-
Notifications
You must be signed in to change notification settings - Fork 226
/
Copy pathGTA_Diversity_256p.py
151 lines (142 loc) · 8.7 KB
/
GTA_Diversity_256p.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#This is a model trained on GTA5. Assume training images are 00000001.png,...,00012403.png and test images are 001000001,...,00106382.png.
from __future__ import division
import os,cv2,helper,time,scipy.io
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.layers.python.layers import initializers
import numpy as np
def lrelu(x):
return tf.maximum(0.2*x,x)
def build_net(ntype,nin,nwb=None,name=None):
if ntype=='conv':
return tf.nn.relu(tf.nn.conv2d(nin,nwb[0],strides=[1,1,1,1],padding='SAME',name=name)+nwb[1])
elif ntype=='pool':
return tf.nn.avg_pool(nin,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
def get_weight_bias(vgg_layers,i):
weights=vgg_layers[i][0][0][2][0][0]
weights=tf.constant(weights)
bias=vgg_layers[i][0][0][2][0][1]
bias=tf.constant(np.reshape(bias,(bias.size)))
return weights,bias
def build_vgg19(input,reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
net={}
vgg_rawnet=scipy.io.loadmat('VGG_Model/imagenet-vgg-verydeep-19.mat')
vgg_layers=vgg_rawnet['layers'][0]
net['input']=input-np.array([123.6800, 116.7790, 103.9390]).reshape((1,1,1,3))
net['conv1_1']=build_net('conv',net['input'],get_weight_bias(vgg_layers,0),name='vgg_conv1_1')
net['conv1_2']=build_net('conv',net['conv1_1'],get_weight_bias(vgg_layers,2),name='vgg_conv1_2')
net['pool1']=build_net('pool',net['conv1_2'])
net['conv2_1']=build_net('conv',net['pool1'],get_weight_bias(vgg_layers,5),name='vgg_conv2_1')
net['conv2_2']=build_net('conv',net['conv2_1'],get_weight_bias(vgg_layers,7),name='vgg_conv2_2')
net['pool2']=build_net('pool',net['conv2_2'])
net['conv3_1']=build_net('conv',net['pool2'],get_weight_bias(vgg_layers,10),name='vgg_conv3_1')
net['conv3_2']=build_net('conv',net['conv3_1'],get_weight_bias(vgg_layers,12),name='vgg_conv3_2')
net['conv3_3']=build_net('conv',net['conv3_2'],get_weight_bias(vgg_layers,14),name='vgg_conv3_3')
net['conv3_4']=build_net('conv',net['conv3_3'],get_weight_bias(vgg_layers,16),name='vgg_conv3_4')
net['pool3']=build_net('pool',net['conv3_4'])
net['conv4_1']=build_net('conv',net['pool3'],get_weight_bias(vgg_layers,19),name='vgg_conv4_1')
net['conv4_2']=build_net('conv',net['conv4_1'],get_weight_bias(vgg_layers,21),name='vgg_conv4_2')
net['conv4_3']=build_net('conv',net['conv4_2'],get_weight_bias(vgg_layers,23),name='vgg_conv4_3')
net['conv4_4']=build_net('conv',net['conv4_3'],get_weight_bias(vgg_layers,25),name='vgg_conv4_4')
net['pool4']=build_net('pool',net['conv4_4'])
net['conv5_1']=build_net('conv',net['pool4'],get_weight_bias(vgg_layers,28),name='vgg_conv5_1')
net['conv5_2']=build_net('conv',net['conv5_1'],get_weight_bias(vgg_layers,30),name='vgg_conv5_2')
return net
def recursive_generator(label,sp):
dim=512 if sp>=128 else 1024
if sp==4:
input=label
else:
downsampled=tf.image.resize_area(label,(sp//2,sp),align_corners=False)
input=tf.concat([tf.image.resize_bilinear(recursive_generator(downsampled,sp//2),(sp,sp*2),align_corners=True),label],3)
net=slim.conv2d(input,dim,[3,3],rate=1,normalizer_fn=slim.layer_norm,activation_fn=lrelu,scope='g_'+str(sp)+'_conv1')
net=slim.conv2d(net,dim,[3,3],rate=1,normalizer_fn=slim.layer_norm,activation_fn=lrelu,scope='g_'+str(sp)+'_conv2')
if sp==256:
net=slim.conv2d(net,27,[1,1],rate=1,activation_fn=None,scope='g_'+str(sp)+'_conv100')
net=(net+1.0)/2.0*255.0
split0,split1,split2=tf.split(tf.transpose(net,perm=[3,1,2,0]),num_or_size_splits=3,axis=0)
net=tf.concat([split0,split1,split2],3)
return net
def compute_error(real,fake,label):
return tf.reduce_mean(label*tf.expand_dims(tf.reduce_mean(tf.abs(fake-real),reduction_indices=[3]),-1),reduction_indices=[1,2])#diversity loss
#os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp')
#os.environ['CUDA_VISIBLE_DEVICES']=str(np.argmax([int(x.split()[2]) for x in open('tmp','r').readlines()]))
#os.system('rm tmp')
sess=tf.Session()
sp=256 #input resolution is 256x512
is_training=False
with tf.variable_scope(tf.get_variable_scope()):
label=tf.placeholder(tf.float32,[None,None,None,20])
