From 5e55b8f320c032e26314ec5213e55cbca4e1df4e Mon Sep 17 00:00:00 2001 From: Remco de Boer <29308176+redeboer@users.noreply.github.com> Date: Thu, 10 Mar 2022 14:01:15 +0100 Subject: [PATCH 1/3] ci: do not format Jupyter notebooks with Prettier --- .prettierignore | 1 + 1 file changed, 1 insertion(+) diff --git a/.prettierignore b/.prettierignore index f348eafa..21d755ec 100644 --- a/.prettierignore +++ b/.prettierignore @@ -1 +1,2 @@ +*.ipynb .cspell.json From 624f9cba8d2194609a7f7c24f7be07f071161432 Mon Sep 17 00:00:00 2001 From: Remco de Boer <29308176+redeboer@users.noreply.github.com> Date: Thu, 10 Mar 2022 14:02:37 +0100 Subject: [PATCH 2/3] docs: pin requirements in TR-013 --- .pre-commit-config.yaml | 3 +-- docs/report/013.ipynb | 15 ++++++++++++--- 2 files changed, 13 insertions(+), 5 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 2c10fdd9..fffd607f 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -53,8 +53,7 @@ repos: (?x)^( docs/report/004.*| docs/report/005.*| - docs/report/007.*| - docs/report/013.* + docs/report/007.* )$ - id: set-nb-cells diff --git a/docs/report/013.ipynb b/docs/report/013.ipynb index 7f948a51..b247c7fb 100644 --- a/docs/report/013.ipynb +++ b/docs/report/013.ipynb @@ -69,12 +69,21 @@ "source_hidden": true }, "tags": [ - "hide-cell" + "hide-input", + "remove-output" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], "source": [ - "%pip install -q ampform==0.13.0 qrules[viz]==0.9.7 tensorwaves[jax,pwa]==0.4.2" + "%pip install -q ampform==0.13.2 qrules[viz]==0.9.7 tensorwaves[jax,pwa]==0.4.3" ] }, { From ee9ff925a20905750c733347334c558f61d239fc Mon Sep 17 00:00:00 2001 From: Remco de Boer <29308176+redeboer@users.noreply.github.com> Date: Thu, 10 Mar 2022 15:28:24 +0100 Subject: [PATCH 3/3] docs: insert form factors into TR-013 --- .cspell.json | 4 + docs/report/013.ipynb | 9697 +++++++++++++++++------------------------ 2 files changed, 3918 insertions(+), 5783 deletions(-) diff --git a/.cspell.json b/.cspell.json index 15b6b7ab..e6cb50f5 100644 --- a/.cspell.json +++ b/.cspell.json @@ -62,12 +62,14 @@ "Atlassian", "blatt", "breit", + "Clebsch", "compwa", "conda", "defaultdict", "eval", "flatté", "functools", + "Gordan", "helicities", "helicity", "itertools", @@ -146,6 +148,7 @@ "eqnarray", "evaluatable", "expertsystem", + "facd", "facecolor", "facecolors", "figsize", @@ -210,6 +213,7 @@ "operatorname", "pandoc", "pcolormesh", + "pdda", "pdg's", "phsp", "pmatrix", diff --git a/docs/report/013.ipynb b/docs/report/013.ipynb index b247c7fb..49ae18c1 100644 --- a/docs/report/013.ipynb +++ b/docs/report/013.ipynb @@ -230,7 +230,7 @@ "reaction = qrules.generate_transitions(\n", " initial_state=(\"Lambda(c)+\", [-0.5, +0.5]),\n", " final_state=[\"p\", \"K-\", \"pi+\"],\n", - " formalism=\"helicity\",\n", + " formalism=\"canonical-helicity\",\n", " particle_db=particle_db,\n", ")" ] @@ -320,7 +320,7 @@ "\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -398,7 +398,7 @@ "\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -476,7 +476,7 @@ "\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -504,7 +504,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Amplitude model formulated following [Appendix C](https://downloads.hindawi.com/journals/ahep/2020/6674595.pdf#page=13):" + "Amplitude model formulated following the ['standard' helicity formalism](https://ampform.readthedocs.io/en/0.13.2/usage/helicity/formalism.html):" ] }, { @@ -520,7 +520,7 @@ "$\\displaystyle \\sum_{m_{A}=-1/2}^{1/2} \\sum_{m_{0}=-1/2}^{1/2} \\sum_{m_{1}=0} \\sum_{m_{2}=0}{\\left|{{A^{01}}_{m_{A},m_{0},m_{1},m_{2}} + {A^{02}}_{m_{A},m_{0},m_{1},m_{2}} + {A^{12}}_{m_{A},m_{0},m_{1},m_{2}}}\\right|^{2}}$" ], "text/plain": [ - "PoolSum(Abs(A^01[m_A, m0, m1, m2] + A^02[m_A, m0, m1, m2] + A^12[m_A, m0, m1, m2])**2, (m_A, (1/2, -1/2)), (m0, (1/2, -1/2)), (m1, (0,)), (m2, (0,)))" + "PoolSum(Abs(A^01[m_A, m0, m1, m2] + A^02[m_A, m0, m1, m2] + A^12[m_A, m0, m1, m2])**2, (m_A, (-1/2, 