlrbxl2devk0deuHkxokIVh89adOHLO2uqIq1v/Fmp4j6l+QUROzK0fSK11RUw1UfvY0qkDfkwo4KPFk/s9ZKKfcHFBjQPNBc9G52TT4MYxV7T/ZdQVbeP4aeByO2vmxjN6H7rxTjW5VpLa/FeSjLLs33DSokta7iJry5I3zGgAspujqDgA8mv0NYXapdQ65qcSjSGUud5S14Cy1vp472H7PUTyPw9MbaIPcfmceAKgg1ZOHLxo2Pw1o0TlJuGpM26Nz7oreub/fq4iIm9Rtbd01oLZw69ee7uJ3FBRu3Hp+UP+zs1DEkZd89gRtc7md6jIGSJypoT2UlOl08H+1FTso0smD/ohoYDPlk7rd/2o2RveJSLnEg3/mMhr1OT60Ve03ykz2/978UV9F/NEwPIYM6vtrWL6pVDsdKLhw4C17y+8rN83CQQAlLZvY8sAAO9qUbFqF0+u4bahLDc47VqXXm3kmUZA8XqsJOtcDsdiHk4lvnHnkcb+LvrNjPtTz2mvIdgA6KgVE4f8Zvj8x99lGiwVkb5EBJG6YJU3qsgbQ9Hpw+et/ZuK3SimS3duGnTbqqp2EiLUY1z1vm7bjjzyTaL2bhE5I+yUU/XpzabAwXSI6UeWTB3Ik/9QCIfInik7pNsbROQkh9ZAiOYUUVs46oq2v+msDVfvMfvByosHbCcsxTTmik1vlLD232J6JtFwzAHrmt5juzrOI0AAwARRpma67g/92RkJAHBxfor5euR9D8rZdwFwf81Xfy1rrOZkNW8xP/r0+UGxrocNgA5bPvHoP50xv/VfKhouFZFjGRsU15heZaKvEpVP9+jbunXEvLW/DU1/aU3Br1aeN+BewoNnjLveKtvXrn1N2BS8Q0XO2GbydhE7lLVbgetN8nPBbhU9Z8nUAQvJCBTFgmlDd46Zuf5fw4r+SUSOIiI+L6X0VSJybTfVr46a2f7t5qbO+TdOHfhPIlMMY2dterdZ7SIJwzNZAXjVQG2phPbeG6qDdhAMONzjAihhPdh3jZ/GUwooWAC1Ke92nNWTPzf56WMmuzmMeQj5psP+8/N5J0KKAl6I9SS0GOM7+b5l/yfB2i7vOSitWDZyXH/uLxsAHffLiYPuH3bdP98staYlInIyEUGDepvIaFUbrbWaDJ+3dr2I/ErUfqk1+eWySUPWEKLyOH1+W68enXv+nwSVt6rZm7etX/dGqQR9vP1xxNTmXj4Kq9N2keA9S6b0v5lQoGgWXTzg0VFXbni/mCwXB56ESlU62FxgItZldI5QtYs6a5Wpo69oWyihzl18ccsqguefc6+z5nVbN71fzC40C1+X6cjgH1Qlcnit6EdvuKzv38nmsuYNMxqA7OYoKg6A/Br9+Mek1jE/MYZQ9npLXQOoEbHn4WcPkfzPA1Ob6ENcPSc2AHpgxfhj1439dvvb9+ze9TMTfsqquEu9XAwQkQ+I6QcsEBk+b+2DIvJLNfmdqt669PxBj3Efi2PE3DVDRPUtIsFbxOwtUut8rWjQJMaCHA33Lk+FYqOXT+5/C8FAUS2Z2v+Xo67ccJmYzCQahVERk/eI2ntGz2r7q4nOb640XX/j1COeJDRuGz1742Cp2SfWbdn4XyIymIh42j6oVG+6uO8NRAIAIMKXuwDKUbuSq3X8jCe4bdzgMtQ6AEWpTQeuC8lvzmMe9j+H4s4jjf1dknmd3zzJBkBPLPx4y9ZTrrtjdEttwDdN5CNEhMVUSl4uIi83lYkm9swTAm830dtUwts07PmnZZOO2kIiuO/Mq9cfF1h4cvD0k0NPNpHXi8jAp/OXTgSJLv43BWLDlk8edCfRQNEtmdLvilFXtp8iYu+n7yic16rYdZ21jjmjZ7UtVgt/2GN7/2ULqrqH0LihWrXgrkPazzTR8VILR4soa1m/F1YLbrr4qC/JJUQCAFDexpcvxwHGJVCEccC48e2eqZhYJj+jCQBR6kRW80l979N4XWN+LNPnB+78vDBfmnjkzvGndojZx4Z9fe0aMfkMEaG4ZmCAiIxVsbEiKhbsCofPW3u/itwuoreGYXjb7s2D71tV1U5ClY/Tq9Z06GHrjrcmOdnEThaT14voyWLhEcKSC+n3FY8HZsOXTBl0P4FEOcaLWsfM9Z9orugrReR1BKSQeojIe02D9+7s1b5p1Ky2n4raj5ZM6/dHUWVazcHYmRteG2rwgTut/d9FZCjdTSH6jrtt556PMqbgcI8LoEiFoIF6sO9nimk8pYCCBdCr5IvvT3y6yfF+dpB77J/c7lkOtWn/1/q8E6FVAopbt2KM77hPaot6EqztijoHubNRLy1sAPQu8dVWiHx22DWr/ymi14hIcxEWmfBGICInmsiJIvYxDVR69G3dPWze2vvV5H5TvVdVHggsvHfHxsGPsDEwOWOnt/fuPKTj5aHIK9TklWLyclF5hci640ORbk+PZZbxebeuJfsw5V4LaiOWThqyhvxAmay8eMD24VeuO7tiwa0i0t+rBXVp+mUTsUSic5SKTBDTCWOuaH/YZm74YSDyi4UX9/8rQU7X6Bltxwcq7zWR/zCRV6uxaHG/C6rbBrPK2YuqLTuILHnDjAYg6zmKigOgzkWluPTzutQ65qcy5Tuot9Q1gD4q0WM9ewjPf2qYPPL8/mR3TmwA9NSKCUO/dea1ax5Rk5+JyBFEBDnqriInicpJKiZiIqE8vTFw+Ly1D4jI/Wp2r1lwf6jytz29dv9z1ceO20XY9jVi7roWVTsmNDlaAznaQntZIPpyE3lFh3QMeeYfrj87T4CeK78w3yLd9oxdOuGYJ4gGymj51IH/HHnV+rM01N+ISE8iUnwm8lJR/UIo8oXRV2x4XCxYqipLZGvHrxdVB7GRqeEAm46esek0CcKzVewsEXmVFx//0ndEtUvD8F8XXtbyOKEAADg6uwNA6rUruVrHxi1w21CGWgegKJPPgetCspvzkv+Z8y6uh3n4oMKY9z3uPNLY3yWZ1/nMk2wA9NjK84b8euS8NW+sBbJYRI4nIi7OZ6VucbvL0z+P+DrTp4MWiEiPbd1k+NVr20TkcRFZrWKPiwb/DE1Wa6CPB1JZvXRiv/VFCkS1asFdh7e17G4K+6pJS6A21EyOFpGjReSYvf/zWBHraSKiz/xKjarwwBs4uNBfeGjY+f4FE47ZSTRQZkunDLht9JVtHzazn8rTT8h1ZR2N1AuhHi1inzSTT0qvpl2jZ7X9RlSWaBguXXTxgEcJUH3+9cr2gR218Aw1PcNmtb9bAhn4XNKjgEIV++hNl/X/A6EAAND4vmCNTfcDMC4B78cB4yb/HinaPUhjgwwfYgJovE5kNZ/U9z6N17WQm16izw/ceGohGwA9t/T8IX8f9q3Vb5Q9+jMReQcRYfHhiX57/3OqiYrY3oVGaBJKKMOvXrtLRB4XkzZR2SwqmyXUzarh0/+76eaaymYV3aQdulkr3TYvm3TUlrRP+uwrHz18d6W5V02DXk0ivWpmhweqvUykl6r2FpEWMen79LVZfxFpEZGW22RdXxEJgr11m0198LZPUvvWzicGnreMn/cGRERk8dR+Pxt1RdunRe1yolFaPURkhJiMMA1k9My2+1Xtd6HoHyo1vXXhpS0PEqKnnXXFpqG1Wu3NqvJmUX1XR6ed+PQHzijJguyymy7t91MCASd7XADFLwQN1IN9P1NM5ykFAOhV8m3XqV3+3OSnj8kGvTIso3O6ZznUpv1f6/NOhLUdwFS5T81I/yd949VhCpb7c1Cx7xEbAAtgxSeGbj7lujuG9a0NvEbEPkF+owAFu4eInCAqJzw3w+7990h7j/H0ZjoTaTIx2SXDr14rIrJLRJ55Ktl2Eduz9823qkqniIiF8uSLvmvuriqHPDuZm/QQsZ7PnbYeIiK9RKTX7r3/XWXvAjvQp89BhXHEktuBhXnaF6/66aWTB7LJCXiRJRf2mz5qdtvxIvZxN6tSWfsOE7EcoqPyShN9pYqcG1ZMRs9q2ygifxSTP4Yqv69s67yjDD8ZfPaVTxze2dl5koqcJGpvVJO3hGFtiOpzDReK2AUdYFioXXPTJf1mEkXyhhkNgAtzlJsVhw9oASnFuIx/TDZ7MT/5me8AfRBQzrkv/c158Q5BvSnP/JDWvXbxnF6IDYAFcef4UztE5L+GXbPmPhGZyb1FSfXY+x8RkSOev8h89nvm/aw79/0OmsUp60U8zy5R+cjSyQOuJxTA/q0/tOW8/tvbhqrImUQDL9JXRMaIyphARKRXU8foWW33itr9Kvo3EXsgsKb7u2078h8LqrrHt4sbO729d60iJ1RMjjcLXykavE7UXlfr7Dj22W7K0pyWHfhai76jqzu0qPsxLZOIBADAo9kdAFKvXcnVOjZuZaUmIoHLJ8jaFIWudfyMJlCUyefAdSHZTYPJ/8z5/s/32ethHk7lvsedRxr7uyTzOrt58hlsEiuYFROGXDVs/pq/iMr18vQXjsh9PuOjS7Bwh7faAgvOXjyl/x8JBXBgd47XjnHz2/5tx277lYi8gbkAB+kKm0XkZDE92fbe3JrUZGev9s7Rs9oeEZX7xORBNfmHBLohNFmnga5fd+hRbXeO146sz3fU1548ItCdg6SpcrSIDpYwHCqBHi0ix4jJCSY2OHhmg5/uTVRyFc/l++27tfbvi87RGtEAAND4Asi5N+UJegDjpvA9UrR7kMYGGXo5oMhCSWIzfNd1Iqv5pL73oa7x+UFW55TM9bABsIBWTBzym5HzWk+tBeENInIyEQFcXA4DzvckD6gFoxZP7f8IwQG6tmBiv21jZrWOCoPgdyL6CiKCGOuyE8TkBJG9v15sez+EDU0Gbm230bPa2lSkzURaxWSDBPKkiuyU0PaEottFtVNEtgYiYaj21P7eJAilT6haCcS6i8khonK4qBwiJoeIyRGicpSY9BV55j97mkQqe+cHe3qTH593oD5/k6Bj1MqLBm0nFAAA1xa7aR+TDRMAci1RKM08xHxTfLndsxxq0/6v9XknQvICSLVYuXosbitNeDRsACyopecPemzc7NVv2do9+KapfYAaxOKmPAWbvEH+GeF73pjIiu626/03Tj3uSe45UL9FFw3aOGZO67BarekWFRvKPJV332F7d9IVpovqbyL9ReQ18vyH7anuzQF7LicO0G+ZPvPvu/c+sE+e15uRSEjOo2GTnrl42qCNhAK5z2h85gpgP/XAzQ0TFCzA6cJRgu6KzxfKfg+Yh0C9BZDk3BdhXHf50n1fEHnOfPYQ0eoN/RHzQ7LnlP71BCRNcS2YNnTn8omDP6giF4pIJxEBUKp+AHFjN7vXoAGj2PwHxLNo8qDHVTuHicgmogHQdxSJ1feidYGE7148re9aEgN15w0ANFg7qDUAfFw8JFfr0liQNHOrfJxv+EwcjBsAHkw+WfU0ltG1G/NwqvfdYr+fNnCe6mC+1YcNgCWwfMKQ2YHYGSKyjmjkNZ/R4gJw3i5V+ejSyQMvXHCO1ggHEN+SqYPut8BGici2HNfRQElyjT7boTuxuRZUzrzxkv4PEw0AAI0vAN9XDmxGBlihF79HUmodACdrQOPvowm+D2vUcs2N2Z5T0mOKDYAlsWzC0N9WrOP1IrKKaACetT30FUjfOjE9fcnkgd8jFEAylk4ZcJsFOkpEthMNACWwtWI6YsnFR95LKAAA7tHMj8mX6QByLVEozTzExtbiy+2eafb5bhRJgHmRY3HPMwufFnJssAGwRJZOPG59n76DzzCRr+3TR/GzVfB5rUvegLxpxG1BrfO0pVMG3MZdAxLuvab0+79QbayI7KTe5NV3EB3yBhn099sstJE3Xtr3doIBJysTn7kC2E89cHMDBAULcLpwlKC7Yp1Y9nvAPATyD0CSc58mWAK08TlT49Ub+iPmh2TPKd3rYQNgySw4R2srJwz5tIiMEZHNRAQA/UD81tX/Jly/cegTm/9l8bSha0kYIB3Lpg74tYVylojsIhoAfYf/vcM+dgQiYxZd1u8WkgDF754BuFw7qDUAfFw8JFfr2DhDb0sqgHEDwJ/JJ6uexjK6dmMeTvV+xP87beD91MF86xobAEtqxYQhSyph8HoR4YlPmc1ntLgAnLFdRD+wbPKA8QuqJ+4hHEC6ll7U/+ZQ9V9FZHfG62igJLlGn51TnmxTseE3XtyyimAAAACgiCsHNiMDrNBdW4incUxqHYD6ZLu1qPFaowm+D1/OuDu/+f+EQPN2lMIpS88f9NjGyvq37f1J4JCIAA4vb+krkJwHazX5f0snD/hfQgFkZ9nUfstUbJyIsOkWQBFsF7VRN13S73eEAgCQPPXkmAfHl+kAABfnNuYn/+R2z9SVfOcLMsDnmpT+uC7DsUrYC6mD5+QBNgCW3J3jT+1YOWHIp03l3aZSip+AZLEC8galzRuVBU27mk5bMW3gfdwdIHuLpw1YFKqeLSI7macAeGy7iYxaeFG//yMU8KaD5jNXAPupB41/mV6MjYoAHBiXKb4Fm72K3xGbb/kOHCT/qEFA0eYyjVICIr/AMr8eFLYfL0jPxAZAiIjIyvOG/Lp7JThJTBYSDZS0HoJcK3Krt0tEpyydNPCchZe2bCUxgPwsm9pvmYgOE5EtRCOruYDleWFmM3pcFzwpEg5bdEnLb7nhoN4AcK12UGsA+Lh4SK7W8aE78xOpANaEAPLvbVyrC7bf00z+SX/UuXTve/y/K9fmQTYA4lmLxg/auOL8IWeJyEdEZAcRSWN8UvoBZO6BQIM3Lp08YA6hANywZFq/30kYvFNENjm0LgBK+tEBImirib1j4SX9f08oAAAAwEqDlQnAOMiDOnHPuMcANciP98jhWHyHk8O9Sj7oFvO4FvOckppX2QCIfayYOOT7QaVymojcSTSAkvVUKJofdO7RUxdP6v8XQgG4ZclFLXcGEr5dRNYRDdB3wAOP1yrytqWX9PszoQAA+NuMuN/g8GU6wDgDc5uL44BxU/R7pimkLR8sAdSkxuuEJXis+t+H+lWu1qlY95sNgNivZZ8c+LeNTevfJCJfEZFOJiUgSt6QYcg9G7aI6AeWTh744ZUXD9jOXQDctGjawPuCsPJOE11NfwPAVWrydwkrb1t6YcvfiQb8TmZCAGDfetD4l+maQo9OwQLoVVB2UTc8GMlY4HtMbAD4PpYjzCsa/QW5/JRw3diOlVyPUa6f8o2LjMMB3Tn+1I4VE4d8NlB5m4jwZQ+KXg9BrhVjGWr6ew2Dk5dOHvC/3HzAfYsu6vuANVXeLCL3EI005wI+OvRsNqPvcOdy/iyd4b8suuzIx7m5yK7eUJkAxK8IVBAA/jT6mkKtU2oj81Mh16Yo07gheYEy9Uu5bN7TNOqNZno9ZeujGs+X8mweZAMgurRswpBb++y2k8R0uoiERKTR8UnpB5CKThH570MH9X/7kqn9HyEcgEe91qSj1lQ6greYyEpv1yqA1x8d4AB+1T2snL7wM/03EAoAAACw0mBlAsAV6Xw4SK0DUMw6l8Ox+A4nh3ulic9XFvOcLOb1JDGvsgEQdVkwbejOFecPvsxMh4vIP4kIUKh1HXxPC5X7TMM3LJ08sLrgHK0REcA/Cy9t2WpNW8aa6k+JBug7kP+tt+8PPKzviAWXHfkU0QAAFKsZcb/B4ct0gHEG5jYXxwHjpuj3TFNIWz5YAoo5jSX5tLuu64QleKz634f6Va7WqTj3mw2AiGTl+YNv7tYUnLj3aYBebzJhsYJ084YMQybZYCb6jaC7vWHZpMF3E2nAb8smHb976ZSWf1eT/6a/AZBf46JzF17c8tFvjNcOgoHC4fNbAPupB41/ma4p9OgULIBeBaVfmkVMHCMZC3yPiQ0A38dyhHlFo78gl58SRg49Rnl+yjcuNgAiskXjB+1Ycf7gy1SC00XkQSIC1pAob67l2uo9HITyzmWTB4xfNH7QDm4yUJR6pbb4wv5VM50snv9jC/diy/LcydmMvsMlNVH55KJL+04WZcAg73pDCgKIXxGoIAD8afQ1hVqn1EbmJ8DzccOXh0CZ+qVcNu9pGvVGM72esvVRjedLOTYPsgEQsS2fOOiW3Yd0nKSil4tIJxFhqQcgE6GIzan0sNcunjpwFeEAimnphf3mSiCjRORJogHQZ2dgq4icvejilusIBQCA2RoAqHUoAPZQcYMzqF3UOgB+1LkcjsU87PX89sK/y25ja9jgdbIBEA1Z9bHjdi2fOPhTpsEbReQuahFAriFVD1oQ/svSyYOm8NQ/oPiWTOm/IggrbxKRh5gLQN+BFD0aauXNiy5pWUwoAAA0I27gy3TAvXHGuAQYB8WvXek+6RRAkZZoST7trus6YQkei3mu8MlZ6nNiAyASsXLCoDv7tAx+g5pNFrEtLFbAAosMQ6LZUBOTmYfWOk9edsHg3xNNoDwWXdT3gU7Z80YR+RXRAJBCg/J/EnS8YcnFR95LMFAafP8E4JlC0EA9sIjFxRo5TwD0KuAm13nMZDeHkYzZLMupTd7HBkCdYzlCIdFG3ifdwkdtymFS0SwmJM3pb5PFBkAkZsE5Wlt+/tC5YWivFJEFRASe1UPA1WXonyqhvWHplIGXLJg2dCfxBspnxbShm7dv6TdcVK51oip53XcQHfKGHvd5vtVjZ993L7po0EZuGNysN1QmANn1NlQcAPk1+vGPSa0r/nzDPQP1FgBSqhGaRr1J8smI9FHlmFuSPacm0gpJu/mCo1tF5Jxh81cPF9V5YvJSonKgkkYDC2Q6f/rVcT1lJp/tNWjAtQvO0Ro3ECi3VVXtFJEJo2e3/cnE5otIT6IC0GfH1KliFy28pN8cQgEA8GW2ZnYHQK2Lwr8PQpESUoEb7GDtoq8DqE3114Uk65yKiWVbf3gcWyo5FHceaezvksxrUg4eWjFx6PI+u+w1IvIlEdlVmloEkGto3PVNQdOrlk0ZOI/NfwCeb/G0ft8x1TeLyCPMBaDvQAxtanImm/8AADQj7mO/BuDeOGNcAoyD4tcut550CsDlJVqST7vruk5Ygsdq/H2oa44nZ2nPiQ2ASNWCaUN3rpg45PMWNr3KRG9gsYLyLbDIMETKhodFbMTSyQPft/CCllYiBmB/lk7t9+dm7XaKiS4iGgAidCJ/7LTglIWXtvyGWKD0+JwWwDOFoIF6YBGLizVyngDoVcBNrvOYyW4OIxkzWa1Tm/yPDYA6x3KEQqKNvE+6hY/alMOkog6ek4M9ExsAkYmVFwx4dOXEwf8qIu80kXuICFhDgiX6C+wQkf/e0WfXq5dOHrSceALoyo1Tj3hy6dSWs9Rsioh0sgCN0ncQndRmM7jc436jx46W05ddetQabgz8qjdUJgDZ9TZUHAD5Nfrxj0mtK/58wz0D9RYAUqoRmka9SfLJiPRRyd/7Yj8hkA2AyNSKiUN+s6d98OtFbIqIPElEKP1AydeLZiI/Ma29fOnkgdVVHztuFzcJQP01TW3xRQPmiIRnishaAgLQZ+/HDlX90KJLWsYvqOoewgEA8Hm2ZnYHQK2Lgo0zIBW4wfR1APypTZZJnVPqT0FyKO59bOzvNLP3i4sNgMjcqqp2rpg4dE5Qq5wgKtfKfp5aQ68NkGsl8FcxO33Z5IH/vmzSEJ7GAyC2JRcO/E237h2vE5GbiAboO/A89wdh7Y0LL+77Q0IBAKAZAYD9Y9MKkP64gW/3TDP7GU0AxVinWYLHcmH+sYTOF/nmZRnPiQ2AyM2ySQPbV0wYMsHC4DUilusX1ixWQIYhQxtE7LxDBw54/dIpg/6PcABIwg3nD9m05ML+Z4vKRBHZSUSA0ref396ttdNuumzAPQQDOAA+pwXwTCHQFI55wCk6mpCbBNCrgJsc45hsbPVxGe/JPVP3YwOgQPUgxntY4ien1CZXbrAWJbHTwwZA5G7lBYMeWDFx6NmByptU5fdEhPpe1AUZSr9E3yEm0027nbB08qCvLzhHa8QMQNKWTOt/jQS1U0TkL8xTB+s7iA79TWFtMZMPLrq05RMrLx6wnXCAygQA6VYcKhRQ2kWlU8ekdjHf+JfvAPkHlHfuS39zXrxDUG/KMz9oYc+JDYBwxrIJQ25dft7gt5no+0XsUSICoCDrxVBEvlOpdZ6wbMrAy5ZNOmoLNwFAmpZMHXT/IbrnTSo2V3hoCErNga+1su07bg9r4cmLL235EfcejFAARa0FbHIBQK1zd0HCPXYYqYBC1zoARZl8LKOJzBy89jLnQdz7bhnff0s8r5PHBkA4Nv7VVk4c/NM+LVteIaIXiMi64s9ntLigfyjwgne5WXDysskD/3PxtKFriQiArCyYNnTn4gsHTFYN3ikijxAR0HcUWmgiMwYe1vetSz7Vn/EOAKAZAYCI2LQC5iGUITct4jGNMQQgwtjOqj+yhM43mfehrtG3uXVObACEkxacc+KeFRMHz+vWFLxMxKaIyAb3JwuADMOzbpVA37V88sARy6f0/yvhAJCXRdNafqu9aq9RkenC0wCBInrMVN61+JKWS78xXjsIBxARn9MCeKYQaArHPAA+IQJAr4J0b3K8jRhshM2fN/dA3Y8NgIwGv7r8Hun/1DC1KYdJRR08J4ewARBOWzR+0I4VE4fO2S3dXiZql4nIk0SF+u7zggyFX6LfaybnLJs88E3LLhjwa+IBwJV+atGF/S9T07eLyD+IyDN9B7M4/Y33vfMP1OQ1iy9uWUUwQGUCgPwqDhUK8KN5LvoxqV3MN/6NIYD8A8o796W7Oc9iH4J6U575QQt5TmwAhBdWTey3bcWEodM7TV4mYjNEZBtRAeDKnK4iD6jo+5ZNGvja5VMGLiDAAFy06KJ+t9Sam04Rk68LTwNEaTjwtVbynyWsF5Exiy5u+fDCS1u2co/BCAVQtlrAJhcA1Lp8FyTwdL4hFVDoWgegKJOPZTSRmYPXXuY8iHvfLeP7b4nndbLYAAiv/Or8IZtWTBx6abem4DhR+aqIbSnGfEaLC/oHT90vKh88dODAVy+dPPB6UR4nBcBtyyYdtWXxRf3PM5G3ici9RAT0HZ6FX/VnEnS8ZtElLYuJBgCAZgQAksOmFTAPoQy5aRGPaYwhABHGdlb9kSV0vsm8D3WNvs2dc2IDILy0aPygjSsmDPlMUDtk6N6fBn7CjckCIMNK4l4x/UivgQNfs2zSoB8tOEdrhASAT5Zc2P8P27b2O1nMpghPVgZ8aCPXmdm4hRf3HbfookEbCQiQID6nBZDDz3jyCREAehVkMQ/xlF0fl/+e3ANqE8CclVo9UK+OxVyYw31SB8/JEU0kE3y2bNJRW0Rk+hnXPfz1po7uF5jKFBE5ish4Xt89mymNtU6Z8vMuqcmXlk0ZeBNP+wPgu1VV7RSROSNmbFhcqcg1InJm+eq6iRizOJwWqti1HT0rn9679gFKjJUXgNTX/M9+JhW14lChAM8GudPHpLuCq/fM73xHEWo4gGLNZRHmlS5fuu8L4s+ZzHf0+P6eExsAUQi/HP/Sp0Tky6fPb7uqu+z+uIhOFZFjiAyAROZelVWiOmPZ+QOWi6rJVMIHoDiWXdL/YREZNmr2+verBTNEbChRAV8EObHmvy8Iw3Nvuqz/HwggqDcA0FjtoNYA8HHxkFyt44ts5idSAawJAeQ1XqNPPln1NC94H+bI3JuQuPNB/L/TWD92//T7JZnXL45TfPwEMApl1cR+21ZMHDpnd/vgl5nYB0Xkz7nXsUhDHoBDQhH5mZm+YdmkQe9YdsHAZTz1D0CRLZk24Cfaq/MVZvJFEdlJRFAc3k3fO1Xl8z129H09m/8AAMzWAFCc2kWt8xw7lOB8QqVzTGodABcnSsvofM3Baye3fG/g0jsnngCIQtr7k3Y/EpEfDZ/f+lbT8FIxGUX1Rf5S+rdM/KuEJO0xkZ+GgXx15QWDHiAcAMpk0fhBO0TkCyOmb/pmpbnzq2LyQfon0HdkanGl1nnBjZ8a+E9CAQBAls1I9g0OT7sB3MO4RJnmoaTGAePGv3uQ2D2LnbZ8sAQUeWpMpsYkWSdcPRYaim0mt8K/+80GQBTe8omDbhGRW4bNa329SjjJVN4vIt1ZrCDPBRmctN5Ev97Ngq8vnNJ/A+EAUGbLLj1qjYh8ePTMdf8jQXCViLyuuOtKEzFmceTeTN4dqk1eckm/3xEMIIeVF5/fAthPPWj8y3SKC+D0IPepkUjxLfhcu8gd8dOJk+w9Zm4jlADQeAF7bm6KcKwuX7rvC+LPgdGukX6KSdWVc+IngFEaK84fdNfy84d81IKmo0XtMhFZTVQcrtFAVrmmcpeIjO9Vq71k+eSB/83mPwB4zuKLB646dWu/15voOSryMBEpFz6HzqLHtU0qNqXHcX1PY/MfqDcAkG7toNYA8HHxkFyt40N35idSAawJAeQ1XjXB99H0roc5MvcmxDLNSxGLedMt8bxOBk8AROmsPG9Am4hMH3f9fVc+1d5nnIpOFpHTUq1jFmXIM7MAGeg0sV+oytxlFwz+PeEAgAOrVjUUkQXjqvfdtLPXUeeJ6mdEpIXI/P/27j24ruq64/hvnXMl+SUZbEm2hR2iALEnDmagwaQuST1MApbBTsPETmca0vaPhDYOCjiAIdOZinQ6GXscd+LEJDhQCg0ZWoWJQTHC1EyUAIGKAdxgHh3LdbH8tiWwJctGuues/oEajJ+674e+nxn9I13pnrv23muvfc7WOSgtRVdnD8j8h2OixPda75p0mPYBAICzYgBGR+4i15U47tqGou9QufmbnuIWCXIdQF4rp+MdWU6jSCjevjV67hDIBkCMWq1LZw9KekTSI0337vp07LpZ0lJJ44gOcovHVhVwLt1tsd/v5vc/1Tx9FwEBgBRqp5bZg5J+sHjlwX+OE/FySd+WVE1kWG8jJYNuvj52/eOTd9TvIxwAABRTMZL/AoeL40DxYVxiNM1D2RoHjJvSa4OstVna3ZYTS0A5T43ZyTHnzhMjf59s5hzyV9HUV3lpitJqbzYAApLavzH9RUkvfu6+7beG0ZivuPxr5rqMyCCXCzLkTezS04H7TwZ6GzZ2tFiSkABA+p5YUdcn6Z6mtXvvDYaCO036G0kTSntd6ZIziyOnIpn9a5gcumfD3dP+l3AARbjy4vwtgNPkg8wvppNcgGIb1yW7cSuHb8F57XKuiN/vONltY+Y2QgkAmSewD+amFP7WOV966gvSnwNT+4zUU0yqxXBMbAAETrD55osOS1onad11P+6ea7G+LtmXVeoXtcnRGJ32uenBWMFPn75l6g7CAQDZ1d487aCkOxat3rMytsStJr9FUg2RKS+cuMhYLLPH4kh/v3FF7ZuEAyDfAChs7iDXACgdH5wgz16u46Q78xPAmhBA4WubYssLH3ofyqWC94P8zwfl0+hsAATOYNPfzuiU1Nm0tme5h8eXSPFfSnZ1WvkmpZxBiQtkYFCuNpk/dKy3oZ27/QFA7rXd3nBI0t9d/713v2+V7zVLapY0icig+OS1zh6S2SNxpFVs/AMAoEhnawAoUO4i15W4crhGzOaGMm+M3DQwuQ5A8YzvYn2kLxNsIds93X6Z2e9lsrE1+/2FDYDAObQ3Tz4i6QFJD1z7w32NYRjd5O43SbqY6ICFe9F4We4PDYb+82e+Ob2HjgAA+bfx7vPekXTP4pUH10QJ/4bJmyU1EBnqjlFmQLL7FQXfb7tr0k7CAQBAqRUjFDhAOWLTCpiHGDfkukxff5a+mXa3pe4CynNqzObj57N5t7jMcg7zXKmXY5m0f+nMV2wABFIw/BjR78r9H5p+tGeem3/VTUtNOo/oILXJnzIhC3aa/N/Mw4c3fmvqVsIBAMXhiRV1fZJWLml5/Z8GqmuXmnSbpCuIDMrcO+a2big5tLb9O9MOEg6gRHH9CUAW8sGpZ3xyc5cCAJmM6xKd9KlVkNb8kc2NGHTGfI5ragQA5V6YpHUntHO+9NQXZD+fnv4gyNuF7lfFWJ/k95jYAAikNU7N26XnJT3ftHZbs8Jx17r5Erl/QbIaAsQaEjnT69JGlz+86ZaGZ2RGDwGAItXaMntQ0s8k/WzR6gNXy7zZpRslhcVZd/jwfyfiZJy4OKv/NvMfV43VA63L6voJB5CvfENmApC/2oaMA2CEi0rl8m5w2ctdXLBmvgEAoHTqpXzNjx96nz8cJpsVclMPZfPOjsVcy+cfGwCBDLU3X/KepDZJbUvWdI89UuELLbAvS7pe0rj0cgZLPeAE75p8Q2z26PGeac90tFhSktRMYACgVLTdXv+cpOduWHXgEiW0TO5flXQ+kUGxnHJIUdJkG2L5ul/dUddBTAEAKOxszVk0AOQu5L2Ny+EaMXsayrwxctPAuc515EagfGuf4s6dxfq3kGp80+2Xmf1eJhtbs9tf2AAIZFHr8hnHJD0m6bH56w5MGONDN8j8RkkLJFUTIbBwH7F9Jj0em35Z3fPOr4fvIgUAKHG/urN+m6Rbl6zpvntAVUvN/euS5hEZ6o6S4Npvsp8Oud3XvmLyLhofAIByLUa4YAOUZznPJhSwKGbckOsyez11F4CRDutsPn4+m3eLyyznMM+VejlWbo8XPhUbAIEc6VhW3y/pUUmPNq3dVhUnxn3GXIsk/5KkBiLEAosy4RRvm/R4JG97r7eh4w93+gMAlJ3hf5p4SNJDi1YfmiWL/sqlr0maRHRQZCKXfh24r586sW7D+pttiJAAZY7rTwCykA9OPeOTm7sUAMhkXJfopE+twgSU1vyRzY0YdMZ8NnnJ1Ah0B4AElqa07oSWxttmP5+e/iBY2xW6XxXjhJS/Y2IDIJAHw48J3ixpc0uL3/a7uj2fDjz+M8kWS5pJhFg0jFKRpBfctFFR9ORTt874PSEBgNGn7fbatyTdtei+Pd/1vvCLZvqKS5+XFOa/7vDh/07EyUbbiQuTtsj8X4YGo5+3f2faQXoAynh0PyazzmLLN8V8EIHFXfQbIJPhZa+5+foRzMWpzt3ZrwZOyAfp1EKeYoY7/d/3Q/QaIDNDQ4PHrbJy/emHoqc4jguRu05zgnyEB3bm3GVn/bwVFdpHzzkpNu47ZLY+nbkgyGQeykGR6ym+jaU4SkySe8BVHZ1tTRFsj6X1J3WyHCxnPCe9zQozCHfTc4DCMvP/iD04eGo+8LNmo+zkDEsx45mkOOX89aF520byW36u779CDaWNLu9Kpx46cx01kpbMVoU/0nk39WOy0/zMZC/kYqQAyJPr7337Y5EnFph7k0vXSBrHEM15Hs59EVToNFy8MTtkrqdi+UaP4qc3LZ/RSwcHAJxs4aoDUy2M/9xkN0m6Ir91B/VXylWLl8enMWmXu1oj+cNP3lm/hRYHAAAAAAAAAAClgKtbQBGZ/+COMWMHqj7rcbxApibJZhEVsQGwtOP2nqQXXdpsCjZPmDrlpdalFtGpAQAj9YXVez8RB+FfuPuXJH0893UHS6S0qhYv2U/TLdcvgjD+xePL61+QGXcpAAAAAAAAAAAAJYWrW0ARW7juwNQ4HvyMTJ+T7FpJHx2VgSjRy7Cj9i6Apv+RtNllm80rN7U3Tz7CaAYAZMOiNXtnxx7eIPkik+blZBJlA2B6FUtp1WvdUvBLWdza9u2659n0BwAAAAAAAAAAShlXt4AS8vkfdF8SJuwauV0jab6k+lHz4bkLYLHGLCnpVXM954F+O2jxs898c3oPoxUAkGuL1xy4OI79Rpm+KGmupCB7cyjLpJSrluKu1SJJL5q0Melq5/G+AAAAAAAAAACgnHBlCyhhC+7dPdMjzZPp6uG74JTvI4PZAFgsMRuQ9JJcv7XQnx2wihc6ltX3MxoBAIW0aPWeWgXBtS5bINd1yvSfJNgAmHrVUny12iHJnpLpycGgctOm5RN7aT0AAAAAAAAAAFCOuLIFlJGmtXvr4iCeZ9KfSPpjSZdLGl8WH44NgIWIWyTpLbl1uvl/mrzzWG/Dax0tlmS0AQCKVUuLB501h64IFC2Q23UmXeVSRWrzJ8uktKqWwtZrRyQ96/LfmIUdf9Q/+eWWFotpMQAAAAAAAAAAUO64sgWUsSX/7uHR/bs+ESn4lMyuNPmVkuZIqiy5D+Ol2QYldBfAWNI2ybbI4ldcQWflQOLlJ1bU9TGSAAClbNF9e8bFA+G8INZnXZqv9x8XXHX2+ZNlUloVS37rtcMyPavYf2MedFQ11r7autQiWggAAAAAAAAAAIw2XNkCRpklLa9X9tVNuszcL3f5HJculTTHpPOK/uC5C2C2YnZM0uuSXnWzLWEcbzmaqPg9j/IFAIyKWmhN99hjUeIqBcGfynSVYs2VafKpcyhLpZSrltzVakmTtrp7p8w6gzDurJw+5Q02/AEAAAAAAAAAALABEMCwhT/ac2FS8aWmYI7JL5M0c/hrTNEcJBsAU33zPsV6y+Svu+lNud6UEm9c1Vu/g0fiAQDwgaZV+y9KBD43DuxKueaadLncxhGZFKuW7NRqSUnbXPovM+uU/CX1J19pa2kYIPIAAAAAAAAAAACnYgMggDNqafHgd5P3X2hBPDNwzXJplqSPyzVL5tPyfkBsADydY5K2S+qSvMvduhTEXRVRsK3tWw076cUAAKRufosnqmv2zXQPP2muOS7/pGSXSvooa6hsPgbYd0q2VdJrJt+adNs6fqDujdYWG6QXAgAAAAAAAAAAjAwbAAGkZcma7rH9iURjFEQfC90aXdbogTeaq1FSo6SarL9pWW8APOOrj0p62107zdTtrp0m2ynpbSna3n7LBbtl5vRIAAByb/HKg9WeiGYrDma76WLpQ18TWESepl5z7ZepS1KXm7oCty432x6G4bYNt53/Lr0KAAAAAAAAAAAgM2wABJAT89cdmDBeyRlxHE9ToOnuwQWST5P0EbmmyDRFUp1SvVheLpsATX1y7TVpf+zaGwTaJ9m+WLbHXAc8TO7249q1afmMXnoTAADFb+GqA1NNuiQIdZHLLpTiC8ytQdJHXH6BZJPKcCHZJ9cuN9sduO9xqdtde4PQupOR70y4bX9iRV0fvQMAAAAAAAAAACB32AAIoKDmP7hjzNi+ilrJ6uLQplisWjPVuvlEudXIfKJkNZKfL7caafj78jGSTZC8ogCHPaj378zXL6lPsn7Jj5j8sCvol3u/zI+4q0dmvaGpNzbrsch6LQx79yd29rx886eGaH0AAEaPJWu6xx71MTPkPtXktVJQK3mtuU82s8mSal2aLOk8ycZKXmPSBJdyWuuYNORSv8z75Hb8/dpGfXL1uPxQYNbjZj3u3mNuvR7EPWEy6Kma4Ltbl9X307IAAAAAAAAAAACFxQZAACVv8cqD1VH1QMLjihoLwjBOJidGbsH//zwRRokoDqrPmgwDPxpHweCJ3wst+W6QqPI4GfcFicHk0bHxsY6/bjxOxAEAQL7Mb/HE+KrD1YnKaIJbVBXFNvHEn7t8vLlXnvx7gcI4Nj984vcSCo4lw+TxeDAxGMTh0XEXTTzSutQiogwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArt/wBQqoPCJ89/4AAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyNC0wMi0yMlQwNzo0Nzo1NSswMDowMEK7CccAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjQtMDItMjJUMDc6NDc6NTUrMDA6MDAz5rF7AAAAAElFTkSuQmCC\n }\n }\n}\n\ntest TestBase64URLEscape{\n functions [TestImageInput]\n args{\n img{\n url \"\"\n }\n }\n}\n", "test-files/functions/input/named-args/syntax.baml": "function TestFnNamedArgsSyntax {\n input (myVar: string, var_with_underscores: string)\n output string\n}\n// TODO: we don't support numbers in named args yet!\n// TODO: we also allow dashes but python fails.", "test-files/functions/output/boolean.baml": "function FnOutputBool(input: string) -> bool {\n client GPT35\n prompt #\"\n Return a true: {{ ctx.output_format}}\n \"#\n}\n\ntest FnOutputBool {\n functions [FnOutputBool]\n args {\n input \"example input\"\n }\n}\n", "test-files/functions/output/class-dynamic.baml": "class Person {\n name string?\n hair_color Color?\n\n @@dynamic\n}\n\nenum Color {\n RED\n BLUE\n GREEN\n YELLOW\n BLACK\n WHITE\n\n @@dynamic\n}\n\nfunction ExtractPeople(text: string) -> Person[] {\n client GPT4\n prompt #\"\n {{ _.role('system') }}\n\t\t You are an expert extraction algorithm. Only extract relevant information from the text. If you do not know the value of an attribute asked to extract, return null for the attribute's value.\n\t\t \n\t\t {# This is a special macro that prints out the output schema of the function #}\n\t\t {{ ctx.output_format }} \n\t\t \n\t\t {{ _.role('user') }}\n\t\t {{text}}\n \"#\n}\n\nenum Hobby {\n SPORTS\n MUSIC\n READING\n\n @@dynamic\n}\n", @@ -54,10 +58,10 @@ const fileMap = { "test-files/functions/output/optional.baml": "class OptionalTest_Prop1 {\n omega_a string\n omega_b int\n}\n\nenum OptionalTest_CategoryType {\n Aleph\n Beta\n Gamma\n}\n \nclass OptionalTest_ReturnType {\n omega_1 OptionalTest_Prop1?\n omega_2 string?\n omega_3 (OptionalTest_CategoryType?)[]\n} \n \nfunction OptionalTest_Function(input: string) -> (OptionalTest_ReturnType?)[]\n{\n client GPT35\n prompt #\"\n Return a JSON blob with this schema: \n {{ctx.output_format}}\n\n JSON:\n \"#\n}\n\ntest OptionalTest_Function {\n functions [OptionalTest_Function]\n args {\n input \"example input\"\n }\n}\n", "test-files/functions/output/string-list.baml": "function FnOutputStringList(input: string) -> string[] {\n client GPT35\n prompt #\"\n Return a list of strings in json format like [\"string1\", \"string2\", \"string3\"].\n\n JSON:\n \"#\n}\n\ntest FnOutputStringList {\n functions [FnOutputStringList]\n args {\n input \"example input\"\n }\n}\n", "test-files/functions/output/unions.baml": "class UnionTest_ReturnType {\n prop1 string | bool\n prop2 (float | bool)[]\n prop3 (bool[] | int[])\n}\n\nfunction UnionTest_Function(input: string | bool) -> UnionTest_ReturnType {\n client GPT35\n prompt #\"\n Return a JSON blob with this schema: \n {{ctx.output_format}}\n\n JSON:\n \"#\n}\n\ntest UnionTest_Function {\n functions [UnionTest_Function]\n args {\n input \"example input\"\n }\n}\n", - "test-files/functions/prompts/no-chat-messages.baml": "\n\nfunction PromptTestClaude(input: string) -> string {\n client Claude\n prompt #\"\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestOpenAI(input: string) -> string {\n client GPT35\n prompt #\"\n Tell me a haiku about {{ input }}\n \"#\n}", - "test-files/functions/prompts/with-chat-messages.baml": "\nfunction PromptTestOpenAIChat(input: string) -> string {\n client GPT35\n prompt #\"\n {{ _.role(\"system\") }}\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestOpenAIChatNoSystem(input: string) -> string {\n client GPT35\n prompt #\"\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestClaudeChat(input: string) -> string {\n client Claude\n prompt #\"\n {{ _.role(\"system\") }}\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestClaudeChatNoSystem(input: string) -> string {\n client Claude\n prompt #\"\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\ntest PromptTestOpenAIChat {\n functions [PromptTestClaude, PromptTestOpenAI, PromptTestOpenAIChat, PromptTestOpenAIChatNoSystem, PromptTestClaudeChat, PromptTestClaudeChatNoSystem]\n args {\n input \"cats\"\n }\n}\n\ntest TestClaude {\n functions [PromptTestClaudeChatNoSystem]\n args {\n input \"lion\"\n }\n}", + "test-files/functions/prompts/no-chat-messages.baml": "\n\nfunction PromptTestClaude(input: string) -> string {\n client Claude\n prompt #\"\n Tell me a haiku about {{ input }}\n \"#\n}\n\n\nfunction PromptTestStreaming(input: string) -> string {\n client GPT35\n prompt #\"\n Tell me a short story about {{ input }}\n \"#\n}\n\ntest TestName {\n functions [PromptTestStreaming]\n args {\n input #\"\n hello world\n \"#\n }\n}\n", + "test-files/functions/prompts/with-chat-messages.baml": "\nfunction PromptTestOpenAIChat(input: string) -> string {\n client GPT35\n prompt #\"\n {{ _.role(\"system\") }}\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestOpenAIChatNoSystem(input: string) -> string {\n client GPT35\n prompt #\"\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestClaudeChat(input: string) -> string {\n client Claude\n prompt #\"\n {{ _.role(\"system\") }}\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\nfunction PromptTestClaudeChatNoSystem(input: string) -> string {\n client Claude\n prompt #\"\n You are an assistant that always responds in a very excited way with emojis and also outputs this word 4 times after giving a response: {{ input }}\n \n {{ _.role(\"user\") }}\n Tell me a haiku about {{ input }}\n \"#\n}\n\ntest TestSystemAndNonSystemChat1 {\n functions [PromptTestClaude, PromptTestOpenAI, PromptTestOpenAIChat, PromptTestOpenAIChatNoSystem, PromptTestClaudeChat, PromptTestClaudeChatNoSystem]\n args {\n input \"cats\"\n }\n}\n\ntest TestSystemAndNonSystemChat2 {\n functions [PromptTestClaude, PromptTestOpenAI, PromptTestOpenAIChat, PromptTestOpenAIChatNoSystem, PromptTestClaudeChat, PromptTestClaudeChatNoSystem]\n args {\n input \"lion\"\n }\n}", "test-files/functions/v2/basic.baml": "\n\nfunction ExtractResume2(resume: string) -> Resume {\n client GPT4\n prompt #\"\n {{ _.role('system') }}\n\n Extract the following information from the resume:\n\n Resume:\n <<<<\n {{ resume }}\n <<<<\n\n Output JSON schema:\n {{ ctx.output_format }}\n\n JSON:\n \"#\n}\n\n\nclass WithReasoning {\n value string\n reasoning string @description(#\"\n Why the value is a good fit.\n \"#)\n}\n\n\nclass SearchParams {\n dateRange int? @description(#\"\n In ISO duration format, e.g. P1Y2M10D.\n \"#)\n location string[]\n jobTitle WithReasoning? @description(#\"\n An exact job title, not a general category.\n \"#)\n company WithReasoning? @description(#\"\n The exact name of the company, not a product or service.\n \"#)\n description WithReasoning[] @description(#\"\n Any specific projects or features the user is looking for.\n \"#)\n tags (Tag | string)[]\n}\n\nenum Tag {\n Security\n AI\n Blockchain\n}\n\nfunction GetQuery(query: string) -> SearchParams {\n client GPT4\n prompt #\"\n Extract the following information from the query:\n\n Query:\n <<<<\n {{ query }}\n <<<<\n\n OUTPUT_JSON_SCHEMA:\n {{ ctx.output_format }}\n\n Before OUTPUT_JSON_SCHEMA, list 5 intentions the user may have.\n --- EXAMPLES ---\n 1. \n 2. \n 3. \n 4. \n 5. \n\n {\n ... // OUTPUT_JSON_SCHEMA\n }\n \"#\n}\n\nclass RaysData {\n dataType DataType\n value Resume | Event\n}\n\nenum DataType {\n Resume\n Event\n}\n\nclass Event {\n title string\n date string\n location string\n description string\n}\n\nfunction GetDataType(text: string) -> RaysData {\n client GPT4\n prompt #\"\n Extract the relevant info.\n\n Text:\n <<<<\n {{ text }}\n <<<<\n\n Output JSON schema:\n {{ ctx.output_format }}\n\n JSON:\n \"#\n}", - "test-files/providers/providers.baml": "function TestAnthropic(input: string) -> string {\n client Claude\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOpenAI(input: string) -> string {\n client GPT35\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestAzure(input: string) -> string {\n client GPT35Azure\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOllama(input: string) -> string {\n client Ollama\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestGemini(input: string) -> string {\n client Gemini\n prompt #\"\n Write a nice short story about {{ input }}\n \"#\n}\n\n\ntest TestProvider {\n functions [TestAnthropic, TestOpenAI, TestAzure, TestOllama, TestGemini]\n args {\n input \"Donkey kong and peanut butter\"\n }\n}\n\n\n", + "test-files/providers/providers.baml": "function TestAnthropic(input: string) -> string {\n client Claude\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOpenAI(input: string) -> string {\n client GPT35\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOpenAILegacyProvider(input: string) -> string {\n client GPT35LegacyProvider\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestAzure(input: string) -> string {\n client GPT35Azure\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestOllama(input: string) -> string {\n client Ollama\n prompt #\"\n Write a nice haiku about {{ input }}\n \"#\n}\n\nfunction TestGemini(input: string) -> string {\n client Gemini\n prompt #\"\n Write a nice short story about {{ input }}\n \"#\n}\n\nfunction TestAws(input: string) -> string {\n client AwsBedrock\n prompt #\"\n Write a nice short story about {{ input }}\n \"#\n}\n\n\ntest TestProvider {\n functions [TestAnthropic, TestOpenAI, TestAzure, TestOllama, TestGemini, TestAws]\n args {\n input \"Donkey kong and peanut butter\"\n }\n}\n\n\n", "test-files/strategies/fallback.baml": "\nclient FaultyClient {\n provider openai\n options {\n model unknown-model\n api_key env.OPENAI_API_KEY\n }\n}\n\n\nclient FallbackClient {\n provider fallback\n options {\n // first 2 clients are expected to fail.\n strategy [\n FaultyClient,\n RetryClientConstant,\n GPT35\n ]\n }\n}\n\nfunction TestFallbackClient() -> string {\n client FallbackClient\n // TODO make it return the client name instead\n prompt #\"\n Say a haiku about mexico.\n \"#\n}", "test-files/strategies/retry.baml": "\nretry_policy Exponential {\n max_retries 3\n strategy {\n type exponential_backoff\n }\n}\n\nretry_policy Constant {\n max_retries 3\n strategy {\n type constant_delay\n delay_ms 100\n }\n}\n\nclient RetryClientConstant {\n provider openai\n retry_policy Constant\n options {\n model \"gpt-3.5-turbo\"\n api_key \"blah\"\n }\n}\n\nclient RetryClientExponential {\n provider openai\n retry_policy Exponential\n options {\n model \"gpt-3.5-turbo\"\n api_key \"blahh\"\n }\n}\n\nfunction TestRetryConstant() -> string {\n client RetryClientConstant\n prompt #\"\n Say a haiku\n \"#\n}\n\nfunction TestRetryExponential() -> string {\n client RetryClientExponential\n prompt #\"\n Say a haiku\n \"#\n}\n", "test-files/strategies/roundrobin.baml": "", diff --git a/integ-tests/typescript/baml_client/tracing.ts b/integ-tests/typescript/baml_client/tracing.ts index 6b6b708bd..db3cc2deb 100644 --- a/integ-tests/typescript/baml_client/tracing.ts +++ b/integ-tests/typescript/baml_client/tracing.ts @@ -15,11 +15,19 @@ $ pnpm add @boundaryml/baml // @ts-nocheck // biome-ignore format: autogenerated code /* eslint-disable */ +import { BamlLogEvent } from '@boundaryml/baml'; import { DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX } from './globals'; -const traceAsync = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.traceFnAync.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) -const traceSync = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.traceFnSync.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) -const setTags = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.upsertTags.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) -const flush = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.flush.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) +const traceAsync = +DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.traceFnAsync.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) +const traceSync = +DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.traceFnSync.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) +const setTags = +DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.upsertTags.