-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreporter.py
83 lines (72 loc) · 3.31 KB
/
reporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import pandas as pd
pd.set_option('display.width', 1000)
pd.set_option('display.max_rows', 10000)
pd.set_option('display.max_columns', 10000)
def round_value(value, binary=False):
divisor = 1024. if binary else 1000.
if value // divisor**4 > 0:
return str(round(value / divisor**4, 2)) + 'T'
elif value // divisor**3 > 0:
return str(round(value / divisor**3, 2)) + 'G'
elif value // divisor**2 > 0:
return str(round(value / divisor**2, 2)) + 'M'
elif value // divisor > 0:
return str(round(value / divisor, 2)) + 'K'
return str(value)
def report_format(collected_nodes):
data = list()
for node in collected_nodes:
name = node.name
input_shape = ' '.join(['{:>3d}'] * len(node.input_shape)).format(
*[e for e in node.input_shape])
output_shape = ' '.join(['{:>3d}'] * len(node.output_shape)).format(
*[e for e in node.output_shape])
parameter_quantity = node.parameter_quantity
inference_memory = node.inference_memory
MAdd = node.MAdd
Flops = node.Flops
mread, mwrite = [i for i in node.Memory]
duration = node.duration
data.append([name, input_shape, output_shape, parameter_quantity,
inference_memory, MAdd, duration, Flops, mread,
mwrite])
df = pd.DataFrame(data)
df.columns = ['module name', 'input shape', 'output shape',
'params', 'memory(MB)',
'MAdd', 'duration', 'Flops', 'MemRead(B)', 'MemWrite(B)']
df['duration[%]'] = df['duration'] / (df['duration'].sum() + 1e-7)
df['MemR+W(B)'] = df['MemRead(B)'] + df['MemWrite(B)']
total_parameters_quantity = df['params'].sum()
total_memory = df['memory(MB)'].sum()
total_operation_quantity = df['MAdd'].sum()
total_flops = df['Flops'].sum()
total_duration = df['duration[%]'].sum()
total_mread = df['MemRead(B)'].sum()
total_mwrite = df['MemWrite(B)'].sum()
total_memrw = df['MemR+W(B)'].sum()
del df['duration']
# Add Total row
total_df = pd.Series([total_parameters_quantity, total_memory,
total_operation_quantity, total_flops,
total_duration, mread, mwrite, total_memrw],
index=['params', 'memory(MB)', 'MAdd', 'Flops', 'duration[%]',
'MemRead(B)', 'MemWrite(B)', 'MemR+W(B)'],
name='total')
df = df.append(total_df)
df = df.fillna(' ')
df['memory(MB)'] = df['memory(MB)'].apply(
lambda x: '{:.2f}'.format(x))
df['duration[%]'] = df['duration[%]'].apply(lambda x: '{:.2%}'.format(x))
df['MAdd'] = df['MAdd'].apply(lambda x: '{:,}'.format(x))
df['Flops'] = df['Flops'].apply(lambda x: '{:,}'.format(x))
summary = str(df) + '\n'
summary += "=" * len(str(df).split('\n')[0])
summary += '\n'
summary += "Total params: {:,}\n".format(total_parameters_quantity)
summary += "-" * len(str(df).split('\n')[0])
summary += '\n'
summary += "Total memory: {:.2f}MB\n".format(total_memory)
summary += "Total MAdd: {}MAdd\n".format(round_value(total_operation_quantity))
summary += "Total Flops: {}Flops\n".format(round_value(total_flops))
summary += "Total MemR+W: {}B\n".format(round_value(total_memrw, True))
return summary