1/2)), (m0, (-1/2, 1/2)), (m1, (0,)), (m2, (0,)))" ] }, "execution_count": null, @@ -534,15 +534,26 @@ "\n", "builder = ampform.get_builder(reaction)\n", "builder.align_spin = False\n", + "builder.naming.insert_child_helicities = True\n", + "builder.naming.insert_ls_combinations = False\n", "builder.stable_final_state_ids = list(reaction.final_state)\n", "builder.scalar_initial_state_mass = True\n", - "bw_builder = RelativisticBreitWignerBuilder()\n", + "bw_builder = RelativisticBreitWignerBuilder(\n", + " energy_dependent_width=True, form_factor=True\n", + ")\n", "for name in reaction.get_intermediate_particles().names:\n", " builder.set_dynamics(name, bw_builder)\n", "standard_model = builder.formulate()\n", "standard_model.intensity" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that we use the \"Jacob Wick transformation\" {cite}`kutschkeAngularDistributionCookbook1996`, Equation (28) to transform the amplitudes from a canonical basis (which provides the $LS$-combinations that we need for the form factors) to a helicity basis. See {func}`~ampform.helicity.formulate_clebsch_gordan_coefficients`." + ] + }, { "cell_type": "code", "execution_count": null, @@ -560,70 +571,32 @@ "data": { "text/latex": [ "$\\displaystyle \\begin{eqnarray}\n", - "{A^{01}}_{- \\frac{1}{2},- \\frac{1}{2},0,0} & = & \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{+1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} D^{\\frac{1}{2}}_{- \\frac{1}{2},\\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right)}{- i \\Gamma_{\\Lambda^*} m_{\\Lambda^*} - m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2}} \\nonumber\\\\\n", - "& & + \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{-1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} D^{\\frac{1}{2}}_{- \\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{- \\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right)}{- i \\Gamma_{\\Lambda^*} m_{\\Lambda^*} - m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2}} \n", - "\\end{eqnarray}$" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/latex": [ - "$\\displaystyle \\begin{eqnarray}\n", - "{A^{01}}_{- \\frac{1}{2},\\frac{1}{2},0,0} & = & \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{+1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} D^{\\frac{1}{2}}_{- \\frac{1}{2},\\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{\\frac{1}{2},\\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right)}{- i \\Gamma_{\\Lambda^*} m_{\\Lambda^*} - m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2}} \\nonumber\\\\\n", - "& & + \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{-1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} D^{\\frac{1}{2}}_{- \\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{- \\frac{1}{2},\\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right)}{- i \\Gamma_{\\Lambda^*} m_{\\Lambda^*} - m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2}} \n", - "\\end{eqnarray}$" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/latex": [ - "$\\displaystyle \\begin{eqnarray}\n", - "{A^{01}}_{\\frac{1}{2},- \\frac{1}{2},0,0} & = & \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{+1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} D^{\\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right) D^{\\frac{1}{2}}_{\\frac{1}{2},\\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right)}{- i \\Gamma_{\\Lambda^*} m_{\\Lambda^*} - m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2}} \\nonumber\\\\\n", - "& & + \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{-1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} D^{\\frac{1}{2}}_{- \\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right) D^{\\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right)}{- i \\Gamma_{\\Lambda^*} m_{\\Lambda^*} - m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2}} \n", + "{A^{01}}_{- \\frac{1}{2},- \\frac{1}{2},0,0} & = & \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{+1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} \\sqrt{B_{1}^2\\left(\\left(d_{\\Lambda^*}\\right)^{2} q^2\\left(m_{01}^{2}\\right)\\right)} C^{\\frac{1}{2},\\frac{1}{2}}_{0,0,\\frac{1}{2},\\frac{1}{2}} C^{\\frac{1}{2},- \\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2},0,0} C^{\\frac{1}{2},\\frac{1}{2}}_{\\frac{1}{2},\\frac{1}{2},0,0} C^{\\frac{1}{2},- \\frac{1}{2}}_{1,0,\\frac{1}{2},- \\frac{1}{2}} D^{\\frac{1}{2}}_{- \\frac{1}{2},\\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right)}{- m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2} - i m_{\\Lambda^*} \\Gamma\\left(m_{01}^{2}\\right)} \\nonumber\\\\\n", + "& & + \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{+1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} \\sqrt{B_{1}^2\\left(\\left(d_{\\Lambda^*}\\right)^{2} q^2\\left(m_{01}^{2}\\right)\\right)} C^{\\frac{1}{2},- \\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2},0,0} C^{\\frac{1}{2},\\frac{1}{2}}_{\\frac{1}{2},\\frac{1}{2},0,0} C^{\\frac{1}{2},- \\frac{1}{2}}_{1,0,\\frac{1}{2},- \\frac{1}{2}} C^{\\frac{1}{2},\\frac{1}{2}}_{1,0,\\frac{1}{2},\\frac{1}{2}} D^{\\frac{1}{2}}_{- \\frac{1}{2},\\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right)}{- m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2} - i m_{\\Lambda^*} \\Gamma\\left(m_{01}^{2}\\right)} \\nonumber\\\\\n", + "& & + \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{+1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} \\sqrt{B_{0}^2\\left(\\left(d_{\\Lambda^*}\\right)^{2} q^2\\left(m_{01}^{2}\\right)\\right)} C^{\\frac{1}{2},- \\frac{1}{2}}_{0,0,\\frac{1}{2},- \\frac{1}{2}} C^{\\frac{1}{2},\\frac{1}{2}}_{0,0,\\frac{1}{2},\\frac{1}{2}} C^{\\frac{1}{2},- \\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2},0,0} C^{\\frac{1}{2},\\frac{1}{2}}_{\\frac{1}{2},\\frac{1}{2},0,0} D^{\\frac{1}{2}}_{- \\frac{1}{2},\\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right)}{- m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2} - i m_{\\Lambda^*} \\Gamma\\left(m_{01}^{2}\\right)} \\nonumber\\\\\n", + "& & + \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{+1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} \\sqrt{B_{0}^2\\left(\\left(d_{\\Lambda^*}\\right)^{2} q^2\\left(m_{01}^{2}\\right)\\right)} C^{\\frac{1}{2},- \\frac{1}{2}}_{0,0,\\frac{1}{2},- \\frac{1}{2}} C^{\\frac{1}{2},- \\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2},0,0} C^{\\frac{1}{2},\\frac{1}{2}}_{\\frac{1}{2},\\frac{1}{2},0,0} C^{\\frac{1}{2},\\frac{1}{2}}_{1,0,\\frac{1}{2},\\frac{1}{2}} D^{\\frac{1}{2}}_{- \\frac{1}{2},\\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right)}{- m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2} - i m_{\\Lambda^*} \\Gamma\\left(m_{01}^{2}\\right)} \\nonumber\\\\\n", + "& & + \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{-1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} \\sqrt{B_{1}^2\\left(\\left(d_{\\Lambda^*}\\right)^{2} q^2\\left(m_{01}^{2}\\right)\\right)} C^{\\frac{1}{2},- \\frac{1}{2}}_{0,0,\\frac{1}{2},- \\frac{1}{2}} \\left(C^{\\frac{1}{2},- \\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2},0,0}\\right)^{2} C^{\\frac{1}{2},- \\frac{1}{2}}_{1,0,\\frac{1}{2},- \\frac{1}{2}} D^{\\frac{1}{2}}_{- \\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{- \\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right)}{- m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2} - i