-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcwc.c
961 lines (781 loc) · 29.8 KB
/
cwc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
/*
---------------------------------------------------------------------------
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 21/07/2009
My thanks to Colin Sinclair for finding an error and suggesting a number
of improvements to this code
This file contains the code for implementing encryption and authentication
using AES with a Carter-Wegamn hash function. Note that it uses Microsoft
calls to set the FPU into specific operating conditions
*/
#include "cwc.h"
#include "mode_hdr.h"
#if defined(__cplusplus)
extern "C"
{
#endif
#define CBLK_LEN CWC_CBLK_SIZE
#define ABLK_LEN CWC_ABLK_SIZE
#define CBLK_MASK (CBLK_LEN - 1)
#define CTR_POS 12
#define be_inc(x,n) !++((x)[n+3]) && !++((x)[n+2]) && !++((x)[n+1]) && ++((x)[n])
#define le_inc(x,n) !++((x)[n]) && !++((x)[n+1]) && !++((x)[n+2]) && ++((x)[n+3])
/* define an unsigned 32-bit type */
#if defined( USE_FLOATS )
#include <float.h>
/*
Floating Point Unit Control
_MCW_RC Rounding Control Mask
_RC_NEAR near
_RC_DOWN down
_RC_UP up
_RC_CHOP chop
_MCW_PC Precision Control Mask
_PC_64 64 bits
_PC_53 53 bits
_PC_24 24 bits
Note this only conrols the normal FPU - special intrinsics are needed
to control the SSE/SSE2 FPU
*/
/* set to 53 bit precision and truncate towards zero */
#define set_FPU _controlfp(_PC_53 | _RC_CHOP, _MCW_PC | _MCW_RC)
/* set to default state */
#define reset_FPU _controlfp(CW_DEFAULT, 0xffff);
/*
The main cost in CWC hash calculation is in multiplying two 127 bit
numbers mod 2^127-1. This can be implemented quite efficiently using
floating point operations by splitting the two values into 24 bit
chunks so that product terms are 48 bits and sums of product terms
still fit into 53 bit double precision values. If b is 2^24 we have:
x = x[5]*b^5 + x[4]*b^4 + x[3]*b^3 + x[2]*b^2 + x[1]*b + x[0]
z = z[5]*b^5 + z[4]*b^4 + z[3]*b^3 + z[2]*b^2 + z[1]*b + z[0]
with the product terms:
r[ 0] = (x[0] * z[0])
r[ 1] = (x[0] * z[1] + x[1] * z[0]) * b
......
r[ 9] = (x[4] * z[5] + x[5] * z[4]) * b^9
r[10] = (x[5] * z[5]) * b ^ 10
Now we need to compute the modulus of each term mod 2^127 - 1. so
using the r[9] term (= v * b^9) as an example we can calculate:
b^9 = (2^24)^9 = 2^216 = 2^127 * 2^89 = 2^127 * b^3 * 2^17
v * b^9 = 2^127 * v * b^3 * 2^17
= (2^127 - 1) * v * b^3 * 2^17 + b^3 * (2^17 * v)
(v * b^9) mod (2^127 - 1) = (2^17 * v) * b^3;
So we can account for this term in the result by adding an extra
value to the r[3] term.
But v is a 48 bit value and we are adding 17 more bits with the
2^17 term so the result will overflow 53 bit arithmetic. So we
must split the result so that
(2^17 * v) * b^3 = v_hi * b^4 + v_lo * b^3
and add the low part to r[3] and the high part to r[4]. We hence
need the low 7 bits of v for v_lo and the high bits for v_hi
When the low bit of a 53 bit floating point number represents
the value 2^n the high bit represents 2^(52 + n) so if the low
bit represents 2^7 the high bit represents 2^59. So if we take
a number below 2^59 and add 2^59 to it we know that all bits
that represent values below 2^7 will be lost (however we must
ensure that the result is truncated and not rounded). So if we
do the computations
top = (v + 2^59) - 2^59
bot = v - top;
we have
2^17 * v = 2^17 * (top + bot)
= 2^24 * (2^-7 * top) + (2^17 * bot)
and
v_hi = 2^-7 * top and v_lo = 2^17 * bot
We can do the same calculations for r[6] to r[10]. For r[5] we
need to represent it as:
r[5] * b^5 = 2^120 * v = 2^127 * v_hi + 2^120 * v_lo
r[5] mod (2^127 - 1) = v_lo * b^5 + v_hi
where v_hi and v_lo are extracted as described above. We
then set r[5] from v_lo and add v_hi to r[0].
