-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaximumFlow.java
126 lines (108 loc) · 3.32 KB
/
MaximumFlow.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
// Java program for implementation of Ford Fulkerson
// algorithm
import java.io.*;
import java.lang.*;
import java.util.*;
import java.util.LinkedList;
class MaxFlow {
static final int V = 6; // Number of vertices in graph
/* Returns true if there is a path from source 's' to
sink 't' in residual graph. Also fills parent[] to
store the path */
boolean bfs(int rGraph[][], int s, int t, int parent[])
{
// Create a visited array and mark all vertices as
// not visited
boolean visited[] = new boolean[V];
for (int i = 0; i < V; ++i)
visited[i] = false;
// Create a queue, enqueue source vertex and mark
// source vertex as visited
LinkedList<Integer> queue
= new LinkedList<Integer>();
queue.add(s);
visited[s] = true;
parent[s] = -1;
// Standard BFS Loop
while (queue.size() != 0) {
int u = queue.poll();
for (int v = 0; v < V; v++) {
if (visited[v] == false
&& rGraph[u][v] > 0) {
// If we find a connection to the sink
// node, then there is no point in BFS
// anymore We just have to set its parent
// and can return true
if (v == t) {
parent[v] = u;
return true;
}
queue.add(v);
parent[v] = u;
visited[v] = true;
}
}
}
// We didn't reach sink in BFS starting from source,
// so return false
return false;
}
// Returns the maximum flow from s to t in the given
// graph
int fordFulkerson(int graph[][], int s, int t)
{
int u, v;
// Create a residual graph and fill the residual
// graph with given capacities in the original graph
// as residual capacities in residual graph
// Residual graph where rGraph[i][j] indicates
// residual capacity of edge from i to j (if there
// is an edge. If rGraph[i][j] is 0, then there is
// not)
int rGraph[][] = new int[V][V];
for (u = 0; u < V; u++)
for (v = 0; v < V; v++)
rGraph[u][v] = graph[u][v];
// This array is filled by BFS and to store path
int parent[] = new int[V];
int max_flow = 0; // There is no flow initially
// Augment the flow while there is path from source
// to sink
while (bfs(rGraph, s, t, parent)) {
// Find minimum residual capacity of the edhes
// along the path filled by BFS. Or we can say
// find the maximum flow through the path found.
int path_flow = Integer.MAX_VALUE;
for (v = t; v != s; v = parent[v]) {
u = parent[v];
path_flow
= Math.min(path_flow, rGraph[u][v]);
}
// update residual capacities of the edges and
// reverse edges along the path
for (v = t; v != s; v = parent[v]) {
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}
// Add path flow to overall flow
max_flow += path_flow;
}
// Return the overall flow
return max_flow;
}
// Driver program to test above functions
public static void main(String[] args)
throws java.lang.Exception
{
// Let us create a graph shown in the above example
int graph[][] = new int[][] {
{ 0, 16, 13, 0, 0, 0 }, { 0, 0, 10, 12, 0, 0 },
{ 0, 4, 0, 0, 14, 0 }, { 0, 0, 9, 0, 0, 20 },
{ 0, 0, 0, 7, 0, 4 }, { 0, 0, 0, 0, 0, 0 }
};
MaxFlow m = new MaxFlow();
System.out.println("The maximum possible flow is "
+ m.fordFulkerson(graph, 0, 5));
}
}