-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathresnet50.py
120 lines (93 loc) · 4.91 KB
/
resnet50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from __future__ import division, print_function
import os, json
from glob import glob
import numpy as np
from scipy import misc, ndimage
from scipy.ndimage.interpolation import zoom
import keras
from keras import backend as K
from keras.models import Sequential, Model
from keras.layers.core import Flatten, Dense, Dropout, Lambda
from keras.layers import Input, Activation, merge
from keras.optimizers import RMSprop
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D, MaxPooling2D, ZeroPadding2D, AveragePooling2D # Conv2D: Keras2
import keras.preprocessing.image as image
from keras.utils.data_utils import get_file
from keras.utils.layer_utils import convert_all_kernels_in_model
from keras.applications.resnet50 import identity_block, conv_block
class Resnet50():
"""The Resnet 50 Imagenet model"""
def __init__(self, size=(224,224), include_top=True):
self.FILE_PATH = 'http://files.fast.ai/models/'
self.vgg_mean = np.array([123.68, 116.779, 103.939]).reshape((3,1,1))
self.create(size, include_top)
self.get_classes()
def get_classes(self):
fname = 'imagenet_class_index.json'
fpath = get_file(fname, self.FILE_PATH+fname, cache_subdir='models')
with open(fpath) as f:
class_dict = json.load(f)
self.classes = [class_dict[str(i)][1] for i in range(len(class_dict))]
def predict(self, imgs, details=False):
all_preds = self.model.predict(imgs)
idxs = np.argmax(all_preds, axis=1)
preds = [all_preds[i, idxs[i]] for i in range(len(idxs))]
classes = [self.classes[idx] for idx in idxs]
return np.array(preds), idxs, classes
def vgg_preprocess(self, x):
x = x - self.vgg_mean
return x[:, ::-1] # reverse axis bgr->rgb
def create(self, size, include_top):
input_shape = (3,)+size
img_input = Input(shape=input_shape)
bn_axis = 1
x = Lambda(self.vgg_preprocess)(img_input)
x = ZeroPadding2D((3, 3))(x)
x = Conv2D(64, 7, 7, subsample=(2, 2), name='conv1')(x) # Keras2
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
for n in ['b','c','d']: x = identity_block(x, 3, [128, 128, 512], stage=3, block=n)
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
for n in ['b','c','d', 'e', 'f']: x = identity_block(x, 3, [256, 256, 1024], stage=4, block=n)
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
if include_top:
x = AveragePooling2D((7, 7), name='avg_pool')(x)
x = Flatten()(x)
x = Dense(1000, activation='softmax', name='fc1000')(x)
fname = 'resnet50.h5'
else:
fname = 'resnet_nt.h5'
self.img_input = img_input
self.model = Model(self.img_input, x)
convert_all_kernels_in_model(self.model)
self.model.load_weights(get_file(fname, self.FILE_PATH+fname, cache_subdir='models'))
def get_batches(self, path, gen=image.ImageDataGenerator(),class_mode='categorical', shuffle=True, batch_size=8):
return gen.flow_from_directory(path, target_size=(224,224),
class_mode=class_mode, shuffle=shuffle, batch_size=batch_size)
def finetune(self, batches):
model = self.model
model.layers.pop()
for layer in model.layers: layer.trainable=False
m = Dense(batches.num_class, activation='softmax')(model.layers[-1].output)
self.model = Model(model.input, m)
self.model.compile(optimizer=RMSprop(lr=0.1), loss='categorical_crossentropy', metrics=['accuracy']
# Keras2
def fit(self, batches, val_batches, batch_size, nb_epoch=1):
# Keras 1
# self.model.fit_generator(batches, samples_per_epoch=batches.nb_sample, nb_epoch=nb_epoch,
# validation_data=val_batches, nb_val_samples=val_batches.nb_sample)
# Keras 2
self.model.fit_generator(batches, steps_per_epoch=int(np.ceil(batches.samples/batch_size)), epochs=nb_epoch,
validation_data=val_batches, validation_steps=int(np.ceil(val_batches.samples/batch_size)))
# Keras2
def test(self, path, batch_size=8):
test_batches = self.get_batches(path, shuffle=False, batch_size=batch_size, class_mode=None)
return test_batches, self.model.predict_generator(test_batches, int(np.ceil(test_batches.samples/batch_size)))