-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlosses.py
99 lines (70 loc) · 3.34 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/env/bin python3.7
from functools import reduce
from operator import mul, add
from typing import List, Tuple, cast
import torch
import numpy as np
from torch import Tensor, einsum
from utils import simplex, one_hot
class CrossEntropy():
def __init__(self, **kwargs):
# Self.idc is used to filter out some classes of the target mask. Use fancy indexing
self.idc: List[int] = kwargs["idc"]
self.nd: str = kwargs["nd"]
print(f"Initialized {self.__class__.__name__} with {kwargs}")
def __call__(self, probs: Tensor, target: Tensor, _: Tensor, __) -> Tensor:
assert simplex(probs) and simplex(target)
log_p: Tensor = (probs[:, self.idc, ...] + 1e-10).log()
mask: Tensor = cast(Tensor, target[:, self.idc, ...].type(torch.float32))
loss = - einsum(f"bk{self.nd},bk{self.nd}->", mask, log_p)
loss /= mask.sum() + 1e-10
return loss
def Focal_Cross_Entropy(probs, target, clean_mask):
target[:,0,:,:][(clean_mask==2)] = 1
target[:,1,:,:][(clean_mask==2)] = 0
mask: Tensor = cast(Tensor, target.type(torch.float32))
log_p: Tensor = (probs + 1e-10).log()
alpha = 0.25
gamma = 2
#FG
fg_probs = probs[:, 1, :, :]
weight = alpha * torch.pow(1 - fg_probs, gamma)
fg_loss = - weight * mask[:, 1, :, :] * log_p[:, 1, :, :] # B, H, W
#BG
bg_probs = probs[:, 0, :, :]
weight = (1 - alpha) * torch.pow(1 - bg_probs, gamma)
bg_loss = - weight * mask[:, 0, :, :] * log_p[:, 0, :, :] # B, H, W
loss = fg_loss + bg_loss
idx_mask = ((clean_mask==1) | (clean_mask==2)).type(torch.bool)
loss = loss[idx_mask].sum() / (idx_mask.sum() + 1e-10)
return loss
class AbstractConstraints():
def __init__(self, **kwargs):
self.idc: List[int] = kwargs["idc"]
self.nd: str = kwargs["nd"]
self.C = len(self.idc)
self.__fn__ = getattr(__import__('utils'), kwargs['fn'])
print(f"Initialized {self.__class__.__name__} with {kwargs}")
def penalty(self, z: Tensor) -> Tensor:
raise NotImplementedError
def __call__(self, probs: Tensor, target: Tensor, bounds: Tensor, _) -> Tensor:
assert simplex(probs) # and simplex(target) # Actually, does not care about second part
assert probs.shape == target.shape
# b, _, w, h = probs.shape # type: Tuple[int, int, int, int]
b: int
b, _, *im_shape = probs.shape
_, _, k, two = bounds.shape # scalar or vector
assert two == 2
value: Tensor = cast(Tensor, self.__fn__(probs[:, self.idc, ...]))
lower_b = bounds[:, self.idc, :, 0]
upper_b = bounds[:, self.idc, :, 1]
assert value.shape == (b, self.C, k), value.shape
assert lower_b.shape == upper_b.shape == (b, self.C, k), lower_b.shape
upper_z: Tensor = cast(Tensor, (value - upper_b).type(torch.float32)).flatten()
lower_z: Tensor = cast(Tensor, (lower_b - value).type(torch.float32)).flatten()
upper_penalty: Tensor = reduce(add, (self.penalty(e) for e in upper_z))
lower_penalty: Tensor = reduce(add, (self.penalty(e) for e in lower_z))
res: Tensor = upper_penalty + lower_penalty
loss: Tensor = res.sum() / reduce(mul, im_shape)
assert loss.requires_grad == probs.requires_grad # Handle the case for validation
return loss