We have now got the values into r[0] to r[5] but they
are 48+ bit values that are offset by 24 bits as follows:
r[0] xxxxxxxxxxxx
r[1] xxxxxxxxxxxx
r[2] xxxxxxxxxxxx
.....
To get the 24 bit components we must hence carry the top
24+ bits of r[i] into r[i + 1] or i = 0..4. In this case
the values are split using (v + 2^76) - 2^76).
When we ripple the carries through like this we may find
that r[5] is larger than 2^127 - 1, in which case we have
to reduce r[5] once more. This might produce more carries
so if we want all results to fit in 24 bits we may have to
repeat the carry process.
However it turns out that we can work the next iteration of
the product without insisting that the top 29 bits of all
values are zero. These values only have to be small enough
to ensure that the sums of product terms in the next steps
don't overflow 53 bits.
Bernstein calls a reduction that ensures that the top 29
bits of all values are zero a 'freeze' operation. If the
resulting 'carries' are small, but not necessarily zero,
he calls the operation a 'squeeze'.
In fact the carry operations can be performed in many
different orders and this freedom can be used to optimise
the calculation. For more details see Daniel Bernstein's
paper "Floating Point Arithmetic and Message Authentication"
in the Journal of Cryptology (submitted in March 2000).
*/
static double tm24 = 1.0 / (65536.0 * 256.0);
static double tm07 = 2.0 / 256.0;
static double tp17 = 2.0 * 65536.0;
static double tp59 = 2048.0 * 65536.0 * 65536.0 * 65536.0;
static double tp76 = 4096.0 * 65536.0 * 65536.0 * 65536.0 * 65536.0;
/* reduce a value to its canonical form */
void freeze(double h[], int full)
{ double f, p;
p = h[0];
f = (p + tp76) - tp76;
h[0] = p - f;
p = h[1] += tm24 * f;
f = (p + tp76) - tp76;
h[1] = p - f;
p = h[2] += tm24 * f;
f = (p + tp76) - tp76;
h[2] = p - f;
p = h[3] += tm24 * f;
f = (p + tp76) - tp76;
h[3] = p - f;
p = h[4] += tm24 * f;
f = (p + tp76) - tp76;
h[4] = p - f;
h[5] += tm24 * f;
/* do modular reduction step */
/* if the value must be fully */
/* canonical then ripple any */
/* new carries produced by the */
/* modular reduction step */
if((f = ((h[5] + tp59) - tp59)) != 0.0)
{ int i = 0;
h[0] += tm07 * f; h[5] -= f;
if(full)
while(i < 5 && (f = ((h[i] + tp76) - tp76)) != 0.0)
{
h[i] -= f;
h[++i] += tm24 * f;
}
}
}
/* There are two implementations of cwc to choose from */
#if 1
void do_cwc(uint32_t in[], cwc_ctx ctx[1])
{ uint32_t data[3];
double a[6], v, f, p;
/* set FPU to operate in 53 bit precision and */
/* in truncate to zero mode */
set_FPU;
data[2] = bswap_32(in[2]);
data[1] = bswap_32(in[1]);
data[0] = bswap_32(in[0]);
/* split input data into 24 bit double values */
a[0] = data[2] & 0x00ffffff;
a[1] = (data[2] >> 24) | ((data[1] & 0x0000ffff) << 8);
a[2] = (data[1] >> 16) | ((data[0] & 0x000000ff) << 16);
a[3] = data[0] >> 8;
/* add into the running hash value */
