forked from serp-ai/bark-with-voice-clone
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrvc_infer.py
169 lines (153 loc) · 6.29 KB
/
rvc_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os,sys,pdb,torch
now_dir = os.getcwd()
sys.path.append(now_dir)
import argparse
import glob
import sys
import torch
from multiprocessing import cpu_count
import ffmpeg
import numpy as np
def load_audio(file, sr):
try:
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
file = (
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
) # 防止小白拷路径头尾带了空格和"和回车
out, _ = (
ffmpeg.input(file, threads=0)
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
)
except Exception as e:
raise RuntimeError(f"Failed to load audio: {e}")
return np.frombuffer(out, np.float32).flatten()
class Config:
def __init__(self,device,is_half):
self.device = device
self.is_half = is_half
self.n_cpu = 0
self.gpu_name = None
self.gpu_mem = None
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
def device_config(self) -> tuple:
if torch.cuda.is_available():
i_device = int(self.device.split(":")[-1])
self.gpu_name = torch.cuda.get_device_name(i_device)
if (
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
or "P40" in self.gpu_name.upper()
or "1060" in self.gpu_name
or "1070" in self.gpu_name
or "1080" in self.gpu_name
):
print("16系/10系显卡和P40强制单精度")
self.is_half = False
for config_file in ["32k.json", "40k.json", "48k.json"]:
with open(f"configs/{config_file}", "r") as f:
strr = f.read().replace("true", "false")
with open(f"configs/{config_file}", "w") as f:
f.write(strr)
with open("trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
else:
self.gpu_name = None
self.gpu_mem = int(
torch.cuda.get_device_properties(i_device).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
if self.gpu_mem <= 4:
with open("trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
elif torch.backends.mps.is_available():
print("没有发现支持的N卡, 使用MPS进行推理")
self.device = "mps"
else:
print("没有发现支持的N卡, 使用CPU进行推理")
self.device = "cpu"
self.is_half = True
if self.n_cpu == 0:
self.n_cpu = cpu_count()
if self.is_half:
# 6G显存配置
x_pad = 3
x_query = 10
x_center = 60
x_max = 65
else:
# 5G显存配置
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
if self.gpu_mem != None and self.gpu_mem <= 4:
x_pad = 1
x_query = 5
x_center = 30
x_max = 32
return x_pad, x_query, x_center, x_max
now_dir=os.getcwd()
sys.path.append(now_dir)
sys.path.append(os.path.join(now_dir,"Retrieval-based-Voice-Conversion-WebUI"))
from vc_infer_pipeline import VC
from lib.infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono
from fairseq import checkpoint_utils
from scipy.io import wavfile
hubert_model=None
def load_hubert():
global hubert_model
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",)
hubert_model = models[0]
hubert_model = hubert_model.to(device)
if(is_half):hubert_model = hubert_model.half()
else:hubert_model = hubert_model.float()
hubert_model.eval()
def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,index_rate,filter_radius=3,resample_sr=48000,rms_mix_rate=0.25, protect=0.33):
global tgt_sr,net_g,vc,hubert_model
if input_audio is None:return "You need to upload an audio", None
f0_up_key = int(f0_up_key)
audio=load_audio(input_audio,16000)
times = [0, 0, 0]
if(hubert_model==None):load_hubert()
if_f0 = cpt.get("f0", 1)
version = cpt.get("version")
audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,input_audio,times,f0_up_key,f0_method,file_index,index_rate,if_f0,filter_radius=filter_radius,tgt_sr=tgt_sr,resample_sr=resample_sr,rms_mix_rate=rms_mix_rate,version=version,protect=protect,f0_file=f0_file)
# print(times)
return audio_opt
def get_vc(model_path, device_, is_half_):
global n_spk,tgt_sr,net_g,vc,cpt,device,is_half
device = device_
is_half = is_half_
config = Config(device, is_half)
print("loading pth %s"%model_path)
cpt = torch.load(model_path, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk
if_f0=cpt.get("f0",1)
version=cpt.get("version", "v2")
if(if_f0==1):
if version == "v1":
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
else:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
else:
if version == "v1":
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净,真奇葩
net_g.eval().to(device)
if (is_half):net_g = net_g.half()
else:net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk=cpt["config"][-3]