-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
335 lines (281 loc) · 12.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import os
# os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" # 这是默认的显示等级,显示所有信息
# os.environ["TF_CPP_MIN_LOG_LEVEL"] = '2' # 只显示 warning 和 Error
os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3' # 只显示 Error
import logging
from pathlib import Path
from typing import Dict
import argparse
import numpy as np
import tensorflow as tf
# tf.config.set_soft_device_placement(True)
# physical_devices = tf.config.list_physical_devices('GPU')
# if len(physical_devices) > 0:
# tf.config.experimental.set_memory_growth(physical_devices[0], True)
import tensorflow_probability as tfp
from tensorflow.keras import metrics, optimizers
from optimizers import transformer_schedule
from flows.utils.util import bits_x
from models.model import Glow
from models.resnet import ConnectedResNet
# gpu growth constraint
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
print(e)
logger = tf.get_logger()
logger.setLevel(logging.DEBUG)
AUTOTUNE = tf.data.experimental.AUTOTUNE
Mean = metrics.Mean
Adam = optimizers.Adam
class Gaze:
def __init__(self, hparams):
self.hparams = hparams
self.input_shape = [
self.hparams.images_width,
self.hparams.images_height,
self.hparams.images_channel,
]
self.condition_shape = (self.hparams.condition_shape,)
self.pixels = np.prod(self.input_shape)
print(self.hparams.BATCH_SIZE)
self.glow = Glow(
hparams.K,
hparams.L,
hparams.conditional,
hparams.width,
hparams.skip_type,
condition_shape=self.condition_shape,
scale_shift_net_template=ConnectedResNet)
self.check_model()
self.load_dataset()
self.setup_target_distribution()
self.setup_optimizer()
self.setup_metrics()
self.setup_checkpoint(Path(self.hparams.checkpoint_path, self.hparams.checkpoint_path_specific))
self.setup_writer()
def setup_writer(self):
self.writer = tf.summary.create_file_writer(logdir=os.path.join(self.hparams.checkpoint_path, self.hparams.checkpoint_path_specific))
def check_model(self):
x = tf.keras.Input(self.input_shape)
cond = tf.keras.Input(self.condition_shape)
z, ldj, zaux, ll = self.glow(x, cond=cond, inverse=False)
self.z_shape = list(z.shape)
self.zaux_shape = list(zaux.shape)
self.z_dims = np.prod(z.shape[1:])
self.zaux_dims = np.prod(zaux.shape[1:])
logger.info("z_f's shape : {}".format(self.z_shape))
logger.info("log_det_jacobian's shape: {}".format(ldj.shape))
logger.info("z_aux's shape : {}".format(self.zaux_shape))
self.glow.summary()
def load_dataset(self):
print('Start load dataset.')
raw_image_dataset = tf.data.TFRecordDataset(self.hparams.datapath)
image_feature_description = {
'height': tf.io.FixedLenFeature([], tf.int64),
'width': tf.io.FixedLenFeature([], tf.int64),
'depth': tf.io.FixedLenFeature([], tf.int64),
'label': tf.io.FixedLenFeature([], tf.string),
'image': tf.io.FixedLenFeature([], tf.string),
}
@tf.function
def augument(example_proto):
exp = tf.io.parse_single_example(example_proto, image_feature_description)
img = tf.io.decode_jpeg(exp['image'])
label = tf.io.parse_tensor(exp['label'], tf.float32)
img = tf.cast(img, tf.float32)
img = img / 255.0
img = tf.image.random_brightness(img, max_delta=0.1)
img = tf.clip_by_value(img, 0.0, 1.0)
return img, label
total_train_batch = self.hparams.total_take//self.hparams.BATCH_SIZE
raw_image_dataset = raw_image_dataset.map(augument, num_parallel_calls=AUTOTUNE).shuffle(self.hparams.total_take).batch(self.hparams.BATCH_SIZE)
self.train_dataset = raw_image_dataset.take(total_train_batch)
self.valid_dataset = raw_image_dataset.skip(total_train_batch).take(5)
self.test_dataset = raw_image_dataset.skip(total_train_batch+10).take(2)
# self.train_dataset = self.train_dataset.shuffle(total_train_batch)
# print(self.train_dataset)
# print(self.valid_dataset)
# print(self.test_dataset)
# for i in self.train_dataset:
# print('1', i)
# break
# for i in self.valid_dataset:
# print(2, i)
# break
# for i in self.test_dataset:
# print(3, i)
# break
# exit(0)
print('Done')
def setup_target_distribution(self):
z_distribution = tfp.distributions.MultivariateNormalDiag(
tf.zeros([self.z_dims]), tf.ones([self.z_dims])
)
zaux_distribution = tfp.distributions.MultivariateNormalDiag(
tf.zeros([self.zaux_dims]), tf.ones([self.zaux_dims])
)
self.target_distribution = (z_distribution, zaux_distribution)
def setup_optimizer(self):
self.learning_rate_schedule = transformer_schedule.CustomSchedule(self.pixels * 20.)
