You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am using an A100GPU to run the code, it seems to be incompatible with CUDA10.2, report the following error.
INFO 2024-09-09 20:39:10,546 state_update_hooks.py: 113: Starting phase 0 [train]
--- Logging error ---
Traceback (most recent call last):
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 150, in launch_distributed
_distributed_worker(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 192, in _distributed_worker
run_engine(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/engine_registry.py", line 86, in run_engine
engine.run_engine(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/train.py", line 39, in run_engine
train_main(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/train.py", line 130, in train_main
trainer.train()
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/trainer_main.py", line 201, in train
raise e
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/trainer_main.py", line 193, in train
task = train_step_fn(task)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/train_steps/custom_train_step_surgery.py", line 189, in custom_train_step_surgery
model_output = task.model(sample["input"])
File "/home/NVME-2/SelfSupSurg/ext_libs/ClassyVision/classy_vision/models/classy_model.py", line 97, in call
return self.forward(*args, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/ClassyVision/classy_vision/models/classy_model.py", line 111, in forward
out = self.classy_model(*args, **kwargs)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/base_ssl_model.py", line 179, in forward
return self.single_input_forward(batch, self._output_feature_names, self.heads)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/base_ssl_model.py", line 127, in single_input_forward
feats = self.trunk(batch, feature_names)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/trunks/resnext.py", line 184, in forward
out = get_trunk_forward_outputs(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/model_helpers.py", line 463, in get_trunk_forward_outputs
feat = feature_block(feat)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in call_impl
result = self.forward(*input, **kwargs)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/apex/parallel/optimized_sync_batchnorm.py", line 85, in forward
return SyncBatchnormFunction.apply(input, z, self.weight, self.bias, self.running_mean, self.running_var, self.eps, self.training or not self.track_running_stats, exponential_average_factor, self.process_group, channel_last, self.fuse_relu)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/apex/parallel/optimized_sync_batchnorm_kernel.py", line 36, in forward
count_t = torch.empty(1, dtype=mean.dtype, device=mean.device).fill(count)
RuntimeError: CUDA error: no kernel image is available for execution on the device
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 1085, in emit
msg = self.format(record)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 929, in format
return fmt.format(record)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 668, in format
record.message = record.getMessage()
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 373, in getMessage
msg = msg % self.args
TypeError: not all arguments converted during string formatting
Call stack:
File "main.py", line 97, in
hydra_main(overrides=overrides, mode=training_mode)
File "main.py", line 59, in hydra_main
launch_distributed(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 162, in launch_distributed
logging.error("Wrapping up, caught exception: ", e)
Message: 'Wrapping up, caught exception: '
Arguments: (RuntimeError('CUDA error: no kernel image is available for execution on the device'),)
--- Logging error ---
Traceback (most recent call last):
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 150, in launch_distributed
_distributed_worker(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 192, in _distributed_worker
run_engine(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/engine_registry.py", line 86, in run_engine
engine.run_engine(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/train.py", line 39, in run_engine
train_main(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/train.py", line 130, in train_main
trainer.train()
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/trainer_main.py", line 201, in train
raise e
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/trainer_main.py", line 193, in train
task = train_step_fn(task)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/train_steps/custom_train_step_surgery.py", line 189, in custom_train_step_surgery
model_output = task.model(sample["input"])
File "/home/NVME-2/SelfSupSurg/ext_libs/ClassyVision/classy_vision/models/classy_model.py", line 97, in call
return self.forward(*args, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/ClassyVision/classy_vision/models/classy_model.py", line 111, in forward
out = self.classy_model(*args, **kwargs)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/base_ssl_model.py", line 179, in forward
return self.single_input_forward(batch, self._output_feature_names, self.heads)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/base_ssl_model.py", line 127, in single_input_forward
feats = self.trunk(batch, feature_names)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/trunks/resnext.py", line 184, in forward
out = get_trunk_forward_outputs(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/model_helpers.py", line 463, in get_trunk_forward_outputs
feat = feature_block(feat)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in call_impl
result = self.forward(*input, **kwargs)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/apex/parallel/optimized_sync_batchnorm.py", line 85, in forward
return SyncBatchnormFunction.apply(input, z, self.weight, self.bias, self.running_mean, self.running_var, self.eps, self.training or not self.track_running_stats, exponential_average_factor, self.process_group, channel_last, self.fuse_relu)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/apex/parallel/optimized_sync_batchnorm_kernel.py", line 36, in forward
count_t = torch.empty(1, dtype=mean.dtype, device=mean.device).fill(count)
RuntimeError: CUDA error: no kernel image is available for execution on the device
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 1085, in emit
msg = self.format(record)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 929, in format
return fmt.format(record)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 668, in format
record.message = record.getMessage()
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 373, in getMessage
msg = msg % self.args
TypeError: not all arguments converted during string formatting
