-
Notifications
You must be signed in to change notification settings - Fork 0
/
04_train_ppo.py
executable file
·197 lines (163 loc) · 7.61 KB
/
04_train_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python3
import os
import math
import ptan
import time
import gym
import roboschool
import argparse
from tensorboardX import SummaryWriter
from lib import model
import numpy as np
import torch
import torch.optim as optim
import torch.nn.functional as F
ENV_ID = "RoboschoolHalfCheetah-v1"
GAMMA = 0.99
GAE_LAMBDA = 0.95
TRAJECTORY_SIZE = 2049
LEARNING_RATE_ACTOR = 1e-4
LEARNING_RATE_CRITIC = 1e-3
PPO_EPS = 0.2
PPO_EPOCHES = 10
PPO_BATCH_SIZE = 64
TEST_ITERS = 1000
def test_net(net, env, count=10, device="cpu"):
rewards = 0.0
steps = 0
for _ in range(count):
obs = env.reset()
while True:
obs_v = ptan.agent.float32_preprocessor([obs]).to(device)
mu_v = net(obs_v)[0]
action = mu_v.squeeze(dim=0).data.cpu().numpy()
action = np.clip(action, -1, 1)
obs, reward, done, _ = env.step(action)
rewards += reward
steps += 1
if done:
break
return rewards / count, steps / count
def calc_logprob(mu_v, logstd_v, actions_v):
p1 = - ((mu_v - actions_v) ** 2) / (2*torch.exp(logstd_v).clamp(min=1e-3))
p2 = - torch.log(torch.sqrt(2 * math.pi * torch.exp(logstd_v)))
return p1 + p2
def calc_adv_ref(trajectory, net_crt, states_v, device="cpu"):
"""
By trajectory calculate advantage and 1-step ref value
:param trajectory: trajectory list
:param net_crt: critic network
:param states_v: states tensor
:return: tuple with advantage numpy array and reference values
"""
values_v = net_crt(states_v)
values = values_v.squeeze().data.cpu().numpy()
# generalized advantage estimator: smoothed version of the advantage
last_gae = 0.0
result_adv = []
result_ref = []
for val, next_val, (exp,) in zip(reversed(values[:-1]), reversed(values[1:]),
reversed(trajectory[:-1])):
if exp.done:
delta = exp.reward - val
last_gae = delta
else:
delta = exp.reward + GAMMA * next_val - val
last_gae = delta + GAMMA * GAE_LAMBDA * last_gae
result_adv.append(last_gae)
result_ref.append(last_gae + val)
adv_v = torch.FloatTensor(list(reversed(result_adv))).to(device)
ref_v = torch.FloatTensor(list(reversed(result_ref))).to(device)
return adv_v, ref_v
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", default=False, action='store_true', help='Enable CUDA')
parser.add_argument("-n", "--name", required=True, help="Name of the run")
parser.add_argument("-e", "--env", default=ENV_ID, help="Environment id, default=" + ENV_ID)
args = parser.parse_args()
device = torch.device("cuda" if args.cuda else "cpu")
save_path = os.path.join("saves", "ppo-" + args.name)
os.makedirs(save_path, exist_ok=True)
env = gym.make(args.env)
test_env = gym.make(args.env)
net_act = model.ModelActor(env.observation_space.shape[0], env.action_space.shape[0]).to(device)
net_crt = model.ModelCritic(env.observation_space.shape[0]).to(device)
print(net_act)
print(net_crt)
writer = SummaryWriter(comment="-ppo_" + args.name)
agent = model.AgentA2C(net_act, device=device)
exp_source = ptan.experience.ExperienceSource(env, agent, steps_count=1)
opt_act = optim.Adam(net_act.parameters(), lr=LEARNING_RATE_ACTOR)