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX) +const flush = () => { + DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.flush.bind(DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX)() +} +const onLogEvent = (callback: (event: BamlLogEvent) => void) => +DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_CTX.onLogEvent(callback) -export { traceAsync, traceSync, setTags, flush } \ No newline at end of file +export { traceAsync, traceSync, setTags, flush, onLogEvent } \ No newline at end of file diff --git a/integ-tests/typescript/baml_client/type_builder.ts b/integ-tests/typescript/baml_client/type_builder.ts index ff4473cf8..66d694ee4 100644 --- a/integ-tests/typescript/baml_client/type_builder.ts +++ b/integ-tests/typescript/baml_client/type_builder.ts @@ -21,6 +21,8 @@ import { TypeBuilder as _TypeBuilder, EnumBuilder, ClassBuilder } from '@boundar export default class TypeBuilder { private tb: _TypeBuilder; + DynInputOutput: ClassBuilder<'DynInputOutput', "testKey">; + DynamicClassOne: ClassBuilder<'DynamicClassOne'>; DynamicClassTwo: ClassBuilder<'DynamicClassTwo', "hi" | "some_class" | "status">; @@ -44,13 +46,17 @@ export default class TypeBuilder { constructor() { this.tb = new _TypeBuilder({ classes: new Set([ - "Blah","ClassOptionalOutput","ClassOptionalOutput2","ClassWithImage","DynamicClassOne","DynamicClassTwo","DynamicOutput","Education","Email","Event","FakeImage","InnerClass","InnerClass2","NamedArgsSingleClass","OptionalTest_Prop1","OptionalTest_ReturnType","OrderInfo","Person","RaysData","Resume","SearchParams","SomeClassNestedDynamic","TestClassAlias","TestClassNested","TestClassWithEnum","TestOutputClass","UnionTest_ReturnType","WithReasoning", + "Blah","ClassOptionalOutput","ClassOptionalOutput2","ClassWithImage","DynInputOutput","DynamicClassOne","DynamicClassTwo","DynamicOutput","Education","Email","Event","FakeImage","InnerClass","InnerClass2","NamedArgsSingleClass","OptionalTest_Prop1","OptionalTest_ReturnType","OrderInfo","Person","RaysData","ReceiptInfo","ReceiptItem","Resume","SearchParams","SomeClassNestedDynamic","TestClassAlias","TestClassNested","TestClassWithEnum","TestOutputClass","UnionTest_ReturnType","WithReasoning", ]), enums: new Set([ "Category","Category2","Category3","Color","DataType","DynEnumOne","DynEnumTwo","EnumInClass","EnumOutput","Hobby","NamedArgsSingleEnum","NamedArgsSingleEnumList","OptionalTest_CategoryType","OrderStatus","Tag","TestEnum", ]) }); + this.DynInputOutput = this.tb.classBuilder("DynInputOutput", [ + "testKey", + ]); + this.DynamicClassOne = this.tb.classBuilder("DynamicClassOne", [ ]); @@ -115,10 +121,10 @@ export default class TypeBuilder { } addClass(name: Name): ClassBuilder { - this.tb.addClass(name); + return this.tb.addClass(name); } addEnum(name: Name): EnumBuilder { - this.tb.addEnum(name); + return this.tb.addEnum(name); } } \ No newline at end of file diff --git a/integ-tests/typescript/baml_client/types.ts b/integ-tests/typescript/baml_client/types.ts index fa7f03d01..be0822229 100644 --- a/integ-tests/typescript/baml_client/types.ts +++ b/integ-tests/typescript/baml_client/types.ts @@ -141,6 +141,12 @@ export interface ClassWithImage { } +export interface DynInputOutput { + testKey: string + + [key: string]: any; +} + export interface DynamicClassOne { [key: string]: any; @@ -241,6 +247,20 @@ export interface RaysData { } +export interface ReceiptInfo { + items: ReceiptItem[] + total_cost?: number | null + +} + +export interface ReceiptItem { + name: string + description?: string | null + quantity: number + price: number + +} + export interface Resume { name: string email: string diff --git a/integ-tests/typescript/package.json b/integ-tests/typescript/package.json index 5ec992be3..87efc49e4 100644 --- a/integ-tests/typescript/package.json +++ b/integ-tests/typescript/package.json @@ -5,8 +5,10 @@ "main": "index.js", "scripts": { "test": "jest", - "build": "cd ../../clients/ts && npm run build && cd - && pnpm i", - "integ-tests": "BAML_LOG=baml_events infisical run --env=test -- pnpm test -- --silent false --testTimeout 30000", + "build:debug": "cd ../../engine/language_client_typescript && pnpm run build:debug && cd - && pnpm i", + "build": "cd ../../engine/language_client_typescript && npm run build && cd - && pnpm i", + "integ-tests": "BAML_LOG=info infisical run --env=test -- pnpm test -- --silent false --testTimeout 30000", + "integ-tests:dotenv": "BAML_LOG=info dotenv -e ../.env -- pnpm test -- --silent false --testTimeout 30000", "generate": "baml-cli generate --from ../baml_src" }, "keywords": [], @@ -17,6 +19,7 @@ "@swc/jest": "^0.2.36", "@types/jest": "^29.5.12", "@types/node": "^20.11.27", + "dotenv-cli": "^7.4.2", "jest": "^29.7.0", "ts-jest": "^29.1.2", "ts-node": "^10.9.2", @@ -24,6 +27,7 @@ "typescript": "^5.4.2" }, "dependencies": { - "@boundaryml/baml": "link:../../engine/language_client_typescript" + "@boundaryml/baml": "link:../../engine/language_client_typescript", + "dotenv": "^16.4.5" } } diff --git a/integ-tests/typescript/pnpm-lock.yaml b/integ-tests/typescript/pnpm-lock.yaml index 84341ef97..55daee16e 100644 --- a/integ-tests/typescript/pnpm-lock.yaml +++ b/integ-tests/typescript/pnpm-lock.yaml @@ -8,6 +8,9 @@ dependencies: '@boundaryml/baml': specifier: link:../../engine/language_client_typescript version: link:../../engine/language_client_typescript + dotenv: + specifier: ^16.4.5 + version: 16.4.5 devDependencies: '@swc/core': @@ -22,6 +25,9 @@ devDependencies: '@types/node': specifier: ^20.11.27 version: 20.11.30 + dotenv-cli: + specifier: ^7.4.2 + version: 7.4.2 jest: specifier: ^29.7.0 version: 29.7.0(@types/node@20.11.30)(ts-node@10.9.2) @@ -1282,6 +1288,25 @@ packages: engines: {node: '>=0.3.1'} dev: true + /dotenv-cli@7.4.2: + resolution: {integrity: sha512-SbUj8l61zIbzyhIbg0FwPJq6+wjbzdn9oEtozQpZ6kW2ihCcapKVZj49oCT3oPM+mgQm+itgvUQcG5szxVrZTA==} + hasBin: true + dependencies: + cross-spawn: 7.0.3 + dotenv: 16.4.5 + dotenv-expand: 10.0.0 + minimist: 1.2.8 + dev: true + + /dotenv-expand@10.0.0: + resolution: {integrity: sha512-GopVGCpVS1UKH75VKHGuQFqS1Gusej0z4FyQkPdwjil2gNIv+LNsqBlboOzpJFZKVT95GkCyWJbBSdFEFUWI2A==} + engines: {node: '>=12'} + dev: true + + /dotenv@16.4.5: + resolution: {integrity: sha512-ZmdL2rui+eB2YwhsWzjInR8LldtZHGDoQ1ugH85ppHKwpUHL7j7rN0Ti9NCnGiQbhaZ11FpR+7ao1dNsmduNUg==} + engines: {node: '>=12'} + /dynamic-dedupe@0.3.0: resolution: {integrity: sha512-ssuANeD+z97meYOqd50e04Ze5qp4bPqo8cCkI4TRjZkzAUgIDTrXV1R8QCdINpiI+hw14+rYazvTRdQrz0/rFQ==} dependencies: diff --git a/integ-tests/typescript/tests/base64_test_data.ts b/integ-tests/typescript/tests/base64_test_data.ts new file mode 100644 index 000000000..810e3a075 --- /dev/null +++ b/integ-tests/typescript/tests/base64_test_data.ts @@ -0,0 +1,3 @@ +export var image_b64 = 'iVBORw0KGgoAAAANSUhEUgAAANwAAAFGCAYAAAAB0PEQAAAACXBIWXMAAC4jAAAuIwF4pT92AAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAIABJREFUeNrsvXV8VGme9l0JdDfQ0LhDiBIS4gmx0ri7Q9w9hLiUxXAJDo27uxM07u6GBWhot+luUud671N0z87szrM7s7vvM/301B+/zyk5qVQq51vXdd3KEIlEDFnJSlb/d0r2IchKVjLgZCUrGXCykpWsZMD9a5ZQKPyLo1C+QCQYKyYlEgnkROQxofQ8oeyzkgEnq/8t2AQCAaOgoECOLyxkZOYVMbLzixl8YQn93BiR8DfYZNDJgJPV/7ho2IqLihkZmWmMtaJkvTPbknwPb4xx2FAYOlMgyCfnFMgLhQLZZyUDTlb/G7AVForlElemM1bGe3j3XA57MXxSFz0H1NF+ZGn13tX2brl88d+wnrLPTgacrP4bwPHliouLGTEx4QqfFvJ6Bq7Y4kTxtD8dFi6UXFutjsYDmt8f3WidmMcvYIjFMuhkwMnqf5TfCsQi+fSMHIa3t23QqQ161OXd6j9vzFKWrEnRpdamaL47JFJE8yEVak+JTUx2rphWQ3kZbDLg/h8tIbnoyVEs/LVBQlpy5L6c8N/uvz/n/4cGCxqcQrGYkZaeKefqYrnt4Dod6uQOrV8EKaYQJLGpvEQWClfpvjtcpEBV71b+Ji/JlpeRnUeUjrw/uvVSBp4MuN81WKJ/B9avcOXni+SEApKThAUMIb+Qwc8vJLcLGQI+XQVy0ub5387/69f4H8H4vmVSzMjNyZ3k4mpZtr1Ahzq3c8m73CQWlRrHQ2osl8pJZlNF6ZrvrmxWwt0divXZGVEzCwrXkN/Ll5P9X2XA/U5B+zMUciKhSKoOAr6IwecLycUuZuzan80oWZ/6gbgkeeqa0qjZ2/ZHz84vjp62aVfk2M3bkhm5ucUMPgFSICggJf71NcV/BvC/Cx15H3J062NgcMBcVzebJ0UZOji3W3k0M5mNuEgeEqO5yEpiojDdSLJJuOiXmlMLqFIBM2nlqiwaVDmZwsmA+/3kIxoA4a9HkVBeKPgVNGnzuvCDHYeyNE9ezYw5czVtz/2qxDv3q0Jb7z4KGH5c4/q8vNr2xa07vCcPKpgtt++zbhw/7bD1+DnnqNI9bkbrt4RM4vNp+HJJFRJoCsYQBfyHofsNlvx8PsPVw9HEyclSkhJvIrm4X1GSnmiOyFAeosK5SInlUAXpOtTuNXN+KT9nQl3fo3JZkBc3XigqZsi6CmTA/W6UTfQeADmxSDxGkC9gCER8xtrSfIW9x3Mjz1zJLiuvT/2xviUZre1x6OgIRVuTNxpr3NDRbI/Wejba6gzR2axOjoporFyElgYVNNQvkZRXanddvGq8c89BY6uStbEThaIcqf0Uifhyv6mp8O8Ej4ZOLC5guHs7RTs7cxAcyB49v1cVO4qXITrUAlFhFkiJN6e2r12C+xdt33WVrxh9fGLB/WJR/ES+sFiW4WTA/X4spJC2e+R2Tn4OY902gc6Ja9nFF28mDzx4FI6GBj8CVwgaKxKovo5U6klfItXbGk71tgRSfS3eVEetE9XbaEn1NetR3Y3qVGedMtVWo0S11yuiu3UhutoXoKlZEXcfLLz+6SFDtzzyO4SCNeT3Cv7uFsT3sIkZicmJDDcPmxOODuaUhztPIs40pq4f1MPp3SY4ts2EOvepLsovGUnqbrB+eXxGHSFec/jxCSsZRUWFcnQGlP3PZcD905rY/9JC8vPJsVA4ecfhvKJrj5KfPHzsj0dllqh+wHzXXO0g6WkJpZ70r8KLp/nUyHAuXg6m4tVALJ53BeJpizdetNmTIxNDTdoYbFKjeutV0d+sTABUoFqqFN51NiyQdLbMR131zF8uXtQ+LC7yV8nLEzCIokrfw3/VX/a+w7uIYe9kP8fdg/fazs4Mzk5sKnSFBZUWx0Fxljm1NsdUUio0okpF+hCkacGKo3DU0sp+Gp8vtcWyDCcD7p+Y16QXt/QbX04g5DPW7xYaHzkjrLl6LRo3r3Bw86LWL3fO647W3mMTtXJDb1sYNdyTgZG+Qrx5UoI3wwJ81p+GVz2x+Kw3EK+6XfCi3RIj7UYYblLHQKMKBpqU0V2vRPU3KmCwZS7V2zzjXV/bdGqgexrq6mYNb9rKC8zLo2ET053Ucn8Lur8cOykicC4P8kh1c2fBxtaccnFiUYHeFvD3spR4uFhIPN2tQFtNJsew38LaKjIpJeOjvLx8Wt1IFpXBJgPunzzSnqiLXGZ2DqNwa7bbrQrRZ5cu++DKOe13t88vGL17XpWqumOAxvtWVHuVGwZawtFRlYm+JjG+fLEBX46swefDefhyKAlfDIXjRbcXnnfaEMUzxlDbYnTVKaG1WonkOgUMdM6jBghwg20z0dcySdLXNmF0sGsaejpn4eRZ9TUJKQHj6C4FsVgg97dg4/P5jNUlxXLB4cGTwiN4nX5+XMrBkSnx9eBSy70sRv08efD05ILN1R02NTfKMWeZT83Pz2eUlBRJQRbIRpvIgPtnwiaQjtgQy9Hf/oKNmSGX7+X9cP6iK86fUpNcPzedun+RWL+7SlTbIz2q45EFeqrd0F8fjL7mJIwM5OPt83X48uUGfDWyGl+PZBHFi8bz/gAMdLmhp8OKqKE5KVP0tRtgoHsp2oi9LL9FAKyfSw31T0X9o6lUW8O40YHeKdRA11zsO6B4IiLWZ4pYXEznur/qpP517KR8bq6IER3vxs/KMEZkJFfi68Ol/Ly4oyv8aFVj/sDhGO+ytLZUTEpKYqxdu5bx22vIhnbJgPvnD48qLJBbtSqDwV+XGXr9sehP5y+4UmdPqkhO7puCa6dmUZXX5qHx9iI039VFx0MOuiqcMFDrj6etEXjWvQqvhwvw5atSfEGge/syHy+fpeLZUAT6u/zxpC8Aw10+qH9oj/Y6E3Q366CuTBOntunjyiFd1N5SxOENS3H91AI010yW9HROGx3qnYmjx5QuR8b7ThVLWzB/6ySnVVgon5Wdz/AN8jTMydJ7w89eJkmI5Y7GhPJGI4OtYWVl2LtEU9UpKjqasXHDBoZILJKXNY7IgPtdgPb+AhbJ5+TmMrKLUt3O3cn/4fRZV+r4IfXR8yemUJdOTKfunZ+NystzUH1lEVrLlqL7EQt9FQ54Uu+BocYg9LfE4dkAyXJPc/B6RISXz/l4OhBLHovEyOBKDPeEo73ZHrWPmWis5KD+vi1uHHWAMIYHQQIH6zNMUZhgjIKEZVRJohGuHlSiWutn/DLUOxf7Dy66GBEX8LFQ2oQvfc9jCgoKGanpadNSUw2qStdoQpCjO5qdavaOn24FFyfDJv8Af82UlBRiH0vkiY2UkymaDLjfU26Ty83JYwRGBxpefrTuzaFjXti1RefdqcNzcPnEdNw8PQsPL8zA3VOzUHFpHtrvq6PzoRl6q2zQW+uMtjpvtDX6o787GE8GU/D8SSqe9MZiuHclng0moa87AM0NlmistkRHvScGOmJxYZ83RPEWyI9jInkFCxmxHBSkmiEngY2EIA6VHcbCoTUaVGv1vHcDPXNx6MiiU+LVLtPz8kWMvLw8Rm5e3lgR32HP3g1q2Fi45F1hnt7oxgITKi5c75m3j5fR6tVriOUs/PA3VZOBJgPud1F0bisqKpLLzM6atOtkXu3pK+HYu1Nv9MT++bh4bAaunZhB3TgxE2XnpuPx5emovDYbNTcXo/GeIRorWGhs4KK1xRbdbe4Y7ArBUHc0BjsjMNidgL6uCJLd3NDVYo/WOgd0NPqgvSYWZ3c5IC/OFAkBLIhXmSInxRT5aabYsk4fOzfrYcdGHWwo1qYO7lDHg3OzqfrHsyWDfbPw+NGczt0HNJJKiiwctq+zPXJpry4OrFsgKS1Slmwo1JIQ6N4tW6YRGBoWxSgpLhpLN5DIYJMB97tRN4FASC9HwIiJjWeINq/aeP5uGvZ8ypKcOLwQ54/Ooi4dn0VdPz0DN8/MwL0LM/HwygxU3VyI2rIlqH+8FC0N+mhrYaKjwQk9jR7oJvayvcYDTRWO6Kp3QU+DOzprXNBaYYf2Ki/Ul3nhWKkVUkKZyE40w8o4FlJjedi+SQP077xyRhG3ryjg3pW5uHF2Lk4fWkAd/VQFZRdmUvXlsyXD/dPQ3zENtRVzUXlDCdeOaFLHtsyjSguVJZvWqiI6QvdWSEi0/Lq1a+ToFkwZbDLgfmfZTSBfIC5kJK5KsD5yOefHPQddJHt3qUmO7ZtDnTk0F+ePzcT1czNxg9TdizNRcWc6HtyYj0c3VNBcpUkgMkTzIxMClSt6G73QSixm/X1jNN43QXu5HZofWKPhniXaK0h2u8HBHrExEpYTCxnNRmIkD3lpxjiwcx4BbRJunJ+OWxcX4uZFBVw7PVcK+dXTn+D4oWnUheNTqAeXpqKufIakt3P6u+6WuaMVZXNGb5+ZgxNb51Hb1iykxELFd/Z2TLu1a9cxZMomA+732FAiR3cBrExPnbDzGP/xgVOhKN2qN7pv11zq2L75OHVoHs6R/Hb5HFG3azPw+NZU1DyYiqobC1FzVxGt5QZofWCK1vuG6KjiEOi4aH9E32ei5T6HwMYmtpOFpvtc3D3BxL5ifaRHmSHYl4fQADbEfA0c3D0L549/jJMHJuPEvlk4vn8uju+jazaOH5hFVG8GzhyfilNHJuLqqcnUA2JpG+smUt3tM6mG8tnUo6vTcPnIZMm+bTOQkqjcZLjM/AOS26RdBjLYZMD9vqxkYcGYpJQURlpBXMjxa+nU1t1syfatCqO7d86iDuydj7OniMpcmYW7V+fg4Y0ZKL9NgLs7kyiWCrGIWqT00fJYB50Vmuit1kYvga79vjnaCGQ0cJ2V5H6FJWpu6GOHQA/JgRykEQsZHcRDcowR9m2bjj1bp2HHhtnYvm4OyW2zSc3Dzg3zsW3dfGzfOBe7t8zCvp2zaJXDuWOTcOv0VFTenIaOlknoaJ9MMuQU3L82SXLu8EdUdrrqFnrGwPu/UXYRy4D7XUEnXUqOkZWTPaFkZ/Lt/af8qY2bVH/ZsmketXPHQpw+vQDXLxEbeYkAd2EO7pyfjftXZ6LyDgHugRJ6ag3QXb0MnY+N0V9hgsEaY/TWWKGn2gr1d7VRV2aIlkdmROGW4fKnmhAkmiAykNjIKCbyMrWxrkQR64pUUCzQRCFfC0XCpSgRqWO1cAnWiZaghL4v1JI+t5o8vnXdAhzeMw0XDk3BvTPTiG2dhN7O8ejtnYqmmsmjD26OQbFokYDkNtkMbhlwvz+Fo4c15WTnMuJXxbB2HU/+ccMWE8na1XMlm7eq4PSZxbh4cibOHpmBy6dnS+1k1T1i5R7OJnZRAV2PlhK4WBiot8aTJicM1bqgo5yDnjo7kuNcUENgq7ipjprbeii/rI71uXpIiuQgLJCHjDRdrClWRAEBKT/LCLkZJshOM0VOugGK+NpE7VTw6RZF7FivjKJ8XeST50XkvHVCDWwhkO7ZNBPnPv0EVdc+wbO2iRgZnIq+vimSwe5x2LF17hk+v0CmcDLgfn/LydHTWehO7sTc8NwdR4LAFy76Zd1GJeroUQ3q9LEFOHtCEffvLERD1Xy0Vi8g1nAReio1MVTHxlC9HZ40e+B5izfe9IXjWXsIWiq4pCzQUetArCYL98+r4N5ZNZSdVgJ/lSGSotlIS9OHkL8E/Bx9ZKebIpOAlrHKDKJ8LewoXYKzR3Vx+8JS3D2vhiM7FbF7kxKBTwX7Ny/ErvXzUVq0CLvXzMa5XZNQe3kynrVMw3fPZuCr5/OoV0+noKnh42+Skpw1BIIiqYL/2kEuu6BlwP0+RpZkZGWOKyxNvL16iw2VL1B9t2OHHs4cN8TjuwSceg20Vc0lEC1EF7ndVWOGvjoHcpET0Np88byVriCicEFE6Vag7i4Pj6/ro/K2PupvG+D6cTVcPqiCs7sVUJirC0GeBooKlJFL1Cp9JRMrk1lISWIhN9MQOzcuwvE96gQyY6zON4cg1QzZcTzkx2sjNWwp9q2bgYsEsoNrpuLM9k9wY98U1F6cjuG62fhhcC7evZxLff18LvXt28k4dnTGOXePFfJr166W5/NlLZUy4H4nk0sFfAHDL8Rv4eqdUZ9n8vWxfpOB5MI5Z+ryGQ9cPKCL66fn4NT++di22oAc9XH+qBnO7WPjRKkxTmxjoeyYMRpvmZPi4vFlLm6e1cfVE2q4dlIdN0ldOqCOfevVcWCDgjSnFYlVISDWMo3AlhTHQXQED3ExHIizjbFeqI4skvF8XTjwsDSDqRaBMysGT1ov4N6pAhwp8sClLRq4e2geLu+ehYenFqD7gTqeVqnhu66F+Hl4Kn5+Pkny48uZkm/ffizZtXNZSlpaIaOwUDTmt6UTZNDJgPvnFa1wfCEjOTvepmCLL3IKDCQHDgZQOzd7IDPRACG+dNM9G4G+5vB25WCFFwthAUyE+ZsicjkTyz1ZSAwxwfo8fZzdo4WbJzQJpEuxY7U6ju1SxZlPVXH90GIc3aiKrQWqWC1cCn62AXLTTZBGlC02iovl/lxEBVsgKWIZcpMc4GxlAQtNdUQ42yEjKgw6Kqo4cXovgJco25aJsiO6aLyihMdHFdDxyBT9dRp41kyAG16MP40swJ+eT6B+evHh6C9vZ0qGej/5Mj+fw87PF9HL4MnWnpQB90+2kyKhnEAgYqzKi07NFNhRfIHTaFaaBxwtjWFrYQZHWzbsLVlwtGLBycYcznZMOJHHnGxZ8HRhw8WRPGfDhpsjF9GhTJSK9XFk8xKIMpdhg1gbR7cR6LYr49zWudhNclcBgU1AlEyQtQw56WaIieDA24NLXtcYmTHe2FaUBX9zPbhpL8CsWXOgSmBjqygixM0GDWcTcGPHAtSdm4Wqk3NQflITHZXO6K03wUiXFr55sQQ/vFLGj6/m4PuX4/DVk0mjP38+By2N0ztTVrrO5/OlLbKylksZcP8NVfr1+H5tx/fbL4lE//iycgKBQI4eXZIpiizNFNpTkWF2o9YsE8rJhgkXOxZcCWA+xN75ebDh78WBpxObPEYgszOHqz0Lbg7kPFLOBDw7Ow78fbkoyDBFFslk9HjI3WsW4+A6ZZzcMJvkrhnYLFLGOqEmVvO1SZ5bhshQNpwdyM8SuA+uS8NW8SqkmKtBf8EMMBjjobJgHjamWOHBpxYoP6SM+rMKqDwxG1d2zkHNdUcMdoTi5YAXXg9w8fVTHXz7TAU/vFSifhyZRX0z8hH1dnjau5+/moZzZxT2ZmdnSdcska3KJQPuH1Kl3/rOhKIC+Tx+EYMvKCZ2qfDPGUX0Dyy4Q69XkpGZxViZG3QhOtaWqJmZxNWeCV93DiLDOIiLZCMx3gwrV5ohKZGF8DAugoN58FvBgwtRJgdnNuzI+Tb25rAlENqS217k8SA/nnTI1tosPewtVMDh9XNwZMN0HNk4HQc2zcau4nlYn6uNYGInPZzMscLDDuLUSGzKj8dKa33k2CxCRpgu7uwwwIN9Cri3fw7KDi4koM3G0XVzce+8HQa7wvH6SRg+fx6Bb1564JunZvju2WL89EoJP7+cR1EvxxN7OZZ682Sm5MtXk5GTa+KWkJgtW2FZBtw/CJuAzxCJixgifjpj27r4mWuKIifk5SUz6JnQQiH/140G/+vGAekKxeICRmRiBCM8zvuhs6053J1YlI8nF2FhTMQlsJCcwkR6uinSSKWmmiMxkYOwCAJcABeuBEpbJxYsyM/xrMzAtTQFz+J9WVubwdONi9RoDoFIE/vXzsLl3XNxcfcCnN07HSdLp2C/eC6CSEZ0sGDC3Y6NEG97ZES4IC2Eh61Zxji6WhM7+MrYKViELTkLsSZtHraLlqD8ugde9Mfg7fMYfP9mJb5/nYaf34Ti3SsOfnmhi9ERNVCv5kPycgr1p5EP8d3TjyQ/fj4Jjx9O6/Dwcpq2ft06ud9aLWUlA+6/HBVSWFDEyM5KGytONck9W6pbX3HV8eG+rTbJ2dmpH4rE9LJywvc7fP4Xkyx/Xa+EkZIVLx+d7FfrbGcGP0+uJISoWAQBJZzkq5AQLiIjuIiP5SImmotQcj+AwOZB7KULyXB2DjRspmBxloHFfl8cjjE4XBPY2DKRFMXG5nw6xymg7ioL1ZeW4uqRuTi3fxqubZuAjckLiapyoKNrDAM9Q5gYGcHOmgNney48nTkIcLdA1HIucpOZOLzNEU2Pw/FiIBlfv8zGd58JCXCF+PkLId69jgP12h4/PzMjwGmTUoRkZBp+ePER9e4lQ/Ltsw9Gv/78E+zYrlkYGJzMWL26QDbjWwbcf91fVlBQIJ+SupLh52ESkRjCgr87C/w0JmquGOPiYdP7OWkc7ZycvPcKKPy3Vrm/Bd174AoYsStjPgyN8Wp2siXA+XEoX3KB+/hx4UtsobcvD17eXPgTyIKC6COPwGYJdw8LODrzYE1yG9vCHEwpbEZgE9A4HBOwWMtgY81CRqIxzu5RQd0teww0JuNJoz3qbijh/qVFuH1uPu4cmYnD65SIEi4lNlQXUaEmSIkzIfmPifUiLj4ttcaVk85orQrCyOAqfPYkjyhbCX54s4mAtgk/fr4Zf3q7Gu/eJBKF88QPzyzwyytD/OmZOt49nwvJizH40wsG9e0Lxug3n42n6hsmjqxMddMTiUrI358vL+sQlwH3nzZwFBUVM1JTkyf7uxneTwyxofzcLH5impu9y0rQouquL8bDS4teFvFNgnJzM6RzwMRi8Vh6g4q/BR69PDltKWNSoieGx/v02FuZUN6+HMrNiw03D7ZUxeijsysLLm4cePvwEBHJRGaqPgrzlqI4fylyVhohMpQDB0cOTM2WwZxpJC0zM0M4O/LIOQa4c04DjQ998KxPjOe9aeitZ6P1kTZq76uhokwJdQ/noaNaGT2NLPQ3cTHYZIXhFmcMNbqR833x+lkU3jxLxzefFeHbz0rx4xc78N3nW/HD5wS4txvw3Us+vn0ejW+feOO7J7b4+YUJyXAa+OnlAlAj4/DTCAMEOOrzp4xfvv1qPA4dmX0oOTlJvri4WE4g4Msuchlw/6cGDqH0GzkiIlAjNsD0s4xIHhUVwJP4unNhY8WiSoWakvrbOqi9p0yUYf7WvGx7xbz8YkZh4WpiQwtp8OTfD3MS/DpLgB60XCgXFBm0OCLB40s7W1OiXBzK2Z1NAPu1CGw0cJ4EvqREc6wv1Mb+zcrYv0kNh0rVcbxUE5vzVJGdaAR/Hy5MTA1haKgDU1MjhBJFPLBDB/cuaaPijh162tLR156C3lYXtNdqoLlWES31ymhrUERHsyY6m/TRXqmHjkpD9NZxpPPm6u75oac1Dq+f5ODtk2K8GRbjC6JwX75Yhy+fr8ZXz3Lx7XACAS0A3w664dt+G/z8xAQ/PdUgKjcPPzydhG+GGNTrPnm8HWKMfjnywejw4Mff5uW7cjMyRX9uQJFd6DLg/kYDh1g+KyuLYcnTN82KYv+cFsWlgn0tJP7eHLi68ihfTyZObFtMVd4xkFSVqeL84emdG0u4yckp/rMSkiIZRUVryQVWxCgqLP5N4caIBAWM3KKUlLBYF4m1jQnl5MKW0IA5knJwJuXEhBM5xsfxIMo2QVqUHuLDTBC7gsBpqQUHUqVCP6xJ4yIryhi+HiwsVteAlbUZikWGOHtYA2WXl+LxbV00lJuhu4GDgU5fPB1IwesXYmIPs0gmC8dwtyv62/TQ37wMwx2WGGjloavOCI+uaeHAFnNiKx3R/MATfbWBeNYWg6ctCRhpi8arjkC8avPAm04HfN5lj296eHjbaYCve9TwXe9sfNY1EZ/3yONFxxhqpOsD6u3AuHd/+voj7N8/60J2du5Yeg+C376AZBe7DLi/zltisVxOTi7DyYHJESUZjwpTzCSByy0oJ0eiRM7msLLiUWnxerh2TJG6fUn/3d3LOji1fzYKRArdicnLSpOSHJ1i4x0Wrgj2ksuXLutdyMjOy1Tml4R2Lw9xJJCYSuwdWZS9IxN02dgzYWltKm0cCfFnIsSLieggL1gamsFTdylSfDzgymQjaoUP+u6fRJSnJRys9LFEUxcr40xx4YAWbpzSwL2rCsQ+KqG9nIOhlig86Rbi+dBWAt1WDHWtxou+QjxrD8ZwowWGG8wx0mFFYCK2stmMQKiFmxfUEOxnjJI8HVw9rI7yC9povmWOtjIWOh6Yo/uxGfqqzDFYY44ndYYYqFbHs9r5GK6djJ7q8XhSL4+RFjlSE/CmfTw10j9+9PXLT95lZjry6BkFMthkwP1thSsQy2VmZTO4HANWSZrBLyXZRlRsJE/i4cGhFzkFx4KNiCBT6nDpXJzeuwhHd+u827ReSyIqNEbxGnMUFJr9VFDIfJ2bw2oQ5tqeKhG77RGKnHpSMu3hE+AosbY2paR9anbm0n41uvXRwsIUzkStXEldPbYRRWmRCNNXgNr8GZinrARjDWXY6Wjg/LYcnFnrCh7LCM4Ohji3V4PApkDUbSGqbmmj4Z47qSC0PApEU0UEmqtT0FIVh87aRPTUR6P9kRu6Htmi47ER+qtM8KyBRWAxQk+tGZ53LkXpBl1weBZIjjdFaZE6Tu9ciKuHFuLemUWovKKCqmuLUXlVBY8vK6DmyhxUXp6GimsTUHV9HBrvjCevPQ59jydSw9XjqSetkyRfvh6LSxeUL6dn5DJ+W9tSBp4MuH+ncCL53Nx8hpOjjUHRSo3vtwiWIi2BJfHzZoPNJTbQ0Qxr87WwU6xBbczRpvJXmlCR4RzJimDOaGgERxKbaIn0DB4E+VYozLOAMNMcsTFmCIm0ojy9bWBD1IyARlnbmhFlM5PaQnsCHcdUHwfXpePz9mvI9nOAn8YMyH/8CRiMcdBcMB/bYji4XGyI1UmGcHVkYd8GAtt5Jdy5shQPL1qj+k4kau7Fo+FRCJrL/VH7YDnqbtuj/hYHDTd5aL5jj4brPDTdMiaPaxBIlqD6mg6qCUg1Vxej5poKHl1ZBD8/c1hYWSE4iIf0FBOU5OugtFgdezaqYf9WJRwW7KSGAAAgAElEQVTcroBju+bg+O4ZOPnpVJw5OBkXj0/C7QufoPbGeNTdmoCOh5PwtHEC9dXQFOrNkwm/RERx2UVF6+hl0mU7n8qA+1utlEWMVavSVLLilJ8e2zKX2iDUGl2V5EC5e3Cp7CQdrMs1pjLjuFRSmBUVHWgt8fW0oOgOaFcXDuXswhp1c2dLfLw5kkB/jiR4BU/i68ejvHx5lLMbl7KxMadL2nHNtTCBLQGOZWaIUH9XnNucja6bu7EpIw6JBgvhZKCEcHctnC3Swr2t87AvexHiQpnYXLIUB3Yvwunjy3D3ojfuXwrGwxtBeHwrANX3VhBrGYiaO05ElUxRdckI1ReNUX/JAPVXDYgyLUXVFQIqUcYbR+bhzB5F7F2rSgBWwIVPpxFLuZTkSS5sHXlwdbeGt58NAgKtERxqgYhILqKjOUhKMkP6KiPkZuuCz9fA1k2zcebwJJSdn4zK6xNQf/sjqr/yI5L9Zkkkb6bg9lX1UwmJqX/e+VSmcjLg/qxw9NojJSWFjJDw+PHeLmrXy46qkIuT/dPBXWxJUY4plZfEIRe9NZb7WcLbnQMvVzbcXVikmD+7ujBJzmPBiSiQgwML1tbmsLQ0kVhYmlBOdCOJM4uiR4fQxaI7rjkm4NH9aUwjJIb5oDg5BLtEMVibEQhBiCH2ZuvhzDolnFw9AxtTlJGbZIKdpWrYtkkJRcTy7d1ihrP7mLhx2gK3z9nh3kU7VNywR9UNOylsFWcNSBmi9gxRsjMaqD23GLVnFfHw1FxcPzILGwXKsLbQBJe8l6DlFhBn6eDK0aU4fVAHq8X6WJWyDFGRplgRzJaOevEJsIAn+bvdiFK7+9qTx60RFcdDLoH00O4puH52Ku5dnoy6Ox+j8+Fk6k2rgmT0hSr1rGPS24xMJ4OCgrXSfrm/Z4SOrP51FI5RUlw8JiIqhqGsrBRYkmWOvRuWIZNc7FHEZtEthPb2pj9yuIZ1XK7pBnPWMn8maxnLcJmeoRlzGdvU3DCYwLSPbWH0jGdNoLIwg76hnsSW2EgXNxZsbWmFMwOXZwIu1xiW5GhL7rvYMeHpxIGvGxNRK8yRk8wCP8UYWTHGSA83R/5KU+zZroJN69UgEqsjPZ2FwnwT7C9Vx6m9Orh00Ag3T5iSvGWMR6f18egUqSO6eHRUC2X7VfH4kBIe7p+POwdm4/r+GchPVcPSpbpQX2IIprkh4sINsH+LPlrLTNBbboDham2Sx5aikVjP+0QNL5OfOb93Js7tJnZy22xsLlRGVDQTgWHWyMnRwaE9M3D93FQ8ujodNbemouPBJyQnzqA+a180OvrZbGr7VuWNoWEpjDWri8bIRp/IgPuLEkq3ZCouLmaEhIQy9HS109hMwz4W07Dfytr8hqOjTS7Pgq1nYWUpTy+bQF88gl+Vka588rP0snHW1tYzjU2N0gyNdZ4YmxiSvGYi8fTmUbT6OdkzYW1FMhyxlNaWptJZAC5O5nAnKkhnRX8vNlZ4c0lZIczPiuRAI+zbrYCSoqUQibSRlWGEkGArJMVzUMI3xs41S3CsVAXnd6nj+r7FuL1/Ca7t1cSNTzVxdacKrmxVwKXSheT2bJzdPhu5yfpgmXPh4UzATjTC0Y3aaLighs57yzBYaYJXdfp4Va+Hz+p08LJKC0/L1dBRNg8ddxei+64COm/PweD9T1B3ZTKK8rSRn62DC0dm4M6F6ai4PhW1t6ag//EMPKmZSY00KryTjCxAe/Xc9sREv4X5/IL/sBWWrGTTcxj06Ig1a9YyQkNDGTa2NlNs7W1nhoaHM9atW8egR6KUFJf8p9Z09erV0jU+dPX1NJRUFBvsHJnw9eOO+niwKVcnFuVAoHNwIOBZkjzHNoEVUUJrKxZ4PDaYTDYseCxEBJlg8xpVHDk0DxsIVLk5Bigp1EM4yVOe7mwE+PMQFcqDMN0UOwo1cHitCo6uV8GpLao4t20xzpYq4fQmkvU2LsDJDfOwu0AJqTFGREGZKErXxuFNC3GLKF/dRUO03+Wi+7ElhmuY+KzBCK/rDPG62ggvqvTRW6FLFGsJWsrUiQIuRuvNBegl8L2um4bBRx/h2I75OL53Hsqv0sBNR9OdWRgsn4GR+vl43bhI8k2XguTnl/Mlwlx1v4SkVfT0HdkYSxlw/3HGAH1REKWTp1cWpvc5Ky4ukuML+PL0cK3/04YVf7lxIVG6D2jFW2ZsbO3kyv46KNBSstyHK/Ekuc/ZmQ0fHwuEBFrBl6iaK1E4NxdTLPc1QkqsNjYWKePsoQU4fWwhdmxfhPxcXWRmMJG2kkvyFk+aFb08iQX14SI82BJ5KSxsFWhhl3gx9pWoklqM7WJtbBPoojjTEJlxxnBztkbiimW4++ksXNk3GXeOLUDlBUO03Oair9IBzxqs8bqZhy/auPi6lYs3TWy8aGSivVwbzfc10Xh3Mequzkft+emovzgTLbdm4WntFHQ9mIQbJ2aj8tpUtN6fhaZ709FTPgvP6hbh87YFVGfV9F++GJiGu5fU9mZlp40RiWT9cjLg/hPo6OZsuv7eXWF+e55e/nvd2rXyfgHLx3otd6iMjLLHCi/OqLcblwoJ5CE/0wzb1mlh39bFOLBVVdqvd/3EQpSdm4eyCwo4d0yZWMlFWF2shsgoDoKDLBFKcqSPFxduBFpX2oL6chAYwEPoCnpuHBdZCUyS/cyQmchGQqQFIsjvCfHjwcnRCo4OPOzJU8C9Q1Nx49AcPDqng/prJLNVWOF1mwc+73DH173O+LLTgkBHlK6dhyfNXOkitE0PdUg2W4r7Z+bh6q4ZOLuNqNnZT9DzeAqGGyai8c4MVN+cjYayGUQp56OrfDaGaidjuH4yOmsmjr7tn0q1l8/pKRCnzBEIftt3Tnbhy4D732zxJEpYVFgkHxwRygiJ8zkcn+BCBXixJcv9LCTCbBMc26WIu2cVUH1dGY1lykQZlFF/Rx0Pry7B1TPqOLRXGVs2KiAnWx9eXpZwdSGAEUXzJsrm6cGBhztHur1vgJ8FApfTZYmQFZYICiC3id30I2B6unOJdbWAiwvJe5mLcW77NFzcPRNlx5VRd4OFzvs8PK23x5ueAHw1GICv+13wqssSz4jCvWjh4gk5thJr2fRQj7xXFTw8OgWH1yxAaCAb+9YuILlvPIYbJ6K1fDLq784gSjgTzQ+mE8Wcg6FqAmPNBOpp41RqpGXa6OuuydT2LcY88kUk/9tGj7KLXwbc/14OlM6rKxiTnJLMiE8LKU1KdCEwcKm4GEtqfYEOzh9UwIOLKqi5rYHGe0vQ9EALFTeW4vrZxTh5RAnbSxVIZluCuBgebG2Y0tZMGjYPkt/sbM3BZhvB3FwfZqS4XCPY0wOjifK5Ebvq6MiGvSOXgMZFbKgBdhYsxNGNM3BkwwzpJNXKCwYkl1mht8oOT1vc8arbD28H/fGq0wGveu3wosMCA81s9DYYoL3GBBV3tFFxfhb2iBQR5WMAYYo+Dm5SROP1CRion4ju+ikEtDnoq5qLgdr56Kmdis5qom4VH2Kobjr6qz8Z/a5/HPkS0UjNzikinw//PXRCkQw8GXD/q90M8kUFxYzUrJji2BgHKirSWpKRyqFW04v/7FLA1aOK0oVYH15WlSrbrYtLcOqIMnZtU8CGtcrIyTRBaJildICzlaWZVOXogc46OkuhsEgJioqKWERKRVUVOtpaYDOXwdGeAz9vLpKjjLCFr4hTm6bh3NapOLF5Jo5umosTOxbgwXlddFbaY7jVCy97fDHS54uX/X540e1CHiOq187GUKsZsYP6BKQlqLoyB+JVSliirodVfkZoPL4YA4+IJb0xG12VE9HfNgGtVTOJEk5Bb90M9NRMQk/1BPRUfUCO46iO8gmSZ81jUHV/YsuGTX5q+XnryOcjlv91wSG5X2dq/If9wGUlA+4fspX0Vr30BNS4lPCcyGhHJKXYULkZTKpIoIft61VweIcqrhF7d/WEMi6ROn5AEXt2KElhKxRpITWFZLQgC3pKD3g8Y9hYm8HRiUXUbRn09XWgp68NIyM9MAloVlbm8HCxRHqcGT4tJhlw2yzc2EMs5K7pOL97FjnOwdmdC3CGZMVrR5WIonIw3O2PF31+eNXvi1f0QkH9bhhq4aG/xRxddfroqFRB9eUZJBdqYPa8JdDRUMf+VGM8PsxF72Md9Fepoe3RVLQ3jkVb/STUkdsNFZPQWTsedQ/Ho+n+RAxWj0d3zYdUc/mHVGcDA+WPJnev32zL4wvjGWJRCaOggHxWIvGvnxs5isX0bPq/GpUiA1AG3N+pcEL5AgJcwsqo2Mg4Z0lKihVyMsyoEpEO1hdrYOvaJTi0QxlH9ipi//ZF2LFJCetLVFAk1kRmhhmSErgIDKSHWbFha2dGQDOGpaUp7O3M4WD3XvXooWLubjzEhFtAkL4MJ0tn4cGRKag4ORf3j83FzUOzcPvoPNw8QhT1IIHtyELcPqWImltaeNblhpeDywl0Hvhs0IMA54qnxE4ONuqgt1oJVw7ORH6EIfytHLFU3xBeVnq4KrRD43ln9JQrkXNU0VUzDy01E9DSNB7NNfTmjRNQXz6BgEceI+rXWTEOHeWkKidQrdVj37U0TEJb87iXhw4ZCH2cfDLNjIysMhJCJguFovGC/FxGXl4useNi6S6xBQXiv+oo/0fB+0tg6WF7su2Q//DrUgrkCgsKGWHRge5h0U4/JydZUDkZxpQgTx9FoqUoKdDEhhI1bNuohC1E8dYUqUrX/s9MN0F8Ag+RURZS4OiZ4Q5E2ewdmFKVo/vwnInNpDNbaKAFMpOY2CjUxGFiGe8cnYnqC0qouaCCylNKeHxaCQ9OK5IitvWsBh6eX4zHJDtWXFHDQAMHb5/44PUTL3z+3JtA54onrdZoL9PF3kIlJIfaQRAZhkBXe5iymUjzMUPt7jj03Y8guWwByWqK6KpdhNbaT9DZ+iFaaz5BXSUBqmYiUcgp6Kwix8qP0fBgAtX0eDwayuWpxrqpkq7WqejpnIT9e7UR7u8lyUkIfrE5J6QyI8xjZ3yQp1OhMGdhUmKidLWzwuISut9OXvTfhO39LJAC+eLiEmk3jwy6P7TC8eWKi4oZHj7uxoFh9t/HxFgiLdWMystaBn6OAYFLDwUCLQKfJsQEmLxcbaSmmiKGXlAolofwCB78A7nwJJnMnV6CwZMrhcyZ5Dh69ndyDA+FmcbYtVoVBzcr4Ph2Jdw8poLGa+povrwEtRfUUUtPTj23FOXnl6Lpkgbqr2mj9qYGau+oo7uRTRSOWMrBYLzsDETHfXdc3MFD8gpdJAT5ovPBMbxqOo7lvi7EuhpjX4YHei4X4XnDSgw1zsNQ8xz0NSigjYarZQy6m8ehruoTdNRNI7aS2MtHRNlqPkRb9Thy+wOq7oEcmuo+pro7p1Mt9dOoVyOTqRu3NeDtZYfEFd5IinBFiI8TsqPdO/0deaVJUYEmeekpjPeTWIVyf4/F/Mvn6P7QouJiRtqqVEZMRKhcZGQUY/WaNYx/9WUf/rB/GJ8v7TxnOLs5zV8ebP9ZZKQFUpI4ksxVZkhPNQd9zM4wQWaaMdJWmSAhgU1UjYdYAlxkNFc6St9/Bb3gEAcrlvOkfW4BPjwEr+AhjdjN1bnG2FaigX0bVXBgixo+LdXATXq15OuaaL2qgabrWmi5qo3q8+qov6yJ+isEups6aH6gi+oyPXQ0OONZbyJaywJxc6sFCiKNsSrYgVz0rji+pxh414pvOy4gITYY1mxzXBHYYejWGow0r0R/43y87JqBgdbZ6GqYho4mBlqbPyZ5juS2lokExunoricKV/MRuusmornyA1TeHUss50cY7JqOwZ4ZVHfrHLx8Pp16ULGIEhaskCTFRIwG+1mOhvrZIGa5C0K97T8LcrE4EBWyXLegqFi6CxH9uf56lPtbEP5F9pMrWb2asXLlyrHervbCZH+7MieeaVpYSDBtV/+ld239AwPHZ9AK5+bl8pGnn01bELGHcdFcKjGOh/hYDhLj2NJjLKloAhgNW8yv9+m1KYOC36/otWI5F2HBXGIfeQgL4iGJKFt+Ggsl+YbYUKCD7euW4NNN6gS4pbh0SB1t17XReU0X7aTarmih4ZoWmq4R0MqM0fJQC/UP9dFY4U2UaRXJeCuwM42DOE9jZMUHof7mp6i4VIo9m/OAr6rwTe8luLo6IprkyJb9sfi6/hBRt3B0107Hm95xeNE1hSjbZHQ0yqG+nuS42knoqB2Hvsap5LypaCMZTtqAUjkOtQ/HoOrRB+htm4OhnjkY7p1NjvPw+WtyfKZCXbgSiZLCfCoq3GM0OtTpFw9nK8SHeKEoZcXLlWFey8NDg+Vo2PLy8qSw0ONWxSIRnfPkfltDhnzuY2ig0jPSGc521qrhy73PJgZ5QpgUgk3Jbj8mhvlxC4tXk//Nv+7MhT9yt4BU4RxdnBl2ztyLAQEWVEgQVxIZzqMiwrmIiuQhKur9PLPoGI50RElsLFG5SC5Cwnjw9GTDx5uDUAJeJLkfQa9hGcqT7oaTHMeFMMsMhfxl2FCkjR3rNLFzkwZO7FlM4DLA0EMmeglgbbeN0HRXD3W3tVFfpor2cnW0PvLAnfMJ2JDlgjh3MzhbmoGfHo3uihP4U/8NfNlyFisTwnD//FbsXp+O2bPnYUuKI57c3ojvO04QdXNHb904fNYjh9e9E9DbPAHtdWPR1DgWNRUTUXXvEww2j8dQw0RiJT9GS/kkonQExko5VN4fi876mXjSPQcjg7PwrJ9Y0575eDY0D/1Ds3D8gg21ZctarBHHU/6enFG2mfG7CF9H+DkShfd0OO9iwxXp6emutbezscjOypyYnZvHoPMZAWdscUnJGHofvvT09LGebs4R0YE+n6VErkB6zIpRfqzfz9lhrtTK6OVCvlBMYC0YI5Ap3B8SOrnCwiKGo6tNnrcvjwoI4IyGEmgIdFKwaNiiSMXG0CrHlt4PIyB6+bDh5MTC8gB66XOu9PywEJ4UvvBwS4SH0faUS7IgE8UCA5TSwG1Ux/5tirh6jEB3dxlaH1ii5TEPrQ910F1uhBYC4J0TDtjM90YQyYEBrrb4dHMOclLDkLMyHN/33QT17B6OlmZBV1cb5qYmmDNvEcy01fBwVxhGyvfi25696G8wJdCNw5u+D/G8awx6msegtWYCGms/QhOtctUT0dswCb21H6O5nFhMAlhf3SSicmNRVz5WajGH2+e9h25oDl4NzcfzQWJRhxUw/GQuTlwwwdo1ydTqgmQ4OTApDbXFEn8XGwR72mFNij/iVrjA28WWsuWY3QwN9PdOX5UiHbeaujKZ4e/vqxvq735ItCoKeYkhSI/2k6SG+0gyw71GE8MDJMl+1iOujnbGee/3J5eXKdwfry9OOnOAzWNaeJL85e/PoYKDuFRMJJeibWSUFDguEhNZSE5mIYIo3opALhwcmfDy4iCA5DY/OsORLEdbzNAQC4QR2GhoIyIskLqSI50bt1asje0blfHpNiUc3auJm+fsUHknBFU3AvDgnDdO7Q7Amjx/hHs7wM2GbtkMRcX1PQB6MdxyEhpL1Al4ESAKIN1RR2OxOswM9MhtDWQHc9B1KZfkuUv4sruQwKaGnsYJeN4hh6ft8uhskidW8kPU1o5Fe7Mc2gl0bTXjCGgTiPWciMbHk4naTUNb9UeoeTQWHVUfY6hpIYY6FxDY5mJkYB6e95Eix1dPlPFiZB6OnlfGjRt7cGivmLKyNKP8na0RE+BIpQXZSzal+Uh25wdJ8mK94WnHBsfU6Exk8HIvAqE4JsTvpYB8eWTHrZBkRPtRmdH+EMb7IdjXlbKz5v68IcUXPKMl68KjYui5j4x/xZkLf+g/7rdvUENjgxlOruwhP38CTiBPEkPAiqOzWwwXMXEcKXBxJNOFEyWjBya7uLCkqzH7+XLhQ8rXnwO/5e/75WjwaMsZFk5DR+xlEgc5maYoFhphrYgLcb4zhHw/5Gf7Ij3RE9GBLvAhamZryYWrsx1K16TjSdMFfNVxHpLvmwh0Q7C1YmPK5BlQU1aFoZY2jPV0oKelD3MDLVwsccGzsjX4quscBhv80Vo1B111H2G4jYGB1rFoqR+HpqqP0FAzFq0NY9BUOwEtVR8SVfsI/fUfofERUTkCXG89nePkCYA0cHMJrAp42a9ArOV8DBG1e943R2oxnw2q4s2rBbh83p5Y1AuIjPCCJXMZUTh7KsLTiloVaIXUQBtKnOD2zsXaTMI0NUawl92fwnydEbXcFYHeTr8kh3lSKyN9wI/3o4pSAqgwXxdYWnDfpQS7S4IdmddTUlIm0n19QoFA/l+tg/0PDxwd9FNXrRpjYWN6MGC5Ba1wv0QRhYslgNEbeiQkkSLAxcZziH3kwNGBCT8fDoJW8KTKRkPq68eVAkfXCgJdMLGXITR4ITSAtOJZITzYFiHL7bHCxxErvOzh5WgJV3tLeLo6Ijk+FKuSQshreeLMwWL88OQe3o3cxzfEQpbdPAJTY0Noa2jCRN8ARnq6BDhdLFiogtQAPbQdDsLLqt141b4T9feUSUYbj5aKMehvZqCtgdhGomItFR+ivvIDtDWNRUM1sZVVdIYj+a5mEporPkY7UbyO+g+JrfwAdeTnu6vnYqhZCS96lfFyYBFeDhKL2TMLQ10k1xG1++ypGp73T0JFZTy2bsgnEFljVag7hLEe2LLKHcfE/tTJgkDsyvGjnC2NR+ntv7ycrSSBHnaS5CAnBHnZUSlhHpQwwRfiRD9kRHlTjnZWoyvc7cAPcxxKT0mYJaCXqxfTu7cWjhGJhHT9S8D3R89wdMcrIzMzi6G/TDvUL8CSqBT3l7AwLhVJZ7d4NhKTzRFPgEtKZpPn6MHHLOmqyvQE05DA97DRrZX0fgQEWKwI4kmho/ch8PbmgF7Gz9PdAh5OXHg7WxA1s4G7kzV5DV/ExYcjKzMRawvScPHwGmSvioAwNxHH969FZloMWExjzJg+A4qLFkFTYwm0NTWxjKgbbSUtTFRxb6sjnpetw0/DdzBQE4/y21NQfkceNfcYaCFgtTVMITARyB6ORe1jomwNNHCTyGMTpQrXWU13DUxGNwGuueoDVD8YJwWuo5wA1qKKVz2Licqp4dWACkb6ZhGVm4vXw4vx+XMjfP2Cg8oKV+zeI4LpMkN42XOREeIMD1s2XK2MkRFsT6WusIMtx4TS0dKQBLlbU2HedojwsaOKk32QHeOF7GgvYim9sSrCg+Q+a4mzDZcqiPX6Pn9lgI+Yn7EgNyNpWnp6OkMoLmbwhTR8RWNEwn/bD/CPCN6/gqWUy+fnM9w9XXVc3FlfBQXRKseThIVzqagYDlE5JuIJdElJtKrRjSVMafN/OFEvWuk83NjSjm836dLo5gRIc9javl+QyNXZijxvC2sLNpydbInyBRB7Go3Q8EBiNSMhyl9JrGYqDuwqwpE9RfB0sYapHlExHV1Mmz5LugvqYjU1qKmoQElRidxWhbqaBharKuPMOk8MXsrAV+1n8VX3QTy8ooeyq5Pw4BqD5EM5tFSOI9BNQNNjYhXvEUtZSW7XTEBr3UQMNH6Erqpx6K0dhwFyv7/+E2JDSc4jdrLmLrGU9XMw3KSCV90aGOnVxLMuDbweUMYIsZQvh/Tw7UtrfD7igr5+C5y7kAGmuQmUlJSIrXRANFE75jJtaGsthZ6eHpKDHLDcmYP9/EBsXOVDlJ2LnChX5MV4IDvKAxmRbkgKcUWwjwMseSxJoIslbpza+EV33cGmu2eLy1YXrvLZWLTSZq0oQXVlcixDVCCd0f8rdL8C9wcC7w/vmaWLE5WUMJKSkyZxLPTuhIVbg9jKd6Ekh0WRDCdVuRQmUojCBQVxpAOUyfPEIhJ18+ISmEyxzFAX+qRMzYxhZm4KNpsJDocFXx8PpKTEEeXzhaeXG9JWxWPTRiF8fNxgbcmBID8F0ZErYGdrAWVlZcyftwAaqmpQV1XFEvXFWKqpAVXV32BTgYKCEmbNmYftObZ4cikTn9cfwnd9l1F9xQnXzs3DnUsf4/FVBqrvyqHh0Yeouk8gezQGdfdJEZjaSE7rJDZzsOEj9NZNwFDdZFIT8bR5Mvqap6Cp/GPUlZHna4h1bFbBl4O6JMtpEXuqhc+Hl+FFH7GYg0vw9YgDvhhxxesRG1RUxaMkPwHWHBNE+jpCQEAqTfeSwmVmpAtvWxPYmuvCx56FwgRPJK5whIMlE242LKQSRRQmeGFlmBsi/J0plrkxtDTUKfGqELz7pgb4qRffvmn96VnXpW+b7u9oXyuKiSvKjdTOzkxjCIQF0gYv0W+Dq/+sev9vTyv6wyscPTeuuLhIPjIqimFsplUYQvJWSDD3XQRROLpVkm40kWa4WC5CQulGEzaWL+cgOpyH5d4W5EIzJdlKF7o6OuBZ8uDm7kKymDdRsWC4e7ggIT4SaanxxFq6wMvTBfb2FjAm59JF20Q1ApSiwiIsUlAgyqVKAHtfixQXkZy2EAqLFKC+mL6vhplz52JzhgPePFiPt7UH8ePADbTcTsDFE4q4fXUhbl+YhsdXGKgpY5AsNwYVd8ag6g65f4/YzHJ6pMl4DLd+hB4CW0c1rWQT8LR+Ep42zcRg4zQ0lk9EbdkEdD6eh9cdi/FFvz5GOgww3GaIL55w8OYJC6+GtPDFC1N8NcLB0yFz1NdHQZyfhIUL50vft6G+Hpyt2Ij3t4evPQfjJ88kqrwYi5SU4e3AI8A5w4JFw2mPIHcr5ES6Iz3cDQlBbsRW2lBLlyyBYFWw5JdvGke/fPH43fdvGwB8QQCvxNvhm5Luqj0vTu7JKtoojl7Gz4gcm5//21Cwgj9EN8K/RCtlfn7+GHphoujYcDM3N+MvIum+tFDuaFQk3TXABt2AkhDPQVQUDx6eHAT40xnOAstJbnMhiudsywLHzAhGBnrSkR9xBLLklfGwd7CBq5sjMrOSYGNjCR31JdJWRglFh7UAACAASURBVO4yI7CNjKBHMpnOUk0ClJpUyVRUlKVKt5CANmv2HALbQimE8xUWE1uphD15rvimlu5vu4mfh++j50EmTu5biEtn5+DWhZm4dXYK7l8ai8fXGXh8i4EHN+Tx8IYcUTx5YhcnortpHIaa5KVdAoONk/G05UMMEcV71jIJAyTv1T+YgOo7E6QZbrhRhZyjSc4xwJs+Fr4c5uHzZ3YENGeicGx8/5KHZ09tUVkejX3EDrvZMxHgTLKsIxMRXtbwcSJ51dEKUb42yImwx9oUd2xe5QlnazZ4LFM48Ezg7mCJXGIvC4nKpYW5I9DLHuZG+uRvElHUTy14+7yCej18T/LLt32SH77skHz/th6jP3bhq6dX0dVw7JsLh3IObRKFuqUmhn1QKBYwRL+O63w/gVYoA+7/Nkjv+9l+m0j5fgrIv2/poh8Ti8Xyubl5DHtbax8PD/YXQXSGC+VJ4ukO7ygOYugsF8smR560VZLuCqA7usl5BEA2vNw58HGxoPucYKSvQ3KeLTg8NharqMKYqB+90tcyXV1YmZnBzNAQTAMDMMmRbnHUIBDSE1XpCat0DlIjmW0RUbWlRP2WqGtBSVUTbtY6uLbOBz/V7cO3HVfwYw+54O6twqkDijh1fA4un5uKG2en4fb5T3DnwjiUXZbD3UvjcPfKh1LgKu4S5Sqfhu56ei2Tj/G0bgZeNM0iykYUrmUCXraOx0D9VFTdHUdUcSJaK+aSfKdMFFALQ42GeNXFwdshK7x5+v+x955hVWXZ1jB2qKquXGUOYI6AguScc84555xFclYURERRgqgEURDBhFkx51zmnHMuKypnvHOuQ1X3+/367nNvd1e/z/2xnn3YZx/Es/dYY4w555rLBj8/C8Qvz0Pw01N/PLnrgmvXY7BkUQ40SFKHedrA296Y2M0M4cRgEydMQH64NTbNC0Z7iS+6ZvshxscSQQQsf2I3Y101OFnokgy1x+w4UgVuNjDV0UDjokx8/2wPseluvHtxVPLk6ga8eXpE8uTmdskPry9KfnhxRPL++1MCeA8udbzvas5rXljoO70oJ0W6GWd+Tj/pngn/efLyPxJofSuU+3E9H9fuFRaJCJco5fqtuJaHACAd+RoLC9OPVJQUdnm4mXM+7X1wkIGEtxnmcq7IKCno+OdgLuty1Rc7ovr7cuLbAI6OemKFgLONAT1EGlAjQCnIK0BhijzJKXnIyY6DlvJ0mGoT4Og9XZrFtaYrQ11JCVMmTcQYAtokYrmJBDa5ERyRVMCECYqYrjge5XGGuN8Rhx+PLMO7y5vx+uxqnNwYhNb6IWgjsK1rH4R1bZ+hu+1zbGn/G7rb/0zS8q/YSuDbsf4j7O4m/9bTH2cP9cfF4wNx8+g3uHt8MO6cHErejRiPAHfv9Ee4cuRv2L/1b8RwX+LcoeEEuHG4d3Iq7p/VwrNrpnh+2wqPbjsQ2CLw64t4vH+ZRv4qBudOZWL+nASY6qoiNcgejgQgRflJUJqqCGXFyfiy/yDoqCkRCE2RE2aD0gRXlCW6oi7LB3MTnKGvoUQsaIGyJDfE+tnBhvzdsrJkvHt+EK8eH6d/4zDuXduGty/O4c2TEzROSn5+cwrP7+yQfP/08IcfX57oxa9XceXMunuNVQnFGWmxX+fmF3GLiH8A3f8C7p8aBPltt1R/P28ZR3sbywAv1xA3J1srM2ODKTPSUhlkojksLy3hYWxkMN3BynCvr5vNjzZWxh/c3PUlgcRgEeHEbOzhogxEeVcMveaSL8++nJufr4GoNnF104ezix48eJdUT2NkeGmgImg6qqM1UeijCHs9eUyZOBlTFVQIhEqYJj8VygpKmDplKrHAZAyXHUOsNoHem4qCzAh01Caj2F8Nx+tD8G5XGd6dXY/XFzbg9r5SbFluitqqb9Ha1B9r275GR+snWNv6ETas/gSb2r7BulV/wfrWz7C5/Sts7foUPVu+xJl9X+G7g1/i8pFBuHpkoOjYde/UEFw91R83zn6KW6f/iuO7P8Ku7k9IjtJ1B0cIwN09RXLyoh6eXzPH01s2ePnARwq2Fxn45UUW7t5MRceaJAR4OyHQxQJRHiaoTHVDc74vYojllJUU4WCmQ4BTII+rgInkz9ysdLEwzQ31WV4CZCrTFGCmp0KS0wU5EU40YWliYWEsfn59HLcubcXNC9345Ycb+PX78+j9+TZ+fXeV2O+I5M2T/YLl3jzeJ3nz6OivP704hSdX24nZ522tLolQL8xJkxHA+33P9/8MtvuPY7iS4pI/MbNFRYaq2lkabPBysvg1wMteEuTt+N7Hxfatl6vDGgsTQ1t3F+eB3CjH2tJ8sJKi/FY7KxNoqSrBzNpE4uVrBVd3PQlHKhlo0QS0aPJwMdF6CA7lpTnEcu76oszL21u69zezniPJy+gQIyxOmoLObAX0FGrj6GxdHChQw8rkacj0koen6QQYqYyGtvJYqE8bg+kKY5AQaIqVc3ywqcob51eF40ZrDH7YXoYfT7Th3fnNeHKoBkda3LBs3gTMn9cfjcuGYVXLQKxs/BhrV3+GLgLd5lUEulWfo6PlE2xo+4Ik5hfk674gL/cFvtv3Jc4f+ArXjwzBrSODCXAsJ4cQu32O++c+w7VjfxGBlZ0b/oLD277GpX2ydM1kApwKHnyng2dXzfDgujVePfTFh+dJ6H1Bku9JHnZsTMCWrfNhZWUKPTVlTOfWEgqTYGOojkAnI1F4rUlsnh9pi1gfc2irq8LHTh+LZ3qgNM4ZZvoaCHYxQbirMfk+M2I+Dzia6WFmpAd+fH4Ar5+dwL3rPfjl7TmQjMSz+0fw06tz+P7pIbz//jQB76Dk7vl2vLi1RfL60cEPr+7vlrx73IOHF9f82FKdlJiZnvQxg46ei78vkv2De7v/KCnJPSrDIyJlYiJDHEK9rV57O5nDw9FS4utiDX93O4TSTBzi5Ygof1fE+Ltc83W2zlaQn7JPT0sdFsZ6HywtjXt9g9zhH+Em8fDSR2CQgVgxwPWUUdF9qwWI9Rh03pwW4MoS8nFe3oYikMIBFUcXkp0BeiiIVcPSdCVsyNHCrlnmOFJmgzMLHXFxqR8uNoTgdF0wTjRE4nJnDu5uzMHjDZl4smUuXvY04Mez3fj10jY82bcEJztT0TLfAPm5I1AyZwRqa4ehgeTk8oZBaF3+N6xa3g/tjZ9g3co/o6PpI3Q0f4KulX8lafkF9nZ/hlO7v8RFYriLB77AlUPfiJD//ZMjSUbK4fbpAbhBkvLs3o9FoIV936HNA3Bh7yhcPTSJWFCFAKmPp1cs8Iz82ttHQXj/NJ5kZRqBbwYO7kkmkJYjLtoDw4cPhyKBbezYsZimOIUkpTx01JWgOGU8dOloZ6wpopOBziaoSXeDm7UBEv2siek8UZXmjqoZbpif7I5ob1tEuZnh1nedQO91/PzmHN6/PYkfXp7B9y8ukac7had3d+Hts2N49mA/Scyjkpd3t9EEsAev7++SvH24p/enlyfw/cMerKxJWVyQnfyVCKhIGyP94RPm/1EBEvZoU6dNVbUx1XvpbG1MALP94OdqAy8na4m/iw087Mzh42whifK3702P84OnkxXUVZRga64nMdDTlDi728PC2gghcd4IDLOHj7euqJ8MCePlOQYIEasF9GgYIDBYuuLb208qMT099H+vLHEg0Dm5GCLIR4dkkho9VHroLrPFIZKIVzoL8GBTOZ5sm49n+2rx4tBS/HBmDX6+vBU/Xe7Gm3OrcHtvOfY1h6F2FsnTNAWkZIxDQelozKuURdXCwViyZBAa6vqjpeFzGp8Q6P4sgLd6+adYs+Jv6Fz5idgx5+DWL3FyZ39c2jsQlw98jSuHh+LakWF4cGokbp0ahZunB5J0/BondnyKLR0y2Nn1N7p+KL7rGYPz+whwpzXw5IIxnl23ogfYA+8eBeCXJ7H48CqdfFU0Th0rRai/C7zsTUV4P5jANF1JHkrk3dSI7Uz11JDkb4kUfyssTvdEepCVAKOjuS7dCxMsnuFO8tIVhdEOWJzGuTsXZIQ5w9fGEJvb5uHXH0gm3txGcvISJL/cwctHJ/AL+bf3P1zA25cX8Pz+frx6chyvHx8lubsXL+7ulLy8vYmO2yW/vDop+eXtWcnhbfN3zi+I0MrMzJQpKCz8v3z+/wLuv5m8trKy/tTewuCotak+rE0N33vYmyHUy1bi52IFHwdLeDiYS0K87ZEc4wcPZ6teBfnJ7x2sjXotjLVhZm4IK1tTia6BKjwD7OEX4iQKlLkukvdfCwyRjrAIAhyBLyDEEL4BzHKG8PY1FKVd7OVc+4qZ3emzzh4sPY3g7aWL6AAtFMTpYmmeKTrKrdC92Bk9y72xu8YOu5a6orvOA22V9qjOM0BWvAbJWBVExCsheeZU5JaMxaxSOcwtG46y8qFYsGAAaqu/RXPDV2he9gVaV/wFK5d9Qoz3MbHdp2hv+gbbOr/C4e0DcWbPCFw7OAzXDg8j1iLPdngA7hHD3Tg+FOeOfIlz+77Agc1/IsD9CYe7v8DRrYNxfs84ulYRT8/r4tllAzy7YYWfHnvh3UN//PAkCFeORaCzNQUdq2ZBkQCkTP6M82v50W7kxzQJcPIojHKAibYyxo0bT/7OlEBnAz8HYzpaoDLFFfbk7Yy0lFCR4o7qdHcCpCuq6HxuhCOyI1xw/fxa/PjyCO5e20KAOoI3xGhvn5Fne7SP2PUQntw9gAf03vdPj+OnNxfJ213DD88JeHc3S1493IGX93ZInt/e0vvj0x5i9kUPK/IjbLIYdAWFguny8v+Ynu4/YomNaHlOoLM0NUwJdreAk41Jr6O1SS8DLMDNCoGuJCndrBHhb4+oYA/4uNtI1FV5pxoNia6WqkRHUxVGxvoSXUNN6OqrwpY3cXQ2goOroWijEBhsIEDHTMcsJ10BTqCj8+6+0mu8fXh5DzOdAVwIeAxWL2JAZkE3AqWLpyGciAHtnXTg4q5N12rD10cLgX5a8PHShoeHJgFVC55+OgiI0EFsiipSMpWQkTsZOQVjkV8wDkXFozBr1ghUVQzCogXfom7RV1hW+wUaar5GY8NnBLqPsLrxW6xtGSCCHwy2ywflhG+7dvhbXD9KDHeU/BkB7vrJAaJl3pldHxM4+2HT6r/i0MavcGzzcJzvGUuMqIjH32ni0SVDvLhtg+8fuOL1XU88uBJA7OlJzJqBTRsWws3JBHJychg5ajSUpylAVUkRw0he+tgawMZIQyT3zfU14UkSUkttOmaG2CLBl8DnZCES5ZMmjkekuzFKou2R6m+NIBcLzAyyx9M72/Dz29P46ftzeHZnJx7e2IGf3l7C+ROrcffyRnrvPG6TInj37BB+enkSP746i59fncCru1vx7ulByc9v6PWDnZLntzb88uvLfTi9r+bJwuIwvdycbG7994cthP7Ds1t2dna/iooKGXMLy88sjbUuebtYSRysTT7YmhtKvOmm8rKQUC9ugGMJf09bXh4CcyMdOJJ09HUxJwmkiAkTxsPU3Bg6ZOL1yfBzFy5u8Mo76zgSSLz9DeFHbBZMDOfPvi5CujCVgyc+NNx99OHFoCPwuXv1sRwXM9M5BqM/fz7QiBjSEP4hRvAjOeoTRL6PPutH5wIJvMERBOgoA4TH6SEyQRvxDLgZ05GcrkxHAl6WPDKzJ6OgYDTmzh5GoBuABfMJeFX90VBLbLeMpeVHWNc+ELs2DSbvNphYahRuHR2Lm0fkcJkAd+9Ef1wXHbsG4PwxYrj9xGhb/koStB+2tH2KfeuG4OAGOZzeMQEXCHAPL2jjxQ1TvLljg9e3nfHwqgtO73VGy/I0LFyQihSS3cUxjojzscbE8WOhMGWyKPHi5P0X/QeLPNucBHfEeluIdEmMt7VIjmuoTkdakA1qs3wJXNYi0c95yEmTJsHV1gwpBMhz++rx66v9xFTbODiCF49oPNiFR7e6cf27drx/9x1ePT6ENxxAeXcBL58cw9MbWwhsh/D24V58/7hH8oZ83Avydy/ubH7//uV+HNlZvXleQahiTnYWV6b8w9Zcef8LuP+/DMdt1pKTk2UM9HRsHKwM3thaGEp4KQgDLNzLFkEeNnAnv+BoZSiWxTjbGsOKJKepoXQ7Kg1iOnn5yTAy0YO6pgodNWFJgLOx0xULTf8RdIGhhgJ0YX2ezp9A6MegYabzkXo5KciI7TiQwqkDkqT+/gRuP14nZyACLiHEkCEE2mAakbG6iEnQQjivuYvXQVSCJg0txCVpIpFAl5BMPihVhUA3DenpSsjKmoLC/DEoLRmJCpaXBLqltZ9jTfNH2Nj+JYFtCPZvH4xzB0bj6tHJ5NFkcfOoHG4fG44bxwbTGIizh4fj5H5ZnN75GXZ1/QkdzX/Gro4vcWiTLI5vHYezuyfSdSp4dF4LL66b4MUtU2I5Y5w7aIOuld7oXFWM+GhfJHibYnaMHVIDbOFqZQAVpanwdjRHfICjiFAqT5VHHIEn0sMKtqbaKI13gRtdp6gwRST5bY014G+vT69HIcqN/GoQ3S9SIjF0/f715Xh1Zz0xaice3yR/+3wf3twneXl/Kx6Rr3v3/ACNowS4w/jxxWm8fHwMP785j/dvz+Dn1yQ/H/Xg1f0tknfPjkpYhr6+t73315d7cfvM8rt1pRF6M2dmcGVKv/9luP9iI6DS0tl/cvPwklFXmTrfh+SIiYH2+wB3a0molw0xnBUHSeBqYwRnLjUisLmTwWegGdKMa2asi6nkQfR0tYjZtKGpPR3G3FuSQMZty3mYWmjD1EoHTm4GwrP58Dq3QGm/E87JcUMhbpknmI4B520oTRfwMh0/Xg9H0jOA18RJAy2BwdyEyECsHg+N1EN4tHRExOghJl4bkXHaiCbARSdqIJZGfBIxQzwDUAOpM1QwM2OaGDk5kzBnlixqFg3EqmV/w9b2r7B30wAc2zUEZwhMl49NwfUTCsRso3HjyFDcPSmtHjm1dzgukrQ81fMlebaPsbb5r9i4+k/Y1/UVSUpZnNo+Ghf3TSLZqYwHF3Tw5Jo+7p63xckdHtjaZYmtmytRUhALffJqatOnIivEGuXxTjCl71RXfTqsDLVEu4X0IDtivTEYNXoMAUxB+LyiaAcCpw1szPTgQUznbKYBPQ0lyJIk1Z4uj6VZfsgId0GanzV2thbg9vlVuHFmNc4cWIqHlzvw+HoXLh1vIh+3Ey/u7cGrRwfw7N4+/Pj8MLjs6+Wjo3hN4Hp5l5juyV5iuu3k6w7j9cO9kld3GXwHf/3wei+ObC0/WpwR/G1RYY5Mbl5+vz9SAOUP3h4hp9+sWbP6RUZF/dXFwXSbm72xxMJY71dnG1MJs5irrYlgN3c7Y7EWzcHSAHYWhnCwNoa1uT40yFOwnLSxNYeZhQF09VTpyGDTEasCHBz16KhD57Rhbq1LPkxfCiR/KbtxBJMZjz0eB1RYJrp7S9MEDDSWmD59cpRzeuK6YAapNLXA0pTTDHyMJMBFxxHDxelKlwMlMdg0EcuAS1RHvGA6VaQS2FKJ6Xg74cp5Q7Cy/ltsWPkVdnb2x74tA3CafNuVwxNw85g8bhydgitHJuDioWGC3a4Ry507OIzk2lf00H0qysFaln6M3eTh9nQNwPEtI3Fix2ic3z8ZNwhw9y/q4dFVI3x3yAo1ZZ5Y2ViAbZuqkJvqjVA3UygQkLj9g5+dAayNdKE+XQk6BDo/ApyDqY4o7TKl7zQt0AYj5EZCTWky8iIdMWXKJOSE2aIu0wvzkz0wg97vP3AwRowYDntzA2QG2qK1Ih5Pb3Xh8bUunNxbg8vHG8XruxfaSGZuJmDtEZHJh9fJxz09gPc/nMOT27tx91IXnpP/+/7xbnz/ZJ8Yr0iKvqHx+t7WXvJ47398eeDD3nWFHUW5qd/wItf8/N92fs37X8Dl/3+2Hf6tYkCaUymUSU9NkJmR6Bvn72b1g6OVgcTMWK/XykQfzuTR3AhoDpZGcLKWDpKaMDLQhCrNzObGOtCgh0NXRwPOrnYwIrYzJJPP/o2ZzdZeCjh7R31YEtjMLLVh46Anoo/+gQYCdCEEsiDBWobinD+ByTtIGihhlvMiwHHawNtHmixnsAWzLA2VBl24v2UYt3LgOk1eYU5gi4rVIYaTAi4uUZOARkyXooY4kpdJ5OlmEtAKcidhQZkcVtQMxrrmQdjBvm39EGK3Ebi0dwIuHZiMC/sn4sqhiTizdwRO7xtGjDeGgMdS81sc6P6EpOTXaF76NdY3/QX71/2NADcQhzaPwLk9E3D5qAJunFbFzTN6uHxKC9s3qRKThqC9qRjFhdFwIGYqiePghyUMtdSgqjyNAGgBLztDDB4mK+pBOefmYm2IzDAnrMj2hi+B0pE+lxvuAAX5KeTrrFAQ6YQ5cS5IJA/Ihdsq06bA1owmH7IDC7KC8OreRlw+0YRb51bhKbHbzbOtuHexDU9ubCAwbiam20VS8zCe3tmB5/d3EpuRf3u0Fz+8OIlfXp/kSCUBs4eu24PvH/VI3j3cgV/enJa8e7JP8urOBmxqyqrMnJEsk0t+jkD3h6hG+WMBru8Lyc3NlyksKumXkhD7l+yM8MD6+qJeC5KE+tpqvcYG2nCyMpYwo3HQxN7CCJ4OpnAiSWlhpANNApmDpSHMDbTE4k5VFWWYmhsJSWlqpk1yUhfWtgQ0saBUF3Z05J/Zy1kQ29nSzx4+UjD5+esL0AmWCzIUoAqg19509PKTXuPJg70cS8sgKcMxMDniGdyX24uI1iUvR4CLlbIcS0uWk7FJ6gQ0NSSmqSApTRXpM5WRmz0F5SXj0VAlh7UNw7Fj1QAcWDcU+zcNwylipzO7J+Fsz3ic6RmLcz0jSDqOwPnDo3DpGL23dxD2b/0KezZ+Q1LyK6ys+wg713yGPZ10rmswsR5fPxYXj8jj9jkNXP9OB9s3aqGtxRPHDjeirbWUJoFAfDNwGHkyLSxOc0KYiwnUVacTeOywINkdfiQVJ08cL6TldPJ0HtYGJDldsCDFHVHupjDQUkW0tzVKY52RF+aA8gQXaKhMJWk5ndjOhySnA3xsTZEd5YErx5YT2Fpx4xy3/2vGs5sb8eTmJty/0oV7l7vwjJjs1f0eAp80WvnmyX7yc0fIw53g8i+RNH9yawte0nVvSWKSpJS8IhA+vbVF8vbBdsnTqx2oKAwLzsuaIZOTVyjzRyh4/gOuX8vvV1yYLTMzNUqmvDRp0dETne8K8hN7lRUVeo31tWCqryWxIYbzdbYkVjOGOQHJkWZaK1MCEMlGYz0tqKkoiXD12DGjoaqqDHNzY+jpa9BRW6zo5m2HHR2l+705ODLodGFFMlOwn52eYDpXD33BZAw6Zjj2dL+lDjhPJ5jOXwo6D28e+lIpGtgXPOnzcWFcvRJFLMcF0iwr43UQx0ETZjdiuYQUdaQR2LIylFCUq4DZ+VMwjwDXVD0CG5uGYVv7UOzuGoa9G4fh6OZxOLaVxjY5HN9GPm3bYALeSJw/MIrANgzHdg7Brg1DsK71ayyv/hTdLZ9h99qvcGADsd6mofQ58nA943CeAHfjjC5OHzbCtk5nNC1Ix7rVRagui0IKMZSS4iT0HzIchppTCUAqJBdlkUq+qyTaGYvSPOFjbwwzfU3RXEiHgFQc5YSFKa4i4W1HkrEyxVOAsC7Di8ClC9lRIxFAMjSH/Fuyvx0i3K2REeGOk3uW4OGVtbh2ZhX5uDqSk+3EbhtJLu7Cg2vdBLx1uHelkyTkVrx+sJPAtZUAuRnP7+0iv0dAe8Cycz+nB/DD0/14fX8HseY2yY8vD3EKoffNw529ty+0v26rTY2aVZDx5+zcApl/d8HzH6vhT37+n/Pzi2RyMuK+qSxPWLHvyFocPbMRsTE+vSpTFWFqoC0xJjPvZGXEixmhraEKA111kQLgyhMGnNI0RYweO5p8xESxyHO6yjSYmRlBV1cTFuY6Ym8A7srFC025asTRiUBHw56GDZ2ztNERKQN+7ezBpV1SPxfUByLuXckdmgMJfD4BBoLxOHgicnW/+b8gfRp9ARROqpPMjIjWIx8nbVoUS5IyMVmTgKaO7IzpmJWniLKiiaicNQELy8egYeFotC+VQ3frSGxbMwo7OmWxax1vIjmKmGo49hHjHSKJeXyrLE7uGoUTu0fj6M4ROLStv6hAWVr9Odat+Aw7Or7Bvs6vcXDDAOwjhjy4RRYniOGunVSl3+mKpkWhqF0QhqwUb8RzKwQvHRRGmiItyIqk5HT6DuWhS9/xkGHD4GSqjvxIZ9iY6MBAWxXK06Yi0oujl+R7SW1kBDvAiAA4ceI4kpf6ov8JRyVNdFQxftw4ISktDTQEwyX4OKAg1hun9y7B2f115CGX4sLRZbhKLPfw2npcOLYCV+j17fPtxFZbcfO7NXhwda1IIbwkafnqYQ8BbC/LSPz08iiB6xQeXFiNNw/Jx5GXe3Fro+Tdo92SH54d6MUvV3D7RP1PXXXxEaUlucR0HESRyst/RwTzD+Hb+rrw/ikrY6ZMYpTXsKoFmWsOnliHvUfW/tq9bemHlJRgNuwSS2MDWJrowsXOFMx2ygQuC3oARL8MAiKHrXmRqNI0BTEU5Cdh/IRxMDU1gL6BDh21RYNXlpL2oleJnlh6wzWSvO7NltiNmc6S5KW1Hfs8Pbi4S6OXAYHSHF1oX+0ly0WWjwHB0lRAcOhvAROpjOTBgZaQCKmPi47RQSzJyXhiuMQkLcFq+dlTCWTjUDNvLIFsJFqWjMCqulFYuXQU1vD2VivHYmPraGxcRa9Xy9LrodjSOhB71gzAwfWyIsx/ZOu32L9lDHq6R2B75xdYtuRbrK7/ArsJbNvJ++1f/y1dNxQHNo7A3u5hdO1E+r12aFnmgcXlcWhrKkFZWSp9b4qI8zVHXiR5r2gHeJBENyGfFuJqAYUpk/DF1/2FlJw0cSJNeIbQVpsOTVUlONEkZm1MKsOccFo+OAAAIABJREFUVAcxn4W+OjSmK2AMTXoKkyeK67ju0pbuE6cROBnu52AuGG5/dzl5zjqcPVAvAHbx6ApcPNYogig3zrbh6qmVBLo1eHR9IwFxA7HbRgLcdty51IEX98nfvTiMN4/3EtD2gHNyPzzfT/7uGO5f7sDLWxuY9SQv72z+8PBcI55dXPFrebZfYHJSkkxhYfGf8v5NO/n8MeokuT99QaFMXITnuMXV2YcJaNjZ0/xh666W3i27mukhDaCbqAxLY3040M22JOOtTt5MU02ZfJs2GXHyYab6MCLQcS0fJ2a1Sero66jTjDseeiQzjYx4M0VN0ZXLjljO6be9uvlI7PYb03EwxdZBCjZ+zWzn6KIvipmDQ/4+fi8HCzb4vYtzYJC++Fn0SuEgSawuwvra8SUkaSOJgJZKzJadroLSggmoq5DDqpphWFU/HB2NsljTOBJty8eiddloNNeOQmvdaAG+lcR2HcuHY1PTCOwg0O1qH4z9XbLYs04WPeuHk9wciy2d36B2SX8sXfAl+b5P0dM5CD1rvyV2G4QjGwdhx5pvsaVtHDY0m2HpoiCsaSqikYeW+izUVM3AN4OGwkhrGnkxB7jb6GP0mLEw0JiKWbFu8LY3IaabDi2S55bkk3OjXBDjZQFlRXkh3W3EqgElpAVaY06iBzzJ50V6WCLMzQJWdH/0NJTFGjoLA01RjcIqxNpYB2uXZ+MEgetkz2Ic27UI54824vKJZvKjjTi1r1YAkdnv1nftuHOxg+TmJjy82iUAeO/KBlw73YK3D3bjKfm+7x/vIQ+3D98/3Yfntzfjzb3NkreP9+HVXZKgBLpXNzpx8UD164qiML/szDSZgsKiP/9W7Pyv9HT/puDIP+6wmfsnDt1mZ6aOWVqTfXTvgdXYuq3hw5YdDZLOjUuwcfsKSXi4r4QlJYf8bc0MYGGsCw6ecMmWJd1QHQ0V6PZF08YS2EaMGAFVkpIq06di2LDhUFNXgbmZITQ01USk0tZGT3ThYqA503Bx5q5cUpbjDRgZeBxMsXOUsp4FsyKd8/aV5uUYaCL0zy3Tme1CpPWY0mEoLYjmSGWEgWihHhWtK1rxxTPgUjXIqyliQakcGquHoHO5HDauHImuFgLbitEEvtFYUT0K9QvGoGb+aNQT8zUvlkVXgxy2Ng/HtlXEZO3DCECy2LJmIElDkp4dA1Cz+FssmDMYm5s/wY72b7GLWXDdYBxY1x872wZhTcMgVM0dgfIifzQtTsTK2mSSsbFICLJGYZwtebLpGEUS3FBLWbTF48qQIUMHkzS0EQtKo72sCCjTEOxmidxwJ2SEOCCUXjNzTZk0AdNJUeiqTYOjGbejUIG/nQGczfUwVFaOQKYkvDanFDRUp0GX7oMFKZS1yzJwbPdCHNy6AIe3L8CJPbUEtDrycw30egnOHVxKAGzB5ZMt5DuX4fZ3bXhxdwvukNe7fb4Nj/r83fNbm8XxxW1itSe7aRDjEQDZz/30/IDkLcnLexfW9L4lyUkgfVqU7qOVMZPb8xX1y/sXy8t/b4CE2x8UFvXLmJH4eUNdzrZtu5vQtXbBr5u2L5ds39OKznWLJC2rymFpaUI3SwUuDmYwN+bCZT2R1OYGqsackNVUoRl0CiZMnEAz8xiMGzsW48ePEzk4efJymgRGSysT6OtrC5azsTYkaSkNnDg66vYB7jdPJ133xuvfHJykQLQmRrSw0hEVKpz85vIt/+DfGM5QyEgGXWhIX7I8iNMJUiYM69ssJIo8XBx5txkzVFGUJ4+yWaNRUymLplo5rKwfQUwjh6YaWdRVyWJh2WhUlY7HYjo2EuBW143EOgLc5kYaBLotKwdi8+ph2LCqP7pWfYMFC4ejtJDk5/KPsL3tK/SsGYTdJCf3dX1G4Pwcq6t1UJZnidISB7Qsz8GKmix0rJoNa/LCdiaayIqwQBIBz8lCX0R1w9yNEehkgm+J9bRV5JEfZgcdUhMmBJK8CEfMCLRDLAEwxtsG4R5Wot8LM910Yi5NFSWSnWPpOBVaBDB7Ux2oTpsi8nBONGHG+DrC1doEoV526NkwBz0by7Gjay6NUuxeX0bAW4gD26qwb3MFjvcswWnyeAw+lptXCXgcXLl5bjVunl2FuxfXkPdbjqfX1+P1/W1c2EzScgde3ekGSUm8fbRTpA1e0PlX97cS4/X0EhN+OLqt/Grd3Ajb/JwZMnnSRay/R8j/n2Y4TmonxsfKZGeElm7buQIbN9f/umnrst71m+uxbU+rZPeBNWhavQBqJGVMiNFs6IYZaGvAlKSJob6mYDHOuU0hr8C5oUmTJgqPwUAbNXo0pxFEiZeCwhTh4SwsjUXwxJBem1v0RSv7fBwDjocAHP3s4sqrvPXJ7xHTceSSPB2nDkwtyf9xoyE/Q/j+FpEkKSlYjlMBoVJZyfsPMBCZ5aSJb242q4OERPJvM9SQmTUV+XmTMbtkHObPJYCVjUI1ebnqsgk0xqO6fCTq58uhoWo4GqqHEjCHEyiHkfQcgtUrBhIbfo6mpd8gr2AscjMmorPuI+xu+wR72si3rf2CGO5zbGmeQOflUVPqgOLccJw70oIfHm/Hm6c7cJSYRENdWTBTjK8JyURbWBhqYTipAxdL8mOO5jSJTcY3AwaKPi7crcvTWg8lMc5ID7IlhrMjWWkNH3tzaJOcnKY4GVHedojzsRXlXfIKCphKn0/ytcXidD8oK0zE1/0HwJLuh6uVMdKjPQlsc9DdVkxMXYrN7bPQ3V6MnZ2zsWvdHGxpLyT2W4JD26twYEuFOJ6mv/ncQanMvErS88qJRpw/3IDbZ1sEqJ7f2YInV9fizYMdxHabSFZuE4z4/MZayUtivzcPtkvePNzV+/OL/Xh4seV5VXGod0Z6Wl/d5b9mhcG/x7cJdsvrl5QQK1NWFJ28dl01tvas6mWwdW8n4G1dLunaWIeuDTVYWFtCN1NeKiP1dURtpA4xmgbNuIp0noHFUohTAGp9ABzPzEY3W70vPcA+bvp0JQKdNsxIWuoR0xka8PbB3GlZB/Z2UtCxj2OZyWDjpTgcTOHX3HmZwcfy0txSBwbGmqIkjMvBvAOkSXEGXli4dDDwOD3AkUpODXBKIDyyrzsYt1ZP0EF8omZfpFIFmZnKKMxXxJwSAtrcsaghZquZKx1Vc2WxYN5g1JL8rF88BI31/el1f2IrOfKIapiZIo8N9X/GjpUfY2drf+zr+Bi7Vo1HR60qKgvsUJbjhsVzInDpbCve3t+I7x9twcrlxQQOQ2InPXxLzONirom8aAd4O5pgzLhxogA5wt1SLMVh2a5Lkp0ns0RfSxRHMeDskeJvh3gCF8tKG2NtAaQwNyvEEuuFOJlCfvIEaCgrwsfOBIl+9ogiRmMADx8hS79XGwkhLljXkofO5kJ0NuVg7YpsAl8JAa+EjkXYtLqYADkfPd2V2LNpPo1yHOiehxPEeidpHN9dLfye8HhnVxIAGwlwm/DoUjse0nh2c71guoeX2/Gazr++t0Xy+v528nTdku+f9Lz/8fFO3DzV9KooI9A8O5OYrqBYpiA/95/e+/LftZi0X15+oYy/j4NC2+p5b7fuWS3p3tHYu767Hp0bayVr1i1Gx7oarGqvRFZunJg9OSCip6MhlvlPVZiM8QQilo1Dhw3DZGI4Hgp0Q7Xo4eCuwNNo5ubWdFOnyosELV+rq6tFctKMJKoxDA11YWZKrMWlXtwKz/bvkUs3Vz3RuYv3iHNx4/0FDH8HoIhkEkiNTLk+UwNWdjrw4Fwc77ATIO1t+Zuf8+U9CMQCV0MBRJaWESJiqSetPok0QFysHtJStJA1U4W83VSUFiiQt5qM+UWTUFE8CXNLxqK8dCRKS2Uxe9YoFOZNQmy8qliZUJw5FhuW9sP25r8R4L4lwP2NwDYALZW2KEzzR2aKF8rzg9DZmEOSayPeEdgunWxCsLcFRo2UI+aiCWuUHD7+/Bvhu7hecjB5XlcLLdFCQZm+6wAXSxjpqIslOVkhtqhMcEFygD2SCETpJC0LCIDJftbwtCEZ6mxBzGgBB3N9TCNVwf1MWKb6kBWI9LCGnqayuDe6ZAW8nMyxqiETrUszsbYpF6uWZWNNYx7WNtNoyiO5XIhN7bOxfmUBNrQWYOuaEpKgZeRZZxHjVeLUXvZ7NcLnndlfi+snVuABAe32uVY8urwGj6524dmNTry4uVaUij26tFqA7t2jXRxIkZAM7f3x2V5cOdl4bU1NQnBuZkq/jOxC0Qvn70UY/8GA+8e2dUVFxf1iIoOGtDSW7FnbVU1erbq3a2MtujbVSTo31aOpdR6aVlWinYCXmByMqVMmE3spk0yZIphr4qQ++UhMJkfspjp9GgFukgAXy0teC6enrU4mX14U1fJNlr6vACMDApqZAYyN9aClpU5HLcFalpbaQjqyrHR2ZobjPQUIeAQ0Dw9DsRznN9AxE3Iez8xcGzoG6sR4GrBmoHKdpa+U8YKC9eFHrOfDRc0sO4OlifCICP0+FjSU7k1H7JdEUnNGkhZmpmpi5gxpxUlmhhINLmRWQnK6EpJS1REWpQtPP1NEhBuievZgbFkug+7ln2BzE7Fby9+wvl4FDXNckJ3khdwUF+zoKMGm1jx8R7ILvUdxdG8DfDzMkR5uCUNdVdjR3881j7pq8hghKyfC9t8OGEDgGkET2mTRTbkg0hHOJDF5wiqKsEV5nLMoXC4Mtxe5tvQgB5KWNghyMRfHBB97WJJ64KU83Lp9+Ijhom2er72ZmDhZoWjRvfR2tiSJPBMNC5PQXDsTzTXp9HMGVhMIpcArwJqmfKylyYIBuGl1EbZ1FGP72tnY3FaI/QS64z01xHSLcGLXQvJ3Tbh3vo3k5UrcOLkcjwl0bx7uxNNra/HqXjdJzTYC4DrydsR6F1vx4kYHsf2u3h8f0HvXOn9trs0MaVqY9pe5s3L75RDo8v5fYDgGW3FJSb+oiDCZpHivovWbatGxvqaXhqRj3WJJexcx2/paYrYq1C+bjZr6YpgY6RKwpG3B2ZuNHj1GBEa4uerEiROE3NTTVBOAkpefRFJTCeb0GV4Hx0W0HG0bRzeeF09yIpyZkdnNxIQAR4ypyhFMmpGtrQ1gYaUtCpsF6FykspK3rBILT3nBqbfB78BzcZZKUE4fGJlqQltPTRwd6HOiNMyPE+OGguV8A/SF5BSeri+IEhL69yQ6RzGjYnhjEc7RaSKOpCa/jo2TloSFEMDcvHgCMEEyXVtTOhzridk2E9i2rviIxhdYUz0SZdlWmBnni8IMPywoDsbpHeW4Rw/XrXMtOLBtAfJTXTFw4BCMIfk9XFYW0V5GqJ7hjBnkxxgILL9drAzFOrcBg4eBN+toyPCEv5MJPv9mIHxJCZTEumNOjCMNJxRGuYgFpeok4+1N9Yj5HJHgawcT+jwv0eH7MmqkLHm8aSKdwAEsXjenqzYdcSGuaFgyE0vmxaO+KgXLFqdjZT0xXkMWmuuz6JiNlQ05aK7LwurleWhfkUOsV0KjSHi97Z2l2Le5Eif31OLglnk42D0H10814dyBJbh6dCnunm3G/QurcPtUA17f7cazWxvw9CqDcDseX+2QvLrVKfn+0Q7JvQttH94+3fPh3uX2H9YvjU8uyEqSkTYmyv2ntGn4lwZJfks2hgR6yi1akn+pbV3dh7Xra3vXbqxHW9cStHcuJmabj7qGWaisysKcshmC0cTiRQIXtw0fM5bHGDHjTiWwaZBPsySAcTkXA4tBqEvySGmqtNJ9hJycqHRQIw/H13MTnOnK00SawNraVOrpSK7q62vBxFRbynbs6+x1RZrArW91tyeXbvkZ/N7Ji9uhMxB5l1TudWJppSOW/ujoq8HQhKQmfd7Z3ZAYieSmn9TPBQQbiWNwuDTCycnzMPZ3BKqIeJKZBLBQAl5IpIGoUuHqFUcX9o3a5DMNkBanjbo5g7GmhphtRT/saPozVlVNQVW+E6qL3UhGumNJWSRW16TiTE8VDmwuw8/PtmN9Wym0SWrH0u+L9jWGubEaMdlAyMrJIj2Uw/zEcurKGDZiBMI8rJBGDMZSXdQ/JnogK9RBJLIHDR4EfwdjzCAPF+BoJlICnAwfRuA11FEjb6ZBE+FYmugmC5+tTZOZG0nNcWOkjXC5DMze3BD25MdTojywqCIJ8+Yk0jEVSypT0URMt5KA1lSbgaXVKVi6KAXLazLRUM1glAJvLbMejQ2t+djRJY1y7u+uwKmexUJafre/BteOryAWa8e975qJ4UheXmrD85vr8IaY7gUx3Jv73ezl8ObBNl5hIHl8ue39m4fbcPtix70FRWHOhbkz/5xf8Jsqy/tPlZS5/QoLi2VSk2K+qapI2bOmcxFaVs//sLp9vmRVR7Vk9drFBLoaAThmtnmVmSidO4N8lwbk5EaKCgVeyMiA4UAJV5Vw4IRnZgNtNVF5wozGTMiJVQYog5Ol53DZEaJxKYOOQTmBHhJ9PZKSZkbEboYwIMbjjTp0iPEsLQ1gasag0xaRSa63FExHwPLxkXZj9vPVhy89vAEMJD9p2wVXYjbeZcec/I+xMQGYpCYvdjUnIHIOz4mucadrGXyeYvDPhqIek1cceNDvdPXUFwDjKhcLAr45/R0see1s9ZESp0NgG4l1S2WwrelTYrVR6FjSD+W5xijJCEdFrg/m5gVg48os7FxbiAv7q/EDebbbF1YjPS1QdE52szVDUpAFylNsCUwK6Pfx5zA3UEMKeTEG5LARsojyNBcebdxYTq+MFotLPaz0YKKvLVjxs6++lbZcoHvBS3K4vwlfK0vfMRccDBsuCz316bCmv5uZz4QmMw6+jCZ1MWz4MPKJWnAxJ+8a5orZRdHIy47CnKIILJqXiDpiuuVLGFzZQmbWVSaiep501C2agaa6TGK/bKwiKbqGGG9dazGxXQn2bKrA0V3VOLy9Ekd3LsRZAt2tMy24S8z+6MpaISufk597emM9HhAIX95ah/t0fHJpleQtyc7H5Pde3t324f3rA7h0fMXzjHjvoVnZ+TL/jDYN/7KoJHdC5qXvZbNSolvbKtC0euGH1vaFvS3k1ZrbqrCSRm19ERbXFqJ26SxUVGWTrPIXjMV5tbF9zMYrifnIPs2AwMjLRDRUlQTDjR07DloaqjA11MFoukZefoqQNtzHn00/J8VZljIwJ02aAA11VVj0MR3vcKOno0mgI09mQECx5IdeW7pujtiKo5XchZlbofNGjWIbYtGdWb8PgOTzWGo6SQMvHFyxJNCYmWmJVQpizR1JVjM+R7+X83rMpuwDzcx1YMLXmPFWWDqiyNrSnFc3ENjsDJEcY4DFpUPRWfsJNjVMRftC3ivcmoCmitIsZ9SWhmDp/CjsWlOAPV1FuHm8Bqd2V2FOThgyo6zIs9GEYE1/m4U+sZIGZgaZoSzeXrS4+/zrb6CuMlVI9G8GDoKXvQlcybMNHTYcX3wzQFScqChNg7edMdJDHBHibIqJNGmpKSsi2c+GAGpN3/FkKEweT+fkMYaAqKeuBC9bI/EdG+moih4nHDFmPydPHtvTxgRZqQEoyAknzxqKnJkhKC6IwcJ5SahdkIKaymRiNfJ3xHDV5QmonBNP7yVj0Xzp+SYCXSOxYFtjPjqbc7G1Yza2rpmFvRzJ5PzdjkpcOlyPy0eWEts14NHlDpEmuHOmES+uk6e7swEPLrTi4fmVeP1gB9dmEvB2SF7d2dz74d0J1C3MKCsrSv2EI5f/09Uo/yp2E2vb8nNnflO3JPP4qrVLehtXVnxoaq2UNK1aIGlsrcTylgpU1xDYGkqxpK4ExbNTEBzqIfzGWLrpPKNOpBvIhclcCMvRSi7tYg8nNssYP06AccKEceK9UfQ5FcFoUqByNG7wkCHiPU4diKQ4AdLIiCQbgY0Bx8DjdXPMdBokiQyMNAgIxIQWvKxHW6wq4ICKDy9AJWkpdkHlZTk0AgMM4Mvt9Pr8HV/Hg8HHARZepcC7q1r3BWis6LWVhQ4s6HczsC2IGRmgXHrGgNPTVxcyMilWC0vmjMLauvHY1Pgxls9TRF5qMGrLY7BhRS6a58dixcJ4XDqwEOd3V+BCz3zcPNmAGUn+BDBd5IVZIDfCBE40geioSiclTko7k99UV1bACGam0XIw0FQm6T0eCuSzmLG4BIvb4k0RE944ZAbbYH6yG4qi3ARbOhH7FtJrLvmyIEmfQv7N2VzaBj2YQDlNfqK4B5yrSw10FNZATUkBtuTlAp3MkZ8ZgpTUMJpUAxETF4T0GWHIz4nG/LnxqK2IR83CmVi8IA3VFcmoKE3AvFlRNCJRRe8zIJeSzGyqz8Uq8nldKwuwvrUAu9aXE8tV4WRPNb47WIc7vOzn+DJcOFRLEnOViFS+ISn5/MY6PLnehXsEuKfX2kX64NnNLk6W976+u+XDLyTDWxYmlERHhMgU8dbI/4M5un/NXgD0h6anp8skx/u7rmye/Wvz6ipJ86pKyZK6IixrrsDSxjIBtBoaC2uKUFKairT0SISG+UglIUkdOQLMBLELzTgRHOHUACdpFfpYbCydnzpNXiS5Wfrwsn5ekcwRN2bICX0pBL6WvR17QH5fiaSpiYm+FHCWJgQCAp+FsUghGBpqiWU9JsbMRNJqE2YuXrjqQhKSe1X6cOWJr5TxvLz04cZ5O2fp4LSC2CHVua9ImhPsnEi31ROLYDm9YE2sZ2UpBR6DW5eApkdy1M/LBJnJmlhWIYvO+gFYWqaGRUXmaK7yQmdDKo6vL8bJTUU4vKEY148uweubq3D1aA3Wr8hEzZxoMbGo0AOeHmyHykQ7lEaYE8DkibFGw0SXJhMNJdgZqUFjuiJ9PyNhb0Z/k6k+fV9DMXjoUIR60GcSPaE8lRTCkKFi264QFwtEkMScMnmCAJQeqQkV+nfcrQ2wkMCY4G2JoXStNzcSIlBPIM+tLD+e2M6YQD6NAD8NViRNQ1ytUJAVKtgtPi4AEVH+iI3zRw5J47klcaicl0YSM4HYLQ5V5UmomEOAK4nE3MIIlJbEY9HcOCwhtltMHpCrZlqWZqGjMReb22dj+9pZOL5rCc4dqMdV8nLXTqyg43IRRGEP9/hKB26eWoEnl9vx6OpaPLhI/u76Gjy/vV7y7PpayfMba3t/ft4jeXh9w5tl86Lds2emyOQXFv4p/3em+4MznEgDFM/qF+znOrh6YebNFS3lDLLeZY1zCWjlkvoVc1FdW4Saulnk27JQWjYTWTlxiE8IRggBTkVFGbIj5IR/4wQ2S0wOfnAJEie4uX6Sc3Ts3Vha8gLUaYrSXveTSTp+O6C/YEnOyQ0jScPA491sxogOwvLC6ykpKcLUxIBknBFsieVcnazFa65IMaBhRoA0NdGj1xoEDt60UU9a1PwPqw04cOLsJAUYJ88ZlHb2+oLd+Bo+2vb1URHNiwhg1la6wuex39PUVoE658JI8iWGW2FhoR2WlSugoVwFs3N0UJ7vjxXzY1CRH4JNy9LQsyoLJ7qLcOfEEtw7uxR7N8xGUaovyToFApIy/JyMyOuOFABzt9BAkpcpgUABw2jSKQq3wLwERxTHOGFGoDWGDBksWpbPjHAnz6WGbwYMILk5USiI4bJyGDh4sNiGyp2AE+ZuJdbIDR46TNRQ8vf6BcnSKRMIXAoTMHzYUFGIwHveeduZCvDxtlzKNEFaG5G81tZAPDFedkYYkhICERUTiNjYAHodgOTEIGTMDEdRYSwq5iaiksbiigTML0vGvDlJmFMYRb4vBqXF8QTAKAJkPPm+VBFUaSaJycGUjauKsLebPB0x3YXDDdi7fjZO71pAIGvEg0ttxHorCWTtJLuX4v6ZFSCQEeN14cnVDpKYzXh2uZU93vtfXuyWXD1a97i8IF47K6dAxCCka+ny/sgMJ7aKkomPj5VJSQyKXb2mCnXL50jqVpRJ6pbPldTUz8KC6nwCXDHmV+Vj9tx05ObHIyUtHJHRASTV3IW8Y7ZicPCNnECspKVGDydJnsmTJtFDIV3+wUzISW+ecfW11WFhoivOjRozSiopCbDMcEPIuLMk5RKwsWOldZf80OiSf7OztSCwWMHRzpzYzphYz1Dk60xp5tfQpNmcAK3Ba/AMtaT5Owsd4bs4QskSkeUgJ9EtrVgmaokqFvaAfE76vg5MzbVEQIQ/x13EHOyIFQkcPm7GSAqzRX6KA4HLGuW5Hqib54n5hSEkH1PQtjgFTZVRWF+XiKNd+fhueyn2rslDTUEwmsujoautCkttZdHOYNLESdBWU4CblQaGkBcbPHQ4sZuiYCYOIHmZq6JmhjMKI+2QF+4M1amTyOcOhaWhpij1siAPzGzYn7xvsKsFRo8cDi0VRWRHuhJjOoqlO0NJdST62CA/3AXaxGYc9eRJkStO/O0NMZ6+97RAe8yK9xbNhwaSP1SYNB4m9H9OivZAfnYYEhP8ER7pi5gYf0QSy8XH8fBDdnooZhXFoWxWPCpL44jhEjGnJEGcK86LRFF+FObSe3NoLJ6fitrKFCyrTkPTknRsXF2IHWtnYz95uf3dc7Gjo4CbCuH6iUZcOdaAy4frRLqAx92zjbhzuoFYrx3Prq0hsK2SvLrVJXn7YJvk5c2uDy9vrCE/OO+7ecVJY0XN5f+An/unJ7kLi0pkIkK8hlZWpl9sbCqVVC8t7V1MAFu4pFAwWuXCApRVZGPuvCzybWmYkR6FhKQQhIX7kFxzgaKigpCRYxg4NFszc3GeTZ+AyOe5ioTD28x+hnpaomCWVw5wUIWjmQxMztuxfxtKsy8PTsqyrBxK4Bs5cqTwLPy7GUzMbJYENEfu5OxqB3sbM9jRsLc1E6kEZjwtbTXo9qUSTAnYunrq0NJRE8EWNQ1lmJhqwcnBkPyhBnSIMXSJwVgqahIo9PTVCMCa8PMwhYG+CnzdjDAj1gk5ye6YneWL4pk+aFwYgfqyCDRXJqB9SQK2N6djX3suLu2qwP2LWM3RAAAgAElEQVTDC7GvLQ/L50Qh1t8Ryb42KI9zhbulHvnbcQh1NoQLecD+g4cJT8vV+ZoEFnNdTp9oCTnO2xqrTpssoo/eNgYiR+lBbMsykRu+Oprpi4oROfpugpzNYU5/e7+PP8VY+n2u5AUdyb8NGzYC0xXGYVaUI1Lo7+BACm9fpU7SMcLDnIDF8lEVeVGeovCce1VOpkmON1SJjXQnhgshZvNHaLAHIsI8ER/jjTiSl0nxPkhLCRSejtls7uwElBZG0ohCSVEsZhP7zSqMQUF+DEoKo1FemoR55PFqFyRi2aJUdLXko6MpD5vbSG5vrcCuzhLsIZbjSpSrx5bjGo3bZ5qkObozjeTtVuMJyUz2eK9vrccLYruX1zvw9u4GyQ+Pd/T+/HQ7drdnb01PCuuXJ9045L/Fcv9s//anvLxCmaK8xNCmljm9dcvLJItrinrnzc+UlM9nkGWShMxAUUkK8goTkZEVg+TkMERF+SEw0AMe7o7ko3TQf+BAEWWUJ4nIno0lpQpJSbFvNvk4lor8IKmqKIl6SgYjX8MPHL9mScPA+o3l2Ocxa3LUjCOWHHThrX/5d3Gghb2cDQHMmaSlp5sdXOjowsxHILSyMoGZqaEItNjZmBLYtGFjaUBDH0Y0u9ta6ZMsNUJipDPC/KzgQOxmTgA0JUb0pwexMNUVqVH2SCc5VzsnBPNLwjEnJxBVpRFoWpiE1mqauXOCUZYXgLZFUdjTnoXjm0tx89AibG7OxuwEDyQHOogkM+9EY0pgd7XQg6FYha1IDC4nzU0SC5sToG2NNQmMOtCmiYCLAVSI6Xi5DEd92ZsNIgaUHT0WeZFOiPQwE6H+ACczeNoZC8bi7569IC8sNddTERMfRyHdrQ0xlQA6mO4L59+MtFTx9YBBxJDycLIwQG6kPVQVJwhgcuTS3lxf+EAvYsekGC8kxfnQpOqNkGBPxJCUDQv1RFAonYugEelH8jIAM0lelhREY3Z+hABZWVEUebgEFBPDFeRE0ghDcUGs8HVV5QmoX5iG1ctzBeC2rC7Avk3lYhzfWSWCKCd2VeF0zyLyug24REx3/XgDbhyvx5Wjdbh9arnYDusZjZfk5x5faMHbOxskPz3a9v7Z1dXYsCK1clZO/Me5eQX/rd4o/7QWd/l5ef24Li07PWbIksXZh5c2zsOSmvwP8yrSJWUVWZhLo6R0BgqKk0W9ZOqMSCSnhCGGpCSDzc+XZm13B5JjZpAjBuNkqnzfGD9+bN8WvmNFgIR9Cr/WoplUh9iNWy/wg8GAYx/CFSZcZ8k/Mxty8IVzQuznpgo5OkFcw7+TGw9NoweX2zKYW5nC0tpMgMvSwlgAzov+JhcnS/i4WyPU3wHRIS6ICXFGWqw7ygtDMTcvBHOy/VGW64/SHH/UzovCysXxWF2bTMzFxyQsLo9B/swANC1KREdDGurnxaF1cTK6GzOwpSkdW1pmonVhHLFaPm4eWYhj3bOxq3EmvBxM6MFWQ7KfLSwMtBFA7MPfy1QFeQGqJG9r0WnLzFBdfE8hrmbICrEjQKiS3FZGlJcFAUdDVPGrT58mAhkhLjSBaCuJlAn7Lv5euBBc+DPOq9Ek5G6tj/woO5KItrBlH0Yg9yHZGOdlBT9bI5jpThffs7GOqujIFeRsKdrnTRgvbY9uR/5Pm0DqZmsIb/pdsWHuCCJmCwjko6cYfM/DwzwQSOcjI31EICUqJgB5WaGYUxxNIIshxmOGi0QhAS1jZhiyMyOQmxlOoCOJSddwRHNZ9Qy0r8gjaVmMjmWZ2NlRjJO7F+HA5nkCcBcO1ePioTohL2+Qrzu1az7O9lTiLnm722eb8JzY7cXNdcx0klc3O/H67kbJmzvrer+/3YGVC6PzUxJjZQqK/r5i/L9ajfJPC5QUFhX3S0tJksmdGZy5um1+b/WSgg/zFmT3zq3IQMnsGQJsOfmJIkCSmhaBhMQQwWzBwV4ICHCDt5fT74Djsi2OKCrKywuwMHtxEnsMAYST3Cr08DBjMQOyh+OKlAHkGRio3AiWN6+XJsLHYMjQoWIwwFieMrOx3BxLn1GfriyWoXCiNsDJHC52Jgj0tEWwnxMCvOwQRzNxwcxAzCsIxbL5caieHYlqYqjq0kg0VMSgrSYZdXMiUJnrh8qiYKyuS0PbEmKtxQloXBCNirxALCmNwvbVuehsSEdHfSraa+KxjUB2fEMJdrdlY3srPSRtuehZk4tbR6rRWJEgfFmsqwl87Qwxcsw4BDmaQklhMjTo/21KUnbocFnEulsgO8gR2SFO9OCr0P9nPGLcrUTXLK6R5O+MF5FyEfEM8mE6qlNF4MNEWwUeFtpCDnI1P6/e5gijqrKCmNg40sjfLQdgRpFKEJ3QiCVliQkZjDYGakLOsrfmVEGggxEMeX3cpHHoP2gQVIjxEnyl/U54uyv+2cHREn5+LvDxcYYv+fSAIE8a7gQ6eh3oRhLTAyFhJDFJcrK8zM4iSVkcR4CLE6ArzAlHblY4CrLDkT0zGNnZUSKPN4uAt3geyfCmAjTVEPDqUtGzrhQHN88X9ZbcQ4UjlywtT/VU4dKRepzduwind84nb1eLO2ebaTTh4YVW8nVrQICTvL23kQDY+eGnh92Ss3sqn5XmRhpwiiuvbwfWfyvD/d7AlUGXlyOTlBAiN68i47vly2ejojLz/VySkcWzZ0jyi5KI1RJIQsYiJTUciYms5wMRGESzXoArfH1dCHAOcHKygYO9NaaTROKACe+4yfKPG9gwmzHY2BuwlGIgMsjY/PODxGF/jsgNFOcGCzk5cpScmMH53JChQ4SkHERg48oJLgUbSQ+VIj14LH+iPC1QFOWAQGd6gGhGz4h3QwuxzroVM7CR2GZldZK4oeuWpWNzaw5JmFysqIjFktkRWE7gayiPQtfymcRiSagnv9VCx+6WbDE2rJiJjSvScWjDLJzZMU/MsAe7ConRcnCkmx6Q9WT8V87E3Ex/UQhsRsPD1lj0a9FXmyaq93kDDa7497A2poljitjaONLNhh5+I8FiYwhwzG7lCa6YpqhI59RQFOGE9AB7LEj2hR95t0FDh8NIW13UUE7ignCalJRpglJVkqehILztRPJdU6dMRJC9AeI8rYkRrYQH5p4xyd6WsCBw8z7mHFThQnK5kaPIvykLwI0llaFKHluLAKyvoSLkqxsva7IzgwPdWy/y6IEEsKBgkpRhngJ4gQS8IDoXHOIpjV4mBiEzPVT4OQ6iFOdHojg3UjBbRnqIAFz6jFBkZIQjLycC82dFiZpMLnjuJlnJyfBDWytxak8tDm1fgGPbK3Ge5OVlkpXn9i+hsRgnyRtfObRYLO25c2YFSc16kct8zoGUq2skL290Sl7f3tD7w8NuHO8uPliSFdk/9//qiZL375SUuTJ5BQUyOdkZf6ksS2xd0VLWW1GZ9aFsfrZk1px0SdGsNOTkxiN9ZhRJyHDEkGyIJhkZRGDz83eDr4+rYDdvL0e4uNgS6KyFj+NQPie+RcEygYMfjsmTpFG3ESOkMpFXgLO8UqZZ1M3OVKQHhssOF8DkAAADj8u6mNW41EjqY6QdgaWAlBUrD5jlHLmdg6k+jOmBdKAHPtbLGsVJ3qgiEDRXxhLIMtHdlIH1BKrtawrQTf5q5cIEbCHw7WgvwHoGFb2/jphsE0nFI5vn4lD3HPSsLSAGy8MuuubgumKco5n2woFqwWrbWzJwavtc7O3MRWKoPUk/BZJrJAGnSPOOnLxXmDKemMpWlExxTtGAJKY+Dfa4rhZGcKa/W09TRbQgV51O3osYiJPOnOznImJnYqFgJ1MCgLLYIjjUxRIeVoYiiDSqz+eGOhkjxNmYVMQ0wf4M7ABirmQfO1iTl+NIZoq3FeZFu8OfJGVBuDPKoh1hQRMTq5H5CV70N4+nf1sdgY5mgg01abKQp/f0p0+CvZkuTC1N4epmj0CaYHmiDY/wRiixWkiIBz0L7ggN9UJQmC+iYwKRlhwkqlLmzkpAWWkiZhHo8ojdGIgZM0IwMy0EmQS4grwYzKFr6qtS0dlSIPJyW/oqUI5srxJj/4a5QlpKay6Xi2AKS8vz+6tx7dhS3KLXd8/Q+K5Z+DlmuscXW/H08qret/c2fHh5c62kZk54Fm+Nlctt9/Jy/0tt9/5n2a3vyH9MTIS3WePyAsnC6jzybBm9s+ekI78oBZnZscKvpaZGIC4hGJEkI8Poi/YnsPn4ELN5OsHT3R6eHgw4Ozg6WsHezkIsu+EIIz8QE0TbtbFCFvJ5ZaVp4oHhCBkXzaoQE5oTSHnm5qJbzs1xLmncuDFCOnIQhYMv3BKAN7pnU8+MxwDmz/DvZBYZTSxhqa+FAEcL8jvKCHUwhQeBMJTYpizFC+2LE7G5JUuMDcRYGxpmkCT8P7y9dXyVd74tnLbnnntkzplpp97pVClQHEKIEHd3d3fiCXFPCBogOAR3d3d3dytSaKE6ds4tZH/ftb5PmJn3j/Pecztz3z/2Z4edENnPs35rra9WAnQ1YLxa2Q7W2wTQbV5SJbvXNMoOeLIV0wplPUB4YFWDHMJrJ7a2yc1jU+Xc7jFyaG2tHFxXLz5uwyHLhilj9On5icT7Oeshw8APi4UZ4qcH69Hj0+5QvKXKv48//kRTJIPx+f7scgcQfZ1tjMLvzz7T94gHzyf4m63guYb0N+ogtYUJoGSVCaO1vT4zalDDPOykOskXEnWg/Pvrb8s7kJCvM31gO1SmFcdJgp+LBLvYSH2Sj1SAOQepSvgQPnOIJs/ZNcAlIG+99bb4cZnKoAHSh/NP8GxlPUx8fN0kIjJIAUcJGRcfpqBLSo6UtJQI/Tg9I1ZKi+K1/KumKgOyMVtG1aZJXXWmlJWlSWFBspQWJ0lJMYBXBk+H1zsmFGnwZM2CGu0qYF5u99pWObp9khzZPln2rm9TdqO3O79/ilyFnLx7Zp7cO7tAHlxcDHabK3fOdBr1lzfXyHeQlj/e3yBfXlrc9adHG037No47NWdMTs+WpvruKqr/Psv9/b1bU8tLpXlJvxg7tvTgzLmjZdSYsufNrSXS0FRgIqsVl2TAryVJbm6imuLkFLzBDJLEhkhERICE4dQLDfE1nkN9NVARGOAtFgDNb8BWlDP0aRzwysQ2K9IHA3A07TT99Gc06szJcZiQghTsSPmoqQDITHo5gyWNfjp6FH5fRj15o/DGJqM4gAU4qcrZZhi8zlDx50xGy6Hi7Wgtfg6QeR72Mqk2UQ5valZwLZ+YIxvnlim4ti2tUa+2BWDburhK9qys0+DHjoWVsm9ZtZzZ2irn94yV4wDcejDgqOp4SYhyF9vhLCL+rfbu9e/H5D0OhqFDxNXNBYePj7iyXQngGAiZ3Q9/Zy/83vWZ4fjdhstrAEOwh4NEwXv2pMQM85KZpfHKZgzHVyb5Qe7110gkmdGdiXwHa/Vr/eGv3MBQNhaD9DBiSoVj7iI4Uh4PlnOxo4AS8Q1Idl8nO3hEb8kKdZe0YFf832H4+l5avqWVPzgQWeXzNt5/Vqvwe/F6edpb42El/XHNnFzsxS/AS6Lg5VhVpF4OHj4OHj4GHi8tLUpS02MkG9JyRF6CjCw2gij1dTnSBMZrwMdkuZLCeNiSBADPkJ9kQibD1y6s1f65vZvGy/YVjbIFhyDLvw5vmySn9kwB4CbDz83R/rm7ABuT4zfAcl+cnS8PLiwC+3XKfXi6x1eWynd318rTW2vk21srun64uxqSv3TOzNF5ZhXVjf9HLPd3ZDaAraH+pcKCfLPG2uwRnQvHysSOuq5Ro8tMtQ0FpuraEVICZsvNg18D2NLSYsBsMfBsYfBshowMB6uFAGyhAFtYqL+Eg+kCwXA8Ce0dbeVTnMyMSLK7m96NPo5yxTi5jWoU7iJjoay7k418gn8zkMLoJJmRQRTOqiTrfYCv76dRz17aUvIJXrPmqQ92sBlmDgnlJmmBrmAPG3EZbokb2VGGW5prAp6JXxb8Og+3gKSylyUd+bJ/PSQMWG7r4kowWa1sWlgO5quQrUur5Mi6Zrm4Y4zsX1Un53eOkaOr66QV0jQyxEUszPtpUOfV198Be/wGB8An0heei0DSuSDwqwNwcw4xNxcnZ0dI4t4S5O8s9VUpkpIUKu6eLuLmaitJABfD8mS/zBAPLToO97CF1AtVD8b6SVb+hwE8rjZD1Xdx6JI7bn4OCKJHZrCJXRVMH3DCllbkQE3wMIoPcJMaSMeKRI9uBntX7IcNluJoD6lNDVIfbYPDKcbPRStRBoM9U0Nc5bNPPsTf9ZbkhMMa4HUHG3NlbMpZplQYBQ7DQUuQxccFQ05GAGz08YGSkASWS4+VzCwjOZ4HP1dalKAdBnWVqVIJOVkGOVlQkKijFPOZSihJUiac1TFSVi5okPVLGmXX+nE6qGjrqladnbJ1ZbPOxGTE8vLhGfLFuYUKvKtHZgB8nRqxvIV/XzowBaCbK48uLZGH5+eZ/vRwi+m7L9aZvr292nTuwPRrHS0Z9k31lRzN/9+uQvl7sttLjU3NZiOyU95tGzvy8qzONtOYCRXPm0eVdNXU50tpGWVkmuSOSIJej9E3lmCLw5sbFRUEaRGgUUnq+ohwAs5XGY4+zsfHXVxcHbVekn7k895G4podAnxmYptVFNolwNwbTu9ePT9VgBnDRz9ROUmp6e1i282Ebxu9cwBRkKetMhpnKHIClZudtYR6GCF4VrWwkZLeiLsL3gdQ6SWtcXPx+7EgmFHDlTMK5NDKGtm1tFIObGiBfxspu1fWyo0jHbJsRom4wksNx42enRYm9taD5Ve/fgsgo0z7rd7U9D69cJB8it+Nfw8jsvz9+DmWsPVmUTGef/3G21JeECGHt4yShTOKpTg/TgYNNdchSVE+LspEHHng52SpkjvK10Fc4bsYbGKuLAj+iQytEhLvmSV8HQsI/PG6D173BXNbcTATly/iQGFOTsu0vJylOMZXGtP9pTY9XNMSVkMHaGqF8ykZfCmKDZCa1AiwXD8tMRuN39PRcqC8/vY7Mhw/JwDvfV+8z2Q8/kxzdmvgwAgI8pEI3AP08IlQPDFxvCcCJTYmGKxHfxcNn880QZzkjADowGjlYLKqMvi7ggTcU4kaYEnNjMdzrAKRNZnzZ1bJqgV1shbScv2SOlm3uEFHOLCJdc/GMXLuwAyVlid3tQNo8+Sbm6vkytFZcghe+zb83cNLS+XasVkavXx6Y6U8OD9Xvrm+rOvbG8tNf3y0RRZOL6kvHMEC5+aXa2qq/1utPH+/vFtd/UvcdNPUlNc+p7Ola8LE6mejxpR2VVdnmkpK06WkLEvy8hLVszECRaAxLByJ043MFgnARUYYrBaustJH2S4EgPPz89CVU3379VFZSVbS/QF45h44so6DzTAF3WtvvKFSkhKSU5dZ9ExGo3chk3ACFVnLqDbppTMt6WcoHUO8XLRJMtTdCd7HXm9SSiROD2bNJsH7UXfynP6PvweDNTZDBkt5TqhWhGyZUyLHtrTIMUhG+rLmygRNqP/ytTflc0hEa5vh8us339Igh9HJwNwgpC/+zQdlGOeKWOD35HAegtoKN6urvSV8Wz9I4T44WKwkKdJDokJd4fdsjPEFYO7MUE9IPWv1b5E+DvrMHW+F8YHabc360ffBWhx1QDCT1cl8zFnS14Z7OkIm+ogXDpb+YLrMUA8pjHRXuco5JPY4nD7+9DNd2MG61QA3e5XaHGFBlgx0ttZet7cgI/k3BXgMV6mqKRkWn+PQs8F7yTzgR/iZzHfa2Q9X0HHDURQ8fDRAF4uDmB9HxRj/TkiKwn0To0zH8q+Sgngc3pCT5RmSD6mZkRUL1ZQgWbi3MjJiAMg4aaxJl472Elk2r15WdpbL8tkjFXzsHNeRDcubNIhy9egcOQcf9/DyMg2isKXn1M4JcnbvJC16pr9ji8/X11eC6RbJNwDbt3fWP//9gw1dZ3aPP1VZmvnbGmPU3kv/1xnuxWxJdsfW1VabjSyM9Zkzu/7byR1VXa2jRz5noKS6boTkF6ZKUUm6tmIkpUCj4wSjZ4vBmxoe7q9+LToyQD8OBcuFdgONDzKcr6+7eAIM1jaWyjBMVjP3xhuKCVuGxAkgntrmgwbCZwwQZztLZS+d6PVJdyBAI5SGP2O9pQOMuxN8C2UOvwd9ICNwDGETZAyeGDk7I3r5ea9eetpT2pJ5PsTP/ljZ81P1hX36Mlz+uVhaDBBPdzAGmJN1jGzsJCv2ww32OfwRfSWjf4yavvH2u1og/BHA0Ac37uAhYE5zDmMdqENukyAPo7wdxMV2qIRAIjLyx/pPd6uB8iH+n/mAXmBfAIRzOQFgLwdLZTLm50K9HKQvfu4AfF8qAzab+rkMlwwAMyXQRZPbKUHuEuHpoB0ZlKCN8IMB8KpuAHhhtJdkBTlLGHwh85l18R4yMspVAeQClg5xs9X0RE64u6QHuYjTsIEa+qcvdLQydvMNxoHFUelMb/g5W2nFCn8HRl574PtwxIUD/KCfv7cE4T4IwfWPS4iUyOgQCYbCiYxmUCVCkiAvyXTZAF1ObrwUAXA5UEvZ+JiHOGsxMzJiJTUjXj9fU5EqE0YXyqI51bJyYYO28SyZzUFFdbJyXp1sXtEqh7ZOgJfrAMg65eLBGXLpEB6QmOf3T9N+wpuQk7dPz9eOAnYYUFo+vrZcnl5bbPrm9pqun77aJFPbMurjYmNfbmp6MVT2/weGq6tvMEuMj315zOji9TNnN0pDY8FPTGyzZKu8MsuUX5CsiW3m2lgjSQnJOkllOHg3ejYFGt5gw8MZz8FBuAiQGywq9sQp6ATW6fP553o686IzL0UvR5PPELYDTluOZ1NQAGRMzFJKMlFLsJH1eKFZK8h1VgwAfNb9tfSAlGBDwWSM9LHol0sfWRJFQIXjtOck599++JEC7gNWtxB0ANpvAGL+33fATqxTfO31t+Rf/+01+QW7oz/8QCUiG2L74+fx//J7E7Ac3ecOmRUTgRs7LUQKcqIlNTkcjO6uY9pd7awkgpUcuPkTumeHMDjhCVDZ4eZ2wk3P39sG0o4DV10ZFXS31WBIWZy3dBRGSCBeD8SNzsBIQoCjFEd5SiSYjD6KPovTtchclpB3fgBkfpgrWMpWd7llwWMmQlKGethrwKQxwU3mFgTpz4n1dVSQ8e+viPeR5vRgsKOH+msn/O70ty+8HAf1MrfZr09PZTdfZ2s99N7/4AMddWjnwK4Je/H0doOfC4S8DJFQqJ4gHLaRZDrcJ3EJ4RIP0KWmQl7iPsrH4Z2TRdaL10dicqSkQI4ScFnZAGRRsrS15MvMySNlzpRSo6NgpjEjZcGMSjBcq45oOLJtAuT5eC3/Or5zohyA1GQN5oUD05Xhrh2bo82sZLmHF5fI3TNz5ckVJseXPv/u1squG0emPq3IixhcUT6Shfp/qUD5ewPuhZRkN0BBbppZekpI0ezOUX8aAxlZW5tnqmsoMNXSu43MVH2djTeJgRL6tmicXgz7MyoZCfCFdTObMhzAF6TMRtD5aPLbF5LSC+baDib7ww8+VE9GaUhzT8/FqBh3ClCmcdMLawWdcMFZuEvZaYcLTonGnB1Ht9FjWEGSDuxnMCQZxtvZVuv8mHcju72Ihvbq3QPSFP6p16fy+ptv6s+g9CNzaj+e5sh6yS9ffU1e+/WvwVyGnGKjLEeF//r11zXip0EdMJM5WDQhxk8KcyKltTZFOifly6JpxTK7PU+mj8uV6tJ4SGs/MLqrLpT0d7GWCC97lb1khmFgQDvIXn9nYwUwJTCrN4IBNEprftz78x5iObiveNkM0gBHoJOFOIFxmAJgidtASMreOJgMyTlA30vN9UHycmssq3jMmct0tYW8ttcc3uD+fcFow8XJcrAeSixIZpCJ/tLRcpD6M2t2cQzsIx62A8UOALWGnzRyh720sMAZhwUPM3aIc0IzZ6FAVpsGDR5osnPg1iI3U0hYgCksMtAUzPsgxNcUDrCFwWZEx4Qo06WkQT5mgekymTKIM6LcqTF4REtCcpQk4x7LSI+UwoJEaWkaIZPHAnQTi2XO5BKZNalUS7/mzaiQZZ1VsnpRg2xd0SxbltXrFOiNiypl9+omAG6CHN06Tq4d75QrkJgXD07VCCZHNjy8MF++ubXahGc+nn13c6nMa8/JJuBgq/63pV5/cxqgvr7xpbKCxJ6TJ1c9GT+pThqbCrpq6vKkqnaEjKzI1rItJi95MqWkRGsVCUFHZuMjnKmAsL9EJ/kcBJCFvkgLBHiJv7+nuLs7a1MomY0gYVKbOTPmpXgjWXfffLzpfLoZjGFqP8gjZ5y4AymrOFqhZw8FE8uiKJvo4bgoxAcnbIiHk95Mgzj/BDchZaYFbiJ6jT59+mgQht6lfz8jaEMQcNQA/YsdJByjh76Qfx9/8qmCjEXVb7z5huYAyXys/rC2GgQ/USSrO8tk3fyRsm9doxxY3yIbF0LuzCmT8Y0pkpsZgb/bW7vPPR2tJNrXSb2YG5iNDx4IzL2R1RisICD4d3jBa/k42aico990AeMzQtlH5XYvjVySbdlREeHrouVW2VHOkgjZOHhAf1UHlI48oFj8zIUpoTiEUiFrPSC9P+vZE6w7DKxprcAJBms52Fjoe+loDV+H34OHnwsYkHsFmICnbOX7yKhnjL+rMXoeYOPfQGVASU51ANCJs6ujBOKgBct1+fi5m3xw0AYG+ZoCoXJ4n7AMLAWASodPS2f+FhKTzEcwxsXjGTaFdZmZ8HsjRiRKbUWSjG3NB8jKZe7UMmkflaOtPuNHF8ik8YUyG6+tAujYQ7dpca3sWNUkJ3ZOlv0bRsn+9aO0/vLcgWnaMf7F2QVG6deZTu0oeHJtedfjiwuefXd9cdfc9hFFZWWlZkbJ1/8FwL0oZ+GaqYrycrPqyqym9o5a02iwG8BmKq/MMVVWZQuDJawmyclJVLrng1rcyLkFKqNpYCTEiNsaiEMAACAASURBVEYG440NDQPgICWDuz0cP/b19RQXFwcZbmul8o4A42nMqcBkOWcA0dYK/sTVXvwBNoa3mWvywQ0b6eUkNjrv5GMdF8BgB30aH8EenPXhqPKG3QaD+vWTcEi4cNyMQZoGGGxs5MFN5Ifvyw4FSra4AFe98XkT8aRnICM40B3S0F/9JXNn9GMMe1MuOTnaiL3tYLGwGCqubq46xu7CnrGyZ1WDnNoxRnNxCrpF1bJgaqE0VSVppQ2bYWPhtbwBJC/c5MPpzXDDk6FtATB6PAuwOMusCDrmy7ipJgYAtYTU9rC3lsEcQYFDhodTCreZgvmSAtykNi1MS+SKYt0lHj/DHsDJjPDA97eA7Osl8QCHPcDMwuP8SC+AxRle0lFGxnpLTYq/plf8AUoeTsVRXjIhK1gqEgM0j8ekfBL+f5Kfg47FG9AdKf7gg/fltTfe1G4GO47QYxFDz89M7//2fdN7771HpvvJ2c2xyw8HbmCI73O/QK9nnl5uynwAoSkCBzQBlpweJzEAWBSAxuhmpAZbwvTfcUyiA5Rs9akuT5GxbQUyZVyeTATYWBJWVpwkZSUp2lfXAdAtnl0tq+aWy+41o2TfBqO74OAmyMrtExR05/ZOkVvwcWxcZX7uMWehXFzIiKbpq6vLur6/tZKlefezkgP7VlX97yOVP5vdqqurzVpHtZnlZsa/Nbqt8Mr4yXWm+ob8LpZtlY7MklKAraAoVfIKUlVjp8G7sWCVXQDRGiwBq4UarKbg+qtkd+hfsR0f/jjp3HWLqY1eON5grIjgQBrmknjTO9oMk1gAgX6EZp0nsjNOXVZVaOUFpBRPUt4MXA7PahVWj5AJKD3ZOvLbDz8EUw7S0Pr7kJlG/93nCkgv3NwvHlxKyHYYRg/9AdrK4lgZWRgPyWspveEnbW05bctel5BwXENFUax2BdgNZy7NFX+PpxxY1yTHtuAi45kfH93cIttX1Mu6BVUyA9IyJzMSQLXVTTZxAU666okg84TPcrEZolFVsl6fXj1URvakZ33nXWX+KF9XKY0JVHkc7G4jVYleykgp8GRctOgIJcBStUAPO53W5UZgDvxciuHF0uFVKcM/wXvoDJVAvxvu5aBlc97whh6Q6tbwezY4jFj5P6R/b7G1GCABTpYyFL+Hk/UQ6Yf3jFUnxlYjc0nAYcRADkvsuCiTB2Ig2RHv4W8/+tj0Wc9Pu17XFqx3v8b1nYvr/MAb75EXvLuHt9szb18PUwDukdCIABMAZ4olqwFgobQgYL4g3DNBIX6az4uMCtCUU8GIOKmtzpT6miwwXYqUFsRCfkaq3BxZFCeN1WnKeuuXNkNWtsjutaPlCJeIgN2ObBmrVShHICsv7KecXKQBFVaj3GVSnGmC68vl62vLTF9dWWJ6dGGOaWJTWkZtbf3fn+FeRCabmppeSU9LN8vJiMybMqVaGpryu6pqRpjKyjNNbLMpKgbgClO1ooQRJJbpxMK7MbcSlxDWzW5+6tWCg3wN3xbiZyS9w/z/kgDHxyzv0qCJk52GoF+MS2Ckj3MnmaxmaJygYqSSZV0h8B70OmRC+jsuAeGMfAZJmLRltJK+itJv6CD4OY7mhoxk4GXQwL66oJBrda3YX4ebi4EDlnl5OHLHWX/5+KOPdehOUoynLAQrpSf6y8c9AH5bW3F1dZLoCF8JB1unJobI2IZk2bG8WjITfSCdhoiDs4sUZoXLuV2j5fDGZjkNlju2bTRO1GbZuaoR369IiuDxeADxoCmM91b56AnQsbiYYXkGgtzhO0vKWAheIsnwL+ZgjaFgMH7OvH9fTWozreEGoDPHOBhsxLwbAxm9e/dWeUjZ5+9mr1UgVAF2w8xlRJS3jj4fjPelOtVXB8LSAwfhoGFlCUvoKO29wYZeACHld//+/SUjwkUaMgPwfplDXVhLapiX9ML7zZSFvwtkPtg+yt9dBw8xHZEc6il2AB0Oza63333n+Vtvv/UcEnzk++//pj/Yr2bg4P4HnVwcxRUHl2+AV1cYO0gigwT+zhSMA9sf6ieATcL+XkZqgTlcFkQnRUpRQZIGTnKzYvSgZyI9NiZIq1mqyhJ1PMPCmeWyblEdpGSr7FrdqmMZ6N+ObB0rFw8xWjlVzu7rkPMHpmpLz+2TnXLt2HR5eHEx/NxCeXiejLeo6w/3VsmCKYXzsrPSNabxd2c4fsOGhoZ/KCosNhtRkFrLomRIyecjyzO7CLa8vCQpKDCeGZnMzIpTD5eYGCWJOJ1YN6ntN92JbcpGIw3QLS//ivVCgv3g4bx03ZSjk63mxmj8GQ0j8HSClIcDTu6h2kpCpvMEM7A0in1xTFD30yjmQC3d4s3AaB+9Cmfpu6hk7KPgigv0EF9XG813DRrYX8IgoThRmLvN2LJDX0jpNWRQXwVugKuDNI2MhVzJkCgAzBnSkamLcHgeysLsjEgpL46TiS1psnhaniyZXix9IFu9AwLF3sVdZo/Llsv7xsnFvRPk4r52sNwolZbrwXIMqLCeMDjER6xxWMT4O0Iuc/mktTjbGTM0OU8zLikaN1qAWOLn+uNr6Wv64u9hK4+nwzBlGXYbcFNOgJuDEWSBJKXfo1ejLB7Sn+MYbNUHc0JaNHxoMpiOyXZL/D9/V1udxsyeNhcdTTgEwHOQJC9rsNxw9XvWOIQGgtlYxcKDjZUnrE5h8OoDHGqsWmHjLytMyKBk4khI35wYX9OAAX1Nb7/73k8AnPzrv/3isI+Pzz/l5eWZRUZG/ubTzz5psR5u9ZDpgpDwwOc4lE3M2fkHepvYcQD2A9igbBxs9R5hBwKLnnNzYiQ1CVIzKkCLKcJw+EVGBUpedpRMaMmQZZqXq5WVkJPcW7BjRYOC7QSbVQ/OUIY7uXOSBkzYrEoPd+v0PC39unpoKsA3Ez5umem726tMf3iwwbR9ed3u1ITQX9Q3NCgh/Veg+3ntN7W1L1dV15iNLM3/oLYu73RtQ75pZHnW88LCFFMBPFt+QYqCjFUl2Qq4eI1QsskwSWvljKBJuFaW+CrQeJoz6a0SUz2dtz4HsYAZgGMezgFA4oVkYGS4lYWmBOjjGLRgIS8lFCNuBCVvKt4cXlorOEBD7PRtLFDmicyeLTIFv45JXVZOUBJRptLv0BMxue7rbgdvZK/LKhjuZsDB3maoRkI/79lTUmN8JT8nWlISQ6UZIBvbmKKScGJrhpTkx+jn2Gw6tj4RYGqSiCBH+XyQhXgGh8sw6+GybUmlXNwzTo6C6Y5vbpUDa5sgLRtkRnu+VJQlSRJA5wN5lRvjL+WJ3tqE6gdGSor1kenjcmRUbZKUF8Abx/uLOcfgUQri704KdpPUUFfp3fNTHZHAPXoJQc7Smumnkjwz3FvG5YdIAuSqk9UgaRkRLCXJkPz4/tp7CNAyYpkb7StVySFai8maTEpbei8qAGebQRLlY6UJ7ST4w1j4Nlbn6GKVvkYROFM2HJ9XneIr2eFuWlrGKCXfW1YEjUwJEn93e1OPz3qYXnvj9WdvvvXW89fffCO+uLj4Zaiol6qqqsw8PD3cwHZfE2A4jJ97+bia3CDVXfCwseVsGNwDwy3FGxI0Boe53l8xoaqiWFgRE+WveV6CbVxjusyaVKCTvlYvbpINSxpk24pGObR5LJhshjIbaywPQ1aewfMF/Pv6cZZ7LZFr7CaApLx7eo48urpUvr+7Xr66trzrydUlpmtHZ9xrqcroV1vXZPb/lRr4eYOBGhperigvNasZmVDV2lYiZeXZP5WWZZg029+dAshgKU6WkRNhY2laeqyWdFH6xMURcEEaeVJZyWCJAo1VJv7KeAbr+UpgkJEWoB+ipGTEjYljMgyZ6xNc7DcgLV9EHwkqTmKmP2PFP2UYayZ5EzI6xhaRgYzY6RTnj7W49iOcvpwg7MnhOWBCK+ak3Gw1IMGNL3YagRsg3pCT9hqqt5XcCG9d79RYAxNeGAegwRNMzpMNi6tk/aIqmTluhLTUpEh+dgwudKQ0V8bLillFsmTqCLGxGgiv11sSo9zk0IZmObEVQFtTJxf3t8uZXcwLjdESJJr6/MJEnOZeEgXJXJ7sJ+VZoRLi66KzXCryw2XPmiac0A2SnRaiecJ+vT+TbDaahriLr8twjeL2hvzjYcHwvJutudjBc7Hm0tGaIxisdFQegx3RgW7K6uG+zuIDCUv2C3S1Fx9IV2+wGCt0yPYEcFaEp6575nvF95J7ve1wCFGisnzL09lK55+QFSljw71sJC/aQ3cTsAOdwStKXv48DirKjfPF7/fZs1+++qr8yy/+dVdRUdEvODx41KhRZtHR0WZW1laeANZqB2c7k4OTXZe1raWJBQKDcE0tIKXp9xg8YU1mUiLrMkMkNIzFFH4KOs5Naa5Jk0ljRkjH2HyZN71C5nYUyiYAjssgj2wdL4fxYOvO8Z3tcmL7BI1QHt42Xq4dnS1fXlkmDy4vBfhmabEz99B9e3sNgLfExJKwr64sfj6xOcdn5MiRLAR56e/GcCxhqaqsMqsamfvulImll2vq89gF8KwIUhKAM2VmxmsawABanLZX0MMRbEnaTh8JpovQ5DdPIPVwIUagxMi9+Wl3AEHIHBzD417expgDDvDhIBomsD/g2IVePbW9xsGGcs9GJRFvRIbrLbt3w/Xt/bmyFuUnwTZ8GEejm+vpTb/Hthbm1Bh44N4yOzAnc1MEsAVrBXv11GCFM1iNoXMW7LKfi1G2htI46ewokKWQJ9vASrtWt8jBTaNl15oWmYeL2TE6SypL4gCGCKks4oKNZFkzpwSsViFLO3Lk8NpaObS+UZnt5LY2lSlsfmRB7Z4NY2TZgnppasiF5w2FLIR/ivaRpkx/SQ9z18jp2++8p4n51Dh/HdzKYa7BuMnDIQmj/Rwh/cDIAFMU2JkpgDAfeCEXa4BvqNiC3Zl/NBRDX23f+axXb5V87vbmYCwjOkoWIogC3W01uMKoI99nejTOvqRkZUuONd4rHl6MXhbE+4FBPSXWz0GnfzHxzYPMHyBOC3MWD3hBTUvgOng723ELj6kk3ssU7OnQ9dobb5p++atf/d7T0/PDtrY2BudeAtOZtbaOMvusZ4/+FsOGdA02H2QyHzoYgBtsMofK4d4/X6gAloEZdZgBuH+Mtq6QYC9JSwqR/Nw4aa7NkNaGLJnSXqLLQzYuhZpY2STHtk+Uc3unQoEwiNUs5/ZNkRM7JwB4EwAwo1GV8y2vHJ0BWdkplyEp7+L56c3V2iv38NJi0493Vsn0sdkdaYmRr7Cm+EVt5d8EONWmdfVmNdXVZkkJwckjq7K7qqpzpRTeLa8g2TQiL1mbSf8MtvQYnU2RkcExaPFGCwa7A2KNSGVId5AkNKzbs1FrhxggDAoy8nHsFtA8nJuTFuiyPpJRSEa6mAtjiJmegTKRcpH1iUxI84ZkYnZgf6NdRBPekJbOw83h+ewlGHqfN5CXs7W28/iDDShBnSFNaPS5UdULksUTr1NGUrpyTLg7TvhYGP+EUHdZNa9C1i+skYNbxqn2P7Z9POQInnFCrl9cIwumFUlbXbIU5kZJcW60tDfRyxVpAOX87jGymy0720aD1cbJ5QMcbjNTR7dRthyCn9i8Zoy0TyjVlV3c3BoBwBQn4P3ydNDEvYuNeXcPX099X+i3WGrFdIiF+RANDPHg4MwWBpl0kykOJE8OtsXf0efzzyQ5zAUHyFA9eJjA5ohyBqKi/V00/cG+OEZFyXIZkR7wtFbwgkMl1MdW8qPdZHD/njrFK8rXTpUDg09sD/IFw1l1T8YOAliDPWx0HENsgK0GcLir3aN773ck/q7sCHepT/czudoM7vqnf3tVfvFvv6hwdnZicM6sqrqK997LCQnx/zLYfOAOKytOxh76rB+uLat1bHDgenqzi9wTwHPD4ewkzi72OmWNNbmFubFaUNBamypTdWlIhbbuHNgyEdesHddsCuRjh5zF4+qx2TqCgTKSAZOrx2erzOQMlEuHpupiECbAOZLh+tHpCrZ7Z+c+//J8p+nIutqb9eUZ79TWN3bPsfwbAPcX/1ZnFhLo9e84eS9U1Y7oGlmWaqKcpG/jgx3cGWmRCrZMLSb9S51bWnqcJEFSsio86q/qKF8UKatno7wky3G8AoDm52+cVFy84exsb5RdvfOujuhmpTobGlmszFkbDKZocptyE4bf19VOLygvOitJGBhhiJ+vMazORK0lTmZdcwVW69O7tw7QiYoIhgwJVmBziteQIQN0DVZiiKeO9Xa156z/XJV+u9eN0no8muyjOBHP7MWF2zcVp+Mk/dz8KUVSX5EsNWWJMnN8tiycPEK7wo+B1ThO4fi2UXL1yHQ9PS8fmq7Rryc3Vsjp/dNlx8Z2mTG9Wqprc3Ao+WjbUQJ8WVqEl97Q3kxyDx8q3mAOBkAYnSQbk6GSQ1y6l9gP0mFBjMAyLD9c60QHaELazmawVGR4SZCnDVh/iFSnBWi+jbI9KdhDe+Es8R454utCPAkaa7AdbnCLvgA/ABjmCoXxEXyylfq3Qd1TrakuWIESApCFulupT7Y0769dAmTfnBhviYN8jcNhSq/84SefwhcPk4oEL2lK9+mCPDX9y7/98rsPP/zwN62trQq4hoYGs/LycrPP+/RK5wZbS2uL5wMH9lWGY7rIFSBzh+1wAdC4jswFzOnj4yaJCWFSXpIko+ozZHp7ke6c27K8Sfasa4MaGQsmm4RHO1hshlaXHMeheXz7BJ3udenQTDkDtrt8dKbcONkp984v0vKux1eWyxVcs+uHp8i9s514bdHzx1cWyZntLVfLi1Lfr29o+nsFTWpeqm9oNKsoSfGdNKFEKiszTUXFaaaCgmTN7GsKIMMAWSZYLQtAY+0kAyaUlHwYPXCsDgg2yrrCjFEKYVq0bAAtUD2cUWXCBlQOEuLULHo4DsPhPEl2aetyxp6f6UnKiguG//srm/XRHBVvtoEaAu+pQRPmnHiBuVqJlRdMCTBiRobjeD1GIek3uBCErPYZbkpLphPgfwhUDzAHJZC/h4ssnVUmuzeMkp0AFds8zgBkJwm2A1PlwuGZuIgTZd/G0erFZozPk6VzyiFfGuQwJOfFg1Pk+FYAdftY/fjqsZnaBnIL3uD2mbm6z+3E3mkA3ESZNbtGGprypKAwWVmOOccADzttuyEAWYTN2koCKQYSLsTdDsCwkvRwR/VILIK2GWb0+ZHhtf8NTMgBuT0++0R60tMCiPR3lubwQ0P6KduR0bzw9/J9dB4+GABzADAdtMDAFczq7WIpdgA7Oyf43rjB37o5WuFrHI2ugo8/Fmtz7hIYou1BYd7DtbqEctQRKiM7xkMjpamh8Kc+dipPvV3sTBXJPjIi2pPANfXp18+uGQxHZWVUNdWb5Rfk//tQC/PmPv0+/z3kJefddDnivlBWw4HMBwsN3N3sJDk+SEryY2V0c7bMmFgsqxY26GbVbcvqoUI6cFBO1cjk4S3cLzdGju+AtNyPw3LHBN3Aw9Ku6yc6tZ7y9pkFeMzTxtQHAN11XLMHF/ExFMmtYzO7vr6yVA6ua7xVWpD2iQG4v4Hh/lI3WWdWWJD3r031udtr60aYqioyujgAKCsrzpSba4T/01nLBsCxzi09wwiUMFTNkhw+yHD0cNE6KChQG01ZpPxnlsMjgKDjLEjmWfyZg3PVtVLOeGM/6B6HwFOYVfO8sGQ1nu404vRtFjhRWXLk526vHoVepDdO3M+6UwpaK4gLzJC1rfVQDbYMhydzZKQLrMF5J5wJMgQ3iC1eY0CFRcOJuDlYfREV7CnbVzdB9uFC4SKd2jdNzhwwVuCePzxLruIiUVbu28jl8I0KNM49ObZtjJzePUFl55k9+H+cFnVitlw/OVuu4AJ+cYG7qufqYsHTB2fJ7s0TZeGCRmluLZCS0lTx8XWFJ+1tbHjFzcbx5Pw7W0aEGWPvAC4GjHr36qEVOHyPGIllno2slgrWY/CEaRGyDr2ZI/4ufi83x6FSmuYrMYHOOvelPjtIChICxRm+dghkY2GcnyQEecgHH3woIW4WMrs+TsrBiFzYkRrqIXXZgVKS4iX5YK8YX0f1y55cwoj3exCAzs4ARoY5w5Ld9vw9XeyH6S66kUn+UpvmI6UJHsw5morg6RoyA0xernb5baNHw8dVvQhCvFJZUWnm6+s1xM7e6om9w3ATHs/ddUo2Rxk6ihWuow28oT/eq9zMSEj6NJkyvkD3y62eXyMbF9fKdm7bWdGkPnnP+jFaUXIUPo6bd47henLX3OndHcZYvaOzNA93EerjwaWlugCEKQJjWvNqjl2QL07Pef7g7Fy5sLvt+9H1IxyqaxsY63j5ZwHuLzuyql+uq28yqy5N921ryf3PisosKS5JNTHXpvk2jkyAfyPIOJNCWyVSowy2yzRGKSSnMBcXKfEJ4VoBHq6AI6t1Aw2MpgyHfwdpwMRTX/PQlICdavUeugX1I+0jY/c382mf9TAWNbK6gadoP+Z5+n+uUpEMxtXDjlp9b6msEOLlDB9jq8GT4VaD1afw5mVpmDvbW6x5A8LfwQOQ5ShJQzwcJNCdw3Y+l+zkANkPpjoKOXKcK2/ZyHh0jj4u4VS8gIt0AXLkPKNcODkPbR4tB9c3wa+NVZAd3tImJ7aPU49w6cgsuXhkplyEd7gGY34Zp+nd80vl/JE5cmD7ZFm2sFFaAbii0hQohmjdu82oI9mBrE2md3ccpgzG4mG+xkAHw/E9Pv1YE+VMMpNZ4gJdITW9VE5H+jkCVGE6WdnGwlwBV5zqpUzFA8jTYaiWibFulSMnBnAGDGd40j/3+Fj84ds4koGBF1swpq2lhaQGO0kYZKcbJKjFoM/xvV21gTfSw1LyYuw0NRHhbafek0qFjxRI5KJ4X2nJ8pNZJf4yIdcL//bqqsvwNWWGOS6NiI41a25uepnpgVGjRr2Ulpb6P4aY95vJqKSllcUzDw8XkzGc117IeL0AdCdIyvSkUJXxDJJMHV8oMyaXysJpxbJ45khdc8W94ltXtUCljIf0b9M5J+wC37uuVdXJOUh6KhcOkD2zd7L2zLFd54vzC+XWqTn6+PracjDeQrl9anbXF6dn4ZqOftJWn2dV87cA7gXoICW1wXRcS+7yJkgcnLjPCwuSuygl6du0TSKT+TbDq2n+jf9m4CTdSAukQF4ySsm0wAsPxwDJC7/Gkif1bX6emnvz9fXAqe6uhcvMwTHXwuAAPRvrA5XROCKhp5F3c4IPILAoM8lEDJiwT403I29CBlhYRcIuAXoN5qM8cHF8cbF42vrgJvqkx2cS5OGgVRgMSFB+Mso2sH9/7bHj9KnmikQ5uHWs7N88QY7s6pAzYKMzB2fK5RPz5NKxufo4B0lCecmLdxon5SGwHYMq5/DaoY2j1KSfw6l5BQC9fW4hzDkAe3iGnNo7Ra6fmi/ncKH3bhwvS+fWypi2PBlZkih5OXE6Qm4ofSmT9fbcYeAk1t2j3cncTIuQxYZyYSWksRs+z9XKBCnZkVOROQKPPotSz51bS3saUVyOOiebM6I4FN6Ihdt9+/XVZScDBvTXcYXMnw3hWMIe7EjoJ34udioh+fuwM8EVctHb1lyivCykJtUDwB8gcZ5DpL3AVbxwDTPCXVQCR/vYiA0YmXnAqvQAyYn2lqoUXxmT6SHN6R7Pa9P9JNTNYpu1rb3Z6NFtZLiXS0pKzAYNGtjH2dX+yTArC5OFxZDnjk62Ju5/sBiGAwKKxQkHZUp8oJQWJsjYxgyZPHqEzGwvkHlTimX5vDpZObdK1gBw7PrevW4cFEiT7FwzSj0d0wIncT2P7WjvXnk1S6/TZR0c26mjGPhgqw5HpF882KES8/bJOV23j0+TA+ub75Xkp37a7eFe+tkMxz+WrQd5OSkf1FWlXmlpzDUVFaU+yy9INeUCWAoulZGxRkSSni01+s/RyWQwHqu4WcvG5DfbLAi4iHBDTgaCxZhrY82kLxdpeLsp0DhagW05XAvMzmBOeqKE5BxJ7oPjyUuJqAGB7gnKPMnJVmxCZYrAjSuncPJxNzjzbvRz9HpsNmX1CKUlv+eHOvfkI71x6PUINnd4Eno7Nk264mNKzgDcsKxS2La6WfZvmShHd0+VU/tnKODOHoL8OAqGOzxbT8azB6fJiV0T9XFm7xQ150ymEoDnAbaLR2fLBU4CBtgYCaN8OXeIyddpcnzXJDmwebxsWN4i08bnS3lRvHY182CLjw4Qb08nCQ/2NubBcDxBbLCGwsMgd6PDvSWT06DzomVEVhRURaj44X1l8IcM8HkfI/FsCaC4OXMU+3Ad1R4JaZgKGZmVFiw5GaE6grwgJxL/DsU1DZOkxBBddsJNQ/y/PNCszTk410JZiy08VBlGl/wA8QZLOrMYYQA7F4yIZR92YNAX4uvZkErJmxHqIgWxXjIqN0TqALSGNK+ucSMCpDze+Xx6fMS/NzQ1mzXU179SWFhk1q9f70BXyMehw8yfD7McauIhzG22AKJW+qQmBEl5Yay0N2foOqslcypkDXw0J3itXVAFK2DIyR2rm3VV8X4chPsgKY9sb9ecG1M69HUned242JH9cFzsqGmBWXL37ELdOXfv3AK5yRHppzu5U7zrFl47ubX1h+bKLHdjR/jPZDidxNXQ+Eppcb5ZTnpYWEVF1n+MLEszFRSmduXmJmlbO9sh0jkTHrKRARIyGku5kli5nWx0CehI62SjyoQejiMW2OfEBDdlI7u6vQE03UbqbhT9enq46DNzcPRv5jhxWRvZs3vaFgHGqgUCkIzFCV6USzT2rPejrOTn6WX66vqlgfp/+TkH3Aic9sUQOBtR6XkYLveH2fZ0tlUTz8gZHyxoZkDAEhc1I95fNi+rlbULa2Q3GOjQjg45BOl3Yu90ObZ7ihzfO01O4nGWpyMkJZsayXanAKBT+PjkLnwtQHdqb4fupD4PgJEJL+Oi0qif2D1RE66nELGQCgAAIABJREFU8DU08RuWNcmM9jxprUuVmpI4qRuZKHVg2MrSRIAwRvIAjtIRUVKP15rLY2V0dZxMbEiUaa2pMq0tDTdemoyuS9H/U12WIGVFcfrcUJkkbQ2pMr4lQ9pbOSY8RxZMK5T5U/Jk5vgsmYF/T2nLkOnjsvD5NBlTnyQNFbFSVhAJuRYo4aHeKvWtIPOHDjXX7UMOw63+HA3t1xfMOGCAroLmdbMYZgFADFfWZUSV14OHHRtVzbvHSVSn+Utxop/kRHl3cWJ0Q4rHg9yk8A+4EIZ7KkpKis2cnIaPdHFzNOHw/Wn48GEma2sLk5c7V43Z4bDxkLysSLwXKTJ9fJ4smFoKsNXLukV44HrtApMd3ExvPVYbT+nZ2IJzYEMb/NoUMNw47YfjAcncGwMo107MNQAHhmNpF8foPYKXI8N9eXmpzrI0ADdHDq1