forked from muhanzhang/IGMC
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Main.py
506 lines (471 loc) · 20.6 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import torch
import numpy as np
import sys, copy, math, time, pdb, warnings, traceback
import scipy.io as sio
import scipy.sparse as ssp
import os.path
import random
import argparse
from shutil import copy, rmtree, copytree
from torch.optim.lr_scheduler import ReduceLROnPlateau
from util_functions import *
from data_utils import *
from preprocessing import *
from train_eval import *
from models import *
import traceback
import warnings
import sys
import csv
# used to traceback which code cause warnings, can delete
def warn_with_traceback(message, category, filename, lineno, file=None, line=None):
log = file if hasattr(file,'write') else sys.stderr
traceback.print_stack(file=log)
log.write(warnings.formatwarning(message, category, filename, lineno, line))
warnings.showwarning = warn_with_traceback
def logger(info, model, optimizer, timetaken=0):
epoch, train_loss, test_rmse = info['epoch'], info['train_loss'], info['test_rmse']
filename= os.path.join(args.res_dir, f'{args.fname}-log.csv')
file_exists = os.path.isfile(filename)
with open(filename, 'a') as f:
headers = ['Epoch', 'Train', "Test", "Time"]
writer = csv.DictWriter(f, delimiter=',', lineterminator='\n',fieldnames=headers)
if not file_exists:
writer.writeheader()
writer.writerow({'Epoch': epoch, 'Train': train_loss, "Test": test_rmse, "Time": timetaken})
# f.write('Epoch {}, train loss {:.4f}, test rmse {:.6f}\n'.format(
# epoch, train_loss, test_rmse))
if type(epoch) == int and epoch % args.save_interval == 0:
print('Saving model states...')
model_name = os.path.join(args.res_dir, '{}-model_checkpoint{}.pth'.format(args.fname, epoch))
optimizer_name = os.path.join(
args.res_dir, '{}-optimizer_checkpoint{}.pth'.format(args.fname, epoch)
)
if model is not None:
torch.save(model.state_dict(), model_name)
if optimizer is not None:
torch.save(optimizer.state_dict(), optimizer_name)
# Arguments
parser = argparse.ArgumentParser(description='Inductive Graph-based Matrix Completion')
# general settings
parser.add_argument('--testing', action='store_true', default=False,
help='if set, use testing mode which splits all ratings into train/test;\
otherwise, use validation model which splits all ratings into \
train/val/test and evaluate on val only')
parser.add_argument('--no-train', action='store_true', default=False,
help='if set, skip the training and directly perform the \
transfer/ensemble/visualization')
parser.add_argument('--debug', action='store_true', default=False,
help='turn on debugging mode which uses a small number of data')
parser.add_argument('--data-name', default='ml_100k', help='dataset name')
parser.add_argument('--data-appendix', default='',
help='what to append to save-names when saving datasets')
parser.add_argument('--save-appendix', default='',
help='what to append to save-names when saving results')
parser.add_argument('--max-train-num', type=int, default=None,
help='set maximum number of train data to use')
parser.add_argument('--max-val-num', type=int, default=None,
help='set maximum number of val data to use')
parser.add_argument('--max-test-num', type=int, default=None,
help='set maximum number of test data to use')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--data-seed', type=int, default=1234, metavar='S',
help='seed to shuffle data (1234,2341,3412,4123,1324 are used), \
valid only for ml_1m and ml_10m')
parser.add_argument('--reprocess', action='store_true', default=False,
help='if True, reprocess data instead of using prestored .pkl data')
parser.add_argument('--dynamic-train', action='store_true', default=False,
help='extract training enclosing subgraphs on the fly instead of \
storing in disk; works for large datasets that cannot fit into memory')
