This repository has been archived by the owner on Jan 13, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathstudy_analyzer.py
462 lines (405 loc) · 19.8 KB
/
study_analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import ontotextapi as onto
import utils
import json
from os.path import isfile, join, split
import joblib as jl
import cohortanalysis as cohort
from ann_post_rules import AnnRuleExecutor
import sys
import xml.etree.ElementTree as ET
import concept_mapping
import urllib3
import logging
class StudyConcept(object):
def __init__(self, name, terms, umls_instance=None):
self.terms = terms
self._name = name
self._term_to_concept = None
self._concept_closure = None
self._umls_instance = umls_instance
def gen_concept_closure(self, term_concepts=None, concept_to_closure=None):
"""
generate concept closures for all terms
:param term_concepts: optional - expert verified mappings can be used
:param concept_to_closure: precomputed concept to closure dictionary
:return:
"""
self._term_to_concept = {}
self._concept_closure = set()
if term_concepts is None:
term_concepts = {}
for term in self.terms:
concept_objs = onto.match_term_to_concept(term if not term.startswith("~~") else term[2:])
if concept_objs is not None:
term_concepts[term] = [o['localName'] for o in concept_objs]
for term in term_concepts:
candidate_terms = []
for concept in term_concepts[term]:
if concept_to_closure is not None:
candidate_terms.append((concept, concept_to_closure[concept]))
else:
candidate_terms.append((concept, onto.get_transitive_subconcepts(concept)))
# pick the rich sub-concept mappings
if len(candidate_terms) > 1:
candidate_terms = sorted(candidate_terms, key=lambda x: -len(x[1]))
if term.startswith('~~'):
to_remove = set(candidate_terms[0][1])
to_remove.add(candidate_terms[0][0])
self._concept_closure -= to_remove
print 'removed %s items' % len(to_remove)
else:
self._concept_closure.add(candidate_terms[0][0])
self._concept_closure |= set(candidate_terms[0][1])
self._term_to_concept[term] = {'mapped': candidate_terms[0][0], 'closure': len(candidate_terms[0][1])}
@staticmethod
def compute_all_concept_closure(all_concepts, umls_instance, skip_relations={}):
concept_to_closure = {}
print 'all concepts number %s' % len(all_concepts)
computed = []
results =[]
utils.multi_thread_tasking(all_concepts, 40, StudyConcept.do_compute_concept_closure,
args=[umls_instance, computed, results, skip_relations])
for r in results:
concept_to_closure[r['concept']] = r['closure']
return concept_to_closure
@staticmethod
def do_compute_concept_closure(concept, umls_instance, computed, results, skip_relations={}):
if concept not in computed:
closure = umls_instance.transitive_narrower(concept, skip_relations=skip_relations)
computed.append(concept)
results.append({'concept': concept, 'closure': closure})
print 'concept: %s transitive children %s' % (concept, closure)
@property
def name(self):
return self._name
@property
def concept_closure(self):
if self._concept_closure is None:
self.gen_concept_closure()
return self._concept_closure
@concept_closure.setter
def concept_closure(self, value):
self._concept_closure = value
@property
def term_to_concept(self):
if self._concept_closure is None:
self.gen_concept_closure()
return self._term_to_concept
@term_to_concept.setter
def term_to_concept(self, value):
self._term_to_concept = value
class StudyAnalyzer(object):
def __init__(self, name):
self._study_name = name
self._study_concepts = []
self._skip_terms = []
self._options = None
@property
def study_name(self):
return self._study_name
@study_name.setter
def study_name(self, value):
self._study_name = value
@property
def study_concepts(self):
return self._study_concepts
@study_concepts.setter
def study_concepts(self, value):
self._study_concepts = value
@property
def skip_terms(self):
return self._skip_terms
@skip_terms.setter
def skip_terms(self, value):
self._skip_terms = value
def add_concept(self, concept):
self.study_concepts.append(concept)
def generate_exclusive_concepts(self):
"""
it is important to have a set of disjoint concepts otherwise concept-document frequencies would
contain double-counted results
:return:
"""
# call the concept closure property to make sure
# that the closure has been generated before
# compute the disjoint
for sc in self.study_concepts:
cc = sc.concept_closure
intersections = {}
explain_inter = {}
