-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy patheax.c
416 lines (351 loc) · 14.5 KB
/
eax.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/*
---------------------------------------------------------------------------
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 21/07/2009
This code implements the EAX combined encryption and authentication mode
specified M. Bellare, P. Rogaway and D. Wagner.
This is a byte oriented version in which the nonce is of limited length
*/
#include "eax.h"
#include "mode_hdr.h"
#if defined(__cplusplus)
extern "C"
{
#endif
#define BLOCK_SIZE AES_BLOCK_SIZE /* block length */
#define BLK_ADR_MASK (BLOCK_SIZE - 1) /* mask for 'in block' address */
#define inc_ctr(x) \
{ int i = BLOCK_SIZE; while(i-- > 0 && !++(UI8_PTR(x)[i])) ; }
#define dec_ctr(x) \
{ int i = BLOCK_SIZE; while(i-- > 0 && !(UI8_PTR(x)[i])--) ; }
ret_type eax_init_and_key( /* initialise mode and set key */
const unsigned char key[], /* the key value */
unsigned long key_len, /* and its length in bytes */
eax_ctx ctx[1]) /* the mode context */
{ static uint8_t x_t[4] = { 0x00, 0x87, 0x0e, 0x87 ^ 0x0e };
uint8_t t, *p;
uint32_t i;
/* set the context to all zeroes */
memset(ctx, 0, sizeof(eax_ctx));
/* set the AES key */
aes_encrypt_key(key, key_len, ctx->aes);
/* compute E(0) (needed for the pad values) */
aes_encrypt(UI8_PTR(ctx->pad_xvv), UI8_PTR(ctx->pad_xvv), ctx->aes);
/* compute {02} * {E(0)} and {04} * {E(0)} */
/* GF(2^128) mod x^128 + x^7 + x^2 + x + 1 */
for(i = 0, p = UI8_PTR(ctx->pad_xvv), t = *p >> 6; i < EAX_BLOCK_SIZE - 1; ++i, ++p)
{
*(p + 16) = (*p << 2) | (*(p + 1) >> 6);
*p = (*p << 1) | (*(p + 1) >> 7);
}
*(p + 16) = (*p << 2) ^ x_t[t];
*(p + 15) ^= (t >>= 1);
*p = (*p << 1) ^ x_t[t];
return RETURN_GOOD;
}
ret_type eax_init_message( /* initialise a new message */
const unsigned char iv[], /* the initialisation vector */
unsigned long iv_len, /* and its length in bytes */
eax_ctx ctx[1]) /* the mode context */
{ uint32_t i = 0, n_pos = 0;
uint8_t *p;
memset(ctx->nce_cbc, 0, EAX_BLOCK_SIZE);
memset(ctx->hdr_cbc, 0, EAX_BLOCK_SIZE);
memset(ctx->txt_cbc, 0, EAX_BLOCK_SIZE);
/* set the header CBC start value */
UI8_PTR(ctx->hdr_cbc)[EAX_BLOCK_SIZE - 1] = 1;
ctx->hdr_cnt = 0;
/* set the ciphertext CBC start value */
UI8_PTR(ctx->txt_cbc)[EAX_BLOCK_SIZE - 1] = 2;
ctx->txt_ccnt = 0; /* encryption count */
ctx->txt_acnt = 0; /* authentication count */
/* if the nonce length is zero, the OMAC */
/* message is a block of zeroes which gives */
/* the pre-encrypted tag as the Lu value */
if(iv_len)
{
n_pos = 16;
/* compile the OMAC value for the nonce */
i = 0;
while(i < iv_len)
{
if(n_pos == EAX_BLOCK_SIZE)
{
