-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataset.py
348 lines (290 loc) · 11.7 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
from torch.utils.data import Dataset
from data_classes import PointCloud, Box
from pyquaternion import Quaternion
import numpy as np
import pandas as pd
import os
import torch
from tqdm import tqdm
import kitty_utils as utils
from kitty_utils import getModel
from searchspace import KalmanFiltering
import logging
class kittiDataset():
def __init__(self, path):
self.KITTI_Folder = path
self.KITTI_velo = os.path.join(self.KITTI_Folder, "velodyne")
self.KITTI_label = os.path.join(self.KITTI_Folder, "label_02")
def getSceneID(self, split):
if "TRAIN" in split.upper(): # Training SET
if "TINY" in split.upper():
sceneID = [0]
else:
sceneID = list(range(0, 17))
elif "VALID" in split.upper(): # Validation Set
if "TINY" in split.upper():
sceneID = [18]
else:
sceneID = list(range(17, 19))
elif "TEST" in split.upper(): # Testing Set
if "TINY" in split.upper():
sceneID = [19]
else:
sceneID = list(range(19, 21))
else: # Full Dataset
sceneID = list(range(21))
return sceneID
def getBBandPC(self, anno):
calib_path = os.path.join(self.KITTI_Folder, 'calib',
anno['scene'] + ".txt")
calib = self.read_calib_file(calib_path)
transf_mat = np.vstack((calib["Tr_velo_cam"], np.array([0, 0, 0, 1])))
PC, box = self.getPCandBBfromPandas(anno, transf_mat)
return PC, box
def getListOfAnno(self, sceneID, category_name="Car"):
list_of_scene = [
path for path in os.listdir(self.KITTI_velo)
if os.path.isdir(os.path.join(self.KITTI_velo, path)) and
int(path) in sceneID
]
# print(self.list_of_scene)
list_of_tracklet_anno = []
for scene in list_of_scene:
label_file = os.path.join(self.KITTI_label, scene + ".txt")
df = pd.read_csv(
label_file,
sep=' ',
names=[
"frame", "track_id", "type", "truncated", "occluded",
"alpha", "bbox_left", "bbox_top", "bbox_right",
"bbox_bottom", "height", "width", "length", "x", "y", "z",
"rotation_y"
])
df = df[df["type"] == category_name]
df.insert(loc=0, column="scene", value=scene)
for track_id in df.track_id.unique():
df_tracklet = df[df["track_id"] == track_id]
df_tracklet = df_tracklet.reset_index(drop=True)
tracklet_anno = [anno for index, anno in df_tracklet.iterrows()]
list_of_tracklet_anno.append(tracklet_anno)
return list_of_tracklet_anno
def getPCandBBfromPandas(self, box, calib):
center = [box["x"], box["y"] - box["height"] / 2, box["z"]]
size = [box["width"], box["length"], box["height"]]
orientation = Quaternion(
axis=[0, 1, 0], radians=box["rotation_y"]) * Quaternion(
axis=[1, 0, 0], radians=np.pi / 2)
BB = Box(center, size, orientation)
try:
# VELODYNE PointCloud
velodyne_path = os.path.join(self.KITTI_velo, box["scene"],
'{:06}.bin'.format(box["frame"]))
PC = PointCloud(
np.fromfile(velodyne_path, dtype=np.float32).reshape(-1, 4).T)
PC.transform(calib)
except :
# in case the Point cloud is missing
# (0001/[000177-000180].bin)
PC = PointCloud(np.array([[0, 0, 0]]).T)
return PC, BB
def read_calib_file(self, filepath):
"""Read in a calibration file and parse into a dictionary."""
data = {}
with open(filepath, 'r') as f:
for line in f.readlines():
values = line.split()
# The only non-float values in these files are dates, which
# we don't care about anyway
try:
data[values[0]] = np.array(
[float(x) for x in values[1:]]).reshape(3, 4)
except ValueError:
pass
return data
class SiameseDataset(Dataset):
def __init__(self,
input_size,
path,
split,
category_name="Car",
regress="GAUSSIAN",
offset_BB=0,
scale_BB=1.0):
self.dataset = kittiDataset(path=path)
self.input_size = input_size
self.split = split
self.sceneID = self.dataset.getSceneID(split=split)
self.getBBandPC = self.dataset.getBBandPC
self.category_name = category_name
self.regress = regress
self.list_of_tracklet_anno = self.dataset.getListOfAnno(
self.sceneID, category_name)
self.list_of_anno = [
anno for tracklet_anno in self.list_of_tracklet_anno
for anno in tracklet_anno
]
def isTiny(self):
return ("TINY" in self.split.upper())
def __getitem__(self, index):
return self.getitem(index)
class SiameseTrain(SiameseDataset):
# train_data = SiameseTrain(
# input_size=1024,
# path=opt.data_dir,
# split='Train',
# category_name=opt.category_name,
# offset_BB=0,
# scale_BB=1.25)
def __init__(self,
input_size,
path,
split="",
category_name="Car",
regress="GAUSSIAN",
sigma_Gaussian=1,
offset_BB=0,
scale_BB=1.0):
super(SiameseTrain,self).__init__(
input_size=input_size,
path=path,
split=split,
category_name=category_name,
regress=regress,
offset_BB=offset_BB,
scale_BB=scale_BB)
self.sigma_Gaussian = sigma_Gaussian
self.offset_BB = offset_BB
self.scale_BB = scale_BB
self.num_candidates_perframe = 4
logging.info("preloading PC...")