for i in range(1, len(self.study_concepts)):
for j in xrange(i):
common = self.study_concepts[i].concept_closure & self.study_concepts[j].concept_closure
if len(common) > 0:
intersections[self.study_concepts[i].name + ' - ' + self.study_concepts[j].name] = common
self.study_concepts[j].concept_closure -= common
explain_inter[self.study_concepts[j].name] = \
['removed %s common (%s) concepts' % (len(common), self.study_concepts[i].name)] \
if self.study_concepts[j].name not in explain_inter \
else explain_inter[self.study_concepts[j].name] + \
['removed %s common (%s) concepts' % (len(common), self.study_concepts[i].name)]
# if len(intersections) > 0:
# print 'intersections [[\n%s\n]]' % json.dumps(explain_inter)
# for sc in self.study_concepts:
# print '%s %s' % (sc.name, len(sc.concept_closure))
def remove_study_concept_by_name(self, concept_name):
for sc in self.study_concepts:
if sc.name == concept_name:
self.study_concepts.remove(sc)
def retain_study_concepts(self, concept_names):
retained = []
for sc in self.study_concepts:
if sc.name in concept_names:
retained.append(sc)
self.study_concepts = retained
def export_mapping_in_json(self):
mapping = {}
for c in self._study_concepts:
mapping[c.name] = c.term_to_concept
def serialise(self, out_file):
print 'iterating concepts to populate the mappings'
for c in self._study_concepts:
tc = c.term_to_concept
print 'saving...'
jl.dump(self, out_file)
print 'serialised to %s' % out_file
@property
def study_options(self):
return self._options
@study_options.setter
def study_options(self, value):
self._options = value
@staticmethod
def deserialise(ser_file):
return jl.load(ser_file)
def gen_study_table(self, cohort_name, out_file):
cohort.populate_patient_study_table(cohort_name, self, out_file)
def gen_sample_docs(self, cohort_name, out_file):
cohort.random_extract_annotated_docs(cohort_name, self, out_file, 10)
def gen_study_table_with_rules(self, cohort_name, out_file, sample_out_file, ruler, ruled_out_file,
sql_config, db_conn_file, text_preprocessing=False):
sql_setting = get_sql_template(sql_config)
cohort.populate_patient_study_table_post_ruled(cohort_name, self, out_file, ruler, 20,
sample_out_file, ruled_out_file,
sql_setting['patients_sql'], sql_setting['term_doc_anns_sql'],
sql_setting['skip_term_sql'],
db_conn_file, text_preprocessing=text_preprocessing)
def gen_study_table_in_one_iteration(self, cohort_name, out_file, sample_out_file,
sql_config, db_conn_file):
sql_setting = get_one_iteration_sql_template(sql_config)
cohort.generate_result_in_one_iteration(cohort_name, self, out_file, 20, sample_out_file,
sql_setting['doc_to_brc_sql'],
sql_setting['brc_sql'],
sql_setting['anns_iter_sql'],
sql_setting['skip_term_sql'],
sql_setting['doc_content_sql'],
db_conn_file)
def gen_study_table_with_rules_es(self, cohort_name, out_file, sample_out_file, ruler, ruled_out_file,
sem_idx_setting_file, retained_patients_filter, filter_obj=None):
cohort.es_populate_patient_study_table_post_ruled(self, out_file, ruler, 20,
sample_out_file, ruled_out_file, sem_idx_setting_file,
retained_patients_filter=retained_patients_filter,
filter_obj=filter_obj)
def get_sql_template(config_file):
root = ET.parse(config_file).getroot()
return {'term_doc_anns_sql': root.find('term_doc_anns_sql').text,
'patients_sql': root.find('patients_sql').text,
'skip_term_sql': root.find('skip_term_sql').text}
def get_one_iteration_sql_template(config_file):
root = ET.parse(config_file).getroot()
return {'doc_to_brc_sql': root.find('doc_to_brc_sql').text,
'brc_sql': root.find('brc_sql').text,
'anns_iter_sql': root.find('anns_iter_sql').text,
'doc_content_sql': root.find('doc_content_sql').text,
'skip_term_sql': root.find('skip_term_sql').text}
def load_ruler(rule_setting_file):
ruler = AnnRuleExecutor()
if rule_setting_file is None:
ruler.load_rule_config('./studies/rules/_default_rule_config.json')
else:
ruler.load_rule_config(rule_setting_file)
return ruler
def load_study_settings(folder, umls_instance,
rule_setting_file=None,
concept_filter_file=None,
do_disjoint_computing=True,
export_study_concept_only=False):
p, fn = split(folder)
if isfile(join(folder, 'study_analyzer.pickle')):
sa = StudyAnalyzer.deserialise(join(folder, 'study_analyzer.pickle'))
else:
sa = StudyAnalyzer(fn)
if isfile(join(folder, 'label2concept.tsv')):
# using tsv file if exists
logging.info('loading study concepts from tsv file...')
