diff --git a/docs/_config.yml b/docs/_config.yml index e6598e6..fdf0871 100644 --- a/docs/_config.yml +++ b/docs/_config.yml @@ -1,4 +1,4 @@ -title: Solutions to STRON2020 HaSP School +title: Solutions to STRONG2020 HaSP School author: Participants of the STRONG2020 HaSP School copyright: "2023" logo: https://indico.ific.uv.es/event/6803/logo-2761386249.png diff --git a/docs/lecture02.ipynb b/docs/lecture02.ipynb index 1c62bf8..90ad600 100644 --- a/docs/lecture02.ipynb +++ b/docs/lecture02.ipynb @@ -11,7 +11,808 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "[Lecture 2](https://indico.ific.uv.es/event/6803/contributions/21220) by Vincent Mathieu contains a few data files containing four-momenta data samples. Our goal in this notebook is to identify which reaction was used to generate these data samples." + "[Lecture 2](https://indico.ific.uv.es/event/6803/contributions/21220) by Vincent Mathieu contains a few data files containing four-momenta data samples. \n", + "Our goal in this notebook is to identify which reaction was used to generate these data samples." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "outputs": [], + "source": [ + "%pip install -q gdown matplotlib numpy particle" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Two particles Final States" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The standard frames: CoM frame and Lab frame" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The scattering happens in the x-z plane for both frames." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The two frames are related by a boost along the z axis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lorentz transformations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Boost between Lab and CoM" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Only the energy and the z component change" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\\begin{pmatrix}\n", + " E^*\n", + " \\\\\n", + " p_z^*\n", + "\\end{pmatrix} =\n", + "\\begin{pmatrix}\n", + " \\gamma & \\gamma \\beta \\\\\n", + " \\gamma \\beta & \\gamma\n", + "\\end{pmatrix}\n", + "\\begin{pmatrix}\n", + " E^L\\\\\n", + " p^L_z\n", + "\\end{pmatrix}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given the inverse relation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\\begin{pmatrix}\n", + " E^L\n", + " \\\\\n", + " p_z^L\n", + "\\end{pmatrix} =\n", + "\\begin{pmatrix}\n", + " \\gamma & -\\gamma \\beta \\\\\n", + " -\\gamma \\beta & \\gamma\n", + "\\end{pmatrix}\n", + "\\begin{pmatrix}\n", + " E^*\\\\\n", + " p^*_z\n", + "\\end{pmatrix}\n", + "$$\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\n", + "\\beta = \\frac{p^*_b}{m_b}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "and" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\n", + "\\gamma \\beta = \\frac{E^*_b}{m_b}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We check that it brings the target at rest in Exercise below" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ":::{exercise}\n", + ":label: boost\n", + "Check that it brings the target at rest\n", + "\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ":::{solution} boost\n", + ":class: dropdown\n", + "\n", + "By the boost from CoM frame to Lab frame, and apply if to the 4-vector of particle b (target)\n", + "\n", + "\n", + "$$\\begin{pmatrix}\n", + " E_b^*\n", + " \\\\\n", + " p_{b,z}^*\n", + "\\end{pmatrix} =\n", + "\\begin{pmatrix}\n", + " \\gamma & \\gamma \\beta \\\\\n", + " \\gamma \\beta & \\gamma\n", + "\\end{pmatrix}\n", + "\\begin{pmatrix}\n", + " E_b^L\\\\\n", + " p^L_{b,z}\n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "using the relations (3) and (4) and subsititute into (2):\n", + "\n", + "\n", + "$$\\begin{pmatrix}\n", + " E_b^L\n", + " \\\\\n", + " p_{b,z}^L\n", + "\\end{pmatrix} =\n", + "\\begin{pmatrix}\n", + " \\frac{E_b^*}{p_b^*} & -\\frac{E_b^*}{m_b} \\\\\n", + " -\\frac{E_b^*}{m_b} & \\frac{E_b^*}{p_b^*}\n", + "\\end{pmatrix}\n", + "\\begin{pmatrix}\n", + " E_b^*\\\\\n", + " p^*_{b,z}\n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "Since it's only changing in z-componenet and energy, one