parser.add_argument('--dynamic-test', action='store_true', default=False)
parser.add_argument('--dynamic-val', action='store_true', default=False)
parser.add_argument('--keep-old', action='store_true', default=False,
help='if True, do not overwrite old .py files in the result folder')
parser.add_argument('--save-interval', type=int, default=10,
help='save model states every # epochs ')
# subgraph extraction settings
parser.add_argument('--hop', default=1, metavar='S',
help='enclosing subgraph hop number')
parser.add_argument('--sample-ratio', type=float, default=1.0,
help='if < 1, subsample nodes per hop according to the ratio')
parser.add_argument('--max-nodes-per-hop', default=10000,
help='if > 0, upper bound the # nodes per hop by another subsampling')
parser.add_argument('--use-features', action='store_true', default=False,
help='whether to use node features (side information)')
# edge dropout settings
parser.add_argument('--adj-dropout', type=float, default=0.2,
help='if not 0, random drops edges from adjacency matrix with this prob')
parser.add_argument('--force-undirected', action='store_true', default=False,
help='in edge dropout, force (x, y) and (y, x) to be dropped together')
# optimization settings
parser.add_argument('--continue-from', type=int, default=None,
help="from which epoch's checkpoint to continue training")
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR',
help='learning rate (default: 1e-3)')
parser.add_argument('--lr-decay-step-size', type=int, default=50,
help='decay lr by factor A every B steps')
parser.add_argument('--lr-decay-factor', type=float, default=0.1,
help='decay lr by factor A every B steps')
parser.add_argument('--epochs', type=int, default=80, metavar='N',
help='number of epochs to train')
parser.add_argument('--batch-size', type=int, default=50, metavar='N',
help='batch size during training')
parser.add_argument('--test-freq', type=int, default=1, metavar='N',
help='test every n epochs')
parser.add_argument('--ARR', type=float, default=0.001,
help='The adjacenct rating regularizer. If not 0, regularize the \
differences between graph convolution parameters W associated with\
adjacent ratings')
# transfer learning, ensemble, and visualization settings
parser.add_argument('--transfer', default='',
help='if not empty, load the pretrained models in this path')
parser.add_argument('--num-relations', type=int, default=5,
help='if transfer, specify num_relations in the transferred model')
parser.add_argument('--multiply-by', type=int, default=1,
help='if transfer, specify how many times to multiply the predictions by')
parser.add_argument('--visualize', action='store_true', default=False,
help='if True, load a pretrained model and do visualization exps')
parser.add_argument('--ensemble', action='store_true', default=False,
help='if True, load a series of model checkpoints and ensemble the results')
parser.add_argument('--standard-rating', action='store_true', default=False,
help='if True, maps all ratings to standard 1, 2, 3, 4, 5 before training')
# sparsity experiment settings
parser.add_argument('--ratio', type=float, default=1.0,
help="For ml datasets, if ratio < 1, downsample training data to the\
target ratio")
#custom additions
parser.add_argument('--use-graphnorm', action='store_true', default=False, help = 'Specify if model should use GraphNorm')
# Choose Model
parser.add_argument('--model-type', default='IGMC', help = 'Specify Model used (default is IGMC)')
# Choose gconv type
parser.add_argument('--gconv-type', default='GCNConv', help = 'Specify gconv used (default is GCNConv)')
# Specify file name
parser.add_argument('--fname', type=str ,action='store', default = 'igmc-1', help = 'Define file name of saved weights, checkpoints and optimizer ')
'''
Set seeds, prepare for transfer learning (if --transfer)
'''
args = parser.parse_args()