aes_encrypt(UI8_PTR(ctx->nce_cbc), UI8_PTR(ctx->nce_cbc), ctx->aes);
n_pos = 0;
}
UI8_PTR(ctx->nce_cbc)[n_pos++] ^= iv[i++];
}
/* do the OMAC padding for the nonce */
p = UI8_PTR(ctx->pad_xvv);
if(n_pos < EAX_BLOCK_SIZE)
{
UI8_PTR(ctx->nce_cbc)[n_pos] ^= 0x80;
p += 16;
}
for(i = 0; i < EAX_BLOCK_SIZE; ++i)
UI8_PTR(ctx->nce_cbc)[i] ^= p[i];
}
else
memcpy(ctx->nce_cbc, ctx->pad_xvv, EAX_BLOCK_SIZE);
/* compute the OMAC*(nonce) value */
aes_encrypt(UI8_PTR(ctx->nce_cbc), UI8_PTR(ctx->nce_cbc), ctx->aes);
/* copy value into counter for CTR */
memcpy(ctx->ctr_val, ctx->nce_cbc, EAX_BLOCK_SIZE);
return RETURN_GOOD;
}
ret_type eax_auth_header( /* authenticate the header */
const unsigned char hdr[], /* the header buffer */
unsigned long hdr_len, /* and its length in bytes */
eax_ctx ctx[1]) /* the mode context */
{ uint32_t cnt = 0, b_pos = ctx->hdr_cnt & BLK_ADR_MASK;
if(!hdr_len)
return RETURN_GOOD;
if(!((hdr - (UI8_PTR(ctx->hdr_cbc) + b_pos)) & BUF_ADRMASK))
{
if(b_pos)
{
while(cnt < hdr_len && (b_pos & BUF_ADRMASK))
UI8_PTR(ctx->hdr_cbc)[b_pos++] ^= hdr[cnt++];
while(cnt + BUF_INC <= hdr_len && b_pos <= BLOCK_SIZE - BUF_INC)
{
*UNIT_PTR(UI8_PTR(ctx->hdr_cbc) + b_pos) ^= *UNIT_PTR(hdr + cnt);
cnt += BUF_INC; b_pos += BUF_INC;
}
}
while(cnt + BLOCK_SIZE <= hdr_len)
{
aes_encrypt(UI8_PTR(ctx->hdr_cbc), UI8_PTR(ctx->hdr_cbc), ctx->aes);
xor_block_aligned(ctx->hdr_cbc, ctx->hdr_cbc, hdr + cnt);
cnt += BLOCK_SIZE;
}
}
else
{
if(b_pos)
while(cnt < hdr_len && b_pos < BLOCK_SIZE)
UI8_PTR(ctx->hdr_cbc)[b_pos++] ^= hdr[cnt++];
while(cnt + BLOCK_SIZE <= hdr_len)
{
aes_encrypt(UI8_PTR(ctx->hdr_cbc), UI8_PTR(ctx->hdr_cbc), ctx->aes);
xor_block(ctx->hdr_cbc, ctx->hdr_cbc, hdr + cnt);
cnt += BLOCK_SIZE;
}
}
while(cnt < hdr_len)
{
if(b_pos == BLOCK_SIZE || !b_pos)
{
aes_encrypt(UI8_PTR(ctx->hdr_cbc), UI8_PTR(ctx->hdr_cbc), ctx->aes);
b_pos = 0;
}
UI8_PTR(ctx->hdr_cbc)[b_pos++] ^= hdr[cnt++];
}
ctx->hdr_cnt += cnt;
return RETURN_GOOD;
}
ret_type eax_auth_data( /* authenticate ciphertext data */
const unsigned char data[], /* the data buffer */
unsigned long data_len, /* and its length in bytes */
eax_ctx ctx[1]) /* the mode context */
{ uint32_t cnt = 0, b_pos = ctx->txt_acnt & BLK_ADR_MASK;
if(!data_len)
return RETURN_GOOD;
if(!((data - (UI8_PTR(ctx->txt_cbc) + b_pos)) & BUF_ADRMASK))
{
if(b_pos)
{
while(cnt < data_len && (b_pos & BUF_ADRMASK))
UI8_PTR(ctx->txt_cbc)[b_pos++] ^= data[cnt++];
while(cnt + BUF_INC <= data_len && b_pos <= BLOCK_SIZE - BUF_INC)
{
*UNIT_PTR(UI8_PTR(ctx->txt_cbc) + b_pos) ^= *UNIT_PTR(data + cnt);
cnt += BUF_INC; b_pos += BUF_INC;
}
}
while(cnt + BLOCK_SIZE <= data_len)
{
aes_encrypt(UI8_PTR(ctx->txt_cbc), UI8_PTR(ctx->txt_cbc), ctx->aes);