yields:\n", + "\n", + "\n", + "$$\\begin{pmatrix}\n", + " E_b^L\n", + " \\\\\n", + " p_{b,z}^L\n", + "\\end{pmatrix} =\n", + "% \\begin{pmatrix}\n", + "% \\frac{E_b^*}{p_b^*} & -\\frac{E_b^*}{m_b} \\\\\n", + "% -\\frac{E_b^*}{m_b} & \\frac{E_b^*}{p_b^*}\n", + "% \\end{pmatrix}\n", + "\\begin{pmatrix}\n", + " \\frac{E_b^*}{p_{b,z}^*} \\cdot E_b^* - \\frac{E_b^*}{m_b}p_{b,z}^* \\\\\n", + " -\\frac{E_b^*}{m_b} \\cdot E_b^* + \\frac{E_b^*}{p_{b,z}^*} \\cdot p_{b,z}^*\n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "When assuming $p_{b,z}=0$, then \n", + "\n", + "$$p^L_{b,z} = 0$$\n", + "\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Active Rotation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Under an active rotation, the momentum is changed and the axes are fixed" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Example: a momentum of unit length forming an angle θ with the z axis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\n", + "\\begin{pmatrix}\n", + " p_x\n", + " \\\\\n", + " p_y\n", + " \\\\\n", + " p_z\n", + "\\end{pmatrix} =\n", + "\\begin{pmatrix}\n", + " sin(\\theta)\n", + " \\\\\n", + " 0\n", + " \\\\\n", + " cos(\\theta)\n", + "\\end{pmatrix}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After a rotation of ω around y, it forms an angle θ + ω with the z axis" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "$$\n", + "\\begin{pmatrix}\n", + " p_x'\n", + " \\\\\n", + " p_y'\n", + " \\\\\n", + " p_z'\n", + "\\end{pmatrix}\n", + "=\n", + "R_y(\\omega)\n", + "\\begin{pmatrix}\n", + " p_x\n", + " \\\\\n", + " p_y\n", + " \\\\\n", + " p_z\n", + "\\end{pmatrix}\n", + "=\n", + "\\begin{pmatrix}\n", + " sin(\\theta+\\omega)\n", + " \\\\\n", + " 0\n", + " \\\\\n", + " cos(\\theta+\\omega)\n", + "\\end{pmatrix}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we check the result of the rotation above" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ":::{exercise}\n", + ":label: rotation\n", + "Check the result of the rotation above\n", + "\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ":::{solution} rotation\n", + ":class: dropdown\n", + "\n", + "Recall the rotation matrix:\n", + "\n", + "$$\n", + "R_z(\\omega)\n", + "=\n", + "\\begin{pmatrix}\n", + "cos(\\omega) & -sin(\\omega) & 0\n", + "\\\\\n", + "sin(\\omega) & cos(\\omega) & 0\n", + "\\\\\n", + "0 & 0 & 1\n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "$$\n", + "R_y(\\omega)\n", + "=\n", + "\\begin{pmatrix}\n", + "cos(\\omega) & 0 & sin(\\omega) \n", + "\\\\\n", + "0 & 1 & 0\n", + "\\\\\n", + "-sin(\\omega) &0 & cos(\\omega) \n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "Any rotation can be decomposed into rotations around z and y axes above\n", + "\n", + "\n", + "$$\n", + "R_y(\\omega)\n", + "=\n", + "\\begin{pmatrix}\n", + "1&0&0\n", + "\\\\\n", + "0 & cos(\\omega) & -sin(\\omega) \n", + "\\\\\n", + "0 & sin(\\omega) & cos(\\omega) \n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "The rotation matrix around x axes is also given for completeness.\n", + "\n", + "Thus equation (9) becomes:\n", + "\n", + "$$\n", + "\\begin{pmatrix}\n", + " p_x'\n", + " \\\\\n", + " p_y'\n", + " \\\\\n", + " p_z'\n", + "\\end{pmatrix}\n", + "=\n", + "R_y(\\omega)\n", + "\\begin{pmatrix}\n", + " p_x\n", + " \\\\\n", + " p_y\n", + " \\\\\n", + " p_z\n", + "\\end{pmatrix}\n", + "=\n", + "\\begin{pmatrix}\n", + "cos(\\omega) & 0 & sin(\\omega) \n", + "\\\\\n", + "0 & 1 & 0\n", + "\\\\\n", + "-sin(\\omega) &0 & cos(\\omega) \n", + "\\end{pmatrix}\n", + "\\begin{pmatrix}\n", + " p_x\n", + " \\\\\n", + " p_y\n", + " \\\\\n", + " p_z\n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "$$\n", + "\\begin{pmatrix}\n", + " p_x'\n", + " \\\\\n", + " p_y'\n", + " \\\\\n", + " p_z'\n", + "\\end{pmatrix}\n", + "=\n", + "\\begin{pmatrix}\n", + "p_x \\cdot cos(\\omega)+ p_z \\cdot sin(\\omega) \n", + "\\\\\n", + "p_y\n", + "\\\\\n", + "-p_x \\cdot sin(\\omega) + p_z \\cdot cos(\\omega) \n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "since \n", + "$\\begin{pmatrix}\n", + " p_x\n", + " \\\\\n", + " p_y\n", + " \\\\\n", + " p_z\n", + "\\end{pmatrix}$ =\n", + "$\\begin{pmatrix}\n", + " sin(\\theta)\n", + " \\\\\n", + " 0\n", + " \\\\\n", + " cos(\\theta)\n", + "\\end{pmatrix}\n", + "$,\n", + "and