-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfiltered.py
65 lines (49 loc) · 1.33 KB
/
filtered.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from signal_generator import SignalGenerator
import matplotlib.pyplot as plt
from audio import Audio
from convert_to_pcm import convert_to_pcm
import numpy as np
from math import pi, sin
from time import sleep
SAMPLE_RATE = 2000
period1 = 1000 / 440
period2 = 1000 / 554
period3 = 1000 / 659
period4 = 1000 / 880
sg = SignalGenerator.create(SAMPLE_RATE) \
.add_sinusoidal_by_ms(6000, period1, 0) \
.add_sinusoidal_by_ms(6000, period2, 0) \
.add_sinusoidal_by_ms(6000, period3, 0) \
.add_sinusoidal_by_ms(6000, period4, 0)
audio = Audio(2, 1, SAMPLE_RATE)
# IIR 임펄스 응답
def h(n: int):
f_c = 600
w_c = 2*pi*f_c / SAMPLE_RATE
if n==0:
return w_c / pi
else:
return sin(w_c * n) / pi / n
# LTI 시스템 패스
def lti(x, length, impulse_response):
y = [0] * length
for n in range(0, length):
for k in range(-length, length):
y[n] += x[k] * impulse_response(n - k)
return y
x = np.linspace(-1000, 1000, num=2000)
impz = []
for i in range(-1000, 1000):
impz.append(h(i))
plt.plot(x, impz)
plt.show()
# gen 생성
gen = sg.generate(SAMPLE_RATE)
# gen 에 필터 적용
gen = lti(gen, SAMPLE_RATE, h)
fig, axs = plt.subplots(2)
axs[0].plot(gen)
axs[1].plot(np.abs(np.fft.fft(gen)))
plt.show()
audio.push_chunk(convert_to_pcm(gen, SAMPLE_RATE))
audio.terminate()