self.optimizer = tf.keras.optimizers.Adam(self.learning_rate_schedule)
# self.optimizer = tf.keras.optimizers.SGD(self.learning_rate_schedule)
def setup_metrics(self):
self.train_nll = Mean(name="b/d", dtype=tf.float32)
self.valid_nll = Mean(name="b/d", dtype=tf.float32)
def setup_checkpoint(self, checkpoint_path: Path):
logger.info("checkpoint'path : {}".format(checkpoint_path))
ckpt = tf.train.Checkpoint(
step=tf.Variable(0), model=self.glow, optimizer=self.optimizer
)
ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=7)
if ckpt_manager.latest_checkpoint:
ckpt.restore(ckpt_manager.latest_checkpoint).expect_partial()
logger.info("Checkpoint restored")
self.ckpt = ckpt
self.ckpt_manager = ckpt_manager
def encode(self, img, cond):
"""
Input:
img : Input images.
cond : Input images' corresponding conditions.
Output:
z : Downsampled latent code.
zaux : Latent code that is split-out by split layer.
"""
if len(img.shape)==3:
img = tf.expand_dims(img, axis=0)
if len(cond.shape)==1:
cond = tf.expand_dims(cond, axis=0)
assert cond.shape[0] == img.shape[0]
z, _, zaux, _ = self.glow.forward(img, cond, training=False)
return z, zaux
def decode(self, latent, cond, zaux):
"""
Input:
latent : Input latent codes z.
cond : Input images' corresponding conditions.
zaux : Latent code that is split-out by split layer, keep it for better reconstruction
Output:
Image with condition cond.
"""
if len(latent.shape)==3:
latent = tf.expand_dims(latent, axis=0)
if len(cond.shape)==1:
cond = tf.expand_dims(cond, axis=0)
assert cond.shape[0] == latent.shape[0]
assert zaux.shape[:-1] == latent.shape[:-1]
return self.glow.inverse(latent, cond, zaux = zaux, training=False)[0]
def sample_image(self, beta_z: float = 0.75, beta_zaux: float = 0.75):
z_distribution = tfp.distributions.MultivariateNormalDiag(
tf.zeros([self.z_dims]), tf.broadcast_to(beta_z, [self.z_dims])
)
z = z_distribution.sample(self.hparams.BATCH_SIZE)
z = tf.reshape(z, [-1] + self.z_shape[1:])
self.valid_dataset = self.valid_dataset.shuffle(10*self.hparams.BATCH_SIZE)
for td in self.valid_dataset.take(1):
cond = td[1]
x, ildj = self.glow.inverse(z, cond=cond, zaux=None, training=False, temparature=beta_zaux)
x = tf.clip_by_value(x, 0.0, 1.0)
tf.summary.image(
"generated image", x, step=self.optimizer.iterations, max_outputs=4
)
for x in self.valid_dataset.take(1):
tf.summary.image(
"original image",
x[0][:4],
max_outputs=4,
step=self.optimizer.iterations,
)
z, ldj, zaux, ll = self.glow(x[0][:4], cond=x[1][:4], training=False)
x, ildj = self.glow.inverse(z, x[1][5:9], zaux, training=False, temparature=1.0)
x = tf.clip_by_value(x, 0.0, 1.0)
tf.summary.image(
"conditional edited image", x, max_outputs=4, step=self.optimizer.iterations
)
@tf.function
def train_step(self, img):
with tf.GradientTape() as tape:
z, ldj, zaux, ll = self.glow(img[0], cond=img[1], training=True)
z = tf.reshape(z, [-1, self.z_dims])
zaux = tf.reshape(zaux, [-1, self.zaux_dims])
lp = self.target_distribution[0].log_prob(z)