a[0] += ctx->hash[0]; a[1] += ctx->hash[1];
a[2] += ctx->hash[2]; a[3] += ctx->hash[3];
a[4] = ctx->hash[4]; a[5] = ctx->hash[5];
/* calculate the low five terms of the product */
ctx->hash[0] = a[0] * ctx->zval[0];
ctx->hash[1] = a[1] * ctx->zval[0]
+ a[0] * ctx->zval[1];
ctx->hash[2] = a[2] * ctx->zval[0]
+ a[1] * ctx->zval[1]
+ a[0] * ctx->zval[2];
ctx->hash[3] = a[3] * ctx->zval[0]
+ a[2] * ctx->zval[1]
+ a[1] * ctx->zval[2]
+ a[0] * ctx->zval[3];
ctx->hash[4] = a[4] * ctx->zval[0]
+ a[3] * ctx->zval[1]
+ a[2] * ctx->zval[2]
+ a[1] * ctx->zval[3]
+ a[0] * ctx->zval[4];
ctx->hash[5] = a[5] * ctx->zval[0]
+ a[4] * ctx->zval[1]
+ a[3] * ctx->zval[2]
+ a[2] * ctx->zval[3]
+ a[1] * ctx->zval[4]
+ a[0] * ctx->zval[5];
v = a[5] * ctx->zval[5]; /* add in r[10] term */
f = (v + tp59) - tp59;
ctx->hash[4] += tp17 * (v - f);
ctx->hash[5] += tm07 * f;
f = (ctx->hash[5] + tp59) - tp59;
ctx->hash[5] -= f; /* modular reduction */
ctx->hash[0] += tm07 * f;
v = a[5] * ctx->zval[1]
+ a[4] * ctx->zval[2]
+ a[3] * ctx->zval[3]
+ a[2] * ctx->zval[4]
+ a[1] * ctx->zval[5]; /* add in r[6] term */
f = (v + tp59) - tp59;
p = ctx->hash[0] + tp17 * (v - f);
v = (p + tp76) - tp76;
ctx->hash[0] = p - v;
ctx->hash[1] += tm07 * f + tm24 * v;
v = a[5] * ctx->zval[2]
+ a[4] * ctx->zval[3]
+ a[3] * ctx->zval[4]
+ a[2] * ctx->zval[5]; /* add in r[7] term */
f = (v + tp59) - tp59;
p = ctx->hash[1] + tp17 * (v - f);
v = (p + tp76) - tp76;
ctx->hash[1] = p - v;
ctx->hash[2] += tm07 * f + tm24 * v;
v = a[5] * ctx->zval[3]
+ a[4] * ctx->zval[4]
+ a[3] * ctx->zval[5]; /* add in r[8] term */
f = (v + tp59) - tp59;
p = ctx->hash[2] + tp17 * (v - f);
v = (p + tp76) - tp76;
ctx->hash[2] = p - v;
ctx->hash[3] += tm07 * f + tm24 * v;
v = a[5] * ctx->zval[4]
+ a[4] * ctx->zval[5]; /* add in r[9] term */
f = (v + tp59) - tp59;
p = ctx->hash[3] + tp17 * (v - f);
v = (p + tp76) - tp76;
ctx->hash[3] = p - v;
ctx->hash[4] += tm07 * f + tm24 * v;
f = (ctx->hash[4] + tp76) - tp76;
ctx->hash[4] -= f;
ctx->hash[5] += tm24 * f;
reset_FPU;
}
#else
void do_cwc(uint32_t in[], cwc_ctx ctx[1])
{ uint32_t data[3];
double a[6], v, f;
/* set FPU to operate in 53 bit precision and */
/* in truncate to zero mode */
set_FPU;
data[2] = bswap_32(in[2]);
data[1] = bswap_32(in[1]);
data[0] = bswap_32(in[0]);
/* split input data into 24 bit double values */
a[0] = data[2] & 0x00ffffff;
a[1] = (data[2] >> 24) | ((data[1] & 0x0000ffff) << 8);
a[2] = (data[1] >> 16) | ((data[0] & 0x000000ff) << 16);
a[3] = data[0] >> 8;
/* add into the running hash value */
a[0] += ctx->hash[0]; a[1] += ctx->hash[1];
a[2] += ctx->hash[2]; a[3] += ctx->hash[3];
a[4] = ctx->hash[4]; a[5] = ctx->hash[5];
/* calculate the low five terms of the product */
ctx->hash[0] = a[0] * ctx->zval[0];
ctx->hash[1] = a[1] * ctx->zval[0]
+ a[0] * ctx->zval[1];
ctx->hash[2] = a[2] * ctx->zval[0]
+ a[1] * ctx->zval[1]
+ a[0] * ctx->zval[2];
ctx->hash[3] = a[3] * ctx->zval[0]
+ a[2] * ctx->zval[1]
+ a[1] * ctx->zval[2]
+ a[0] * ctx->zval[3];
ctx->hash[4] = a[4] * ctx->zval[0]
+ a[3] * ctx->zval[1]
+ a[2] * ctx->zval[2]
+ a[1] * ctx->zval[3]
+ a[0] * ctx->zval[4];
ctx->hash[5] = a[5] * ctx->zval[0]
+ a[4] * ctx->zval[1]
+ a[3] * ctx->zval[2]
+ a[2] * ctx->zval[3]
+ a[1] * ctx->zval[4]
+ a[0] * ctx->zval[5];
v = a[5] * ctx->zval[5]; /* add in r[10] term */
f = (v + tp59) - tp59;
ctx->hash[4] += tp17 * (v - f);
ctx->hash[5] += tm07 * f;
/* do a modular reduction step */
f = (ctx->hash[5] + tp59) - tp59;
ctx->hash[5] -= f;
ctx->hash[0] += tm07 * f;
v = a[5] * ctx->zval[1]
+ a[4] * ctx->zval[2]
+ a[3] * ctx->zval[3]
+ a[2] * ctx->zval[4]
+ a[1] * ctx->zval[5]; /* add in r[6] term */
f = (v + tp59) - tp59;
ctx->hash[0] += tp17 * (v - f);
ctx->hash[1] += tm07 * f;
v = a[5] * ctx->zval[2]
+ a[4] * ctx->zval[3]
+ a[3] * ctx->zval[4]
+ a[2] * ctx->zval[5]; /* add in r[7] term */
f = (v + tp59) - tp59;
ctx->hash[1] += tp17 * (v - f);
ctx->hash[2] += tm07 * f;
v = a[5] * ctx->zval[3]
+ a[4] * ctx->zval[4]
+ a[3] * ctx->zval[5]; /* add in r[8] term */
f = (v + tp59) - tp59;
ctx->hash[2] += tp17 * (v - f);
ctx->hash[3] += tm07 * f;
v = a[5] * ctx->zval[4]
+ a[4] * ctx->zval[5]; /* add in r[9] term */
f = (v + tp59) - tp59;
ctx->hash[3] += tp17 * (v - f);
ctx->hash[4] += tm07 * f;
/* ripple the carries */
f = (ctx->hash[0] + tp76) - tp76;
ctx->hash[0] -= f;
ctx->hash[1] += tm24 * f;
f = (ctx->hash[1] + tp76) - tp76;
ctx->hash[1] -= f;
ctx->hash[2] += tm24 * f;
f = (ctx->hash[2] + tp76) - tp76;
ctx->hash[2] -= f;
ctx->hash[3] += tm24 * f;
f = (ctx->hash[3] + tp76) - tp76;
ctx->hash[3] -= f;
ctx->hash[4] += tm24 * f;
f = (ctx->hash[4] + tp76) - tp76;
ctx->hash[4] -= f;
ctx->hash[5] += tm24 * f;
/* do a modular reduction step */
f = (ctx->hash[5] + tp59) - tp59;
ctx->hash[5] -= f;
ctx->hash[0] += tm07 * f;
reset_FPU;
}
#endif
#else
/* add multiple length unsigned values in big endian form */
/* little endian long words in big endian word order */
void add_4(uint32_t l[], uint32_t r[])
{ uint32_t ss, cc;
ss = l[3] + r[3];
cc = (ss < l[3] ? 1 : 0);
l[3] = ss;
ss = l[2] + r[2] + cc;
cc = (ss < l[2] ? 1 : ss > l[2] ? 0 : cc);
l[2] = ss;
ss = l[1] + r[1] + cc;
cc = (ss < l[1] ? 1 : ss > l[1] ? 0 : cc);
l[1] = ss;
l[0] += r[0] + cc;
}
/* multiply multiple length unsigned values in big endian form */
/* little endian long words in big endian word order */
void mlt_4(uint32_t r[], const uint32_t a[], const uint32_t b[])
{ uint64_t ch, cl, sm;
int i, j, k;
for(i = 0, cl = 0; i < 8; ++i)
{
/* number of terms in sum */
k = (i < 3 ? 0 : i - 3);
for(j = k, ch = 0; j <= i - k; ++j)
{
sm = (uint64_t)a[3 - j] * b[3 - i + j];
cl += (uint32_t)sm;
ch += (sm >> 32);
}
r[7 - i] = (uint32_t)cl;
cl = (cl >> 32) + ch;
}
}
/* Carter-Wegman hash iteration on 12 bytes of data */
void do_cwc(uint32_t in[], cwc_ctx ctx[1])
{ uint32_t *pt = ctx->hash + (CWC_CBLK_SIZE >> 2), data[4];
/* put big endian 32-bit items into little endian order */
data[3] = bswap_32(in[2]);
data[2] = bswap_32(in[1]);
data[1] = bswap_32(in[0]);
data[0] = 0;
/* add current hash value into the current data block */
add_4(data, ctx->hash);
/* multiply by the hash key in Z */
mlt_4(ctx->hash, data, ctx->zval);
/* we now want to find the remainder when divided by */
/* (2^127 - 1). If hash = 2^128 * hi + lo, we can see */
/* that hash = (2^127 - 1) * 2 * hi + 2 * hi + lo, so */
/* we can set the 128 bit remainder as 2 * hi + lo */
add_4(ctx->hash, ctx->hash);/* 2 * hi - if top bit = 1 */
if(*pt & 0x80000000) /* another 2^127-1 has to be */
{ /* subtracted from the result */
*pt &= 0x7fffffff;
*(pt - 1) += 1;
}
add_4(ctx->hash, pt); /* 2 * hi + lo - adjust the */
if(*ctx->hash & 0x80000000) /* result again (as above) */
{
*ctx->hash &= 0x7fffffff;
be_inc((uint32_t*)ctx->hash, 0);
}
}
#endif
ret_type cwc_init_and_key( /* initialise mode and set key */
const unsigned char key[], /* the key value */
unsigned long key_len, /* and its length in bytes */
cwc_ctx ctx[1]) /* the mode context */
{
uint32_t zv[CWC_CBLK_SIZE >> 2];
if(key_len != 16 && key_len != 24 && key_len != 32)
return RETURN_ERROR;
/* set all bytes in the context to zero */
memset(ctx, 0, sizeof(cwc_ctx));
/* set up encryption context */
aes_encrypt_key(key, key_len, ctx->enc_ctx);
/* initialise cwc z value */
memset(zv, 0, (CWC_CBLK_SIZE >> 2) * sizeof(uint32_t));
((unsigned char*)zv)[0] = 0xc0;
aes_encrypt((unsigned char*)zv, (unsigned char*)zv, ctx->enc_ctx);
((unsigned char*)zv)[0] &= 0x7f;
#if PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN
bswap32_block(zv, zv);
#endif
#if defined( USE_FLOATS )
/* set up the z value in 24 bit doubles */
ctx->zval[0] = zv[3] & 0x00ffffff;
ctx->zval[1] = (zv[3] >> 24) | ((zv[2] & 0x0000ffff) << 8);
ctx->zval[2] = (zv[2] >> 16) | ((zv[1] & 0x000000ff) << 16);
ctx->zval[3] = zv[1] >> 8;
ctx->zval[4] = zv[0] & 0x00ffffff;
ctx->zval[5] = zv[0] >> 24;
#endif
#if defined(USE_LONGS )
memcpy(ctx->zval, zv, CWC_CBLK_SIZE);
#endif
return RETURN_GOOD;
}
ret_type cwc_init_message( /* initialise a new message */
const unsigned char iv[], /* the initialisation vector */
unsigned long iv_len, /* and its length in bytes */
cwc_ctx ctx[1]) /* the mode context */
{ uint32_t i;
/* set up the initial iv in the context */
UI8_PTR(ctx->ctr_val)[0] = 0x80;
for(i = 0; i < 11; ++i)
UI8_PTR(ctx->ctr_val)[i + 1] = iv[i];
*UI32_PTR(UI8_PTR(ctx->ctr_val) + CTR_POS) = 0;
memset(ctx->cwc_buf, 0, sizeof(ctx->cwc_buf));
ctx->hdr_cnt = 0;
ctx->txt_acnt = 0;
ctx->txt_ccnt = 0;
#if defined( USE_FLOATS )
ctx->hash[0] = 0; ctx->hash[1] = 0;
ctx->hash[2] = 0; ctx->hash[3] = 0;
ctx->hash[4] = 0; ctx->hash[5] = 0;
#endif
#if defined( USE_LONGS )
memset(ctx->hash, 0, sizeof(ctx->hash));
#endif
return RETURN_GOOD;
}
ret_type cwc_auth_header( /* authenticate the header */
const unsigned char hdr[], /* the header buffer */
unsigned long hdr_len, /* and its length in bytes */
cwc_ctx ctx[1]) /* the mode context */
{ uint32_t cnt = 0, b_pos = ctx->hdr_cnt % ABLK_LEN;
if(!hdr_len)
return RETURN_GOOD;
if(!((hdr - (UI8_PTR(ctx->cwc_buf) + b_pos)) & BUF_ADRMASK))
{
while(cnt < hdr_len && (b_pos & BUF_ADRMASK))
UI8_PTR(ctx->cwc_buf)[b_pos++] = hdr[cnt++];
while(cnt + BUF_INC <= hdr_len && b_pos <= ABLK_LEN - BUF_INC)
{
*UNIT_PTR(UI8_PTR(ctx->cwc_buf) + b_pos) = *UNIT_PTR(hdr + cnt);
cnt += BUF_INC; b_pos += BUF_INC;
}
while(cnt + ABLK_LEN <= hdr_len)
{
do_cwc(UI32_PTR(ctx->cwc_buf), ctx);
memcpy(ctx->cwc_buf, hdr + cnt, ABLK_LEN);
cnt += ABLK_LEN;
}
}
else
{
while(cnt < hdr_len && b_pos < ABLK_LEN)
UI8_PTR(ctx->cwc_buf)[b_pos++] = hdr[cnt++];
while(cnt + ABLK_LEN <= hdr_len)
{
do_cwc(UI32_PTR(ctx->cwc_buf), ctx);
memcpy(ctx->cwc_buf, hdr + cnt, ABLK_LEN);
cnt += ABLK_LEN;
}
}
while(cnt < hdr_len)
{
if(b_pos == ABLK_LEN)
{
do_cwc(UI32_PTR(ctx->cwc_buf), ctx);
b_pos = 0;
}
UI8_PTR(ctx->cwc_buf)[b_pos++] = hdr[cnt++];
}
if(b_pos == ABLK_LEN)
{
do_cwc(UI32_PTR(ctx->cwc_buf), ctx);
}
ctx->hdr_cnt += cnt;
return RETURN_GOOD;
}
ret_type cwc_auth_data( /* authenticate ciphertext */
const unsigned char data[], /* the data buffer */
unsigned long data_len, /* and its length in bytes */
cwc_ctx ctx[1]) /* the mode context */
{ uint32_t cnt = 0, b_pos = ctx->txt_acnt % ABLK_LEN;
if(!data_len)
return RETURN_GOOD;
if (ctx->txt_acnt == 0)
{
uint32_t pos = ctx->hdr_cnt % ABLK_LEN;
if(pos)
{
while(pos < ABLK_LEN)
UI8_PTR(ctx->cwc_buf)[pos++] = 0;
do_cwc(UI32_PTR(ctx->cwc_buf), ctx);
}
}
if(!((data - (UI8_PTR(ctx->cwc_buf) + b_pos)) & BUF_ADRMASK))
{
while(cnt < data_len && (b_pos & BUF_ADRMASK))
UI8_PTR(ctx->cwc_buf)[b_pos++] = data[cnt++];
while(cnt + BUF_INC <= data_len && b_pos <= ABLK_LEN - BUF_INC)
{
*UNIT_PTR(UI8_PTR(ctx->cwc_buf) + b_pos) = *UNIT_PTR(data + cnt);
cnt += BUF_INC; b_pos += BUF_INC;
}
while(cnt + ABLK_LEN <= data_len)
{
do_cwc(UI32_PTR(ctx->cwc_buf), ctx);
memcpy(ctx->cwc_buf, data + cnt, ABLK_LEN);
cnt += ABLK_LEN;
}
}
else
{
while(cnt < data_len && b_pos < ABLK_LEN)
UI8_PTR(ctx->cwc_buf)[b_pos++] = data[cnt++];
while(cnt + ABLK_LEN <= data_len)
{
do_cwc(UI32_PTR(ctx->cwc_buf), ctx);
memcpy(ctx->cwc_buf, data + cnt, ABLK_LEN);
cnt += ABLK_LEN;
}
}
while(cnt < data_len)
{
if(b_pos == ABLK_LEN)
{
do_cwc(UI32_PTR(ctx->cwc_buf), ctx);
b_pos = 0;
}
UI8_PTR(ctx->cwc_buf)[b_pos++] = data[cnt++];
}
if(b_pos == ABLK_LEN)
do_cwc(UI32_PTR(ctx->cwc_buf), ctx);
ctx->txt_acnt += cnt;
return RETURN_GOOD;
}
ret_type cwc_crypt_data( /* encrypt or decrypt data */
unsigned char data[], /* the data buffer */
unsigned long data_len, /* and its length in bytes */
cwc_ctx ctx[1]) /* the mode context */
{ uint32_t cnt = 0, b_pos = ctx->txt_ccnt % CBLK_LEN;
if(!data_len)