opt_crt = optim.Adam(net_crt.parameters(), lr=LEARNING_RATE_CRITIC)
trajectory = []
best_reward = None
with ptan.common.utils.RewardTracker(writer) as tracker:
for step_idx, exp in enumerate(exp_source):
rewards_steps = exp_source.pop_rewards_steps()
if rewards_steps:
rewards, steps = zip(*rewards_steps)
writer.add_scalar("episode_steps", np.mean(steps), step_idx)
tracker.reward(np.mean(rewards), step_idx)
if step_idx % TEST_ITERS == 0:
ts = time.time()
rewards, steps = test_net(net_act, test_env, device=device)
print("Test done in %.2f sec, reward %.3f, steps %d" % (
time.time() - ts, rewards, steps))
writer.add_scalar("test_reward", rewards, step_idx)
writer.add_scalar("test_steps", steps, step_idx)
if best_reward is None or best_reward < rewards:
if best_reward is not None:
print("Best reward updated: %.3f -> %.3f" % (best_reward, rewards))
name = "best_%+.3f_%d.dat" % (rewards, step_idx)
fname = os.path.join(save_path, name)
torch.save(net_act.state_dict(), fname)
best_reward = rewards
trajectory.append(exp)
if len(trajectory) < TRAJECTORY_SIZE:
continue
traj_states = [t[0].state for t in trajectory]
traj_actions = [t[0].action for t in trajectory]
traj_states_v = torch.FloatTensor(traj_states).to(device)
traj_actions_v = torch.FloatTensor(traj_actions).to(device)
traj_adv_v, traj_ref_v = calc_adv_ref(trajectory, net_crt, traj_states_v, device=device)
mu_v = net_act(traj_states_v)
old_logprob_v = calc_logprob(mu_v, net_act.logstd, traj_actions_v)
# normalize advantages
traj_adv_v = (traj_adv_v - torch.mean(traj_adv_v)) / torch.std(traj_adv_v)
# drop last entry from the trajectory, an our adv and ref value calculated without it
trajectory = trajectory[:-1]
old_logprob_v = old_logprob_v[:-1].detach()
sum_loss_value = 0.0
sum_loss_policy = 0.0
count_steps = 0
for epoch in range(PPO_EPOCHES):
for batch_ofs in range(0, len(trajectory), PPO_BATCH_SIZE):
states_v = traj_states_v[batch_ofs:batch_ofs + PPO_BATCH_SIZE]
actions_v = traj_actions_v[batch_ofs:batch_ofs + PPO_BATCH_SIZE]
batch_adv_v = traj_adv_v[batch_ofs:batch_ofs + PPO_BATCH_SIZE].unsqueeze(-1)
batch_ref_v = traj_ref_v[batch_ofs:batch_ofs + PPO_BATCH_SIZE]
batch_old_logprob_v = old_logprob_v[batch_ofs:batch_ofs + PPO_BATCH_SIZE]
# critic training
opt_crt.zero_grad()
value_v = net_crt(states_v)
loss_value_v = F.mse_loss(value_v.squeeze(-1), batch_ref_v)
loss_value_v.backward()
opt_crt.step()
# actor training
opt_act.zero_grad()
mu_v = net_act(states_v)
logprob_pi_v = calc_logprob(mu_v, net_act.logstd, actions_v)
ratio_v = torch.exp(logprob_pi_v - batch_old_logprob_v)
surr_obj_v = batch_adv_v * ratio_v
clipped_surr_v = batch_adv_v * torch.clamp(ratio_v, 1.0 - PPO_EPS, 1.0 + PPO_EPS)
loss_policy_v = -torch.min(surr_obj_v, clipped_surr_v).mean()
loss_policy_v.backward()
opt_act.step()
sum_loss_value += loss_value_v.item()
sum_loss_policy += loss_policy_v.item()
count_steps += 1
trajectory.clear()
writer.add_scalar("advantage", traj_adv_v.mean().item(), step_idx)
writer.add_scalar("values", traj_ref_v.mean().item(), step_idx)
writer.add_scalar("loss_policy", sum_loss_policy / count_steps, step_idx)
writer.add_scalar("loss_value", sum_loss_value / count_steps, step_idx)