-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathplot-vec-histograms.py
executable file
·99 lines (81 loc) · 3.49 KB
/
plot-vec-histograms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Plot the vector histograms for each statistics using
matplotlib.
As input, the files datalist.csv and statlist.csv
files are required. Check the accompanying samples
to know what to be included in these files.
Check OPSNetwork.ned and KOPSNode.ned files to get
all statistics generated.
@author: Asanga Udugama ([email protected])
@date: Sat Aug 15 16:53:50 2020
"""
import csv
import argparse
import subprocess
import matplotlib.pyplot as plt
import os
# get params
print("running script", __file__)
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--datalist', help='List of the results files (.vec)',
required=True)
parser.add_argument('-s', '--statlist', help='List of the statistics to plot',
required=True)
args = parser.parse_args()
print('parameters', '-d', args.datalist, '-s', args.statlist)
with open(args.statlist, 'r') as statlistfp:
slines = csv.reader(statlistfp, delimiter=',')
for srow in slines:
if srow[0].startswith('#'):
continue
stat_name = srow[0].strip()
sca_type = srow[1].strip()
short_name = srow[2].strip()
long_name = srow[3].strip()
unit_name = srow[4].strip()
data_type = srow[5].strip()
with open(args.datalist, 'r') as datalistfp:
dlines = csv.reader(datalistfp, delimiter=',')
for drow in dlines:
if drow[0].startswith('#'):
continue
vec_file_name = drow[1].strip()
net_name = drow[2].strip()
short_desc = drow[3].strip()
# run the scavetool to extract a statistic
filter_str = '\"module(' + net_name + ') AND name(' \
+ stat_name + ':vector)\"'
tempfile = 'temp.csv'
subprocess.call(['scavetool', 'export', '-v',
'-f', filter_str,
'-o', tempfile, '-F', 'CSV-S', vec_file_name])
y = []
with open(tempfile,'r') as tempfilefp:
tlines = csv.reader(tempfilefp, delimiter=',')
for i, trow in enumerate(tlines):
if i == 0:
continue
# get statistic val
if 'int' in data_type:
stat_val = 0 if 'Inf' in trow[1].strip() \
or 'NaN' in trow[1].strip() \
else int(trow[1].strip())
else:
stat_val = 0.0 if 'Inf' in trow[1].strip() \
or 'NaN' in trow[1].strip() \
else float(trow[1].strip())
y.append(stat_val)
# plot the histogram
plt.figure(figsize=(12, 4))
plt.gca().yaxis.grid()
plt.hist(y, density=False, bins=20)
plt.xlabel(long_name + ' (' + unit_name + ')')
plt.ylabel('Frequency')
plt.title('Histogram - ' + long_name)
plt.legend(loc='center left', bbox_to_anchor=(0.2, 0.5))
plt.tight_layout()
pdf_file = os.path.join('.', 'hist-' + stat_name + '-' + short_desc.replace(' ', '-') + '.pdf')
plt.savefig(pdf_file)
plt.close()