Call stack:
File "main.py", line 97, in
hydra_main(overrides=overrides, mode=training_mode)
File "main.py", line 59, in hydra_main
launch_distributed(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 162, in launch_distributed
logging.error("Wrapping up, caught exception: ", e)
Message: 'Wrapping up, caught exception: '
Arguments: (RuntimeError('CUDA error: no kernel image is available for execution on the device'),)
Traceback (most recent call last):
File "main.py", line 97, in
hydra_main(overrides=overrides, mode=training_mode)
File "main.py", line 59, in hydra_main
launch_distributed(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 164, in launch_distributed
raise e
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 150, in launch_distributed
_distributed_worker(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 192, in _distributed_worker
run_engine(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/engine_registry.py", line 86, in run_engine
engine.run_engine(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/train.py", line 39, in run_engine
train_main(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/train.py", line 130, in train_main
trainer.train()
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/trainer_main.py", line 201, in train
raise e
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/trainer_main.py", line 193, in train
task = train_step_fn(task)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/train_steps/custom_train_step_surgery.py", line 189, in custom_train_step_surgery
model_output = task.model(sample["input"])
File "/home/NVME-2/SelfSupSurg/ext_libs/ClassyVision/classy_vision/models/classy_model.py", line 97, in call
return self.forward(*args, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/ClassyVision/classy_vision/models/classy_model.py", line 111, in forward
out = self.classy_model(*args, **kwargs)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/base_ssl_model.py", line 179, in forward
return self.single_input_forward(batch, self._output_feature_names, self.heads)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/base_ssl_model.py", line 127, in single_input_forward
feats = self.trunk(batch, feature_names)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/trunks/resnext.py", line 184, in forward
out = get_trunk_forward_outputs(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/model_helpers.py", line 463, in get_trunk_forward_outputs
feat = feature_block(feat)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in call_impl
result = self.forward(*input, **kwargs)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/apex/parallel/optimized_sync_batchnorm.py", line 85, in forward
return SyncBatchnormFunction.apply(input, z, self.weight, self.bias, self.running_mean, self.running_var, self.eps, self.training or not self.track_running_stats, exponential_average_factor, self.process_group, channel_last, self.fuse_relu)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/apex/parallel/optimized_sync_batchnorm_kernel.py", line 36, in forward
count_t = torch.empty(1, dtype=mean.dtype, device=mean.device).fill(count)
RuntimeError: CUDA error: no kernel image is available for execution on the device
Can CUDA versions be 11 or higher?
The text was updated successfully, but these errors were encountered:
I am using an A100GPU to run the code, it seems to be incompatible with CUDA10.2, report the following error.
INFO 2024-09-09 20:39:10,546 state_update_hooks.py: 113: Starting phase 0 [train]
--- Logging error ---
Traceback (most recent call last):
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 150, in launch_distributed
_distributed_worker(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 192, in _distributed_worker
run_engine(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/engine_registry.py", line 86, in run_engine
engine.run_engine(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/train.py", line 39, in run_engine
train_main(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/train.py", line 130, in train_main
trainer.train()
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/trainer_main.py", line 201, in train
raise e
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/trainer_main.py", line 193, in train
task = train_step_fn(task)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/train_steps/custom_train_step_surgery.py", line 189, in custom_train_step_surgery
model_output = task.model(sample["input"])
File "/home/NVME-2/SelfSupSurg/ext_libs/ClassyVision/classy_vision/models/classy_model.py", line 97, in call
return self.forward(*args, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/ClassyVision/classy_vision/models/classy_model.py", line 111, in forward
out = self.classy_model(*args, **kwargs)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/base_ssl_model.py", line 179, in forward
return self.single_input_forward(batch, self._output_feature_names, self.heads)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/base_ssl_model.py", line 127, in single_input_forward
feats = self.trunk(batch, feature_names)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/trunks/resnext.py", line 184, in forward
out = get_trunk_forward_outputs(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/model_helpers.py", line 463, in get_trunk_forward_outputs
feat = feature_block(feat)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in call_impl
result = self.forward(*input, **kwargs)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/apex/parallel/optimized_sync_batchnorm.py", line 85, in forward
return SyncBatchnormFunction.apply(input, z, self.weight, self.bias, self.running_mean, self.running_var, self.eps, self.training or not self.track_running_stats, exponential_average_factor, self.process_group, channel_last, self.fuse_relu)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/apex/parallel/optimized_sync_batchnorm_kernel.py", line 36, in forward
count_t = torch.empty(1, dtype=mean.dtype, device=mean.device).fill(count)
RuntimeError: CUDA error: no kernel image is available for execution on the device
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 1085, in emit
msg = self.format(record)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 929, in format
return fmt.format(record)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 668, in format
record.message = record.getMessage()
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 373, in getMessage
msg = msg % self.args
TypeError: not all arguments converted during string formatting
Call stack:
File "main.py", line 97, in
hydra_main(overrides=overrides, mode=training_mode)
File "main.py", line 59, in hydra_main
