forked from xinntao/ESRGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
block.py
261 lines (218 loc) · 9.42 KB
/
block.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from collections import OrderedDict
import torch
import torch.nn as nn
####################
# Basic blocks
####################
def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1):
# helper selecting activation
# neg_slope: for leakyrelu and init of prelu
# n_prelu: for p_relu num_parameters
act_type = act_type.lower()
if act_type == 'relu':
layer = nn.ReLU(inplace)
elif act_type == 'leakyrelu':
layer = nn.LeakyReLU(neg_slope, inplace)
elif act_type == 'prelu':
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
else:
raise NotImplementedError('activation layer [%s] is not found' % act_type)
return layer
def norm(norm_type, nc):
# helper selecting normalization layer
norm_type = norm_type.lower()
if norm_type == 'batch':
layer = nn.BatchNorm2d(nc, affine=True)
elif norm_type == 'instance':
layer = nn.InstanceNorm2d(nc, affine=False)
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return layer
def pad(pad_type, padding):
# helper selecting padding layer
# if padding is 'zero', do by conv layers
pad_type = pad_type.lower()
if padding == 0:
return None
if pad_type == 'reflect':
layer = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
layer = nn.ReplicationPad2d(padding)
else:
raise NotImplementedError('padding layer [%s] is not implemented' % pad_type)
return layer
def get_valid_padding(kernel_size, dilation):
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
padding = (kernel_size - 1) // 2
return padding
class ConcatBlock(nn.Module):
# Concat the output of a submodule to its input
def __init__(self, submodule):
super(ConcatBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = torch.cat((x, self.sub(x)), dim=1)
return output
def __repr__(self):
tmpstr = 'Identity .. \n|'
modstr = self.sub.__repr__().replace('\n', '\n|')
tmpstr = tmpstr + modstr
return tmpstr
class ShortcutBlock(nn.Module):
#Elementwise sum the output of a submodule to its input
def __init__(self, submodule):
super(ShortcutBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = x + self.sub(x)
return output
def __repr__(self):
tmpstr = 'Identity + \n|'
modstr = self.sub.__repr__().replace('\n', '\n|')
tmpstr = tmpstr + modstr
return tmpstr
def sequential(*args):
# Flatten Sequential. It unwraps nn.Sequential.
if len(args) == 1:
if isinstance(args[0], OrderedDict):
raise NotImplementedError('sequential does not support OrderedDict input.')
return args[0] # No sequential is needed.
modules = []
for module in args:
if isinstance(module, nn.Sequential):
for submodule in module.children():
modules.append(submodule)
elif isinstance(module, nn.Module):
modules.append(module)
return nn.Sequential(*modules)
def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True,
pad_type='zero', norm_type=None, act_type='relu', mode='CNA'):
"""
Conv layer with padding, normalization, activation
mode: CNA --> Conv -> Norm -> Act
NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
"""
assert mode in ['CNA', 'NAC', 'CNAC'], 'Wong conv mode [%s]' % mode
padding = get_valid_padding(kernel_size, dilation)
p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
padding = padding if pad_type == 'zero' else 0
c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, \
dilation=dilation, bias=bias, groups=groups)
a = act(act_type) if act_type else None
if 'CNA' in mode:
n = norm(norm_type, out_nc) if norm_type else None
return sequential(p, c, n, a)
elif mode == 'NAC':
if norm_type is None and act_type is not None:
a = act(act_type, inplace=False)
# Important!
# input----ReLU(inplace)----Conv--+----output
# |________________________|
# inplace ReLU will modify the input, therefore wrong output
n = norm(norm_type, in_nc) if norm_type else None
return sequential(n, a, p, c)
####################
# Useful blocks
####################
class ResNetBlock(nn.Module):
"""
ResNet Block, 3-3 style
with extra residual scaling used in EDSR
(Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17)
"""
def __init__(self, in_nc, mid_nc, out_nc, kernel_size=3, stride=1, dilation=1, groups=1, \
bias=True, pad_type='zero', norm_type=None, act_type='relu', mode='CNA', res_scale=1):
super(ResNetBlock, self).__init__()
conv0 = conv_block(in_nc, mid_nc, kernel_size, stride, dilation, groups, bias, pad_type, \
norm_type, act_type, mode)
if mode == 'CNA':
act_type = None
if mode == 'CNAC': # Residual path: |-CNAC-|
act_type = None
norm_type = None
conv1 = conv_block(mid_nc, out_nc, kernel_size, stride, dilation, groups, bias, pad_type, \
norm_type, act_type, mode)
# if in_nc != out_nc:
# self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \
# None, None)
# print('Need a projecter in ResNetBlock.')
# else:
# self.project = lambda x:x
self.res = sequential(conv0, conv1)
self.res_scale = res_scale
def forward(self, x):
res = self.res(x).mul(self.res_scale)
return x + res
class ResidualDenseBlock_5C(nn.Module):
"""
Residual Dense Block
style: 5 convs
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
"""
def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
norm_type=None, act_type='leakyrelu', mode='CNA'):
super(ResidualDenseBlock_5C, self).__init__()
# gc: growth channel, i.e. intermediate channels
self.conv1 = conv_block(nc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
norm_type=norm_type, act_type=act_type, mode=mode)
self.conv2 = conv_block(nc+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
norm_type=norm_type, act_type=act_type, mode=mode)
self.conv3 = conv_block(nc+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
norm_type=norm_type, act_type=act_type, mode=mode)
self.conv4 = conv_block(nc+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
norm_type=norm_type, act_type=act_type, mode=mode)
if mode == 'CNA':
last_act = None
else:
last_act = act_type
self.conv5 = conv_block(nc+4*gc, nc, 3, stride, bias=bias, pad_type=pad_type, \
norm_type=norm_type, act_type=last_act, mode=mode)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(torch.cat((x, x1), 1))
x3 = self.conv3(torch.cat((x, x1, x2), 1))
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5.mul(0.2) + x
class RRDB(nn.Module):
"""
Residual in Residual Dense Block
"""
def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
norm_type=None, act_type='leakyrelu', mode='CNA'):
super(RRDB, self).__init__()
self.RDB1 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
norm_type, act_type, mode)
self.RDB2 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
norm_type, act_type, mode)
self.RDB3 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
norm_type, act_type, mode)
def forward(self, x):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out.mul(0.2) + x
####################
# Upsampler
####################
def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
pad_type='zero', norm_type=None, act_type='relu'):
"""
Pixel shuffle layer
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
Neural Network, CVPR17)
"""
conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias,
pad_type=pad_type, norm_type=None, act_type=None)
pixel_shuffle = nn.PixelShuffle(upscale_factor)
n = norm(norm_type, out_nc) if norm_type else None
a = act(act_type) if act_type else None
return sequential(conv, pixel_shuffle, n, a)
def upconv_blcok(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
pad_type='zero', norm_type=None, act_type='relu', mode='nearest'):
# Up conv
# described in https://distill.pub/2016/deconv-checkerboard/
upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode)
conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias,
pad_type=pad_type, norm_type=norm_type, act_type=act_type)
return sequential(upsample, conv)