m_{\\Lambda^*} \\Gamma\\left(m_{01}^{2}\\right)} \\nonumber\\\\\n", + "& & + \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{-1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} \\sqrt{B_{1}^2\\left(\\left(d_{\\Lambda^*}\\right)^{2} q^2\\left(m_{01}^{2}\\right)\\right)} \\left(C^{\\frac{1}{2},- \\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2},0,0}\\right)^{2} \\left(C^{\\frac{1}{2},- \\frac{1}{2}}_{1,0,\\frac{1}{2},- \\frac{1}{2}}\\right)^{2} D^{\\frac{1}{2}}_{- \\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{- \\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right)}{- m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2} - i m_{\\Lambda^*} \\Gamma\\left(m_{01}^{2}\\right)} \\nonumber\\\\\n", + "& & + \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{-1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} \\sqrt{B_{0}^2\\left(\\left(d_{\\Lambda^*}\\right)^{2} q^2\\left(m_{01}^{2}\\right)\\right)} \\left(C^{\\frac{1}{2},- \\frac{1}{2}}_{0,0,\\frac{1}{2},- \\frac{1}{2}}\\right)^{2} \\left(C^{\\frac{1}{2},- \\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2},0,0}\\right)^{2} D^{\\frac{1}{2}}_{- \\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{- \\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right)}{- m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2} - i m_{\\Lambda^*} \\Gamma\\left(m_{01}^{2}\\right)} \\nonumber\\\\\n", + "& & + \\frac{C_{\\Lambda_{c}^{+} \\to \\Lambda^*_{-1/2} \\pi^{+}_{0}; \\Lambda^* \\to K^{-}_{0} p_{+1/2}} \\Gamma_{\\Lambda^*} m_{\\Lambda^*} \\sqrt{B_{0}^2\\left(\\left(d_{\\Lambda^*}\\right)^{2} q^2\\left(m_{01}^{2}\\right)\\right)} C^{\\frac{1}{2},- \\frac{1}{2}}_{0,0,\\frac{1}{2},- \\frac{1}{2}} \\left(C^{\\frac{1}{2},- \\frac{1}{2}}_{\\frac{1}{2},- \\frac{1}{2},0,0}\\right)^{2} C^{\\frac{1}{2},- \\frac{1}{2}}_{1,0,\\frac{1}{2},- \\frac{1}{2}} D^{\\frac{1}{2}}_{- \\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{- \\frac{1}{2},- \\frac{1}{2}}\\left(- \\phi^{01}_{0},\\theta^{01}_{0},0\\right)}{- m_{01}^{2} + \\left(m_{\\Lambda^*}\\right)^{2} - i m_{\\Lambda^*} \\Gamma\\left(m_{01}^{2}\\right)} \n", "\\end{eqnarray}$" ], "text/plain": [ "" ] }, + "execution_count": null, "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/latex": [ - "$\\displaystyle \\dots$" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ "import sympy as sp\n", - "from IPython.display import Math, display\n", + "from IPython.display import Math\n", "\n", - "for i, (symbol, expr) in enumerate(standard_model.amplitudes.items()):\n", - " if i == 3:\n", - " display(Math(R\"\\dots\"))\n", - " break\n", - " latex = sp.multiline_latex(symbol, expr, environment=\"eqnarray\")\n", - " display(Math(latex))" + "symbol, expr = list(standard_model.amplitudes.items())[0]\n", + "latex = sp.multiline_latex(symbol, expr, environment=\"eqnarray\")\n", + "Math(latex)" ] }, { @@ -673,6 +646,10 @@ "\n", "\n", "def set_coefficients(model: HelicityModel) -> None:\n", + " coefficients = [\n", + " p for p in model.parameter_defaults if p.name.startswith(\"C_\")\n", + " ]\n", + " assert len(coefficients) == 8\n", " for name, value in parameter_table.items():\n", " model.parameter_defaults[name] = value" ] @@ -873,7 +850,7 @@ " \n", " \n", " \n", - " 2022-03-03T17:06:02.331547\n", + " 2022-03-10T15:19:12.747839\n", " image/svg+xml\n", " \n", " \n", @@ -909,12 +886,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -953,7 +930,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1002,7 +979,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1049,7 +1026,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1064,7 +1041,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1098,7 +1075,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -1368,587 +1345,404 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#p85a5e205c7)\" style=\"fill: none; stroke: #ff0000; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p85a5e205c7)\" style=\"fill: none; stroke: #ffa500; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p85a5e205c7)\" style=\"fill: none; stroke: #a52a2a; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p85a5e205c7)\" style=\"fill: none; stroke: #800080; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2022,7 +1816,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2069,7 +1863,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2125,7 +1919,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2154,7 +1948,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2169,7 +1963,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2184,7 +1978,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2199,7 +1993,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2278,613 +2072,450 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#p72facd69b0)\" style=\"fill: none; stroke: #ff0000; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p72facd69b0)\" style=\"fill: none; stroke: #ffa500; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p72facd69b0)\" style=\"fill: none; stroke: #a52a2a; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p72facd69b0)\" style=\"fill: none; stroke: #800080; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2933,7 +2564,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2948,7 +2579,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2961,7 +2592,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -2976,7 +2607,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3012,629 +2643,432 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#p0357ff0c32)\" style=\"fill: none; stroke: #ff0000; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p0357ff0c32)\" style=\"fill: none; stroke: #ffa500; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p0357ff0c32)\" style=\"fill: none; stroke: #a52a2a; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p0357ff0c32)\" style=\"fill: none; stroke: #800080; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3693,7 +3127,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3709,7 +3143,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3722,7 +3156,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3737,7 +3171,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -3863,553 +3297,346 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#peb21d09a62)\" style=\"fill: none; stroke: #ff0000; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#peb21d09a62)\" style=\"fill: none; stroke: #ffa500; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#peb21d09a62)\" style=\"fill: none; stroke: #a52a2a; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#peb21d09a62)\" style=\"fill: none; stroke: #800080; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4459,7 +3686,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4473,7 +3700,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4487,7 +3714,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4500,7 +3727,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4513,7 +3740,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4526,7 +3753,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -4582,551 +3809,366 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#p7083c451ff)\" style=\"fill: none; stroke: #ff0000; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p7083c451ff)\" style=\"fill: none; stroke: #ffa500; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p7083c451ff)\" style=\"fill: none; stroke: #a52a2a; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p7083c451ff)\" style=\"fill: none; stroke: #800080; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5392,8 +4434,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 48.5 s, sys: 3.57 s, total: 52.1 s\n", - "Wall time: 41.7 s\n" + "CPU times: user 1min 8s, sys: 3.54 s, total: 1min 12s\n", + "Wall time: 1min 5s\n" ] } ], @@ -5431,7 +4473,7 @@ "$\\displaystyle \\sum_{m_{A}=-1/2}^{1/2} \\sum_{m_{0}=-1/2}^{1/2} \\sum_{m_{1}=0} \\sum_{m_{2}=0}{\\left|{\\sum_{\\lambda^{01}_{0}=-1/2}^{1/2} \\sum_{\\mu^{01}_{0}=-1/2}^{1/2} \\sum_{\\nu^{01}_{0}=-1/2}^{1/2} \\sum_{\\lambda^{01}_{1}=0} \\sum_{\\mu^{01}_{1}=0} \\sum_{\\nu^{01}_{1}=0} \\sum_{\\lambda^{01}_{2}=0}{{A^{01}}_{m_{A},\\lambda^{01}_{0},- \\lambda^{01}_{1},- \\lambda^{01}_{2}} D^{0}_{m_{1},\\nu^{01}_{1}}\\left(\\alpha^{01}_{1},\\beta^{01}_{1},\\gamma^{01}_{1}\\right) D^{0}_{m_{2},\\lambda^{01}_{2}}\\left(\\phi_{01},\\theta_{01},0\\right) D^{0}_{\\mu^{01}_{1},\\lambda^{01}_{1}}\\left(\\phi^{01}_{0},\\theta^{01}_{0},0\\right) D^{0}_{\\nu^{01}_{1},\\mu^{01}_{1}}\\left(\\phi_{01},\\theta_{01},0\\right) D^{\\frac{1}{2}}_{m_{0},\\nu^{01}_{0}}\\left(\\alpha^{01}_{0},\\beta^{01}_{0},\\gamma^{01}_{0}\\right) D^{\\frac{1}{2}}_{\\mu^{01}_{0},\\lambda^{01}_{0}}\\left(\\phi^{01}_{0},\\theta^{01}_{0},0\\right) D^{\\frac{1}{2}}_{\\nu^{01}_{0},\\mu^{01}_{0}}\\left(\\phi_{01},\\theta_{01},0\\right)} + \\sum_{\\lambda^{02}_{0}=-1/2}^{1/2} \\sum_{\\mu^{02}_{0}=-1/2}^{1/2} \\sum_{\\nu^{02}_{0}=-1/2}^{1/2} \\sum_{\\lambda^{02}_{1}=0} \\sum_{\\lambda^{02}_{2}=0} \\sum_{\\mu^{02}_{2}=0} \\sum_{\\nu^{02}_{2}=0}{{A^{02}}_{m_{A},\\lambda^{02}_{0},- \\lambda^{02}_{1},- \\lambda^{02}_{2}} D^{0}_{m_{1},\\lambda^{02}_{1}}\\left(\\phi_{02},\\theta_{02},0\\right) D^{0}_{m_{2},\\nu^{02}_{2}}\\left(\\alpha^{02}_{2},\\beta^{02}_{2},\\gamma^{02}_{2}\\right) D^{0}_{\\mu^{02}_{2},\\lambda^{02}_{2}}\\left(\\phi^{02}_{0},\\theta^{02}_{0},0\\right) D^{0}_{\\nu^{02}_{2},\\mu^{02}_{2}}\\left(\\phi_{02},\\theta_{02},0\\right) D^{\\frac{1}{2}}_{m_{0},\\nu^{02}_{0}}\\left(\\alpha^{02}_{0},\\beta^{02}_{0},\\gamma^{02}_{0}\\right) D^{\\frac{1}{2}}_{\\mu^{02}_{0},\\lambda^{02}_{0}}\\left(\\phi^{02}_{0},\\theta^{02}_{0},0\\right) D^{\\frac{1}{2}}_{\\nu^{02}_{0},\\mu^{02}_{0}}\\left(\\phi_{02},\\theta_{02},0\\right)} + \\sum_{\\lambda^{12}_{0}=-1/2}^{1/2} \\sum_{\\lambda^{12}_{1}=0} \\sum_{\\mu^{12}_{1}=0} \\sum_{\\nu^{12}_{1}=0} \\sum_{\\lambda^{12}_{2}=0} \\sum_{\\mu^{12}_{2}=0} \\sum_{\\nu^{12}_{2}=0}{{A^{12}}_{m_{A},\\lambda^{12}_{0},\\lambda^{12}_{1},- \\lambda^{12}_{2}} D^{0}_{m_{1},\\nu^{12}_{1}}\\left(\\alpha^{12}_{1},\\beta^{12}_{1},\\gamma^{12}_{1}\\right) D^{0}_{m_{2},\\nu^{12}_{2}}\\left(\\alpha^{12}_{2},\\beta^{12}_{2},\\gamma^{12}_{2}\\right) D^{0}_{\\mu^{12}_{1},\\lambda^{12}_{1}}\\left(\\phi^{12}_{1},\\theta^{12}_{1},0\\right) D^{0}_{\\mu^{12}_{2},\\lambda^{12}_{2}}\\left(\\phi^{12}_{1},\\theta^{12}_{1},0\\right) D^{0}_{\\nu^{12}_{1},\\mu^{12}_{1}}\\left(\\phi_{0},\\theta_{0},0\\right) D^{0}_{\\nu^{12}_{2},\\mu^{12}_{2}}\\left(\\phi_{0},\\theta_{0},0\\right) D^{\\frac{1}{2}}_{m_{0},\\lambda^{12}_{0}}\\left(\\phi_{0},\\theta_{0},0\\right)}}\\right|^{2}}$" ], "text/plain": [ - "PoolSum(Abs(PoolSum(A^01[m_A, lambda_0^01, -lambda_1^01, -lambda_2^01]*WignerD(0, m1, nu_1^01, alpha_1^01, beta_1^01, gamma_1^01)*WignerD(0, m2, lambda_2^01, phi_01, theta_01, 0)*WignerD(0, mu_1^01, lambda_1^01, phi_0^01, theta_0^01, 0)*WignerD(0, nu_1^01, mu_1^01, phi_01, theta_01, 0)*WignerD(1/2, m0, nu_0^01, alpha_0^01, beta_0^01, gamma_0^01)*WignerD(1/2, mu_0^01, lambda_0^01, phi_0^01, theta_0^01, 0)*WignerD(1/2, nu_0^01, mu_0^01, phi_01, theta_01, 0), (lambda_0^01, (-1/2, 1/2)), (mu_0^01, (-1/2, 1/2)), (nu_0^01, (-1/2, 1/2)), (lambda_1^01, (0,)), (mu_1^01, (0,)), (nu_1^01, (0,)), (lambda_2^01, (0,))) + PoolSum(A^02[m_A, lambda_0^02, -lambda_1^02, -lambda_2^02]*WignerD(0, m1, lambda_1^02, phi_02, theta_02, 0)*WignerD(0, m2, nu_2^02, alpha_2^02, beta_2^02, gamma_2^02)*WignerD(0, mu_2^02, lambda_2^02, phi_0^02, theta_0^02, 0)*WignerD(0, nu_2^02, mu_2^02, phi_02, theta_02, 0)*WignerD(1/2, m0, nu_0^02, alpha_0^02, beta_0^02, gamma_0^02)*WignerD(1/2, mu_0^02, lambda_0^02, phi_0^02, theta_0^02, 0)*WignerD(1/2, nu_0^02, mu_0^02, phi_02, theta_02, 0), (lambda_0^02, (-1/2, 1/2)), (mu_0^02, (-1/2, 1/2)), (nu_0^02, (-1/2, 1/2)), (lambda_1^02, (0,)), (lambda_2^02, (0,)), (mu_2^02, (0,)), (nu_2^02, (0,))) + PoolSum(A^12[m_A, lambda_0^12, lambda_1^12, -lambda_2^12]*WignerD(0, m1, nu_1^12, alpha_1^12, beta_1^12, gamma_1^12)*WignerD(0, m2, nu_2^12, alpha_2^12, beta_2^12, gamma_2^12)*WignerD(0, mu_1^12, lambda_1^12, phi_1^12, theta_1^12, 