forked from williamyang1991/DualStyleGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate.py
87 lines (70 loc) · 4.22 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import numpy as np
import torch
from util import save_image
import argparse
from model.dualstylegan import DualStyleGAN
from model.sampler.icp import ICPTrainer
class TestOptions():
def __init__(self):
self.parser = argparse.ArgumentParser(description="Random Artistic Portrait Generation")
self.parser.add_argument("--batch", type=int, default=8, help="number of generated images")
self.parser.add_argument("--style", type=str, default='cartoon', help="target style type")
self.parser.add_argument("--truncation", type=float, default=0.5, help="truncation for intrinsic style code (content)")
self.parser.add_argument("--weight", type=float, nargs=18, default=[0.75]*7+[1]*11, help="weight of the extrinsic style")
self.parser.add_argument("--name", type=str, default='cartoon_generate', help="filename to save the generated images")
self.parser.add_argument("--fix_content", action="store_true", help="using a fixed intrinsic style code (content)")
self.parser.add_argument("--fix_color", action="store_true", help="using a fixed extrinsic color code (style)")
self.parser.add_argument("--fix_structure", action="store_true", help="using a fixed extrinsic structure code (style")
self.parser.add_argument("--model_path", type=str, default='./checkpoint/', help="path of the saved models")
self.parser.add_argument("--model_name", type=str, default='generator.pt', help="name of the saved dualstylegan")
self.parser.add_argument("--output_path", type=str, default='./output/', help="path of the output images")
self.parser.add_argument("--sampler_name", type=str, default='sampler.pt', help="name of the saved sampling network")
def parse(self):
self.opt = self.parser.parse_args()
args = vars(self.opt)
print('Load options')
for name, value in sorted(args.items()):
print('%s: %s' % (str(name), str(value)))
return self.opt
if __name__ == "__main__":
device = "cuda"
parser = TestOptions()
args = parser.parse()
print('*'*98)
generator = DualStyleGAN(1024, 512, 8, 2, res_index=6)
generator.eval()
icptc = ICPTrainer(np.empty([0,512*11]), 128)
icpts = ICPTrainer(np.empty([0,512*7]), 128)
ckpt = torch.load(os.path.join(args.model_path, args.style, args.model_name), map_location=lambda storage, loc: storage)
generator.load_state_dict(ckpt["g_ema"])
generator = generator.to(device)
ckpt = torch.load(os.path.join(args.model_path, args.style, args.sampler_name), map_location=lambda storage, loc: storage)
icptc.icp.netT.load_state_dict(ckpt['color'])
icpts.icp.netT.load_state_dict(ckpt['structure'])
icptc.icp.netT = icptc.icp.netT.to(device)
icpts.icp.netT = icpts.icp.netT.to(device)
print('Load models successfully!')
with torch.no_grad():
instyle = torch.randn(args.batch, 512).to(device)
# sample structure codes
res_in = icpts.icp.netT(torch.randn(args.batch,128).to(device)).reshape(-1,7,512)
# sample color codes
ada_in = icptc.icp.netT(torch.randn(args.batch,128).to(device)).reshape(-1,11,512)
if args.fix_content:
instyle = instyle[0:1].repeat(args.batch, 1)
if args.fix_color:
ada_in = ada_in[0:1].repeat(args.batch, 1, 1)
if args.fix_structure:
res_in = res_in[0:1].repeat(args.batch, 1, 1)
# concatenate two codes to form the complete extrinsic style code
latent = torch.cat((res_in, ada_in), dim=1)
# map into W+ space
exstyle = generator.generator.style(latent.reshape(latent.shape[0]*latent.shape[1], latent.shape[2])).reshape(latent.shape)
img_gen, _ = generator([instyle], exstyle, input_is_latent=False, truncation=args.truncation, truncation_latent=0,
use_res=True, interp_weights=args.weight)
img_gen = torch.clamp(img_gen.detach(), -1, 1)
print('Generate images successfully!')
for i in range(args.batch):
save_image(img_gen[i].cpu(), os.path.join(args.output_path, args.name+'_%02d.jpg'%(i)))
print('Save images successfully!')