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
args.hop = int(args.hop)
if args.max_nodes_per_hop is not None:
args.max_nodes_per_hop = int(args.max_nodes_per_hop)
rating_map, post_rating_map = None, None
if args.standard_rating:
if args.data_name in ['flixster', 'ml_10m']: # original 0.5, 1, ..., 5
rating_map = {x: int(math.ceil(x)) for x in np.arange(0.5, 5.01, 0.5).tolist()}
elif args.data_name == 'yahoo_music': # original 1, 2, ..., 100
rating_map = {x: (x-1)//20+1 for x in range(1, 101)}
else:
rating_map = None
if args.transfer:
if args.data_name in ['flixster', 'ml_10m']: # original 0.5, 1, ..., 5
post_rating_map = {
x: int(i // (10 / args.num_relations))
for i, x in enumerate(np.arange(0.5, 5.01, 0.5).tolist())
}
elif args.data_name == 'yahoo_music': # original 1, 2, ..., 100
post_rating_map = {
x: int(i // (100 / args.num_relations))
for i, x in enumerate(np.arange(1, 101).tolist())
}
else: # assume other datasets have standard ratings 1, 2, 3, 4, 5
post_rating_map = {
x: int(i // (5 / args.num_relations))
for i, x in enumerate(np.arange(1, 6).tolist())
}
'''
Prepare train/test (testmode) or train/val/test (valmode) splits
'''
args.file_dir = os.path.dirname(os.path.realpath('__file__'))
if args.testing:
val_test_appendix = 'testmode'
else:
val_test_appendix = 'valmode'
args.res_dir = os.path.join(
args.file_dir, 'results/{}{}_{}'.format(
args.data_name, args.save_appendix, val_test_appendix
)
)
if args.transfer == '':
args.model_pos = os.path.join(args.res_dir, 'model_checkpoint{}.pth'.format(args.epochs))
else:
args.model_pos = os.path.join(args.transfer, 'model_checkpoint{}.pth'.format(args.epochs))
if not os.path.exists(args.res_dir):
os.makedirs(args.res_dir)
if not args.keep_old and not args.transfer:
# backup current main.py, model.py files
copy('Main.py', args.res_dir)
copy('util_functions.py', args.res_dir)
copy('models.py', args.res_dir)
copy('train_eval.py', args.res_dir)
# save command line input
cmd_input = 'python ' + ' '.join(sys.argv) + '\n'
with open(os.path.join(args.res_dir, 'cmd_input.txt'), 'a') as f:
f.write(cmd_input)
print('Command line input: ' + cmd_input + ' is saved.')
if args.data_name in ['ml_1m', 'ml_10m', 'ml_25m']:
if args.use_features:
datasplit_path = (
'raw_data/' + args.data_name + '/withfeatures_split_seed' +
str(args.data_seed) + '.pickle'
)
else:
datasplit_path = (
'raw_data/' + args.data_name + '/split_seed' + str(args.data_seed) +
'.pickle'
)
elif args.use_features:
datasplit_path = 'raw_data/' + args.data_name + '/withfeatures.pickle'
else:
datasplit_path = 'raw_data/' + args.data_name + '/nofeatures.pickle'
if args.data_name in ['flixster', 'douban', 'yahoo_music', 'amazon_music']:
(
u_features, v_features, adj_train, train_labels, train_u_indices, train_v_indices,
val_labels, val_u_indices, val_v_indices, test_labels, test_u_indices,
test_v_indices, class_values
) = load_data_monti(args.data_name, args.testing, rating_map, post_rating_map)
elif args.data_name == 'ml_100k':
print("Using official MovieLens split u1.base/u1.test with 20% validation...")
(
u_features, v_features, adj_train, train_labels, train_u_indices, train_v_indices,
val_labels, val_u_indices, val_v_indices, test_labels, test_u_indices,
test_v_indices, class_values
) = load_official_trainvaltest_split(
args.data_name, args.testing, rating_map, post_rating_map, args.ratio
)
else:
(
u_features, v_features, adj_train, train_labels, train_u_indices, train_v_indices,
val_labels, val_u_indices, val_v_indices, test_labels, test_u_indices,
test_v_indices, class_values
) = create_trainvaltest_split(
args.data_name, 1234, args.testing, datasplit_path, True, True, rating_map,
post_rating_map, args.ratio
)
print('All ratings are:')
print(class_values)
'''
Explanations of the above preprocessing:
class_values are all the original continuous ratings, e.g. 0.5, 2...
