-
Notifications
You must be signed in to change notification settings - Fork 3
/
misc.py
140 lines (113 loc) · 3.7 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from PIL import Image
import os
import shutil
import pickle as pkl
import time
from datetime import datetime
import numpy as np
import torch
import random
def pil_loader(path):
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
class Logger(object):
def __init__(self):
self._logger = None
def init(self, logdir, name='log'):
if self._logger is None:
import logging
if not os.path.exists(logdir):
os.makedirs(logdir)
log_file = os.path.join(logdir, name)
if os.path.exists(log_file):
os.remove(log_file)
self._logger = logging.getLogger()
self._logger.setLevel('INFO')
fh = logging.FileHandler(log_file)
ch = logging.StreamHandler()
self._logger.addHandler(fh)
self._logger.addHandler(ch)
def info(self, str_info):
now = datetime.now()
display_now = str(now).split(' ')[1][:-3]
self.init(os.path.expanduser('~/tmp_log'), 'tmp.log')
self._logger.info('[' + display_now + ']' + ' ' + str_info)
logger = Logger()
def ensure_dir(path, erase=False):
if os.path.exists(path) and erase:
print("Removing old folder {}".format(path))
shutil.rmtree(path)
if not os.path.exists(path):
print("Creating folder {}".format(path))
os.makedirs(path)
def load_pickle(path, verbose=True):
begin_st = time.time()
with open(path, 'rb') as f:
if verbose:
print("Loading pickle object from {}".format(path))
v = pkl.load(f)
if verbose:
print("=> Done ({:.4f} s)".format(time.time() - begin_st))
return v
def dump_pickle(obj, path):
with open(path, 'wb') as f:
print("Dumping pickle object to {}".format(path))
pkl.dump(obj, f, protocol=pkl.HIGHEST_PROTOCOL)
def prepare_logging(args):
args.logdir = os.path.join('./logs', args.logdir)
logger.init(args.logdir, 'log')
ensure_dir(args.logdir)
logger.info("=================FLAGS==================")
for k, v in args.__dict__.items():
logger.info('{}: {}'.format(k, v))
logger.info("========================================")
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def to_python_float(t):
if hasattr(t, 'item'):
return t.item()
else:
return t[0]
import torch.distributed as dist
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.reduce_op.SUM)
rt /= args.world_size
return rt
def print_log(print_string, log):
print("{:}".format(print_string))
log.write('{:}\n'.format(print_string))
log.flush()
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def set_seed(seed=None):
if seed is None:
seed = random.randint(0, 9999)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
return seed