Kashgari provides several models for text classification,
All labeling models inherit from the ABCClassificationModel
.
You could easily switch from one model to another just by changing one line of code.
Name | info |
---|---|
BiLSTM_Model | |
BiGRU_Model | |
CNN_Model | |
CNN_LSTM_Model | |
CNN_GRU_Model | |
CNN_Attention_Model |
Kashgari provides the basic intent-classification corpus for experiments. You could also use your corpus in any language for training.
# Load build-in corpus.
from kashgari.corpus import SMP2018ECDTCorpus
train_x, train_y = SMP2018ECDTCorpus.load_data('train')
valid_x, valid_y = SMP2018ECDTCorpus.load_data('valid')
test_x, test_y = SMP2018ECDTCorpus.load_data('test')
# Or use your own corpus
train_x = [['Hello', 'world'], ['Hello', 'Kashgari']]
train_y = ['a', 'b']
valid_x, valid_y = train_x, train_y
test_x, test_x = train_x, train_y
Then train our first model. All models provided some APIs, so you could use any labeling model here.
import kashgari
from kashgari.tasks.classification import BiLSTM_Model
import logging
logging.basicConfig(level='DEBUG')
model = BiLSTM_Model()
model.fit(train_x, train_y, valid_x, valid_y)
# Evaluate the model
model.evaluate(test_x, test_y)
# Model data will save to `saved_ner_model` folder
model.save('saved_classification_model')
# Load saved model
loaded_model = BiLSTM_Model.load_model('saved_classification_model')
loaded_model.predict(test_x[:10])
# To continue training, compile the newly loaded model first
loaded_model.compile_model()
model.fit(train_x, train_y, valid_x, valid_y)
That's all your need to do. Easy right.
Kashgari provides varies Language model Embeddings for transfer learning. Here is the example for BERT Embedding.
import kashgari
from kashgari.tasks.classification import BiGRU_Model
from kashgari.embeddings import BertEmbedding
import logging
logging.basicConfig(level='DEBUG')
bert_embed = BertEmbedding('<PRE_TRAINED_BERT_MODEL_FOLDER>')
model = BiGRU_Model(bert_embed, sequence_length=100)
model.fit(train_x, train_y, valid_x, valid_y)
You could replace bert_embedding with any Embedding class in kashgari.embeddings
. More info about Embedding: LINK THIS.
You could easily change model's hyper-parameters. For example, we change the lstm unit in BiLSTM_Model
from 128 to 32.
from kashgari.tasks.classification import BiLSTM_Model
hyper = BiLSTM_Model.default_hyper_parameters()
print(hyper)
# {'layer_bi_lstm': {'units': 128, 'return_sequences': False}, 'layer_dense': {'activation': 'softmax'}}
hyper['layer_bi_lstm']['units'] = 32
model = BiLSTM_Model(hyper_parameters=hyper)
Kashgari already supports using customized optimizer, like RAdam.
from kashgari.corpus import SMP2018ECDTCorpus
from kashgari.tasks.classification import BiLSTM_Model
# Remember to import kashgari before than RAdam
from keras_radam import RAdam
train_x, train_y = SMP2018ECDTCorpus.load_data('train')
valid_x, valid_y = SMP2018ECDTCorpus.load_data('valid')
test_x, test_y = SMP2018ECDTCorpus.load_data('test')
model = BiLSTM_Model()
# This step will build token dict, label dict and model structure
model.build_model(train_x, train_y, valid_x, valid_y)
# Compile model with custom optimizer, you can also customize loss and metrics.
optimizer = RAdam()
model.compile_model(optimizer=optimizer)
# Train model
model.fit(train_x, train_y, valid_x, valid_y)
Kashgari is based on keras so that you could use all of the tf.keras callbacks directly with Kashgari model. For example, here is how to visualize training with tensorboard.
from tensorflow.python import keras
from kashgari.tasks.classification import BiGRU_Model
from kashgari.callbacks import EvalCallBack
import logging
logging.basicConfig(level='DEBUG')
model = BiGRU_Model()
tf_board_callback = keras.callbacks.TensorBoard(log_dir='./logs', update_freq=1000)
# Build-in callback for print precision, recall and f1 at every epoch step
eval_callback = EvalCallBack(kash_model=model,
valid_x=valid_x,
valid_y=valid_y,
step=5)
model.fit(train_x,
train_y,
valid_x,
valid_y,
batch_size=100,
callbacks=[eval_callback, tf_board_callback])
Kashgari support multi-label classification, Here is how we build one.