They are transformed to rating labels 0, 1, 2... acsendingly.
Thus, to get the original rating from a rating label, apply: class_values[label]
Note that train_labels etc. are all rating labels.
But the numbers in adj_train are rating labels + 1, why? Because to accomodate
neutral ratings 0! Thus, to get any edge label from adj_train, remember to substract 1.
If testing=True, adj_train will include both train and val ratings, and all train
data will be the combination of train and val.
'''
if args.use_features:
u_features, v_features = u_features.toarray(), v_features.toarray()
n_features = u_features.shape[1] + v_features.shape[1]
print('Number of user features {}, item features {}, total features {}'.format(
u_features.shape[1], v_features.shape[1], n_features))
else:
u_features, v_features = None, None
n_features = 0
if args.debug: # use a small number of data to debug
num_data = 1000
train_u_indices, train_v_indices = train_u_indices[:num_data], train_v_indices[:num_data]
val_u_indices, val_v_indices = val_u_indices[:num_data], val_v_indices[:num_data]
test_u_indices, test_v_indices = test_u_indices[:num_data], test_v_indices[:num_data]
train_indices = (train_u_indices, train_v_indices)
val_indices = (val_u_indices, val_v_indices)
test_indices = (test_u_indices, test_v_indices)
print('#train: %d, #val: %d, #test: %d' % (
len(train_u_indices),
len(val_u_indices),
len(test_u_indices),
))
'''
Extract enclosing subgraphs to build the train/test or train/val/test graph datasets.
(Note that we must extract enclosing subgraphs for testmode and valmode separately,
since the adj_train is different.)
'''
train_graphs, val_graphs, test_graphs = None, None, None
data_combo = (args.data_name, args.data_appendix, val_test_appendix)
if args.reprocess:
# if reprocess=True, delete the previously cached data and reprocess.
if os.path.isdir('data/{}{}/{}/train'.format(*data_combo)):
rmtree('data/{}{}/{}/train'.format(*data_combo))
if os.path.isdir('data/{}{}/{}/val'.format(*data_combo)):
rmtree('data/{}{}/{}/val'.format(*data_combo))
if os.path.isdir('data/{}{}/{}/test'.format(*data_combo)):
rmtree('data/{}{}/{}/test'.format(*data_combo))
# create dataset, either dynamically extract enclosing subgraphs,
# or extract in preprocessing and save to disk.
dataset_class = 'MyDynamicDataset' if args.dynamic_train else 'MyDataset'
train_graphs = eval(dataset_class)(
'data/{}{}/{}/train'.format(*data_combo),
adj_train,
train_indices,
train_labels,
args.hop,
args.sample_ratio,
args.max_nodes_per_hop,
u_features,
v_features,
class_values,
max_num=args.max_train_num
)
dataset_class = 'MyDynamicDataset' if args.dynamic_test else 'MyDataset'
test_graphs = eval(dataset_class)(
'data/{}{}/{}/test'.format(*data_combo),
adj_train,
test_indices,
test_labels,
args.hop,
args.sample_ratio,
args.max_nodes_per_hop,
u_features,
v_features,
class_values,
max_num=args.max_test_num
)
if not args.testing:
dataset_class = 'MyDynamicDataset' if args.dynamic_val else 'MyDataset'
val_graphs = eval(dataset_class)(
'data/{}{}/{}/val'.format(*data_combo),
adj_train,
val_indices,
val_labels,
args.hop,
args.sample_ratio,
args.max_nodes_per_hop,
u_features,
v_features,
class_values,
max_num=args.max_val_num
)
# Determine testing data (on which data to evaluate the trained model
if not args.testing:
test_graphs = val_graphs
print('Used #train graphs: %d, #test graphs: %d' % (
len(train_graphs),
len(test_graphs),
))
'''
Train and apply the GNN model
'''