lines = utils.read_text_file(join(folder, 'label2concept.tsv'))
scs = []
for l in lines:
arr = l.split('\t')
if len(arr) != 2:
logging.error('line [%s] not parsable' % l)
continue
t = arr[0]
c = arr[1]
sc = StudyConcept(t, [t])
sc.concept_closure = set([c])
tc = {}
tc[t] = {'closure': 1, 'mapped': c}
sc.term_to_concept = tc
scs.append(sc)
logging.debug('study concept [%s]: %s, %s' % (sc.name, sc.term_to_concept, sc.concept_closure))
sa.study_concepts = scs
logging.info('study concepts loaded')
elif isfile(join(folder, 'exact_concepts_mappings.json')):
concept_mappings = utils.load_json_data(join(folder, 'exact_concepts_mappings.json'))
concept_to_closure = None
# concept_to_closure = \
# StudyConcept.compute_all_concept_closure([concept_mappings[t] for t in concept_mappings],
# umls_instance, skip_relations=skip_closure_relations)
scs = []
for t in concept_mappings:
sc = StudyConcept(t, [t])
t_c = {}
t_c[t] = [concept_mappings[t]]
sc.gen_concept_closure(term_concepts=t_c, concept_to_closure=concept_to_closure)
scs.append(sc)
logging.debug(sc.concept_closure)
sa.study_concepts = scs
sa.serialise(join(folder, 'study_analyzer.pickle'))
elif isfile(join(folder, 'manual_mapped_concepts.json')):
mapped_scs = utils.load_json_data(join(folder, 'manual_mapped_concepts.json'))
scs = []
for t in mapped_scs:
sc = StudyConcept(t, [t])
sc.concept_closure = set(mapped_scs[t]['concepts'])
tc = {}
tc[t] = mapped_scs[t]['tc']
sc.term_to_concept = tc
scs.append(sc)
logging.debug('study concept [%s]: %s, %s' % (sc.name, sc.term_to_concept, sc.concept_closure))
sa.study_concepts = scs
else:
concepts = utils.load_json_data(join(folder, 'study_concepts.json'))
if len(concepts) > 0:
scs = []
for name in concepts:
scs.append(StudyConcept(name, concepts[name], umls_instance=umls_instance))
logging.debug('%s, %s' % (name, concepts[name]))
sa.study_concepts = scs
sa.serialise(join(folder, 'study_analyzer.pickle'))
# get filtered concepts only, if filter exists
if concept_filter_file is not None:
logging.debug('before removal, the concept length is: %s' % len(sa.study_concepts))
concept_names = utils.load_json_data(concept_filter_file)
sa.retain_study_concepts(concept_names)
logging.debug('after removal: %s' % len(sa.study_concepts))
# compute disjoint concepts
if do_disjoint_computing:
sa.generate_exclusive_concepts()
if export_study_concept_only:
sc2closure = {}
for sc in sa.study_concepts:
sc2closure[sc.name] = list(sc.concept_closure)
utils.save_json_array(sc2closure, join(folder, 'sc2closure.json'))
logging.debug('sc2closure.json generated in %s' % folder)
if isfile(join(folder, 'study_options.json')):
sa.study_options = utils.load_json_data(join(folder, 'study_options.json'))
merged_mappings = {}
study_concept_list = []
for c in sa.study_concepts:
for t in c.term_to_concept:
all_concepts = list(c.concept_closure)
study_concept_list += all_concepts
if len(all_concepts) > 1:
idx = 0
for cid in all_concepts:
merged_mappings['(%s) %s (%s)' % (c.name, t, idx)] = {'closure': len(all_concepts), 'mapped': cid}
idx += 1
else:
merged_mappings['(%s) %s' % (c.name, t)] = c.term_to_concept[t]
