-
Notifications
You must be signed in to change notification settings - Fork 0
/
05_train_acktr.py
executable file
·144 lines (120 loc) · 5.6 KB
/
05_train_acktr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python3
import os
import math
import ptan
import time
import gym
import roboschool
import argparse
from tensorboardX import SummaryWriter
from lib import model, common, kfac
import numpy as np
import torch
import torch.optim as optim
import torch.nn.functional as F
ENV_ID = "RoboschoolHalfCheetah-v1"
GAMMA = 0.99
REWARD_STEPS = 5
BATCH_SIZE = 32
LEARNING_RATE_ACTOR = 1e-3
LEARNING_RATE_CRITIC = 1e-3
ENTROPY_BETA = 1e-3
ENVS_COUNT = 16
TEST_ITERS = 1000
def test_net(net, env, count=10, device="cpu"):
rewards = 0.0
steps = 0
for _ in range(count):
obs = env.reset()
while True:
obs_v = ptan.agent.float32_preprocessor([obs]).to(device)
mu_v = net(obs_v)[0]
action = mu_v.squeeze(dim=0).data.cpu().numpy()
action = np.clip(action, -1, 1)
obs, reward, done, _ = env.step(action)
rewards += reward
steps += 1
if done:
break
return rewards / count, steps / count
def calc_logprob(mu_v, logstd_v, actions_v):
p1 = - ((mu_v - actions_v) ** 2) / (2*torch.exp(logstd_v).clamp(min=1e-3))
p2 = - torch.log(torch.sqrt(2 * math.pi * torch.exp(logstd_v)))
return p1 + p2
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", default=False, action='store_true', help='Enable CUDA')
parser.add_argument("-n", "--name", required=True, help="Name of the run")
parser.add_argument("-e", "--env", default=ENV_ID, help="Environment id, default=" + ENV_ID)
args = parser.parse_args()
device = torch.device("cuda" if args.cuda else "cpu")
save_path = os.path.join("saves", "acktr-" + args.name)
os.makedirs(save_path, exist_ok=True)
envs = [gym.make(args.env) for _ in range(ENVS_COUNT)]
test_env = gym.make(args.env)
net_act = model.ModelActor(envs[0].observation_space.shape[0], envs[0].action_space.shape[0]).to(device)
net_crt = model.ModelCritic(envs[0].observation_space.shape[0]).to(device)
print(net_act)
print(net_crt)
writer = SummaryWriter(comment="-acktr_" + args.name)
agent = model.AgentA2C(net_act, device=device)
exp_source = ptan.experience.ExperienceSourceFirstLast(envs, agent, GAMMA, steps_count=REWARD_STEPS)
opt_act = kfac.KFACOptimizer(net_act, lr=LEARNING_RATE_ACTOR)
opt_crt = optim.Adam(net_crt.parameters(), lr=LEARNING_RATE_CRITIC)
batch = []
best_reward = None
with ptan.common.utils.RewardTracker(writer) as tracker:
with ptan.common.utils.TBMeanTracker(writer, batch_size=100) as tb_tracker:
for step_idx, exp in enumerate(exp_source):
rewards_steps = exp_source.pop_rewards_steps()
if rewards_steps:
rewards, steps = zip(*rewards_steps)
tb_tracker.track("episode_steps", np.mean(steps), step_idx)
tracker.reward(np.mean(rewards), step_idx)
if step_idx % TEST_ITERS == 0:
ts = time.time()
rewards, steps = test_net(net_act, test_env, device=device)
print("Test done in %.2f sec, reward %.3f, steps %d" % (
time.time() - ts, rewards, steps))
writer.add_scalar("test_reward", rewards, step_idx)
writer.add_scalar("test_steps", steps, step_idx)
if best_reward is None or best_reward < rewards:
if best_reward is not None:
print("Best reward updated: %.3f -> %.3f" % (best_reward, rewards))
name = "best_%+.3f_%d.dat" % (rewards, step_idx)
fname = os.path.join(save_path, name)
torch.save(net_act.state_dict(), fname)
best_reward = rewards
batch.append(exp)
if len(batch) < BATCH_SIZE:
continue
states_v, actions_v, vals_ref_v = \
common.unpack_batch_a2c(batch, net_crt, last_val_gamma=GAMMA ** REWARD_STEPS, device=device)
batch.clear()
opt_crt.zero_grad()
value_v = net_crt(states_v)
loss_value_v = F.mse_loss(value_v.squeeze(-1), vals_ref_v)
loss_value_v.backward()
opt_crt.step()
mu_v = net_act(states_v)
log_prob_v = calc_logprob(mu_v, net_act.logstd, actions_v)
if opt_act.steps % opt_act.Ts == 0:
opt_act.zero_grad()
pg_fisher_loss = -log_prob_v.mean()
opt_act.acc_stats = True
pg_fisher_loss.backward(retain_graph=True)
opt_act.acc_stats = False
opt_act.zero_grad()
adv_v = vals_ref_v.unsqueeze(dim=-1) - value_v.detach()
loss_policy_v = -(adv_v * log_prob_v).mean()
entropy_loss_v = ENTROPY_BETA * (-(torch.log(2*math.pi*torch.exp(net_act.logstd)) + 1)/2).mean()
loss_v = loss_policy_v + entropy_loss_v
loss_v.backward()
opt_act.step()
tb_tracker.track("advantage", adv_v, step_idx)
tb_tracker.track("values", value_v, step_idx)
tb_tracker.track("batch_rewards", vals_ref_v, step_idx)
tb_tracker.track("loss_entropy", entropy_loss_v, step_idx)
tb_tracker.track("loss_policy", loss_policy_v, step_idx)
tb_tracker.track("loss_value", loss_value_v, step_idx)
tb_tracker.track("loss_total", loss_v, step_idx)