self.list_of_PCs = [None] * len(self.list_of_anno)
self.list_of_BBs = [None] * len(self.list_of_anno)
for index in tqdm(range(len(self.list_of_anno))):
anno = self.list_of_anno[index]
PC, box = self.getBBandPC(anno)
new_PC = utils.cropPC(PC, box, offset=10)
self.list_of_PCs[index] = new_PC
self.list_of_BBs[index] = box
logging.info("PC preloaded!")
logging.info("preloading Model..")
self.model_PC = [None] * len(self.list_of_tracklet_anno)
for i in tqdm(range(len(self.list_of_tracklet_anno))):
list_of_anno = self.list_of_tracklet_anno[i]
PCs = []
BBs = []
cnt = 0
for anno in list_of_anno:
this_PC, this_BB = self.getBBandPC(anno)
PCs.append(this_PC)
BBs.append(this_BB)
anno["model_idx"] = i
anno["relative_idx"] = cnt
cnt += 1
self.model_PC[i] = getModel(
PCs, BBs, offset=self.offset_BB, scale=self.scale_BB)
logging.info("Model preloaded!")
def __getitem__(self, index):
return self.getitem(index)
def getPCandBBfromIndex(self, anno_idx):
this_PC = self.list_of_PCs[anno_idx]
this_BB = self.list_of_BBs[anno_idx]
return this_PC, this_BB
def getitem(self, index):
anno_idx = self.getAnnotationIndex(index)
sample_idx = self.getSearchSpaceIndex(index)
if sample_idx == 0:
sample_offsets = np.zeros(3)
else:
gaussian = KalmanFiltering(bnd=[1, 1, 5])
sample_offsets = gaussian.sample(1)[0]
this_anno = self.list_of_anno[anno_idx]
this_PC, this_BB = self.getPCandBBfromIndex(anno_idx)
sample_BB = utils.getOffsetBB(this_BB, sample_offsets)
# sample_PC = utils.cropAndCenterPC(
# this_PC, sample_BB, offset=self.offset_BB, scale=self.scale_BB)
sample_PC, sample_label, sample_reg = utils.cropAndCenterPC_label(
this_PC,sample_BB, this_BB, sample_offsets, offset=self.offset_BB, scale=self.scale_BB)
if sample_PC.nbr_points() <= 20:
return self.getitem(np.random.randint(0, self.__len__()))
# sample_PC = utils.regularizePC(sample_PC, self.input_size)[0]
sample_PC, sample_label, sample_reg = utils.regularizePCwithlabel(sample_PC,sample_label,sample_reg,self.input_size)
if this_anno["relative_idx"] == 0:
prev_idx = 0
fir_idx = 0
else:
prev_idx = anno_idx - 1
fir_idx = anno_idx - this_anno["relative_idx"]
gt_PC_pre, gt_BB_pre = self.getPCandBBfromIndex(prev_idx)
gt_PC_fir, gt_BB_fir = self.getPCandBBfromIndex(fir_idx)
if sample_idx == 0:
samplegt_offsets = np.zeros(3)
else:
samplegt_offsets = np.random.uniform(low=-0.3, high=0.3, size=3)
samplegt_offsets[2] = samplegt_offsets[2]*5.0
gt_BB_pre = utils.getOffsetBB(gt_BB_pre, samplegt_offsets)
gt_PC = getModel([gt_PC_fir,gt_PC_pre], [gt_BB_fir,gt_BB_pre], offset=self.offset_BB, scale=self.scale_BB)
if gt_PC.nbr_points() <= 20:
return self.getitem(np.random.randint(0, self.__len__()))
gt_PC = utils.regularizePC(gt_PC,self.input_size)
return sample_PC, sample_label, sample_reg, gt_PC
def __len__(self):
nb_anno = len(self.list_of_anno)
return nb_anno * self.num_candidates_perframe
def getAnnotationIndex(self, index):
return int(index / (self.num_candidates_perframe))
def getSearchSpaceIndex(self, index):
return int(index % self.num_candidates_perframe)
class SiameseTest(SiameseDataset):
def __init__(self,
input_size,
path,
split="",
category_name="Car",
regress="GAUSSIAN",
offset_BB=0,
scale_BB=1.0):
super(SiameseTest,self).__init__(
input_size=input_size,
path=path,
split=split,
category_name=category_name,
regress=regress,
offset_BB=offset_BB,
scale_BB=scale_BB)
self.split = split
self.offset_BB = offset_BB
self.scale_BB = scale_BB
def getitem(self, index):
list_of_anno = self.list_of_tracklet_anno[index]
PCs = []
BBs = []
for anno in list_of_anno:
this_PC, this_BB = self.getBBandPC(anno)
PCs.append(this_PC)
BBs.append(this_BB)
return PCs, BBs, list_of_anno
def __len__(self):
return len(self.list_of_tracklet_anno)
if __name__ == '__main__':
# dataset_Training = SiameseTrain(
# input_size=1024,
# path='/home/logic/m2/dataset/kitii_track/data_tracking_velodyne/training',
# split='TINYTrain',
# category_name='Car',
# offset_BB=0,
# scale_BB=1.15)
dataset_Test = SiameseTest(
input_size=1024,
path='/home/logic/m2/dataset/kitii_track/data_tracking_velodyne/training',
split='Test',
category_name='Car',
offset_BB=0,
scale_BB=1.25)
aa = dataset_Test.getitem(0)
print(aa)
# aa = dataset_Training.getitem(201)
# aa = dataset_Training.getitem(30)
# aa = dataset_Training.getitem(100)
# aa = dataset_Training.getitem(120)
# aa = dataset_Training.getitem(200)
# asdf = aa[2].numpy()