-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
316 lines (252 loc) · 16.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# -*- coding: utf-8 -*-
#!/usr/bin/env python2
'''
Based on code by kyubyong park at https://www.github.com/kyubyong/dc_tts
'''
from __future__ import print_function
import os
import sys
import glob
import shutil
import random
from argparse import ArgumentParser
import numpy as np
import tensorflow as tf
from tensorflow.python import debug as tf_debug
from architectures import Text2MelGraph, SSRNGraph, BabblerGraph
from data_load import load_data, get_labels_indices
from synthesize import synth_text2mel, synth_mel2mag, split_batch, make_mel_batch, synth_codedtext2mel, get_text_lengths, encode_text, list2batch
from objective_measures import compute_dtw_error, compute_simple_LSD
from libutil import basename, safe_makedir
from configuration import load_config
from utils import plot_alignment
from utils import durations_to_position, end_pad_for_reduction_shape_sync
import logger_setup
from logging import info
from tqdm import tqdm
def compute_validation(hp, model_type, epoch, inputs, synth_graph, sess, speaker_codes, \
valid_filenames, validation_set_reference, duration_data=None, validation_labels=None, position_in_phone_data=None):
if model_type == 't2m': ## TODO: coded_text2mel here
validation_set_predictions_tensor, lengths = synth_text2mel(hp, inputs, synth_graph, sess, speaker_data=speaker_codes, duration_data=duration_data, labels=validation_labels, position_in_phone_data=position_in_phone_data)
validation_set_predictions = split_batch(validation_set_predictions_tensor, lengths)
score = compute_dtw_error(validation_set_reference, validation_set_predictions)
elif model_type == 'ssrn':
validation_set_predictions_tensor = synth_mel2mag(hp, inputs, synth_graph, sess)
lengths = [len(ref) for ref in validation_set_reference]
validation_set_predictions = split_batch(validation_set_predictions_tensor, lengths)
score = compute_simple_LSD(validation_set_reference, validation_set_predictions)
else:
info('compute_validation cannot handle model type %s: dummy value (0.0) supplied as validation score'%(model_type)); return 0.0
## store parameters for later use:-
valid_dir = '%s-%s/validation_epoch_%s'%(hp.logdir, model_type, epoch)
safe_makedir(valid_dir)
hp.validation_sentences_to_synth_params = min(hp.validation_sentences_to_synth_params, len(valid_filenames)) #if less sentences match the validation pattern than the value of 'hp.validation_sent_to_synth'
for i in range(hp.validation_sentences_to_synth_params):
np.save(os.path.join(valid_dir, basename(valid_filenames[i])), validation_set_predictions[i])
return score
def get_and_plot_alignments(hp, epoch, attention_graph, sess, attention_inputs, attention_mels, alignment_dir, attention_labels=None):
if hp.merlin_label_dir:
return_values = sess.run([attention_graph.alignments], # use attention_graph to obtain attention maps for a few given inputs and mels
{attention_graph.L: attention_inputs,
attention_graph.mels: attention_mels,
attention_graph.merlin_label: attention_labels})
else:
return_values = sess.run([attention_graph.alignments], # use attention_graph to obtain attention maps for a few given inputs and mels
{attention_graph.L: attention_inputs,
attention_graph.mels: attention_mels})
alignments = return_values[0] # sess run returns a list, so unpack this list
for i in range(hp.num_sentences_to_plot_attention):
plot_alignment(hp, alignments[i], i+1, epoch, dir=alignment_dir)
def main_work():
#################################################
# ============= Process command line ============
a = ArgumentParser()
a.add_argument('-c', dest='config', required=True, type=str)
a.add_argument('-m', dest='model_type', required=True, choices=['t2m', 'ssrn', 'babbler'])
opts = a.parse_args()
# ===============================================
model_type = opts.model_type
hp = load_config(opts.config)
hp.turn_off_monotonic_for_synthesis = False # this should be False during training
logdir = hp.logdir + "-" + model_type
logger_setup.logger_setup(logdir)
info('Command line: %s'%(" ".join(sys.argv)))
### TODO: move this to its own function somewhere. Can be used also at synthesis time?
### Prepare reference data for validation set: ### TODO: alternative to holding in memory?
dataset = load_data(hp, mode="validation")
valid_filenames, validation_text = dataset['fpaths'], dataset['texts']
speaker_codes = validation_duration_data = position_in_phone_data = None ## defaults
if hp.multispeaker:
speaker_codes = dataset['speakers']
if hp.use_external_durations:
validation_duration_data = dataset['durations']
## take random subset of validation set to avoid 'This is a librivox recording' type sentences
random.seed(1234)
v_indices = range(len(valid_filenames))
random.shuffle(v_indices)
v = min(hp.validation_sentences_to_evaluate, len(valid_filenames))
v_indices = v_indices[:v]
if hp.multispeaker: ## now come back to this after v computed
speaker_codes = np.array(speaker_codes)[v_indices].reshape(-1, 1)
if hp.use_external_durations:
validation_duration_data = validation_duration_data[v_indices, :, :]
valid_filenames = np.array(valid_filenames)[v_indices]
validation_mags = [np.load(hp.full_audio_dir + os.path.sep + basename(fpath)+'.npy') \
for fpath in valid_filenames]
validation_text = validation_text[v_indices, :]
validation_labels = None # default
if hp.merlin_label_dir:
validation_labels = []
for fpath in valid_filenames:
val_label = np.load("{}/{}".format(hp.merlin_label_dir, basename(fpath)+".npy"))
if hp.select_central:
central_ind = get_labels_indices(hp.merlin_lab_dim)
val_label = val_label[:,central_ind==1]
validation_labels.append(val_label)
validation_labels = list2batch(validation_labels, hp.max_N)
if 'position_in_phone' in hp.history_type:
def duration2position(duration, fractional=False):
### very roundabout -- need to deflate A matrix back to integers:
duration = duration.sum(axis=0)
#print(duration)
# sys.exit('evs')
positions = durations_to_position(duration, fractional=fractional)
###positions = end_pad_for_reduction_shape_sync(positions, hp)
positions = positions[0::hp.r, :]
#print(positions)
return positions
position_in_phone_data = [duration2position(dur, fractional=('fractional' in hp.history_type)) \
for dur in dataset['durations'][v_indices]]
position_in_phone_data = list2batch(position_in_phone_data, hp.max_T)
if model_type=='t2m':
validation_mels = [np.load(hp.coarse_audio_dir + os.path.sep + basename(fpath)+'.npy') \
for fpath in valid_filenames]
validation_inputs = validation_text
validation_reference = validation_mels
validation_lengths = None
elif model_type=='ssrn':
validation_inputs, validation_lengths = make_mel_batch(hp, valid_filenames)
validation_reference = validation_mags
else:
info('Undefined model_type {} for making validation inputs -- supply dummy None values'.format(model_type))
validation_inputs = None
validation_reference = None
## Get the text and mel inputs for the utts you would like to plot attention graphs for
if hp.plot_attention_every_n_epochs and model_type=='t2m': #check if we want to plot attention
# TODO do we want to generate and plot attention for validation or training set sentences??? modify attention_inputs accordingly...
attention_inputs = validation_text[:hp.num_sentences_to_plot_attention]
attention_mels = validation_mels[:hp.num_sentences_to_plot_attention]
attention_mels = np.array(attention_mels) #TODO should be able to delete this line...?
attention_mels_array = np.zeros((hp.num_sentences_to_plot_attention, hp.max_T, hp.n_mels), np.float32) # create fixed size array to hold attention mels
for i in range(hp.num_sentences_to_plot_attention): # copy data into this fixed sized array
attention_mels_array[i, :attention_mels[i].shape[0], :attention_mels[i].shape[1]] = attention_mels[i]
attention_mels = attention_mels_array # rename for convenience
if hp.merlin_label_dir:
attention_labels = validation_labels[:hp.num_sentences_to_plot_attention]
else:
attention_labels = None
## Map to appropriate type of graph depending on model_type:
AppropriateGraph = {'t2m': Text2MelGraph, 'ssrn': SSRNGraph, 'babbler': BabblerGraph}[model_type]
g = AppropriateGraph(hp) ; info("Training graph loaded")
synth_graph = AppropriateGraph(hp, mode='synthesize', reuse=True) ; info("Synthesis graph loaded") #reuse=True ensures that 'synth_graph' and 'attention_graph' share weights with training graph 'g'
attention_graph = AppropriateGraph(hp, mode='generate_attention', reuse=True) ; info("Atttention generating graph loaded")
#TODO is loading three graphs a problem for memory usage?
if 0:
print (tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Text2Mel'))
## [<tf.Variable 'Text2Mel/TextEnc/embed_1/lookup_table:0' shape=(61, 128) dtype=float32_ref>, <tf.Variable 'Text2Mel/TextEnc/C_2/conv1d/kernel:0' shape=(1, 128, 512) dtype=float32_ref>, ...
## TODO: tensorflow.python.training.supervisor deprecated: --> switch to tf.train.MonitoredTrainingSession
sv = tf.train.Supervisor(logdir=logdir, save_model_secs=0, global_step=g.global_step)
## Get the current training epoch from the name of the model that we have loaded
latest_checkpoint = tf.train.latest_checkpoint(logdir)
if latest_checkpoint:
epoch = int(latest_checkpoint.strip('/ ').split('/')[-1].replace('model_epoch_', ''))
else: #did not find a model checkpoint, so we start training from scratch
epoch = 0
## If save_every_n_epochs > 0, models will be stored here every n epochs and not
## deleted, regardless of validation improvement etc.:--
safe_makedir(logdir + '/archive/')
with sv.managed_session() as sess:
if 0: ## Set to 1 to debug NaNs; at tfdbg prompt, type: run -f has_inf_or_nan
## later: lt -f has_inf_or_nan -n .*AudioEnc.*
os.system('rm -rf {}/tmp_tfdbg/'.format(logdir))
sess = tf_debug.LocalCLIDebugWrapperSession(sess, dump_root=logdir+'/tmp_tfdbg/')
if hp.initialise_weights_from_existing:
info('=====Initialise some variables from existing model(s)=====')
sess.graph._unsafe_unfinalize() ## !!! https://stackoverflow.com/questions/41798311/tensorflow-graph-is-finalized-and-cannot-be-modified/41798401
for (scope, checkpoint) in hp.initialise_weights_from_existing:
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
info('----From existing model %s:----'%(checkpoint))
if var_list: ## will be empty when training t2m but looking at ssrn
saver = tf.train.Saver(var_list=var_list)
saver.restore(sess, checkpoint)
for var in var_list:
info(' %s'%(var.name))
else:
info(' No variables!')