loss = bits_x(lp + ll, ldj, self.pixels)
variables = tape.watched_variables()
grads = tape.gradient(loss, variables)
self.optimizer.apply_gradients(zip(grads, variables))
self.train_nll(loss)
return tf.reduce_mean(loss)
def train(self):
for epoch in range(self.hparams.epochs):
count = 0
for x in self.train_dataset:
count += 1
loss = self.train_step(x)
print(
"loss:", loss,
",iter:", count,
",epoch", epoch,
"****", end='\r'
)
ckpt_save_path = self.ckpt_manager.save()
with self.writer.as_default():
self.sample_image(
self.hparams.beta_z,
self.hparams.beta_zaux,
)
# print('finished sampling...')
tf.summary.scalar(
"train/nll", self.train_nll.result(), step=self.optimizer.iterations
)
tf.summary.scalar(
"valid/nll", self.valid_nll.result(), step=self.optimizer.iterations
)
# tf.summary.scalar(
# "train/ldj", self.train_ldj.result(), step=self.optimizer.iterations
# )
# tf.summary.scalar(
# "valid/ldj", self.valid_ldj.result(), step=self.optimizer.iterations
# )
logger.info(
"epoch {}: train_loss = {}, valid_loss = {}, saved_at = {}".format(
epoch,
self.train_nll.result().numpy(),
self.valid_nll.result().numpy(),
ckpt_save_path,
)
)
self.train_nll.reset_states()
# self.train_ldj.reset_states()
self.valid_nll.reset_states()
# self.valid_ldj.reset_states()
if __name__ == '__main__':
# hyper parameters
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--BATCH-SIZE', type=int, default=64, help='training batch size')
parser.add_argument('--total-take', type=int, default=64, help='total size of training data')
parser.add_argument('--images-width', type=int, default=64, help='width')
parser.add_argument('--images-height', type=int, default=32, help='height')
parser.add_argument('--images-channel', type=int, default=3, help='channels')
parser.add_argument('--K', type=int, default=18, help='k steps of flow-step')
parser.add_argument('--L', type=int, default=3, help='L levels of multiscale level')
parser.add_argument('--conditional', type=bool, default=True, help='split layer constraint')
parser.add_argument('--width', type=int, default=256, help='condition affine coupling net width')
parser.add_argument('--checkpoint-path', type=str, default='./checkpoints', help='route to checkpoints')
parser.add_argument('--epochs', type=int, default=100, help='training epochs')
parser.add_argument('--beta_z', type=float, default=0.75, help='sampling parameters')
parser.add_argument('--beta_zaux', type=float, default=0.75, help='sampling parameters')
parser.add_argument('--condition-shape', type=int, default=5, help='number of components in condition')
parser.add_argument('--skip-type', type=str, default='whole', help='parameters of condition encoder')
parser.add_argument('--checkpoint-path-specific', type=str, default='test', help='checkpoints folder')
parser.add_argument('--datapath', type=str, required=True, help='data folder')
args = parser.parse_args()
# hparams = Hparams()
gaze = Gaze(args)
# train...
gaze.train()