velxfnm1ey+WjPwdwL4IlANzLJUV5ZkUjoqsqKjKloCD5GZPcefnJJpZvcY5EltZLRkk6JGVycoT6uESAi3m3eM6pYFKS+beYYJzGrAQIl/AIw8MxyU0pScAReF5ebhriJdjc3R1Nri4OJvbCQbObICFN7733LmWjqcenn8obb76p+SYmtwfpaDljKSPHtFFi0Y9wPAIrTexxcdkqwnpBAox+j3Mq2S3gDRblECJKTiaRWdrEYbJc3cT6zBD4N0crC5k6OkvWzOMusmrZsW60HNg6UfZvbQfwJsmxPVP0+fBOAGofmI8JVOZ3AKAj2ycATJO014ofH9wKLwcPeGY/2WyiHMYJy4vPRsjjYEMGY+j/di6vk+Uzi2U+/MeiCRmyZEKarJhZpOPTF08vkNljUmROa4IsGJcsy9vTZENngWxfVCpbF5fLziUVsnNppWxZXCGr5pTJ4hklkFYFsmpuqdYQrl1YKZsWV8uGRdU49etl99omObIVXmZDC352G27EZjmypVV2razB9yiTNZ35smwmJNrYNBlXHy/VRRFSkBUmaSkhkLrBOggqIsJoJI6JCpCE+CB8LkwywY4REX5a9+jm4SoODrYAKWVxb7GzYMNrPxYhmMCKJhc7S5OtlcXzrGgfU1qo873osMDfNDW36P1YVVVpNtzOcpo9Dl97e+uf2K5lZ29sMHJ3t5OIUB/Jz47WNpyJbbkyayJ+3zlV2u/GtcS714+RfZvGyZ61LXJyD6T9prE41No1F3cOKuXkbqOkiykCKpQrYLfrAByBpu05lJTnF8l9PBhVvn2KHeGwEoemdV2GvNy/rv4/OkYVBVdV68KPV342wzU2Nb2SnZVtFhXp15hfmGrKzk38KSs7viuLof/sBGU0BkcoHZO6FzMkcCIXvFps9wg8lnIxwR3Y3esWrh3fRj1lsA4K8tQuZwKNdXJuYDlW3VM+MOw7fLglNbtOt9KNqL99Xxe5f6g7AvqppKRkIdNxzj175jgkiOPN2TDKdAALaNmiw8GkrHa3suBI7h7wKwNVRrI5kwl1Vpow2kmfwrrMnp/1xM/6QHJS/GXR9EKZ15GPGxZSZXE9jPco2b6mTfbgQu7aMAYyc7wchQ84AuDtxklKMBI8+2HID+DBVMEeGPRdkDE78czPnQQQ9wFozNvthcQh450E0zE6dmh9i2wH6Pbgc9sXlMiOJeVyAN/j4KpqObi8Qkesb1lWLftW1ch+PI5tqJPTO0aDUcfJqa2tcmb7GDm2dbSc3MJxAmNxc43VErLz+9rBvuMhcdvBprzhJsvlw1N1CvS1o1Pk6uEpcmZnm1w71K5dDed38Xs1y5kdrXJ0cyNurhrZvLBEVs7Kl4UdOWDEXJkyJlcmtWXJuOZ0mTI2R+ZMypOls0pk7uRcGd+UJtUlUEMpjE6zmshDJaAFVMdgdp1D4n708ac6FoPDnujP7SwHP40ICRrY3NKi96GXt+erNjbD9kFKMvH93MLS3ERpawHW9PV2ltjoIMnNjJaWmlSpr8rE75IjsyaXydLZVfBvHArbphFKbknlbEr2vjElwC4BKpFTuzs0WMIDkvk4TXwTdMeN8QpXjnDmyXTdMcfEN9deXQHQrh2Z3gXQ4XCseVxXnm1trLWq+ZkMp71vlWYZKWG/SkuN2kZWy8yMfwbfZsrKMipK6NVSNAppeDTm2WLwxxsjy4P/Xy03ZDIGQ5hb8/VzV0mpYxTwGqu9mWtj4tLezkaY4CSz4U3uGka5aDXkIbzbNlaSvPf+b0yccMVENaOMlIo0/vRjA7rb+LmqirM82LsVHeSsgQSyHYMmzEn5M+DAwudPP+5uWv2tNqkyssfqDRuboZKW4C8j0mDCc8Okc2KuzBiXA5YolEUzwBLwBgQbZd+WVS0KvgMcp022w8U7sK1d9uKi7t4wGrKzXStSDkPK7AXYKF+O7pgAVmkB67XJsW3jwHBjVc6wD4s3AD3eSTDOkU1gxY2tXA4IudkBqTpVDqytl4MrquTcNpzW20ZrQ+tJgOvy7jFyaT8kEUB3dd84ub5vvFzeP0FuHJki1w936A1yEaC6fnSqXMLHlwCsC3jmcovzBwi6KfAm0+XWiakA5gS5eYwVMFPkxtEOuYnH1UMT8TH/f4dc2DsW33u8XOTPwP87DQAfAbAZhT27Z4JcPjgJX9+h4D65YwyYslZWzi6WeZNGyPSxmdLekiatNZDHxdGSmxFmCgl0N7ED/N133/n2l7/61bevvvbqXX8/349bWlq1/xIHbk8bW6unhkQ1Nw2mbWD1EKRqOPN5YNXsjCjdrNpQkynjW0fIlHGFMndKCbxcpdoAtuOwpGsHrte+9SzDa9XDjBO8qC4o+bn0QxPejBxr5ckcY1YlGO0qPTdAx3pKejkmwK8cmtJ14cAU2bO6/n5lcdoQRvNra35G0MRYWFD/clVluVlBToR5dUX6d/l5GpV8zjRANmsmM+M198YgidZKciEDy7eig3X0HXe86XzJ7sFArCTxUcD9RT56dwdJWDNJ/+bi4qgVA2w/sbax7II/eG41zPw/PdxdQyAf697nvrcPP+jiRGV6BkbodOSBTmHur7k3SkI3eDJGGRkAsQfojI7v/toxzUoUTlHWIUI9Pu1mxh7CciF7yMi42ECpLINvKU+Qpop4lZKsjZw7tVj7qFbBhK+EP9gEkO0AU+0Bmx3eMRmMBimogJssB7dP1OAH/RhN+VGY8KPbIWnWteqSwJ2rGmQb2Gs3AzBgtr0AHwtnz+3vwKk7XuclHl/fANZqkuMbGuXUNjINZNCaajm1sV5ObaiVM5sb5Ozu8Tou/dS2Nrmye6zcODxZ7uBmv4lnzsW8d3ii3DwyVXu5LgFst05Mk8sHJinguD2GALwMQN44PkPunZ2NmwofHzNAdudkh1wHyO6c5IneqSPAr58AIE9Nk7unZ8iTK/Plx9vL5en1xVp1wQfnNz7i4+I8+fLCXHlydaF+3ZcX5sjdk1P1+10CSI9uaZFdq2plxewimTY67fmE5lSTh7vdkz79+nv0H9C/t62trVNTc7POPGWF0zBL87eth1uet7S0ECtL8+eDcHjSEzIymZHkr/NMM1JCpbggUfeFs6t7AqRlx7gCbTblWuIVcysBOHYINOsY9N2wBQyg7MPB+AJ4J3BYnt47VT0cF3+w45s7CBjMIqsReGzbucC0DnN0+6eQ4Uwb5pcdLclLfqehsal7BPrPYDj4t5cKCwvNIOks8vOSvgbYulJTop6zdIu+jfMl2M3NBlMGTRK6x5az541ejSMTqOnDoe11lLkynQ+kpZeCz9gfYHQE+PoYAKSkpJRkKsDe3qbL3n64ycbK/Me4uOhPIQuztML/ow+f9+re982xBgz/c+gOmY5LKVjBTlnJZ27R4Ug7jqmzZGkTI2wA5kCA1RY+wANMx1wODwBKXFabs62mtCBGaiCDGHQYV58qo2sSZDIk04r5NbosYs2SRlm3rFGl4yGA6+C2iTpWm8x2Yi/9HGTKfiPiSC93AiA8uXcyPESz7hlgh/fWpTWyZ1WTHNw4CpJmolwGq92AZ7iAi3sNrMHtOud2jZer25rl6IoKObNtlJzbWCfHlxbJwSVFcmB5qZzAaxcPtANck8A8vCnmypcX58sXZzq12Pb2qVly//RMuX9mpgLw7qmZKh35ujFXfw7AOAMn+Uy5e5ZRt+ly59QMuX0S3wvAugOGu38Kj9NT5faJGfLgwjz9v1+cmQXQMXIHBsDj1smZANU8eXiek60WKtC+u7VMnnYD7unVBfL9jUXy/fX58gOev7rQCWDOASO3y84VNc82Lyoz1ZVGXQsMDPiouanZbNSo1r/KA9eaAWCvDrezPmFtY0UP+HxAd+rDDkooLMRDI96xMYFSnM9hsEnS0pAjY5tzFHAzJxbIkpkjoUzKZN3CKt0ft3lZg/bC7VzVrEXM23EdDuPa0V8zNaBLPwA4js67caJTN+0wRcBmVCbCmVM9v2+S6czu9ucE4NJpBTtzM+L/x88uXu5uNNXokLenk2P+iITnWRlRJgCri74tvbsDgBFJnZ6UHKlBEoKOoWoODDJWTxnj8CIZJAk3TDXBZxQsG8zHvJuPMhw9m736Nj6cne1Nzi72P7Hiw3xIP+93fvNuClmpT+9ez8lIBN2nuqDjt1pbycGvnCVJ2dmnz+c6AIgJcy9vzub30BF0RnOr4SPDuyOlZGEOoiUrpySFSOGIaKkujZPW6iQZXZuCEzhb98Axp0OwrV1Sp1Oftq+FjNwyAd5tghzCxWIghGA7TgMOWcjk+GkGUJh3O2B0EFM2snzo6JYx8Arj9EGw8YLSJ9w+NUe36lw4CJY5OVu+urVaQXIdHuoCfNXlvZCmS0tk76ICObZypJxZWyXXIO8enKPXAJOApR6fm81uZHlyab48usybe558c2WBfImveQTW+RKg4AQqgu2ra4sgj3CSA0QP8Lkbx6fJPYDp5vGpchPS8v7Zmfj3dHz/6XL1wGi5tHe03AMg+TvdA+tdO84hOwDciVn6fOc05/PPlqfXFsrjS/Pw8wyme3xprjzF7/D9zUXy3fWFAB0et5bo2Llbx6Y+v4C/C7LzBxd7c8vs7JyXcO+98iJwR7UFSdnLxd3psb1GrAd3sXDZkeu8nO20SJmj0jmAiamM6pGJWtLF4MmUcfkyf3qZLJldCe9dqRHLjcuaZcOiWgCuBfKyWTbherLy5AgOzn2wAFxxdR5+7ioPwFPzjUDKoRmQ9QAiVcheYxEI2E3O7J5ourBvQteMtsyKpsrsl420wM9kONavsccnPsY/a0RO3LPk5EiyG1gu2pjE1R32T+4eEMQGU12qyEbAGGNkNcHGjTjsEIjsHh70orLEv7uahLKSW0fJaurbhg/jycU8S5edvZXJw8PhRxjlAZ/37jVp4IB+XWzLh3czffzJRyZGJBmxJJPRcDNlwF4pNq2ygFUrWPBzgsCqCiz+PhEG60ZG+evHBFpCfKh2WbP+rrY8UZqrk5XdxjemaUCgc3KBzOkoBtDq1bNtXtFsAI0Rxu1GiRerRpiTY37tEj0YwHf3/BK5fXYBmGuuXIHhvonny/ABrKNkBfp5+DImUa8cYhvIHP387VOzcQND4p2bL9/cWSX3AZQrBydDjkEm7miRy9tb4c/Gyp0DE+QhJB6BpfMSz8yQ73ljQ879eG+tfHdtoe6sfnptqXwD2fewW+o95NffWCb3AdC75xiFmy83z8yVO/j4/sUFymJPry2RLy/jY7DQ5UNgT8jWs/CI+1ZVyuntoxSkd8CIL/apfYGPyXiPALI7AC9B9oiAvwSgX+yUr/H6UzDdNwDb9zcXG6Drfn5yeV7Xowuzux6emyn5maEhubkjzBobG176633xVlYWFh7ebn/kDEuLYUNNDraW4upi1FFG4RpmpYZIWR48XG6k1FUmyYSWLG02ZS3rwhndgOPk5fnVsmFxHR6MzLbJ1uWNmjLYtZYBMCMJfnL3FDwYRJmmOTkudKSvPrzZWHfFKO65fVNNAJ3p7L5Jcmbn6GcNI5PcGxv4u9b+l8sa/xtlXfVmFeUjX0pJDG7kQoWk5Kif4NdMKVwplG7IST4YMOG+5niNUIbDA4XqRkvKS84yoVSL6I5W8oZXVgMQOMbcD57OaDJ10Zwb98FRJlhbDe3CSfYTl9cH+rtO58yInj17nie44OX+89333nv+7nvvmpiwJvgoETl6gNUVBJovwebvqaMcdAZmhBG2ZpI4Dg8eCvEJIQq0pMQwyUyPlIIRsbhYKTKmMcvIT43JkdmTYLwnF8ryOeWymvkcpgMgH5kWOAIGO6m1lNM130aQXTk5T65DFrIImbWRrJH8gkWvl5bI/UuLcEMb622vHZ+p+6XvXVgIUM5XsN2/vEQe4nHnLGTbWdywlxfixl8kjyjbwBx3Aa4HkHqPwCA/3FwmT64vk8dXFssPt1fKt/j3dzeW4GZepoz25MoiyL458s2t5fLlJdzUt1bisUK+A4C/ur5cvr0NIOP1h2RAAPLLq0vlNgD+9c3lkKXz8HUr9XMP8TWXIUUJussA/MkdbXII3pIf38b3p7cj6B5dng+GJXPO1Z9LoPKgoNS8R2bFvx+BeR+dB2vjUHgMT/cN5Oa3OBS+PDe768vzc559f2OBqbE8vj082Pul+r9KTTU2NpoNGWpu6eXr3mVja901dJi5por8fJw14c9Ef2ZKiDb7VhTFSQsOy/HNmTJ7cpEsmFaqSxqXd1bJqnnVymxbcFhuBsttx8FJP8dlH5sBvK0ctbB9YjfgJusCR23hgUo5sWOiphEObx4rRwC8Y1vaOHGt69zeSaZDa+sepyUE/7bOaM35L7fp/LfqKGuqK/6laET0jrTUKFNyUuRzg9kiNd/G3JvOK+H4BObeEsKNwEnSi9RA6J/XyxJsUZFG9DIMco4Fyi+mcxF8xuIOVw2YEDjDrS1MdsMtn9tYD+sCw16oKIz5/Fevvjbhl6+++h/s73r9zTd0shbH0ZEdvboZjZFQnW0ZYshERq8ItuhIfx1ipABL4k7pSPzunNgbIfl5cVJewqRyioxqyJLJY7ikvVimT8iXzo4SWc6SoIXVsnG54dkObh0ne/DGs8j4NMz1SUjGi8eM3A2Lj++eXwzwLMXH8+XO+YXy6NpKeXR9hXx1AzfxFYAENzwf10/y6yG7bizH/1mImxRscHkxWGe+guIp2On7L1bra1z0/i3A8xX80WPc2N/yGUB9CHA9Bii+gfT8/v46+QHM9hjs9N3dNfLoivH8DQGJ5ztgsYdgsK+uwVvdXo3Hcnl4dbHcu7gQv+8iuQWQE3B3zxPw8/RzD8BQZK2rDMCcmwXJCakJ2UlGe3CBA1Lnq497DPDcB4OSHRk44eOLs7PkFjzhXXjIu5Cnt/F/vzg1HTKzE4cAfhZAStZ7dG6W6cHZWT89vdRpGleXtKCiouIfCLIXXQI5Odn/aO9kO9Ldy5UdHM+ZCuCsl/AQd0lJCJKMtHApGgHPXQp1AjnZVANVMjpHZk4okIXTR8oCPFZ0VsvKTiNauZ7RysW1sh5Mt2Z+lSybXQrANcmONa26T+4Yc6R7jPIuMh093VF2hLPvcRs83raxsAdTTKd3T+q6fGCiacHEvGl5OWn/8JchQrU/X1KWlZa+EhHmNS07K47+7KfEhDCTUUVi9L2lJkepjCT4CDgjNcCEd5gy3Yt1VMy7KeCijI8juhd5vJi4zIZUBi7IcpQKrF4Yyq2m/fs+s7EaKuXFiev9/Vxftrax8f/nf/7nlf/6i3+72Kt3z//F3B3AZvL391DQUjYyOhql8ywCDdDhkRAbpBs3k3TDZoSCLT0tSkbkgNWq0qStMVva2/K02JUV5rMBtHnTymTRzHJZv6RBdkB+bF8HzwawGQnsdvVe5/ZN1vzM5SPTtD7y+mnchJeWAjQLlNmYNGWL/pdsXryyFJIRNzLA+ATguwuAkfUUZGfJLpB/YCKy3r0LkHNcIAFgPASLfQ0Woi+7f55yb7H88d5q+eYao4NgC3yv393fKH94vFX+8OUGZSzuNCOLPQWr8f9+/wWAeHWJLhr8/t4GeXoHQAYg7+NnP8Tz+cPTlNkoMb++sdTwjzf4ey9WaUm/9v3dlQqsp7eWKXN+DWDfPcdqjOn4GjAVwPkYX0sfRy94HY+rYMKbxzvk2sGJcvXgJACQoJsBaQtAAogMqHxzFYfUyenPHp2dIStmla4NDQ7455pqbct5iT1xllYWrzq72p5x83QxMXJt72Bt8vFykthIX0mKD5aM1HApK4qXGs6ibMyAFUiVaeN4aBYp4OZPKYZ/w4G5hFUn3ZISTLeQ1TWaVzWASLajl2POlENh6b3Z2/iijYe9coxeXjg4zYRH1+k9k0ynto+R6sK4uL95TN6fJWXFyP8Bup6flcHZkiHPuBLWGJcQoQxGKcmSLl0TC3YDCyrwomOCFHBMfjN4QpDpllOupwo3IpZhuu00UD9+MamLSXBuy3F1dTANt7UyscKk/8D+XT4+zl/l5SS8x98tMTHxn9LS038DWbGSIA0K8u5S2QrwcohqZPfaYk5tigz31Z3hSVxv+1eAy86KlZKiRB0YOqYV5np8EUBWJnOmlsncadwvVivL59fIqoV1sh1g2wMzvWdDqxzVvBiYbnml7F5aLqe3joK/YoBjDlhullw8OkMfbLmhd7uvUnKxAo4yk6xH9qKEo5Rk0ynB9gU+ZvvHU0o9vPbVDQDl5gr54Yt1GhUkMz3qlolPAYTHAMLXV7lgYqlKxd/dXw+/t0a+w9f/iAfB9g1Yja9/fw/Mh+ffPdwAqbhafvflRvndg3XyFGz29PYKla6UuAT+7TOz5TswHyOWT/HzH3d7vW9wEHwHwP3uwRr59s4KBSLZ7evrS/R3Ids9pF9TcMIPnpqpgLp2uEOjozePTNbHdQCOwPvyAhcezlGWA9hMt452PP/64mzT4U2j7loNG/x+eUWlFgG3tLSY2dravGbrYHPG3csNPt/muZW1hQT4uUpkmI/kZUVIIaxA1chkXUc8viVHpo7L19XD83FgLgfQVsw1tubw4KSUXIXrypkmsybkyarOctm4tBkPjjwfq0ETFjIzNcB0DQcMHdsxQWdTMsXDCiCOYTi7d1LX6d3tpn2ra79KivTqX/m3DoL9c+K7qvyfsjLC16WmMBgS8pz7uFMgyZJUPoYbDaZcsEgvp1Izsnt2SbhuyuGNT4YzcnOBfwYc0wKUkqHdCzw4Eo5MxyQ4c3IsXGant72DjYlMFxLk8TVA06Ouvv6V5pYmtmuYeXi4zmDxc1ionym8O9JIcLNWkz6NcjIcF4VBG84mZCSLe6RzcuKkqhys1pQjE8cUyEwAjfvEls2t1fHXGvLHRdgAmcGC1z3rITU2Nqt3Ob6xSU7gecOcAtk0t0gOrmuQMzuMZtLrpzvlJiQi+9zuAFx3wW6UlPcuLlG2+xIMx1D9/YuLNDByA97nIVjs7plOSDac/PRtYBuCjWtuv8Ezb3SyGr3at5CGX8OnMeDxLYDzLfzYjw8IqPUqHb/7AgD7chNYbjPAtYnrcuU/Hm/B/1muzPkHAO33D9fLH7/eKn8EE/7xwVp8f0hdAIasyM7lR1cWyA93VwDUS+UpwPQNfw5A+T1eIxD/9Ggd/u86AGsRvu8y+RFMy9cJOL72+OoiZcNH3X7uLtjs6sF2uX10slzeN16uwAtyLCBTFXdOz9SIJlnuzompXXfAhOf3TvhdUXZ4T8hKLQJubm42c3K07+vq7vjE3snOZGdr1cVyrqAANxymfpIJOVmYx1RAgrTVp8vYllxYgnyZBFtAKbkc13QFpOT6xfU6pWtlZ4VMG5OhudX5U0sBxipDwaxm4AS+bNcUo/IEkpLVJ2f3TtOuD3YOsPD87N4O06VD003Ht7Q+O7t7gmlee96S8pHF/0is1P09GK66suJ/pqeGrmGVP5jrmeHbItUHaTlXd7KbuwPIbkndrxGML6RlTPfEZWP54gvAeesQTwZOAgK9uqd1GQsYOfiVgONsCubinJ2GS3CA26XY6MBf6+9UXfUKjOlLnp5uneHKaoEmVrcQUAyGkMni44IUZBHKcAG6rD0tLVIK8hOkpjJd58xzxsWsKeWysLNWFuPCLJ1bI0vwvGkl3nycdptXt8k+nGi7VzfI7hW1cmhdo+xf3yi7VlTItgXFcmBllbLdud3j5OKBSXLt5Bzt2r5DxgJLEXQ3TxsfP7q+TIMlZ/dOlGtHIT0hQa8cnqrhdM4yucGw+jnepAs0lM8Q/3eQkwTEHci77+6uVsahbKNMJHj42jdgsh8fEkgbFWB/fLxZ/tc32+WPX20BIAnC9fIEjPo9vvYHgPgPAOR/AHBcnfsNpCGfGRx5BKB8DeDRE/J15tC+vwPvBzA9ub4IP5tsugjfY7Wy4++/XI9DYa3xNbfAspC3XwGwT64vBnAXaEqAkcqHYLKbANtNgI5zOG8emST34e2+ODlNbh2bosn2e2DV87vHdN0/Pc105WD7f5YXxFg16IzH6pfb2kabeXq6+7h7Oj8z7gcrk4ebPQ5gd4mNDpCasgSpAtjqypPg3TIBujSdojauKQuSsUxWzavRZYybl7doW07npDyZOS5X5k0pgT8v0t1xGyA1ORB2/6bxGjShpDy9Z6qc2TddpSR9HAcMsdzuEnNwuyd2nd03+TnH1I+rSYqvrizXHYm1NX8r4ODhKitG/mNstP8yNo/Cu8HDhWuUkr5NdwakRv+5jvLFoFftFuhmOQJOo5UsXo56kZML0MglaysJOPovRioJNJZ9eSvDGVFLOzurrv79+5msLYdcycmIeZuA03EP+N0gP2fy+xBwBHcyQM45FpSNcQBfQlyIgjAO/o2StyAPOr8yTU/BWVPLZe6MSpk3q1oWzq6WGZOLISdLZSUuzta1Y2TH+nGybe1o2b6qWXYsr1EmO8rZkWvqZd/Kajm5uVlOb2+D9GjX0iaG7a8dn22ADaxGGcmo4xf0XVRgAAAgAElEQVTwc/fo5cBq9Hsso7oNRruwb5LONeHwIErBJwQXAPWAYXpWbeAmJPAY3r8NwJHdvgfbEGyUiz/Ak/0eEvFHSEWC709gMvq47yEn//BoEz63CXJvRXfgBa/ha3+Pr/0TPvef3+zE/1sD6cnHKgULQ/j8uUxHMAhyrzuBfv98J26yycpGjISS+egBybzf312jgZwf762RHyAzv4VE/fELMJ5GUPH3A0xfnputgZJbrHg5MF7unQSTn56hifrbx6fLuV3jNAgD8Jku7hv//MnlTkmJ8yuKjIw2A7u9kpc/wszFzaHM198dNsMeYLPrio/ylhj4t8S4QCkeEaUtOU1V9G9ZMrktR2ZOKpQZ7SzBK5c1kJJs0Vk5r1KnqXXic0zxzIScpKzk1DWOO+cyj50rcaBuGquejd6NTHdi1+TuFVbT8JhqsNu2cc8u7JsomxbX3W4sjvy4rrqCmHnpv8q//R8Crvwf4mMD5tGfATQ/kcXYdpOqnq2b5bifKzmye0tOlObn+PUEn1afcJtlTIjh56KMwAlnmoRox3f37BIFmINWfXBwkBFAcRJbW2uORdPW+fjY4FDOVeHJx710gYHeHUx6wruZ4tVPhqucTEjojkSm8PeKwAMyMjtGy7VGQ+N3jC+WTvi0RWC2RZ01Mgen3bwZ3KZSLxvBbtvBbns2T4B3a8WFaJQ9q+pk35o62YPH7uUVsn3xSDkAtju/E1ISgLu6b4L6uC9Oz5H7ANM1sNV1LmWnd7u2QivOmXu7eXL2n4cGXT08DTfabPg0eCN4LM6uv3xgiuawKDcfw1c9hDR7cn2p3vyPGIkEIOn/GHV8Qn93b43KyifXwEYAjzLeTQOYZK4/ge0IKn78+/vr9GuYc/tW/w02BEMRJAy+3GXa4UynhvkZbeTYPubsbh2bhtdnaoj/B3q4h+sgWzdreuEPkKe/578B2u9vQ+beXKrphB8oQW8vBWDBcADc7RMA1NEOuX14ktw4NFFrMK8eNOoyr2kp2VR93r+69vm3VzpNzRVxk4cMHvzSuPHjX/Ly9jCztDafExDoabKFnPT3cTFFhnpJLOxCblaklBXAHpQkyKi6dGnFg/5t0YwKTQWsml8HKdkAUJUDbAWyGNd48bRCmdM+QptSWYT+guF24lpzxue+DWN0WSPn1Oxf36ptUuyNu6S50+ksu+u6dGBq15Et456Nrk4saavJw+Ff181uf7OkrDOrqiz/x6T4wEWxscEmBk2SUyJN2hUQH/pnSUng8TUC8cVr8fh8nOa6DC8XE200S0a/8HLdIxbo3UJCjQglQ/rGPEqjR46MpzLCzso0aPAgU2ZqyKqy4uz/WVtbr9XYYLi20FBWjfh3sT2EP5Mz5DWJnRalD/brMexfVZ4iLfVZMrZthMyeBhnJrZjz6tSvLZ5TATlZrR/zsWdzOx7jdSYJC4xZenV4U6sCbfuSMtkL4HHzzfltrXL1wGSYfoa/CRQw0+lOXW10k17t0hJ9Zpj/vkYeF2mOjX1VDy8tVjnJ5DY/f53seGy6XGOSmcXGRzqUYb66tkSDE8o4rB4BQL7FTU2G+fLSIiPEj9cINnotyrzfPzDA9XswH0H6O4CNr33HAMmV/4e6946v6rCyhWU7M5n5Jm8mcRz33iumFwk1REcCVBBCvYKEOuq99967kAABooPovffeizG4g41bEs9MYnT3W2ufKyff/N7Mm7SXzB/nd4uurso966y129qLVV6SlX794WoFEeMzZh6/AQg/gqQlyG8DYF/eIBCbVR5+h68R4JSTvwab/vvnW+TXuP/dp32aASUTk91+SRBSduL1bO/69NIiLWPcPt4o53ZX4u+rAbM1MFEi1wDA946zg6WWPaAmxHv9n1/qkLaK8I3W1lY/rqyqtHB2mfnkuPHWZyZMcjCNHDX8Pi7K/ayvBge4SfR8T0mO9ZHc1CBIygApywuV2tIoMFiCOqb1tCbJ0jYDVKvAcIzfuI+vsyZGG9EX1sbICnyNpYG13Wk6ScDmcva1HtxSKUe3sQRQqYA7wAby7VWm/esL7rNTCGD8sjRp1vi0pFiLrJy8B/+r+tsfxHCpKckP+ng6LaRUA4v8NijIw8QaHAvbjN0IMq3DKeB+x3oEmQE6YybOV2Wlq0pLT3PyRK3y3J00S2n4mUz7YSfcjOkGw0FWmiZOsOsfNXKEyd114m8yU8NcWKPJA9NNnToxScsAYDiyJuM4Jkvmqp+KsRc6KTFIcrPmSnFemFTiw2iuS5Tli3Jl7fJiWbsMV7U1ZbJ5ddEPiZLNCJ73gN2YHt7TV4pAukglxZGt5XJgba4cXp+PwLpKzhyAxkc8dhPgeh9AuwK5eHl/PU4gXNGPtciN463qxGUUudu0BsZ0//vnCKJeAKhLzoMdbx43d2qc1eUQiG1a5eIeMAAky228z4fsT2Sq/WQrvg7pd7kHIOo1CtgAG4FGMFFikskoAdm2pTEgmI71u18SXJ9sgJzsw30DkATtb+4ysbICctbIQH51a5V8CoBTDrJ2dheAYZMy63DffbrBkLBgYyZ0/u3zbQZoP9mg7MkkDEsFXwK4BBwlJovhBB0zkiwF8CLCWhxLA++daMHfTtDVAXA1Oo1w9VC9if2bSxuiT9jZ2fyUn/OUqZNGTp7q8LGTE8KNKbbMVpvcWOwOniVJMZ6SGOMtuelzpSw/TJoqIRcbknQB4/K2ZFnWmiCLmuO1/sbkCJmupzkBcjIKR4R6h/biYsutRau7Ug2TIbqrgeF2rM4H8ArkMGJ4tnQd3FjMhvL+g32F/ce3lUGaxq4uTpz99wU5yRaZWf91/e2/PS3A5QSJifEWjlNtY/z83b+HNLwPqdhv1OE8NC76IX4LNN+S7VROuhsLGBVss7T47c1VwyopXcw9li4/rBgeKIAbUwTjtd2LIzuTJtnJuHHW/ePsx95/591B4jzDYWVEqN+Pk1NSLWY6Tw0jYDULCsD54eeEqIkRFzr46T6wnEwDaE3VsdLJjvEl+bK+t0jWLS/UpMhWxmvrymXbujLZC1bbi8B5LwDHZmT2Ru5YXyr7N5bpoOjhbZVyYnMprnQVYLgKOburSpuMz20tlTPbyuXc9lIDdEdbcEK1a/cIGY01uRunOjR2e5/ZSYCRspHF45tgxxtsCr7IrN9KfQ1jm4vbilWqas+iFpcXan3sA/YmQl6SrcheZDoWuj9mkuLCIsRhHSoJ2d1hxFMrVGKSmf79riExP0eMdQ+A++6T9VqGYHaTBfN7t1YbaX+A5s5lAP18h/ZSfgbgMNP5jZYeVmti5lefbNTvp6QkS5L9+HsyxvsOzzEDqk3U+H6C9xN2npwx5DL/XjYtU0pyjIdMx3rduV0Vpuu4v3Vpyl0vD+d3/fz9LYYPHxTt4uZocp4xoX/SBJt+1mh9PZ3E32emxIR7SlZysOSkhYDZIhG3xUtzdYwshFxkhrK7EYBrjDOWLi7PRzyXLcsBsM76eDBcuCxtSQDQ0mVDT4ZsXp6t4zqc4uDMIQvde9fm436R9k+eoBszGG7P2jzTwb6i/uq8eXFJiXFcSvrg/63+9odIygcJvMAA77fc3ad/QTAFBLjfZxlgIEupdTfz4nNNlPgaDcyBAZ6aMPHXNcMG8AL8PbTg7WmWlKzNDVgtsN+R8RzZbSqzlNMmaD/kBDPL2dtb9w8dNuT7ocOH/PtcvxkZaSnxFhMmjl/AsQwwm4k1N7IoR4UoI7mqKCk+QPIgI2vKY8BsCUbqvztXVizKkfXL8jUbuQ63W9aUyI4NFdqyxQFSjtgc2FqrIzccRtRG461lcnQTwLYJur6vUM7srMQJgg8CsRxrcWSrSxzmxPOXEM8d316ptTjKRcZnlIw3wIQsNjP9z2QJC830Nrx1ul1T/3euLJeP2ZN4qF5u7K+GxGyUD08yi9ehAObr2b9IduTrb5lHYq4hznr/TLvW09iAzJ5JpvS/vkk5CamnHShgI4DgOwDvLiQj62/s0/yGUhOs9TVvbwNQ7y3TVP29Gz3aKUKWYjz2hTmpw3rgN4wRP+pTCfsrvCfjum8/YCLHLFUhK7nGiQ3Md68s0t/nDi4IdyAtOepz5UgTwNaEuA2AA7tRal4gqx+q6z+3EzHUusxfxYT7jw0NDf27cQ5W61zAaOPsLb+3t7M0TZ1sb3KdOUlBtyDCU8HGodP6shj1MeGkdxtAt6w9Vbrr48Byyeq0vB4KZsOSbFnSHKernrvqOP2eBiZM1MmBXWuL1a6e9gt076Kp7/UTXTqoqz40+xpNkJimI1vKTHtWpH+clRT6nDH7NpAoyfrTAGdmuQdI64kJcS+7uU6+6ec32+Tv53YfQDMRfP5mKalA8zPAxQQJ2PCHpAlBoBbnWh+bZTCbeRTfkJRmb5MZk7X3ke1ZP2QquVeAvoPqbTLOZD12zG8trUbS2GZPelrSQ2PGjI5lF4nnnJkKOKb+54f7SkxMgMTF+ksqrn752aFSURIpjVVx0t4AmdGZpaagm1YZ7LYOVz8Cjvd3gt22byg3Ov+3VYPpKjSGox3euf0NcgpSkgs3Tm4ulnOQk9wNsHt5muxdnSOHKDXBfhcBNiZIOCxKgNFe7X0tFXTJe0ykXFqqbV0E3i32TILhyGifQR5+Bpa7tLNCPsbJ+DGY7UP2TpIV8XUWvNkpchvgZJMwYx8ePIFv4rVM57Nbny1TTFZ8Awaj7CSz/RsYiZlMysl/hzT8gtlGAOsufo9PIW8/A3uxuP0p+xovkR3btaDN+PGLG8uUKZnF/PVH68Fmq7RkwHrfd59u1viRcvPXAN2960sByuUaM/7rx2s1Rvzl+72atWTfJGPBO5e6VB5fxd94TafL63RI9jwAd3JHqekMAHdpb7kp2HfGvBGjRj0xabL9tQkT7UzW1qO/t7e3EpcZ48UdAAwJcpP4aB8pANiKs+cCcFHSVhsnTeUR0g7QLebsIuQks5Abl+fplABtJpYiruuuj5UVnSmIFcOkozpcVnfyNTkAWomqGdow0OaQnUR0YeaAMI/DWyr7DyF+ay8PXe8zx80iLy//v1xP9QczHOd6ON8zP3Tug+MdrDoAIADO/fugYE8TQUdJSfnIwwuMxZjNT3sVzXU4rYkZjEeQUVYyW0lvE8ZtRpJkqsZrdJZiiYDsNuDYxVtjbGeciRt0Joy37R82bHC/i/PE72ZOH283ZszINC/I1DmI4djxoq1aUQGSmBgsmemh2rKVnhwoxblhUoMrYFMN/uGdmRqvMRu5aUWR9PXmI44rll3mWba9tEkAs9EmYQ+Xc6zK03/2/r5i2boyW7b0ZsnxDfmyb0UGgJYtu1Zly+4VWXJ0Q4Gc3lGhM2YsD7BxmWCjYy+l5TXEdiwXMIZjd8jt84u0fYu9hjePNGoS5e7lJXJtP9ufWuRjAOseGOvrm736mAOjZC0DaE06PsPsH2fXdDaN0pNpeI7okIXwfQbjgOFYg+N9SMd/Rxz3Eb5OiUhp+gFAzrhNG5kvg40uLNY2NcpXdpAQ5N8AaEy2/PIjxIGf9WlMyAI6SxGf4m/51BwnfvfRGk2WqKQkABlrAtg8vmSZAED+6voS+RC/7xVOoOPQi8dRyPLdFZq95ODr5b0VMtfXcfazL7z4zviJ4z61sh5jGjV6+P0pYDd3t6kS4OciUWEeenB7UXFWiFQXhkpD6XypzAvRVV7N5fMVWL0dSbJ+CV27MmRZS6L2VC5V4CVIfVGw1BcGyeKGKOlbkqJZSQ4Fb+pJ1ywlu0qObCnXYvf+DcUmsKBp16qc3+SlBMxKTUtXVvvvgu2/aZNH167chxbExlq4Ok/1BHv1A1CmAH/3fq2/BQ4AbrYOnHJSwMhYzvmB7XzMzOal1ngzjSZmT2NMh/Np7BQx7BcmGyUClZWTdUZuIIFingZn8sT07uBB30+bOk4cxo12Gz16eAvHgHzxe3EIli5isQsCJTkpBOwWIklx/tqQXJY/X9c/LWxOlR4Ajt0kawG69ctyZfPKQhwFsmNdqexiOaCvQvYBeLvXF+Oql21c+fBBqNXBxkLZsyJTDq3Ll8PrC+TAugL1HaEnyBnEc+dwSx96Mhu9MAg6juPf1vatRbryiCDjvmhOBXx4FtLyCFPmjfIJY7SznfLlBchMgO0ypBaTHzpPdqFbywR3cTDRwAQD26RuHWuSz8zxGhMTLCOw9sWUvmYkLy3SRApT/1+D7VgzYzmAsRYTOMxM3rm2XD690qNF9w8gU/k918Cad64bQPrkco9mPtnZ8hWL7B8Y2UpeCP71EwJrvQFCvC+TJ9/eWqVfY9Lka7Dbl9d7lPm+wPEtHn8KBubA6vv4G0/vrlL/FDYAnNxWKtcO1prIeBd3lkhk0AyvocOHhdB7c7zD2O8njrcxOU+fYLR0zZ4ms92niq8X9/N5avG7KCtI6opDpR5Hc1m4dNZEg9HiZU13qmxcxnXOGZqlJMvRVGlxY4xU5fhJXX6ALK6P0sl7bqDlYPBufK7HcJG9fKRd9m8o0kzl3vXF9/euzTF1VEauTYuf9w8sS/3f6m5/lBFsRkbGgwUFRRaREfOsXGZOvuvr425C/KayMijIPAdnZjNmIQPMZYCBThMCUTOT2tI1w1jGyL3MPxgKzVC2m232PeHzBJmbriN21II4l3rwH097a0vLkd8PHvyOaZz9mHkO422aWdfz83UzEXCRUf6SEB+kyZIFsX6SSvfdnHlSVcIWrmipK4fGb0iSpQszdLHDemh7DiBugqzcwX5JgG0/GI7g29MHibnOAN3ePvZPFqt7MgG2d02enKDVOSQkG5m5H4CbMmlxdxVA0/k3gO7m6W7NVLIOx5Yujucz7c56Fw/GbzfAXO8dqJUPILE+PNosn55CPHeCnRhtWnsj4CjnOHbz1Y2l2p/IMZ33Wdc6jO8F6DjNzfGXTxDPMQVP1mB8xS4VdqeweflzMBpjvDtgLAKPGUUmWMiqfH9OZhMYCpbbKxQgLIj/Cqz1FV77tXm051cEGxiLrzPqb4gTP1itsRyL6PcgQVkg//b2Ss1yGgzHKYdujek+v8pWNu5Za9MNNEyoXDxYr4C7AmnJWO7kxlxTSqxHwojRI5tsELfZ21v+1tZmjEycYKMtXc44vOc4ipfHNJkHaZkU6y05qYFSmDVXagrnSQvYrZ3Wfw0xiNNSZPPyLF28uGZRutbeNi7Lhowk6KJwmyAbFqWq9QX9Qzn7xj3fHM2hhR7jtp2r80wbl6Tcp6KpyQ3OS0/PMEoAmVl/XsCRLjMyuNO74EF/P68fOzo6bPLzdTeBVb5HbNbP0gABxuyjDxjMx5yRZHpe7fBYSvAxmpcp/SgptRzgPuOHDpMB12VdXWUGIieyB5Yy8uDaYcZxNrZW/UOHDb7/9DPPip3tqA3ubk6n+LMgJ/vpjUmGi4r0k3iwXBrit/TUEMnPCdPmZPZMNlXHa5F7cTv+8V2QlgDeJlz9+pZkKeA4ULpnU7lsWVEgfdD9ZLmtKwFGysbVubJ3bQEkZq7W5Y5tA/g2lajr1lnID7rz0jCUPobv0zCUcdvp7h9qbwQdWY6tXx+oN0aHlhCusY7H0Zej7MZokBsH6+TOBQNkn0Pq3QP7fI2TmAOm3+Lk/fRcp4LwY0hJzsa9h++9C7B9c22JJiXuqb3BEh3jucNbshczl2C/zy526yAq5d23t1YgnlqsMdZnrM2Bib4FoL8B65FNP9P3wc+8tVLfhz//rvkxC9xGr+UyjQcJLpYatOXrAyPG+/Lmcvy97XjtUs168j3vsT3s8mJNxLB8wcI62U5NjfZVayxHOXlhV6kJLHXE3n7s9RGGb0m/g72lyd1lko5w+QBs84OcJTjAVeaHzIK0nC2pCX46oT8gLdurIyAd4yEns9Q+YcfqQk2MsEF5M1TLzjUFPxxrFyaq9QUvnjtWZMs+gI8tXTtX5poOGGax/btWZZlWdSZ9GxYwwzY1VVu5/jIMx6AQgHsoJDjAYuJ460DIwvs+3rNMAI4JgDJRRrKDxN/czEy5SPlojOa4atbSR0FndJrMUTk5UyUjweaoi/MczSM6jub9cEY9zs1she7oNNHc5mVpevvtt0zcJTBmzPCv3N2d7vlpKxniSR23mSNhod4SHeEtiZCTyQnBkpM5T0oKAbjyOGmuTZTWukTpbkmR7ibo+Y5UlRmrujOU1fb2VaoTF+feOP9G3c8VwFt7c1TPH9pSpjqfH87O1RxWrFTz1otH2gx3XoCN0wBsVCbAGLNRXpL9CESa0Lx/tlvZT/1GjrfKDfqJAGi3cZ9SkvLyDmIsysn3TjRrN/3XOLnvgYl+DVa5p+MskJdsxeLXz7bJVxe75Guwxxe41eTEecNXhNPWd7WTf6E2PNPS4Au83x0CDwD7mCl/xFW0XLgL5vnyGu0Pligz3cPjOxcXKTA/pm0Dvu8rfP83lIkAGfsqP9EB2R4DcGC5uwAmbzV5gkPjSPZiXjWaoj8836Fg02L34QZNnjDhw/vn9lQBdGC43eoGZuqui/43G1vL7+lbMnLUMBMdoj3cJouvJ1gtYKaO5oTPNRyiI8PcJSXOV1mOgOuojZWlbUn4fJMVcIbbMlP+LGyXqi0hdwmojFyZg8f42spcbVLeujxT+han4DZLDmws48XVtHlp5vebl2bIwurwFdlxXv+YlZWhjf1/SPz2B62rok1ZYVGRxdQpE36BK8w1f38PEwDUT8nIVD9ZxsvLGMfx9HD+Xe8k4zWynfcsY1rAY6Y+r0ymhe4pKispHQkuXT3s+rvlHlzoQb9KR9bkJo1TRy36Uw56923dIcCVssyEskQRgCNUTY08JSLMS6IjfSU5MVgyyHJZzFTGSl1lHACXIJ11cdJeY3wove2QGCsKZevqYtmy0pgQYGzHQilnp5bjNYwBtoPZtqzI0Z47rhXetIzzVemQIoVq+sOsFi0UrgB8lJXcikPDUPoYXsPtRbVQoJQ0Vh9xfe2Vw02G2c/xNm2t+pjpfjDgFzhxP4TkIgAJoK/AdHfAUL8EU/z6JuQcGOrraxxAbVdDni/xmq8BlG+ZIQQg6B3yK8RSjKOYaPmARWx2fFwy2O8zvNc93H7KbhIA84vLACq+n/U0stxXl7rkSxxfXAHLXuxUGwTW5Qg4st7X+D0Y65Etyb6Ul1+932vuyezSWO1b/GwjjmP/ZY/WCZlJvYufx2kCSmMC7n38nTQ1OrunWk5uL2UtTq7urzYtbogVK+sxYmc3RmY4jTN5ImZznTlBQvynS4jfTAkNJLu5SnSYm8RHztHBU9pi0I+S/ZIrOtOltzNNLRUoITf0ZMmSxljZuCRDC9t0TtuDWJybjXifw6W0LFzfBZB2J8tesNzBzeWm7Suy+zcvTe9f05V8PyfJOyQlKV53bWRm/mHs9gcBTg1h8UMCAwMsJk2wTmCm0dtnlsnbx80UEOChjcOaIDH3Tg4YCGlG0stNwUbgeZlbuwbMhAZm4Nx1E+oMbfEakJIu+Bo9Twi2KZON/XA21pYmesq//c5b8i7iOC0HeDmzr9PEsZsw3dpj9E9ysDQRsVx2xjwpzA2XiuIYqSmN1lpNR1WsdDawCyFROw3WLMnVeakNS7PUIKgLz7fUxOEDSwEgkwBErjcqkU1gu220VdtUKaf3NunKKhqH6i6BfQ26hP3cATzWw5CZTJ6wBsd5ObZ+3VLPkk6dGGBt7QPuhDvdoXW1D88a09KUbJ9d6FZ5R5B9RZAgPvsVTuDv3ifolsqvb4BZAJJfvb9M/u2DXvkOLPOvZBrEUZ9ArpFheMv3YNfJnSuLNPlyD/HcHRbFAZ47YL6vwZh36DkCBiSAvoUUJGC+vLZIPjrTAqlKGwSyYqey2+eX2ea1Wi0UmOZn7PcFfg+WIjR2I8j5+140gEl2++SC4fRFuwVKZY7tcBaOBfD3jrfqaNKlQ/XcQCNHNhbIFQCupyXBNHXKOJOHO/clTDE5z5gkTpSTiNtC/GdKdKibhIe4SVzUHF3pnJ3kI8XZQdJUHiUL6+NlcVOcdpasgUqBFJROSEwy3g5z+xZjNha5d0Kt6MzbtiotB7DTZC1Ax1rctt7s/mUNkffXdqeSCf8tPWrm5MS4aALuQWMj8F8IcAOgoylnRHjYE07TJ11nJwkA1M9eycBgT20eNsZwXDRpYtgruKkxrDKfp9HOZdy6/mCbxyZmHsbqYSezrHQ0WyWYWW7KeJk8xV7XyHKBAxdS0GiI8pQ/y6gFeugEOhuVCb7oCMRycQGarSzICZeywigpyw+X+tIIaQbg2hsSpa0+UX0mdUCRfhdLs3UQcW1PtixhDx7ivPXL8nQmjqP3OyFH9kHbH9yOK/LhReqcfGRbte4LOLu/Qa3weHueYxwHGtV7nix2FccNsNiNo6ybtenx3rFW7Tq5AaZjyxbBwAIxpRtP1ntgtW849wYQfMOYiTEcmOTXANyvwBi/JNgQ0/3q+mIcSyE7GX8ZCYovEVtxrOZDAJk1MAKCzcX3IE35+CuAhKD5hNYIYElKyTtgrLsEyVUmT5ao5CRzKZudgXQ9j9/zLMsVjfg9O5QRaQjE3/dTBVevgvsb/Byy4F2N+xZrUoYXEQLsM/pTst6nMRwuRPh/MLZkeeDigVoF3WmwHN2el7cmiJvzBLZzmaZMHAsZ6SyBYDYWvEODXNQ0KC7KnaZDkhrrKZkJ3lKYESCVecHSWBYhC+tidfHKqs5kI0O5MFVWtCcgXk/XEKFvkSEb+3rSVE4e3opwAnJybVcSYrok2bWG7JdnWt2ZeH/3ykzTqpbYfQkRPs9mGUB74A+Vk3/kyuEslZcTxtvEzvHQUZv7nmbQDQDMSP0bIzjaP6kWC0YSRRmOFnpeRgJFbfTweGAL6oDBkM7GOTOLSbabJpMn2+saWQTRugmUnoR2uK/9k96u2vFCMyPdcxDqpQOm0ZFGxpKyMjMtVIrywqWyOFoqi8J1OLG1NkGnu7ubU5eumIMAACAASURBVKSnPV3deVdBhnD5AwcSyXgEHpMnGzl6T4tytSMvk2O7uSlnqRzZUSdHaDSzo0pNVlkru7C3Rq4dMs+7HWzU9q/L+9m+1KgOyJxtY68lpwI4XcD77N7gyf4559LoIULJB2b4NdiKZkFfXevR2OpbAOELSj2cyF9dXChfAQTfXoLku9gun6vPySK8fqnKRsq4u3j8OWtp6pgFmXh1iWYVv8T7fM60PxMz15Zoje3Dk42Qj3jNuVYwIBdEdis78fsY630JefnlFfxelzvx3EKtp32lc3BL5MaRBh1C/ZKxJoBPuWkAvEeTLQQezZAoJSkhGSN+gp91Hv8XjrkwaXJuH3dul8nO3gw5ubXI1FEdfX/8OKv+QYPfkWBfR1NZurekRLlJbLi77jSImc/dBrMlHgyXGOUB0M2R3GRvqcgOkPbqSOluWKC2CZugWlgaWN2dJhsWp8saAFDt49cSULmyDgA7uLFU9veV4D7A2Z2ivqGbAMS964tNiPP696/JkMaSqITk1Azajjz0x4Dtj1g5bPgD5ublWkRGhj88YfzYfWbg3AfQTJqR9Jtl9p10VnYiYOiaxdcNlAe8zUAzTGGnawJlwLfS1c1gOHdzqUClJh5PmGALsFkLR+vpLU97c+4FU0t1gG6u2Z+EgIsAsy2IDZSYKH8wXKCkJAYaLsrpc6Ugi9tiwqU8O0Rqi+ZLSxV9L+hdkqKj+CwTcCp4zZJsWY4Yjov7lPXwHINsBtt7uH1le4ucPbTQsFLbUyOnd9Kvv05O4ZbLFo9vr9CGV3pL0jD07O5aHTxVS/F99VpY5hwdpdSHnB44a/RH3ru2TA925lOa8fj6Rq8mSL4AoD4HG9FQlScv3a7unmqWL07Uy9cAyWcnm+UTxEU05WHmT0EJsN693GNkA2mRxyQKmJOM8/GFLgUii+UfQc6yFnbvfIv+LHpVfnahDe/XIHfP4RY/92tIzC8uLZRPTjcJZ9Y40U05SVDzUAmLGI2elpx30+cQ0/H3oGcmLyZMBJHRjM6YhVqTYwH//H6u8apUu/ajGws5UdBfVRT2y1HWlvcHDx1kcrAbZZo0wUo8XCbI/IBpEhk8XWLmzRTEVJIe7y1F6f5SkeOPWx/1EWUNjtMC7DZZ1pKgzcksD4CtlOE24Ni3sUxvNy7L0owka61blmfLZjzesTIb8VwRpwb6d68pMO1dk/2butyg0JSEWIuc7N/5Zf5FAff/m5FLS7FwdZnmNtN56rfevjrN3c8uFLLcHPNWnB8cuSgNIQsJRD/zRh3GcUyc8DUDtgv8PmYrPdTOzhhQddUJ8IkqJR0cdKmHHm+9/RY3qJhdnt00acKuF0rKUDBcTLS/RIb7SlxMgCQsCJBkMF06QJeTFixFmcFSAsAxnmuqog12sixnMbw7S73nV9HLZGEm5GQG5Gay7uneAT2/f1OFehbS0enk3k7duEL3ppM7KtWi/AhY7ihNXQG6MwDVid01cmp3jRbF2RZ2gsDbV69MyF5CZup44l070qK7xnQGDoC4A+CxvsXs3q9vrVbAMZP4OWTYPcRa9yDpPgeD0Ivy1oFK+XB/uXx5ulk+Pt4kt47U4zUERauWAHjSf0HvEXqM0DMS4GMNjN4otDj/+BxLGa2a6GAMSbZi6l4l5QU8D9ajjPzgZIPcOdei7Pbte4aU5JzbvWtLNQnyuYJ7qQKQQDSclpcYgL9kPMeMJ5MmLHifA6tdPFCnLs8s2nNanmDjc0c3F8mF3RWmqqJQGTJqmLz2xqumNxBCDB3+rowcNVQmjLeU2S4OEuw9WbJjnRHfTZLQYFfJSvSWUsRw9cXzZVlznDSXzZOG4rlai9vQkyldNfPpjgxmK9LiNoG3HTH5pmVkwQyN33hBJfsxkXJgIy6ua3L6CcTljTE7C1JD/7/M7HyL7KzMP4rd/ijAmTOWDxQWFluEhc59xMnR4bI3mAvg+K3Zbdmk09yG7YHMoZUCwEYbcwKPrzHiOWNSwMssKQ1zVuP7eN8LrEVAzpg5WcHG/c2659uBq4qsdG80Jwm0oI7vCwh0V9ewMHOWMgosx2MBgLcAoEthtjI5SDKTwXbxfpKR6Cfl5u6TruZkWdyWpquNyHKUlnTqpR89EytdTQk6oMgxnQ2I73Yjjju4tV6OcUvO1iqwHa2xK8FslQq2s3trtZ+St2f3sEZHI9EqLe4SbAQhHZZ5yxoeT3Saqt441qKT3eoleY0JD7oWd+sJrV0kYK2POBNHC/JDdUZZ4GCVfHiwUj7BcXt/pdzYUwmgdEDCVsmto/Uan/F7WDPTDCXNYs93qpUdjXHuXuVUdqeROTzTpkD5/AqTKADl2Sa5eaRWbh/H73iyVgH31dVuXAh6NFvJBMl3H682CuR4X8aajOdY/2Mp4475+ADg/4AjPrhYMLHCxMnVI1xeXwG2r1V3L0NaVuvzZ7g/YXOx+Pk4ml5+/TXTO4PfkkFD3zG9yz3uAN0Yy6EyeaIlzik7cZ1uK4He03B/nDhPd5D85DlSWxAsayELV3G4tHWB9CJuW94eLx01EbK0KUbBppnm7mRlM9bh2M7FGTgCjcDbvSZPywXbV2SatvdmmVqKQxqzEuYidst9wJh7y/p/A7gBWVlYWPigj7fXg3Y2IxZA+t0HePoBGBPjM9blKBMJOFqJzzKP3cycbvi/u88yjH5YKCewdBDVfbohRecYNTqjz3KyylKO6kyZZCz4sLQapbKSK464MZXvz/cICfFQvxLDa9IYOo0M95FoyEpuU2G2MjUxSBJivNX/IiMpQIrBchVFEdJcHScdDYjlADBmLVmfa65eoEBrrYbkrI5SO7U1iAFWd+GDRDzAFPO21fm665usxjYgzsxRMqqc3EUTmlodXGQChcxGk6GzOkOHk2s/F0bUyV7EDafxunN47sT2cu3FZFP0JYDzMmSWTn+z1/JYk05EXzvaYrR6QZZ9cAwMxeN4vby/p1Q+OlwnnxwzJOBHYLEvIdfuXTIKy5SVH4DJvkQ89pHZ/59Zxnua3l+qtToWt1kW+BTff/M45/rw3kySqKxsls8RLxKItCxnQoRyl4kWsuJH+Bm3ASwCjNlV2ip8dMZwYWbpQS0W8DdwROfG0SZtgaNjMcsBZ3jh4agTLkynduLv31kmBzYUmEaMGmp68523ZOiId03DRg6W4SOHGMeIwTJsxBAZMWaoWFqPEJ/ZE2TqlLES7DNF4kKdJHeBiyRGuiJsCJAlTdGyZmGClnQIMgKLG3xWAoTcs7dhURpAlSMbwXZsaGAN7iCY7fDmMqNksDyjf9fKLGkqnls/L8jT4r/aG/AXY7gBdKelpT2Qnp72gIuzYx1iNdMcGvl4uwF0riZNiHi5ataSspL1NsMkyGjbUibzmKmS0liZa9TtlN28jZ5L9lnOcJqg9TeuImanCZfwjRkzQvdNs9lZC+m6D2C22ivQ9oHSMnTeHHVSJujCQ+dIPGRlQqyfHikAXmq8P2I6Ai5cqoojpLFqgRq+ttXEAny4GtJCrRZysz5G2msQgNdFSFd9tO6HW96RpNPBHMfXrTfri3SRH4vg3MF2AhLzDAB0iqM6e+vl/L4G9aKn/DyvkrLJLDPrdDfbsa2lsmd1rk6UH9taopPkp7YyU1cuNwEymu9c3VUm57YUyZU95XIdx+UdZXJ2U75c3lmqx3sEHNjow6NgPjAJ2ecjAIB9jGwfU6PYy8Z+AbW/u77U6AKhK/Nlel+uUHbiOM4HJ9kU3SAX91fINUjWT880KdDuAHyf8T5ex3IDDYLIZLQw5xDp+5DIBBQNX29D3t4536ELO/jc9UNgdTo1my8cjNnIZoxhz+B/wA1Ax3HBOYT47fyucm21GmM1TIaA0SzHjsDnPlJsbEeI/bjRuPCOwblgKVOmWEH1WIm9w2gZN340FM9YGT/BEhd2OwnwmiTRIdMkImiaFKV6yuq2ONmJC+RmrcdlakfJ9hV5mkTZ2JOunSYbFqUYiZTeLO022WMkVfrXI/7b0h17Iytp7rPc/Zb9n+zv/osB7vezlvQMtLQc+eLUqQ4fe4DlPAE2AkDB5uVmjueMDTpM77NR2SgHGG1cPua2L5+BLhQAzsfsYTnLbJtndJ1MVq8TG8RtVlYjZRgAxw08A+M/hm+Jh27wUZ9MJlHAevNDmUjxVFk5f+5siQz1kKhwLwVeblaoju5UFkVKbVmUNFTGSH15lDTilsAju3EyuKsuUrpqw6S3JUqWtsTI8pYF6mW4FfqfXvP72Ge5pRxXxVI5QM95MBcZThmPtmoA3QkdYKzW2txxZjTJdLuq5RSk5sH1+XKkr0AzdRf2VMjRjXmMYeRQX74cXpsr7x2qV7CdWJ8tpzdkyrmNuXJxc65c2JwvF7YVypUd+N5dxXIdx4WtBfKe7nCrUysDSj3Gb4anpZGqZ0cJ2ew9nPgfnDaGVTniwx5MSr5rANp7AO7tY9Vy+2i1Au6TM41gqhbNlKprMgB3i1t5zCZBH3CdFYvYANT7h2vlfcjZW5C+ZFJu33nvUK3cwN939UCtzsARbBzPocw+DlY/qbvlihVwF/dWSGGGL+K1IWI3bpRMnTYWcbwVzh1rnEs2UDS2EuRvJ8EBduLrbQvVZCNTJlvJhInchAQQAowOAOVY25EIZ+wlzN9JChNdpTLLS2ogN9e0xmh5gF41/IwObioGs2UgZivV57atyDLt4oaj5RmmdQvj72/sir1/dn3idxW5EeMzsrRh+YG/CsMZ+79zLTw83C0mTbRuIIggBfvJdAATi9Iq+dy0a2SKSkSy3UB8N7D9lH7/BNYAK1KWKijNixxZHnCcOsHIVNpZCQAuw4YO1vfyN2wfJDBotjZQGwzngQ/EXULnGiAMC/NRpgub5ymBfi4SGjhL4mL81AA2jx0okJUVhfOlFDFdTWmkZi/rS8KkpXK+tFbMl+aSIOmu4arfaIAtQrrrIzRG4Kpeyo5da3JxNczD1TATV8hc2bu+UGXmWW5W2VOngONcFeM1yslTuG8kW6rkHK7up3cgZtlSrHEfN2uS8c7sgizdVqKLDLki6vzecp0eYBf9dZyQ13eXyNUt2WC+IjkH8J3ZkCVX8bUPALT39pbJtd2lKuNYZ/tIp6xbjawku03OdWpm8jrduRBbfXihSx3CPmcGEmC6h9uPTtSCqdjT2Y7YrRXfA3l43tgJwGSIlgtw+zHkIpmNsvc2bq+DjW8da1TgXT9sMNpltmrtrWT3CBizVhc0EmyXAfhj28o0W8tNrPx7j28ulAO4AJGlKCOdnKzxOdvIHIAswM9O5s+zlQVRYyUx1koSY6wkJsJG/H3scP7Y4gJtKzOdrcVxurVMc7QGALnGyl6cZ9iJn+ck8XBzkPTomVKQgIv87MmSFjtb2vAZd9VGSnt1uPQtTqNnjamjBjK0LVrWNofJju5I0+XN6bJ/cdSp0MDZP/urSMr/WAynIevckKCnxzvYnGCa39XV6Xvd8+zlSuAp2BiLOesxRSUgWYmxmivANAA47cE0+5ww7huwynNy4jDqeD0mII4bzdLAqGHKlj/M3/kbFnmUlYEAVFAAAQdZiSM6wlfmAYQEHJd1xHGPQGKgpKcEIZYLlLxMw++kvCBcyrjiqHCu1BUG61L6puIgaSwLkYV1obKkYb7GBN2NMeqVsaIzydjxxrW/bPNazCA9RtZ2JeJKXawd56f2NBiMt70S8UmN2ZMe8dz+Bl3OeHhLmcYxLCWcBhA5BX6F9Tq6WeHkpQxjR8r5PVVgrDrDIvxcu7wPYN06UCG3wESnwIiXt+bJe/sq5Sa+5739VfL+oVplH2YFCTSm42kkS9nIFjLWw+i5wnIAO0AuAgw3TzZpYZoGPx+dRFwIaXkLoP3gVNsPq6e0rqcbdRZq0oasSHbjfBsnzwm8948bXiUE4yXEYxd3lOrF4vrBOr09jb/lMliOCyCZnWS3CW/pgnZiS6EUZwbIa2+/pTLRxcVgtJAgO4BrrKTEjZLs1KEIBwZLTsowSY8fpcCLCrfF52uHi64dzi87BZ6T01iDHZ0IwLHiAOabM3ucyk4XgDA+zFkasueIh6uDzPN3lGXVAdJb5S9pMa6mhaX+sqkl9P7Orqjv+ppD96VFuVslJiRohv6PTZj8yYAbkJVguQfi4+MthgwZZO3sMu1zNzdHk6uL43115HLBfbpyuU5TwHFllIe2dRmyc7Yy2NQfOkoGdgywfkcJyewk5KrGc9O46MPBRhmOB8sFlKCUpGS3AO3rnCX+6kfpqvcJvKhwbwkNclcP+sgIb0lOCJSUpCBJSwbokgIkMzVYSnJDpTgnRAqzcD8rUKpyAqQ800cqcFtfHAIpEoQr4XzpaY6RxU2QJG0LwHLJsrIzWdZ0Jcta6P+V7QukqchPWkr8ZQNAtw0yZc+aAmPUA2zG5IhKy53VapnNzOYxyKkze+vUr5Lx3fm9xoaa8/sowVp0Vu7yQW4hrdcT+QOuiEJ8xESIroYCQ310pBqyskjObsyH9ITE5CAnYr73DtcZixUBAr6epQBKS44F0cqP22sIDMZOZwECDrV+dqFDbp9oUDbTERqA6drRBgUvyxi3lCmZcOlU52Q6b93E12/jdbo1B78Tu1tYa6NcvQCwnd1aJJcO1Oi+gQtguCNbSnQ9l8ax+DtZpzy8qUSn57cvTRPXmePktTdfR/gwEsCxQYgBMIXaSnyMpaQnDpeCjHekNPc1Kc15TcpzX5fKvFekJOdNyQEQk+LGIIywQ6hiB4Vki7DDRpxm2IgL2M/Dw16mOSHmA5BnudrJvIAp4jnbQaZNtZWUCBdpyPGUoiR3U2nKnO8rM30lPcZld8I810G5GQn/i/45VHN/Ctj+LAw30NhcUFDwYGCgv4W9/ehmxHL3Z8yY+ltIQWU4MhhlpcvMaQCgsaPthx0AiNXIesw4smwwYHvO+7RcmD59om4o5RS4A5c0QlKOh7Rkl8mMGZP0fZilpFOX2vYFuos/bfJ0cYerbsyZpxLTTeZCdkZF+upBSZm4wFfi6WkI4OVmBCvY8tMDpCw7QApTvCU3aY5U5QVKdX6QVOQFSVPZPOmG/FiOOG5VRzxAF6ddCWxi3rkqG0F4BkCWhgA9WhbXhsqK5kjZ0sMp4kIwGOQjmI6lgxNqm12rRXK6fjHBcnZ3jYKLXSdXDjboLu7zOCFpLktzHRoV0beEg6XXOMLDTaZkuYNgwS35iOkK5fI2xHGUb2QUAO76vip1yGI8yPfVWTi6f3F9FNjo9jEmZCq1hMAVwLePAaDH6sE4Tboj4AriLIKGjwk+xnpsOGYC5iMC8GijNkV/CFBzf4Du/d5ZqiuFb9Kv5CD+rq3Fchrx57ENOWr2emYP//4yObffyOAeRNzLESeWAY4DmOkxHvLmm2/Ku0MHyYjRQ2XyVEtcnG0RkwNw0VaSkTASgBsklfkvSV3Jk9Jc/pi0VT2K2yektvg5BSCZLzbSWiLCbCQoCID1t5egYHuEF/Y4v+xwTgGArjZgPiuxdRglE8B8QT7cUzgO59NEU4D/xN8WFrwjCcmPro+MDrbIyyviZPeDv7+N9a8KuIFYLi4ujquJX3RynHB71iwdKL3PWI5rhw3GGqdWCh7uRtKE8R0zlFpvmz75h97JAX8Tw3aBzDZeHCEnJ020k3EAGmtxjtPGySyAl5nOOXNmGN0rXtwd4Kasxn7KEPZUBswC4OaIHwAYNtdY4BEx3wsy0wuA80cs4C+pCQGSkRgAsAVKYWaw5Kb4SuaCOVKU4SfF2YFSVzxXqgpCNJ7rqouSxY2xshxgW9wArd/FaYM46VvKvWNp0gPJiaBbU82UmhrPQTbSYu2cuSPlDNju/M5KNSE6u7tKjWRpPEQj2ZuQlBf2mmXkvhpdSk/JxRP6FiSgThDQSoHrovZDUu4DmACYq7tKwHIlchkS7uzmArmAE51S7tLuMrWmY4cJuz24AZUS8aOznVr/unkYoNich98JMSEYkSC6ASb74JzhwMxyAYF2HSCl0RFb0Zgs4etuUUoq8JoMf0kw3WUA9xrYzIg3EYtuRVzWlyenNhVoqxtHcE7tLNdY9mBfkezbUCCH+grl2KZCaS0Pl8k2Y2To0Hdk0LBBMmT4YE1+eHjY4fO0kwXRY/E5jcTn8g4uhK9AdbwoTRVP4HgSoHtc2moAPNyvB/CqCl9ETP6q5EB6ZqW9K5lpg3BhHYZYfqzMn2sjUfNtxddrnLgixnOfDTb0sBHfgLESGTVCsrNe+n5R5wPS2fEPl9Mz5r2YnV0AkGU8+KeC7c8GuN+bmbNITEy0sLWx9IUE/BWkoWmWq2O/uePENGUym49B82YmGwAcEyQKOBxuA+5dMyfrQkWuCp4KaTlF93CP025xelpMmWynYxtMqhhlBRdjABZMp7vrAt0VbGS6YEhLrjPi9IAuXgzxkIhQT4lBPMeYLjkOuj3OV8f00wC8+GgvyU/1k3KAjWP79QBcR3WEdNQguK6J0uWMPc1x0t1gAG/NwnjEdlGyHIzWWhaIEydYVnckKABZ99m3DicdVwxvKddi957VebJ3XaFKSiZTmK08AECS6S4favqh6fn6sTZluJvH29U6gSe4pt9x8pMN3wcAKTGvAHDX9lbIOUjK04jnDq9MlQvbSzRhcXZroZzoyzfYEwzEzpIPT7frHN11re81yuV9VeovcvscN7Q2aZxIycikyjX8DLakse1rYBc4f+5HAB2nzlnbo9RkRvQqLhBch3wdzHgCoD8JoPFns652anspGKxUTZguAIxn9uLAxWbfmlw5ht97eWu8uEy2FfvRI+Sdd98CwxlFbjv7UfiMbSUgwBaflRU+IwJukJTlvC7VhS9LSznB9oR01j0urbWPS0slgFf7qHQ2PILbxwDGp6W5+ilprgEQy59BjP6q1BS/KNXFzyMWfBcSdBRCC4As820pzHtJGqoeNS1q+9H9vmUWsnzpQ3dyCnyHZGaC4bIyHvpz4OTPArbfZS0zALr8BxhcAlxdlIxgq++1CdllmmnyRDsTGYpspWuqdH2VsyZL3M0Fcg9zIoVMxxhNF96rpBynFgtkPXfXyVqXeXvQW5pYIcv5+bqZJxTcNFNJluPBWI4gM5ImLBXMkUCN7Wbhde4SHjZH4qJ91P0pLd4fcYKXJMV6SU6ijxSm+Ukp4rkyAK+hZJ40V4bjg43Ghxgh7XUxABm7GOIRvyWrzCTgehrmS3dNqKzvTpDNkJM7VmSqxd6ulTlagF3WHK2xHl18j6m5rOEGdX5vvVwGA1zcXy/ncCLSeoAzcpwqYIcJGeUi2IxrnpjtI8jObC/C9xnbaK4BmJdpMwfw8EQ/t6tcC8xXAIALOOFpt8fZM7LbbYDtEmQmyxAcgCUDMmnBDhfWx8hujO343C0wIrv42WDMdjR2z9zQxEizrj++hOdv4L3pFE22PgVmVWPXfdX4HSrlAn6PU5tprgS2281OnEqtPzJWZaLoyMYiNe8JdMNnbTVa7K1GyiuvvwrQva0MZ2UzEvGXDeJxO4mERCTDFaS/i8/kTakpegkAe0Laqx8D2ACuqifx+ElprXlMOusfQ6z9uHQ1PobP6gnpbn4CF8ynERY8K4taHpMlzY/idb+QutLnpL70WWmt/7l0ND8sPZ3/KKsWP/D9+p4HTMuWWdwtKp09JCO92CIrO/3BP5Xd/qwM9/ulAoAOgBv/hK3tmE3GZPfk713Y9c/db5CIs9ymKbuxTkdG4tTB79q6uG/ASZMrMzn/5DRRkyYEHJMoBKun+zSxtRstI0cNlnHjrH6IEVm/Y6KEDtEsB2g9LthDYzkCb555IpzPBQVQerrq5szw+Z4SHe6pTJcUB8Zb4CPZibTP9ke8EKhZs6qCYKkumit1ZeHSUsUBx0hZ1BiNDzNalnckyuoubmlJlPWLOGGcKjtXZsuO3gzZiyv4/nUFsm9tvuxanQPgZevt0S2lcgIn3FGwHjOX7ERhHHcRJyO7Sc5pe1idptYv76+U09sK5PDaDDm5KUdOQwKexePT2wrlNBjsIkBFKUewMTnBjCPrebqU45TRKnbrBFlyoQKTCY1rAI8yJmXk8UZNhtwic1Jm4j7BxoTGVY4T0VXrZKsy4qX9zJS2GXElfhbtHSgp6cl5fi/j1Gp9zVk2IkMmHlkPuYrYkvdZyD+1o0IbA1h4Pgq5uR4qINxrqrjZjxHnCTZiOWKovPDKS/LG22/I4GHvipX1CJnpYquSMjZyLBTIcMmHRCwHw9WVPCNNiN0IuuZqSMvyp6RNwfe4NFXifs0T0tUA5qt5CsrkSVwsn5CFDU/KktYnZWkLblsel4W1ACxk6eKmx2R590+ld9E/ycrFD91f12shSxY9dDcvPwgMV/yDpPybAdzvZy1zcnIeTEtLs7CyGjNo2lSHb91cnfrZ/gVQcEupJlLIanTbYmzHmI3JkwGPSt5SXrIMQHZzVMA5yCy81s9rukyaYC3248ZoFmssPhA3MzMazstuZsv12cpk87izDgwX4Ocm8+Z5SnDwbDzHgjiAF+Qu8+d5gP1mSQRuY2i5FkXrbC/JjPOS7CQ/jeeK0/0hX0KkGqCrLwlVecmM5ZKGCMjKKJWVaxclSh8YbcvydNm+yug058EYjqMfJyEpTyF20zamHdWIWegAVqTJEz53FtKSSZXTYACCce+aLNm/Nkv2rEiTXcsTZf/KFDmyLkMOrc2U4xtz9WRnj+JVyLNTW8B0YCyy3tntxVrrus60O5MW24rkIg6Cj3NoZDnGYroyGNLxBjfaHKnTURn6ntDY5xJAyW05LBfcPNWhJQT6j3AKgKzIBA7Z8yYXcBDgu8DQNELCzzi9swLysVxri4fW5soe/D+O9hXIAfw9e1eB7fG30VbwIJ5jx44fmM3VdrTMmWwjMxysZdiQd+SFl16UNwE4Jk60eO1qIyEhdhIfO0bSk4ZplrK66Hlc/J6URoClFfFbQ8VTUgu22aHKsQAAIABJREFUagL4yHYtAGBH/eO4KD6GuJvAe0IWNT8uiwEyMt+SVrBcKx8/hud/Ics6HsHxsPQu/Gccf3d/dY+FqXf5j/+1oHDG2IyMHCZNHvqbYrj/CDyWCnJysi1mznQMhTT8DgCitLw/Wy0UnExkNGYXWRYgi5HRCDSWBJihdKLr8mTanNsr6Jwcx6s92kSAjS0/bPEZ52Ap1jbDNbajPJ3t7iR+nI3jfnEz05HNghHPkd3YazkvhAskCbLZZonJ5ZKzZH6Iu0TP45yVh6TG+0pGvI9kAHSlGX5SmO4rZblguIK50lo5XzprwmVxPbOV0dKrxXDW3uJURq7tigfwUmULm2ERp9H/hMchAO/Auny9z+6GY5tK5PCWEnUBI8udBhgv7GMWs0xPxq098bJjabxsXxIrG9rDZVNXLE7YdDkDaXYBTKKyDux1FbHVhX1kNLAbnicAzkPCERRMwFzcUSJXdpfrvgIC7L1jDcpY6iVyivYPiAW5o+1ks/ZtXmUJ4axRcmBDNXs6udTjJpmS9nt4j6NbirUwT0l5ensZpG2p1h2Z6idD06H6yOYS2Q8m3744SfauyJADa3NwEcmR/X2Fchhfa6+OFr9Z+NzBbF4Am+v4seKEcOPNt16T5194Xt5+500ZAoYbN36MzPawxedkC+lvBcANl6KcV6Wq9EmpBbs1lhN0T0pV8XNSibishhKxguwGUIG1yGCdYLzFzQBeIxgNz3c3PKaM1k1p2fmoLO/6OY5/UdAtb/sZ1MqP+nsXW9xfufIfJCP3zTlJKYkWOdk5D/4xlgp/ccD9sHEnPd2ipKTkAXd39wctRw/tZR1umuOE+4jTTLPcjBm3gRavgaK4EdfNVNZjV8oUs+MykycO+EBoImM1dgTk5CiAbYwWMNlHZ+9gpfU7Wp6zVYzLGAk2shrBRkARePO44GPuHG31Ivh4n2wXEjRLwkLAcnMNwMVGGCyXneQNhvORokxfqczxl5r8AGkoJssBeBXzlOWayyEz8Vx3fbisXcgEygLIlVhZWBchvQAi98od3FCo1nqsNXHIkYv9mLWkZz3T4gfwtROcNCAD7qrS+bpjmwtl/5o02bZkgazviJRDfTm69PH0jjKNpxh7sWBO2ceiuFrMAQCs112FvGQ6n/4orJOxPnaTtulgQLISp6tp2nNdjXwaIReN+TXW0MhirN3x+9iqxfocH1NO3jC7PJ/G73FgQ77+PofB1CcAMLa3HYdUpGU549Pti5NlY3uM3u5Ymip7VmfKAbx2+5p8/F/9IR+txZmfG25nTRgr7pNsZDrCg+defF6eef5Zjc+HIoabMmWsdpIwfkvUBMdQyc18TUoLn5MGAg5gKyt4WcpKnpXy0mekvOgFgO95aQXD9TQ+Ku2I6ToAuK6mR6UTjzvAeB2I7zoBvE7IzUVgup52AA7s1tP2C7DbT2T1UgvT8p4f/WbV6h+bkrPeSktMTrHIzcl5IDPzb5jhBqYKaLHn4e7yOKTlcQJn+vRJ/Vr4njXdxB5LHq4uRpJklpvh0MXHnIPjvjjuFmAs5+Y6WexxNaSEtB83SoHmMAGgmwiWg+wwkie/2+utBXA/JlDMbBbChmZPHVKdzxEePM8JAzY5hwCQIYjn5jKmC3SVqNDZkhjtKTkp/pKb7CPFGb5Sng2Wy/LX0Y+awkBpLQuWlrK5UlsUiCNAumrmySqcYKsXxuvcVWNxgDSVBMqKNjDV8izZtjRdTzyO9LMjfRtYkJtZ9uEE3LOaA5BkuzLtmj+yhVk9MMcu9l7WaVzG2Ig9iBf21WjtjtMG1xHrXQKrcMrgBMsA+6p1dRbl3nXu1QbjXYfU5I4CNjffPtKg6fqreyuMTKdZFnLSm03LlIS0PGDChJ0uLHoTnOzyN+qCtfj5teo7QkPcUzsrtX+Ux/GdVdrIfQgXlT1gtO2LkmQHZPbmzjjZtSITzF4A+ZYgkX7TZar1KHEh4HgAZG4TbcRjsq0Mf/tN+eeHfw5J+YICjpMBM2daQ/obJYG05CGSmfaW5GW/IhWFL4DdnoKsfFoKst+UKgCvtPgZKSkAy+H57oZHISUfk2YmVXC/HazW2fQLaYd85OMOAK4D0rMTr+nC84ubHpFFAOUyAG7ZogdMPYv//rfr1/+jZBU9tzY2LubHOdk5Fn+zkvI/sh13NI8aOWzweAebTydPdjARdGZHLpMaCblM/aFBmbvenLXobbgtUy66u04Vj1lTZQzYjXEbgca2H8oNSkvOR9nYjlF5Oof9nACxFsJZkzPLyfkEW4iH9lnSgmFgmoAsF4xYLiTQTcKCXCXY30UiAbiIebN1qyYzlSyEl2X6SUVOoDSC3aryA6WpNEwaS+dJM4DXXBaEwHuu9DRFyYqOeMjNCAXdknrGeZGyuj1OVoPt1jRHymZc8dl3uYcbWiAvdwJw6xYlgxXAcltKFWxHtlRoNpADohf212sHyiVaNeyp1SUhZ/S2Xn1SLkM6spB8mEmJXeVyAQzDdqpre6vVbu8iQHdtR6Fcx3HjQK0mSLinjb2O3GTzHr1VACzW0K5wgysY8vTWUmUqMtlVTYjgPmtnuwzZe3ADvRzzjGHb3dUap9IGvm9pphb5D6/Pk7WtMbK+LVq2L0vRWmVOcgBAZiNOViNlxjhLme5ACWmpDOdibyVzHMdJSvRs+fkjP5dnISlpq2BpORwXUDuJArulJIyWzNTBUpj7ipQXviRVhS9LfenTYDewXd6rUg2QMa1fjKO+EuxV8xhUyJPSUPWENNf+QprxuB3Aamt+RFqbHtHSQXstM5gAHQDYCbAtbADwOn8iS7oflOWLH+xfueLHpmVrfvGrKdOHvZOcnG7BEOlvpg73n4FtIJ5zc3O1GDL4LV+wXD+kIhMo/a4KsikmFzPgmMEk6FiHI2OxBODmMlm8PZxk4sSxANxwsRtnAG08QOcASWljO0osrYZzZkqzmQNjPz6eLhLg7SLBLHxDSlJaBuhWVHftqQwD6Aymm6MtXwTaPLBbkJ8L2NBdb309p0sEpGZmgg+kpZ+UZAZJXUmINJTSaDRM2irDdKq4pTxMYztOFbDdqxestrozHuBKkk1LkmUNHq9lcRxX+y1LUmTbymzZjWPzIi4CTJblrXGaSODwIx2Cd+FkpsksT3Cm2k/uBAD31+pkAdu8aA1OSzlmGglEJjnIOpfAZFyBfG4nPfrxdbDXeXP2koOqLEgzxmMZgM3K3NHGoc9zBC8NfABUtoWdBlteZVp/tzE0e4bdK4zXAC4y7cG+QmWsw5vAbrhI7F6Tqw7UlMd9i1KltzFa/95e/F3lufMkwGOq2A0fJtOtR8tsgM4RAJtqYykuAJ33FFtxGDkMiiBMPr/YLlnxnvLYU89oWcABYUOgn70kxFhKVsowyU1/V0pz3kAs/bI0lDwtNUXPIbZ+UyrxuALsVpT/ojJcfcUT0lYGsCGea6h+TFrqfiEtAFhr4yPS0vywNANw7Y2/gLQE07Fm1/RzaWl4WNrqHpGFrYjlui1Mq3sspHfxj+5v3PZPEp8+KC8zM/+/tR3nr8pwvw++4uLiB2fPnvWQ5ZhhpQo0p0n9Ls7T+hVUbo4mxmAzFWjj1VmX7EZWo9nnJOj7UZbDVDoyfuPhMN5S4zhrm5EyGldCLZQiyKYU9dR1WDO5ntiowzFbCWbz8pwhPt7OOhHOLCblZYiWDQyw+XrPlFDEc8H+zuLr5agZ0SjEdclRHpCYHpq1LEzzl1LW5UrDpQ2B/6KGOM1aLm5YIEuaExELpCDoTpb1i9Jw8qXJJjAaT8DVzTGaQNgGWbkJQNvcnSgbFybI2rY4WWVOvLCk0NsaKxsWJ2qr2H49qYuN2M6cbqfEY62MRXQ+Po24iRlFThicoKfjjlLEfwU6X8aYi4Xz60cNicg95GxqvkQmPNSoIDq72+jUZxsWQXqD64B3V2j289JeIxljOGpxnq9MX3twMztnirRPlPHa5h7+rclqWdCDv5UXnoqCUJnrP1OmAVyONqNlKhSIx0RrccfhaGspM+ysxA9gmzhyuBQm+yn4D4EluY54fuA0efbFlxBSWEOZ2ElqwijJTR0qpZlvSTUYrqEAQCp6BorjTSnLe12K8VxxwbPKcCX5L0lTxeNgt8eluuwZqQXbNYHhmgC85vqHpb7uYQVkZw0kJ8FW9Zi0Nf1M2hr/RRY2/gyg/JksXfgjWbvEwtTb/UD/uvV/Z+pY9uzFsEjff8rOzv3bZbj/Qzz3QFFRkcWsWW4Pjxw5uI+WC9MdJ33PMsEM7ZmcLK7sqeQyRt0L5yCznCdrVnI0wKZyEkCjpOSMFGM3yknLscOg9QfLoCHvyEsvv6SuXgN9mpSWPl7OEgiW0y0/gbNlDnfJ6UpiN2M6XLOYs7QNLGweYrogNwn0nSF+3tNlLkBIhmP2kkdMqLvkJHhLRryXFGaA7UojpKU6VhZWRwJ00bKkJUl6O5JlaQt3ksWD6RKltylWljVEQWLFydauBOnjNEFjuKwBA5DZFlaEyOKqudJRHqQN0ZRfdIzaviJLmWM/5BtbwygtyXjs+uAmVqbXGVPpdDnT8Kx7saULLHWmL1dO9uVrLHcBoGEmkU5iTK4YMWGdWj5QstLWge/DJMpJvMcZyFMWq1lHO4p47OQ2Yy8eY0smRmhHsG11nhri0nCHiwzXd3NvNpfUR0pRdojEhrrJzIm2iNVGy0zEaE52lpqFDHC0VdA5AXBeuIhOGjFUksLc1UaC0wb8G947UicbcWF66+03oFisJDbSRjKSR0hJ+ttSk/2iNOQ9Jy0FYLec1xRsJQUvSn72a5KLuK44nx0kz0lj2VNSX/KclLPFC7KztvxJxHVPSA1AWFP1qPZcNhS8IK2QoZ3Vj4IBH5aOlp9KVxtAh6O38+9k1cJ/kBUL/860uvdHsnrTv3yXXWz5dlZmwR9sbf5XYbjfa3B+ICQ4hPHcTxwcrLfSk2TKlPH906ZOME2bOt7kNG2CiVlJZ+dJpplgvkkIpu2g80eOGarJEisbA3Ts9naYOEaBZwWZyXF7dpe/8uor2mfJuTnDAcwRoHMEy7noVlQyGlnPx8tF5+hCyHDsuQQgWY+ba47lAn1poz0NUnYartLOYDk3dfqlLyI9ELMBuAKN7YKkLCdYyrICpCI3RLeydNXH6CKJxY0LZFnTAumqni/tpXNlUXUYjnCcLP6ytHqu+mmsBcMtqQyRtpJAaSsP0Y4VtoNxzGfL8jQwR6pu4GT5gBk+dvXrsaNSuzQ4S8bpcO6r27ehUI4idmKh+ejGAtm/JkfXIx/dVKSZRtb3yIzsVLkCNmN3CBMwbK8iS7H2xyFQpu+P9kHS4jEZbc+GYpWNOwAy9XBclimbe3NkXU+muk/3tidCTkdJdmqQhOBC5UlvkfGUjGNUNjqByWbak81sJNDJVjwn2yjoJuAzS43wUHl8anuFsfEVspnMfO1AtQR4TpIJE0dJfLStZCcPl4qM16U+6wVpzn1GmnIhJbPeQuz2upQDOOWQkSX5L0glJGZt6VNSCxBWZb+B5xHblT6D42mpxG0lQFgDxqurfELqwYQtxU9JR9Uj0lj+uLS1/Iu0t/0Mx0+lB7JyZcvPZFX7T2Rtz9/L5q0/+r6oysYyK+NPl5X/zyTlwG1OdvYDxcUlFv5+3i9Nm+rw8YTxtqbxDrb9BNyUKQ6mGdMnAoT2Grc54Oo4dMQgjdEIuLGQj2OV4YyRej4eNWaYDBs+WF4G2N5863W1XbCxGaNWDDSbZebTh7Ecd5L7GFMEyngsjDOuC3BT2Wk0OrvpVEGQr7N4z54m/l6Gdz2Zzd/TUR8Hcc1t6CxZEO4uGXHeksfYLotJlFBp495oMN3C+lhd2N5FqVkdKosqg6WjFIyY5ysthf7SXQkA1kVAhoHNWLtrwfcAeKvAeis7EmTjklTIShbREc+tytE+SzLdwc0luo2VZYMTO8A4eJ4JjCObChVw+9blycFVGbIPB0sPu7kksq9AjWgpCZlgUdsHyNMTtHLYZp5SX58vxzcX6Qrl3evyAbYSjSdZwtjcS4tAAi1LB243Ls2UNZDKdKSuLo4AILz1f+M9HaEAGM0VimQGPjfKRjKZM+K02QBYiKO1BDnZyQx8NuNHDpGMmDkqabkVlWDjNDiHYjkpQQ+UlNjZuHiOkAURdpKbMEyqU1+V+syXpBWAq815WUqz3sYF7y3Eby9JTSEAxkRK8fPSCMC1FT4BUD4vVXmvSU3ps1Jb8aTKy5qKp6QOEpKSsqn4aWkufVI6Kn8hDWWI+Zp/Km2tP5Wmhp9KZ/0jsqL557K67Wem9Yv+UTasf+g35fWjR2ZmFPzPANx/BJ3apuflWbi7Tmud7T6NYzf9HCxlosTddSrYzt40bOQQE2IzE8FmZT1S4zcmSCgpbeyMWM4S7DZi1FA6Oml3Am0XuPSDNb3BQwbJyNHDdV6OnS1cBukLmUmJ6e/PVVrGPgLGd5SUAQRaoAcYzl18POhdj9d5zRDvOdMlmHEggBYW6CJx893VXpuslxnnKXmJvtprWQKW43QBi+OcGG4oCZXGomBpKw7Chxqqsc2imlBpAuBqcvzAdqGI3WJlY2e8bIAk42Ars5Ubl6bLmoW4hVTj8setkJb7aGoDRtu7sVhHWg4hhjrANVm0cVtfKLtZVN9QJLvW5kFWFskxsNzBlZlyHNLy8HrIS7IiB18BtF3rCg1JCsYk+x3UtH4J4sV8gLdIPfg39ebKznVFsro7XQv4axZngtGycOVPVtvA0oL5Wjrxdp0irlAhMyAZyWJukJEzmX00A80NMnI2pKPvVFscNuJoOUKmAZRdNXGGH6Z5iSRn9Th1wPucqPjwVAuANA+f71D8HHvJiQfDpb0pdZkvSmP2c1IJtitDPFeWA5bDUZn7ulTlA1wlz0hbxWPSXfqItOQ9LaVpgyAfAUKCDMzWWPOI3m8seVpaSp/A7RPSWoYYrvoRlZStTf8C9nsYjP2ILK9/1LSq9ZH+VR3/ZFq65B+/TsyweyErK/9/jqT8PxTGH7C2Hv2Op7vjZUq4KZPsT0x3dLjM3c1jx47sHzxskMZu7KUju1kDYLzPw9raMJXh10eOHqop5OdffF7s7MaKOfOpewleeOEF4eYVQ1pO115Lb6+ZCj6dm4OsDFTjodlaLuC6q/BwX7CdO1hupvgBcLxlBtPfe6YEAHRMrsxHnBcXMUdSYjwlDUdBio/kcbogJ0TK84KltihER3oqc8F8rNlVhElXXbQy20KAr0MtG9jkHIErabSs6UxQa206gnHzJiUl1yltpZENmIq9lnsABoJsO6QdY6lNy7PUf2P/RsrNUoCoTHZxm8/mYt1dxxXIW5cky/6V6bJrWaps60mR/WAvrt3arwan+ZCreVoLpDcLF8qvA4PRiWzVokzZuCIfjzNlWUeq9C5MlybEqrlZ8yQUMa3H9AnijFjZfZyleEyyljmTDaBNtzdqai4AGmM3v2m2EjLDXmY5WIrloEES7D5FNuFn6JphMBljSk4x0I/y0gFj6+vFfYas7KgMw+c5CtLeVlKjx0pB0lCA7g0pYx0uaZjkQmbmsssfR2H6YEj6N6S68AVpr/iFdJU/Is0FkJK5r0ktZGQ9ZGN1KbtRntG6XTPA1gKwkQ1bSx+DKnlE2lv+l7TU/hSvexzx35OmRVWPmJY2Ptq/sv0n/S2NTxxPSo7/0d/UeM4fDrxMCy61iwgPe3aG44S5VpbDZ48dO9pyjNXwG8NGDSGQ+nFfcJgIMpvfB5wNSwEj8JohMnjoIHn9jVfllVdeQexmp4OqtGUg8Lhl5+mnn9E9BNxNwEkCyktvzxna/hVsdvgyTGQ9DGu9CF8JD/OSuSGQmP6uCrAQc0E8BI/9PKcDeM6aXAkBEOPCZ0tipKdkJfpJUVYIrrohUgLGoyEppWZ9YTCC8zBZWBel+8oWVc2XnpowTZgwzutpWaAT470thn/iuu5UWd4SD7ZLk7VdqVrb2rGmULYCXATYdgCCcdUO3NI1bOfaQu1YYR1sJ8GIuG3T4nS17GbRfZ+uQ86ULWyx6s2QY335hqsws4uIxTgmNCAVV3bjZy7JkpVd6dLdSD/ORF1imZoSjPjWVTydxonnBIAKYHJ1sAbYbMQNQCObzSDg8PzsKbbiMdVOvMFqgdNsxNthNMBoJRX4v7AZ+/0TzRpDsrDPGb/PLizSvk8mb9iuxlYymictB+Pb2rOhYSwueHYSH2Et6QssJTXGCnLeRsJDbaBMbMXfj7NtY/H/H6USswlxWXsJmKzwWalEjMe4rqz4CcnNfk1y0gdJRf4rCrim4ifJfiaWF+rLHjM11P9Tf2XZo6acnFdN+Vlv4/nn+jsrf/bb1Qt/ggvyi+CH7P85ZYH/7MjJybHIVOevIgtn55kWMbGxFpZWY6aPHDPs30ZZDvvNqDFD+1kOoLQ0gDZSmY6MNxqx2wgAc9Dgt+XFl1+U1998XZycJuk0AQ1jKSs52vPGG6/Lk08+CbZ7Hsw5xry7zlk85kBi+s3SFVchZi9L3s4d6Egxd6GwXsfC+NygWTJXEyqIASExgyE5wyErFwBwSTHekpnoL+kJ/royiXW7vDR/o+kZErOhIlKaEd8tbkmErIwE6MJkWWOM7p7msokVABY9LznYurKTO80SZGlznGY5d6wp0FVZW1cXqNTrA/P1cQ0y7nMVMkGzicABCLm/jjU8drKsovkpQL1+Uaqx3255hvQBhCw1bOP3L8vVRZPLWpN0u0wPmIzmt3Xl0VJVEikFOWESE+UrXrOdxG2qvXhMGKtgcyd7gd1mjQezAXCuWsC2kmmQlWzPCnCyF18AzRXS32nsKImf56qF8S+vLVYbBkpHbl3lTN15yEfuxbuOGJPJE7Ib2Y7JnBUtMSZmKSdOtjRNd7I2ecyyNvl724HxbEwurtZqmTDd2UamTkfMONNG5gbYSXrcaKnMelUacp+FbH9ZijLfkXwcSYnDJXjuWImOGgslMkzqCl6UhmK8hvEfAFlX/tj9iqqHJThsRP8cH7v+4GCb/pT40febKmjb8MxH4yfaP5eenvUH7/P+G2O4rN8f6XkgPz/vAdbqwsLCHnrq2Scrx9qOlhGjh9wfCdCNQJA9CtLRyiwlNXYbPUyGjBgsbw96U559/nkZ9O5bCjJmOclwHExlecHe3kZefuVleQGvefKpp+SNN9/QdjHuLqCk9PE1hlaNZmc3dXAOxC1lpWGzx95LY7LAYDzW6VwlwNdZ+y9pvRdB38tobzWZTUvwk/R4X8lJC9B6XS0kZnPpfMR086W9Pl7a6xao9fZSgKurYQGYJF66mxIUeGS8Vi2iR+giikVN8ZB3GbJiYarW97gma8NSLodPlw3LKAGzALpcBd9mgGoLgLcKspQgW1Qfo+WJ1WpamyFLGuNky7JMXb21pjsD75cmXfjZPW1J0lIdI42QjGXFkZKcGKjsPhvx2XQHG3HG5+AOhvKCdHQDyBwBrBnjwGr2lpoMmTPFRmZNHKv1Nab9XaxHiav9KEkKdZMNizPM2dBqXWTCaXPWBc/sNAr459RHpVn7RxV8R5q1DLG9N8O0tCFcZky3NdmRIacjTsQxHeCaMs1apjpZy0wXPOdsLdP43JSx+vX5wbam7MSRUpL6jqkoebCJrBcTNdbkDlk6mRcBV1uJCrOFBB0CCfq6qTz3DVNF/oumxvpHJDjyrd/YTRqP11nrawHif53pPPiQu8cUu5ycvD9Ll8lfneF+XxOzbID7D2hsZ2P9z6++8fIGK5vRLHjfHwF5yWyklfVwE7tNeH842I3jG2+89bo8/czTGquxy4QLPjgVzs4VR8dJCkC6NT/77HMKuueee05ju0HvDsIHN0E8PM0LI9n0zP5LDqdqBhMyk4OrbHIOY0fKbLVoUJ9LPBdBYyLczof8jIn0VcuGqEhviY32kYQFvpIKtivMpKzklEGo1AFw9RXRUoejqTJGWmtjpQFs0gLma6qM0gWRC/83e28ZHdeBZY2W7fQ0pCmJncQsi5mhVCRmlkolZmZmLjGZGZM4HNux4zicOHY4Dneaebp7pt+s4ek333Qs3fPOPreUzur11lvvW9PzxXbrx123VFWSpfLdd+9D+xzAkshWeoDBcXC2jkFaJ1nPh4/1CgDPPqBuZMVGmEdO9NIZlo5nHoBFez89DmtvZspHT/Ljk7304JEuOrazSb4fwH3iZB8DsItO8M8H6E8e+hObzUzUUVdXGRVzfGtJi5FidSLLdnO0nplMjckyolUmA+Ck/5FBVxhvpKIENdWfycBMDA2kusJkAdrPrx2if/zh/fRDFMw5rsSAKhyZfwIAwoEM0wzXjqoTEjI1MUff58fXnptXkNB57HCzEp+gp/AY3ZLeFPjvfDD4gpej40KVxBT+XdJNCoAXE68HEy4npxiUrEyTUl8ZzhLfRB31qndlWlY4xTCA+PuWYuP1SxZz2HJPi2HZ2he4NN4fqCxOe1BRicNpFy9/bWhYQGJEnDbVP8gzPizCYKipq9/Q1y/mQWv+EpMCNwTg/tymATITA6zhkRHfcfFwuqDjOyYkpVYXoMDWOoQfw+oajryePp7k5OJMW7dtY+bTSpYzzKST+A2ZyaTEGJYkkWI+FBQcyMDcSg4O9nJs3bqN7PkMB2fUAwuxSBI2e/A/YamJWK+o2Py55ESMV12TL10qDfWF1NBQJEtDsKmnsamEahiImLer4PfBGQzWDe2tJdTVwTJzsEZMZ8eGqmluspFmxhtpdqKeZsWar57mxmtoz2wjLU6qVn33H+2lgwuNtHOihk7t76AjAAkD9Ph+Zr0jPZLIQLbwweP99OCxPjp5sJseYRY8wQyK5SSHdrXQIyxHDy42014G+r75Jjq2t51OMKD3LraJD+fYUJXYv9fV5FBGWjxF8+cWERpE8fw5JphCJR5Lg1REep/ZLE7qaqECuEwGW26MkXJYZibpgikBKNmjAAAgAElEQVQ6yJ/Ks+PpieN9EpdJPQ2DpsxWKL6/ZzuLixfLRRgY/eydY/Qp+kUvq+wnM3iv7aWrT46j/qg8caxDiYrWXgs1BJk3b9mSyyHDf2FcJzDY948h+oDrxoiQ6zHxuuuxifql1DSWl2l6ZkC+GWTol1NTQv89OibkPyNjQogB9FlYtFaJijNQQjIDNcXEN5YIam2MpOYGg1JQEPJge3vH33R0dmu6e7o0Pb09GjjQ9fb1amamYR40+hcxD7rhAPfFPwpMB0dnU7jp9u32206hFsegA8sp6CD3D/JVvDh2w0YVe4cdtG37NoriOzFm56Kjwm1uzWp/JmRlXHyU7AcPDPQn/s8je/sd5OzkJOcV1nP3cKcI/hlmS6oADUOshQy84hIzlUBuwiOlKleYr7qmQGp45bJAJNc22JpLdfVFassYvw5WlF11DM52mBV1lVMHn0cHq2m4v0qs+eD6PDVeT5MjNXLMWGtoYqSKpkerJQEzPljOjNjKwX09LTAL7WQ2wgEA7d/JDLmznQ7t6RLH6EN72mnPfDPtmuODwYv37J5rEicy/KxJPoYHqqmTfwdkZYvyUyk2KoyiDFoysTqIYuDEGEMZbDqK5wOgi2VlEKMPplh+Txw/Tg4LFZYDEGP4Bmb086WclEg6satVvDQx3vOzdw5Lv+XbzFrvvThPf/fxKQEa6n7YkYfJcDFOwhIPOHu9dUTqhD+3Lfj4+PIe5aXHh5X7d9cs5Znj9XNz85rklBTNpi0bR4KCff4YHc3gTzBSXBLYzcDMpSet3vuH0TGGubT02OGMrPhivsk6GMMMJg4dGhKSotNNkfoqbz+3Zwwm/1/HxAb9S2R04D8Yw3yvheoDq9rbOtdMTkxqxq1j65jJ1uIYHx+XM0KdvyTYbjiG+7M/bs24dVwTnxCviYqJnA7keI5l5HVmtmVsUWGwKc6uTrRpy2aJ0dCTCVBBQorBrG2PAfxUwHyx/HxsbCT5+vtKLGdnt50cHR0luwnwrQDP2dmJgrVBAtQcLJSELwqDD/FegUjPLDXbWWyW5wDESgYdTIwqmQkBULBcWQWDE9brzIg1DD5kQPEYZYcmMCKDtKurgnp7KqmnEzvsyqinC3vsymSX3QBL0v7OEnGGnrbWMzjraGyYgWltoEl+PMpsOc6AnbDW8es1ND7MQOXHsxMN/N4aBlelsFhvT4WYJdVwrAlbwbiYMNIxWAzMSsbgAGa1YIpnFktiFpNidTg6+VXpCKBF6wC6EBvT6ckU4E8hXt6UlRBO+6fr6YNXdkr9DDHYj99UPVJg5SA7BBiEANdPWU5iV8IPxRDpqJQD1PT/LhnxwVwfZvw+lQHcheXXL0zS0bnKX1vMSZtGR8cwV6nJMmfxtRCb7x/gftFg8L2s0/k85x/ofiFUF7CYmpbs2tLaopmdmdWMj09oJienxIIfplYz07Oanp5uTVxCnMacnWGfX2iOyc7JDE5Iir+tuaVFM8XvldXBX1g4+sX8wl8KaDck4P48oTIwOLBm37596/ILCtZt2b75OGI6nwDvJQ9vd8WVYzdHFycFgPPycpfaG7KS2LCTbIvhMOiKvkrVkEjt0Yxh0PnxnRkyFIejo4MAztWFD1dnAeF2ft7e3l520Gn5gpQkS24aYQ8eZKe6Yktdr1VUooIPyyiLS7LkPbKRlYFaXKpasAOIVRzv4XEFswuAB+lax+xX31gsLNjWwnEgS9D2jjJqaS6m5kb1uY6OEpGoLQwayNPO9hJZodzFIG1rLWZZWMaPy6i7Q5WvYNKm5lKqZnZFU3ZGRjyFmwxk0AYLyHQBfsxoQQK0aEMIRTKzgc0ANNTSMlguItWfE2eUWloSs1oCM18EgzPQ04vS40w0N1ROV5+aYIZCZnGPSMiPxRlatfL79QcnJcUPVnv70pSA7+dipbefvs/vxZQ5Ro4gNT98STUSQhM2umKuXphQUNp46GDz77LSEu61jo9rBgcH0PwuN+DCwsI1FRWl3yqvKP1acUnRmpraGs38/IJsJR0eHlo3MjIsk9lgJz748dBaWH4waNeil3dqclozPTUt4LSx2P8IsG4qwH0ReNhFh4QK5KW7t+slnSGYJaXfkru3xxJAh5JAiDZQSU9PVNC4DO8TzNNh0Ye6xjhV9hiA6dIYlJCXkJ1avujsd+xQJSaf7e0dBHzYrOrh7krufEYpAQkWBwcHcuPnAgL9KComnOOFeMqGAS0MkAA8uD/z49x8fq4wU3wyZUQILmKwYmfgAXyIDQuL1NiwFF0u2PLDMhSxIabQm1pKGYBFDMACAWNLS5nEikjQNKBG2FQkk+p1dQXUwO+rq1XlLJgUPz+3IF1uPLjp6BlQQX4+FODtRVpfHzIxYAAs1MQSGVzh/Ho4x2xRLBnBbJnRRjLHGqXJGKl+nJNYWppYhgd6elISPzc3XC6DpxjvQQ/mh2J5t1eYDA5dmF7A3vJfXjsm3pVYr3zt+TnZn4AkycevLIpdHsZ+MFz79jOzsqYLjdJYyww/lNcvjCtvXZqlB/Y1/D4xPmozOpLUQWZJqq2bnp4R9sIBAE1OTq7j1/5f46wvPofvt4FwHYA4NDz0P8ZiNy3gPu+/tCVSYuNi73DzdD4fKLvC/MnTx+OPHj7uS0a+kGChZzTqpAaHiw4sh7MMpcpaLHVvOFgwJha75iKkLufCrLaZWRJJFMhMJFIgK11dXMjT3U2A5+rCzMeg275tO21j9oPnhrePF4XwBRsegeUR8ZSFDUHYFITRoIIMBmI65bEEzZX1W1iLbNvqymDE6wBdvi0xA8CUw0msSpWhiANLYfMn3S+oCyJhkycxIuLDUn5PHlY256RQOjMYGrZ1/LsEMMC8PTzIl+PRYH4c7O9DoSwBo1kampmZ8pPCycLMlRimpTBtIEXogiR2i0NXPwPMEm/i18MohZktyMuLPJxdKTZcS4tjldLg/N6LCxKDQQp+8MKC1NA+EYbbL72QkIVIlmCnAAraP+DX8D1Xz44yi03SWxcnxPBWphVemKePsDWHpSa8WbAL/advHwHTKTBX2jtR/ouwMNOGCZaIK8szVqZO/uz4Pw6aW5rhvnjG3S4+MeGrpjD9nJePxz+G8t05ODSAwsP1SrJMGkQQn6X4DSNZ+KiI0SzcwGBQxKAAEFes96KY6Ux8F/fjuG6H/Q6O7bawzNwqstLF2Vlkppurs4DPlb92YSC68HM429ntkC6Wzfw9dhz/OTMofXy9ZP+4ERk/BkFcQiQlpcRRanqi2l4GawmADqyIDa8sUwFQSw6AmCExYh7/vpacVHlvmo2VkzG+xH9Paho66MPlxmLAQhOWh4EM/EBfbz5UNgPQQpmJdUH8uSCDyGBKi0EnCMdjhkBhN5ithoHdbJISMRwmsE0c2wVyfBbo7U3pCWEMtAoxNMJwKmIxWEDI3N3zCwysBUn1w6oBbIaUP+zy0DUCt2hs/EHM9v6L8+IwjfgOEvLqOXWCASBEokS8M+HNArPZ1/bTmxenlTdYrh6YrvzEkpmw3jr+3+9fXAXcf8Pzcm52Ts5B2iCDneO2qYBA3xfj4iKV9LQEARxauzAHh3k4eKioLJeispzNTk921rHUTEmJl0QKDgNfxGCtrcximzdvlhjOyclR2E4FnbOAzU0Yz4lfU+Un3gP2c3JEcX27gG+FCUWOskx1dGYAu7mSp7cneXp5SO+nLwMDRqcwysF0swc/j22frmBVTzd5Dr8PjkAGVhAffvzYj3+GDzOYP783kAEW6ONDQQw2PUtGAx8AErKNiM90/HU8hj/DQ6TX1MXJnuKY3QAyHJCUJj6CfH3JjdnMl2PW4rwE2jdTKzbkSOG/++y8TCd8Knvd1IkDzNYhboNlHsCFIjaSIOge+enbh+m3H98vsRpsGlAmeOPCuMRomGz4kJnx7z+5T2I6ABWAxczelXNjAszXWFK+dn6cjs7X/KIsP+07Y1ZIypFVwH1ZB9zAWF6uRb2korJC4+fv0yyLHjMSFchFM5Y4Mpjg2oz9BPBGAdPBKwXms1iThSwj5J04hJlTpc8SWczoGJU9vPii3rZ9u8R3yFwCUEisCMM5O0lmEyzo7OQogAPw3FxUILq4qEzoxEBDsR0/Y+OmTXTvvRtp48ZNtHnTZtqylQ8GNVrO7t24UQr3dvzvoD4IMDnzz0ZcCaB7ubmxTHQTqYjXvPgA6Lz4azBbSICvpPV1QcxqwX4UxwwWFxYqkhEMCMmYHKGjBJaGGbEGZjO8xiBjoLo4OPO/5UwGrT91NWTTQwfb6MqFCZmde+3CJF0+O0avPTUlsRX8U2DH8L1X9wpbrZjCgp0wUf79K+o+gR/J/oA9woAfw6+Sv+cjfvy2zXMFpQHU3hDHIcb7GX8v3oPEyYcvwkX6gILFHotD+T/Kz075lpUBd7PIxVsOcF9kOj7ftriwsE6rDV5MSYlTUlPilsFu6BhBHQ7SEd4o6ak2wNkmBvLE1UvdQbeyeUeWiTA4k7DLIFEtIYSFG4SFADYUzLdvR+bSTkChlhJUsCHRogLQQcAGoOE9qPHh7OGmxoDufCAm9PXy/PzwZvAAnHgM8CDJYdIGUyCfIWnxug+DC/2giCUBNLAc3u/HRxDHaBEMKAPHs1uYUQHsaEOwAC6EZbKWwYikCFL+6HWMZDbzZaA6Ojjyv+FFBdkxNDdSRs8+MigzddhljYFXDKPCVxLAwzQ5OkE+kKTGLmGhj5nhMNQKIyPIQCREwFRInnwKjxS8dmU3fcIMB3koU+QyeT4nz2FxyLtPT4okRWuXmNgyS6Lr5Nrz88qVJ8dp33jJP8RGh20clxhuVVLeAD2YY5rm5mYNM9ITABgDTklMjJUanPhb5tgMZW1MlyymRPEqA7K0RLxUVpYr7l6Qn0jlQ3bCxRmOYomycTVCEhIhDAJMHEAigvEgGwEogNFB2E8FHx7jjMTL9h12Agpc+MF+vgw8VxVwLNvwGIzoyWd8r6sTA9LVVYDpyYyG7wMQ8X68x40f+7MMDeSfFejnTQGQlnx4ubtzvOZP+hB/ed2oDaDkKL348yNh4suy09fTi5mRGdHdg0KZBS3pETTWky/Drq9dsNKbT0/ILBxs2V8WRpuUAdT3ZJp8QeI1SMq3L83I8+jml5rZ1X3iIAbrcshL1NA+vbKffvX+cRVILBmRSPmI2fEajGNfWhDwvcvAxkT5T7HeigEqmcqXF0SCIgN65eyo8t7zi3RwquzXSYnRG8Ynxv9bG0dXAfcXkpVzc7MaX1/fdUEhfh8g/Z+YEKWI5TmSEpY0AVaK2DRECHvJEGpOmm3NseqDKYXsQrOsLBapyQfqayiar6w6xgQCSglR0WHCemgR8/b2EDbbwXEeAIh4DVnO7dvVMgLiP4AHrAVweYv845gNABAQeAjgUH6QjCizl7ub+hhAA6Dw8z0Z5CFB/vzvx1BOfp70f3q6OQvYwH5gOn+O4wxaNUGCVD/kJVhs+zYwrCNpg3ypICuaQVZAjx5tp8vnRkXeoY6GA1PimPjGbJy4cZ2zqhttxBF6juOuCVl6D5BhYSL6IgEuln6yAwEZyzcvTcuqLQAIHScrfZLYQQCn6LefnhCJiUl07IqDs9gnzHZgvg9fUGtx7/LPRSbzuUcGFLDqzpHCD1OT478+vpo0+fIP1FRmZ2c02lDtHaG6oJ+h9gaGy8tVjYMgHT9ntZR4G4DUIjiYT7wws9TnsIUV9TEBXInawIznSkssIk9Rw8MUAjawYgoBzBcXFyX9mTp9qNg7IOZTAbhD5Cc6WRwd7RkMYBZX8mD2CmSwBDEA3fh9AJuLs5qAQbIFZ4ALhXcwJMDk5qwmavRGPaVlZVAsgw5g9ffxJB8GmgezHw4vN5alHIdt22pHW7bYye8RYQymqqIkMa49e7KLrjw5Rlf5uHLeSi88Oiz72N58ekZ2AMD1+YqAbVLABfBde25RjIPgg6mavc7I97yHba0wp72qmsGC+d4Vt7AFBthx+tk1LA45Rb9874TEdJCV8FCBN+bVs8OyDfWHr+6kT16apR+9uiDLRLDVFbEeZCtm5F49O6K88sQw7R4t+IfUpJhNkqVclZRfejFcCp9Go3GH0aD9fVoavC2TFCRPzNJhooIOm1XBfojlYDaLWA6MZbaBDc9jCrzctougyJZQKSvNkR1ziO8AuGJmQLAglj7i59lMbCk1TfXPRF0PY0ChzDCBzEhezED2LC+9GBABDDLEXh5uavymJkTsycXJ8fPkCuI/d4n1XITl8NiNmWwbMyZkKxhzy+YttHkL4rStdO/GzXTvps20HWNJXm4UHx1KlUUJsgMBQ65nGGQvnx2hy0+qniYvPDZCzz40KE5g2OZzDSt/OaZClwgkI7rz32KWwkWPx/A2QS3sY8lOHhDWkniOAff919WVWtj0gwymWrhG9/8hYbyfvnNMhkl/9/F9stIKbIZlIy893EsfPTtFnzDofvkOM+HlBZGbOGDJ973LO0XGvv/cvJQFjkwW/kd2eryD1Vb4XgXclysp1y4sLGjiYmNSoyKN/ysjPQnSUVGdm1X79PRUldnAdADg54+zk2W11craY5GTAjKM5eQJ02H9VUVFrkyDr9gwlBRbmPVyVOYrUOM91MsAWhjYpsq2nziKjYmQTg+tNkjA5QXmQuGcQYN+TRTX0cHi6ICv1Zhws9T/tgmA7OTYIWDbcPdGtbzgsEOWXOi0vpSaaKTGylQa7yuk+/e10ktnrMwyM7JV9M1nppBWpxcfH2PpiPVY45JlxEDqZQaaWCqcUz1OwFKSpGDpiBVar1+cESu8N55SLR2w0w7x1QfY9vPCoshLyEnEbO8+B0fmowzmaWG3d2zjNSgjQE7+kEGKNq9ffXBSZOJr54bpQ47j3n96nN5jeXnlzAh97yVmxkuT9MELDMjnpukNZt9XHh+k9xhwKBHsHy/5aUx0xAY0PKwC7kse4bFaretaWts0QSFB1cxYS9glzgymWMy2XQVYDsLsA+AAZBZLsgAOoMiVHXRqNwjABZMhSEw0JcNECCwmEwIlaisWAAfwlZepYMNjMCHeB/bLsx2QqGC+pKRYOVBq0BtCbbEZy0hmOHckQTxZErK89IAs9PIiH19fPrzJydlRDnS+oJMl0N+LepottHeymh471iWgefMiWGhOLMiRqv+E2QWZQywGeeWsVbxKZEHIxRnx+Ed3yJUnJ5nprLLd5o2nZ8UoCICDNPzolb2yCQfF7FeenJAY7hUGw1vPzNHHDEZsK8UeciwhAbA+uXpA9o6/y9/z8atqhwns2b93dZ+0b0lc9+ZB2UH+q/eOi8ksdhy8w8C6yoyLFcQfPTtJb50fYaaboe+/PEc/e3MffY//nvfBrk9jz8KY8vJjgzTYan7LYNB/Ew3Iq4D7khMm8/Pza6NjojUODnYHUApgObmUk5umoJCdka5u4RHJiD3hKbFkMSfLgo8cBuMKuxUUqNlJ6bW0NSKD6VAkhwXDyhR4iW0qoKamUEZwcgFWfj9s94qkiTldgIgsJ5I2SNYg4QJWRYFd6oCZCbJjXCz4SjKpqixD7Pc6mvJpqKuQZobLaXqghGaGymTNMVL1pw+0MvMMC6t88KIKMMi85x4bFgYDuMBEABUs8WAKhF0Fr5ybVP39GTSXJTabkxVZMBZCNvKNS2CpnQIG7KvDZh8ADOM04kWJ3QbPwKNyN4NsF73L73nn+UUBIxgPSRbEfIgB8b6VnwWLBEhCFMB//eEpsWFHMgTlAtTcsMP7I2azH78yTx8+MyFrht86N0S/ffegxHAXjzfTO09ZMVXADDdKkz2W7+sN+tvBcLY+ylXAfUluX9I5npScvMbb2+NcTk66wnHV9cTEaAXJDXSSpKTGUibHb5ks9yzmJFnwkctHgW0nHYZLYRArDcYMFGQrpSyAJuQC2wEvS5aSkJpgvDzphUwTUKLPETEeVhtjErypvlD8PzD13dVaRH0dJTTSXUbjAxU0PQIXr3oZKMW09am9rXRybwudOaFaITz9YC+99Li6a+DqeYBiii6fGeOvByVbCAkINy54+cOIFZ6Vz8OvkuUiWq0ALpgHvcJM9iJ2Ezw8KF+/wFITZkEvwykZsRu/jkUhr5wdFYNXWOOB6RCzgQ3Biq8LK87KGuTXLs4IqK8x4CAvkVSBbER8B/cvuREw+6ErRBiTQYUiOArjavPyCTkjvnuXY7i3OC57naUlVh+/9sQAfcCge/9pK336Av8cBt/Fo030xplBSZpcPjuq7BwteaOsKPObE5OrDPelJ0x27969JiMzUxMQ6Ps4khjmzOTrmemJCsoAqMlhpTGkJaRifm6aMBtqcOg0AcMh3Y8BVdXBK1OcmIWtRGZmqeZCAFoRMphmAWmerUheXJylNhVX5THAiqittYxG+qtodqKW5qw1tGeqlk7t62BQtdL9+9vFV+SJE3DQ6qEzJ/vo/OkhOgc7vIcZPHxg2QfWE7/MAEG8BZC88NgQvSRMxq8zgJ7nxy8wq4HZnn9sVJ6DPwmAcJW/53kGGgCGAvZz/DosyF/hGA7mQS8/OcXgnKBXGTyvs6TE0hDsKwBYkeoHqwFckJr4nhefsAo7XpWvrbIg8s1n5j+P41Ai+N6r+4TZ8DXYF8yLjn8Uwv/2w5NifYcWLxTFZXzn1V0SpyFhgvrcp5d30g8us4y8aKWnjrfQ2wy0t/gG88ojvfT0fV3Lzz86CCl9pb2tTdPT0yvN66sM9yUxXH9/v6axoWFNZGSEnVYb+H5aaoJiyU5dQpYSTcnCYCwXZQVWViLLRkwLsLyUTTxJLDPV3eGYE0PCAyy3Mt+2MmCK2C0HDcTowZSieKbIz3zb62WyypgB11BEg8xks9ZaOjCPPQMtdHxXMz1yDG5c/Xz0McgG6Nz9gwy4bjp7qk88SeDWhcdw6noSSz9ODzAzDTNghhiAffQMn5+3gUt2ht/fS8/wey49NEBP8fniQ4P0NB94Hw64bz19ul9ef+YRdf/cqxdm6MUzKoAAujcusfyEsxczGxjuHeyge2mPtHBdlbXIs7IK+TJiQcSBDErcCBDTAdQiIy9Ny35uxHR4DLaEjYLEkRfGBXS//eR+6R75zUenxEbhB6/tpb//9AFZkYXsJIrcv3rnkPRTIoZ7i1nv2fs66dlT7fTq4wPK5TMjyqXTvcrFB3qXw41+zXpD+BrUXHGjXQXc/+FkCQYQ2/iud8ed3/VydXN5ND4+6l/VLappywy8ZdTKJJmRryYx0M6FmCwX21GZ5QA6xHUAJl5HTQ4xlxqLqVMFYqGXa2v54tcATrDlSoxXIcZC6gbVloYCGu4to6kRrLCqoZP72sTs59FjXfTI8V567DiMe3pkEeFDh7vowcOd9NDRHnqEvwbrAYhgPJjuXLBtn3n6oWG6xKC5BA9/PuNrgOvJ+7rpiWPtdPa+HjrPUvT86T4B6tP8nhcYcBexVOP0IF14kAH42BgfVrHQg5ksgPc6A+5VjuXAZgAcNtVcETNYjqee3yUxIKQkYsCXz02oixWxhgpLFjl+Q9IFTAbGA0hhOHvthXmbzFyQpAq6RfAYkwKY7P7F+yfoB1f3McPto79974jEcO/z8b2XZukHr6qtXyiEXzjeRpdOtChXmOUw7f3GU1PLpw+1K8Nt6b9srCn6hvUWau+66Vq6ML2bmZlx5w4Hu9Hk5JglrLrCBp4sZji0daFPEmABkBCXqWuM1c4T2DBAViKLabb1VmZnJX8OrgLbkg98XcbAAqtlZSYI25UUq8wmK4wrVPeu1uZC6miDO1c57ZsqlwWNR3c10H37W+jE3mY6vqeFju1po8M7m9UYbl87HdvVRMd2t9JDR7oZjJ2yDAMuXGdP9Yrx61MMugsMpLMnu+nMqR56nF8/d38/PXGyl59jsB7tYEB3y3YeWKKfZ5DBlxLAvfjQiDAm3gvnZvhZvnhuWhgQcR2Ol8+oe8avcfyFDTwcL0kJ4RWWpFfOT0kC5ir2EsDfkiXqq09aRYK+8fSUdPu/wcwGdkMR/CNI0memxZ8EyRK0dEFCvnlxXNq9sIMOZYJXnxiiT19ZlGZlTA589OIs/fajk5LBfOP8KL12bozefmqcD6vCcazy2lPTn+2frqTR1rSzVaX5aycmJtesAu5L6jDBlG9FZcXabXbbDsfFRy0jYZJjSVMg/dTGZCQ91LgLaX8Z1YE9AsvCnOxkKVyv7KKTli8wnUyFp9kSJNmyHxzsB7YszOefya/BpxJrimEU21Cdw/FbITVzDNfRUiSbY3ZOVNHB2So6NF+jbkZdaKC9M3W0c6qO5sZraWGyTly0DrPsPLKzicHYRg8cYtY71EmnD2G1Fcd5J/rEN/JxlpxnGExPnOpnwPXwc730AIP45J4mOrWnXjwn0dn/OGJDBiS+DxZ5T9zHYOPvg5PzEye66alHrMx4w7Iv4PIF7BafFpmKArjISJaOLz0+ROdPdsqKLAANPZVYAgI5iccAG9rBrqK08NSEMBuym1KeYDZD0zFWIl97flb2yf2OJeWbWCDCUhI+k9ie+r3L/D5+z+8/OSVJFsjK33//tMzQoeCN4vib563K+8/NKgD1U8zgi6OFSwVZETuTkhK/iv/zVUn5ZUjK8fG1ra1tGju7baFhptD/0umCsUNgKS8vQwCXnZ2iAFhgJ8hEHMV8ADyIvZAgAcAAOkx/43uQREG8V2LrMCkusUiipIwPZCkryrLlwB7wukoLNdTkUl1tvqwthqTsbEEcV06L49V0aLGejizWMuCqaf9cHe2arFbdsvorabivnCaHK2hhql6WFe6bqWfwtXHc164udjzYKQDEYscHxCSWgXiwQ8B4muXo8b2tspHnBDPoCewp2N9GD/FrjzBQHz2usiXLMAbcAINvkKUnx46nVPmJtVKXz0NOzrG8HJOxm+cfHhBp+Nr5CXru4X5htJewOORJ9FdOskwdlQQLCuEAG2I4SEskWZ2xEPgAACAASURBVJCJRLz2wfNzYuyKbv+fXzssrltoXv79p6cZRHP0/nMzAkKAD16Uf/v+MQEbwIeRHrh8YVEk1hm/9uSY8iYD+s2np64f29n0TwMtmd+vzI/X1VSValYl5ZeXNFnT19enCQs3ukdHGH4TZtL9U3xC5PXcnHTISaUAzIbMIyanc5HsUAvbtjjPVh9TpwVgdY6kSK4lRQCHMgEAWsoMV1ddICY+yEI21edTEwOrktmvsTaXjxx5rrWBj8YCZrgS6u8qoYmhMgYRM9vOepaV9XRgvk7WEk8wyGB7PsKAsw5W0eRoDU3xMT9ZTztnUC7Ae5nxdjfLuivI0BP71OWGx5jRsInn5P52/rqZ9s8za07XMUM2MAhVQN5/oE0eP3i0i06xjH3gYJfI1ceREeUYEez2vOwkmGLQTUliBmuPX3xsRJIfr7Kcw7ZVxHDPMAhfkkzlmLAc+ipljzc6UC5YRT7iOXSzYMpAdoozoAC6X3O89uM3D4msROH7R6/vo5+9eZBBOS8NzD9+fQ/9GrvE31IL45CXqN1hogDmsB+9tLj8EQPvlXMT/2ukK+8HVfkxe1qqzcHjNlet1bLAlygpm5sab3Ny2pHg7OyYFRzsdy0qykjJKXFKcXG2UliQpWDpInbAwbpc3JNZBpbaMo9qV0iKFL9RqEYJATEeAAeL87qaPI7NSqm3q5K62oqpu72E2hrzqbYqh2qrc6mpLo/62pjZmgsYiDB7Laae9mIGVBkzWiUdmGV2m6liNmJwzKkbQcd6imigq5iGestprJ+BN1QpbDc1Vk27p2toYaKGdk3X8uNa2jVVw8Cto8OLWGncTEcYeAdYnu5j8O6He/NcAx2Zr2UgtjEwW+kk2I5BB1DKXjpmyxM7G8XG/FEGHZIvZ1luXnhoWPbNPcdfP326j555oIcZbVjY7dmH+iRee/xoG124r1uSJZCSV85PSP0PxXAADW1dsEfAtMFr58eYxebFHg/H96/slVKAtIs9O8PAOkC/eOeIlAF+iQUezHKfvLJLDIh+8/Epfu44/ezdowqmCn781mHlw5d2Kz94/cAyy+Gl2YHcP1bkJwQ0NtavGf0zW/xVwH0Juwj6+/tkFg5HY1Pj1jCT9q3ISAPAtFxbDSvyfOruKKWxAbBLJc0yo4wxIAY6GEDN+dRSa5GdAA21edTWVEw1laqteX0NWKuQ+jvLBBxI+Q/3VVB7UyEDLZ/fZ5EdAwBdcwMszgupu1Utdncz6GawS4BlJGK4/bMMHo7rUPgeYZCN9pbyzysV38mh3goa4a+tA/j5ZTQ6UC7vW5yopj3T1cxiNXywNF1oYvDWMshqZd/Abgbjzqkaef0QA/AwM939+7AAspWOMjjBivcxCCFNHz/ZL7vGsRnn/ElmvCPt9CSfn3lwgJ6WMgNA10svMtBefHSYLpzs4Od6BHiox4H9MJCKbhIZ1XkGjc2zIjFRzIYh0LuXpgVgSJSgq+QaS8j3GGw/fWOfWChgmhseJ79iUGEqAO+BnTmymH/70SmWoAzEN/YrP37zsPKD1/YrKEfstJYq413mtyuKku+01d/W3CrsdtNOC+A/guO5NVhhPMRyIzk+7GRSpF6Jj9ItlRamKUXF2bKD+9DOFll0D199LL4/ynLvwYPMBHtbmCVYmi00MivVkrWPZWFbvnSIDHRwTMagAFgnBhkofO5tL2Ig5jNA80VS1lRmU1NNDjXX54ms7ObXBzqLydpfSjNj2CVQRXtnqpmtqmVl1TCDd4DB1t9VRj2dJcKa/T14vpSGmf1wHmfWm7dWi8PyIjMewLVvvpGZjdltto7ZspFfr5D37J2q4ucYdMx8yHoiMyqMuBPxXYfsEkDJAdlNrMG6yHHco4fa6OEDjXSRn7v4QB9dZCY7d6xNpgfAcgAc9tIhYYEiuxS/L0hvo4z1IJlxmaXnlbOj0gHzLjMgYrcf2bpL0EMJQMFCAcawYLIfvXaAATgrUwO//fA+ZrWjkJ8Kpg9+ce2Ywkyn/OStw8s/fP3g8stnRv5o7c39/XR/PllSjCPNzU1rrFbrLcVuN63FwsoWVcR0vX29ayL0QWUwzTHp/K8nx2iXrV1m2jVWRG0s+04f7pVMHbovXjyDbvlx2a32zMNDdInv9LjzY2sN9nLvZHay9leo0m+wkoZ6ShgMJTTYUUhtDbnUXIcYjkFXzWxYZeFzNnU18fP1uQK6kb5SBmkpzQJ0EwAPx2wc2431q+zWwUwI+dnTXkBtLYXUyZK1jwE43F1Mo8x0sDafm1Azmzj2ztWz1OTH0/W0e0Z9PDvKwAQgEf/N1UtyBnJTVh7vRhmilU7wDQVxHIrrjx5qpXMn+KZztIPPHdKlcun0AD15vJWePNEhTHcJNcDTvXTmSAs9zY+l44RBh0QKMpdgO8hLjPrIXByK3S+otgnfv7pH7O0wAY4YDrISxkEwCPoVx3VIjvzuk/uk+I3zjzhee/+VfVL6ePho9/K5U138d1TRQWvev+wZKRgabEp/NTkhQt/d06uxWsfW3Epgu2nHc76YRBno79dE6oPjwkIDYTmwFGkIULprk6goK5yaq1KZibKkDoZlhijsotaE7np0XFxhyfTMA930LN/Vz5zokdhrjhkJdbVxZkhsNYXUG2RQtNXnUBOzW3NtLjUwu+GoZdCB5doa8yTO620vFHDh+xfGVfk3M8ySkYE4wD9jiIE10F1B/cykkKKdAGCHynw4JvnfFLAxwA4w++6fr2cw4czsNg7GrKU5jvvkMYNvzlopMd9+ZrsD8/UiKY/uahQGf/Rol7SQPXmyh4HWRWeOtdOFUwy8I218tNKzDzLI+GK/hAI6y0xsYQXoZPsq34yeR7cKA+71p9ThU/RSwmYBvpNYP6V6UO6UetyPxBrvAP3krYP0tx+cpN98eEoWL8Kb8u8+OSU7vLHh9CVmR75JKIfna2i0y6L0VMfToRHLH6Z6LD+pyItr7qhMsisvSHPtHxgUS8RbadL7lgAcpGVPb6/GxckhE+5Vnu5u17083BRMUMNJuaYwjnrrUyg3PYxGe/Kl8Hz53JS0KqF3EBfQiw8P0MuPDtJTfME9dKBV9rMtjJYJkwB8k8NVIi07mC0hK8F0NVU5VMdgQwzYyKzX2YzYL49jvXzqaStkYCFrybEjAwPLNMb6meUYdGBOxHpdrcUMTgZdW5FYlA/Z9gkgkTLDgJobZ9ZaaBag7Z9vogOLzbRntl7qevMM5LkxSMtyWuQDINzPsd5BZjjISmQ5HzzYKnW48/cPyCZVNDQ/y3/n+ft6mPGa6TFmvafu72ZZ2cPnPmbCLnp4f4O6+hjAe2hYxnVwc0Knidq6NSHOWp9iLAebbpjRwHAA2s8Qo107JgyGIjhqcx9d3icliN38+0315dD+sQKqLYqnluKY5e7KeJpuT71+qD/jN31NGQeSYvXGurpaTXtbi2ZocEBjtf5p6HSV4W4swK0B4LZv35buK7YDLtednZwUTFJj4trF2ZHCdL505/p7yNfLhdpqMiRL+Nzj49J4i46J11B/4ovx0v09LDUn6ezJXjrM8R2SFjvHq2h2qJTBwszUUUBdjTnUUmeRRYy1LCvrqleAx8zXkM9Ayhem62H2GuziWBDlgoFSmh5S5SISJr0sJwHK7jZIyxLZI9cPwHWXMbDLpAF6lo+9M7UMsgbaw9JxLwMPjIb4cM5aRTtZrkL+7pqskwv60E5bWQG75Y72yG44dJtcYLCdZeBdemhIAAcwoU3szLFWZrtOlflOdMq+8YcPNDPguoXdUDrABAMmEZClvPacOoz6pkyFz6imrdiEw7EbJrw/YZDB1QtSFDvo9k3w39WeK7Z9cC1LiAihjrJESjBpqS1bq+QlGJSmbBMNVCZeCA0NdMwrKNLMzsxgYw0SJGtWmO1WA9stISnRzOzl4Z7m6Q7XK6cld1cXBdYGK14icNCy27GDtEEwUXWj4AAPaqvNokWOlSCbEJvALQrjKVeY9Z7ku/0jh1qkARlSdO9kDc0Pl7AEYiA151FLjZnqK7OosiyTqsszJXOJo5aPbmbBdj4w49bNsV1nSz4zK9YPl4isRGZyrBcgA9iKqBdgY1D2SyIFZYMydXUVs+oigx3gQuZycaKCJWqVbFTF83um1cTKnLWa9k1X0wGO5Q4tNtLhXa2ylxtF8UekWbqfzh7rkCTJU/d1CdNdAKMx4B473Er3766l03sbZJ/2E0fbBYzoywTTIdZDNwp6LTHFgEzlRy8vMsOp23J++NYhGSy9/MQQnTvWQHsnCunwTCmV5UQwwLQ02W2mAG9vijGGiM16dYqOpnI9aL7ASRnI11K/xXdpsCGnbmx8CttFb/uf3lqzCri/EMOhRODt6ZYKEx5nF2eWlO6KOGN5eIi7lQ8/hs2Bs5MzbdqyjdxcncjN2Z4CA7xZklXS8Z2N0uSLYU5k4S4+0EvPMgOeu2+QTnBMdBjx0WwtzY+UMFiKOZ4roI7GXAFbRWmG7P6uKjdTTVkGdbKkbG9k0DUxGzLY+jmmG+XvkZiQGQ4FcMjTEZaYyE5iLTGyoep6KgCuVOp5kJaIHecgbVnWom1sD8oBU4jd6mVx4+4ZtIxVS4JmwVotpQOUIiSWY2l5//4Waf166sFhZro+YS/U2AC0Bxlo9++qY8DV04P7m1lONonUvHB6SNYZo0PlRczYnZsQ0L3zPPwpdwr4HuP4D8OyqakxVF8aTwv92dRVnUjp8Xq6f6GM2iuSyaQNooH6NLIkhFFxWiTVZkdTH4Nsd5EDzRW4KGP5XjRd4PZvA42F+hGr7A5Yc6sD7ZYBXF9fr8bNzSUZHo4urs7XvT09FNjMwVQ1hA+YqgbBG5JjPBin+nh6iC1dlCmIzMl6OjRZQgc5iD/EFykah184MyFtUOf5onv4QAs9sKdBJgAO8ut7JiuZ7Rg0LDP7WGK21KMQbqEmZr2OejP1teRSA7Nfc002S89c6m0rYICVcBxXIaCbZYaa5cfIXFr7S2i8v0zKDiPMeuMMvonhSmbCcpGOYDS0huGmsBOxGj+eHVUTJ4sTtQLI6dFKYcNp/n1QLjg4j2J5E53iWPXho5hQaJcZPPRbnjneySzWScfnq+nkQjWDrYEe2FUv8dzpPY0cvzbRYwzQS4+OceyljvS8/dyi7BBH8b2+Ko28fTypvzmNQgI96avfuIviWSrWF8ezcvCmYD8/SorUkSUpjPKSI6gqK4aKU/lsjqaa7CjqytXSXJEnjeX7LffkhtJ4gefPh5oK7gTgRkaGbmmQ3VKSEq1ezGjJ8H+EpPT39lKCGWCIH0yw+w70IyOfcRj40IUEiKEqGDEmPIjK82MpJU7HsVoBHZgqoeN7muiJ+0boKY5/nntsRDryIbuOL9QxGzbQQWa8/XM1tGsc2ccSGuospN4WjuHqcqiTY7y2Bj7qsiXW62rO4dgvTxI2Iz2FNNlfzGDjmI5BODlYKnU76yCz2VC5AG2CzzMMyPkJNDvXSDZSYjZrGU0xSJEw2c1ycp6fQyJmdpjZkBlzkpkTEhN7xA/vapaCOLpQTuxvp5Mc2yGuepTB9uiRDgZaHZ1YqBHQneDjoUP8Hgbe6QNtdPY4S8lHrDJdgJm9zmZ4YcJL05niwrGy2Z6KGTy1+fFkDAmkjDgjlaRHkDlKRyUJ6vadgpQIKk2PprL0KKrMjKRqBl6dOZz68kJoptBLGcwLUoaLjEplks8zmamJmsmp6VuqdeuWZ7je3l6Ns6N9hrenO3wdrwf6eim6IH+K0AdRhCGYojlQlwUW/BjrmQA4fx9v8oe7sYsT3btxG8WYAqiTZVFDaRwf8dTTmiuMghT9kzaZheI5xmcwwf3g0W46uqtFZN4Us1J/ez4Ndxex3CykYT4Gujg+Ywbs5ecHOwG2AgZIEYOjmMFVIowEeYqa3SSDbEwYrpym+WfNj1VJggQNzigP4DFav2ZGGXjMbkioQJbi351l1kSiBVYOO/n9e6YxcV5Nx3e30H17m8TO4RSylvtbBXQPH2qjU8xsB6Yr6dh8nbwHTc8PoDVsH8d9/PqJxSpm7WyqyIvmG5QPbdq8jTzd3SmcP7uESD3Fh+soJ9FIhSnhVJFuovrkUGpJ11GT2UAVWVFUnhnN7BZNlRkMuKxIqsqOpSaLgYbyAmmmwIu6c3TKYH6oUp5uGh8eGbvlCtt/FYBzsN+RC6nI8dtnwf4+CmpyKIRHc8Aey4DDMkFcKPHhegrXBxMAGcoSE+ud/Biowf5eYtAaaQygjZu2UGIUy80UPYUZg6m8IJ7BU0x75hpkaf3Dx/rkePBwFx2YqWVWaZCM4gyDaKKP4zUG0bStYXmCGQ0x3AjHa1Z+Daw2O1JGc2Plcp5mhprmGE3qfQw8SMRpqbPVqN0mDLgFJE4m1XLA7Hgt7Z1tZHDVibwEUCcZcIjh0DGDZuljLH2PMuBQzL9Pei3bZZQHMd0JZjsZHeJY7/BsNf/+NdKdsp//BsjcbpbAFQUJcvNxd3UTJYDPKwL7vaMNlIkdc6nMWulGakrVUXOKltrMOmrP01OLRU8VmREMshiqYeBVZ4DdGHTmOGrj16x5vjRV4K105hppIE+rsPRMHrOO/1Wx2y0jKb3d3UqQGAnw8bxuCApYxsqmOFMoxWNRIwMNfvsJ2GHNFw3u0ia+W6s71LDn2l98/WFnB8aTcgKDD4s4kNn09najiLBQKsmNpqHuIom1FieqlH3MJCzdFGYGPjqU3VO1yt7pWoUBonA8pcyxNJwdqeTH/DVLQ8hP1M9QqN45rvZD7pmuld7JeX5+Qdq6WEryewVkDDiM8syiLscHEjeYpzu6u026TCAlEQNCai6O10jm8uhiPZ2SyYIm/t2aFDQ/c/ypPHasRzmxu0VBEogBpuyeqJIli6f3N0vnS0tdBs3351BtUSzZ73Ck/IxwqimMl0UhKfyZpcYYyJwQxswWRtmJJmpgoLVmhDJzmagjV0+dOaHUlqOTWK3KHEMVGTFUlonYLZJqLFHUziCbZLCNFAQsd+SHU2dW8D+GaQM23Womr7c+4JA0YYbzcHGu9PF0V3yY4aJ1wUqsUauCjaVkYoSe0viiSYnWk5kvmNRoo7Ae7tyxzIBRukBJpsBCHECDaauTrKRyJAdHJ9leY2fvQJZUA6XF6ygvzUC7x4qQRFBa6nOor6tkGe1YBxZbaP9MHR2cqVV2TVQrC2OVys6J6uWDC83KwcUWhUGiHN7J7+GvMWaDeTjEXJgA2D1VLXJxN0tYAGv3RCUtWqsEkHsZkDsRn02jsN1IJ/Z2MJM10fyoWirYN9ck/+6h+QYFhW9mMeW+/W3KfQc6lBN7WpQHD7Uvn9rdtHxsV4syxwwKSWodrGSgllNpXhwZdf7k6LCDdg/lUpQhUBZ/RGqDKIuBhRtVcqSOUvicGWegnHgjZScw4LIM1JJtoEazkdoZaD05IXKuZUaryIylyuwYas7SSaJkIMePprOdaK7Qk3rytMv9hSalJiXkUlNT45rRW8gc6K9DUvIZDMdyMBeFb3dXl+umkAAFe6yTIsBuoXzGRWOgjFijpKlxx0Y2LZ4ZryIxmLKigilMF0Ja7AjwkDhQXaoB8LmqSxhhRe7j7c4sqHr4D7RkKvXFsUqEIWB5tBPF8KwPS0vNL/W0F/4zOlR2TdaA3a5LUXqhmUHUsIyZNwCPj6WDC03Le2cbhBH3zTUoHHsp+/kx3o/OEkwJgIV2WcsZTDV0EMBk2QpQHZpvROyo7J5kluXvO7KzmY4s8M+aql7m55aO725ePsZsdnSxUTkuM3VtYnAEyTjYkUPdzdlKRkoYxURqKSVOT1FGP9put4NCg3wokplfz6wfjcUgHAPH8ueXyp/lys2qiOVkIR+1mUZqNuupneVkS7aeJSPLyxwjlbCcrM9mBsvVUZ85iOM1LY3k+NBh83rlWP5GpS8vYGm4JILitO7Ng0PMbGOjf1Vgu6kBJw7MzHDdPT2azZs3hvp5ey15uLkuh/j5LGcwwHL4jpwarWNwGTgm0zPgTCyLwlkeGSkr3kQ5CUZqSfOjvLhQft0oK5+wCgrSFABzdlG32gB4bis73vhst8NeMYT4LqfGamFN/of2qoRnuuvTx/wD/DZXlyQ+mp4a2VxTYX4ZQ6sdrSX/PtRb8c8zYxxzjdUofNDu2WYAj5mpmfaC6eYa+fnK64vj1UsMsuu7xquWAKx9UzXLByYrlV3WimWOtZb2sIw9NFunHJmt5sfVyuI4EizVCgObgVazPDOMelyFKksnqml8qPr68EDV9a7Wwl/k56U931qb9R/7rYVkTtIve7g60O3fuZP/Zh9KjdPJFh9kecH2epbYoQy6cEOw3KzS+EYFhZCTGE75KZGUx0d1Zhg1McO1MthaGWytHKO18tdN/DVYrS83mPqyglhq6shqcaNDOffQyby7ludyHZWevOD/iI80ePb1D2rUrpJVhruJ5uNG1wzzOTY2xt7Nxel3YDkfT4+leAMH5Rx3ZOGIM1JmrIGlEORQmNSJilPDqTZVT70Z3pTHd+78RCPFh2tJrw0U0OECFJC5rgBNvSDBcOhg2WHvoGzZaqe4urq+X1ZafHddeba/LtjTq70quXmwKcu3rzn70dqSpIsJsYaawrzk0wX5yW+0NVr+0NKQ91l1peV7jQ0FP+3rLPtsoKfi/+7vrqDJUYAEGckGYccFa6X4W6KudmC2TiTlztFy2o263GQtjQ9WLPV3liyN9xXTaE+hFNnbGvN+X1dl+WFDbfZPJvtz/3myv/B/pSbHDHU3Zu1ydNwebU42fNpWmUxher+lu+7eyH+DHW24Z6MsCPH1Vpc7RuoCJa5FKQUrsBD3pvJnl843qRz+3PJTIig/OYIZzkTNDC4ArDHbJPJyzmxPQ2ZfjuUMDLpQ6jaHUFuugazZbnTMskE5Ytnw2f4SN6U40v6Jzs6Or95qOwNuecCtTIBji057e/t6hx12bwX4enMc57akC/Cj5HCdyCEzxx35DLayFCMDLYyqUnXUmR5Ew5m+NJPtQj3pgdSRFiwxSmKUTpYZBsiWUQ8BGgrq2MHGDIrnFAa0wjJz2Vl2fLuWz80vaIYG+te0Ntev6e1s+dp4V4FfWrw2qaQge0NfT7vGnBbl1VqV9FBfc9YPWqrT3uK4Kb8kP2GuoiRlLC4ucrG5Juv3iUlR+4ryU69kW5IfKSvJvFpfk/MPzJC/6u0s/bfm+tyP25oKXmdQ/edgR94fGquzX22uyfxlV0sOjXbm/eOhqeKfG/SBTXmZURUNFWmDrVUpg90N6c/21KcvlFhiv11siQsO8nVx/e6dd17ZscNO2bx16xIWiGzZuk12GEA+o6SCRoEYlpHhoXzTYfCB8ZFwAsOlguHQNZIaoTJclolaWVI2mE3UkR1K0xlOtJixnQay/ZnV9NRpCaVOs5ZaWWZOmp3puGXD8sGce67vKXEng8+OyorqOs3U5MTavzZ2u+kZDndI3Clra2v/Zsf2bY/7+3gr/l4enwV4eylhIYEUG6blu7Oe5aWRChJNwnB1DLguBtxYpicH8y4MPmTcQig/ySgyEzuwcfGpzdCuzJjustsNoMPh7eG+xIBTHB3sf+Ls4vytsTHIolENFgeOWa2aocF+TUdHh2ZgYEieS4yLui0zJTqswBxVXZwd2ZSbEWXfUR1/aXakUZ+UnGysL4p6Tx8S8JXo8ODiosK8kJGuCn1ZflypyaRNzM6InmutShvsaUwfqy1PfXus0/J3u4cLHhxsyykuzE3MCgryGctMMuZ0trfwTaf1a6WWiJzinHinwKCA9dER+tjOjtbbhoZHNIkJMZpvfvtbJxhszMzblrdt365gU89WBt4OB3uRygHM7GHManGGINkNHsrSMsIQIvFvGiuFjDgTFTC7FTHgKjPCCc3HPdnBNGV2IWuWO0vIAOqyBFMXx23IWnZk8edqMdBElrNyKGfT8sHcrTRmtv+nlqo87fCojN6sWwXcTRjHAXD19fUau+1bZ/28PRV/H6/PGCAKlh+iGyKBA38kUSArkXUz87k6xUSjmV40nuVBbek6qk3XUwEDDiyHXdgmvstjpxsWI2KpYoC3SFUstVc8XF2uu7m6kt32bcNI2IyNWeX3QIe7bRXyGkyjA4jq8yNrxicmNRXlpetyzcnfra8quD0nM96/qaHuKzm5eZqUhCjX1oaq2zvaW75qNGi/3dXVxcw9qImIMGmSEqI3djcXxddXWnzNycbynrqUQ7UFkfl9vT2aru4ejY+v9zcrKyu/BWfiXv5dMlPj1vZ2Nq+1TkxpkhJjb8uxZPLnM7l2anpa4+Lq0nDvxnsV7Jpb2dKKtVlo7HbleJU/N1lTHBkaQFpIypAAKZ8k8WcGwKWxrMxlwBWnRVEdx3C92YH8+bnTTKYjDZt9qAuMZlbrcUiitGXpBXAzmQ50xLJxeSHbgaw5zv8y1l5uHB2HMdDQur82sN0qknJtdXW15u67N5T7eHlBHi0F+fosg6XQP4laUgLKA8i4RaNEoKfaZAMNZfpQb7o/1acZKDeB7+DxBvX1SL2UDfC9AbK1VF0VDPB5ebgvu7k6L7HUVO7deE98T08PVmdJ4D+C3+kLHe9fvHvjMQYqsXoJs144gw1xs5icnJLHmO2DQRLO+B5I5clJvG9CA5aqKivY1NZU8RVzVsbf4N/Fz5uZnhE36pVYaIJ/1kqqHT93ZfMMfpazi2vohrvv/qODgz1Ap2DRI5JDDgw8yGPcoLCPPEoylX6yLxyAi4sIlSwlsryFHPtWZUUIs81kubBcdKHpLCcazfKk3swA6swKEeZry9YJ+FDwnshyU3Zbtl+fyvVRahPd/76uLNdrQtq5hlYl5U3abbIWG3XCw8PDXJwd/9VHjbOWcPEg42ZktophaQTAJUTqKJPv1uXMZn3p3tSSFkI1HNtlxekpEWBj+WnmeCUxQmU5LYMO8SB2cts6WRT+fEEe8QAAIABJREFUN2TIddu2Ld3ochmz/n/Xkv7cFsJ2XrPy9crjL77+hdfAnGtGR0cETNbxSWwO+ny5xcr7//znr7A/DgBuhoHMMvI7d62/69dYccxgW3Z0dFTwGJtYsYUVNxT8vRHaQIrkA8BDO1xiZKh8Znl8Q6rIMFFDtpHazKEsIz358GDQuVJvlj/HxN58DqDarDCV6bJCqdIcweDTL48VBCwDfDlp8da2zm6+SYz9VYLtpgecjeXWzM3NaQoKCvia2vqJP8cifPFcDwnwVdBxEmErcEs/JZ8hL6sSjTSQ7kWtqVqqTDaRhWO3FMloMtPFICungg5ANQb5SzyHxAISKE5Ojkt4zDHcy93d3bdZx6z/Y8XbPwOTDGb+Ocj+/07GNzU1aTZt3nSRwaUwyJadnBxk5TGSJs4MOndXF/k7MWGhY0kZYQNdAjNcFt+I8uONVJ5momoGVEMmFIIvy3JvGmHgdZpDRF62c9zWkA1QGqg0LZxKMqKpwxKqWAsCOabz/4O1LjlhfHpeMzw0+FcpJ28JhsMFCClmsVjWOeywu8SxiMIs9xlfNEqMUSvyMDYMXSehFMYXEECUx8BqTfWnsmQjWeJUKSm9grGQTgYyx5skbkliVsTdHnEcS0lydXVSnJydFAac4urs9Icd9jucx0Zv/AZcAR3L1s1bNw8y0BQ3F+clBpmC2A1T8QAc/j5kZoN8WIr7esvfHGxTCYkMOjN/HsWsBso5fqvKNLGEDJI4uDMriLqyggV8HZlaqrOYZIKgICWSyjMiqTNHq1gLA6nX7Puf/dUpmWOTcwDc2lXA3cRx3Ozs7Nq0tDTNxnvv3o/5N28Pt+tBft7L0SIldZQQrpfOkigGYHKUjllMT/XJAZJ5S2SZGQ1A8utgNaTAU2NN0nMJkBqDA2wDrH9iBHc3l2UXF5ZiLs4d8/PzwrI3es8pZPft37o9GkDzcndd4r9FkaK+i9pZ48zAA4MHcdyqY6BBRuM1tLyFo6eSQZfNN6dCVgSlzHRtDK5eBls3g63f7E+TGa4MuCAqYFYrTo2kopQIBmcUdeWEKCM5/kqfJVBpK4hs6uvvx+9z26qkvIlZzmq13tba2qoJ8Pdr9eH4KoBZzs/bc9kQ4k9RekwNaGVaAK1eyFSiIF6THMwSUu0XjLb1XSKjKXWnGKMwHl5D0sXPy8Zw6LPkCxa+Ka6uzoqdnd3bZnP2bStF3Bv1IkKmFLIyJjZmo922rb9GndHN1WWJGU7B3+Qi/aMO4j8CZtP6qyzn5uJC7u6uFMA3sWgdSgQc4zLoCpLDqC5dTz0ZQdSfGUDdDLROflyaFsbMFiX1uiKWlAAcg3J5KDfg+miRlnqSNx2vryrWjE9OrRm+hdYI/1UBDsfgwMC6xcVFTUpyssXd2fG/UEMKxJgOS0g0LyMOSYhQZ7mQ9k9hVsuP11MmQMWPIT0xyiOdFTEGARzOGSwxIaeQLketysXW1Ozk6Mjs4EKbN236d09vr9CFhQWsQr5hWW6lfNLV3fPVu+/ZcCbIz0dB36mLs3oTwYFWNnTT+AngfOUAy+HvRsyKuA7+JKky1c2xXIaRejKDheGaMkNZZrLcTOe4jdmtJC1CunlK+TyQE6T054V8Nl3sq4xn3vN6S135tycmpzXDQ0OrDHezMhxLurVIfcfFxka7uzj9q14bqIQE+i3rQwIoJdpImRyToZcyJcogne9JEWq2Mo0fI3uJyXDUnaL4goLEBLNBWiK+S5BCuLcwHGIddYrAYZnPy3Z22xWtVjsGh2C+qNfdwAwnZQTUK797x3dHYTnh4e76mZOzozCcqxNiObVZG2ZMKPQjOxvETAjAubk5U4CvFyEJFc+fF0oE5ekmqs0wUFWGiSozwqjBbOTHaHC2MRyzYGVmBPXlh9BYrtfSQrEbzefc+3fNlbl+I2OwVRheLQvctAzHMdTM7Cx6Kv3dnBz+Ac23wQF+S7BUwPApYrWshHCWkGHS7oVUN+pxiOfimcEgGwE4xCqQnfG2ml12nFHu6oF+XiK7pG7lYM+AkzrWdWdnZ2X9+rtejIuLWzc3Nydx0o0KOGa4NchU3v7N26sDZRzJi39/p+XPM5Wfx3ISo1Iw32T8vD1scaujsFxokB9FcVycxNISPapFaJXLDJNSQYvFIE3NeUnhHL+FUVl6BFWao2gwJ0DZlb11eWeh49Lhsu2UonfMr29s1UyMj69d7aW8eQEn9anYmBg7Z0f732K4lEG3rGPAIfmBoUlLgkn6KgE0sBhS/+iCR2IEDIcDJQSJ8/h7wIZo3EWiBTU9DKmKpHRklnNwQO1qiS9O5d577/lZYmKi0+ys7KG+IbvfbYCT5Sdf+8bXOc51RzfJZ8xoy07MbC4rhw10YDp0nqCVTdzQ+DmY66L9KxLtXizPs1k1lKWZqCbLRPVmEzVmMuDSjJSfHM7PR1B5RhS/FkGLFns6YNmo7Cx0+GxPqYtSFu+20NzSqhm3WldjuJu5FofSQEJ83J1ODjt+gguD2WpZygBhWkpjOWlJDKPMBCOfTZTOQCtO1FN5koGyWR6hwBuJ+S+TVmK9lEi9MBxGfLIwJc4sh/YuD0wPOAvTKcx0y8jqbdx473+kpaclIFvJDLfuBmY4qcV99etfm3VnQOmD/P/o5emuyBiSxHFOckNxsY0heXt5qH8zJidcVbnpJSznL/2muCnlJxioPMVIFalGsV2oTA+jgmQ1Q1mSHiX9lLuzt9LJ/HtoJt/5+lypDzUke73Y09X+rVtpyeJfI+CE4eLj4r7u7LDjQ3hRhgT6itVCPAMolSUlrNtK+K5bYY5kuYMsm46qknWUHWOULGZsmI5SMaiKebk4ozBiVQqymfw1y9BAXx/J4iFV7qKm0KXNC+C7d9PG+srKSrRirbsRL6KVGK6xsfErX//GNx6ERAwJ8P0MLAZmc3ZSpSTYG2ckT7zc3cnXy13AJ3Gcq4uMLPl4eZIxJEhKLdmsGIpTTKqZEDNdeVoYZcWHUS7f3Goyw6ndrKVDOVvoaO49ypTFaWmkSKsM5gb+vTnBsGNgUJIma1YBdxMDjiXlGif7Ha9784Xi7+O5bOS4LAZjOsxiAFylOZrq8uKoNT9azG8a00OoOjGEcmNQDNfyOZRy43RUwOxXkGigxrQQ6s4IorxYHZn4Z6HfEK7OnmLJ57zs4OjwGWbm7rjjjoWi4iIU4NfciLuoP89SdnV9+/bbb7/qKvU1r6UAXy8FNUapKTqrCSGcASw87+OldtdAViKZIqzn5yOmQqnRJspNCqOKjDBqyQ2njjyjJFDykkxUmgK2i6DhHD/ClMBhyz00