-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_functions_MRI.py
186 lines (153 loc) · 5.11 KB
/
helper_functions_MRI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created 12.10.2020
@author: David Richter ([email protected]), Yamil Vidal ([email protected])
Various helper functions for fMRI analyses.
"""
# %% Imports & parameters
import numpy as np
import os
# %% Helper functions for data handling; BIDS, fmriprep processed data, subject lists, running sub processes
def get_subject_list(bids_dir,list_type='all'):
"""
Gets subject list from bids compliant participants tsv file.
bidsDir: Bids directory
list_type: which list should be retrieved.
By default all are returned
Returns: subjects list containing subjects
"""
import pandas as pd
# get subject list (determines on which subjects scripts are run)
if list_type == 'all_p':
fname_suffix = 'participants.tsv'
elif list_type == 'optimization_exp1':
fname_suffix = 'optimization_exp1.tsv'
elif list_type == 'replication_exp1':
fname_suffix = 'replication_exp1.tsv'
elif list_type == 'debug':
fname_suffix = 'debug_participants.tsv'
elif list_type == 'demo':
fname_suffix = 'participants_fMRI_QC_included_demo_sesV1.tsv'
else:
raise ValueError('Invalid subject list type specified. No subject list returned')
subject_list = bids_dir + os.sep + fname_suffix
subj_df = pd.read_csv(subject_list, sep="\t")
# subjects = subj_df['participant_id'].values
subjects = 'sub-'+subj_df['participant_id'].values
print('Number of Subjects:', subjects.size)
return subjects
# run shell command line using subprocess
def run_subprocess(full_cmd):
"""
Runs shell command given in full_cmd using subprocess.
full_cmd: full shell command line to run.
Returns: stdout
"""
import subprocess
# execute command
subprocess_return = subprocess.run(full_cmd, shell=True, stdout=subprocess.PIPE)
return subprocess_return.stdout.decode('utf-8')
# %% Helper functions for log file extraction
def saveEventFile(fname,event,fill_empty=False):
"""
Save event file (.txt) to dir. Create dir if necessary.
If event information is empty zeros can be added if fill_empty is True.
This can be helpful to avoid FEAT crashing on empty event files.
"""
if len(event)==0 and fill_empty:
event = np.array([[0,0,0]])
dirname = os.path.dirname(fname)
if not os.path.exists(dirname):
os.makedirs(dirname)
np.savetxt(fname, event, fmt='%f')
def saveErrorFlags(fname, errLogDf):
"""
Save file with error flags (.csv) to dir. Create dir if necessary.
"""
dirname = os.path.dirname(fname)
if not os.path.exists(dirname):
os.makedirs(dirname)
errLogDf.to_csv(fname, sep=',', index=False, na_rep='Null')
# %% MRI data handling functions
def load_mri(func, mask):
"""returns functional data
The data is converted into a 2D (n_voxel, n_tps) array.
Parameters
----------
func : string
Path to fuctional imaging data (e.g. nifti) that contains the 3D + time
information (n_tps).
mask : string
Path to binary mask (e.g. nifti) that defines brain regions. Values > 0
are regarded as brain tissue.
Returns
-------
ts : ndarray, shape(n, n_tps)
Timeseries information in a 2D array.
"""
import nibabel as nib
# load mask data
m = nib.load(mask).get_fdata()
# load func data
d = nib.load(func).get_fdata()
# mask the data
return np.asarray(d[m != 0], dtype=np.float32)
#return np.asarray(d, dtype=np.float32)
def save_mri(data, mask, fname=None):
"""saves MRI data
Parameters
----------
data : ndarray, shape(n,) **or** shape(n, n_tps)
Data to save to disk.
mask : string
Path to binary mask (e.g. nifti) that defines brain regions. Values > 0
are regarded as brain tissue.
fname : string
Filename.
"""
import nibabel as nib
# load mask data for spatial information
f = nib.load(mask)
m = f.get_data()
aff = f.get_affine()
s = m.shape
if len(data.shape) == 2:
n_tps = data.shape[1]
else:
n_tps = 1
data = data[:, np.newaxis]
res = np.zeros((s[0], s[1], s[2], n_tps)) # + time
res[m != 0] = data
# save to disk
if not fname is None:
nib.save(nib.Nifti1Image(res, aff), fname)
def pval_to_zscore(data, two_sided=True, inv=False):
"""convert p-values to z-scores (and the inverse)
Parameters
-----------
data : ndarray, shape(n, )
Data values
two_sided : boolean
Values from two-sided test (default=True).
inv : boolean
Inverse transformation: convert z-scores to p-values (default=False).
Returns
-------
v : ndarray, shape(n, )
Transformed data values.
"""
from scipy.stats import norm
if two_sided:
mul = 2.
else:
mul = 1.
if inv:
# zscore --> pval
v = norm.cdf(-np.abs(data)) * mul
# TODO better use survival function?
# v = norm.sf(data) * mul
else:
# pval --> zscore
v = np.abs(norm.ppf(data / mul))
return v