# print c.name, c.term_to_concept, c.concept_closure
# print json.dumps(list(c.concept_closure))
# logging.debug('print merged mappings...')
# print json.dumps(merged_mappings)
# logging.debug(len(study_concept_list))
utils.save_string('\n'.join(study_concept_list), join(folder, 'all_concepts.txt'))
if export_study_concept_only:
return
# sa.gen_study_table(cohort_name, join(folder, 'result.csv'))
# sa.gen_sample_docs(cohort_name, join(folder, 'sample_docs.json'))
ruler = load_ruler(rule_setting_file)
if len(ruler.skip_terms) > 0:
sa.skip_terms = ruler.skip_terms
return {'study_analyzer': sa, 'ruler': ruler}
def study(folder, cohort_name, sql_config_file, db_conn_file, umls_instance,
do_one_iter=False, do_preprocessing=False,
rule_setting_file=None, sem_idx_setting_file=None,
concept_filter_file=None,
retained_patients_filter=None,
filter_obj_setting=None,
do_disjoint_computing=True,
export_study_concept_only=False,
skip_closure_relations={}):
ret = load_study_settings(folder, umls_instance,
rule_setting_file=rule_setting_file,
concept_filter_file=concept_filter_file,
do_disjoint_computing=do_disjoint_computing,
export_study_concept_only=export_study_concept_only)
sa = ret['study_analyzer']
ruler = ret['ruler']
if do_one_iter:
sa.gen_study_table_in_one_iteration(cohort_name, join(folder, 'result.csv'), join(folder, 'sample_docs.json'),
sql_config_file, db_conn_file)
else:
if sem_idx_setting_file is None:
sa.gen_study_table_with_rules(cohort_name, join(folder, 'result.csv'), join(folder, 'sample_docs.js'), ruler,
join(folder, 'ruled_anns.json'), sql_config_file, db_conn_file,
text_preprocessing=do_preprocessing)
else:
filter_obj = None
if filter_obj_setting is not None:
filter_obj = utils.load_json_data(filter_obj_setting)
sa.gen_study_table_with_rules_es(cohort_name, join(folder, 'result.csv'), join(folder, 'sample_docs.js'),
ruler,
join(folder, 'ruled_anns.json'),
sem_idx_setting_file,
retained_patients_filter,
filter_obj=filter_obj)
logging.info('done')
def run_study(folder_path, no_sql_filter=None):
study_config = 'study.json' if no_sql_filter is None else 'study_no_filter.json'
if isfile(join(folder_path, study_config)):
r = utils.load_json_data(join(folder_path, study_config))
retained_patients = None
if 'query_patients_file' in r:
retained_patients = []
lines = utils.read_text_file(r['query_patients_file'])
for l in lines:
arr = l.split('\t')
retained_patients.append(arr[0])
skip_closure_relations = {}
if 'skip_closure_relations' in r:
skip_closure_relations = utils.load_json_data(r['skip_closure_relations'])
study(folder_path, r['cohort'], r['sql_config'], r['db_conn'],
concept_mapping.get_umls_client_inst(r['umls_key']),
do_preprocessing=r['do_preprocessing'],
rule_setting_file=r['rule_setting_file'],
do_one_iter=r['do_one_iter'],
sem_idx_setting_file=None if 'sem_idx_setting_file' not in r else r['sem_idx_setting_file'],
concept_filter_file=None if 'concept_filter_file' not in r else r['concept_filter_file'],
retained_patients_filter=retained_patients,
filter_obj_setting=None if 'filter_obj_setting' not in r else r['filter_obj_setting'],
do_disjoint_computing=True if 'do_disjoint' not in r else r['do_disjoint'],
export_study_concept_only=False if 'export_study_concept' not in r else r['export_study_concept'],
skip_closure_relations=skip_closure_relations
)
else:
logging.error('study.json not found in the folder')
if __name__ == "__main__":
reload(sys)
sys.setdefaultencoding('cp1252')
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
if 2 < len(sys.argv) > 3:
print 'the syntax is [python study_analyzer.py STUDY_DIR [-no-sql-filter]]'
else:
run_study(sys.argv[1], no_sql_filter=None if len(sys.argv) == 2 else 'yes')