-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_CIL.py
146 lines (131 loc) · 5.25 KB
/
run_CIL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (c) 2019 DEPEND Research Group at
# University of Illinois, Urbana Champaign (UIUC)
# Copyright (c) 2018 CARLA
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import argparse
import logging
import sys
#Fault Injector Class
from agents.imitation.fault_injector import FaultInjector
#Camera Fault Model Class
from agents.imitation.input_fault_model import *
#Controls Fault Model Class
from agents.imitation.output_fault_model import *
#Custom Benchmark Class
from UIUC_FI_Benchmark import *
from carla.benchmarks.corl_2017 import CoRL2017
from carla.tcp import TCPConnectionError
from carla.client import make_carla_client
from agents.imitation.imitation_learning import ImitationLearning
import time
try:
from carla import carla_server_pb2 as carla_protocol
except ImportError:
raise RuntimeError(
'cannot import "carla_server_pb2.py", run the protobuf compiler to generate this file')
if (__name__ == '__main__'):
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-c', '--city-name',
metavar='C',
default='Town01',
help='The town that is going to be used on benchmark'
+ '(needs to match active town in server, options: Town01 or Town02)')
argparser.add_argument(
'-n', '--log_name',
metavar='T',
default='uiuc_fi_2018',
help='The name of the log file to be created by the scripts'
)
argparser.add_argument(
'--avoid-stopping',
action='store_true',
default=False,
help=' Uses the speed prediction branch to avoid unwanted agent stops'
)
argparser.add_argument(
'--continue-experiment',
action='store_true',
help='If you want to continue the experiment with the given log name'
)
argparser.add_argument(
'-q', '--quality-level',
choices=['Low', 'Epic'],
type=lambda s: s.title(),
default='Epic',
help='graphics quality level, a lower level makes the simulation run considerably faster.'
)
argparser.add_argument(
'--dump-dashcam',
action='store_true',
default=False,
help=' Dumps the fault injected dash cam to an mp4 video'
)
args = argparser.parse_args()
log_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
agent = ImitationLearning(args.city_name,args.avoid_stopping)
#Test Parameters
#WaterDrop(300,400,100,100,2.0,2.0),TransparentOcclusion(200,300,200,200),
fi_list=[{"ip":PassThrough(1),"op":ControlPassThrough(1,0)},
{"ip":SolidOcclusion(0.8),"op":ControlPassThrough(1,0)},
{"ip":TransparentOcclusion(0.8),"op":ControlPassThrough(1,0)},
{"ip":WaterDrop(1,3,2.0,2.0),"op":ControlPassThrough(1,0)},
{"ip":SaltAndPepper(0.8),"op":ControlPassThrough(1,0)},
{"ip":Gaussian(0.8),"op":ControlPassThrough(1,0)},
{"ip":Speckle(0.8),"op":ControlPassThrough(1,0)},
{"ip":PassThrough(1),"op":ControlDelayInjector(0.1,15)},
{"ip":PassThrough(1),"op":ControlDropInjector(0.1,15)},
{"ip":PassThrough(1),"op":ControlRandomInjector(0.2,15)},
{"ip":MeasureFaultModel(0.8,0,40),"op":ControlPassThrough(1,0)},
{"ip":CommandFaultModel(0.8),"op":ControlPassThrough(1,0)},
]
path_types=[False,True,True]
path_cases=[1,10,10]
weather_list=[1, 3, 6, 8]
#Vehicle and ppl_density lists should be of the same length
vehicle_density=[100]
ppl_density=[150]
for fm in fi_list:
print("TOP_LEVEL_DEBUG:",args.city_name,fm["ip"].get_name(),fm["op"].get_name())
f_i=FaultInjector(fm["ip"],fm["op"],args.city_name,args.dump_dashcam)
agent.set_f_i(f_i)
while True:
try:
with make_carla_client(args.host, args.port) as client:
uiuc_fi = UIUC_FI_Benchmark(args.city_name, args.log_name,f_i,path_types,
path_cases,weather_list,vehicle_density,ppl_density,args.quality_level)
results = uiuc_fi.benchmark_agent(agent, client)
uiuc_fi._plot_summary(weather_list)
break
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)
except Exception as exception:
logging.exception(exception)
sys.exit(1)
except KeyboardInterrupt:
if(args.dump_dashcam==True):
f_i.saveVideo()
raise
if(args.dump_dashcam==True):
f_i.saveVideo()
del(f_i)