-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreedenzymatic_PTK_HPC.R
55 lines (44 loc) · 1.37 KB
/
creedenzymatic_PTK_HPC.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Creedenzymatic for STK - Hippocampus
library(tidyverse)
library(creedenzymatic)
krsa_df <-
read_csv("results/HPC-krsa_table_full_HPC_Exer_HPC_CTL_PTK.csv") |>
select(Kinase, Score = AvgZ) |>
unique() |>
read_krsa(trns = "abs", sort = "desc")
uka_df <- read_tsv("kinome_data/UKA-PTK/HPC/Summaryresults 20240126-1025.txt") |> select(Kinase = `Kinase Name`, Score = `Median Final score`) |>
unique() |>
read_uka(trns = "abs", sort = "desc")
diff_peps <- read_csv("results/HPC-dpp_HPC_Exer_HPC_CTL-PTK.csv") |>
select(Peptide, Score = totalMeanLFC) |>
unique()
kea_df <-
read_kea(
diff_peps,
filter = T,
cutoff = 0.4,
cutoff_abs = T,
sort = "asc",
trns = "abs",
rm_duplicates = T,
method = "MeanRank",
lib = "kinase-substrate"
)
ptmsea_df <- diff_peps |>
read_ptmsea()
combined <- combine_tools(krsa_df, uka_df, kea_df, ptmsea_df) |>
write_csv("results/HPC-PTK-Combined_Tools.csv")
top_kinases <- krsa_df |>
filter(Score >= 1.5) |>
pull(Kinase)
top_kinase_symbols <- kinome_mp_file |>
filter(krsa_id %in% top_kinases) |>
pull(hgnc_symbol)
sig_kinases <- combined |>
filter(Perc >= 0.95) |>
pull(hgnc_symbol) |>
unique()
quartile_fig <- combined |>
filter(hgnc_symbol %in% sig_kinases) |>
quartile_figure() |>
ggsave("figures/hpc_ptk_quartile_figure.png", plot = _, width = 18, height = 6, units = "in", bg = "white")