me2y3JkXsWQtCKLsKL+o/v4BNHqvMtxNGcMNDmqQtDAZjRp7u23P+HCwz1JoCQ3MaOdCih9eHIjlSjIj+SKJkIuilIFVxAAr53NxopYqE4MZgIFUlxJELekBNJDlK2M89ckct7CMQmoccszW9Ks4Ozn+EfW4u++++/6ysjJpEr5BGU7qcBxrrv/2d7/zQwAOdUp0lkAmuthsJZCFBdvhJgIp6e2pAg0HwOfPNxxkOE2h6LFUXbyqMiKpPT+C+nO10uJVmBImxfHmjGAatPjRbJYDg24z9ecEKR25YdfHCoOUipTghgH+PxtZLQvcxHYLVuvahoYGjb+P933MQgrLvWUPvjtjtisZrlOJRsqIM0iDMmI4tHfVJgVTabyeLFLsNokHvoXlZB6mwvnCKUkNowaOTyr5e1OYKUP5YgPDiaxUSwSfoR63fsOGCyUlJV9DHImexxvwMxLm/drXv7blrg3rf4duE8z1oSFbdjK4/qkeB5ZDHIespK8thvMQKcnsxoBDhhPZX3TmZCeFU2VmtIzr9JvVFq+ilHCqTw1m9aAVmTme6UYzeZ7Um6el7hz90nBhKNWkBe4fGFAZbtVi4SZvYjbqdXNuLk4Kxx0AnYKLJsIYSilxYZQQpZesYxzHawBdbXIQlSagTxCuVHpxpcqPt7UvpapHQ5qOWlNCmQmNFKULlgZfSEq0Rjk42F93cXYhZriXS0tL77AB7oZkOPxe6zesd7xz/fp/Q3IEDAfAudsSJq5faPOS+Tj0Uvp5y4gSZKWfj6cATpysMYHBn6ElOVIszeszI2jAHEBdDLqqdCOVJbNiSIvgOM4kdgyjef40nBegtOcalvvyQzm2Czo/IvsEVhnuZm5ixuCnJjgosNmDgeapspwkAHTaAEqKCZOaXIwpVLKSMBcqSwqhbI7fEqPUActkPlAYT2dw5bD8FKeqZCPVpOoFiGh8hgzDBYkLkwH3GZIOd9+94Wpxacn6G5nhALi77lrvc9f69X90dHDAwhMFoAJjY8sQgIeJgZXEkI+HBwUywLSsEAJtUhLshj18Mg3ON66cJMRuMTRW4E/T+a4MvFBKFysGNZGCRR7VDMbBnEAaz/OhDrN2uT9fTz2WoHd6uzu/sspwN7msxMBmUGBgLMdZy14cfwjL8cUDloMLFaYGogxaKQFgkrksMYRK4oMohYGGuhySK8kMvvRYdKeEicuXOTGcClla5nAMuOJ34m4zFxLAsaS85567r5SUltx1owPuzvV3BWy4++4le3v7ZWbpZQ9bu5r0TPLf5M3gk81DzOKBtoUoABwkpJ5vWqhrGpjdcAODhV5xRgx15UVRb2YgDVgC+eZkorQ41OKMVJAcTkVpqsMXPE5mcjypy6JVBgqN1J0d8GNLUvjtq87Lt4ChkLu723ZXZ8d/QTIAFxXHKIqHmxrLoUwAj3zsHEhghitK0FJVUhBlxJsEZKjXoXlZtdSDyzCOcL54VFs9tIQh8+npIYtDFCdHh+vOzKL33HPPcyWlpd+cvkGTJp8z3AYG3D33XN/BgPNwdVn2UKXxn0oCkjRxIFf+WnbsobcS4GNpifpbSJAfaYNU+wVIyuLMOGrKjqROM8vuLJ0kprJYCeBzy0tBm1eE+J+0ZYTSbJ4X9eRql/vyDAy4oF/mpUR8d3TMuspwN7OsRCauurpmnZeH+1uQlJjMhgkQLizEH7ho0F+JgnhSmJ4KY7VUl+hPubEGtZHZ5tCM+E69eFQvy5wkk1jpZXGMh4IvLkC168ThMxSO77333sc5hlt7ozLc5zHc3Ru8meH+y87ODvN8OCRJspKhdEGGUjpOHCWZArBBdnq6uUnSBFnK4AAf+fyQNCnJiKCWHKMs8ijhmxI8YdD4zexF+SlguCgqTzFRS4aeRvP9qDtXq/TkmxigwT8tSA3/5irD3RqjOhq+Oy+ypFRQGhDjHwn6vfju7C/yCE3K6AfMi9dTTXKggAlFXLgyI5ZDv2WqbfIbK5nSGZCFfOcuSeL38WMdxzAsVW1lARdl85ZNh8rKyzRTLGlvVIaDAvjWd77tyID7Vzh2OcvUNxqxHdUyh/SJwucE2VcVgKpFoKeaWGEmx6gO5g2hEhJj9GRJRpym7hxIiwXY9GIlL4BjSZnHrxelhlN1VjgN5vopA3lBy935YDj/dwZ6u1ZjuJsdbDgj3bx969ZkX28PhaXfkrcAzlXS3ACc7BRAaxLHalmxeqpOCaKCRNUzH03OmXFhArp0juEQx+FiymJ5WYLkSbqR8hJNHAMGgzUZcA7XPTzc6bt33NFXUFiIwve6G7HwvTKR7u7hvmn9hg2/AcM5qxMP5OggHidoyJbGbIBPnuczWtl8UadzsbV88ecIljOyNI+J4BsTfz4w2FWHdnHoVYbjzwwZ3zwGHRInpRlh1Msx3nB+wNJYob/SnOb76I08tLsKuP8N6YQLKyY2ZrOnm8tvVCdm92UvxHF8scBdGHIIpQE0NcNOoTo5WACHDgnU6DJt9gqI57LjwyUTB1lZkmaSTgq0LyVH6mDjsIzmZchKbx/vrLa2NrDrDdnaBZmLTpPu7u71fHP4FDZ5DLAlmAc5Oqqs5uDwp8dyZtAhieJna++ScgGfIaeNOuwd0ItFvICNZTjABpYTD0v+7HCjwh4CuDUXp4dTa7ZWmbE4XZ8p8CZLlH8PJr/HxkZXGe5mz1Tiwurp6blth93203Dw8vP2/AyZRQ8PV5npwiZUdJ/A/g1344rkEJaUBjESWslQQkYCjBb0BSapLCeuzRlGKktlJuSLLNDPa8mNWW7r1s2/smSbvTAAOzh4Y3p1rPRSNjU13f6dO77zLBiOAXZdBZq9yEl7B5XhcACIkJQ+Hm4youNu260AWYmMLxInsNCLMqmWFQAc5Dd8TzL580OiKXdFVjLgCpjlBi2+yj7L5uWRvIAlQ4CHobev/3NLwFXA3cSyEiasjY2Nmu3bt1VA/rC0vB7k6614e4r1gsQfmApIj9ZJt0lVqp5Kk/QS9CMpggsmM04FHZImeJzFchOJE9jEwUYgM8YAo9nrXh4eypbNG6/ExcV9xTaeo7lRx3MAuJaWFg0z3N5tdtsVB3v7P4LV1MOe7O13COhwOPKBpBASTgG2Wp2bbbEJeiyxqBHy3KQLlOl5OKFl8Q0qL0Ed9oUiwI0KHTvoRmFloExmuy3tK3BU6pJ936+trrzLZvW32rx8CxTA18IEtbi42NfF0f7/QpDPgb+0MSHrBlOgGFMIZfBFUswAgxFsXYqByhlwuXzBwCYvJ94gtnCoJ+XaspXF/J72DC01pItl3HJYSOAyfCqZ4WYzszJv2PjtC8y/poFvRLd99W8qsZ7K3t7+OstKNGALownwViSlk1oi8BabdzHXlVVesmvBQ01AYRgVm2bTbW7W+cjkJpkkwYRYGLbyYLiStHClNUunTGc7fba3mG94/k4T9Q1NN3KCaRVw/7v1OKTnS0pKvuGwY/tzIQF+6Kj4zMfLHQaxpAv0l6lleHPkM5tVM5CKk4xUhLR/nGoclM4SKQ/7CJJM4sqMndalKSbqzgymrvRgKks0KP9Pe18e3GZ+ngdSe+mgeJMASYAESRwEAYIkiPs+CJAECPC+JIqkqPumRB27K+3qPi15N/Y6YztOjyRuXXc8HU8ySWNnPG2dzjhT57A7YzdJZ9L4TL3u2E5ce0nge/s+vw+QNVs3iVN7LVD44zcAKZDUfN/3vO/zXs+b4fjFZND9b5/fF3ua6eQTJZNyKDYbjEaHqkn1PRlcHdlOXYfUmU+SdArvhqSJrFAGzzbANNya76vEckq8osSCXenYPQA6OQPjNBIQBgrMoDB/CBmGAxMhOjoZyL05r5WuzVr+NhTw+E+vncUAamm3wFYBHGTzpqdnFPV1tdfcdhus9GafuTsHPUlMb4NWZqJu2pPAvBvTSY7h9o7I0+BQZ8ZDhHhkbkRe8AE6uSTqSW46nXZLy0m/NDsUlPQd2i+be3peAp3ExMLT/AAVek33r65WVuyu+I8i4dPRuSEm2Ds7pUKGslAawNQAanHQc0H3CWbn0E+JNi+IKvmcA7J8Xkyei5sVhikgmghAwXG9kNXdPxGWzk/aNn5tn5YWg9p/v7y8f/v9B/cVV0oiQluHVvIR9C4UDIyau/Q/dLGXs1nMORF/WHtE4iQVcgsvdmp0gI6l3HQgJZcJUEuaHpITACgBYMASsnAH0n46O+amE2k3HckEctNxN1Mv3S3ERew9yp52Idi8YO622dkZxY6dO24KSQVd5yYGaNnL5WO5zsdZSgypot1L7FZgryYDziIyvQXAodWtoG8CLweWsC/pE8wA68EOZvyQPs/dnunKfWBOKR2ejZ8+f+lV7GDY9rSL55YA97PNx5VB8mB0NKXt1Lb+dygII47D2A4eHrQmQVV5JsaAS9noKAPuWNpLe4blQjcylnPoCeQHaC8/PHtGgwwyD50fd0hrGae0PuOXhv39GyZLT+/TOiFw9aerm227zfFtJBr1qJSNb6OWCOl2qDHrfqJIJisxG/RiKgLgAitATyXAhmkBZCkxMYBs73jUQ8sjYAo+Wk76xJYiJJ4wwHuQKeXJKV/2g3va6Gqm/muZ9GjH0y6cWwLcP+3BkifAE/FyjuP+w0CfVeJgPwvFZGtefSoZxIS3DLiToy46NuqlZSRJRvJxW9wn6OTepCwjcJq927kxJ0CXvTznltz9lt+/9PKr254sLBeBIVJwvFnm9/vLdu3a9bso2nOslhVdJ3p5lznWWCGOM+R1KgE4L8e9PodNtMahlzSMwjeDDQ0EM8wIDifljUSg5VA6m+KzFyAcD0pnp1y5jyyqpGOjpk/MLCwqbt26WfY0i+aWAPdPfLAQxyUScYW2Vf0vMVpiMZtyRqNR6soXbxHHJUPe/IS3S1jofSm/SJBgY+qUKOAiYxkQtTeA7QzHbxcnbZv39vVSk7J+9czZ82JdVbF4uHy2ctvqgQMKtUYzxzQy2yVPDEBN+vH6qnatVui2IHGC1i63jYHm6BdrrMAOwiit+FxCPh4LL1dH5I1EOPByWG6JuThs0rk8009v7tVIK5PRpTv3sFfg2fVuWxZw+azctvX1dYXTPvBGfno512U0SHLx1kJettgRP8dxcQdbYznwR0p7LCF3mqBJGarMSAqAYq6mfbSYDGdf2zMgXZ1UfWtifEx/5TX8vdeLajE8Wt/efPNNhdls3t7Y0PBFNHkbDdCnFKUASZfX3tR3yrRSBhwDDd6Nrxn2xkUhJwh9yrCbxmMe2sesYIVBdmTUK7K+mK6AZN7RyYD0yrxLujHX+XYk5NXceMol4UuA+//zcuUPHz1SDMVjd0zyhk/JZDJK0OsA4NCAHPG7aJEBtzAs7wIfy2/6RPcEBlGx3ANzc6CWi6mANDcSeeeDB0x0IFDx8aMn1p6/cxu1pCtFZYgKng6bVtUtLYv5Se/ck5t0kEDB9y3onbSamVIy4AZsFHAOiIQTlqQk0B4HgSY2TCvDaJHz0XGOg4+nPWLZx34G3L5MOHdlj50uTOj+0wizjZu3nk1pvGfCw/FrOfr1fB7XfTPTpj6LWYKHQ7cE6knyDmsX7RvCtAC8WFB4tlHRGyi3eAF80KmcSnilvalgbmU8vPmRVY20L6o9cvDYmuLWzevlrxehxcZDj9nB3t7e7Sql8vMoajPgxEYdvZ693BMzcZj8RgyHE2Q6iTXOABx27kEmHlnKVb5+J0Y9dIrBdjLtFpQSdbi9o5Hczb1WWpvqfeu1168+055tSwPuCsdwd+/d25YcGeYYruUtq1io2J0zAXB4kPgBEwOpXictJgaYKnrFtIA8JRAQtBIHHRPQ0UfnyfxwMHt0PEgPZur+56sn5p03bnM88lrx7Tl7MsGDnXEul2uYPdyPurDcQ5eXPtfJ8ZtZAM4k9gyAUg56HCJhAh3P4YCLRsOg3B5aYg8HOnmAryOSTLhuqMktpcPZGwsWOjvjWC8BrsgB9+QW0He/z2cpy9LpUYW+s+0TcluSAc3GOeHhsOnT1ksht4OWEMMlPGKFFaw15uBS+Xm4ZExOcy8nfdKe4cDmpVmvdH2s7vN7FuYqbmNP9ZXXyor1IRIT8nfulB07duyFxvq6j8PrQ4UM67hQl9PpZCVmyALaey2iNOCz20TSBJowyFJid7qYuuA4F21x6KVEexeMF/ooV8YiuXtzXbQ3bj1w+bUS2IrewxUe9uv5pfSYFLhx40b55VdfLeeHSZEeTb5o1HX8EXs3iR+cLFS8sLSiF72AImniov0jTtozLPcDQl4BVBJDlLKX84tJgZWxQG45E968vs9FV8YaP7xnzyIoWXmxrlx6IpYTG2wS8UFXZ3vr35hNRowcZbFVBx0omJEDvezp7hKFb3SdOBDPueUuE+wZSGD9FzYNDaEVTlY8Q2cOpgWWksHcg4UumolZ9796pQS2ovdwBeGgqenp55wuV/Ply5e3n1lbE8B7/xtvPDc7PekwG3TfElMDlu6cUWQpDaJjwsuxCOIzCAmBBsEqY+B0nA+ANpMMcxwSEmM5B8YDuYMTYenqvDn74fXEoSvX7zHYflKDK+byyf3798vn5uaYCbR/DNfFwIZJnvPrFGDT6WS5BSeUu/KiQhAUCnodYnIekoNYfIKunMVRuaULiz6g8bnClPLuXhOdnHKtvXL5teeeXHZSqsMVp/ir4uLFC4rdVVWu6trab1VXV3+6pUW9sLi42H7w4CFFOpmYsnYbpf4eizjoMhG9gLY+MbWM+bflEbfoikDqf3w4KMZLJkQ/oCwgBDHYVfZwByfDdH1v3/fW5+zO9ZcZ6DduPJ4OKMaHp/B/BhvAQsmA3+ft0nf8APTbYNDl9PLiSQG4LqOOnAw2h03uOPEKWukUiyxhtJBsQjsXJCjQdQIaPsuUcmkslruzp5vWpmw3b9+9p0CXCbbVPs3LK0uA+/trbWUXLlxUaFqak+3aNtpVWUl19XVUVV31X1/cvvP1tlbNB/2ugexALwBnziFRgqItYpAhjj+gaXIEA6j8oExhqw6k8UaCQrFrcjjMDw22wATp0FhAOjflyV3da8s11u74N2pNa0OeypYVc5q7wBJu3LxZtry8XObst37OyvQbdTmd2BAk91giloMoLP87uQZ65dEcj11sjY3nN+lA82UlKW/TmU/Jozl70zHp1t5eujjZ9aXhVGYiGovVnjp9WvH+R4/EFHqB2j5LXq/YPVz5+fMXFA0NdV0RZ/93mluaNyuqKt+pqqmh+vp6slu7IJOXw+Cpx9YnpcMuSoVdYqMOxmuOJD10cayfTmQ8tDzqo7lUQBRt96b88o7qjJ/OTjhpfdxJN6d7pdMZS66moYFe2r7jtzt0HVWFIm6xN+KC6j24/0Dhc7vO9lsw4W38SedJp9zq5ZCvoUg2oZfS67YJwGGNM8ooC/kWuKW0vORjIQmJhah0ad5Ndxfaqb5R+aP6hoY/tVi6b9vsdh3YAYZir8t74h4brq0OuqK2zmJi+No1xer+leaUz/Fln8OWa21ry1VUVmU72zWb8cAAPzSQDGiXerq7KezspX1DbtrHNHLvsI/OZhx0ebKX1jNOOjrmw7AkHUz76diEnw7zOcJnnT9zIWOTrs3aaWXILO2qqt5QNTetmsuPAAAgAElEQVTRzoqd/+zMmTNiY04xerknvYqs8391m9Xa02fvtbxjFj2WenlODpME7VoCELFByGvvF7NwIa/9MaWEkO4CG6qZIRl42II6x+xgdjRCZyad9PGlulzaoyVLTz+l/G7q6+56W6tte8Pr87UXpuSx6quYKfqz4uHKMFSpbKwfM4uNLyYy6jrfaWhszNXU1UpMMaW6ujqpRd1MDEQJCsNIDIyEnHRw1Mtey0y3p7rpwriNDo/76MBYQABO3lsdEksGT425aX1sgN63YJFODXdQRU19rqm5KVff2ECqpqbD2CqalwsoOrC99rpsKO7du1f2xhtvKHosZsWAtfsLvRazhHXE8gSBTtBKdJ0ExVpmu6CTGM1Bi1c84BZZXUxUAHTzIksZFFt0MO398mQ//evFemk10iw1trRnLew9I24H9ZtNfE9av11bV7s2Nj5WjzEnBl35VgddscdwipdffhkqXcb2jo71sue2Hd9VVflrVTXV2draGqmGz+4qjusa6qlRqeIHR0v2fouQevPY7bSYcLP36qdXJgfo7JSTLrMXu4T303Y6y69XJq30YMZA96d09Oa8kU6OmqR6ZRO66HNGg0FSKZVft1qtHffv3Vc8rfu9r/4DgkuXX72sSAwNKSYmJx1sRFZ6TPo/wcpmg0Evy+jlFb0QxwWd/UK1GjEwpOMxOQ/JcxS6D2e8dGLMQ6eZLRyf8NCRcbCEIJ2f89PQQLtU09gkNaqUUm19vcTUX8j0abWtQt6BDeQXa+vqxldW9isK2jAlD/cUB/2PHj5EEVqh0+swXPmpBmUjVdfU5Cqrq5BAIfZ2DDglwSuhMTfht9NcbIASXrQqOUUCZYRju5lBFx1IeejouJeOjXvo/ISdXmfKiZVLN6YtdGpigJqaVGyZtTlIDXS2a3/sdDpC9+6Kie+yYjNWMBIGo7FGUab4yHMvPP/t7Tt2kEHXThGvE6UAJE9EaUDInxv0FOG4LRl0M0PAxli5l3Iq4RO9k2fHHXRlvJ8u87nI12llLExHJsMUclppV52KGlRKKFTjHkjVtbVUU1ubU2s0G83qlr+pa2h4G/equqb6laWlJVHq2ao9l0Vd8M5b6XIxjsMPfSgccldV13xfpVJJFbt3Z3czpayo3E38ihsswMKBO6mam2k62k+nZ8JCIg8NyiMRLw2FvJSMyTU4rCc+PRuk09MBOj3loePTQXp9n4cs7XVSRU2j1GMy/F1bW+vU+vr6c8VGgURm8sYNxbn1c4rnX3rhPAwSUzvCNdO2tUrYMCTk3A2FJY2dQu580DNAszEvZcIekZnMxHw0N+Sn5bEQrU976fp0H73MzODqtJXWpn004rFSbaOKlAw2VRNeVdTYqMwx48jtrqqSKquqPsOGUF9dW61k6p/esXPnuXAksh1SEMXGGJ6JGA7T1hcuXFDMLyxsr6uv26Np1XyDrabUqOQYjukkrKZcJqiG9RSgw4PFFpUam5op4OylxXSElidiYtPL/vEIrUxExCIKTA8kQ3aaGPSKUgImDFJ+izRgapPqVC2Sxaj/bpfRUIsaVrFRoIIkPF+7Fxlsn6/k69PQ0LDZ2NAgKZuaJEefleMzp4TtOgWxWPRVRlwDtBB30xR0KKNMJQc9tJry0qVZNx1J9VF7m5pmgt3s7ZzksBqplq9zfWMjNbGBw0GyiekjFlhuKpuU0q7dFV9JjY5qcB9ffeWVxzKDW1l+oWjBhvhj39I+BXP/eG193ada1C3UolaDuiBOwEYbam5pEUfVhBvdkLewjUwv5YcA1rdd205eRz8l2KoPYm8ce7mJWIAfLjsZ9QaydMlbZDStbaRsbqUWTRseQmwQRTf9iUOHDhVdPa7g4dg7v8B08ldffGn7H7MX+l/Yl2AxGXOtra2Si+M4rFiG3DlAB7kFJDsWE17aM+QVu9AXmR0sDzkpZuvk61tPFTV1TEk7SNmiod01tcwm6sS1b2ppFvcBrww6ie/TJibLd+7a9ZV4It74vgfvw+6D8oIwbClL+ZTqLM7PzysYRL/aolEL68lnA8CDsjAemqbmFtJoNEL+ra6eAcefwWKKttZWUjLFAbXEg8BekcxGI/V1d5NRp6MeLHKEtDc/aKjpFWLByqpKqa6+VsKONaaTf6Fuaf50X1+foqDaVYQJp7LJyandfbb+dqaWf1ZTXyfpOzuzBfUu0MjC5ABKA8gEe2y9NOh1iNm4fmsPqdSttL2SY2QGllrNRoyNXVVNlWASSlWTMIItLWq+zs3ivaa1Nadpa801qpR/16nrOH3q9KmibyB4Jigl6Adahdq0WnN1Tc0fcNz2gVaN+n+0a9sk3NSWlpZcl0HueMcaJjXfbKZLwlvF2FJj3kvNQG1qzltgBiqDVMQatQzOBg7wkWhB/IFX9qQAXo5pUA4Fdv65EX5v9Ph8ZdBPKUZaif/zW2+9pRgbH1ewp/sVGJaduyuyDBYYFammTqbjJr5WXls/YaNsCxsnGCjEwzUi+YEmg1rBGnDNZCahfOzVcI1x8F6AT62W8PPsEf8oEPCVP3r4aMvGa1sCcAW6gYcFxdLDR44wraw1MVg+yzdyk29oVtfRIRn1ejH7BiqEnWe42Y0qZBhbyW41k6e/l/x2m/B+ra0a8YBwXCEA95OYo1n8TAOoqFI8YEhpb0JxWdvWunzy5EnF5XxDbjHW4fJF73LIw3u8no5dFRXfrKyqQpIpm88aSrurqgTodO2yBLqaDROywDBAiIuVhexjQ70AFq4fey82YAy0VvVjY8ZGkPiaQTNFMuj0xMbxG9FIuOM+G80S4J72hlt52+k2TAZwjGDTaNR/inoRU0sJFLLP0k2IsRDoQxQHtAiga2pqpjq2wH1mEwUcNnL09oid1vhcj8kk3vdAVsBiEnFLN1t0K3+NlU1ob9IKcR1dFg3QXXrdr6O1DMmHrdBPicwg0/M5jqu+V4kMYnWVVFVdQ9W11YJOV+zeTQAjMpoAFRgD4rN6lUrQ+RZQRn6tYhCCViIbjPon4mZcdwAO98JsMuXsvVaJqXvWYR84fuHiRdHl8qxMDxTdfxjWEPIAa2fPKjheS7JX+xqAwJ4rhzij12KScEMZJGI6AP8GTfygyy7ak3pMBuo3m/PKwiZy9VkF4LB3IOZ2UirgYTAO8Hs7RVwOSvLXvoF+9ooCnNgZngPg+szdf57OZCoKXSbFPDFQ6NpJJpOK5194fqW6tia3m6lzRWUlUvdUVVUlwAaPBhDVNdYzEGtEfDzAbAHzchAcMonkkkZ4OMTIqHuitAD6DqAi1m5v10r9FnPW0d9HzSrlpxNDiW0M9rKnXbn6mQHcu6a5y+5xvIRdbG1trYdNBv33sfdN3arZ5BstGQ16ydZjod7ubgaI3Gwb4uAengwzXVhM4ei1Ck/WmW9bgvYiQIfPJH0umgx7acTnpAj/XCbgplG/m8JMPeER8TshJuvo68W4T45pZ+Tmza0hjINri9m4TCZTVbG74qvwXnX1dVkkiiqrqgXg4L34awZPDbUxsIz6TsEWoPXZxe+bGVAAHcCnz+8rsLBRQ+yHWA9UFNSePWK212KhboPuWzMzM735pFN5ycM9JUBDNzviDMRtPVbrLr1e/xbf0Cxubltb2ybiAlhZNN2KLTlmecUSJN4AEht7L8Rz6KUEuLD3DMsGe/mz6KAI2PsF2AZdAzTksQvtjkH2dpMhDwPQR0NeJ/nsfWRjL4fJZ4ANWh/9fb0fwf+psNe7WC304zGdGzcUZ06f3v7i9u2f4NhLampu2oBHw+RFHUotKKcwEBGLYb2VWq2BsRNbVCGLjp5VMAoswoQxw2wdXysagFw6v8fv4N8ncawnMaPYdLLh6tBq11FaQQPDsyCh99QnRvgmbBOdB/y+22z2sGX9Q4AJCyg4MM9ByBRWFKpcoJBY/h5w2AXN0eUtLJSnYG29EMNheujPU0QsGxzgB8IFYVj2YD5bL4WdNpH6DrOHi7odFGIqilfQS+gzBl0OpqtmFIclk1731063S/n+R+8vdNwXdSwHb33kyBHFCy+9eBdJEI7VNpTNTRI8EzK1Ik5jL4aDjK6IaXV6EeNCfgHXG58BXe82Gh8XzCE1j3tmFBnjdsEymJZveO0DUmdb6+8ePXp0F4rfz8KCj6cabKA4r7/+mmLPnj1V/ba+S3zTf2BlKtLT3Z1r72iXsEppQMgnmCXQR1hTWbTUJm64pcskvBxAiAFKN994N8cOoJGwyE6+8QmPk/xQFGaQ+Qf62LPZBX308XuAD8Ab8rrFxDOk4mLs7QJOW469qWTQ67PWHstx9gpP7brhn+W637p5q/zosWOK51984XRdHRIf9ZtMLVEzE+l+gK4VtFEUwzuFoheuuR33gNkCsw3SqFvYA2qZORjyySpZ/Qs/g7oelqnAgLF3yzr7e6WBHvPbQ0ND5jzYykoe7pcQp+HBRW0rOZpSuN2utKal+Q8Rd8FyMn3MItXPN0zEaByACxBBFRh0EepSsKBIgiCew3H0Akw28R6eDFQHgATg4M0Q5+EM8oMAgPmZYiKGiyB54hIPh6CjAB0SKkGXXWJQZ/t6ekjT3PyZwVjsxQcPHpQVc3o7P5NWfowB98L2FxcRpyGGU6pUEkokjY1KUUszCI0TGUBGocxsIRNfm1YGGzLByF72MrsIOvrF/fLm2QQ6dlAPRRiA1rGQ0y65+vuy8H6qxobM2bNnxfbarV4Af2qAhjgIFxxfo1t8ZCRpaGxo+Bed7dofOvmmcfyUZXqYA8BsVovUb7EgDhDKwFiLCwsLYCB+wA3G50BjQCMDDLakz80PgU0UvTNBr/BgAB6sc4K9VhR6i8K74W/BU8pATPDn8RkMsIKODglNRg+lQt7sSNgv9ZlN3x0fG/Pni9/lxRzHoXvn6LGjmLi4hB7U+oaGDYzUiOaA5hbh1YRAbJdRXG/QdWR+8T3U3UQLmFEvmAR0LGPMHhBPg2WIGJtBhyQX7g/WQEfcjne8AzaJQXwKPbH56e8S4N6DlPQ26DximHRxcVGpbWu7xlb0uw4GkJO9F8dZm8gMwouFOYYCbXQKb9YnDraaoog9yKByMVCQOIHlBUAArIVYQCRFYh4H00OXWFOV9LvFzwQZVAAUGnNHoJnPnwGIey0mCvPfA0jxwAB8cQbmsN9DoyGvNBRw5UZC3s2Y3yOp1S2vrKysyNJ5RWqhCwpoqG2+tH37w4bGRqlRpXqHKaXwcNj9LdYPixJKt/zK1xkUsZs9nK6jQxS+5bjNyPesR/wb6pcweh6m7QApx7+C9gN0zBY2Yl6X1NnRfgUergS4X/BBogE05ty5cwy0fbt1Ot1qh7btKwCLjeme127LMXWTAgwMtoYS3yAp6nZSmC3nEANmOOClQX6NM9ASfiyWCNJsPExRl114O8R3QYdMFeHZkH1ERhIxGpqTcePRoOtjrwYJuDj/+1jQIyjPoKjD2QVtFSWCoJvmBoM0PxjgE6RM2CfF/e6N4aBP0mo1v7W0vFxezIF/ob8ykxmrqK6p/oN8s/cm2rBAB/uER+sSxgkJEix0BLOAsQNNRBKlra1VUE6/UGl2iVILSgZY6ggPB88HSo7fw59B4mnTz/fUpO/8Tabj20qA+wVTSPRCYmLbYjaPq5SNn0UzLAqiHJNlARR4IIj/hPnBH2EahyJ0OuSlMT6pkI+i7K3S/Ip/m42FaGkoQnuGopQK8/fYE0WcdhFDuPhGw7MBcIjzYF0RqwlRHChR5eM+dMNzbMF/3yo/TPz9SN4DzsWwrCJGh5IRSjMlnYiwlwx6N5NMK80G3WdWV/fvRkG+UCIoRrDhXtTW1SaZQkr1jQ05FKkLbAHXSqbtcoLEZjULI2buNgoKjlob4jowhljesFnyXTpIUol6HVN44RX592GjkXegL4drb9DrvpNKJZuLuYngqfVwBXk7XFyfz/ei2Wx+k2nHj5w2AIOB5rRnYQXh2Rgw0hx7rQX2KivDYZqJ+mg64qM97GGmIl7+vp8OjkTY84Ro71CYLozH6NholJb4e/uGIyIbBuBGXQ6RMBnyOkScBqvrAdBQ8GbwYTMMPjfK4B1k2oj4Dw8HLLKDH6yxoJP2JgK0OhIW/5exkE9aSTKwg96NiXhYsplNv7N///7tAFyxbfd8V71ToWnTfKClRY2d31m5VmkS/ajwcgIoHLcBcCit4DohjsbXGOOBF8OBaCwSJtr2dvZ+8sor0XwggNctQIlFj/z7JKb9OVDPjnbtwo0b1xUlTZOfv7y2OA6HY7u6ufmTuKlMHXFDNpjWSR4s/2O6AYs6xp5kZShEJxlEr0xE6fhIgA4OBejwcIBOpUJ0IROmS+kQnUuHBc07MhyiM6NhOsFeaGkoSGn2fKifgRrCU7n4Jif9MtXBgwLqCSuNvxljCgRaCs8IyoO/P4xkCv9c0uegNP9cmL3fZMQvMeBoPhGSxiO+Hw8xrTUbjff3r64WbQyH+8L/97L19fUX2bv9CZq/2WvlnGiRs3QLRlCI3QTdt6J22StitH6LRay5QotXmI0WWEGcjRq6dcAqRpmio/kA8TBiYLwHUOHZZGbRk8MOdpNB/3ter1eUggo1za0Iuvc8Znv06FFZIh7fpmlu+hDitAB7MaZ9OQCgr8csISmCB3uUH/BZ9mZorzrPoDqZDNDJET9dTvvp4XSAHvB536SP7ox76WzST6sMsKWYn4EXolPJIJ1kQE4xMGIMKtxYWNWQa0CUASB3jocGlliUDdjTCSrE4IPHw/dAiWRaCYrbi0SNxF5Q6rd0S5buriw/fD9GexJT4a8PDw/1PJC73suLDWiFA8k/TWvr1VaO2aBSzddAAqAc+fKLaJPja4kkUoiBJVgISi18DRAvQz4PjACx2xCDLc33LcDxMUovjp5uERt7+drLnk8raDqHClKA771olbOY3+mx9gxfviymQMpKmiY/n7H+8rNnzynsNlvUbDT8eIAtqE9OjCCTJaWDiL3cwivNR/00yjdtnG/UhaSPDsQ8dDTuobsZF70x5aaHkx76FX69lnHTSfZ4F8ci9Pp4gE6zhzuTjtD50QAtRr2UYGsLT4XEibj5fNDrZ8jvP8NhzwcwycDi973dJglybkyjckyhcn3dplxnZ0eWH5Qc5sHaRLN0Gxpy/6pF3TJ2+MjhxzWkYrPKbATL3nzjTYXD6eitra39PvQoTV1GUX4B2DBoGkbCia8hG0Ph5ePsuZC1RWyNmBfXDizBZx8QSRR4MhgwxNxIoMyzIQSVxxYec753FVQVVNRn65f45ADeni7Dl7u6TM0Q90XYsRXjuffsD+VXSD03PT2laFYpr9pFyr9XZCFxkwZFhtBHcY+T6WCY9sWDtJgI0RLHadfH/HSPPdnFpJeuphx0J+2gNxhw7xv30JGYmw4P+enOdJgezYbp2lSUDjKlPJYK0xLHXbC0Q/y7g/wwMDWCJeWbbpAYQDl9Z2cO9SA8RCiMi9oSiuIcr4BGoaCOzyMWgVU2dHby6fihRq3+gkqlvDU3N2s6dfKkWI1VjAOo+VJA+fLysqJN2/ZR2QiZchxzyR4ODQMMJqwXzoT9lGHGgDOEvlOPU8TIOCiVDPEBJUfWl2Nx8oFC+lwCkMgsY4uqyHLydUWZAEeMRxlFUzmyz1lknc0d2t9ZXlranZfLK99q1PI9BdydO3e2YVOLUtl4FhlJm7VnA6ALCIpik+CFEmw9x0Ie2p8I0goDbv+gj+5Oh5g+MvDSbvrQtIf+7WqcPrE/JoD3CkRs0gH68LyfroyHaT0TpUMc800NRWmW6SU/EIgHJQTr7K0kZ581y14sB1DhAUAiAI21FqNB0ne0/7izQ/ttq6nrq/x/+5zV0v1Jo0H/IX4Yr7HlP8CBfSoQCJhevnSpBsOnSJKg6bZYA31I+0EEKTWaUlZXV/0Z2tXMpq7NXjMoZY9okQNgwDhQEkFiaizsRRzLhswr7hWyxeNhGYTwegAePGIwX3aRd4MPCICBRtrkiQvxO52iI6hbcrPHczOt5Fh7IyR71N86u7a2XcjlbTHQvacWFRk8NCLb7Xbdjl07/9IsvIlxgy3cJlvUHF9s0AtQQGkh4qXDw346xufeVFDEbtfSHrqR8dKHFqL00QUfPRx30MUUPhekaxMhOjQSkc6PD0oXpuI0PxSVJmMBia0s05V+KP5u8MOUReofnkujbvlOR6vmj60W828MDNhe6TabJ/p6e3v5NGHhPHZgX80Pu+abqB+rSqHJNz+WU16smvh5DydqX4lEIsrX4wdYVtnR0ZFDBwniNVH+YM82xfR+/3CE38vAQtIImV+0vQ2zV5sCAFGe8XuFt4Onw6sYaerrEeUdgA3ZSgAPiRhkgREjopiOJBk6VphqMrXvz6K7h2n+b6ydXXvpBl/nrZS5fM+7GaDFPzMzoxiw28N19fVfhLov2qbQh9dvsWSt3d2boBdHU9Hc0WQot54OS+eTPulK2i9dSvmk82MR6daEX7qW8ebWU/7ceMiX25cI8mfD2dl4OHtyPL65Np3cPDc9ks3EQtJELCSylDa+4SaDjlqaVF9qVDa+Hg6HB4KBwPPHjx8T2iiwpvBYhVNQkHrXKcs32JYV+9aXK/mpeagdV1ZWH8RWWJPRkIUAExsmUfsE45gIeekIduVFfKJVa3EwIBq+xexgCLODLjG0OxEN0GjIL5oR0OANTxdn4KEOKjKXXpeInzGriBoc+i8BPls+a4lpD0s36nxWaZiNpJjUsNt+/cL59R03txDofmktRA8fPlQMj4yodlbsOlpbV/dpZVPTN6GKjI5zJDXifMHjzP0PDIVomeO5A/k62F5+f4U92CpbXPRH4qEYdKItC0E9B+1sTf0cr4XlMsCGvr3tm/UN9f+5sqrqY3b7wP65+XnN5NSUUNqCt71+/QYoITxVWaFk8WTyY6vWg/L3oezgwYOK+vr6Www4DPBudLKH0+v0ojULnglJqyPJqIiFZ9nDLfL1H+PXGaaWgvYzzQTFRIIEDQgAnKCV7P2G2OMlOS5PBrzCEwJ0KMUAeMgAIyuMbHDa76SDCT//LRe+lvhe5o6PBDaWYj7Q1DfX1taeu3X79pbIXP7S+idBx2C5Dhw8oDh95vQOpnG6yuqqlFKpvKRsUn2Uz++r1Zr/olar/4Ljqq/pOju/NWAxf52pyF95+nr+nCnilzStrV9Qa9Sfa1K3/Laqqemf1zU0PqqqqX6tsqbmRGNT08SOil2O9NiY7tjx43Wrq6sK6Gc85Jjl7t072MZZXqCIWxlY/5DhO8jXnw3SQwgjsaF7h2PVHPod9Z06UUZB3DYXC4jWtnn2YgscV8PoLcYDtIe9Hbpvjo5GGIRMPWNBGo8GRYJlnD8LEE5yHD3FB9lnxHzjDE68xyQ9Sj4TDOgTySDdngqJ8GEh6qX5iIcupHzZu9PhjZPJgMRx9mGULW5ugWmCX3YNqAzFYvQgYrQFzctoL8K59PLLz3Mc9ZLBaKxs7+ysbVKrG41GY21Pj7Wqsblldzqd3sE//xJ/5oVLL1967tKlS2UXL14Sv4Pfi9+B9+hewO8HTUSTdN6bPbMrb9+dxFpaXlbs3LXzFdC57q6uzS6DQWjCWPI6LwDRKANnMR6ilWSEZtBgMDpIx9KDIt1/cDhMa+koXZiI0j6AMx6mpZEoLQ5HiWNoPiH+XoTjwICIBTFJn2aQpfJ11jmO1S9mGLhDXjrOgENzA0B2djRI55L+zfXxKI26er944tixhps3bxVl69wvHXDv6qkUF5FjJihglSGIv37tuugcxykkKHAgAYBTeF/4zP/j4HdhXOYxXXzW90tf/b/FdLedOHFCoW1vTxj0uneMet0mH8TRAJ9YyogMY5Ip4jR7pnkG0AwDZzqMvtIoLTDgVpnqXxqP0Bn2UvvQ2B1HLTQkvGKaP7eXv7fEXnGZgbknEebfEaQlDgdmGXzwbkeGg3Q6FaQbEwG6MiYD7lwmIq2nQ7QY82UPpSKbK4nAN9bXzrRf43sudgKWAPdzGz79hZwSyP7+zp/MWGZXRUXFp6Biptd1bpqMxiwSJxBlMjPwEh6ntCcRkqYiPom9kpRiajjP3mkvx1inkyHRbocuoFOjYZpgQJ1L+elwKkqHOeZ+ZSxE8FYnUmjRi0gH+XscB0qHk2HpBH99dCTI3ow9WsovHUl4pZVBby7jd+X8A31ZtPsdyiTI1NH2ydUDB3bcvl38W3VKD94zep4wSGUY/jR0GZurqqv/lUajFgV+0ZAMEV2mmI4+a47jsex8PJibjflzI16XFHPapfmoT1pMBKSVRFBaz4Sl46NRaWUkKi0OhaXFeFg6mQxKF9MhiWO03KlUKMeAzC1EfNmVeCA76nNkxwPO3FTQJS0P+ijjRwLMJYSacBxy40G2x6D7eDAU1F4uZSlLZyslT+Dtjh8//nyLuiXS1Nz8MY265a872rUb7VrtY+UttHAlg17R8oV6ZsrvkSajASnld+fGwt7cgWQkdzw9KCUCXinsdkjjARftifpEF08KdTlbH3UZ0FliFc3P6L8U0wbdJqm3y7hh6Gz/2462tv9mNhr+nV6vu+hyOmxsDJ4vKIqV6nClU/RergC6wsgUEkxYitje0VHldDpTfX19d6pqan6vprbmq7X19V9vaKj/Xn1DfRZbiJpUKtJpW0nFr1ii0tnWxl+3UXtbK6EJup2/VqpU2ebm5h82NzW9XVNX+7WW5qa/bGpSfbmlpfmzKmXjb1rM3Q89HvdJS09Pqr+/v8ts7t6en7x4vCXp6hPiQiUPVzpbAnRPxrzwJhDcRa0SXwdDIUU0Gq2JxmKWSDQaj8Si+2Kx2OHoYOxkdHBwjf9tPTYYWx8cHFwPR6NriaHEqXh88Pjw8NAh/t5SIpHI8Oe9/L5rZGRYxb9jRzwRxwJNxeHDh0VNFgCDLgzOk95sq8XhpYeudH4q+K7ILW3wLNAFLUeTwP18swB2msvn3hPfu2d2RacAAABjSURBVPe4meBe/v2Tp/Dvd3/yGbT5bWNwbXui8aBsq9dGSw9a6fyjwZdvFgBAnvsZz7b8z5bnf0/ZlSd6VJ+lLHLp4Sqd0ikBrnRKpwS40imd0ikBrnRKpwS40imd0vkp5/8Ah4URQDltAkIAAAAASUVORK5CYII='; + +export var audio_b64 = '//uQZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWGluZwAAAA8AAABRAACbvAACBAgKDQ0QExcZGRweIiQkJyouMTQ0ODs+QkJFSUxPT1NWWl1dYGRna25ucXV4e3t/goaJiYyPkpaWmJyfoqamqq2ws7O3ur3BwcTHy87O0tbZ3eHh5Ofq7e3v8vT29vr7//8AAAA8TEFNRTMuOThyBK8AAAAAAAAAADQgJATvTQABzAAAm7x1lCT3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//twRAAAASMHzuhDEEgnoLnaCGMFC2CpO6wMT2EoDCd1hI00AAAAEQIDYHAsIIQAAEoGVMIIxHu2NU7D//6gx93/////b/rA4AABkADS8C7uaACBBcE4PiDEHG1v///8H4nB8CAgcnAfD/+XeJ//kJECiCQEJfI6HOSeUxLVpnrJo2rNIWOyh0ICisofyinwxQgwhC62QhoOq/VUc83SH50lBBW/zGlu7+rRJASS9aBdydWL4sDQNcGniICjWjQVUyz/r9Svasqk8mh2IEEAAF/3UCwpAWzBRxYSYYCG20kc8DZACBhYYL23pA9szuRYqDCiBhWU248WncakPjwAC//nqPjvVXbWoPCK5RxQpjrEb97tLtAAAAQCp/rY1YKFgEQGMiBKAl8eUUGLqIoKGJ8ymCSMEwbECv/7kGQSAELxHk7rCRtIUwN5zWEjdw641TWtYKfpzSHmqYYV5Tii6JucjDmcIwNidRSd8wROBJyGzaGHgEKFeKnm7nRASdEp9w0vMPKtoFqO0i8msqeRPqJvXWtGr/RegAAAAQf64JA85lKUzT1BLCVKxy3bzsmdNx7sBs/i9VAmPriMqzNVjGmwuiQIBz3xikXxobjFRgiHndkmCCWkzSFpKpQkWj7iK9vZoTq226qlyCgAAAAAK/1mAxhkJhwxggAiPFC86QFrpheGHGVl9CarY31L4s6dty4Uu1ptLBMgt1oI1194JiUBOVS/2DCiqTtsQqB1y7f1e3IvSt7LMcvV1V3nxbVrft1t9tYuR4hXw3i//Y/k/rKdc7774/xl8PzPwUaUb/bAAJf+11ymYAvCQjJBrYY8YCnDgQHRym2vv8v59AIgJeHcj2pdsuqSQRB/XGYAZBZjmcToT75GoqmPEUAc4k3+0t3tqieurldHetVIRirRUdybkWtkvcip8dZb3/jWz7A94WhLxHjLylb6kCt/8D25Xz2hqtgQAAACJ//7oGQDAANlHk1taYAIZgOZray8AQzEeTdZvAABnhJmtzWAAPZIEFDZvQUJMuOAwMwPMyI4BAwqzSXR8EIhNtYNWtp7TH+CgJDcSxKAuSHys6vLviQgE0SzUt/MwOpdg/KWnZpToR+hXxdcxRIW2TD+u8ji46iPZJCHTY6/IMD7TSrE+m7sjEDXs2bAAAAAAn/VwrHMcQxxTHqSGBjZtFl0H0DiVfjo7XX8V8+6fcfQ9DhI2JOQFtnzPpmiHUh6wxrbTfPzPW9PnOs3hbe57ODrvZvT1y765AQ3Ldn1mLQYFlQeKWqb7vfoin7YEY3oFkgQgAYJbTfgAAAAAF7QocrjMWjmvhWQUBEiUwIrMCOTOx0wgJTWHgQRlRgAGJIgGB0uZsK5MYGOIAWsNKa/FUd1lOC1VkM7WoKyNE3Xp2hxCOxV+LFM/UJVxMMikDjPZ3chjr9116cEACAACAALIPwAAAAACJSbr48SeTwAhSRg0hzTjgMBGA40UDARfAoLAIgCjbkv+/g0QDXa112Hf0zRyAKFxWeRa3C8KrdGpQRCl+yKDHem8Got6xG7TTay5czfkMO7J////8v/Wvs7asAAAAA+sjBwaYAQI6mAiwFATV7w2pETXlQyIg0BJhgy4VbIFAdIZ+4sh8kKPinBCNslLIrLvv87MeX4/7aOC48X3Z5jW3E5yL/ruv/7kGQlhEOdHkzXbwAIZaO5muy8AQ1MdzWtPSthgQ7mqMwkfMalWWXs6e/c76CiVNONeXdeTShNm2w+LD3b1Lm9rxUP4FM2YHX//+5UAAAAEfSQJ1u5BM+XAN1Q4DRZJAKDkU90eAug7K0V7OWomGGpQzR2FhQ9Ww1lAptDDLJ4cp1GSnlHG/snkIaFG5SarjEaFuEpE/R0/oiwqboZk0si7dH6ss5bZm8QaagzUYbaVPqgAAAC/1gMOpXWX3AR8u6aAAfRK3QiGGXCoBwqwCPgTA6BMRwB/hmDCE8IKj1Cn2M0Hz1cIaohiEpXR/VT32xIoot89VJd0MLhJ7uXU1IsLZkMjGmb1WPFQM0aEDReiEGT6yVwq5WErD3TToAAF/rAgiMKy4gHC1y0olOVr1QEgpYX2tRNBWlZCRL7MEZYk85Tyz0rCgyacRhAOioFiMG5/8hGxOh2WdL0U3pYox8IqkHxQNrW8qGE0zNsfDaA5a1TFjEFAYShfXV2V1AAAAACB/ZIJBSGoGARQTaeCJc3oDLvgww+hOVYwAcRBWcBZP/7kGQSBGNuG81reEnYZGNpumHpaQ3UbzW1t4Ahd47mtrDwBIAow+wQ4ocu5Sa94y7JMFxouRhUTCImQBWW+kC5dMT3npMnTxzgf8+LQy9YpAAic1oKtYg9lJZ4dnWVoSkeJsXYyqLe60v+n+uswAAAAf7aL1iEwylSsEcaKxP+XTLnFnVDhAOHjYHjGKETkYrIN9VKZdtCXfPFSdKGJo4HqirfSEESQMadz1LQ82UP/paw3WuEFPZcoAoFnvbmTMyQUwVQFxiiinB5DjaDNqj6SkYAAAH1kbghwKOBQ4RAIHNKiTIykQhphYuYQYhQCLrFUhfZFxCUwpPkDKAkCXJihigY1WhyHTKpQqBCTIUTOro3vizPSrdL9+a1nUEDnPUPMJJIi/1m2MoQJZ0udLT7mNRq08YtcOGWOEspV2+/odAA9sDfQhA+feIuAdvjdUAo1RlyAZbsOK7LgypfJ0j/JwrzSXR+oecrKm1yzl1VhYnpqNrl72Y2itMV3+8iXjx4nj7+pwpbPiZiVOgI/EOPYvILYq6eQJ1hj6kKoHKAAP/7oGQBAANzHk1ubwAAc6SZrc3gAA0cezVZvAABnZDmtzWAAAAAAAoD9gagAAAAAKERjdOUDwrIl4QstmvlqCUFcxgyCaibhgKZyLtDMLJDBwAGAIIFAyb7GyhP4BOQ+ghFZnC9QqALnQFJvORIqSORBHCrQV1lyHr/EQWZtHVBD7JWsucivJMZIyWxB37EvZwyAggAAiA8rfQAAAAAZQImH2b4AwOHiUSSzSwExIPNFPgINmPiAhDTASsVFBImCC0GhJedb6xACwuyXpY45cCsHfVHUeaWhEYVjPu0OvNItNOuuRJoH26tanpGBuOjmm7DyFgQqw+LN3+s9///+f//87NLwAAFCa9d+AAAAAACFEyWhHQ0SbKYVNjEyAEE5npCYYAmmiDM27AIhKI0xsJGmAqgT9oaEJB5Ja5mKynicJmj0IMJeK/XPAcN9lyD7TpRt3Ych2AmXEICBTAYDbC5TD3It1JXD7WqbmnRAAAAUQAmQa98AAAAAAUHDlBVpGHHw+QJzzlB0GY8sjmc4qhmTN2sDw4WAjRQKBmaJhl+w5kNFwZS5L6zq9gwjBC4oyB5G25OszkFiBG0gerEezLqzU/ZwQ8XWUKilxrLqOJ3///v5WrEVEgJjEaLqDgAAAAAAChQaqLpglIgnM5INOGLkCE0FSRl15pyysF0eEr3NQIHjbhvnGG5l//7kGQagAL8HlNuawCQbqSZnc3gAA7MdzVdt4Ahig6mt7DwBChprBITCZppqukxkjl4yaDr9tl8pft02TQfq/BMzjHN6vX7eFC/FBRwvvwCgDAAAAAIP+AAAAAAEKiMN7nCIYcsAmASOAgHMSXwSToEDDAkmEAESBQDBA4tIw4NgxQdTtoZhaAINDiECtfRyZSzFBcwQbq/VucbNTv/CEF6WVMsg7UL7CZNcdyAK+daVp3zUs///4X/679uhuAAAAAf6SAIcGQlrg4ICA0NBtB5WMKBhAAu8NBABKDGAcKAaihgQADg4eAkeXEXpYy1SyPMo/Each7TpALQcagTrVGvBbYOG66JktF8aPPM2uFWOG/xWPau8Ji1671OQ1yyVD+84lDCobahNCOVn6K3/2a7a7KVAAAAAAB/rA9LivIDjv+EhdMtmNDBxVkrxUCDjrAJcOS1s/DkSJ0lGfKKlfM5AUSaJZEbBtE2PfcV5FYbR0i56zefDxrTWbI9UN6Pxrz2uNtYbSR7s6kgbbOcWIvG1stdq510AAAAAA/2RhzRhf/7oGQFhWPkL8zrWDn4Z6PJvWXpkwy4dzVNYSfhiw4m6YYZ3IgDEBklMm0+HxJiWUg2ZjgjBj4DFs2B2jNVAE4LLTWBP1mg09VrMZW2zgNTVlbsWrIwrPbWYi544FxEHwKDIQGEUDaigMDg+FhqKCo8/+5iURnop2yvonNlwAPFzSLCyBslQpOfA7e/dw7ugMv9On++yIAAAAAAf2QM5Q8UajjIzTOOZ5OpUjcmdKbl6081lpqIlK/YUn3Qug8L7OFOrkyw6RiI8NENJTKBD2hxHITDYdHSLat9ETZHQyIBftZ5/OFL0IYBSRdQrXbaRnTrt7HWuFJzWrRXhQ3IAABxwEYoMMBwUDMMnNnCNGMByQoeJelYNwSCSHS2fQWWLEf2C0vk90Fl4xGLP67MFS1/nIRXYc06R5yiQCtk4VcRbRrlUjc3ygjH/bIXFtYbemhm5oD1vD5nXk22sTOVcU6VkTniHtlaavByr7NAIQPmU1gJSlFQtygujVInZIjs0EovhKXAlaLpkaDknFpiFBUJ4MCwWeCHhiIkGMpD76khEixY/0Rj7lu9KDAi6EUbX0sQQPOWZLuHe9tss5Gna4lWnQNDmLWEAAAAABb2xhU8QQBYwGsAxIylTOpGo6iHBSgtYJkBjGGcjsXUfAgA9JmqNDzTTadcHyAVpJimLeySXEZhY5NeLLRiUv/7kGQiBGNZHc1rL0rYagPJrWMMHwyEcTWsbSPhcg7maZexXIWnj10Si9ehBqhyw3rJKiz7AmSqVYt09EK5UyTWb4bXpbsUn/6fi7oAAAAAA/sjf9TAqvQFq+FRhH2dChWbycEPPJFY1RQ+sE47LKrbsriD/MgnjA2EtGJR4aCovkxQvMWMgVsKU1ejfTp05m42Jd3f6Hzkz6ouw4LtnyUWjmqT572HWNLtnhx0KLYD7z3X/dVGAgAB/YwJqIFGlxE1X4EwzHCgKByJYUA1DwYBFCYqBMVE1C++4b/q9SdQJOU5TzEaMKgiCIBSQEgSPosu4rwhNpd6TYeJWpCKgaD3rJAodoJxosGylBLGzMKMkxbrbt1L/oZjsAPIwupyKVswiDKmoGOW+uxcjBRAeOdMIcN45SGE9LqnlaLkwsTM8OoLlAjgOHI/jV0bg/2aLl6ZREoYW5QkFUkqI1j/kQ5FnsrOEwi9Yy7voTe3zrUqldu3j9xVvAAAAAAH9tA4PRhMwMNQYTbMpBEY1LlA9QUn4CkaL4fRULbxevIy4aRasf/7kGQVhGL4Hc3rT2IoZiO5rWHsVQyEdzWsPSyhXQ1mtYelHFLnXSyugSEM1XQQRa4s1s7c78eX+t2+xvvO6918hdXX7njnNllKTFJYCqYw+2pVDHIpgSpdkgAAAAf2x45puA+AGOIJhHmfpHQIFgl3QqU4aZfk2TdFkBSYmQ0xFvzaqAyQXB3EVbBLF+YW3dJZ+/Q8U3qseggd+D21GbQzGNOE0rkVMVci04g/UlKYbekiSam6o2R1nkf/7/XEAQABvZI/wYlgwI0wg0CJ7UwMC5Clq+QaYKgViPQJg4SGIk7HFPmir0eiHTwocWAoDZ5qZiGPQMA7rCbqcUXFbE3k58b8lroc0VLXNMyd70XMFH55XT4u7RYy22xtffth/3tlXAEPZJHIBEYC5yyUTFmwUniUIPENIDMrYiIGFAUz1LkpACQOH5HyrkyZkLMKniZvyLwlTJppFvPjB9CP2uLvG1hFw9FVOlVDHcBFdvStL+llHtRstT+ipXAAAAAAB/bAosLGIZJalyyCBON2ioJ538RPIoOa8zvylVQSU5fCZv/7gGQThHLLHc3rDEO4WoOZvWGIaQtUdzesPSqhcg5mkYelFEhEVHeq5yrL5kgMNmMlFHqIbvXSMHoTWS7CTwqhRt/FTSyzXP+n59Y0KgUvlirXP/91TrJIAAAA/tkiTZx0QloANEEBGG8qs3Rs0Ptnai86GE4qHVOQimdryVNjw5dUnril1tdKuhZ6uQrBFSsMIqj1fU8pUducPRC9u0axBy300VJNFrm7EOSTSbs/0VhMABf22GJ4dchKF7CIAXYAlKBoIUI3MWSH2jiYqYcaqYmBFKsuuhF3SY+KiJYgxllDFEtuiZVr/O2fRvR5Abd71Isi7ZKx96VX2aUJYtKepve3OpTfkUsajpiYpQ6suWKn+DlkjkbHQMZTKYeAii+TE6XyQsRMgAcIyJAyxAjXiUJpj0mRGko2hmYTOzW3V7SY2Zpf1Bge4zS9zwhFH2oawi7Hqhaw8oeHL2vbxbV2dWntRdtvm3AQAAAA//ugZAKEQxYczWsPYphmI6mqPwkLDEhzN6xpI2F4D2b1hiWMB/bGYAE2DUgOIquI4JtItJhIrPYIikGPA6UWjSjSpgEFV5CVLki1YXieVqEGmuQrjSUli68YmL+0vdQwf3fG/DN2cHtEZw6xd9dwsmu88lNDHP0mQgmNb1Ftzfp/r8wAAAL/SQ1SsWFTTR3L8kS0qVgxYzqQIpS/7/JkAgJVhICTzJcTQGSdGoSPCh+AqNxOji48SpE4yM4miWNLwkQMhrqQtwx5iYMpSaFkKlh0qZH7HenGyQxIo9AKKW1WoSFvv/rR3xgAABf62BZYYwMMPZMcUAEQeeg4A4ICIL1Qkjwxw1gFbG1ionBQGQwukY0PEJFI0JQoZWaetIshUR1BsnaxlQcI1hUKQ2LfOxe6vuVZh190IVAqZ1t6OBVLxAjYi9SPq7q1RkBgAf6StxJRwCywvI64RV1iECpl2rHRXaVEQeDkSRKK8IZgnQnYOCNkjiPhc3BMkSvyXInLskQIQRMI3SUJDzMHfjR8VLw6jSkpz00qRFDaX/87zn79hV7drW9GxaqIAAAAAAf2MGIYQIHRI4GPCHVHnAHmHJioEaomEChQqj4TA4sr5+lYFtMeiLXWO/YphgEWkQkKEgylZdCyCD1ECsz4iRDAyRBIoCOCrC/psFDo4euoVODbZhGLPCUSmu3N//uAZDCGYzgdTWsaSPhkw9mtZwk5DQh3Naxpg2G2j2a1PCQ8bUJo1/2OcAAAAAAH9sD6tQBIZCSzoatD0JGVUA7AQgLigBeqh6q8CrXXfF1bV6Duti6hdGnN4hJ4WHoowfkjUTNJi4hGFiawphY7JJs9+Z4sLKrehy1OcuZ23OSRAVrBSEFtVFrXUoGj76ZAAPHIb0pDnIId8ROzuvzZai2AybMuOQ2LLlrHIQ7EQlY9COYCAID3eA9pJYuWlg8kepLPlMKYhoJ2qQ1a9hGZlYnlF1YWFy55t/RaE1x1TS5kANLnq9dCrl/6rdeLXLKvCEKfX9WxKHACPbIQoTguo0RLgFmSxsAvZuk/QGUzMFeNyRyeK9HI2vOhDRUYU65YMD4kCpAFRMCYpD4gZQLyRDpMCVIScLjB5c6GA+F2f3HQRYMHi6XNGDD4fqatbGqeXJHbjLshpELybWubMojFieO//jNdAA/sgbOVB7X/+6BkBAdjXRzNG1hJyGajuaMnDA8O5Hc0jHMCoacPJvWEvhTjHDjEoztnzUHyBKDjmMReA6hGptSSWKhS37IGnyRgcXJQuTnAooqIxCLBgVCkvFQbEwuTjBMLB4SBsMp4FAwFwEEDib+A2JwSSpQXcfD+dShLAwUNLYLd9XG1YQMXuatxVaCIAH9kFgO6afg44EVELilQ6ZCtNNTFWoIIvJPaHHbiBABenBJWFtYXRJK4kPGIek0qolLYOCQ27ETSoIZUEcsFYriQXHE5fJBVJL+C2AryRRb0se0wZQ1ROFfgDx7Pih4VEEtY2JnF1QAF5GLRyEYTipFNORYSGBi4DFUIhzkD/C3T0gW+Z1nA4G8WBNYcYIFBCcMPxavMP/EX8iUgdV/pA4jpSd/4nJnDae7cYZJDcSaNBsTb+dht/Je/8amjnDpd4hLtAw4f1rS9ZqbL1NtNkyH3tZNXB8KOFnoQ60P2gAe2BWsAODelflLiNxtUPEGdm1smHYJLOYCRsCZK9bN1lqikpGPCkQkgZeCQJyCxGkJxlWjzWYZyLKuYF0hqHNI6D8VG4ynkL8hrLP7VjAGysm8ReYuGLXuW05UKDVigolLmvN0evWgLqoAAAAA/lgIgkhJAgDBBeY0GGAMgD4QKLmDEBpy2cxzCDyTSGS8Ciar1gi0YhPWEV6OlDmZDWt/pPpr/+5BkHQZzeR7N03l6OGfj2bpjLzkOOHk3TeXqoZ0PJuGNZIRcnmsocpVKXVPEsaSwHNET4txlkgN5SZOpUPnBSIY7ZnX7wfxZ7LYYsQ9H/zS270p/dRzaS3gAAAAf2QQaIyJdig26GI4xYm6aoxwBi8ZMMYRAKHdlPpPOIl2W5iQ8yqMvmRXqxTpNTqC6HrKGMSejF+OckyVMAbgNtJvQci0TIhyo2k2MniNULv9r2aEraZW0yl9s2y19u/m9FWnr0A+sCYqF4CUwYFmNDJ4M4asRmLCRkqecQFHAsJh5AWRASCAk87EeAqapMwgxol3jFaSxJ+G1K1nY2ksBfUPUWWNsQw/iEGahplDlFStoxTKVCqWlcmVmQ910EA0dzqJoVilLJ5Wq1Yr2cgb/e+xNIphukB94DKTmM4MEYzHMRmHJkgJuIHgsOGhQ0WGAygVQDimlNMTGcZ624RSjpZLZg2GX+fKSsAdmG8Ja6LhxtwF6RVkcYThfx/lgHIhuQXpK+SY7I4xR/qFszTvZxvdYdWOu9EgL/obf6cAAAf2AJXD/+6BkA4ZjlB3NuxzQqG9jybpjeiENqHc5TeHqocKPJumsvXQJ5mUS3MBDkxVPTPAvM4jowqlTRQZA3IygMAhAcpEJYzEFMAQBU+wqdEg6VrLl/w47HYbf1t56HI8w1AOt+Vv60drMUfJnjRIcYmsZDjBEANApqsxHnBtP5H3dYulNW00AzGlVsv2+m/VJPskAAAAD+wCqy9SwwfLsm0RyZGYoHmwRGyHAWCVCSOY4EBRI1A8aRxKaGBz/JePPD7vzjc4OkbuuNDL/LQYy/kpZgoLEoEcBpq63/f5Vy831hh8FfxSPx13ncaa/1/w0hjEDCzVrcxu29UVzBP/SJB+AH1AfZxDBhMw9RMBNTQPkyyeBB4aQ7mwiQP6TOCJsIy02AP6AGUhGtQBIGjMubE83JVJlhVCQAzrklhrESprnIT9wL2OtJhmEbHrElHYWJtWlVaAr0KSaJdu8UnJpmMbXIXt7ygFcl71tUwK1+AeyCDmAGGGo6GjOmBUnbxn/BgZ8cBmDYAQzSsMoIEhGHoTHrBjxwqc1BxYo/zsyd3HlZkXfjceZswV+X+f+cUwV87z/s1YsnCMw6GIEiEaU65UbGqFGrVpGf3GhtkayK0LpNVF1o5FKJyl7FqQR2EKAAAAAAAf2AAcqa6IIIRhmZw1oWMnHeJqdObognRUAAiSJyARQZCRhxGZQgl7/+6BkFoZjzB3N61vBSHCjubpreUEOIHc47W8EobOO5umd4JTy/pgMhzf0eQ0uOs8lL+o6LBhY7TWnoaLhXLL4orA1WGndZ4CgKPNJiT/PElSmGxSHY+/7/P/DruWnegPtUkSosm27maRlvoZj1vvavQAAAAP4IEIVYEwlEiasCaYM0HAjAK2Yl6cArKosnMIIK5g8FAOIA0NwYfPKWyB/WeUiUjd0AhaxVJeilxMPGIo5y9VDG6xgWHYu0xdiQ7YXYLYOgsh9F8v8/rrKXLygV/faMbmdc87FN3Z//9WvuZfB9QCIWjebsOYyIfPWFWxpeYa1FmAoJyyyfyfCEZEYjLs3MAhEPw4QKYlE3Fm8tgcgROPAkal82JCJdbkEw0Bi32WQA5L9s1Xqsdmyg0WZ8PCpnXh5uzzw4/tJSsDsek2YcxjNqGdaVhTYcKz2W2q1yEAHsAYtRtLEbAX0NCQyrTMdDwsaGK2htMK0ccQRTMRwd8zlRmMz0WlTq8TLi68H9VucJyRERkaBipouhspWzYZG/zKGqp0sPQdQdaYGUQRtxXwrC68hb+AYfhtwov4qItE2h7D/Y+tlO+7SuyuAAAAAP5AEVjIixMAbfMZ1RpkMPGAp+ZAIJjU4nQzEaGbI8TwgwuuFjUFzBCHTwVYdApgBJrjoKlIyc1gRADAZjjGEEnwkS6AKCDD/+6BkJYZj9x3N01zIuHVDubpnWTMPbHc5TecKIbMO5zWs4JS4gxULjyuGUThikEHIIgVOIjoNBo48Cul83ShtQ934csxCTekUm3ECO4Vrtvr9HfMRRMtVAAAAAH8kDts9TKHZE6DHrTaCkJsx5nJ5kvQGNhw4OrQecNOYqHGFaW4diOMsYQ1tbCc47EymGhGWiusMrwSNCwbtDwj3Q1IzOiIljDCMaNpIgHAhY44j4mAyNpL3tFj73p9NTf2TujsLRzNf/qWmtXmdK0/0YAfWAt6YgJCikZemm0jRp3yao0gwYMJKjPJE0RcCxMFJQoOdEQgQetErgjoHsgjf1d7ilBniCjgEYGqS/B9Udy4iQ5h0QilSVj3TjSxhxF8eKWhTAB0FQF1mRuO/0ub2HJRNNNlv1WKucecfrrBbWhX30OZZbT+vh9a5qAAD6AOclkhNSmMGHBk8iLH5SR80/jeqOIoZSDpmMoCcPuRbPShp6DjgMkU3QpAIxCcGmM9RyL+PUk0r8t+1t/BYWUTTIPbDY9YAdQODI0Fpki4msCkepQ/7S3FV7Aj3P6V/H1z2V5iyl9P9m6qAAAH1kDQWRmHy0YkR6hIsHzCebMUmoeYZvhZH9RmoDBnQGIDXESImFhYMUn3gO6/tJEoyBKRpYBpBA84PKVEBADFL4CRVUZMXGlMbUoMblntLC+n/+6BkKgZj4R3Nu5rCKHLDucpvWDEP/Hc5recKIdYO5umsZUxa2KkVSIKbKwjtP/CoyyZ/FXSf3qEo94LOqVc6x7t+z2Uqoci9Dd31eAAAAB/qBNwQFUICAV0DIpwb6aERGORHPuA14Y8QHJrqQO1RZgIyDfoQDUn4iidBvcmKqso8FpwyqxeKK0FF1Fkt6hJd+Xl9zE8cKgFfQu8bAhoFYVIIOIgwfDiuY6qd2ZjxfM3JxNjyxhKr2WEKU+OlXQAAfSARg6Pph6CYEunBBxnSgbBMhpMZ0NntkRrVmXyOOk92y8htcDjktU6FfL4jxfQqrKgUjAEo5ECi3fHlOAsxB8ttDTF09Xad+LochpAwQScDRQ0mMxVJtFZ3JS7EbcqIyqR+TYrWpYaKJABgoPq1mokePH99qdSX30q0YrSrED2MN0UdWykQYsgbuiagiB6B3ZYCjgy4akGB8m9KoiQBPRk4+MVhgwN3XBFrEd2/HgU5TQOTSewdGESkhBgsRW4pU7q91IFV4aCMUpkQmMXGBqiYidpIy6TFn8f5pbtSaHfJY3zL1LDbL3wwhPSpL31Pp9yqqsAAAAA/tAZkABJmFpgSov8OeIMRBY0GCBGPjakPNrZcc/pYKrQgKKEUSwsDFkjdl+L4Zev5nKtZd9dJahAGAADJxEGB0OAHVeZugKAqgcmXR8aBA4D/+6BkKo9jyB3OU1zRGG8jucpreDMPfHk4DfMmocaPJymNZIw8ySTsqJiwJBDm+0vp26QEx2Mfx9TkobaqQXWm6wIOTwIL7urAAAAAP7QH+ZM9bVg4eMUzL0zXJTDTYzGEMcMCEBNLUxQVBBRDNsrDpAvVa6YAFCpczNUjIDK5GRGuGQi5eBE7J7bCgCkGtBwTcMaEjgATAUKwwtgme2ZVzwyR45LHIRLPak81zmXWrYilPs41f/Y5QKQgYfChccESmSQZp1wHWZm8pmHrsYPAgXBoKahaAHCYwYguOFCgwgWFCAQaERFgZ0EgQ6kkDqGiiVwOREBK1R7IwD4bo2Zg5pYirjnDERYKCAR5QVLAESQgKrKv+NqqP28TMJXLf+QdppRi4eXASyzk0CsSpo7LHsaNgA4sEqf4dDEEzzlcHUTilTgIjI7wRARGGKA0UQBO8gBS0YSsMrYvwu4ayyiiche2JEoxQ6k0xwRwBwrO6CdUSSdU0U+YI4IkISCbhY4iPAoQFDctvGXRBgd2XumlrLf8zQEGumtGn//PzMg66wb3XepVgAAAAAAH+oCzTGBgw8WMaSho3MaoDM6I50lMmWDq1s6oQEj805QA4LGBB6Nhc5LEAgI4CRQV0KBAcevlaYAAjmDvF4y6hjMJuAAnuguLA4rrq9FJlJguodQX+MRFg1osoetzqqv/+6BkMoZj/x3Oa3nCuHkDubovWQUP0Hc3TPMiodKO5yms4US4HmnNaRI/QtzhhnIPmIBQre/MuuG7GrSzSl8AAAAAf2ADgZI+iEYRCDK1gsoOiyNwM5lAYMY8B4HmQiBiQ60USS0YYieEWD0g80YyASCzZRZSmHRwVXsDgIsiLByUgdgdDIokf1wmFg/yc5olg5IvAEeKAjIaiT/P+0yIrbLrpSPn7lRKUJxO1KViuftdTCKv7vrdAB5ABJ0LpmPSdjhmUZA6RmRBUEes0gMzNFFDhSN0ooHbhU4xEzVZLrkRxAaCsQdsaAZUQCQ3FZADsF9pmqiAy4OgEYhkAMckAFbMgMehTfM1NIpO9FEuAW6CGhJZbQ6FOsrbDDr+JymAHSv7DoNoi7j59Re28/RH7E9aql5NOAHsgbi3BwBkshCa4qF6hqxJo0ph2h+w7XzvgDKTVEjasTTS0I68IGQDLnInj7H9SfHBQ4NHXiFADRmhA7ddbCSAFGPNd9CSYwFEDG5DRuAdUt8o+o7DqwLQptPVxU9ZC/tfHdArEca5zX8WtXaz09fV1J2MwAAAAD+wBlwGEEGJmXBkMMUTEziOzeZaLpmRh+fCRxFAtIu0BrTVUXUXSmFNSjUzOTdFDzhwYlCHgVgU0lVWml9RKIs8IUbLWwUir5p0YdUISVGnK8o0eWjQtY00WWP/+6BkL4ZjxR5OUzzIqH3jucpneSUO+Hc47fMoIdsO5ym8aVRZeOVytKdRR2OcuiLNR0DIvGGPyC9NuyyvVgAAAAH9kDQo6+YyIc6oB0MPID6wkyg6BC+baBgo6PYkKAAqk0SAglT8qJTxEUBBhhQ2VTfBaUrhP12CI9iQw8zgxoRoSLpOFzh5IhCXgFWgQqbAJdgoREQqAlmS2E+p6DIlI2Qpquk+hnpuqKRbxk7htDJO56mdOMavd+q+iD2wNxZiKmIhRDVTU4jCD14y4cOdSjRVUFqwtyah4JTK2wQAJJv4IAWUFtwrgAYwCgOHqKIGlwkA6RCjoMAInmcqyOez1S9f8dcMlRKOgEw9pMe1xHlZz1QTTr6kzurZkY8Czl/0czaF5pdpNBDZtb5D6rP0rpmaoAPbBJJlXC8iIdMJFjAVs5dAOBizSRc3slLPm+xjMg0SFRIZqj8zEFZQRJmAcmmwl+YgCnKjeTDlVTAqBY4gTdK4vcsgy5OV9UiS8Szy844EX8XSaE/yll7B+EEb8NTTwaz6XL3RSQe/1WofQNvl3MrZLanJ/4+QAAAAP7IC9VgLB0BE4w6MBDfDBhkM5Dc18xTVAEB70JgIWAZhxAK8kAQYMBw52FDgEeGTg9YOIcMAIViJlGAgxFPFRY30Lxl3GbR5fbBUngUNPxNIJshJQ0eMVmRHXKn/+6BEMAf0RB3N05rCuIVDqbpzOIUPwHc2rm8kofUO5sG+ZQS/Fs6ZzZYz5KpyWJP4ys4+giUMXqJiwwlXeJgCooMJVjqRUVIu2ev+mAAAAAP7IB4BNBJBSChWZpLwXrhiU9HJyqYcNsAnUDGzowmFxgMrUQ2L5qqJ3y1JIEEIDbl4WYkozqoMCgZGA8JrpicRhhMfpy8wjHYWAlAKafKIcHYMoBCw6BJqJOTcDymSwOsRNJkjOhkSIx54/xcYIxV1qVh44wOCpmRZGCwuYxT7f74IIiAMApMPjKQSMjwA5SCODATOGY3p8McnQuHKDGeUDjSQhnqZiBlUFIDBASoFJTJPCP0NlniAloDACssIeTycilTNMEgEkxtkbMToBJXRokEgDS4JFLSNZifwBVijBoCGgI27wiemX13EKYVMnZKKKMpo4+o0XZciT30Waq2zuEAA0aVhr0BPMD0U/O8MQzwWCnA0fSAwoeQDjgAAMxmseuV/U3Sx0MlBq404DRA4JRUKFoyqqGBGZwgJBAIFIMGgoEus1mUDRYgPL/ApAhBvApBWFYIupTXq8CNegJy9O8LnoEfFkuJzcWNnpCKrMJo42s0XbeiQ3U266sAAAAA/sgStNNQwMDvMM0j0yKhTfhYNBEgqMgxogzpJ0GA8WQShFkgNCmDBBgJmqLANCBSALUGBDwkmRO//+6BkHoZkHR3OUzzQuHajucpjeSUPUHU5rHMhIdgO5ym84VwKhQALbgQBhoqUeBIomHDqJyJhQLZRF30IVCHFOhejY1qPTKF/zlNWTDbG3CC73tMsZemLpnBcgKLT0CuOD9nqXFHp372fZYAAAAH9oDsqdg1hg2W0MMTBSMF/5r5gcGTGdtokPgQsILeUCCyJdaPkOF7woaVQDnCEYrOGgg0Feyq5KGigDpggNXEvC4oiOQ6NifZhwHfIAy9YkKoSCngUqwhoV+5NooKeR+Utom8zdPV4QpQhGlP0I0ouobrgAA+oA8Y02BheMBgcxCCDEN/M4LYw+kTDsYMEk02kLjFQHQVgQW0AhhcYCrqEkzAjDJfDWDd0UGD21axAmqup8kGIvBlFOZLlmzI1Hos7VZrhh0rtKDFfovs6gHNtrN2AFyMieps7vmBR2scFTlTxA66fdLLGnnXP9SoAPbA30AKBMSAAOYkmmKPpvjgZLpmFkpvJsUB7Fi3qfYVOQAmAMqRVd91DBNwQripijRQI2GElQEo2VFQekaXrbo6a1GEPpplYbmChqYFQisHzR6ICLPw+uCjtEWQr+/7bbEtENCkmENGivuX1ZqqhqXIf0fUhgAAAAD+wAIEqPBgEhCwRMmEEwhfx53G/14ZPB5p06HIjmYCAY81UNLwg4cAhgMLFQIAho8YBrY7/+6BkHAZj8R1OU5rKuHuDubpvOlsQPHc5THNBIdcOpx284OwIcy5NDuEZx6scBHgy3yhhFaAZkwgIFJEJpYMVhf9pIODL4qjUgFBCsBERpEPsdos4kyNkV5cZ/paxeev1XITfaTG/b96UQAAAAB