Let's assume we have a dataset like this.
x = [
['This','news','are' , 'very','well','organized'],
['What','extremely','usefull','tv','show'],
['The','tv','presenter','were','very','well','dress'],
['Multi-class', 'classification', 'means', 'a', 'classification', 'task', 'with', 'more', 'than', 'two', 'classes']
]
y = [
['A', 'B'],
['A',],
['B', 'C'],
[]
]
Now we need to init a Processor
and Embedding
for our model, then prepare model and fit.
import logging
from kashgari.embeddings import BertEmbedding
from kashgari.tasks.classification import BiLSTM_Model
logging.basicConfig(level='DEBUG')
bert_embed = BertEmbedding('<PRE_TRAINED_BERT_MODEL_FOLDER>')
model = BiLSTM_Model(bert_embed, sequence_length=100, multi_label=True)
model.fit(x, y)
It is very easy and straightforward to build your own customized model,
just inherit the ABCEmbedding
and implement the default_hyper_parameters()
function and build_model_arc()
function.
from typing import Dict, Any
from tensorflow import keras
from kashgari.tasks.classification.abc_model import ABCClassificationModel
from kashgari.layers import L
import logging
logging.basicConfig(level='DEBUG')
class DoubleBLSTMModel(ABCClassificationModel):
"""Bidirectional LSTM Sequence Labeling Model"""
@classmethod
def default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]:
"""
Get hyper parameters of model
Returns:
hyper parameters dict
"""
return {
'layer_blstm1': {
'units': 128,
'return_sequences': True
},
'layer_blstm2': {
'units': 128,
'return_sequences': False
},
'layer_dropout': {
'rate': 0.4
},
'layer_time_distributed': {},
'layer_output': {
}
}
def build_model_arc(self):
"""
build model architectural
"""
output_dim = len(self.processor.label2idx)
config = self.hyper_parameters
embed_model = self.embedding.embed_model
# Define your layers
layer_blstm1 = L.Bidirectional(L.LSTM(**config['layer_blstm1']),
name='layer_blstm1')
layer_blstm2 = L.Bidirectional(L.LSTM(**config['layer_blstm2']),
name='layer_blstm2')
layer_dropout = L.Dropout(**config['layer_dropout'],
name='layer_dropout')
layer_time_distributed = L.Dense(output_dim, **config['layer_output'])
# You need to use this actiovation layer as final activation
# to suppor multi-label classification
layer_activation = self._activation_layer()
# Define tensor flow
tensor = layer_blstm1(embed_model.output)
tensor = layer_blstm2(tensor)
tensor = layer_dropout(tensor)
tensor = layer_time_distributed(tensor)
output_tensor = layer_activation(tensor)
# Init model
self.tf_model = keras.Model(embed_model.inputs, output_tensor)
model = DoubleBLSTMModel()
model.fit(train_x, train_y, valid_x, valid_y)
We have run the classification tests on SMP2018ECDTCorpus. Here is the full code: colab link
- SEQUENCE_LENGTH = 60
- EPOCHS = 30
- EARL_STOPPING_PATIENCE = 10
- REDUCE_RL_PATIENCE = 5
- BATCH_SIZE = 64
Embedding | Model | Best F1-Score | Best F1 @ epochs | |
---|---|---|---|---|
0 | RoBERTa-wwm-ext | BiLSTM_Model | 92.89 | 15 |
1 | RoBERTa-wwm-ext | BiGRU_Model | 94.57 | 10 |
2 | RoBERTa-wwm-ext | CNN_Model | 92.95 | 12 |
3 | RoBERTa-wwm-ext | CNN_Attention_Model | 92.07 | 3 |
4 | RoBERTa-wwm-ext | CNN_GRU_Model | 89.56 | 22 |
5 | RoBERTa-wwm-ext | CNN_LSTM_Model | 90.9 | 26 |
6 | Bert-Chinese | BiLSTM_Model | 93.74 | 4 |
7 | Bert-Chinese | BiGRU_Model | 93.12 | 13 |
8 | Bert-Chinese | CNN_Model | 92.95 | 13 |
9 | Bert-Chinese | CNN_Attention_Model | 92.04 | 8 |
10 | Bert-Chinese | CNN_GRU_Model | 92.88 | 8 |
11 | Bert-Chinese | CNN_LSTM_Model | 91.15 | 24 |
12 | Bare | BiLSTM_Model | 81.96 | 11 |
13 | Bare | BiGRU_Model | 82.86 | 9 |
14 | Bare | CNN_Model | 86.61 | 11 |
15 | Bare | CNN_Attention_Model | 78.84 | 12 |
16 | Bare | CNN_GRU_Model | 66.14 | 26 |
17 | Bare | CNN_LSTM_Model | 48.13 | 29 |