# if False:
# # DGCNN_RS GNN model
# model = DGCNN_RS(
# train_graphs,
# latent_dim=[32, 32, 32, 1],
# k=0.6,
# num_relations=len(class_values),
# num_bases=4,
# regression=True,
# adj_dropout=args.adj_dropout,
# force_undirected=args.force_undirected
# )
# # record the k used in sortpooling
# if not args.transfer:
# with open(os.path.join(args.res_dir, 'cmd_input.txt'), 'a') as f:
# f.write(' --k ' + str(model.k) + '\n')
# print('k is saved.')
# IGMC GNN model (default)
if args.transfer:
num_relations = args.num_relations
multiply_by = args.multiply_by
else:
num_relations = len(class_values)
multiply_by = 1
model = IGMC(
train_graphs,
latent_dim=[32, 32, 32, 32],
num_relations=num_relations,
num_bases=4,
regression=True,
adj_dropout=args.adj_dropout,
force_undirected=args.force_undirected,
side_features=args.use_features,
n_side_features=n_features,
multiply_by=multiply_by,
use_graphnorm=args.use_graphnorm,
model_type=args.model_type,
gconv_type=args.gconv_type
)
total_params = sum(p.numel() for param in model.parameters() for p in param)
print(f'Total number of parameters is {total_params}')
if not args.no_train:
train_multiple_epochs(
train_graphs,
test_graphs,
model,
args.epochs,
args.batch_size,
args.lr,
lr_decay_factor=args.lr_decay_factor,
lr_decay_step_size=args.lr_decay_step_size,
weight_decay=0,
ARR=args.ARR,
test_freq=args.test_freq,
logger=logger,
continue_from=args.continue_from,
res_dir=args.res_dir
)
if args.visualize:
model.load_state_dict(torch.load(args.model_pos))
visualize(
model,
test_graphs,
args.res_dir,
args.data_name,
class_values,
sort_by='prediction'
)
if args.transfer:
rmse, preds = test_once(test_graphs, model, args.batch_size, logger)
print('Transfer learning rmse is: {:.6f}'.format(rmse))
else:
if args.ensemble:
if args.data_name == 'ml_1m':
start_epoch, end_epoch, interval = args.epochs-15, args.epochs, 5
else:
start_epoch, end_epoch, interval = args.epochs-30, args.epochs, 10
if args.transfer:
checkpoints = [
os.path.join(args.transfer, f'{args.fname}-model_checkpoint%d.pth' %x)
for x in range(start_epoch, end_epoch+1, interval)
]
epoch_info = 'transfer {}, ensemble of range({}, {}, {})'.format(
args.transfer, start_epoch, end_epoch, interval
)
else:
checkpoints = [
os.path.join(args.res_dir, f'{args.fname}-model_checkpoint%d.pth' %x)
for x in range(start_epoch, end_epoch+1, interval)
]
epoch_info = 'ensemble of range({}, {}, {})'.format(
start_epoch, end_epoch, interval
)
rmse, preds = test_once(
test_graphs,
model,
args.batch_size,
logger=None,
ensemble=True,
checkpoints=checkpoints
)
print('Ensemble test rmse is: {:.6f}'.format(rmse))
else:
if args.transfer:
model.load_state_dict(torch.load(args.model_pos))
rmse, preds = test_once(test_graphs, model, args.batch_size, logger=None)
epoch_info = 'transfer {}, epoch {}'.format(args.transfer, args.epoch)
print('Test rmse is: {:.6f}'.format(rmse))
eval_info = {
'epoch': epoch_info,
'train_loss': 0,
'test_rmse': rmse,
}
logger(eval_info, None, None)
results_df = pd.DataFrame({"u_idx": test_u_indices, "v_idx": test_v_indices,
"actual": np.take(class_values, test_labels), "pred": preds})
results_df.to_csv(os.path.join(args.res_dir, f'{args.fname}-tabular_results.csv'), index=False)