-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathimutils.py
193 lines (120 loc) · 5.28 KB
/
imutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import cv2
import torch
import numpy as np
from PIL import Image
from torchvision.utils import make_grid, save_image
from utils import *
from copy import deepcopy
imagenet_mean = [0.485, 0.456, 0.406]
imagenet_std = [0.229, 0.224, 0.225]
category_dict = {
'voc': ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'],
'coco': ['background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
}
def pil_loader(path):
"""
path: the path to image
"""
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def pil_saver(x, path):
"""
x: numpy array
"""
img = Image.fromarray(x)
img.save(path)
def cv2_saver(x, path):
"""
x: numpy array
"""
cv2.imwrite(path, x)
def tensor2image(x):
grid = make_grid(x.unsqueeze(0), nrow=1, padding=0, pad_value=0,
normalize=True, range=None)
# Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
return grid.mul_(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
def save_tensor_as_image(x, save_dir, fn=None):
"""
x: (N, 3, H, W)
save_dir: --
fn: (N,)
"""
N = x.size(0)
for i in range(N):
image = tensor2image(x[i])
save_path = os.path.join(save_dir, str(i) if fn is None else fn[i])
pil_saver(image, save_path)
def applyColorMap(x, am):
"""
image: (3, H, W)
am: (H/f, W/f) range(0,1)
"""
_, H, W = x.shape
am = np.uint8(am * 255)
colormap = cv2.applyColorMap(cv2.resize(am, (W, H)), cv2.COLORMAP_JET)
image = tensor2image(x)
cam = colormap + 0.4 * image
cam = cam / np.max(cam)
cam = np.uint8(cam * 255).copy()
return cam
def save_colormap(x, am, save_dir, fn):
"""
x(image): shape likes (H, W)
am(activation map): activation map (H/f, W/f)
save_dir: --
fn(file name): (1,)
"""
colormap = applyColorMap(x, am)
# pil_saver(colormap[...,::-1], os.path.join(save_dir, fn))
cv2_saver(colormap, os.path.join(save_dir, fn))
def save_tensor_as_grid_image(x, save_dir, fn=None):
pass
def visual_debug(x, target, am, save_dir, step, flag='step', num_classes=80, dataset='coco', phase='train'):
n, c, h, w = x.size()
categories = deepcopy(category_dict[dataset])
if num_classes == 80 or num_classes == 20:
categories.pop(0)
for i in range(x.size(0)):
image = get_numpy_from_tensor(x[i])
image = denormalize(image, imagenet_mean, imagenet_std) # [..., ::-1]
temp = am[i, target[i].view(num_classes) == 1, :, :]
label = torch.nonzero(target[i].view(num_classes) == 1, as_tuple=False).squeeze(1)
fig, axes = plt.subplots(1, temp.size(0) + 1)
fig.tight_layout() # 调整整体空白
plt.subplots_adjust(wspace=0, hspace=0) # 调整子图间距
axes[0].imshow(image)
axes[0].axis('off')
for j in range(label.size(0)):
temp_ = get_numpy_from_tensor(temp[j])
temp_ = cv2.resize(temp_, (h, w))
axes[j + 1].imshow(temp_)
axes[j + 1].set_title(categories[label[j]])
axes[j + 1].axis('off')
plt.savefig("{}/{}/{}_{}_{}.png".format(save_dir, phase, step, i, flag), bbox_inches='tight')
plt.close()
# if i == 10:
# break
def visual_debug_single(x, target, am, save_dir, step, flag='step', num_classes=80, dataset='coco', phase='train'):
n, c, h, w = x.size()
categories = deepcopy(category_dict[dataset])
if num_classes == 80 or num_classes == 20:
categories.pop(0)
for i in range(x.size(0)):
image = get_numpy_from_tensor(x[i])
image = denormalize(image, imagenet_mean, imagenet_std) # [..., ::-1]
temp = am[i, 0]
fig, axes = plt.subplots(1, 2)
fig.tight_layout() # 调整整体空白
plt.subplots_adjust(wspace=0, hspace=0) # 调整子图间距
axes[0].imshow(image)
axes[0].axis('off')
temp_ = get_numpy_from_tensor(temp)
temp_ = cv2.resize(temp_, (h, w))
axes[1].imshow(temp_)
axes[1].axis('off')
plt.savefig("{}/{}/{}_{}_{}.png".format(save_dir, phase, step, i, flag), bbox_inches='tight')
plt.close()
# if i == 10:
# break