real_image=tf.placeholder(tf.float32,[None,None,None,3])
fake_image=tf.placeholder(tf.float32,[None,None,None,3])
generator=recursive_generator(label,sp)
weight=tf.placeholder(tf.float32)
vgg_real=build_vgg19(real_image)
vgg_fake=build_vgg19(generator,reuse=True)
p0=compute_error(vgg_real['input'],vgg_fake['input'],label)
p1=compute_error(vgg_real['conv1_2'],vgg_fake['conv1_2'],label)/1.4
p2=compute_error(vgg_real['conv2_2'],vgg_fake['conv2_2'],tf.image.resize_area(label,(sp//2,sp)))/1.8
p3=compute_error(vgg_real['conv3_2'],vgg_fake['conv3_2'],tf.image.resize_area(label,(sp//4,sp//2)))/1.3
p4=compute_error(vgg_real['conv4_2'],vgg_fake['conv4_2'],tf.image.resize_area(label,(sp//8,sp//4)))/2.2
p5=compute_error(vgg_real['conv5_2'],vgg_fake['conv5_2'],tf.image.resize_area(label,(sp//16,sp//8)))*10/0.62
content_loss=p0+p1+p2+p3+p4+p5
G_loss=tf.reduce_sum(tf.reduce_min(content_loss,reduction_indices=0))*0.999+tf.reduce_sum(tf.reduce_mean(content_loss,reduction_indices=0))*0.001
t_vars=tf.trainable_variables()
lr=tf.placeholder(tf.float32)
G_opt=tf.train.AdamOptimizer(learning_rate=lr).minimize(G_loss,var_list=[var for var in t_vars if var.name.startswith('g_')])
saver=tf.train.Saver(max_to_keep=1000)
sess.run(tf.global_variables_initializer())
ckpt=tf.train.get_checkpoint_state("result_GTA")
if ckpt:
print('loaded '+ckpt.model_checkpoint_path)
saver.restore(sess,ckpt.model_checkpoint_path)
if is_training:
input_images=[None]*20000
label_images=[None]*20000
for epoch in range(1,401):
if os.path.isdir("result_GTA/%04d"%epoch):
continue
g_loss=np.zeros(20000,dtype=float)
cnt=0
for ind in np.random.permutation(12403)+1:
st=time.time()
cnt+=1
if input_images[ind] is None:
label_images[ind]=helper.get_semantic_map("data/GTA/Label256Full/%08d.png"%ind)
input_images[ind]=np.expand_dims(np.float32(scipy.misc.imread("data/GTA/RGB256Full/%08d.png"%ind)),axis=0)
_,G_current,l0,l1,l2,l3,l4,l5=sess.run([G_opt,G_loss,p0,p1,p2,p3,p4,p5],feed_dict={label:np.concatenate((label_images[ind],np.expand_dims(1-np.sum(label_images[ind],axis=3),axis=3)),axis=3),real_image:input_images[ind],lr:1e-4})
g_loss[ind]=G_current
print("%d %d %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f"%(epoch,cnt,np.mean(g_loss[np.where(g_loss)]),np.mean(l0),np.mean(l1),np.mean(l2),np.mean(l3),np.mean(l4),np.mean(l5),time.time()-st))
if cnt>3000:
break
os.makedirs("result_GTA/%04d"%epoch)#save models
target=open("result_GTA/%04d/score.txt"%epoch,'w')
target.write("%f"%np.mean(g_loss[np.where(g_loss)]))
target.close()
saver.save(sess,"result_GTA/model.ckpt")
if epoch%100==0:
saver.save(sess,"result_GTA/%04d/model.ckpt"%epoch)
for ind in range(12403-49,12403+1)+range(100001,100051):#print intermediate results
semantic=helper.get_semantic_map("data/GTA/Label256Full/%08d.png"%ind)
output=sess.run(generator,feed_dict={label:np.concatenate((semantic,np.expand_dims(1-np.sum(semantic,axis=1),axis=1)),axis=1).transpose([0,2,3,1])})
output=np.minimum(np.maximum(output,0.0),255.0)
upper=np.concatenate((output[0,:,:,:],output[1,:,:,:],output[2,:,:,:]),axis=1)
middle=np.concatenate((output[3,:,:,:],output[4,:,:,:],output[5,:,:,:]),axis=1)
bottom=np.concatenate((output[6,:,:,:],output[7,:,:,:],output[8,:,:,:]),axis=1)
scipy.misc.toimage(np.concatenate((upper,middle,bottom),axis=0),cmin=0,cmax=255).save("result_GTA/%04d/%06d_output.jpg"%(epoch,ind))
if not os.path.isdir("result_GTA/final"):
os.makedirs("result_GTA/final")
for ind in range(100001,106383):
if not os.path.isfile("data/GTA/Label256Full/%08d.png"%ind):#test label
continue
semantic=helper.get_semantic_map("data/GTA/Label256Full/%08d.png"%ind)
st=time.time()
output=sess.run(generator,feed_dict={label:np.concatenate((semantic,np.expand_dims(1-np.sum(semantic,axis=3),axis=3)),axis=3)})
print(time.time()-st)
output=np.minimum(np.maximum(output,0.0),255.0)
upper=np.concatenate((output[0,:,:,:],output[1,:,:,:],output[2,:,:,:]),axis=1)
middle=np.concatenate((output[3,:,:,:],output[4,:,:,:],output[5,:,:,:]),axis=1)
bottom=np.concatenate((output[6,:,:,:],output[7,:,:,:],output[8,:,:,:]),axis=1)
scipy.misc.toimage(np.concatenate((upper,middle,bottom),axis=0),cmin=0,cmax=255).save("result_GTA/final/%06d_output.png"%ind)