xor_block_aligned(ctx->txt_cbc, ctx->txt_cbc, data + cnt);
cnt += BLOCK_SIZE;
}
}
else
{
if(b_pos)
while(cnt < data_len && b_pos < BLOCK_SIZE)
UI8_PTR(ctx->txt_cbc)[b_pos++] ^= data[cnt++];
while(cnt + BLOCK_SIZE <= data_len)
{
aes_encrypt(UI8_PTR(ctx->txt_cbc), UI8_PTR(ctx->txt_cbc), ctx->aes);
xor_block(ctx->txt_cbc, ctx->txt_cbc, data + cnt);
cnt += BLOCK_SIZE;
}
}
while(cnt < data_len)
{
if(b_pos == BLOCK_SIZE || !b_pos)
{
aes_encrypt(UI8_PTR(ctx->txt_cbc), UI8_PTR(ctx->txt_cbc), ctx->aes);
b_pos = 0;
}
UI8_PTR(ctx->txt_cbc)[b_pos++] ^= data[cnt++];
}
ctx->txt_acnt += cnt;
return RETURN_GOOD;
}
ret_type eax_crypt_data( /* encrypt or decrypt data */
unsigned char data[], /* the data buffer */
unsigned long data_len, /* and its length in bytes */
eax_ctx ctx[1]) /* the mode context */
{ uint32_t cnt = 0, b_pos = ctx->txt_ccnt & BLK_ADR_MASK;
if(!data_len)
return RETURN_GOOD;
if(!((data - (UI8_PTR(ctx->enc_ctr) + b_pos)) & BUF_ADRMASK))
{
if(b_pos)
{
while(cnt < data_len && (b_pos & BUF_ADRMASK))
data[cnt++] ^= UI8_PTR(ctx->enc_ctr)[b_pos++];
while(cnt + BUF_INC <= data_len && b_pos <= BLOCK_SIZE - BUF_INC)
{
*UNIT_PTR(data + cnt) ^= *UNIT_PTR(UI8_PTR(ctx->enc_ctr) + b_pos);
cnt += BUF_INC; b_pos += BUF_INC;
}
}
while(cnt + BLOCK_SIZE <= data_len)
{
aes_encrypt(UI8_PTR(ctx->ctr_val), UI8_PTR(ctx->enc_ctr), ctx->aes);
inc_ctr(ctx->ctr_val);
xor_block_aligned(data + cnt, data + cnt, ctx->enc_ctr);
cnt += BLOCK_SIZE;
}
}
else
{
if(b_pos)
while(cnt < data_len && b_pos < BLOCK_SIZE)
data[cnt++] ^= UI8_PTR(ctx->enc_ctr)[b_pos++];
while(cnt + BLOCK_SIZE <= data_len)
{
aes_encrypt(UI8_PTR(ctx->ctr_val), UI8_PTR(ctx->enc_ctr), ctx->aes);
inc_ctr(ctx->ctr_val);
xor_block(data + cnt, data + cnt, ctx->enc_ctr);
cnt += BLOCK_SIZE;
}
}
while(cnt < data_len)
{
if(b_pos == BLOCK_SIZE || !b_pos)
{
aes_encrypt(UI8_PTR(ctx->ctr_val), UI8_PTR(ctx->enc_ctr), ctx->aes);
b_pos = 0;
inc_ctr(ctx->ctr_val);
}
data[cnt++] ^= UI8_PTR(ctx->enc_ctr)[b_pos++];
}
ctx->txt_ccnt += cnt;
return RETURN_GOOD;
}
ret_type eax_compute_tag( /* compute authentication tag */
unsigned char tag[], /* the buffer for the tag */
unsigned long tag_len, /* and its length in bytes */
eax_ctx ctx[1]) /* the mode context */
{ uint32_t i;
uint8_t *p;
if(ctx->txt_acnt != ctx->txt_ccnt && ctx->txt_ccnt > 0)
return RETURN_ERROR;
/* complete OMAC* for header value */
p = UI8_PTR(ctx->pad_xvv);
if(i = ctx->hdr_cnt & BLK_ADR_MASK)
{
UI8_PTR(ctx->hdr_cbc)[i] ^= 0x80;
p += 16;
}
xor_block_aligned(ctx->hdr_cbc, ctx->hdr_cbc, p);
aes_encrypt(UI8_PTR(ctx->hdr_cbc), UI8_PTR(ctx->hdr_cbc), ctx->aes);
/* complete OMAC* for ciphertext value */
p = UI8_PTR(ctx->pad_xvv);
if(i = ctx->txt_acnt & BLK_ADR_MASK)