info('========================================================')
if hp.restart_from_savepath: #set this param to list: [path_to_t2m_model_folder, path_to_ssrn_model_folder]
# info('Restart from these paths:')
info(hp.restart_from_savepath)
# assert len(hp.restart_from_savepath) == 2
restart_from_savepath1, restart_from_savepath2 = hp.restart_from_savepath
restart_from_savepath1 = os.path.abspath(restart_from_savepath1)
restart_from_savepath2 = os.path.abspath(restart_from_savepath2)
sess.graph._unsafe_unfinalize() ## !!! https://stackoverflow.com/questions/41798311/tensorflow-graph-is-finalized-and-cannot-be-modified/41798401
sess.run(tf.global_variables_initializer())
print ('Restore parameters')
if model_type == 't2m':
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Text2Mel')
saver1 = tf.train.Saver(var_list=var_list)
latest_checkpoint = tf.train.latest_checkpoint(restart_from_savepath1)
saver1.restore(sess, restart_from_savepath1)
print("Text2Mel Restored!")
elif model_type == 'ssrn':
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'SSRN') + \
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'gs')
saver2 = tf.train.Saver(var_list=var_list)
latest_checkpoint = tf.train.latest_checkpoint(restart_from_savepath2)
saver2.restore(sess, restart_from_savepath2)
print("SSRN Restored!")
epoch = int(latest_checkpoint.strip('/ ').split('/')[-1].replace('model_epoch_', ''))
# TODO: this counter won't work if training restarts in same directory.
## Get epoch from gs?
loss_history = [] #any way to restore loss history too?
#plot attention generated from freshly initialised model
if hp.plot_attention_every_n_epochs and model_type == 't2m' and epoch == 0: # ssrn model doesn't generate alignments
get_and_plot_alignments(hp, epoch - 1, attention_graph, sess, attention_inputs, attention_mels, logdir + "/alignments", attention_labels=attention_labels) # epoch-1 refers to freshly initialised model
current_score = compute_validation(hp, model_type, epoch, validation_inputs, synth_graph, sess, speaker_codes, valid_filenames, validation_reference, duration_data=validation_duration_data, validation_labels=validation_labels, position_in_phone_data=position_in_phone_data)
info('validation epoch {0}: {1:0.3f}'.format(epoch, current_score))
while 1:
progress_bar_text = '%s/%s; ep. %s'%(hp.config_name, model_type, epoch)
for batch_in_current_epoch in tqdm(range(g.num_batch), total=g.num_batch, ncols=80, leave=True, unit='b', desc=progress_bar_text):
gs, loss_components, _ = sess.run([g.global_step, g.loss_components, g.train_op])
loss_history.append(loss_components)
### Show training loss for every epoch
loss_history = np.array(loss_history)
train_loss_mean_std = np.concatenate([loss_history.mean(axis=0), loss_history.std(axis=0)])
train_loss_mean_std = ' '.join(['{:0.3f}'.format(score) for score in train_loss_mean_std])
info('train epoch {0}: {1}'.format(epoch, train_loss_mean_std))
### End of epoch: validate?
if hp.validate_every_n_epochs:
if epoch % hp.validate_every_n_epochs == 0:
current_score = compute_validation(hp, model_type, epoch, validation_inputs, synth_graph, sess, speaker_codes, valid_filenames, validation_reference, duration_data=validation_duration_data, validation_labels=validation_labels, position_in_phone_data=position_in_phone_data)
info('validation epoch {0:0}: {1:0.3f}'.format(epoch, current_score))
loss_history = []
### End of epoch: plot attention matrices? #################################
if hp.plot_attention_every_n_epochs and model_type == 't2m' and epoch % hp.plot_attention_every_n_epochs == 0: # ssrn model doesn't generate alignments
get_and_plot_alignments(hp, epoch, attention_graph, sess, attention_inputs, attention_mels, logdir + "/alignments", attention_labels=attention_labels)
### Save end of each epoch (all but the most recent 5 will be overwritten):
stem = logdir + '/model_epoch_{0}'.format(epoch)
sv.saver.save(sess, stem)
### Check if we should archive (to files which won't be overwritten):
if hp.save_every_n_epochs:
if epoch % hp.save_every_n_epochs == 0:
info('Archive model %s'%(stem))
for fname in glob.glob(stem + '*'):
shutil.copy(fname, logdir + '/archive/')
epoch += 1
if epoch > hp.max_epochs:
info('Max epochs ({}) reached: end training'.format(hp.max_epochs)); return
print("Done")
if __name__ == "__main__":
main_work()