return RETURN_GOOD;
if(!((data - (UI8_PTR(ctx->enc_ctr) + b_pos)) & BUF_ADRMASK))
{
if(b_pos)
{
while(cnt < data_len && (b_pos & BUF_ADRMASK))
data[cnt++] ^= UI8_PTR(ctx->enc_ctr)[b_pos++];
while(cnt + BUF_INC <= data_len && b_pos <= CBLK_LEN - BUF_INC)
{
*UNIT_PTR(data + cnt) ^= *UNIT_PTR(UI8_PTR(ctx->enc_ctr) + b_pos);
cnt += BUF_INC; b_pos += BUF_INC;
}
}
while(cnt + CBLK_LEN <= data_len)
{
be_inc(UI8_PTR(ctx->ctr_val), CTR_POS);
aes_encrypt(UI8_PTR(ctx->ctr_val), UI8_PTR(ctx->enc_ctr), ctx->enc_ctx);
xor_block_aligned(data + cnt, data + cnt, ctx->enc_ctr);
cnt += CBLK_LEN;
}
}
else
{
if(b_pos)
while(cnt < data_len && b_pos < CBLK_LEN)
data[cnt++] ^= UI8_PTR(ctx->enc_ctr)[b_pos++];
while(cnt + CBLK_LEN <= data_len)
{
be_inc(UI8_PTR(ctx->ctr_val), CTR_POS);
aes_encrypt(UI8_PTR(ctx->ctr_val), UI8_PTR(ctx->enc_ctr), ctx->enc_ctx);
xor_block(data + cnt, data + cnt, ctx->enc_ctr);
cnt += CBLK_LEN;
}
}
while(cnt < data_len)
{
if(b_pos == CBLK_LEN || !b_pos)
{
be_inc(UI8_PTR(ctx->ctr_val), CTR_POS);
aes_encrypt(UI8_PTR(ctx->ctr_val), UI8_PTR(ctx->enc_ctr), ctx->enc_ctx);
b_pos = 0;
}
data[cnt++] ^= UI8_PTR(ctx->enc_ctr)[b_pos++];
}
ctx->txt_ccnt += cnt;
return RETURN_GOOD;
}
ret_type cwc_compute_tag( /* compute authentication tag */
unsigned char tag[], /* the buffer for the tag */
unsigned long tag_len, /* and its length in bytes */
cwc_ctx ctx[1]) /* the mode context */
{ uint32_t pos, hh[4];
if(ctx->txt_acnt != ctx->txt_ccnt && ctx->txt_ccnt > 0)
return RETURN_ERROR;
if (ctx->txt_acnt == 0)
{
pos = ctx->hdr_cnt % ABLK_LEN;
if(pos)
{
while(pos < ABLK_LEN)
UI8_PTR(ctx->cwc_buf)[pos++] = 0;
do_cwc(UI32_PTR(ctx->cwc_buf), ctx);
}
}
pos = ctx->txt_acnt % ABLK_LEN;
if(pos)
{
while(pos < ABLK_LEN)
UI8_PTR(ctx->cwc_buf)[pos++] = 0;
do_cwc(UI32_PTR(ctx->cwc_buf), ctx);
}
#if defined( USE_FLOATS )
/* For 64-bit data lengths:
ctx->hash[0] += (ctx->txt_ccnt & 0xffffffff);
ctx->hash[1] += 256.0 * (ctx->txt_ccnt >> 32);
ctx->hash[2] += 65536.0 * (ctx->hdr_cnt & 0xffffffff);
ctx->hash[4] += (ctx->hdr_cnt >> 32);
*/
/* set FPU to operate in 53 bit precision */
/* and in truncate to zero mode */
set_FPU;
ctx->hash[0] += ctx->txt_ccnt;
ctx->hash[2] += 65536.0 * ctx->hdr_cnt;
freeze(ctx->hash, 1);
hh[0] = ((uint32_t)ctx->hash[4])
| (((uint32_t)ctx->hash[5]) << 24);
hh[1] = (((uint32_t)ctx->hash[2]) >> 16)
| (((uint32_t)ctx->hash[3]) << 8);
hh[2] = (((uint32_t)ctx->hash[1]) >> 8)
| ((((uint32_t)ctx->hash[2]) & 0x0000ffff) << 16);
hh[3] = ((uint32_t)ctx->hash[0])
| (((uint32_t)ctx->hash[1]) << 24);
reset_FPU;
#endif
#if defined( USE_LONGS )
/* For 64-bit data lengths:
hh[0] = (ctx->hdr_cnt >> 32);
hh[1] = (ctx->hdr_cnt & 0xffffffff);
hh[2] = (ctx->txt_acnt >> 32);
hh[3] = (ctx->txt_acnt & 0xffffffff);
*/
hh[0] = 0;
hh[1] = ctx->hdr_cnt;
hh[2] = 0;
hh[3] = ctx->txt_acnt;
add_4(ctx->hash, hh);
if(ctx->hash[0] & 0x80000000)
{
ctx->hash[0] &= 0x7fffffff;