{
UI8_PTR(ctx->txt_cbc)[i] ^= 0x80;
p += 16;
}
xor_block_aligned(ctx->txt_cbc, ctx->txt_cbc, p);
aes_encrypt(UI8_PTR(ctx->txt_cbc), UI8_PTR(ctx->txt_cbc), ctx->aes);
/* compute final authentication tag */
for(i = 0; i < (unsigned int)tag_len; ++i)
tag[i] = UI8_PTR(ctx->nce_cbc)[i] ^ UI8_PTR(ctx->txt_cbc)[i] ^ UI8_PTR(ctx->hdr_cbc)[i];
return (ctx->txt_ccnt == ctx->txt_acnt ? RETURN_GOOD : RETURN_WARN);
}
ret_type eax_end( /* clean up and end operation */
eax_ctx ctx[1]) /* the mode context */
{
memset(ctx, 0, sizeof(eax_ctx));
return RETURN_GOOD;
}
ret_type eax_encrypt( /* encrypt & authenticate data */
unsigned char data[], /* the data buffer */
unsigned long data_len, /* and its length in bytes */
eax_ctx ctx[1]) /* the mode context */
{
eax_crypt_data(data, data_len, ctx);
eax_auth_data(data, data_len, ctx);
return RETURN_GOOD;
}
ret_type eax_decrypt( /* authenticate & decrypt data */
unsigned char data[], /* the data buffer */
unsigned long data_len, /* and its length in bytes */
eax_ctx ctx[1]) /* the mode context */
{
eax_auth_data(data, data_len, ctx);
eax_crypt_data(data, data_len, ctx);
return RETURN_GOOD;
}
ret_type eax_encrypt_message( /* encrypt an entire message */
const unsigned char iv[], /* the initialisation vector */
unsigned long iv_len, /* and its length in bytes */
const unsigned char hdr[], /* the header buffer */
unsigned long hdr_len, /* and its length in bytes */
unsigned char msg[], /* the message buffer */
unsigned long msg_len, /* and its length in bytes */
unsigned char tag[], /* the buffer for the tag */
unsigned long tag_len, /* and its length in bytes */
eax_ctx ctx[1]) /* the mode context */
{
eax_init_message(iv, iv_len, ctx);
eax_auth_header(hdr, hdr_len, ctx);
eax_encrypt(msg, msg_len, ctx);
return eax_compute_tag(tag, tag_len, ctx) ? RETURN_ERROR : RETURN_GOOD;
}
ret_type eax_decrypt_message( /* decrypt an entire message */
const unsigned char iv[], /* the initialisation vector */
unsigned long iv_len, /* and its length in bytes */
const unsigned char hdr[], /* the header buffer */
unsigned long hdr_len, /* and its length in bytes */
unsigned char msg[], /* the message buffer */
unsigned long msg_len, /* and its length in bytes */
const unsigned char tag[], /* the buffer for the tag */
unsigned long tag_len, /* and its length in bytes */
eax_ctx ctx[1]) /* the mode context */
{ uint8_t local_tag[BLOCK_SIZE];
ret_type rr;
eax_init_message(iv, iv_len, ctx);
eax_auth_header(hdr, hdr_len, ctx);
eax_decrypt(msg, msg_len, ctx);
rr = eax_compute_tag(local_tag, tag_len, ctx);
return (rr != RETURN_GOOD || memcmp(tag, local_tag, tag_len)) ? RETURN_ERROR : RETURN_GOOD;
}
#if defined(__cplusplus)
}
#endif