using the trigonometric identities,\n", + "thus we have:\n", + "\n", + "$$\n", + "\\begin{pmatrix}\n", + " p_x'\n", + " \\\\\n", + " p_y'\n", + " \\\\\n", + " p_z'\n", + "\\end{pmatrix}\n", + "=\n", + "\\begin{pmatrix}\n", + "sin(\\theta) \\cdot cos(\\omega)+ cos(\\theta) \\cdot sin(\\omega) \n", + "\\\\\n", + "0\n", + "\\\\\n", + "-sin(\\theta) \\cdot sin(\\omega) + cos(\\theta) \\cdot cos(\\omega) \n", + "\\end{pmatrix}\n", + "=\n", + "\\begin{pmatrix}\n", + "sin(\\theta+\\omega)\n", + "\\\\\n", + "0\n", + "\\\\\n", + "cos(\\theta+\\omega) \n", + "\\end{pmatrix}\n", + "\n", + "$$\n", + "\n", + "\n", + "\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "## `Two-particles-1.dat`\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The data are in the lab frame, Compute and plot the cos θL distribution\n", + "Boost to the CoM and Compute and plot\n", + "the cos θ* distribution" ] }, { @@ -21,45 +822,417 @@ "jupyter": { "source_hidden": true }, + "mystnb": { + "code_prompt_show": "Import Python libraries" + }, "tags": [ - "remove-cell" + "hide-cell" ] }, "outputs": [], "source": [ - "%pip install -q gdown matplotlib numpy particle" + "import warnings\n", + "\n", + "import gdown\n", + "import numpy as np\n", + "from IPython.display import display\n", + "\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "jupyter": { + "source_hidden": true + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# https://indico.ific.uv.es/event/6803/contributions/21220/attachments/11209/15506/Two-particles-1.dat\n", + "filename = gdown.cached_download(\n", + " url=\"https://indico.ific.uv.es/event/6803/contributions/21220/attachments/11209/15506/Two-particles-1.dat\",\n", + " # path=\"data/Two-particles-1.dat\",\n", + " # md5=\"a49ebfd97ae6a02023291df665ab924c\",\n", + " quiet=True,\n", + " verify=False,\n", + ")\n", + "data = np.loadtxt(filename)\n", + "data.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [], + "source": [ + "print(data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# p =" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# n_final_state = 2\n", + "# pa, p1, p2 = (data[i::4].T for i in range(n_final_state + 1))\n", + "# p0 = p1 + p2\n", + "# pb = p0 - pa" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Mandelstam variables\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$ p_i^2 = m^2_i $$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$ s =(p_a + p_b)^2 = (p_1+p_2)^2 $$\n", + "$$ t =(p_a - p_1)^2 = (p_b-p_2)^2 $$\n", + "$$ u =(p_a - p_2)^2 = (p_b-p_1)^2 $$\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\n", + "s+t+u = m_a^2+m_b^2+m_1^2+m^2_2\n", + "$$ (label:mv)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## `Three-particles-1.dat`" + ":::{exercise}\n", + ":label: mv\n", + "Check the relation in equation {eq}`label:mv` by using $p_a+p_b=p_1+p_2$\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ":::{solution} mv\n", + ":class: dropdown\n", + "\n", + "$$ s+t+u = (p_a + p_b)^2 + (p_a - p_1)^2 + (p_a - p_2)^2$$\n", + "\n", + "$$ s+t+u = p_a^2 +p_b^2 + 2 p_a p_b + p_a^2 -2 p_a p_1 + p_1^2 + p_a^2 - 2p_a p_2 +p_2^2$$\n", + "\n", + "$$\n", + "s+t+u = 3p_a^2 + p_b^2 +p_1^2 + p_2^2 + 2p_a p_b - 2p_a p_1 -2 p_a p_2\n", + "$$ (label:proving)\n", + "\n", + "from equation {eq}`label:mv` we have:\n", + "\n", + "$$ p_b = p_1 + p_2 - p_a $$\n", + "\n", + "$$ \n", + "p_a \\cdot p_b = p_a \\cdot p_1 + p_a \\cdot p_2 - p_a^2 \n", + "$$ (label:use)\n", + "\n", + "By equation {eq}`label:proving` and substitute it into equation {eq}`label:use`:\n", + "\n", + "$$\n", + "s+t+u = 3p_a^2 + p_b^2 +p_1^2 + p_2^2 + 2p_a \\cdot p_1 + 2p_a \\cdot p_2 - 2p_a^2 -2p_a p_1 -2 p_a p_2\n", + "$$\n", + "\n", + "$$\n", + "s+t+u = p_a^2 + p_b^2 +p_1^2 + p_2^2 \n", + "$$\n", + "\n", + "by the mass shell relation, and thus:\n", + "\n", + "$$s+t+u = m_a^2 + m_b^2 + m_1^2 + m_2^2$$\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "% $$ s+t+u = (p_a + p_b)^2 + (p_a - p_1)^2 + (p_a - p_2)^2$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "% $$ s+t+u = p_a^2 +p_b^2 + 2 p_a p_b + p_a^2 -2 p_a p_1 + p_1^2 + p_a^2 - 2p_a p_2 +p_2^2$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "% $$ p_b = p_1 + p_2 - p_a $$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## CoM Kinematics" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Every frame dependent quantities is expressed with Mandelstam variables\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "% $$t = m_a^2 +m_1^2 -2 E^*_a E^*_1 + 2|\\vec{p_a}^*| |\\vec{p_1}^*| cos \\theta^*$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Equivalent expression for the scattering angle in the CoM" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\n", + "cos \\theta^* = 1 + \\frac{t-t_{min}}{2|\\vec{v}_a^*||\\vec{p}_1^*|}\n", + "=\n", + "\\frac{s(t-u)+(m_a^2-m-b^2)(m_1^2-m_2^2)}{\\lambda^{1/2}(s,m_a^2,m_b^2)\\lambda^{1/2}(s,m_1^2,m_2^2)}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute $cos \\theta^L$ as a function of s,t,u" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$ cos \\theta^L $$" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Decay into three particles\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\\theta^*_{12}+\\theta^*_{23}+\\theta^*_{31}=2 \\pi$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Check relation (33) using $s_{12}+s_{23}+s_{31}$" ] }, { "cell_type": "code", "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", "metadata": { - "jupyter": { - "source_hidden": true - }, - "mystnb": { - "code_prompt_show": "Import Python libraries" - }, - "tags": [ - "hide-cell" - ] + "tags": [] }, - "outputs": [], "source": [ - "import warnings\n", + "## `Three-particles-1.dat`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ":::{exercise}\n", + ":label: three-particles-1\n", + "File: Three-Particles-1.dat is \n", + "The data are in the lab frame, \n", + "with Format:\n", "\n", - "import gdown\n", - "import numpy as np\n", - "from IPython.display import display\n", + "Ea, pa,x, pa,y, pa,z\n", "\n", - "warnings.filterwarnings(\"ignore\")" + "E1, p1,x, p1,y, p1,z\n", + "\n", + "E2, p2,x, p2,y, p2,z \n", + "\n", + "E3, p3,x, p3,y, p3,z\n", + "\n", + ". . . .\n", + "\n", + ". . . .\n", + "\n", + ". . . .\n", + "\n", + "\n", + "Three questions to be found out.\n", + "\n", + "Which reaction is it?
", + "\n", + "\n", + "What resonances are included?
", + " \n", + "\n", + "What is the spin of the resonances?\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ":::{solution-start} three-particles-1\n", + ":class: dropdown\n", + ":::" ] }, { @@ -81,6 +1254,15 @@ "data.shape" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(data)" + ] + }, { "cell_type": "code", "execution_count": null, @@ -97,9 +1279,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "jupyter": { - "source_hidden": true - }, "tags": [] }, "outputs": [], @@ -120,9 +1299,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "jupyter": { - "source_hidden": true - }, "tags": [ "hide-input" ] @@ -141,9 +1317,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "jupyter": { - "source_hidden": true - }, "mystnb": { "code_prompt_show": "Identify final state particles" }, @@ -194,6 +1367,14 @@ "So this is a photon $\\gamma$ hitting a proton $p$ and producing a meson $\\eta$, pion $\\pi^0$, and proton $p$." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ":::{solution-end} \n", + ":::" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -370,11 +1551,50 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "tags": [] + }, "source": [ "## `Three-particles-2.dat`" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ":::{exercise}\n", + ":label: three-particles-2\n", + "File: Three-Particles-2.dat is also\n", + "The data are in the lab frame, \n", + "with Format:\n", + "\n", + "Ea, pa,x, pa,y, pa,z\n", + "\n", + "E1, p1,x, p1,y, p1,z\n", + "\n", + "E2, p2,x, p2,y, p2,z \n", + "\n", + "E3, p3,x, p3,y, p3,z\n", + "\n", + ". . . .\n", + "\n", + ". . . .\n", + "\n", + ". . . .\n", + "\n", + "\n", + "Three questions to be found out.\n", + "\n", + "Which reaction is it?
", + "\n", + "\n", + "What resonances are included?
", + " \n", + "\n", + "What is the spin of the resonances?\n", + ":::" + ] + }, { "cell_type": "code", "execution_count": null, @@ -561,7 +1781,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.10.13" } }, "nbformat": 4,