be_inc(ctx->hash, 0);
}
hh[0] = ctx->hash[0];
hh[1] = ctx->hash[1];
hh[2] = ctx->hash[2];
hh[3] = ctx->hash[3];
#endif
#if PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN
bswap32_block(hh, hh);
#endif
aes_encrypt((unsigned char*)hh, (unsigned char*)hh, ctx->enc_ctx);
memcpy(ctx->enc_ctr, ctx->ctr_val, AES_BLOCK_SIZE);
*UI32_PTR(UI8_PTR(ctx->enc_ctr) + CTR_POS) = 0;
aes_encrypt(UI8_PTR(ctx->enc_ctr), UI8_PTR(ctx->enc_ctr), ctx->enc_ctx);
for(pos = 0; pos < tag_len; ++pos)
tag[pos] = ((unsigned char*)hh)[pos] ^ UI8_PTR(ctx->enc_ctr)[pos];
return (ctx->txt_ccnt == ctx->txt_acnt ? RETURN_GOOD : RETURN_WARN);
}
ret_type cwc_end( /* clean up and end operation */
cwc_ctx ctx[1]) /* the mode context */
{
memset(ctx, 0, sizeof(cwc_ctx));
return RETURN_GOOD;
}
ret_type cwc_encrypt( /* encrypt & authenticate data */
unsigned char data[], /* the data buffer */
unsigned long data_len, /* and its length in bytes */
cwc_ctx ctx[1]) /* the mode context */
{
cwc_crypt_data(data, data_len, ctx);
cwc_auth_data(data, data_len, ctx);
return RETURN_GOOD;
}
ret_type cwc_decrypt( /* authenticate & decrypt data */
unsigned char data[], /* the data buffer */
unsigned long data_len, /* and its length in bytes */
cwc_ctx ctx[1]) /* the mode context */
{
cwc_auth_data(data, data_len, ctx);
cwc_crypt_data(data, data_len, ctx);
return RETURN_GOOD;
}
ret_type cwc_encrypt_message( /* encrypt an entire message */
const unsigned char iv[], /* the initialisation vector */
unsigned long iv_len, /* and its length in bytes */
const unsigned char hdr[], /* the header buffer */
unsigned long hdr_len, /* and its length in bytes */
unsigned char msg[], /* the message buffer */
unsigned long msg_len, /* and its length in bytes */
unsigned char tag[], /* the buffer for the tag */
unsigned long tag_len, /* and its length in bytes */
cwc_ctx ctx[1]) /* the mode context */
{
cwc_init_message(iv, iv_len, ctx);
cwc_auth_header(hdr, hdr_len, ctx);
cwc_encrypt(msg, msg_len, ctx);
return cwc_compute_tag(tag, tag_len, ctx) ? RETURN_ERROR : RETURN_GOOD;
}
ret_type cwc_decrypt_message( /* decrypt an entire message */
const unsigned char iv[], /* the initialisation vector */
unsigned long iv_len, /* and its length in bytes */
const unsigned char hdr[], /* the header buffer */
unsigned long hdr_len, /* and its length in bytes */
unsigned char msg[], /* the message buffer */
unsigned long msg_len, /* and its length in bytes */
const unsigned char tag[], /* the buffer for the tag */
unsigned long tag_len, /* and its length in bytes */
cwc_ctx ctx[1]) /* the mode context */
{ uint8_t local_tag[CBLK_LEN];
ret_type rr;
cwc_init_message(iv, iv_len, ctx);
cwc_auth_header(hdr, hdr_len, ctx);
cwc_decrypt(msg, msg_len, ctx);
rr = cwc_compute_tag(local_tag, tag_len, ctx);
return (rr != RETURN_GOOD || memcmp(tag, local_tag, tag_len)) ? RETURN_ERROR : RETURN_GOOD;
}
#if defined(__cplusplus)
}
#endif