0)*WignerD(0, mu_2^12, lambda_2^12, phi_1^12, theta_1^12, 0)*WignerD(0, nu_1^12, mu_1^12, phi_0, theta_0, 0)*WignerD(0, nu_2^12, mu_2^12, phi_0, theta_0, 0)*WignerD(1/2, m0, lambda_0^12, phi_0, theta_0, 0), (lambda_0^12, (-1/2, 1/2)), (lambda_1^12, (0,)), (mu_1^12, (0,)), (nu_1^12, (0,)), (lambda_2^12, (0,)), (mu_2^12, (0,)), (nu_2^12, (0,))))**2, (m_A, (1/2, -1/2)), (m0, (1/2, -1/2)), (m1, (0,)), (m2, (0,)))" + "PoolSum(Abs(PoolSum(A^01[m_A, lambda_0^01, -lambda_1^01, -lambda_2^01]*WignerD(0, m1, nu_1^01, alpha_1^01, beta_1^01, gamma_1^01)*WignerD(0, m2, lambda_2^01, phi_01, theta_01, 0)*WignerD(0, mu_1^01, lambda_1^01, phi_0^01, theta_0^01, 0)*WignerD(0, nu_1^01, mu_1^01, phi_01, theta_01, 0)*WignerD(1/2, m0, nu_0^01, alpha_0^01, beta_0^01, gamma_0^01)*WignerD(1/2, mu_0^01, lambda_0^01, phi_0^01, theta_0^01, 0)*WignerD(1/2, nu_0^01, mu_0^01, phi_01, theta_01, 0), (lambda_0^01, (-1/2, 1/2)), (mu_0^01, (-1/2, 1/2)), (nu_0^01, (-1/2, 1/2)), (lambda_1^01, (0,)), (mu_1^01, (0,)), (nu_1^01, (0,)), (lambda_2^01, (0,))) + PoolSum(A^02[m_A, lambda_0^02, -lambda_1^02, -lambda_2^02]*WignerD(0, m1, lambda_1^02, phi_02, theta_02, 0)*WignerD(0, m2, nu_2^02, alpha_2^02, beta_2^02, gamma_2^02)*WignerD(0, mu_2^02, lambda_2^02, phi_0^02, theta_0^02, 0)*WignerD(0, nu_2^02, mu_2^02, phi_02, theta_02, 0)*WignerD(1/2, m0, nu_0^02, alpha_0^02, beta_0^02, gamma_0^02)*WignerD(1/2, mu_0^02, lambda_0^02, phi_0^02, theta_0^02, 0)*WignerD(1/2, nu_0^02, mu_0^02, phi_02, theta_02, 0), (lambda_0^02, (-1/2, 1/2)), (mu_0^02, (-1/2, 1/2)), (nu_0^02, (-1/2, 1/2)), (lambda_1^02, (0,)), (lambda_2^02, (0,)), (mu_2^02, (0,)), (nu_2^02, (0,))) + PoolSum(A^12[m_A, lambda_0^12, lambda_1^12, -lambda_2^12]*WignerD(0, m1, nu_1^12, alpha_1^12, beta_1^12, gamma_1^12)*WignerD(0, m2, nu_2^12, alpha_2^12, beta_2^12, gamma_2^12)*WignerD(0, mu_1^12, lambda_1^12, phi_1^12, theta_1^12, 0)*WignerD(0, mu_2^12, lambda_2^12, phi_1^12, theta_1^12, 0)*WignerD(0, nu_1^12, mu_1^12, phi_0, theta_0, 0)*WignerD(0, nu_2^12, mu_2^12, phi_0, theta_0, 0)*WignerD(1/2, m0, lambda_0^12, phi_0, theta_0, 0), (lambda_0^12, (-1/2, 1/2)), (lambda_1^12, (0,)), (mu_1^12, (0,)), (nu_1^12, (0,)), (lambda_2^12, (0,)), (mu_2^12, (0,)), (nu_2^12, (0,))))**2, (m_A, (-1/2, 1/2)), (m0, (-1/2, 1/2)), (m1, (0,)), (m2, (0,)))" ] }, "execution_count": null, @@ -5480,7 +4522,7 @@ " \n", " \n", " \n", - " 2022-03-03T17:14:02.866924\n", + " 2022-03-10T15:24:58.837849\n", " image/svg+xml\n", " \n", " \n", @@ -5516,12 +4558,12 @@ " \n", " \n", " \n", - " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5560,7 +4602,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5609,7 +4651,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5656,7 +4698,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5671,7 +4713,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5705,7 +4747,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -5975,585 +5017,406 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#p9264451df9)\" style=\"fill: none; stroke: #ff0000; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p9264451df9)\" style=\"fill: none; stroke: #ffa500; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p9264451df9)\" style=\"fill: none; stroke: #a52a2a; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p9264451df9)\" style=\"fill: none; stroke: #800080; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6627,7 +5490,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6674,7 +5537,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6730,7 +5593,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6759,7 +5622,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6774,7 +5637,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6789,7 +5652,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6804,7 +5667,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -6883,603 +5746,458 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#p7f9338ca85)\" style=\"fill: none; stroke: #ff0000; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p7f9338ca85)\" style=\"fill: none; stroke: #ffa500; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p7f9338ca85)\" style=\"fill: none; stroke: #a52a2a; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p7f9338ca85)\" style=\"fill: none; stroke: #800080; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7528,7 +6246,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7543,7 +6261,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7556,7 +6274,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7571,7 +6289,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -7607,623 +6325,432 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#pdda09c013a)\" style=\"fill: none; stroke: #ff0000; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pdda09c013a)\" style=\"fill: none; stroke: #ffa500; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pdda09c013a)\" style=\"fill: none; stroke: #a52a2a; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#pdda09c013a)\" style=\"fill: none; stroke: #800080; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -8282,7 +6809,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -8298,7 +6825,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -8311,7 +6838,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -8326,7 +6853,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -8452,563 +6979,356 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#p786f479c4b)\" style=\"fill: none; stroke: #ff0000; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p786f479c4b)\" style=\"fill: none; stroke: #ffa500; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p786f479c4b)\" style=\"fill: none; stroke: #a52a2a; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p786f479c4b)\" style=\"fill: none; stroke: #800080; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9058,7 +7378,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9072,7 +7392,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9086,7 +7406,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9099,7 +7419,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9112,7 +7432,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9125,7 +7445,7 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9181,555 +7501,366 @@ " \n", " \n", " \n", + "\" clip-path=\"url(#p123dd933f6)\" style=\"fill: none; stroke: #ff0000; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p123dd933f6)\" style=\"fill: none; stroke: #ffa500; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p123dd933f6)\" style=\"fill: none; stroke: #a52a2a; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", + "\" clip-path=\"url(#p123dd933f6)\" style=\"fill: none; stroke: #800080; stroke-linejoin: miter\"/>\n", " \n", " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", @@ -9995,8 +8126,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 9min 14s, sys: 17.2 s, total: 9min 31s\n", - "Wall time: 8min\n" + "CPU times: user 5min 38s, sys: 17.8 s, total: 5min 56s\n", + "Wall time: 5min 44s\n" ] } ], @@ -10009,7 +8140,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Compare with [Figure 2](https://downloads.hindawi.com/journals/ahep/2020/6674595.pdf#page=9). Note that the distributions differ close to threshold, because the distributions in the paper are produced [with form factors](https://ampform.readthedocs.io/en/0.12.x/api/ampform.dynamics.html#ampform.dynamics.relativistic_breit_wigner_with_ff) and an [energy-dependent width](https://ampform.readthedocs.io/en/0.12.x/api/ampform.dynamics.html#ampform.dynamics.EnergyDependentWidth)." + "This is to be compared with [Figure 2](https://downloads.hindawi.com/journals/ahep/2020/6674595.pdf#page=9)." ] } ],