launch_distributed(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 162, in launch_distributed
logging.error("Wrapping up, caught exception: ", e)
Message: 'Wrapping up, caught exception: '
Arguments: (RuntimeError('CUDA error: no kernel image is available for execution on the device'),)
--- Logging error ---
Traceback (most recent call last):
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 150, in launch_distributed
_distributed_worker(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 192, in _distributed_worker
run_engine(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/engine_registry.py", line 86, in run_engine
engine.run_engine(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/train.py", line 39, in run_engine
train_main(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/train.py", line 130, in train_main
trainer.train()
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/trainer_main.py", line 201, in train
raise e
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/trainer_main.py", line 193, in train
task = train_step_fn(task)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/train_steps/custom_train_step_surgery.py", line 189, in custom_train_step_surgery
model_output = task.model(sample["input"])
File "/home/NVME-2/SelfSupSurg/ext_libs/ClassyVision/classy_vision/models/classy_model.py", line 97, in call
return self.forward(*args, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/ClassyVision/classy_vision/models/classy_model.py", line 111, in forward
out = self.classy_model(*args, **kwargs)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/base_ssl_model.py", line 179, in forward
return self.single_input_forward(batch, self._output_feature_names, self.heads)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/base_ssl_model.py", line 127, in single_input_forward
feats = self.trunk(batch, feature_names)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/trunks/resnext.py", line 184, in forward
out = get_trunk_forward_outputs(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/model_helpers.py", line 463, in get_trunk_forward_outputs
feat = feature_block(feat)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in call_impl
result = self.forward(*input, **kwargs)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/apex/parallel/optimized_sync_batchnorm.py", line 85, in forward
return SyncBatchnormFunction.apply(input, z, self.weight, self.bias, self.running_mean, self.running_var, self.eps, self.training or not self.track_running_stats, exponential_average_factor, self.process_group, channel_last, self.fuse_relu)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/apex/parallel/optimized_sync_batchnorm_kernel.py", line 36, in forward
count_t = torch.empty(1, dtype=mean.dtype, device=mean.device).fill(count)
RuntimeError: CUDA error: no kernel image is available for execution on the device
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 1085, in emit
msg = self.format(record)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 929, in format
return fmt.format(record)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 668, in format
record.message = record.getMessage()
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/logging/init.py", line 373, in getMessage
msg = msg % self.args
TypeError: not all arguments converted during string formatting
Call stack:
File "main.py", line 97, in
hydra_main(overrides=overrides, mode=training_mode)
File "main.py", line 59, in hydra_main
launch_distributed(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 162, in launch_distributed
logging.error("Wrapping up, caught exception: ", e)
Message: 'Wrapping up, caught exception: '
Arguments: (RuntimeError('CUDA error: no kernel image is available for execution on the device'),)
Traceback (most recent call last):
File "main.py", line 97, in
hydra_main(overrides=overrides, mode=training_mode)
File "main.py", line 59, in hydra_main
launch_distributed(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 164, in launch_distributed
raise e
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 150, in launch_distributed
_distributed_worker(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/utils/distributed_launcher.py", line 192, in _distributed_worker
run_engine(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/engine_registry.py", line 86, in run_engine
engine.run_engine(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/train.py", line 39, in run_engine
train_main(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/engines/train.py", line 130, in train_main
trainer.train()
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/trainer_main.py", line 201, in train
raise e
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/trainer_main.py", line 193, in train
task = train_step_fn(task)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/trainer/train_steps/custom_train_step_surgery.py", line 189, in custom_train_step_surgery
model_output = task.model(sample["input"])
File "/home/NVME-2/SelfSupSurg/ext_libs/ClassyVision/classy_vision/models/classy_model.py", line 97, in call
return self.forward(*args, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/ClassyVision/classy_vision/models/classy_model.py", line 111, in forward
out = self.classy_model(*args, **kwargs)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/base_ssl_model.py", line 179, in forward
return self.single_input_forward(batch, self._output_feature_names, self.heads)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/base_ssl_model.py", line 127, in single_input_forward
feats = self.trunk(batch, feature_names)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/trunks/resnext.py", line 184, in forward
out = get_trunk_forward_outputs(
File "/home/NVME-2/SelfSupSurg/ext_libs/vissl/vissl/models/model_helpers.py", line 463, in get_trunk_forward_outputs
feat = feature_block(feat)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in call_impl
result = self.forward(*input, **kwargs)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/apex/parallel/optimized_sync_batchnorm.py", line 85, in forward
return SyncBatchnormFunction.apply(input, z, self.weight, self.bias, self.running_mean, self.running_var, self.eps, self.training or not self.track_running_stats, exponential_average_factor, self.process_group, channel_last, self.fuse_relu)
File "/home/chenghua/anaconda3/envs/ssl/lib/python3.8/site-packages/apex/parallel/optimized_sync_batchnorm_kernel.py", line 36, in forward
count_t = torch.empty(1, dtype=mean.dtype, device=mean.device).fill(count)
RuntimeError: CUDA error: no kernel image is available for execution on the device
Can CUDA versions be 11 or higher?
The text was updated successfully, but these errors were encountered: