-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathargs.py
executable file
·102 lines (78 loc) · 3.21 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from datetime import datetime
import torch
from training.graphgen_training_utils import get_model_attribute
class Args:
"""
Program configuration
"""
def __init__(self):
# Can manually select the device too
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# self.device = 'cpu'
# Clean tensorboard
self.clean_tensorboard = False
# Clean temp folder
self.clean_temp = True
# Whether to use tensorboard for logging
self.log_tensorboard = False
# Algorithm Version - # Algorithm Version DGMG (Deep GMG)
self.note = 'DGMG'
# Check datasets/process_dataset for datasets
# Select dataset to train the model
self.graph_type = 'graph4code_large'
self.num_graphs = None # Set it None to take complete dataset
# Whether to produce networkx format graphs for real datasets
self.produce_graphs = True
self.batch_size = 16 # normal: 32, and the rest should be changed accordingly
# Specific to DGMG
# Model parameters
self.feat_size = 32
self.hops = 1
self.dropout = 0.2
# training config
self.num_workers = 0 # num workers to load data, default 4
self.epochs = 400
self.lr = 0.001 # Learning rate
# Learning rate decay factor at each milestone (no. of epochs)
self.gamma = 0.5
self.milestones = [50, 100, 150, 200] # List of milestones
# Whether to do gradient clipping
self.gradient_clipping = True
# Output config
self.dir_input = ''
self.model_save_path = self.dir_input + 'model_save/'
self.tensorboard_path = self.dir_input + 'tensorboard/'
self.dataset_path = self.dir_input + 'datasets/'
self.temp_path = self.dir_input + 'tmp/'
# Model save and validate parameters
self.save_model = True
self.epochs_save = round(self.epochs / 20)
self.epochs_validate = 1
# Time at which code is run
self.time = '{0:%Y-%m-%d_%H:%M:%S}'.format(datetime.now())
# Filenames to save intermediate and final outputs
self.fname = self.note + '_' + self.graph_type
# Calcuated at run time
self.current_model_save_path = self.model_save_path + \
self.fname + '_' + self.time + '/'
self.current_dataset_path = None
self.current_processed_dataset_path = None
self.current_temp_path = self.temp_path + self.fname + '_' + self.time + '/'
# Model load parameters
self.load_model = False
self.load_model_path = ''
self.load_device = torch.device('cuda:0')
self.epochs_end = 10000
def update_args(self):
if self.load_model:
args = get_model_attribute(
'saved_args', self.load_model_path, self.load_device)
args.device = self.load_device
args.load_model = True
args.load_model_path = self.load_model_path
args.epochs = self.epochs_end
args.clean_tensorboard = False
args.clean_temp = False
args.produce_graphs = False
return args
return self