/YBONTUMRUQsBpuDlc7rRMElzbBM7oAIAIQBg5xFMrHR3CG1E3aQdJMheUyjklhJ4eEMNZdT+wwY4KuxgGAWKBAKQQUEtlh0tAI5Q8MdZHUiHgrsoeQglfUWEYMIGfweAtKt/JIYM2oUXcl1qlij1Tp6nzEZurfgB9YDnUOMCCwLAAxqODGk3I1ccoIJmRzmUwSHn8BBAEiTCHWAA5RLAKgVih4xpgyZMP7jxBL4ONPEIw7N03i5hoAhgCLIlsM1R3QTBAa9QIaCEkX/aSxpSxDq/LVWCRSvHGANehl/u+8/e9zT8uqLoCSdg0iWAynoW9rn9oy2rd/pw9kFmyIQRmYFCo6DY0NEzQOM2wyNVNi7w4gYohqBJdJHkRwQaDhgZcJjmqg7RRkDjovreLrusBmHQibqjws1H8PeEOoVlCw1ByOLiKWIOlgT/QevCvQXxo63HDab+9jEJQosuFxqxJmlQkkKf9d3bdUxqCC0oVgAAAAD+RgtkqoYBKxioLmTyyYUYJ1sbG4x+ZSU5olDnFhSIQSbUYND0Lldj/+6BkFgbkOh1N05rC2HfjqcpvOFcPhHU3rmsqobIOZs284VwwOKAB5+OAgYOGhJwHgJzGPGmDShwcBAFiqrhQADoYgDl3guDg9YMyiBxZmHzMQwGEttPEIFeC64wyFGuE6iTxQtiryu8gKNTLOI2LOtT7W7OxPNERRCXM+7nK4AAAAA/1gY6udDx/zDBOBgdDmgDojbDkC4XSiINXYRJAlAEkixgEIQwBJBeAyHhXwKCh6ohUTCWWn0y9qYU6YQCMI0kiGQzgoODbZmwkRLZokyy8wJZpORGWwf1uENtATihfqUAypWXe33zqc/OX16sqTQPoZbjFQAAetgmDpgsXg0gGARWZAGw6gTaI0BknMvsI1W0jKjgDAKVhjBDBLWVRScsNGTCgIWgEMfONog1zAccAt0LgaMBCQyd/DIjDuUEAKDXGXFCoiErruBGRiBq8h5cSDi6oDhhakOdjzT4fUjIfTA74ZOJRS3H2nhnd/+z/an0AJnwLdR6ASgYOZnBgZwICbSWGVxZrRwDAdEsu4ieBnAgBsJEUgDSRTpANKIoCiUGWWMVIABVa3wYc12NIwlBRAUeZSpzXH9MfQEdFJPFMIHbEYp+OBgm2uwwaiuG/jfWxtY7WPWTFxCZF/6mAAAAAP9YChgigC+Q/0YPx4aGxjWcAdRkFKHhAOaXAhMvQ4GigwMNgQqD/+6BkFQ9j1R1OUzzBOHZDqbpjeB0O7Hc4DfMmYcuOZs284VxUmXYR1Y0k0aamHI0ZFUosyIYmWtOiYEK4GZr1KTaUsKn8iLUf8RTI2qEP5XYqmqllDTTncwj0OxaIxT5s3SotQtelvQKIC1xLZZqemz93p24AAAAB/Ywn05RAMVYmUF3MeljoEEyUKMtWAJNhUCQAKGoXNLaSX0BQAm8leYIdq9RnIyAZQjE6L/opQeFHCEqcaABkwYsLuRRkDvmACewQ6HJsYKqRSdM4C3o67rFIDXrPfQXLsYo4eF5Hex3mZZsZZsezVTpSpECiJCRAKmMqUzIvI65MOOpApHSQpmCWWYWEKhwysrSbJKCRH8gEpioUfxRwumGIBnwCIHIqlSrW+RJmA4ICFBmZiMlAar5j1eSpKpVID4cZlI5x2MX5ltJE2bs+lr23vak48ghDPFqJ7AdMKmaNUpVc4giY1ft8jGUkU7ZeDQAxonNkUDWzciEQntMjRQc9LlQTtEGQiYRkwsKXDh0RBrNAWwLQNMZ1E+1KBJJoGedEpACFYEFABtQcoiNDjgqTYGSkiEiESGaE3qZgrJoJdlna93j+42LCoFSVEEycWXa1lZ/q+Q+qj9n2qoAAAf2wE4wQhlxlkOCExEFWOGE8yisRBZzUoINsE0DJNW0R6IegwkDICzbTFrgAIkINLs3/+6BkGgZjvB3OOxzISHUDqcpneRcPoHk5Tmsq4ecO5ym9ZOw2zBmEJAO0d5gkLDkDJiGmUjnPaEZABMPAtSMImk1rKItMJfP2/PaarAEZcty6Ol75uo0LMKjp9UjmmWf1dlFur60epwAAAAP7AJe0dqB7hJtGHLxxCecsOGZjAeChSuMBBJlVZwKJNCIp0kJrBSBQ6MiywYeYupdYISV+rCnUaMZjEiT7QEJgNGX1K0i2kEQqOyvH8jAjAL+swh+Nv7HXdCBGxLegd/0n7grCSXPeHhbpl9lv5luinAD2ADQCFhuOhEITRh8bgWbG3g0Dv4YPf5mUaG0YwRA0eDhUmNDUTU01E0agqFQBFxQJOMOfHgAVOjwCsCVS8EzDHpESg8AIThEqJPAJeSTsiYUsC3CBoqjYgKQvfxgMZghYBOp1JXIr/+fsPqIQYAq6j7BRd9TiKfYP7zKIAPrAmstxLdPFDMLwB6RUAgc0aI0QsyqsBFF1GEEKkS3Ys6aDIWLF5hZQCwQKImpDmiNg6dM9BlnpACZEZkmswRfAoAUGAoDAw4ZQdkgQioFAkOjQSA0oQfmApmVp3vK3KA3mv/m2WXlQ0XrcRNIWL4lOLqLdgrzvxSqAAAAAAAf6AKtNShwGgJPGBA4CI8bOE51FWmC2aZjF5lCQjQgYgYUj+GMMs0aPQBilCwg+8a//+6BkGw5jzB1OaxzISIBDubpvWTsQAHU4bPNC4aoO52msMlx5wwngUdUBYMHkY2siwahQKSf0qtw8nGpKFzz0JdL2TlU5qjoyh6Fy8muv7KodYJWzaZ/61raZTrvZcVchqhjcpoGhHAAAAAP7GGoF0lVWmpWjsMdUFGEMxsUZtJxtiygqXYBIF8U0gMIf0IBCxsUKBgg8E8yRU04IZRGKUpk0FDui+YeQULG2EIFdBBKlrJShlBwhAQxiS/IdAB6RLOWxLyJg4bTbCG2bROUY+3c5hAelCn7QP41orPm01NQmxOt3p9ev2AGgGY4g4SHzgUcmBKUZ0Ap0q+GIkyZPARm+RIq3gcPGQ40VTJBxRAEFmrEA7MaagYMGCxphQQsrIlKDCZCsAOjGDQFAMYHO8PBlYXPhhsKfieZghTnxVaSKqZjprAxV92QP4ymNO673taFlEJ4BABgqDByDl6doHlXbtTChBqIAPhRchLltcRuEGg+Qs2N8EPzqCTcvUOw8Pcthq53FlTtpcjBRrpxYxgBoQ7AB0NTFlV0j2apvl9RMrAl9j0XcZbZaECEIdQwb20ipmcDR27vCsaUwKPOWnIsr86A6NDrdbfrojv/6EpV6KsAAAAA/sABgLGAMQgMIOY4KDAmiMJBg5jdQKVQdZzIEnEQJf4wAJCyGH9UbTOACQwRwDBzq0zD/+6BkG45j+x3OU5rCuHiDqcpvWTsP3Hc4bmNKoc2O5ynNYOxBw8CZ4IFXD3FIImP8Yj0EST3QcJtl4oNeBiCZwk5NOH80yUPSIr+yVvIbhptYw/0Da9u43eFhwjabUwuhblrPISq6udpXeEVQAAAAB/ZA9VtVNgaH45CGyEZqU8agAco6bSMIQQ0OWS7YkqmIeQ2d4gQItHeoiEmPUwIgLzyhgKpxoQwIKdgqf4gLB5IykJDqhZah8HJqBw7Kxg+XjyUZm3Vp03kY4tSNWf0UDiqjtqnypQViCKXJIbVi6Lf7/V/R7IGzLvBoVDkGYJIIN5BlwNG+rQYvPZtMAmM20Dg0/5rmOCWEbsXtHznUpk0fUHAaEAc6AcFNwYJDAgOEqqJxGVCIDkrEhFGk8zBAVtww0klAjwIvA879IyKCjxCVwavxwIcXDEp6f/1JAPWjnXpaSetK4yMFlKpr4Se9X3ewUsA+kEqrigXFhMg4FkUZyKxoCFiys5w8GxRCGX9ElFxIE+Cjq73DBihdhn4hVAkIUCpX9eVVZ/QgAk1WUIQuwd2iiu8adA0WHAE70LpbD5IRJVp0vfGlf1kStcZjje4eS19yEqsvvuDChswkdo+z/VsSxkjVwAAAAD+wAeEYOCg6MR5TGIA8Dd4Z4EZyWlmFiGEbYw0zRIPOEcDwMARYJQWQkVZpKIz/+6BkGQ1j+h1OU5nSqHljucpvOjkPJHM2bmsK4cEO5zW9YLQmAGd0QYoMcoGPMVBkhEf3MWDCwNcawSdTgIBhAOXigqpYpSmAx6PO0v9uY8VhmVqcO/C2gU1PFn+hxodSYat6CaRSMZ2BYa9lLR0ZaogAAAAP7YOYiMLKCMCjQxHHFB5uewfYacBscDJz8lzWfkwa+34Ig1Agt4YAIArhdCNHTFHk31OA4i7jFGFK3goo7ZCRBQskAOwp5+FjgqMySKNff9kicEZfeEy5yFNLMFXf8YsCpSNFKpM8rK70arCReM4EIvqT/r9IAGJhUYvA5KRx5DGHx2Yl3yAE4dSgsFDdpLMwPYw2Gg5IaUaX4WHWEbgnkYccWlEII7jsEHAdZDr7dSaCo0m0xDHAv4DpGQrIgqAANiJZWFsLImt5KJc+61CIs5LlOHVcmLx+VnPe/MOStQSdOYr7FrxirWwQVFn3MOAA4kGtgQvNhDxCJjEQPaTqVTDvzZjjJsywMHgidqAceNsASeSCHEY6ifwK0CwZEpBlwJbxWBahQQHHLyF3lkI4KzpNheKwjTVzqrpSOvDEOPyFBJwytx7My84sXCYg/vmwTqN5bbcR//Z5db//9unAAAAAP7IHsBwxFB+YtDhlYRmM28CoGdJS5iRUGjj8aFTQOaJmlmNGOlkZ1JOyiOOcB1TIkGD/+6BkGwdz7x3OU5nCiGijqcdvGUsO5HU4rXMkodMOpyG84RxC5CPBkItBUAgEX+AEyiZnelUKod5gIcyTvKuZprqvPcXy/rgQ7I5Ep54nfcyZkcm5995AUcAvSh2vJVqyahp2kq5l9X007jUAAAP7ILdZO1b5CBiO2MeFTZwQyRVNzSTd0O0EKjxZuAmrqmWIj4DrDDCRqBpKcwNNpS8BpAkaanFriMkoGSFYqx4HGLEeKA4YQJMUuooUrMJLDM/neWEfS5Zo/T21Lqj1etPy/9H//sgaCUEwRVM2IDtZidBuc9nAiEaReQMRJ3h7mEgyFYBSwRDiXy9SBlAEXuAiAHcEsxIk5Az/nDKRCYjensneG3CsQUNTxZamWoExtckNAo99nkqqUoVtEaHDsKe1o8ReaxCoO+GRkl+zWxW8U5a6hXFS7E13XK6/dABXtM+bsRFpkcwPdZkByBjcwWFN3pOw02xotFoIbUFcMIBROVVMqQ9vC6x/xkKI1FzCsqVaDg00GhhJCciI01TNLluF4a6UNlMGsOVgL5IE37eWD7i6mH/Sxd3rT7ioq2TDK1gKoWHIEWuLtY6jrc5ztWL9KsAAAAA+sYL3lA0ZumFBGQOiso7WAjRJqMJIg34iDG5oMGgUzCzA/CqoVCQ4F7EqwuqVBmlmHyBBS9xnHLULeFlYaBhgBaI6BAr/+6BEJIZz6hzN01zJKILDqbpzGlMOnHM3rmsmYeoO5tGuaIzD6aRgkIOFn2ZTqA8HCwLJWvKWorIXR+lkU64MPSyj+iSTSe1KsNKbWhNwLnV77EP2VP6acAAAAA/sYQDhwVMAl0BB4yMDTBgwA4rEvcY9JR8IGmlxkHG8lMZHmYYWMPAMZhwMYhklccVQQNSgqClDVjDgg4YVSoQNHERMEBrUwIIdDgEFDYBCq+cJRVOZVSLR1goVFv4vdx41DsOPcw2afqW+m5J9YBH0uc6pqdfMIs/q81+jfc2AAD2ADQKEiOOmMeNaB5maQHcRQcYHJv/R5hwgAmonmAcPnGeuClggVQ1UQO8LdDrQCiWESLEVAMCdkwhnXXgBqAqCoOXHMYAKDKHo+LrcFyk0ZZXUeS0TWjU271x/ndkkeo/3EH1Lsrt0E0865wvWrXTvYp9AABmQgO3gzeRhwdTMVWNolk6UMAcjjT58B9wx7ckBi3cVUqHmCCuOOBDCCZMIA5o0I8JaIaYsChygQgDhBYw4QzA49JooCJhEhkt+JHn5EQRKlSLIF+RNiQ4H606KwJdd5knONtFbHmaNrmUu8olFDmqmXKv1vQPe0vWAAAAAP7IB4qKGzEKTawzIoIILocpORqlHGMD4NKcDZADHQtCJACpAqkHFjIiVy0hUsIQA3aUKPZ6WhUNOaAX/+6BEH4d0JhzN01zIuInDqbNzeTUQIHM3DesIojiXpqHMqewCi7QtONOAI4YWi7NVqpbsHVCjgqnFqduiGokfLJmC4ruG6axLPuAbg0UcNSZAwNLkRPNpKmgyMQcLuY2VWZoGv23d3U+sAD+yBLEhA5gAZmUSaZLH5hBPGfw8dNFhvFcbccHHFhmQWaQEmbAAKITJUS6YAtJuKExSAInU6DAgFedToYAZ4qA12CyZFINPGcUm+oEl+TGF5HTLYo/oUU0BwEnzCJU7NWPxWMPFDT7u6IKoeHTTDIYBg6wePOFHPDIBNNAsOKXnST5gnrp6PIbMADHAElCCqQBzmaYcHp2J48Md1bmqhR8Uqcu2ZpoZsCPnh4kYBSJH0foUXjGgH5IQ0mGw46UGhB6U9Ek1DyosQsMKEh1AWfJvNGDnsUaC38LtINJms8lt14d0rAobXNSgx4sFgnHtQLk2OGAcqeaMZHRmLFS7bGKAEg+e92cqKx74ADDwBGAMBDELHIzUdgFKwYjTnhrM7qI2QoTIQqMcE0xSGjBpCHgqYVIYYDQcUouKjAkEFQCMIEhpvGYQZLIOSCoZFkbwolMCRwrMgHQ4MtHBh4NGpxn8cN7byVDTmh3qB94bbIsK4YA8TRDr/0PU1N1TZVVkvdHPLAytArS0u2ppwI1Kkj6kSvoym08kmsAAAAA/sgT/+6BkA4Zz0R3OU3nCmHoDqbNreUMPuHc3rPMDIaKOpyG9YNRaMHGhDGAxELBCZBmm6yhvsgbcBHtsITIi1sA3zoPB2g+EPGhAkMAA4VMfBnbQyIeMslHEGHTmLjoZmeAPoskWLBLfIPytZXons8X9TNbSGj/LiwTvv9EYaf3GW1nffjI5yaLzIvmWO2rdpH+Y11X67djHgAf2MbiakRI+FiphnIhaHhkDzE3xo48lNdCjAkgwoFFjYAHDywFOpigVV7rgHQOnMoY1BiKtroGGBzhEOqmGjAYoaMVaW9f9k7Ji8Ccivmkv4OAorQ3zWchcd3YbikHxZvUhFCRGE0teNBIGmFbD70shtIpz2mRTQ7TAAB62DdNMcAjnEAoKBBpU7mzz0dQlpoARGexQcKJoGpZksRGWQOFQydaBV4hFDCYadqHMI8JOAUjBawAmopv+xUXKNcMEwCAaWriHFFC/sSTQZBHrLgvvDHZh33/j8FR1wopNw3/U0MjoSLC7Qm58MmQ1tc4U/us+3v1sc5+AC7ZgKiL/puGUMocXnotZpVAKnHpqGDBGJejykwYiBEHHti6RzjjyXVhgUOhNQcTaA2ETlMgCcKDRWMZUzEtGHF2C9iqbGYlA6nl8LyjWqkrh2ijDsunJ5r6n70HVld0PN1sT3L7szqrAAAAAPrGF3FzjARRKp7MpoYz/+6BkCQ5j/B3N05vBuG/jucpjeCcNEHc4bXMkocQPJumN4JwC+DYMSOinY11WNyED+Ig3RINAMwQVmgDZlgMOhEXIgsdTWLjqGISl8KxDxi2445CSIDHUgFmjoDwI+BzGBO0hKZW0hdryT+TXqLk0/sbhpnsJgOQSONP5x9plZPxSpECpUuES/fs0LQrR3e+2jAAAAAP7IF2rKM3jSYdEYdmGDZs0YYSPGIjoiGzIgAHQoMEDDwgecmanHZVmSIQkiF4jSGPNFRw5M1ty8axBgo6cu0b3LQJnpStsvZNaHZQ/kCqry6L8uRH6WK0EkpX9kPvV77zbMZ+/db9evvSvpT6AAwCMGjYVjBKTBOgKYB0iNfFpAMYukZmpGmFBGCozV3IFTVVSLASDbuyj83UEClukVkgFgYwPEIPMzIA2QpzKWBcJbikH/htyVg3GpYXE4DgT9RKfj87Jo/8di/3Ntri6nOxXI2UI04gexhe46AziORwFIDpMpBjBI0wILMLBTNzUcRTDCRwzAA4HLFlDNGQrbR4ASxxwimg6pgH2ZypFxF7nNbqiFY8MxjQeac/qk3bfkOG0h/4FZE/d+5LI1EK0rfSVyCUc6m7xT62uRt/GM9+xNrPTamvTwAAAAD+wAFBdnJlcfBC5MIog4yFQYjG0hx4Qua2EnmYJ+YkZKTGBFBswoNfA3j3/+6BkF47j1x5N05vBOHJjycprDHkOTHc4beWNYakO5w28JXStkBZZhzjgdKvR1BuQD0qGBAUThQQNKNGRxEJXFUwbxYFbinKEhcEfhUOv48l6vKOxiVRWQRaJym31orY+WqY1gvXNBtKUitDtbNXVAAAAAH+oDYHJEIktYjIWlPOxDuo8mMTTADw7Ikw6YRq0wA6SMEjIDydQoNrSAYzIaGj0FkoaCzhwSsMDIQl6GaqgSYL1xkQIa0xMaezqFMfKw8lr8u0ZHDZ+NxrKv+1dm6r1OJqFxZw6hZczUlAqEaNqvoAWoBByYrGmZGZp4mehqg6rNcLThUYxSbO6FQcsGDmZkjea4Fm2WlWBSx8wviyZWYOjVmMMUx3iuhpDngZcGgkTZEOUEJ2NgJFXribzO2aILiszjy4SiLfizx1y2JeEwDH910OzeKxuUdKPpJyQ4/6Yp7IJE3WTIYmMhhNGhVBONRR4cMjBzWygUGjo0/bFDLONMC6gME6T+l7yE8QUOBLhKChCggBXDQyImcGNImqSb5SQqqFqOFJVIJSsSYCw5l4mIRAMggJ2QDHPfCWx/oUFLtnvf4tyXorZs9rAAAAAP7AFAx0PNEKTBQ04BMNPxzR0ojCBUQMwZzrConqTqbHKTKCNkQxLwuiZwSIrwhAIeEHKgwYQKmoIZIisSl4JAGIEcjUQSTX/+6BEJYd0BjHN03k6+H4HOadvLW0PQMU2jeDvIeAO5oHM4UwsFDEouiAhQcDFP9UThp2s0urlX7EekoAgPRsAst/R0W6mLbZTWRKW5WepZLUTcq95lD79yaYAAAf2ALTKgGZ4VJjnALwKejIpwisghgMPtzpgc1QDRdM2QzFAALxg7daCkRg9DBf5CQDCFhgQxJEFAUfDgcEIBQhgt+DzxwA2gVn0suJDRhBXaaNPSwtoFu5P/T0to2GQIGKJe/qrVZSSr7qRZSqrfTXVq32foGF5tLr9yaYAAGwgAYT2MKPjS0EXhQdlCy6BTwyzJMAXjLycWkDCwFKswggMOAAMMmMQqt1CYgcH0FAo4wITxe8iGwE3oIoJ2oAAwYWCt9nCwTuJUsDarA5QF4TnxlBsUHwBBoNAYf/dD0Zj1Vmom1U9qmSy0+k4uLcKlxGTF1tOJlbRAQGTDgqMjhc2kRDJoXNdDYyGMhDZzNDsMWigBEDyBMme0xhnGWe6ZGcPICxqblyWQEtD0BDuk1KRElFkwgPYggYCOI1tTWyl4jaDQrYS7b6PvizSe/WqszFpVTtBb45xwVNDkvFrhbcJu/wLatuhgQDQ9oqWvoAAAAA/sYQmsGM/TzAUE3x9MA5TCiIzK1HRU/8TPSNASrGFmg9OBnGb3YMXGQTjVC7DSUKYhSKHA14c0ZCr4ub/+6BEIA5kHh5M03nDGIBDybpvKWsPHHk2bWHw4fWPJqm84UyDUMCfUgOZjBFwgBdJiCa7AQuhVicykMHRYZjux8zUoncZZLH8nvEwjPQSFngU5dCgtaGGIw6XMmUbDUacqY1SEo/bvgAAAAD+yBHmDzOTsZOTejsyt9D4g2cYMeRhtfPIUzFB8w47MOTASEGHQAXQsCCQnzGA0eS87QiQAEHgUVNaBVY6KAA7tAaELqqjYUQVpac6lxnak5VJCBTVv+xRGwFA8GmegTCY5Ea4EPPcoIC1pJqXQ8XNGkbTEceqY1aUp/Zv9kEDKlVETgDkgCB6cSMRUiBqbFubd+IKx4ZYdZMWKCHBkRpqihxwJjCqrEy1BlMFMAIBSDzB7E+X5aQF3DAmzt0TuWHdVLSDDAFrRa+V3wLTE8XECE9bka0HZE6QCFCccGXqFROZrOl13DV9rKaIEeyKPLo9ytCqVYAexhoZghGYeFmXCJz7UYAVCFuBKuIFg3vJP/eyZgPJIASmE6aBJs+Ar07WFcjBA5JFxoBYcRPLnAhAOoqcOYyo1vIhhCmHBlWhrGWEZZA0rUDZr8fZda/9443H/kUAtBs9AECZKNI1iwjNVHFruGL7WUUQHbF3FU+5WlVK6oAAAf2QZEICZibiI9NYgThmc4YCMaHREfAy7AxSZKGmlHpjg2HFK6TRQAr/+6BEFYZz1R7Nu3h7WHrjybpvWEUQFHs1TW8oIfOPZpW9ZKSGpJ5loSKAk1hSrBAlLozPZSqFn6qy0liBAxlhhGW8UhLH2LpM9ZRWfwJFj78+Ib43x9szh+IAoSZkbVqCCCYAFRwkHtFZSF2K9bdX3e+zRAAAAAH9kEaZ6wcwAhNsoTmkUGAp0bUEU5xHyeYuW2EyhgKY8GMEAMEuNHiQ2KMo+o3DKGVpjNdVOwBHyhVE8w0JW8OGBoBag10Omne+tPKqWmyiL7f//z7kBrmSMZJY5QEo3U4exoiIDTQQICofFlNnirXt8V7fR6K++AD2MKkAAQ4C0xYYZiGrHmwegb2dJAegCYRTGqhhn0A0Q1jyMYQjhNIhKFkw583BRtIRFqgBDiecDLRnYfEgUJAGaYAIwTBIMAFdKP0DOTD0FQHavylqH5fjqtjDbG5mTf5wqtYuF1rXU01B+eEaSg8TLEhWWYymYW5oS9LkqZXKwRAUDgC9mEFhUeDi0A590/ccwT45R89Wg9LU8rQHITQnUwEJxi85vwOOPDMCDFVIDrChqKRa5K2pIx40PKBRY8YMFHEMgULBJrrrf9kEpeXt6JY/r9/Wuu1AbDb3+dLLiEIqUqNYbg1PCIwXHidYmKy7WUzQx7R3oelbK5WAAAH9gC6SwSGTrBlBYYNBmpkh5CuaQonrGnk7GIX/+6BEDwZDxh7NO3rByHQj2bdvDWsPHLc3TWFPIfSPJum8JeSgUOBMxiGYuXMskVhHTxnEQINmpDQekWDkjKx0A4xExIOauGUwWKLPSMBC2yAd4tdSyec5OVWJmNLnHWrf/5fhlKXpzov9IArVHsBh5AMlGMn3zCssvxQzFBEiAAAH9gDukAEYmSAI8MChTaToyI7OUgCwJGuDBiDQY0VGuHpCPgkYJ4DQRPJwWBXwYXLXOGNGQiITlpv3IecovEJTBwAWhgQyF/AYBnr8yNgi/KczMil+kPwdRilA/9AFqHxjBM4gHyjGTrphTpRfixiKiBMAHsgcpbBIwBaUwiIGoD8FDHWTo+z9bjX1jDWTAkjG3QksZQSCWCqCl5pOTka4X4WqGQTCQwXdCLtK3ECnSyS3Ejlmw4o8py45Aq2HIcIwqFCFL5UfwnEYU5v9c21n7+yHvLSEXeZWGB8dWDx/tdRPTuUvF+KjHvcnAACD/WBL4iADFFgOmQIvAEOM7DSH9ONpTOi85MoMKOQcvm3iojCDIBMwNAMVIEU0U0gXFM3TAwCXIjAw5eyBq9KqoQAGoEhS/gFMZQpvKGZRJdEpULRmlmP/6hKwTCrXKTrjFOND9T1kUOExpqWRIBupO8vL84hbNZIglF2AAAH9jCOQsMGAiJsQOTMBjCAcEYhtWYYJmEXQWZzcxA7/+6BEEIdT3h5NO3hLyIJDyaprmScPnLM0DeVPIi2XZqnMteQ+mShBy2YQMGAo5ADmcCXq2QAUdSH1R6CPkjiJco5WYipu2inCUCwRLyPPM+kSQ1R/esjRIWf/+EuKgbOt9Dws8VLCr2mErhpIAbDBTumWdB8gMssQmKxep12uAAAAAP7GCyRnARsa55BBukZMCMAlM3G0jBBnMQ0owEhzFJXMLKxL4xGNwTSOvnmenUZ0apizBUBBoSbhE2CKGnxSdrIcw6UiNS0TuBQIcDDqABN5oSGDPHqjEUv/////uC2qsCz6XBBwupj2GUrhlIHbDBTumGdDiY+2xCIpF63XaoMEAcAJc0QoMBKTIGEz89NqNjMXsyMfOeNTq4oMSBARmirgXNw53GIAa4bobaqqhoHJaGoAIQQVWRBkwuHsWNuMmRsJ0DRAFha2Xpa4g4o8xEIiD8hKH+iSgHArE3+yrddaX0XYuA2lgO8BnklXriUHk0MSlDAJIiqz32MVgABh3QMJEYwMrTLg4Ag8M8IkyUWQWOTKZhM+tczkhzBpcMRokKDcKDYwGNTEZKM/Bw/FDaTLRC1pgEmUwqmIDRGQPdy3KnYWPnnUWagwKbBSxlhHIQguoIhZEh1kOcBXjgX458wUakcEhb/dSrK1Vnm1q3sgo6UAQ4AnEF3riIGU0NSlECSSln/sYpX/+6BkAA3TiR5OU3k7WG3jybdrJ2sMlHc4beTtYagPJs2sHeTAAAAGP7YAglAJcYGNnOC4onm3N5h6eRK4Z0mw1RpSAa40gAzAWgX7EQR+HhjqlZxloAUTRYcHRLdZsKGp1sVv7dAlaRYCEC+jiBAjps+SZf9WJkScoljUef5qBYAgIm+u6xaY6LuEIt1ntVnXWurq9MAACP7IHyUdCwox4kygoOtiJec8inKbO6Y56dIybK6YV8FR4w0PhGIeHUHIegaOkPqQmiyKda+l6JmX6chAFqgNiXGTshsLlA4ZM5qMSLxqPRMTlHO/UVgeN267WE3WOlwnoOHaL5rb1U/u9vTqAQ4kBGAiIcGGEIJjAKYqIkCUYPDiMAMYpTbCkgHgE0mgGhjYaCjgkYyJEzwwVB5kT0IrhQgVJRAVWhyWzBUDQpJhAx9cNSCyI1S9CS/qaqfUeER/9TgEgf7q97ltHWsMEKSdPGAA+UxQYEFohIeDTRqAImlMeDMCWOAsBMkxrQ2bYyBEGIxKkFwacbEiAqXrjpUsWLysuRPXDSzCWoMWKUTpDIDhx05M4xLV/FEm04RY4kV/wNBEl6R9LT4ZXGlKTA9zOK+7Y3uTZVXrr7y6gAAAAABH9oAsHEQqYcnmampoMKZMOHNh54JuL0Jhk8c52GWn5gpKYq5F9TalCxgOzBVZuNrJXYP/+6BkHARTjx3Oa3k7WGxjubprCnkPYHc27XNIIZqPJvWsNhzUFgUiLDmQJIHPSGYkMlAT6CYQoK2voXpIgo4sCTFpfryS5GF/4XACAc/0dEkxx1A7au/TvG921U7RAAAAAH9kEO5L3MGGMEaHlxvwByYJjQJqV6CAIdmQIlDYxxsDRhksnAEfCugYgGJVAtA5vTpHlDy7FJApVcKnGxQyCoDxE6EVV2Bhk4YZV+GMGhp/+xUFPx826wrJ0j3OaNpp1Id92n4v2XX7oAEP7IHxKpweMmOZG4Zha4QNTIGgmketqZVoZm0JGDfHXYmSDC2EGnzngAEJMSHFQwEEsmUPMMDBwY0JIrTyyaf9fIjClgSGJE0gCQe9MtIVHley7GQNipL/P////+CW0sO9DTp6cO2Jm075cRk4oqh17suvPJJJfYb6zAAAGP9cEIyh4ZkqDTwGBGmRGaZmsIHqAmIumzNmeHmMQo8FUK2hgRy7wMiB0BN9kQVeBDmfprJT0ENovJ7BRbglrDdsrsk8kkqs9INRJxpJOY1f+YB7Dib6NbqWBeOWx1Nuj/kfGcAAAAI/tAa6Cg4zNBMYPDIloaajDIA3hjNjNzDkAy1oMAAz3xJhyNAeCEPQNPREUmaSTI58cFBJpfxGkHLRHb3MrailiiuvgeEcBk8RYayRUEUaaOJ/2EkCvllvG7f/+4BkLwZTPh5OU3k66GPDucNnCnkNhHk27eVvIYgPJymsHTygv2ddrR6/qW2gBD+2DCSTiHEuikEZ7x6nH0eDdzopOMwKDK+DzTHHNupKpeTK0qmPphKXrHT7Dmg5SSEvfp0kqgNgdK8BnKhkmI8cSUmp9esOkBT76GAYCy7veXQKedvQKt19NiP/LV7F0zduqDSAOyIw8ZVB0jBSIDuwwg0MKbTCQc4hnMW5TXjQxQ7FGo1lBMLEDA0MAiiB6u1NQqGEOv6ApDPHEKiARlElig6SJjCEVg40QWnAX7M2drdfiOtQXoxnf6N+RAGhqZ1lLlXv+2Xs1eldPnNgtwAAR6BF4xQMLGB5+hoXeBg07o8xDIJ2FoAWRusRoHonkod9WlSIAGslN5vVPhBDMIDrTfqxSH0EabhneDjA4h0G/Sh0Ct+wtDF/DEbxS+JgCQDCHpQUZTHlhA64TpTpnFSCwAAABD+2BGEEJxElM//7oGQGhEOVHk5TXMIYccPJumsNeQ+AeTdN4RDhuQ8nKawh5LBEHUzA4BbzXGiRufzAYXhRlIBg4WmPxsMiBPkCFLgqXAggISCBrACFA8gHCC9gc1W1h8vUNFyCKo+CMIyg5Slq+2gRYWG0mHcu///9bv/G2bPde+hDfVaYvJet6a0/3LYu3u6vRIAAAAH9gGKqwjRByk2YEcUGYqGxEmdMGIumCbmIGGstGXmmJSGCBmgVr3Aa1mgVpacFPXi94RMGIKDGMCpHVaYD1FnFgUAJCwLuMY051eyEs63NqDo/H56JSBLArZryi9tCKDCbksPlj67V71PXlqdlMAAEH9kCdJKSkRABQI7YLN5pDGjU4nCN+mzaNQ6qBN9ODThs3NUMyByoSI6AQkA0AYORmDgaPJjaFBhtgfgwnLBkVwsCRx4iMDmwaRfEZwrBB12ZDNqwqbxc9yf6AZD4ZAiJX+OeI5eLDLVuQvZW1aGvzDEpJsEFDv168bAAAx/hBUZQDUQCGGUeGpNmVlDKk2Ag9is2BwARzINgFnGhJnyoCQiUYFKHYlk1AlsKZF0QYB8XSDqJbxgYYX/EbgSECJdwGhXiueBcWJvA0E4an+ShbCGANIndoDJ9abHe9s8q7POas4d//+hXXcAAAAA/sgBoCoUIIgIPjD8wy4lEYeY/8nmOp8Iof2NGaApgR//7oGQSBkPQHk3TeVvIb0O5ymsPdw60eTmt8yghkA9naawdrOegQhlIEFRp42KKRsLqcIADEaLOJfGGGFSDL1Hkw4pmb8o7jzxqpiWo0eXPHtFMX8kNyaf91zdv/3azxsAZBAM/jiZBXXZuRGUeNY9mdagLrTFv9DORgAAABj/WCQwwVE6QhoyoNVnKEEAUgZnuemMKkSswiIFrjKgjRHjhCTHiX8L2FsnLAgEAC/SBJs6dCA5K8sBGJSAGSDCFwxLhQiAHNFqKgnj91Gm//kmeXjmIdzPGCnGJ7/KOkDau7pUx9TP/YpljIAAPrAu8RCRjNYacUhYMMiHR6vOKXzfRIxgwOZNEwMMgduZCrNCJ4ffAqY82OjgwElFFo38XciqZj5WC/yKL/pkvelC2jvGmEYIyfEOSbNrzyyLHP///mPo8YecZ/LD/1MRGHlGgsw4A1dK5FfyO5Oarr+KW2MAAIf2gV3fAC8LmQs1B0k5c43esaxEC4xbQO0mJDnBFhwkiyaDsiBwC6oQEMODGiEKsQZB/xNhQNHqimSwY0DgZoReVZpKBpk7NL7cCRKnxXHhqNgiACFv/V7U6nVL+j8c2HiKAAAAAP7YFMgARGSBxzAMZGgmRoQQ6mUDRrIMLVplNocargoOAwKOhg0fmGEARQH8YOm2pxAlIZ0iTAggR8s8/xZ9ccIOZif/7kGQjjWO6Hk5TeFvIZOPJ2mcPdw8AeThtc0ThnI8nDay9rISmJKxDmreGNfflWaUUrFrGf7mHFCUDwIZZ9aQHqDFwoNUFTe9rnVKvTqaM/xb/ajAAAAAP9AIGRfL1EAaT4xCZ44eqhicm4e8iwfqocmGfIbHeIZMCYLPA7UjISozmUAOUqVTdeBciKOkl6XjZkAxo4A4wWho6hmGTSZ3H//8GdjgPydE1r1V/Vtc02lRlJPa1fT/0AEceEhcUYMMf48cw0BrRm8KGhQ2Y1G5iIomzIyaDCJs8nAxEmICAEDAaSN28NSSCwI2AEEjy0o8NBIYoUnEQA4KmCnsp9VBVMvUYMKkMYIgZciLBGSfQF/SgJIqGf7//+dnsQiqvNUXoY4qhSdTFXNVpoLVWu6LV+0DrdRCJAoNYAQ2geQGkACPG6JmTOGoCGKnhKgSZs5HDjiVT3ATgQogqh4g+KhmsGETD1xQGqOQxYZSBoKfIcWY+QClROk1q6yEGiKQWqf/+m04plK0Don6brq7Ncah+8lWbSvZ5auqAAAAAAAfyQP/7oGQEBmPEHk5rHMjIcUO5zW8rXQ7gdzlN6e0huI7nKZ3kpEtwYw6PAbDEpLNHnIxGODBioMPF8y+GjRcuM+hgxkEzI5JAwrNYcyhhO80jkAaOYKSFRg4AsBmOEus1T0+oAl0iJwxCELIo5hwAFOU1g/GswYVAWu0zff//u8oI48Usfqd6VCtWowiiTd+7/7/6+764gAAAAAB/YAvpKsvSDicsDRhSsaWKgQZQlmhGZgEwbEPDzRukKMAIMsACTgZCjmXnMNQwxBpAWHBsZgFmgEPBA4dv7IXAOWseXM1QO2YepwRD9qP6iChACc6v9SyekcEhC/T7exiWUBIypcZsPOpR16cAPZACk8RDyDISUFgmNfFDlgEyUeNsZjKks0s8AHIdwcGCnhqzE0QIijtc9woaIgIqAn6wZh3YCGAo2RFDggmuAQaxZQ0eIGCAhFgxh4CFAUYAWBwrICEFcSIjMb///w3MsCIR7fqXHsHMeD6VenfbMK/ubb//pwA9EDTYBFHAEOCqjWwMNjjATIZDjgQoy9bNFISdJMrKDHUoMBgCqAwyBRqdxoHCMcGEggceGL4nfygoLAARiBqFDZPINTQfHlw0AxgWuZ3H/TgVIv+xz//+/M2KR25N98z9cXcNEvsbqt//+2/dgAAAAAAH+sABDzYzGZrNdAcHCoxqKTRQxMRHsx1AjP/7oGQPh2Q8Hs5rm8o4bEPJw28vaw4QeTsNcyahsA8m3Z3k3PRbPSPTB50Co5zE2aa2GPDBh5qcMZBF6Dg8xMoBg8ZIIMBNoczXjo1PkYSRC6i4oyKimqOA5SwgOMA0dtVYa02leqoo02aRZ9///Gkiepe/8j/03qVnoDQhLRWmr7u+aJzzLPirVxaioAD8UD4ohOLhmKCCuB6AEQeYSIHMmCEwyYaIC40QNMaFQUaGWn74pMx1RwYu24pnvGSov8wCQamVqLAPYyMgGHiAF2Ym5sjDzkPv/YiaM5dVwBGp77//6kbWdfQy30FgkhKCqsYfOf/149FWTgAJgIJJhTCZyWaEYc2mb5WbFsAhwapLZmllHHxsYXF5l0bgoTmCcY5AdsHcpGggkDXjjZIKdYIJADuyJuG0GqR3CyCRpkIg1gQnj2aSMVtTKwqey+IE1h3///ziNaAKeT9bbCjn3f5CgrZ3etbepfpg9gEibgiap9C089ztFFFgFBD3oYeXGqTYOBDMwcFCpihaaIFmXl6dBEgRHGQGPEmEEcghjGml6AqyINX7+rHVnqmeAOhDxZYhApzjcsperXUXiF6Md///79DSP4l9IPqXWYcq1rm3Nkr3fspVgAAAAD+xhBcdDwQlhxSa6IGbzpgAsYkHgwiP6YjmaM5lSLxHRln1onpHGAvmTJqwMLTyB//7oEQaBsQqHk1TesqYgcWZo28teQ9ceTZt6ypiCpimzcy15DoBocQIMMsE58wQ0W1XpK2XlugAAOAlh82wxJteCcFeVJ6oQwcqepBVj///syl/4KZ9OP1CAXU4UWUcUG0MPuQgLj1GTDz6Bbehx1RLTs2d2sAD+xhg5CHlhHEiw2VIM2HTFXg+J9OjLjXhMDfxltgZinGtvZoa+EZ5o4aERw0sjykkfppkjiEkQOAowmBNSIwAiJBgBZxEw31DRVQXS4Z+BSWBSyA1UmAuSOYvv/NE3MxTb9a0VKqepOui+i6z8YWTcVJNJGjBeptE2VcKGfXr6ez2gOQSBZmLeYSRmcKZm02csWmOKZmEOfevHPURjy6amUaKyes6bFUIAB506oiCAVaM94YoM2sLBFVM6FRik5A3gctb44SniTcB1RiRmCol0lBZ4WAC3KXa5MonZ///8o5clDzyZ+hSXB6IUqaOqFjg/epy1adzJJTmY9YFH9oEBDARMalUhDZh4kmKFGZGMZmdGgkQnHz4AoYZcUpjAPmiEGZ3AZg8AmOR+YOI41cX5G1xjYmqXUfxA0+HIgtIFGK7aI086SxhRo7CBAWdxoABQXpdAoQFJuqJcXxlmf0SYo4CsCKb9+7U31J2rVdU7WtaMxVvW5a9G5kip7cctcAAAAA+sADg0Gg5pTCDyI2aYNBBjf/7oGQKjnO6Hk3TeVvIfoPJumd5KQ8oeTZt5S8hro9nIbzhjHpUyy8NRwj7L48tZBh2c1mmSupp4SOihZ4e/DjCZEYrRAQsECqwOcKFkAhznw0l9IU9yIAwRguoY7wNHM41Q2HLsEL/QAFrAcmRS//8lHycHo95Rq4so5osXNoTuw6S/s678AAAAA/sgmBGGPOkUQ7AZ7R2RaBUNbxusIbUgmNgxiYsYqUFQULUiJOIEAH9FpS7hCCZEhihnMwIThHGbYxhjOmvlQwhGMMhB4RElxAghItVsOQalSvRnDNJZM5////3JHaWBirO5yhZSRVplZSeXTJuDI9hByXJvNfvGfRsu9gBiYmDiccMTZwM496NBlzZUA+99NciztLM0vjGTww9ON8ojhyww4PESQZe+GAweLQAGNxgwJjRcI5DEgMN80SYep2CtMHlC8hqNJ1Dy5niJWRfB3FUVMIdHVCj///zrAyFM+Bo96hdw4YcNq4EH0sMEFXurYgh4sqACDaVpr0A0fMJEjQUsFLJhBoYClGbFRhJQcE8mGhxhASgMMdY1fzPiBW5iQFxgRYYohLG/ARIl8kALTZ6NINNGfiSjG89EWKJcLw08DNdFSi3IpL6l////+5yhZ7b5xFaeRu6PR/V//2ez1KAAAH9jBECgoATDqfFk6Y8KZgeMmx0MZAFZtccmMAia//7sEQQDuRZME07mVPIhybZunMnaw9BCTZt5O1h7w8mjby1rFqRjVfG6xkbNURlUDGCC4YsKhjIMHI6URAIc43SkMxHDGPawaywsujcJHMCGgUJgyUFuS6YIMKFkSCsCF0CAYgEJRQgH4+f8w4QA2E9v7TnWzTnNMPszK5ZiA18uEFq0JX2Cgo/irlx39P3YAAAAB/ZANCIwAETGbFBQ5MIEUGKcwUHDQBtMeo8yuYzLF4MFGoW0ZplrGIxEZoYBFPGk0CRYw5UjHQIYBGQeKZoxAkwbUYOtN3QCkAwWSIDwiAFfGCsLNKD1GX+6qP46LT/5qjwBIIP/eeyWd3ZDD7M6vdj2lShq0r9ijm6li6esnOIb/f6PZAmAIA8yVnMiLzG1wFPJgCIZHKGXL5rzOEOZvziI6AxIVGnEG2lBpkjCVYsMTZDNyGCAwlQBB4pQEMuCIQJGxRQUDQJBoqigI0i9ielyZVkSiTKCQl/43Fgu/rnsY6Iy+17lqqbaZe6efpc+jHKze/VlKs+H/9+bZq9jBawkLwQ6mdJoBjhYAMJXjO5Iw/DGSU3q2P4NzARo1FFNwMhsYQ0mloQ0nACa44RcIbDRqJWidNCUTes3JEVjgx4yDTJSEBYKPCJgsACkmUU7SiQAElMmHYPE//3FMbeqHgyLj9z3LESCyUslbB6wERfRUMS+Gf92YbrgAAAAH+yAFDhiAwTRBroGHEwVZDNSg01MCpaaA6G7DQrSjqyZJMGqHaZYNEggFD8jMXcU2ghFkNSiQSHI00h4gt6j+qZD5OoRhgwUeEV4NOrASWKVYNXwgJdicw/////92H6PdAG//uQRDMAA9MdzdVvIAh248m3reQBDVBxPnm9AAHpEmbPOaAAZAK0RztWo/c1OUa/svtnB7P9vYLQAAA/sAQoMCIhY9B32YiNGHERhjQac0GxHpkn0cA1mKpBg7WY0xEScYQIA5pMIDC26AIFpG4er+Gxw4IUYCTKMTHBn+WorsEEEgZcN+i7aVzRIcXqspJtTqVxe///////Qv7O/HioRnW3Gq0J3SDNyXM8DgLdct1ccAAAAAACgxmpSCScxszHB84ULA8CZKimDHxmCAeIummyRmZoZuFGgEKVJqjSCoA48wzAcDDDGBQSLQhLvlBFtQCeIirnmKFAI6iOi205q0EKHpLy2GQsAfSD3+c3/1SqnnuVnWYNKv+5gfcAAAAAAlIhpMpGCQSZ1AEHGxXIbWk5ihmmfTkZ1U50qYmp50ZkBBIKDNiiMyFQ7oRzUAjOHMNDJJiYIBG9SmJLmxbh6FuIUEhJVTQBRApDRaK1asDNFhTEHUiHJL7KAkBWyFgRMH7/vo1L/+bTP//pJz///z///6PAAAABP7AErgAHmtHx//ugRAaFU+wdzddvIAiAo8m97mQBDqR3N1W8gCHdC+bqt5AEvYcYOfmNgR/AeaMoGBwJgJADJs4eUMNIjjS00YGFWEwNFMaMQKQZy5cAHKtiG9hBIAtQAOcbZhhK9ccwzlWLIHxwG64YVCR4op66/qzx41wop3H////96e8BdThyb1smRGZaLFsMsdO3sRp0h1aFptgAAAAAAf9gBhMDDoyMrEozyDjIJVMbgcy2KDP4DMlhYzCljAx7MkpI5GnTAxUMBjIwqKQYAzDZpCLgdAbQQLSZODaBDUcgZEWa5iDqayFShxEaoqeYipTpDhhQ5iMij0PDASN4se/2Xf////13Gyd1uF5KpPRahA+8iukVCimfCEAAAfU1CokYy2GHNxmwmbCTm/PBkugcYKmKDYMmjVTk2vMNOODKAUxkMMkJwEmA5UyESLVR81UUVgiIMQLDRpCJFrUacDRg4xxAbcVVE9IfLmv/F5h2IcLUxtzLH/////rktP+w0NFFqzW5iKtDmBwON1qZUnAAAfq0mAlhj78Y0zGhQJmqWbRLGmzxqheZSnBEuFF8+wiByIYqFrAhhoa4SnVAIqQIqYDgKOHnx09yT0NATKsawDkCAJlZCSbAhnBA4ZIlYEIEjWMGrQCR2VSIMfLEmWPWvW9RQuh8S3jkMQTCj2gW+l4nGrj5OpwAEAEr4AAA//ugRAQAAwIc0lZrAABXI4q9zWAAD5B3Nn28gCIbDCXPu6AEAAAAFfEKogDhZ6KNxVWLUTp1zlJTEHTGHD7hzSiyzwCGgxWUKAckLPQSlM3wOmjg4KhDwglbTn6T4Wu/iu2JTz5hYL7Tr+KoM9hKsw8Dn/aFQ02P2ShV++3ooAEEDY3XgAAAAAABGswSQRGTDMyGedYODogluGloEHgA8DvSYycgiDoikIRtHLn+uQ57WFPMv0y2B5WAHoBIJHAKX3YjBEQ7MqpNk1abN//7UP//ZqAL/Yw00YBTKW8043NAQTKsU9Q8MyGDMCQUZzTi0zmYErUyIuB04Yk2jyEZoTDgxmvGyEShgkkepNSMV1UsNU8DTKTf9I8DFBQIErJzrOBo7gLEnqB+lADMEHQn+nvx////3jS/Hl1kjJsUF0IWo2YdtuFKGo36wjLxrv8eAPq0AiiMA6YcnSZfD6Y+DODj9M4DqMTg3AhUGK0UmcBmmlhhGfh8mMwFGYRVmHA9mAwZmNIdGWoHoDghcKoDPmhHEM3bQeM9AGSJuggKgjwpMMBygayNy9FSxnz40vMsWHismjrSRAOMuZHjL/4g15pNVAGBgeERZ8+sn3+faO23XJUfqY1NgAAP/IA4pgAaCGMyosNaFDUgsXjDqb0DIJtdkZ60GxxxhbQa88hBgSqnimbzRjEAHUwm//ugZBmOY6IYTTt50yhxowmja3lFDqxhNG3zROGwC+adreUUTPpBQQJeCwpMKYYcdgIHK2dKDISy/AEOHDnN0HQqG4FAq+/ctW8W2RPo6TybH6nvJy8g62pmG07kvfFtKkLMF3vAH/sYqRNgRiygiKGUugrYcAmcWCcMSQWwc8mKWIMXx6HNTWDFTMmEUNTVQDPjJBKBzLcEYAGhARQF2SNAAKpC5yFKGgcIUBiIgOCEaJfi9gz9MSMp6sUp2868bZsTQxwlV21qa0emfUkImD5H3J/Z5RWjAbGUDwVSz0RY61BMrKThxbDk6IxaaXHZ2kKmJCiLSgWmJiYxnADnbDmGmm0DmQYmIEkIoIPGGumXSmjeP+ZsYFTgCEDR4ChxwmRBjgswqVWeXfAINYkg7BSP77Ikxed8IXkUDhdoaUfJe9lnWYrw+l9/2tvg8gD8NYMsYEYwx48xPE4gAFAzEpQewOOlTU0UgKjBRxJ8ZRCEVBRQjybhw6wHRmqFLUhTrILXgX0WfX4gARyNIUcSOJk501SMwBw7FopnAIwcggYM6wf6rmil7kuTY17VvuQ+++5Hx2qxqkrVgAAPtGARAaOGFEoDj8GVAyhCTuQWMtkI08DDGRvORp81ACTiZ7M6JswApDAK9MHjkzSLQUkM2aPuJECMHOgxsPOzCWSk4IExoh5jBzkmBAma//ugRCiEZB0YTDuaw7iC5tmtbyJ7D80JM03hVGoOlKZdzQm0UIymTxGISIKmAo30unB2U6g8DnM1Gg0/tchSlppaMB0jygDUeDEedNKc6fS3fUHjQ5tkAAAAAAH/sAMpCi8ppDYa+QEV4ZBLmQJRs42RQps1Sa1EnWSJxLccqHmYNBp7iZEYmhjo0ay0xYhcGIJaEZI8mdX50RArUzHA4ohJGAgAeeGQgVDExkIWEW/jyVVxkhTYaGbTn////1v0JNo62Q5lbquzHVDSPup7tFuiXj9OJTZsXqgAAE+sAig6DmKRBmYkaejmG14wmA04NWEwKxnGFhnaeZgNms8poaeF4gyFoIE8xQSMDOTLkQKARjhC10aNDCQc0E+K0IxQzRXWqGGGDlxGXHw5KVM8I0tidrMIMDQMgDwAIoqGv+Z/pY/dX7r0vRrN17z+2v13t/NqUlc9eXcGjAjad4ILxkkNGSSKYgJZgk1GCAyZmG5nEUHBHuZ/FJo5EmhWSYxC53kRogYxHCAIyVMEGC5AAEiEKa0CMGwaiMXDCFSQw0QJAYAAgiMNOTNJg6MaA0CQDXb9SAA4GMgVyrUfWkxw5//QlUkJWtzbI3cRtcRS+y87crFbnc+wg9wYIJWAAAAAv7IHBU3EEAaiGGOSAUnTFCgwdzLIG0JpqH0THh7sOHpoCrjQG8zucHrk//ugRBcN09kdzdN6U8iF40m6b5pDDsh5Nm5rKmG4jSbNvLHkyog0Y8HSDOAwMWHAYGzg4+hKNDMATQte6K5h4MVA6KoRUHE7jmcBLlt+o0qoPBw0BtEW5RCT6Ev4vDplFkvW2tmXvCfQQz5kv//oNrbAAAAA39kCuUAYUkDiRo1pMM5lz7hU05rMDCzZjkG0AyAFzm4yMEI0wIDjPwQtyBLEyZUqCR4qFzYoWBpUEygEEBSU2ighDhzRdJUBg5kXGAQdAKYEWEKFyIVYdn1gwgIlUrAq+H8aaQdV1Kgm6deYHNaLuj2MMJARcuh7ntyw6fPj1XdH6wAOxBqBg04BhmMqgIwk+TSw6MXi0weHTLApMNQsyMXTwHj1ljukj+2jgqQr1CqxnkFVA21jFCLghgg5SIBhwMW5TCcFKUAAvaShCqYoSsGGVA4C/7Rmlg5RlbSX9sUEsu////0f/Hxbu9ah7Ng0zCpzpU2kO0KAH72MdMDjCJSOVMDMIUdHTCgsKCZI2mDRJjE2eAgmrrRl6EyYxJFMzJDbQIRjDDK4wu0mADIU0xRUk2RuSOYsmSDoQpGDigRAt1WBIYHD51Y0w4KEgoJRKJr5UW7zn2s7GuAElc9X0v2ocllz/UqAAAAAP7IIPTgBQsZ8EGSJpihqZBMgI5MNIDDw4xayIoI+Qkzw85aM2zMw08zc//ugRBcMQ+gdzdN6yph8A0mqb1lTDvh3NnW9ACHbDWbet5AEwgRWkDEBwYEFmCENVGGQYIQEvCCVL39RVQBjoYOjDj0HQdklYibzCVNyMINrKKz+XZJFZP////LPWTYasetcVND6nr0IaxHObyRr2vTRl8AAAAH/sYgYxAAMhFBo2NmgzSQ84J7NkDgIfm8jh0IIaWRH3zFhuZuCYGIYj2apycJBxAlqyUYhYOEUzyAQGYAgExDj1etpKTBTQ1NBdL8MIDiQ4EHBW7jQWfDSTbQPArpUkto5dKxGOK7XrWL80hhStWS0VrXz+6z+r+kAL6wBCeYiNmAxJFXmnpYWKTISQwxANFdzsGAmszMtgxoTIqULBxlhMFxowUHOWTEnJewaVJrGUMBUAY8GJFjRpwiOgpRoMIWsIlhqQ5ihjtBC5ByHJRVaRFVgFL4rIpJI5rDn/36/lnVJV79lDmsbe17/Y6Dz1FIAAfrAFUzAwcwmXMZOjWTMdKTizQ1MjM/PzvBY3gONkMjmn8xBOMYDjGEEyMiMcHRT4ADhigdQIijsFCxlMDyGumMoOEv+/6QiAY3ETROCU0Ja8l1xu07z+uW/rdHUieL/P5w4GPlhYhSSV6kRRSWASES66VfQuo8wQAKiAxf8AAAAAAACWsAzkibJhSs1ZzJxNi5R0dIASRZ1BhOpL1Ncv+yh//uQRBYAAqodVm5nAAJi47pKzWAADkh3Nv28gCHkDWbPuZAEQt9yBQ8jjPrMGZSGT8dmD7LkV5BqAovzsDRKniEFQHh+m5U/623kT0UDACAADs4AAAAAAAIT4gHkpsx44QTTPrwrlFMgqZMrsNiYBv8J1GVKGhAGJEAKK4rQ0Qg5a+k1kTmkOW09CUHCcNq7An0UPeOT3InC8403AeDGWIqhaO8vPa5GYp3x5xgC/tJAAAH+wBqRggiBVMfFgQKGcHhzBaaPKkTSCCMzt7GCM0MiQQjQIccSGLjQ4SQ8FCWFmGQYqiKRZMHVqohbJGJ+FGEjxElFDAZHtFrImgJgaCyzeqhwe1pT7LWf6LSypcv5XdUvyI2et06gCL73GJvbss0AC/2AOcYAA4VH5lUNGHiAY0A5hQ+mK0CYvKpjIwme3qYpeByAIGFTWFxyieIR6KEwjDELI0C/oVKcQwxkHQqGDFDtER+JgX2M8QGjAwUBXpvpeg4lyJFLo9IXSduZXfHH8XjRyk8CqP2P0lRQADVBU3yVrlCIUv+tFYAABf2A//ugZAKEQ74dzbt5fDh0o7m6b1lTELh3N03zKOHUjWbpneSkNwBAkZVWnTmxlJUZonGOroLRzD08x4rM5DzBJM+OLMRTgdKm9gZjQ4d0gGjiQMFEeE0jcCNpsxwgSoMBnJkOHKGrrlLxIhFgwBaq8biTDp2yPUtjaYK2bqjTI4URFZvvz7n/FlWuZiioslCePo891h+drYAAAAL+yCOxYygtBQsCA8rBzdBkGH5jColgYcyHWBhp8ZhzxjA5q45k2oKNGSGFmzFNHpk1TWTGBGxjBAaM8pqCSCIN3T1BgjUwhVu5f1Uk7ZnWsNMUtf2dkEhhL2Vu9+1lf8J8rU8xsZ13JoM3+nPy39e9eAAAH9kCPJMFmM44YzmW0ZjwQfWnHSAxtZ+cMQmSpgbtGRrhMGZ2gYyF491TFYdM1EE1qGzDApThUkFkxo8WLAboimTXLJhYArHQvYOASwqWLOmEbDAOSbu9+ptprQ49HJDF3KlE/S0XfvVMvDetQjYne8qofv4VJ7HzjVsSrU7PRbklNvXgAAB/YxJWBmOcbg5vIBSw0kzOHKx7iFCkFmRhEEbrGmUoYyCGHtBKRi2iOtj4hqjmESWHxaooIMIoFJhHB2RmgCv1IKWqWJYBSgerSvCBguVAmGTNnekyxU9px/rMhfxKC3si9lrLWJcPvIHEtRl29WzJf/oVwAAA//uwRAGGREEdzVNc0TiHg6mqa5kpEAB3NUzvJSISDuadrmSkAD+xgtaOETcczTyjpWzhsDW4iDkSaKBRpwBAKkHNSWHGAmgpjklGlQmLIGLGnTDmIECgkiaJiCIoOABqiZMQZ+ICz8BMMHgDLBCHMIUGjJYEysHAS0DyZVZhplJSqlVLQtOfualP6zpb3iCXDAMiqAE84x+Qaoy97lvae9cgTYx3+vXcpMAAAAA/2MJWipczns6sI9Uk5YUycuDL4VM/Lcy2IjAI+P4m00mKjPhwCAkZJAhgAlGZxGbCwgAGuQQobMqwKthEYDkwjgkKlz7RMCADoJnRGEqukGLjQBYdJi8biwVqndiGVcxGBKa7j+8LL+s9CoaCjQOHyoonWMkTaUSayn2qGj1J/7dibXQAeyBiIhDC75xzEooFmAqUaCLmmkhisQRFR3oqcKjm6GpqwMYyDGYoJpwcexIjLQiI4At0MQkNBxDms4MHpwIGo7ixZfdB9K41DHdPoBRYiHbWftsxiO5c77UJHA7vRXDDnyf/PTKBgxhYwBxRgLJZP21dLtT6wa5HsI0HRSP4pAAB/ZA+INIgDCcE8aeCYcWYDDh19BGc1KcLGxoEJHBzMY3TpnIcjgUMemswWGjBRJMqULJk0APFLooliMccALSFDokqOlxOVhVAUOEijsnR2aYpYPGFZd6nYHT6l6hk5Eo9K4tfzz+j/z80l4xhYwGhaCxNk/ZX0O1PrBrke0hQdFY/iyqAAAH9gDXQuGTAw9QkGWjSZEWhkdSG/IOZ/PR0NTHMpJoBSYitGGkoMFzZ6xehIJm7EhhwMZcBjwmfJ5n/+6BkHg5D9h1OO5vKOHgDicpneTcQdHc2bm8q4i6Opg3N6OzBD0wCQBxZ9jhcxoqHYOMUXDAgViYxIiaUwCw6qjT56WKdU+c/A7+uLItVYvz9yz8fbDa3ixdV50VsYlF98500oK5CAAAABP9YKzFgZUaQwJUMT49NTNMOBXRKAMOSzSDc3cwApGNUpzqaQjRlI0WhAgBR6nSYTICYV6WWM6EzoA44NEgR2QsArGvgYKDwQUgNUKpqWy7cu1UpYEllFAkYfmBNUiPnqVo0uu9CMYNWUPi0f0k6uptrt7+v2MPqMAFeBsoLGTi+VGEY/b5owEmTbaaEYBNvziQUMykwweBb6cAnnXFpkQmb7HmAngNGC3hIgmPgZh6OYAHg+UG3A2kLqEwxdwxpCywOtEJ5MeEHhh48a52EWZjfo4ZWRDyk0wIvJYY1zV3/QCVwq1ceRuwNSyG5VCwJ1LVYkl9fu31gD7NoZrAjggBTDMKgceLZq9YHCBcZ+CGf1RuSeekyGRHxk4KbkLmzApl6oZe+G6pooHmOoKLBkSIY2IAGsGT8lAH5oGkOlheFxpow5hVRhBBhFRlAB7CRg1I9GM0raHGIfdOLPJTN3W7VWmzkqjZupLHuu0jBRby+JCJGdt7npY9CGXSH3V/5zUdvmsAAAAE/sAMCAQwMAAoLTNAHCw0IA+ZeUphqFGH/+6BEDgAEFB1OVXMgCIHjqbqt6AEOQHdPWc0CQfgPKbc5skCgyYsNBpctGiTWY8QhgQimUxoZsIJiAVhBKNp4z2zcLQFhRM4YjHjNw9Fc1DzJyGi03hYQgEV8YzBgNBMqao6MLGIS4Eksnh+N+4KjT/LAT7E2aW6X6b+1s89JW883jnJzTiX1zNTsAAAAE/sYAwQ2gygnJHIyMiy4bPVmnTBh9OQNRwMAR5ZKnD3qZ23GUrJiQaY9QG4nGAcAY8EXjGWTQoR6uODE1IbBg8SUhAVuBAMTTN2YC8E4rcxw0IMkI9x77oxfUDXlcuE/5EHh5YklwtfTfkkFEDsdncu95umLXH32ruW64uK9yQAEEAFSH4AAAAACfxgwQgUGGPkksABSOYODRhgLGXEYYwUglSjDgDMViMMFBpAdLiOPAUw6ZkrR4MIxxgyoHhwIgDV215kJNHRSM2FIry22hymdviMSVnIBtAwmGMGhO40qtZ7xh1O6MU3POIv2HWadAEAAAAAAAZf/AAAAAAC7zJSNMCh0ysmBAITEhINLD44YcDNDAADMMaiUQlQw2GgYGRg6GPRGFA0AQUcAegpANEFTQydeoYAmMiokzBgyLBYNB0ATSplWYLBxo4Y06suUmR2a0wwCBAHnOOU/r34ZusFwCVSuYdMlB0hm2qvzNcAAAAA/sYBQeMCjAUH/+7BkBo50lB1N13NgCIlDubrt6AEQJHc4bmsOofKPJxGt6YQBpgNmPhya9KxhK1Gg0iC4iPE460ZDf7PNWt8x+STQJWOFCEzYZjcLKM7rAVdCIRckyoBGhUBHxnIyLBRggyYKLmakZbAaRgCLmFhpmBMFwASKgCGkIYKAhgIIqxE+HYxYiTUFJyks4pCJTlb9VD39sWGhwJJNrNuIipeKCkzcU7HxR3/+vAAAAAP7GEwkJwUFAMdmDI5p4AZVhhwKHS5ig2FhYzB+B0EAB42fDO6ojI1Q2eXPGkNsGCFhlEgJPmUTBHwGtzEoTYEGFmwGCSoLATNBiaCdkaZdGZZKY4SCnxlQ5gQSMMTfjdDq5E0QgaPfRJpGqls9r4/EinmSd/RPo4aUP4GKOrPIpcytEtQj2QL4EYDSpEkuYFDRjkaELxMLT84eQjo6kNpUQxvBjh4pEYZNAKM0e+wEPgonjYzzhHjakgcvAS1QMx7ECBlUTUolBhIqZcOMPD4Hf5nmLlfNurOAURMZKFSh7605XIhxhRgY6uClgTX/QTnpetSa7W1JTelefE7q19q0b93+7LORGABeGEgVWA6WIDRnVZ1/xlOhoqgNonLKGhtHDanAiDMo1eXMpOAKTla1AeasgTRTBlh0gbYQ4RkxJmxAIKExoSQGrIB05iYNBmqtk18w5oaUmIMIbIwxiH8dTbQnYbouSRA0DA83/JLA/eq2hj4am1FB5FXRMdP1qYSsHqXAAAAAP7IGWjIGIFwbchCRmgIxxkyZW4nEmxwxcYWNjhOFRIzgfHEs2y4M9WwQDmZkDSjaVHYDxKNuo26TqHCBQv/7oGQghuQ7Hc5TedOofEO5ymd5KQ/4dztObych7g7mzZ3ojJWEHCSxjiMkQDGGBj5SeFB4wOQMHlzB2grBv5a5HVINLLeqryqDmzW+5yS772vSqLqoGjVJFE2z1Th0h01pNJsVY9j/Jbm4AAAAB/YBHxkBxwMYIewRKb8KmOnJ9zWaOVmAG5hxgb+bg4zNHRjidgwcsISk0yUrwQKLHiq4DfCMQo8FCTCjBko8qZoawxZEgQBgwF1DUhbZRgiMf9xYs/nfiL+v+sEoBMP4hfVosYLak/paoiKsE6Uv1CrDXi0z+jFMdAB9YEkRCEwMHwwqGHwoZqARla4GY3EfV5DfKZJ5GZGxgR2a0DmCBhtN2Iy8xdIIh8AgAtMjxS/gASCpYQ6PEHOiQBoeqrjq6AYIcLBAOeLyBCwXBRoh6jlEO4fcf1wVAmmxCAIrel/cpG/sWPudDYDYLn3X73aWmfXya0f27606xiaQRqKICgrmaI4iRTWoU12aMuBjDFzc1TaqDJyh0iZf6cEiNgzEDhrSYg8Z8MZQKERR4KNBDKAzHCTYnhGgBYA1xpBoUDuKYE+c86kilaiusHG3Dabh+ClkVcNxn8cFST8P/GHhgb29hpehi7VI2LPoCYvDKOqz1M/cgAAB/Iw1AwAA8wyBExgAUwzVkwOCcw8E0yZiM0MHUylEswBYY0UCE//7oGQUBmScRE27uzr4e8O5ymd6JRDEdzdNcyNh3I7m6c1lTMRdM4PThgsG/pjqKauBm3ggNKjIQxM1CoqDQGCzZwMwsYBhKZ2LDAELMbJFDAYBAUiBIENBIWA1+l+mRKrq5ZP35JgofI3RcCNv+/gkuFwmf/rdj9t0m60rsq7f/t1v9K+eqmVL26KWWp8argAAAAP7YIfFASwEZaRlOADEylaMsojT6A1Y9NZmSd+EQk3gU4Z48/g2sUeBAI+hihiAUCNtGAgBUFgYiSDykuZMAzEwxkxA60sOW4NucCxpuKpWRDIBTaF/uggN9oZbvLFjKIRWIxeCaju9jl3c172u/XX1DYgGXfRvcvAD2MDgMCwFVjnKANKDFobMXLc3l1TIAYM5hsz2BzfhPOatoxKGh0vGESeaDKZmkpHrSE1nCeSxHRIYRBhFD/ZjpmkGTDKDICjcgMBQPkHYQV0ZgQNaAzo4PFnATqfT/uYkALMZJI2l0D9TeoNlnm0XNoSga5LalRVRQgJ0pIP9goS/nPq9MAHsAqSmCzEIOUYBA6NZMcy6vzDylMcCIzZCTKobMx7DXycQG5Cbs6JsowM9Y4xioiYJhdgcpByRESBBjTWMooySh5M4mwx1wRzQ02BxYHmgoQVIUOht7s/mo1H3ejmkLVLH/ZM/1eTO7XNSJPtK2JDXoXKov9i6gP/7sGQAh2RKHc3rmsqYdMO5s2t5Uw/kdzcNcyNh3Y7m6b1hXAAAAAAH9jAGCxALzIIgMtBs0avjEgmMthwIJQ+1hZNmlhqAiWbTmV2jZgzXwT63DtYTdyFvxk02j0aQckDlDPNCwghyNMRQgIKbqf5aNJjnGmacpws2RhA96GnvHjX9wqbtuyosz6GJPFY6/s5HYQ7xpNiZlwWxcUYBoyVVz8UWhXcLOoIVN3tAA/kAm9oCyQKSmQKDPmuB+UwS09Y8HOyDUZ6uHEFRjBsZGvBJGYWGITD1DAU4jDS8VEjOOHhw5jnCYxIOtsw0xOBVMelGXjcjAzaP6EqHy4C9IO7cvUkph5624KcuVG3dYrQ3fUUP60UlWKehtd35ztigdhjAAIHGGLmuZnACGDo6YcHARACGFmS2GcyVJmgomzigcCMJjIgmGiKMGYxSRjGpMQdGIwYADhgdCTCBiRzrDRRmHD6KWzATDOHBoZBWwVDDiYZHnxZaNvy3Rxt1qeakkejdR4Iw/sXk3Ir9DcMCtd/P2tlkMTN6+BqXPWLU7LbXYAexiNIc0bSYJCw0EEoWIjq4A3EpIX44ciAQ8ZrCdw8NPji3jLjjXhDAHkgB5kgCBSpNAQAytCFSjTS/qwSK5WcznDPCXALZgIhGA1AZ4UCiEqB/79yjx03RwJE2d54ce2fobnuqeRpHVWrMrr1T+udxldf/i/6agAAAAD+wBM4ChxiR8jSAHw2hONqJTfJkzFAOALwpBHug5sSYRLIw/gVMBggSUaHwuYRrCOtlESTQwxOAZTSQ5YAhR4xxIxpoCVokszoGVGh8Gy13lpqwf1z9//ugRC0GY+0yTNN4O9h647mXbyxrDhR3NO3nCmHBDuaprDIcW2CsRikkdyJAFAwxv/WjsphymPduyp+iZc9UICkeljuK2UdUAAAP7AGDGAixkwoUAQ5CGsARhhMIUU1QeNTwDF2M1E5OOFzPgIO/hTUwTQXWIpjnJSeMg0UkMNohoXkLjA94ECp7iCZTIkONRdCALIokoZKXpwspVmXXFZNiwY2dFQ4J1ZkYvtFH7SA4HxE9FArxBL4udPoYNT1MXv7IPYxacgWLjGw8ytDNAajMwsz+AMPTgAGAGaDn08SgOyZTR2CmjOESMOMxA46joFCDQB1AccHUJFhU4iqHKQxdFVhe5gaOD/JWV4lVdF+b0y81eYa7As9GMpFTVK3PqY1I8fqTDsMRndp/nX0RcC/WtWAHsYd0AFjQjA52YX6Yxkbaga0KeKOHMTOLD+Vz9qgaSM0WrgsILHjWCxoGs1k4HWXoADDegSUIrnBDvIpO6twFLTgeA+hLepmwOtrUiZjelII/hcAK0YHy5pZeP6mC6B491aIZgtd3aP51/FgN9alVjAAAAAAH9gAcRLTgE+ARxwEBkSZf8zZUZQm1dGIyxpiqacGEQSOIgPPM0cEnl2FFE9V5MPWBESRVNEA0OtLQ5Ewi20QRodInIuwrxSMocOlaQ0+XxO9PU0dlETk9mxaiv/dY5qbj//uQZDMGc64dTetbyhh2Y3m9Z3kzDaxzN01l7KGnjubRrCV0kSpOJS4RMZipZTOm0EvJKMAAAAAAH9jEy2MRSAAYFQC44FDMO04IpZGYKOGgmQUaN4o2Dzo1EAAwGaoadYwMPBBQ5SlZIGEHlknkMkBSMCsrLYm1dpqwi91LmpQxA6vZFOx2mh2SYxGVu9L6wNivtxUutq4xqWqvHvyg5q0CXWx2qwqnr/RIB7GG5P0CkgKBGNaCQY0cAyusxs81LoKTj4QDn/h5WcEovoRtntkFJAhBC2DhJdPtFYaEUQgSccRrhhTIQ9aScgM6tbzlTpxr25lSyKZUqrTg1+8Qh7j+XGUDRHMPanHpa8UhNSHpujaXRzf49UACPOSCCIY0A0ceKBRGapGdhSYZQYxOCwYRY7JUrYOIoJWmmZEgIKyFayKqwZEcHSkrJlsxlZqDqnSt1MkPFH+fx/1MYnG6UUoDY0CY0FwSF0MSJJ/paohZiybvfY9EYrvLXVbW0VIT/WrwAAAAPrGGIjxoOvMhEhpNpc6Bg7i830w2ik1EQ2S8//ugZA+Gc1obzdM6eXhpo5m9aw8/DGhtN03ph6GejabhrD1k3sEIphcyb8mgqcAEpuXhUXTDU2TCUWIR6SrDHXWUharRZxJVOqwcoRydmOdRRFteiuoCegMvVz+ICRHxij9WhH+u9ZYoXart0o/TWgRAAAAAA/2MZ5gpWg+PWWUhQAbSAe2Bcp9aPIN3gNAkyeBmcWClIKy5Dc3BcZOVMxIUQCYbKlqJ1F1ZlVrGFeAsmxhQ0WZDlQpVLCc2JTMkdnfz0ghD31LetFtaMPpbdowP77UDfbV+BNlAHsAbhJgUFg0WBSIFxYIBSpSGTVGYHj2ExRk0sASzFCkwgYqoDDjgwgClqaihZblWxBYFDi7skeFkUVFQHBHE4sgCCKPikSTZ9BxGuVtNIVG3xY4zrF7CaF+ZFx2X2lbf+zdYBIW6qDJFg4UYUQaYWZOgvwarGFUGWgHMCmgFEdxGNwAqnwl4ocX+SOHlqaLMDER9/HYZKfwLssAqTlJEApqlVTqxSqN4q1Cx97EYlPBCILHfGF9i68GUlFQGZGHC6vfa/f9CK6P1PrAAAAA/ogThYmNGGHIHZGdQeShmoGT2DExicHYny0brRhkHOOrCaj45Etx0oedhvYuHGVWf1djsyZksbft+I7GQpSnxXNzsluLCa3FU1pAm+DSX6smSe1ab3VxFWxthj//p92SU//uAZDKEUycczdM4ZChko7m6Zwk/C+hxOaxp5WFoDub1jJmswAAAAP9jELlD+IUAhMeFPVgKqm0SSCT5dUvsBum8Svh6hdBGwOK0JeTPUHFgEdmVRB+3Hbxdi5FmrdXm4ERMOBUXR0sbYFJO8iLIoCVqpv8HFLtGTeK3mBfI1zm9ui7n026vutcAAAD/sAT5GTj4AQMZaVDHDQmGmhUubcmFoY4PC0lGIqDxk6kkWTUkPCVevotDkAZjoWSiHGX5nUaGKxOp06TcLWquZ1A3xpnB69gv/tqkiFD/2e3yc8JffeTa74rdqFAAAC9bJKRTEuU9pkEbGGMJbszIbiGmTIN4DIuER5btwJSj47eKhr/rBo1tFf1njS2uw+vSvBavUtofzkU3OU9UAjSKZOfTQjAHX3diEaPe7IrGz2ha97RBqnAAAAAAB/YwNFtFMGdX5UgBx4UEFWjaBjJnqZjiZjVgQBTAMYFCDQOUw+v/+4BkFY1DFhzN6zoaeFwDebpnBk8LBHc2bWGJIWAOJumXmeThWyD0gFb0xmStrTv62lM40akEReOQryZJjIbVL9qiFZW1RxBJ+xsyWsXFtLWNPlqrvU7Vq00KrlAAAAH+RifqUyCFnAJANRszdBCYgKBAEegIoeWCzJpLzHnP4yJ/FE5IiwtlwX+lzvRNwk538fRvnpRVZNGuxW/OSOv+A8TE0aQwk72GF7Itqoo/3/r31zvtt2ZoAPkxNBswiVIUVUtAEpJiTQggAQeCcmYYie2hNUtmaYj0lgHiTVYZL3/WMrETiWCAj8aCVgkB2blgSaLrZ/3p8GV6YPRbsf51bl29mRZruiSr8s5RhabPL2AABf2AVqjbIMiIfE0WBzwGoBxyFYMSS+LPiB1PQRKJBJ8+1QJIL4Xw/ytE6QiVFHUq1TES6lLeLOq7N07cyS/LrZbYYJDb+tRxZNG161BXS3I0d6F9d1F9AgAAAP/7kGQChFKFGU5rOEsoW8OZvWcJPQr4bzmssTBhZI4m9Yel3Ff0AEw8gPZHg9yIijjJNWJE9C4kHEI4eCqYwBF3Fu01RYsbf5hLFHQhpH8TIgSEblh9KBCCaJTC326JovS2DTjj/SvYulqal9XKb1isAAAAAP+wD8hEcYo4RCImRgQcyGmFzC1IOiT8W+i4ACg6hCJkDO3cXnJI4lKyVxoGiLuq/CgJBuyIEsF9IomWcRitkVfygr14N9M+KsaxZ6jvZx9159WhGUA9LwAAQP9sCSTiBYo2YAqxIjKOa0DMVnsjLVL9Fky65bNJODHEcCJrxBEDZ4JSIrGIk7ISiQKiImVg5B9fXZmm38bSiY+i6nm2LQxCbuRbt/cIWE64t/Wrir4AAAXd2DC+Z7khIL/GZK6wM1nbD0+S8piAOHA9R4IVCLW/Q9FFMwktJgtj+ThTHQplSfbG1HUNBhgkYVus+PjWT3GWu6rpB1FQso44iKWuxcgwqKalrtt6VXCAAAAAF/bALAfwc6qAtcMADHkRVKYQkGW+TrHipFEF2/0Wzv/7gGQSBEK5HM5rDEO4WAOJvRsMDwo4bTms4SVhVY4m/ZwkfAmEEDYdMiUsPkASCeyVyy/CSgUizjK2Z1VW9G6MJenMMXWD4QoJMTW8Zi2T9zr01/+21xiAAAAAB+sAG2nuXQKFmcjYBJw1l2h2qK8OhQioC/K8BAFWJwX9UoJNx7EgKERBWoB0dloqkgSTomoyXzzlSwhNR6p12XWCDvmCl7v7KFqCTq17dYsvufXM0AAT/qAJWqFjUR4jHA6Y4IwMdkCUAoiIKD0NhxkvkL3mXK97+SSeFQmiCA4JR0PgkPsiX8sTzetirvRaf2UMSTd9WKPVmMm9xAcyssnd3bfQUIIAAX9ZBAuJmOBJJ4IEMU2U4XJEX/BRnDbcQDnkIHBglnlJJnciL8uCTgkFBcZBEWIFVAbOm5GrhbcWkT8Tt8sIgI71IHGpD1s6URayju9Ow/u/+tVyAAAAAB/WQM7YMUPBSlDDqsQsFXCY//uAZAsEUtMdTesPQlhaI3m9YelzCSR3Oaw8x6E9Dib1hI4U0BIOZOmsY4ZxIxSgqRaU+zNCeVSvNRUNqhVSkdsh0BcKR10MC596i7KMpWHO9zUxZm2xlOtL20AuwsMRSh9Cf1Ofdd0rUAAAAAr+yCKwE1UxcEjBgEzU2kwQCFuBhCvN309RILJWAiREQqVyhqlQ86SYdExMcCp0cQQGCVsShXWNQtoUEVYbBjAST9uwXvUYYLIwHZFT6Kk/5CxDvrmZkgAnP6AAF8OOLDIrkSyiKbxWNpLErk8olSLWoI5fSwvG5DlAxMw2mxUoZBYwrTEbHHEVH/bfpVW+HIZrIz9670dBew4+yrssQ80AAX3ci4kQwTTpLtga670+UvEZ3UUHQtBolD1b2Sv66sBv7wUEolHwNvYVPiKjKNwSOEZmZIJjmheGv94xCXTiblroP0+S67qlfq+xlF55AAAC/7IHIgcLRZOVWCPJlIP/+6BECQRDQB3M0wk0mGfDuZph6VcMTLEzrDCvIY0O5nWGGhxPfVPoWgWCuELQQBJ9tOVsTUg5xHEZZGnCYqJhFKZQcJ3quN2lpy5qi8uTzc2pLgNHnTx0JnCgeKCwDKPKEmtU4ISIjGBuIlOIqGre2BQyiLlKMgxGB7QAAAD/sgcBcYwsOOt85MI1r7FTgx7ThCYfI4A/iXAMh/HWvHCYSiO5VNY0C7xkjGSViiMPDqBgQzuMqxmK8K32nLTHnzxwVOlg4XFjCXoIsZcFJMSjw7BtbyKhy3MgUPoi5SjItRgcwgAAz+xhflIM3U7AoWiiI6GC8SYgMQjuWsfhNJkDMVVhWeHZZNhJeEkSxHiEj1NS68io/2uPUq6cejiKSmKYwIHf+kqPWcllYp0KIRILjlJNEY5Z4Pa3petfBJ7klv3rvtQoAAAb/YwqCoMbM4I6QiNK4MTyS0ZjJnyZMPXR1AoFYVBYZo5AWOEoYCMgOricSisXlBTLRIfVLH6Y+IWjzUioi7okE+oSE1FgmOAIWDCwqRY02tyYgLuycxYzLhlF576LE1X1VQAAAAJ39gCpV5jARUqNpKUFCATwCxeTDWQP9EYZUeV07QFCaT6NsFqOzhWeo5NbOnzj0NIe/UkuQBIIAvGamqr637rlv5KlFNCbqqrxAABL/rgv5PxpF0dYFwjTFisya2n/+2BkMQBCZh3N6wwbuEwjWbphiHUJoHc3rLzHYUaO5vWEmdze0lii8RI7arzNicXyaTC4XgqEnNYfSHZSQgMhmEd2ma+0GEpnxru+0y8IDcVd96nLNf/u/f4uqxAAAQVf7IHRqhhpyJmGMJVg0x/QD9AIkeJkmul1g/BXi+sNmJRTRGC6oHQCbu5aF/G+PkVf0pmeMNQ/cxyd9jmLmO7dWhP6r6I7e56zAAJ/9kFaFhVx6EuwROWgWmVUcJE5MdFRIl3kx3ciJkRMjgiOic/NZx0PP4zeMjiPdo7Kj+bq2srUTvoSODgBMtc5tiX0nWdSnga/fot/u3aldQAAABLv9kBQMl3/+6BkBYACfR3N7WUgCFHiub+ssAEURMc1+byAAasOJn81kACKgAiMuaSilvWSBBjtP8ie802154KkSHiM7NGjVGBeaFNaGqT88qN0Vz2vkvsbnI7EEEZ/3ZSMr1upuz3S7f/9OuuuvMFCgoAAAAKv9ED8YmMsbM7PTHBM8AOEEIwQSxBD7MQhqDO88S3RUsUEgyxS27dUnd6CF1M6rayWqtJCZgkExcFfEOhZTcrfal7mVDosz//9HM6DYxRAFoQ0VUM56LxIGgEABpbCB44cXNIFWGGJjRhQCYKKmNChiKYYSLmJj2lNjAQdE8BHTBgDEZBwlAtiqykvQwWJiQyRScRIEwWBqBSmag18mIQqYiDsxyG85imhFp34Nwl8NyKEu87U3////nbw5zrdIg972M5dL////+c3//nQ3bFumpbnpdMRGCIMhI//6QEFQgaCX//ak8x6m////+laKgmgABQaMiGV7AoEDAAAAoCMkDSRNrZEQUyyNaBUCGTWoUmcDggKiShNMQBLvNZYiHMO+YFDCmUu6RFMhdcEsKVI0o2u8uWFMOnJtgzuyakk1LS0sW5jWrS5zJVG5L4lLfh8yFf4oaATfWoJt2XX3/2gAf1VeSJHQUAkcatdmY/jARAQEKq7AS7M2oCAmFAVjagJ7ER4Gnwad5LBV4Ablu3/AAAA//yOCjvCjQr/+xBkIQ/xkRtK7xhgCBdgCW3gAAFAAAGkAAAAIAAANIAAAAR8UXFFZBXAqkxBTUUzLjk4LjKqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqg=='; diff --git a/integ-tests/typescript/tests/integ-tests.test.ts b/integ-tests/typescript/tests/integ-tests.test.ts index 35fcb3cb1..cec839f98 100644 --- a/integ-tests/typescript/tests/integ-tests.test.ts +++ b/integ-tests/typescript/tests/integ-tests.test.ts @@ -1,8 +1,29 @@ import assert from 'assert' import { Image, ClientBuilder } from '@boundaryml/baml' import { b, NamedArgsSingleEnumList, flush, traceAsync, traceSync, setTags, TestClassNested } from '../baml_client' -import TypeBuilder from "../baml_client/type_builder"; -import { RecursivePartialNull } from '../baml_client/client'; +import TypeBuilder from '../baml_client/type_builder' +import { RecursivePartialNull } from '../baml_client/client' +import { scheduler } from 'node:timers/promises' +import { image_b64, audio_b64 } from './base64_test_data' +import { Image } from '@boundaryml/baml' +import { Audio } from '@boundaryml/baml' +import { + b, + NamedArgsSingleEnumList, + flush, + traceAsync, + traceSync, + setTags, + TestClassNested, + onLogEvent, +} from '../baml_client' +import TypeBuilder from '../baml_client/type_builder' +import { RecursivePartialNull } from '../baml_client/client' +import { config } from 'dotenv' +import { BamlLogEvent, BamlRuntime } from '@boundaryml/baml/native' +import { AsyncLocalStorage } from 'async_hooks' +import { DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME } from '../baml_client/globals' +config() describe('Integ tests', () => { it('should work for all inputs', async () => { @@ -98,23 +119,53 @@ describe('Integ tests', () => { expect(res.length).toBeGreaterThan(0) }) - it('should work with image', async () => { + it('should work with image from url', async () => { let res = await b.TestImageInput( Image.fromUrl('https://upload.wikimedia.org/wikipedia/en/4/4d/Shrek_%28character%29.png'), ) - expect(res.toLowerCase()).toContain('green') + expect(res.toLowerCase()).toMatch(/(green|yellow|ogre|shrek)/) + }) + + it('should work with image from base 64', async () => { + let res = await b.TestImageInput(Image.fromBase64('image/png', image_b64)) + expect(res.toLowerCase()).toMatch(/(green|yellow|ogre|shrek)/) + }) + + it('should work with audio base 64', async () => { + let res = await b.AudioInput(Audio.fromBase64('audio/mp3', audio_b64)) + expect(res.toLowerCase()).toContain('yes') + }) + + it('should work with audio from url', async () => { + let res = await b.AudioInput( + Audio.fromUrl('https://actions.google.com/sounds/v1/emergency/beeper_emergency_call.ogg'), + ) + + expect(res.toLowerCase()).toContain('no') }) it('should support streaming in OpenAI', async () => { - const stream = b.stream.PromptTestOpenAI('Mt Rainier is tall') + const stream = b.stream.PromptTestStreaming('Mt Rainier is tall') const msgs: string[] = [] + const startTime = performance.now() + + let firstMsgTime: number | null = null + let lastMsgTime = startTime for await (const msg of stream) { msgs.push(msg ?? '') + if (firstMsgTime === null) { + firstMsgTime = performance.now() + } + lastMsgTime = performance.now() } const final = await stream.getFinalResponse() expect(final.length).toBeGreaterThan(0) expect(msgs.length).toBeGreaterThan(0) + expect(firstMsgTime).not.toBeNull() + expect(firstMsgTime! - startTime).toBeLessThanOrEqual(1500) // 1.5 seconds + expect(lastMsgTime - startTime).toBeGreaterThan(1000) // 1.0 seconds + for (let i = 0; i < msgs.length - 2; i++) { expect(msgs[i + 1].startsWith(msgs[i])).toBeTruthy() } @@ -129,6 +180,27 @@ describe('Integ tests', () => { } const final = await stream.getFinalResponse() + expect(final.length).toBeGreaterThan(0) + expect(msgs.length).toBeGreaterThan(0) + for (let i = 0; i < msgs.length - 2; i++) { + expect(msgs[i + 1].startsWith(msgs[i])).toBeTruthy() + } + expect(msgs.at(-1)).toEqual(final) + }, 20_000) + + it('should support AWS', async () => { + const res = await b.TestAws('Dr. Pepper') + expect(res.length).toBeGreaterThan(0) + }) + + it('should support streaming in AWS', async () => { + const stream = b.stream.TestAws('Dr. Pepper') + const msgs: string[] = [] + for await (const msg of stream) { + msgs.push(msg ?? '') + } + const final = await stream.getFinalResponse() + expect(final.length).toBeGreaterThan(0) expect(msgs.length).toBeGreaterThan(0) for (let i = 0; i < msgs.length - 2; i++) { @@ -138,7 +210,7 @@ describe('Integ tests', () => { }) it('should support streaming without iterating', async () => { - const final = await b.stream.PromptTestOpenAI('Mt Rainier is tall').getFinalResponse() + const final = await b.stream.PromptTestStreaming('Mt Rainier is tall').getFinalResponse() expect(final.length).toBeGreaterThan(0) }) @@ -158,11 +230,11 @@ describe('Integ tests', () => { expect(msgs.at(-1)).toEqual(final) }) - - it('supports tracing sync', async () => { const blah = 'blah' + const dummyFunc = (_myArg: string): string => 'hello world' + const res = traceSync('myFuncParent', (firstArg: string, secondArg: number) => { setTags({ myKey: 'myVal' }) @@ -185,17 +257,47 @@ describe('Integ tests', () => { // Look at the dashboard to verify results. it('supports tracing async', async () => { + const nestedDummyFn = async (myArg: string): Promise => { + await scheduler.wait(100) // load-bearing: this ensures that we actually test concurrent execution + console.log('samDummyNested', myArg) + return myArg + } + + const dummyFn = async (myArg: string): Promise => { + await scheduler.wait(100) // load-bearing: this ensures that we actually test concurrent execution + const nested = await Promise.all([ + traceAsync('trace:nestedDummyFn1', nestedDummyFn)('nested1'), + traceAsync('trace:nestedDummyFn2', nestedDummyFn)('nested2'), + traceAsync('trace:nestedDummyFn3', nestedDummyFn)('nested3'), + ]) + console.log('dummy', myArg) + return myArg + } + + DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME.flush() + const _ = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME.drainStats() + + await Promise.all([ + traceAsync('trace:dummyFn1', dummyFn)('hi1'), + traceAsync('trace:dummyFn2', dummyFn)('hi2'), + traceAsync('trace:dummyFn3', dummyFn)('hi3'), + ]) + const res = await traceAsync('parentAsync', async (firstArg: string, secondArg: number) => { console.log('hello world') setTags({ myKey: 'myVal' }) - const res1 = traceSync('dummyFunc', dummyFunc)('firstDummyFuncArg') + const res1 = traceSync('dummyFunc', dummyFn)('firstDummyFuncArg') - const res2 = await traceAsync('asyncDummyFunc', asyncDummyFunc)('secondDummyFuncArg') + const res2 = await traceAsync('asyncDummyFunc', dummyFn)('secondDummyFuncArg') - const llm_res = await b.TestFnNamedArgsSingleStringList(['a', 'b', 'c']) + const llm_res = await Promise.all([ + b.TestFnNamedArgsSingleStringList(['a1', 'b', 'c']), + b.TestFnNamedArgsSingleStringList(['a2', 'b', 'c']), + b.TestFnNamedArgsSingleStringList(['a3', 'b', 'c']), + ]) - const res3 = await traceAsync('asyncDummyFunc', asyncDummyFunc)('thirdDummyFuncArg') + const res3 = await traceAsync('asyncDummyFunc', dummyFn)('thirdDummyFuncArg') return 'hello world' })('hi', 10) @@ -203,31 +305,97 @@ describe('Integ tests', () => { const res2 = await traceAsync('parentAsync2', async (firstArg: string, secondArg: number) => { console.log('hello world') - const res1 = traceSync('dummyFunc', dummyFunc)('firstDummyFuncArg') + const syncDummyFn = (_myArg: string): string => 'hello world' + const res1 = traceSync('dummyFunc', syncDummyFn)('firstDummyFuncArg') return 'hello world' })('hi', 10) + + DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME.flush() + const stats = DO_NOT_USE_DIRECTLY_UNLESS_YOU_KNOW_WHAT_YOURE_DOING_RUNTIME.drainStats() + console.log('stats', stats.toJson()) + expect(stats.started).toBe(30) + expect(stats.finalized).toEqual(stats.started) + expect(stats.submitted).toEqual(stats.started) + expect(stats.sent).toEqual(stats.started) + expect(stats.done).toEqual(stats.started) + expect(stats.failed).toEqual(0) }) - it('should work with dynamics', async () => { - let tb = new TypeBuilder(); - tb.Person.addProperty("last_name", tb.string().optional()); - tb.Person.addProperty("height", tb.float().optional()).description("Height in meters"); - tb.Hobby.addValue("CHESS") + it('should work with dynamic types single', async () => { + let tb = new TypeBuilder() + tb.Person.addProperty('last_name', tb.string().optional()) + tb.Person.addProperty('height', tb.float().optional()).description('Height in meters') + tb.Hobby.addValue('CHESS') tb.Hobby.listValues().map(([name, v]) => v.alias(name.toLowerCase())) - tb.Person.addProperty("hobbies", tb.Hobby.type().list().optional()).description("Some suggested hobbies they might be good at"); + tb.Person.addProperty('hobbies', tb.Hobby.type().list().optional()).description( + 'Some suggested hobbies they might be good at', + ) - const res = await b.ExtractPeople("My name is Harrison. My hair is black and I'm 6 feet tall. I'm pretty good around the hoop.", { tb }) + const res = await b.ExtractPeople( + "My name is Harrison. My hair is black and I'm 6 feet tall. I'm pretty good around the hoop.", + { tb }, + ) expect(res.length).toBeGreaterThan(0) console.log(res) }) + it('should work with dynamic types enum', async () => { + let tb = new TypeBuilder() + const fieldEnum = tb.addEnum('Animal') + const animals = ['giraffe', 'elephant', 'lion'] + for (const animal of animals) { + fieldEnum.addValue(animal.toUpperCase()) + } + tb.Person.addProperty('animalLiked', fieldEnum.type()) + const res = await b.ExtractPeople( + "My name is Harrison. My hair is black and I'm 6 feet tall. I'm pretty good around the hoop. I like giraffes.", + { tb }, + ) + expect(res.length).toBeGreaterThan(0) + expect(res[0]['animalLiked']).toEqual('GIRAFFE') + }) + + it('should work with dynamic types class', async () => { + let tb = new TypeBuilder() + const animalClass = tb.addClass('Animal') + animalClass.addProperty('animal', tb.string()).description('The animal mentioned, in singular form.') + tb.Person.addProperty('animalLiked', animalClass.type()) + const res = await b.ExtractPeople( + "My name is Harrison. My hair is black and I'm 6 feet tall. I'm pretty good around the hoop. I like giraffes.", + { tb }, + ) + expect(res.length).toBeGreaterThan(0) + const animalLiked = res[0]['animalLiked'] + expect(animalLiked['animal']).toContain('giraffe') + }) + + it('should work with dynamic inputs class', async () => { + let tb = new TypeBuilder() + tb.DynInputOutput.addProperty('new-key', tb.string().optional()) + + const res = await b.DynamicInputOutput({ 'new-key': 'hi', testKey: 'myTest' }, { tb }) + expect(res['new-key']).toEqual('hi') + expect(res['testKey']).toEqual('myTest') + }) + + it('should work with dynamic inputs list', async () => { + let tb = new TypeBuilder() + tb.DynInputOutput.addProperty('new-key', tb.string().optional()) + + const res = await b.DynamicListInputOutput([{ 'new-key': 'hi', testKey: 'myTest' }], { tb }) + expect(res[0]['new-key']).toEqual('hi') + expect(res[0]['testKey']).toEqual('myTest') + }) + + // test with extra list, boolean in the input as well. + it('should work with nested classes', async () => { - let stream = b.stream.FnOutputClassNested('hi!'); - let msgs: RecursivePartialNull = []; + let stream = b.stream.FnOutputClassNested('hi!') + let msgs: RecursivePartialNull = [] for await (const msg of stream) { console.log('msg', msg) - msgs.push(msg); + msgs.push(msg) } const final = await stream.getFinalResponse() @@ -239,25 +407,24 @@ describe('Integ tests', () => { const clientBuilder = new ClientBuilder() clientBuilder.addClient('myClient', 'openai', { model: 'gpt-3.5-turbo', - }); - clientBuilder.setPrimary('myClient'); + }) + clientBuilder.setPrimary('myClient') - await b.TestOllama("hi", { + await b.TestOllama('hi', { cb: clientBuilder, - }); - }); -}) + }) + }) -function asyncDummyFunc(myArg: string): Promise { - console.log('asyncDummyFuncArgs', arguments) - return new Promise((resolve) => { - resolve({ - key: 'key', - key_two: true, - key_three: 52, + it("should work with 'onLogEvent'", async () => { + onLogEvent((param2) => { + console.log('onLogEvent', param2) }) + const res = await b.TestFnNamedArgsSingleStringList(['a', 'b', 'c']) + expect(res).toContain('a') + const res2 = await b.TestFnNamedArgsSingleStringList(['d', 'e', 'f']) + expect(res2).toContain('d') }) -} +}) interface MyInterface { key: string @@ -265,10 +432,6 @@ interface MyInterface { key_three: number } -function dummyFunc(myArg: string): string { - return 'hello world' -} - afterAll(async () => { flush() }) diff --git a/root.code-workspace b/root.code-workspace index f5486343f..1c3ac40a5 100644 --- a/root.code-workspace +++ b/root.code-workspace @@ -42,6 +42,11 @@ "[typescriptreact]": { "editor.defaultFormatter": "biomejs.biome" }, + "files.associations": { + "*.baml.j2": "jinja", + "*.js.j2": "jinja-js", + "*.ts.j2": "jinja-js" + }, "editor.colorDecoratorsLimit": 2000, "editor.formatOnSaveMode": "file", "editor.formatOnSave": true, @@ -75,6 +80,7 @@ "titleBar.activeForeground": "#FFFBFB" }, "biome.lspBin": "typescript/node_modules/@biomejs/biome/bin/biome" + }, "extensions": { "recommendations": [ diff --git a/tools/build b/tools/build index b66d41103..ed7ca982a 100755 --- a/tools/build +++ b/tools/build @@ -107,16 +107,18 @@ case "$_path" in fi ;; - /engine/baml-core-ffi | /engine/baml-core-ffi/* ) + /engine/baml-schema-wasm | /engine/baml-schema-wasm/* ) + command="cargo build --target=wasm32-unknown-unknown" + if [ "$_watch_mode" -eq 1 ]; then npx nodemon \ - --verbose \ - --ext js,ts \ - --ignore index.js \ - --ignore index.d.ts \ - --exec 'yarn build; date' + --ext rs,toml \ + --watch "${_repo_root}/engine" \ + --ignore 'target' \ + --ignore 'tmp' \ + --exec "${command}" else - yarn build + eval "${command}" date fi ;; @@ -163,83 +165,21 @@ case "$_path" in fi ;; - /clients/python | /clients/python/* ) - command="env -u CONDA_PREFIX poetry run maturin develop --manifest-path ${_repo_root}/clients/python-ffi/Cargo.toml" - #command="${command} && poetry run mypy ." - #command="${command} && poetry run ruff check" - command="${command} && poetry run ruff format" - command="${command} && poetry run -- python -m baml_core.jinja.render_prompt" - if [ "$_test_mode" -eq 1 ]; then - command="${command} && poetry run -- pytest baml_core" - fi - command="${command}; date" - if [ "$_watch_mode" -eq 1 ]; then - npx nodemon \ - --ext py,pyi,rs \ - --watch "${_repo_root}/engine/baml-lib/jinja" \ - --watch "${_repo_root}/clients/python-ffi" \ - --watch . \ - --exec "${command}" - else - eval "${command}" - date - fi - ;; - - /clients/ts | /clients/ts/* ) - pnpm link "${_repo_root}/engine/baml-core-ffi" - if [ "$_watch_mode" -eq 1 ]; then - npx nodemon \ - --verbose \ - --ext js,ts \ - --ignore '**/dist' \ - --ignore '**/node_modules' \ - --exec 'pnpm build; date' - else - pnpm build - date - fi - ;; - - /integ-tests2/python | /integ-tests2/python/* ) - command="env -u CONDA_PREFIX poetry run maturin develop --manifest-path ${_repo_root}/engine/language_client_python/Cargo.toml" - #command="${command} && poetry run mypy ." - #command="${command} && poetry run ruff check" - #command="${command} && poetry run ruff format" - command="${command} && poetry run baml-cli generate --from ${_repo_root}/integ-tests2/baml_src --to ${_repo_root}/integ-tests2/python" - #command="${command} && poetry run baml-cli generate --from /home/sam/repos/baml-examples/nextjs-starter-v1/baml_src --to /home/sam/baml/integ-tests/python_v3" - #command="${command} && BAML_LOG=debug,baml_runtime=off infisical run poetry run python main.py" - # command="${command} && BAML_LOG=debug infisical run poetry run python main.py" - if [ "$_test_mode" -eq 1 ]; then - command="${command} && poetry run -- pytest baml_core" - fi - command="${command}; date" - if [ "$_watch_mode" -eq 1 ]; then - npx nodemon \ - --ext py,pyi,rs,j2,toml \ - --watch "${_repo_root}/engine" \ - --watch "${_repo_root}/clients/python-ffi" \ - --watch . \ - --ignore baml_client \ - --exec "${command}" - else - eval "${command}" - date - fi - ;; - /integ-tests/python | /integ-tests/python/* ) + command="true" command="env -u CONDA_PREFIX poetry run maturin develop --manifest-path ${_repo_root}/engine/language_client_python/Cargo.toml" - command="${command} && poetry run baml-cli generate --from ${_repo_root}/integ-tests/baml_src" + #command="${command} && poetry run baml-cli generate --from ${_repo_root}/integ-tests/baml_src" if [ "$_test_mode" -eq 1 ]; then - command="${command} && BAML_LOG=debug infisical run --env=test -- poetry run pytest app/test_functions.py::test_streaming_claude" + command="${command} && BAML_LOG=trace infisical run --env=test -- poetry run python baml_example_tracing.py" fi if [ "$_watch_mode" -eq 1 ]; then npx nodemon \ --ext py,pyi,rs,j2,toml \ --watch "${_repo_root}/engine" \ --watch . \ - --ignore baml_client \ + --ignore baml_client/** \ + --ignore target/** \ + --ignore .pytest_cache \ --exec "${command}" else eval "${command}" @@ -248,17 +188,26 @@ case "$_path" in ;; /integ-tests/typescript | /integ-tests/typescript/* ) - command="env -C ${_repo_root}/engine/language_client_typescript -- pnpm build:debug" + #BAML_LOG="baml_runtime::tracing=trace,baml_runtime::types::context_manager=debug,baml_runtime=debug" + BAML_LOG="baml_runtime=debug" + command="(cd ${_repo_root}/engine/language_client_typescript && pnpm build:debug)" command="${command} && pnpm baml-cli generate --from ${_repo_root}/integ-tests/baml_src" if [ "$_test_mode" -eq 1 ]; then - command="${command} && BAML_LOG=debug infisical run --env=test -- poetry run pytest app/test_functions.py::test_streaming_claude" + #command="${command} && pnpm integ-tests" + command="${command} && BAML_LOG=${BAML_LOG} infisical run -- pnpm test tests/integ-tests.test.ts" fi if [ "$_watch_mode" -eq 1 ]; then + #--verbose \ npx nodemon \ - --ext py,pyi,rs,j2,toml \ + --delay 1.5 \ + --ext py,pyi,rs,j2,toml,test.ts \ --watch "${_repo_root}/engine" \ --watch . \ - --ignore baml_client \ + --ignore baml_client/** \ + --ignore dist/** \ + --ignore target/** \ + --ignore node_modules/** \ + --ignore *.d.ts \ --exec "${command}" else eval "${command}" diff --git a/tools/bump-version b/tools/bump-version index 3377c261d..30d73943b 100755 --- a/tools/bump-version +++ b/tools/bump-version @@ -21,6 +21,20 @@ Options: EOF } +ensure_preconditions() { + # Ensure bump2version is installed + if ! command -v bump2version > /dev/null; then + echo "Error: bump2version is not installed." + exit 1 + fi + + # Ensure git cliff is available + if ! git cliff -h > /dev/null 2>&1; then + echo "Error: git-cliff is not installed or not working. Please install it using 'cargo install git-cliff'." + exit 1 + fi +} + _help_mode=0 _ts_mode=0 _python_mode=0 @@ -69,6 +83,8 @@ if [ "$_help_mode" -eq 1 ]; then exit 0 fi +ensure_preconditions + # Ensure only one mode is enabled if [ "$((_ts_mode + _python_mode + _ruby_mode + _vscode_mode + _all_mode))" -gt 1 ]; then echo "Error: Only one mode can be enabled." @@ -98,3 +114,13 @@ elif [ "$_ruby_mode" -eq 1 ]; then elif [ "$_vscode_mode" -eq 1 ]; then bump2version --config-file ./versions/vscode.cfg patch fi + +cd "${_repo_root}" +git add . + + +VERSION=$(grep "current_version =" tools/versions/engine.cfg | awk '{print $3}') +# Generate the change log +git cliff --tag $VERSION -u --prepend CHANGELOG.md + +echo "Version bumped to $VERSION successfully! Please update CHANGELOG.md." diff --git a/tools/versions/engine.cfg b/tools/versions/engine.cfg index b9ecf9252..3e3b65a74 100644 --- a/tools/versions/engine.cfg +++ b/tools/versions/engine.cfg @@ -1,5 +1,5 @@ [bumpversion] -current_version = 0.40.0 +current_version = 0.45.0 commit = False tag = False parse = ^(?P\d+)\.(?P\d+).(?P\d+)$ diff --git a/tools/versions/python.cfg b/tools/versions/python.cfg index 57772a88b..df9453a01 100644 --- a/tools/versions/python.cfg +++ b/tools/versions/python.cfg @@ -1,5 +1,5 @@ [bumpversion] -current_version = 0.40.0 +current_version = 0.45.0 commit = False tag = False parse = ^(?P\d+)\.(?P\d+).(?P\d+)$ diff --git a/tools/versions/ruby.cfg b/tools/versions/ruby.cfg index c25e97f0a..403ff979b 100644 --- a/tools/versions/ruby.cfg +++ b/tools/versions/ruby.cfg @@ -1,5 +1,5 @@ [bumpversion] -current_version = 0.40.0 +current_version = 0.45.0 commit = False tag = False parse = ^(?P\d+)\.(?P\d+).(?P\d+)$ diff --git a/tools/versions/typescript.cfg b/tools/versions/typescript.cfg index f24c14ff1..5764f1c42 100644 --- a/tools/versions/typescript.cfg +++ b/tools/versions/typescript.cfg @@ -1,5 +1,5 @@ [bumpversion] -current_version = 0.40.0 +current_version = 0.45.0 commit = False tag = False parse = ^(?P\d+)\.(?P\d+).(?P\d+)$ diff --git a/tools/versions/vscode.cfg b/tools/versions/vscode.cfg index ebdc8ad75..831d89751 100644 --- a/tools/versions/vscode.cfg +++ b/tools/versions/vscode.cfg @@ -1,5 +1,5 @@ [bumpversion] -current_version = 0.40.0 +current_version = 0.45.0 commit = False tag = False parse = ^(?P\d+)\.(?P\d+).(?P\d+)$ diff --git a/typescript/.vscode/launch.json b/typescript/.vscode/launch.json index 8b23c31b4..f1c9e7854 100644 --- a/typescript/.vscode/launch.json +++ b/typescript/.vscode/launch.json @@ -7,7 +7,10 @@ "request": "launch", "runtimeExecutable": "${execPath}", "sourceMaps": true, - "args": ["--extensionDevelopmentPath=${workspaceFolder}/vscode-ext/packages"], + "args": [ + "--extensionDevelopmentPath=${workspaceFolder}/vscode-ext/packages", + "--disable-extensions", + ], "outFiles": [ "${workspaceFolder}/vscode-ext/packages/vscode/out/**", "${workspaceFolder}/vscode-ext/packages/language-server/out/**" diff --git a/typescript/biome.json b/typescript/biome.json index 1bf8f4362..00831f5b7 100644 --- a/typescript/biome.json +++ b/typescript/biome.json @@ -15,8 +15,7 @@ "formatter": { "quoteStyle": "single", "jsxQuoteStyle": "single", - "semicolons": "asNeeded", - "trailingComma": "all" + "semicolons": "asNeeded" } }, "json": { diff --git a/typescript/fiddle-frontend/app/[project_id]/_atoms/atoms.ts b/typescript/fiddle-frontend/app/[project_id]/_atoms/atoms.ts index 243828c43..0ca5e5765 100644 --- a/typescript/fiddle-frontend/app/[project_id]/_atoms/atoms.ts +++ b/typescript/fiddle-frontend/app/[project_id]/_atoms/atoms.ts @@ -1,6 +1,7 @@ import type { EditorFile } from '@/app/actions' // import { ParserDBFunctionTestModel } from "@/lib/exampleProjects" import { TestState } from '@baml/common' +import { availableFunctionsAtom, selectedFunctionAtom } from '@baml/playground-common/baml_wasm_web/EventListener' import { sessionStore } from '@baml/playground-common/baml_wasm_web/JotaiProvider' import { projectFilesAtom } from '@baml/playground-common/baml_wasm_web/baseAtoms' import { Diagnostic } from '@codemirror/lint' @@ -24,7 +25,8 @@ const activeFileNameAtomRaw = atomWithStorage('active_file', null export const activeFileNameAtom = atom( (get) => { const files = get(currentEditorFilesAtom) - const activeFileName = get(activeFileNameAtomRaw) ?? 'baml_src/main.baml' + // hack to get default file selection for now.. + const activeFileName = get(activeFileNameAtomRaw) ?? 'baml_src/01-extract-receipt.baml' const selectedFile = files.find((f) => f.path === activeFileName) ?? files[0] if (selectedFile) { @@ -49,6 +51,7 @@ export const activeFileContentAtom = atom((get) => { export const emptyDirsAtom = atom([]) export const exploreProjectsOpenAtom = atom(false) +export const libraryOpenAtom = atom(false) export const productTourDoneAtom = atomWithStorage('initial_tutorial_v1', false) export const productTourTestDoneAtom = atomWithStorage('test_tour_v1', false) diff --git a/typescript/fiddle-frontend/app/[project_id]/_components/CodeMirrorEditor.tsx b/typescript/fiddle-frontend/app/[project_id]/_components/CodeMirrorEditor.tsx index ee6a8237f..6d755e100 100644 --- a/typescript/fiddle-frontend/app/[project_id]/_components/CodeMirrorEditor.tsx +++ b/typescript/fiddle-frontend/app/[project_id]/_components/CodeMirrorEditor.tsx @@ -4,7 +4,13 @@ import { BAML_DIR } from '@/lib/constants' import type { BAMLProject } from '@/lib/exampleProjects' import { BAML, theme } from '@baml/codemirror-lang' import type { ParserDatabase } from '@baml/common' -import { diagnositicsAtom, numErrorsAtom, updateFileAtom } from '@baml/playground-common/baml_wasm_web/EventListener' +import { + availableFunctionsAtom, + diagnositicsAtom, + numErrorsAtom, + selectedFunctionAtom, + updateFileAtom, +} from '@baml/playground-common/baml_wasm_web/EventListener' import { atomStore } from '@baml/playground-common/baml_wasm_web/JotaiProvider' import { projectFamilyAtom, runtimeFamilyAtom } from '@baml/playground-common/baml_wasm_web/baseAtoms' import { Button } from '@baml/playground-common/components/ui/button' @@ -13,6 +19,7 @@ import { type Diagnostic, forceLinting, linter, openLintPanel } from '@codemirro import { langs } from '@uiw/codemirror-extensions-langs' import CodeMirror, { Compartment, EditorView, type Extension, type ReactCodeMirrorRef } from '@uiw/react-codemirror' import { useAtom, useAtomValue, useSetAtom } from 'jotai' +import { hyperLink, hyperLinkExtension, hyperLinkStyle } from '@uiw/codemirror-extensions-hyper-link' import Link from 'next/link' import { useEffect, useRef } from 'react' import { @@ -123,7 +130,7 @@ function makeLinter() { } const comparment = new Compartment() -const extensions: Extension[] = [BAML(), EditorView.lineWrapping, comparment.of(makeLinter())] +const extensions: Extension[] = [BAML(), EditorView.lineWrapping, comparment.of(makeLinter()), hyperLink] const extensionMap = { ts: [langs.tsx(), EditorView.lineWrapping], @@ -141,6 +148,9 @@ export const CodeMirrorEditor = ({ project }: { project: BAMLProject }) => { const activeFileContent = useAtomValue(activeFileContentAtom) const updateFile = useSetAtom(updateFileAtom) + const availableFunctions = useAtomValue(availableFunctionsAtom) + const setSelectedFunction = useSetAtom(selectedFunctionAtom) + const ref = useRef({}) // force linting on file changes so playground updates @@ -153,6 +163,14 @@ export const CodeMirrorEditor = ({ project }: { project: BAMLProject }) => { } }, [JSON.stringify(editorFiles)]) + useEffect(() => { + const func = availableFunctions.find((f) => f.span.file_path === activeFile) + if (func) { + console.log('setting selected function', func.name) + setSelectedFunction(func.name) + } + }, [JSON.stringify(editorFiles.map((f) => f.path)), activeFile, availableFunctions]) + const setUnsavedChanges = useSetAtom(unsavedChangesAtom) const langExtensions = getLanguage(activeFile) @@ -227,7 +245,7 @@ export const CodeMirrorEditor = ({ project }: { project: BAMLProject }) => {
{!activeFile?.endsWith('.baml') && ( -
+
This is an example read-only file on how to use this in your code
)} diff --git a/typescript/fiddle-frontend/app/[project_id]/_components/ExploreProjects.tsx b/typescript/fiddle-frontend/app/[project_id]/_components/ExploreProjects.tsx index a71562fd9..5bcc8dfff 100644 --- a/typescript/fiddle-frontend/app/[project_id]/_components/ExploreProjects.tsx +++ b/typescript/fiddle-frontend/app/[project_id]/_components/ExploreProjects.tsx @@ -6,39 +6,7 @@ import { type BamlProjectsGroupings, loadExampleProjects } from '@/lib/loadProje import { useEffect, useState } from 'react' export const ExploreProjects = () => { - const [projectGroups, setProjectGroups] = useState(null) - - useEffect(() => { - const fetchProjects = async () => { - const projects = await loadExampleProjects() - setProjectGroups(projects) - } - fetchProjects() - }, []) - - return ( -
- - Prompt Fiddle Examples - - Prompt Fiddle uses BAML -- a configuration language for LLM functions. Here are some example projects to get - you started. - - - -
- {projectGroups ? ( -
- - {/* */} - -
- ) : ( -
Loading...
- )} -
-
- ) + return null } const ExampleCarousel = ({ title, projects }: { title: string; projects: BAMLProject[] }) => { diff --git a/typescript/fiddle-frontend/app/[project_id]/_components/ProjectView.tsx b/typescript/fiddle-frontend/app/[project_id]/_components/ProjectView.tsx index 5ca314d58..6aec18ccd 100644 --- a/typescript/fiddle-frontend/app/[project_id]/_components/ProjectView.tsx +++ b/typescript/fiddle-frontend/app/[project_id]/_components/ProjectView.tsx @@ -2,7 +2,7 @@ import { ExampleProjectCard } from '@/app/_components/ExampleProjectCard' import { Badge } from '@/components/ui/badge' -import { Button } from '@/components/ui/button' +import { Button, buttonVariants } from '@/components/ui/button' import { ResizableHandle, ResizablePanel, ResizablePanelGroup } from '@/components/ui/resizable' import { ScrollArea } from '@/components/ui/scroll-area' import { useKeybindingOverrides } from '@/hooks/command-s' @@ -12,7 +12,6 @@ import { CustomErrorBoundary, EventListener, FunctionPanel, - FunctionSelector, //useSelections, } from '@baml/playground-common' import { updateFileAtom } from '@baml/playground-common/baml_wasm_web/EventListener' @@ -20,7 +19,7 @@ import { Separator } from '@baml/playground-common/components/ui/separator' import clsx from 'clsx' import { useAtom, useAtomValue, useSetAtom } from 'jotai' import { useHydrateAtoms } from 'jotai/utils' -import { AlertTriangleIcon, Compass, FlaskConical, GitForkIcon, LinkIcon, ShareIcon } from 'lucide-react' +import { AlertTriangleIcon, Compass, File, FlaskConical, GitForkIcon, LinkIcon, ShareIcon } from 'lucide-react' import Image from 'next/image' import Link from 'next/link' import { usePathname } from 'next/navigation' @@ -39,13 +38,14 @@ import { unsavedChangesAtom, } from '../_atoms/atoms' import { CodeMirrorEditor } from './CodeMirrorEditor' -import { ExploreProjects } from './ExploreProjects' + import { GithubStars } from './GithubStars' import { InitialTour, PostTestRunTour } from './Tour' -import SettingsDialog, { ShowSettingsButton, showSettingsAtom } from '@baml/playground-common/shared/SettingsDialog' -import { SettingsIcon } from 'lucide-react' +import SettingsDialog, { ShowSettingsButton } from '@baml/playground-common/shared/SettingsDialog' + import FileViewer from './Tree/FileViewer' -import { Toaster } from '@/components/ui/toaster' +import { AppStateProvider } from '@baml/playground-common/shared/AppStateContext' // Import the AppStateProvider +import { ViewSelector } from '@baml/playground-common/shared/Selectors' const ProjectViewImpl = ({ project }: { project: BAMLProject }) => { const setEditorFiles = useSetAtom(updateFileAtom) @@ -89,10 +89,14 @@ const ProjectViewImpl = ({ project }: { project: BAMLProject }) => { {!isMobile && ( -
Prompt Fiddle
+ - +
project files
@@ -100,10 +104,9 @@ const ProjectViewImpl = ({ project }: { project: BAMLProject }) => {
- {/* */} - - + {/* + */} )} @@ -145,17 +148,27 @@ const ProjectViewImpl = ({ project }: { project: BAMLProject }) => {
-
- + + New project +
{unsavedChanges ? (
@@ -168,14 +181,6 @@ const ProjectViewImpl = ({ project }: { project: BAMLProject }) => { <> )} - {/*
- -
*/} -
{ >
VSCode extension - {/*
*/}
@@ -216,10 +220,7 @@ const ProjectViewImpl = ({ project }: { project: BAMLProject }) => { }} className='flex flex-row h-full overflow-clip' > - +
{ >