forked from madrury/linalg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvector.c
277 lines (241 loc) · 8.38 KB
/
vector.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include <math.h>
#include <assert.h>
#include <stdarg.h>
#include "linalg_obj.h"
#include "vector.h"
#include "errors.h"
#include "util.h"
struct vector* vector_new(int length) {
assert(length >= 0);
struct vector* new_vector = malloc(sizeof(struct vector));
check_memory((void*) new_vector);
DATA(new_vector) = malloc((sizeof(double)) * length);
check_memory((void*) DATA(new_vector));
new_vector->length = length;
OWNS_MEMORY(new_vector)= true;
MEMORY_OWNER(new_vector) = NULL;
REF_COUNT(new_vector) = 0;
return new_vector;
}
/* Create a new vector which is a *view* into an already existing vector.
The new and parent vectors share the same data, and modifying the data in
either will modify both vectors. One the other hand, we do not have to copy
any data to create a view.
*/
struct vector* vector_new_view(struct linalg_obj* parent, double* view, int length) {
assert(length >= 0);
// TODO: Make this view check work.
/* Check that pointers to the beginning and end of view vector live
within the data segment of the parent object.
This doesn't work because matricies have no length. This could be
a property of linalg_obj, but then a macro would be needed to
make the lookup type generic.
assert(DATA(parent) <= view && view < DATA(parent) + parent->length);
assert(view + length <= DATA(parent) + parent->length);
*/
struct vector* new_vector = malloc(sizeof(struct vector));
check_memory((void*)new_vector);
DATA(new_vector) = view;
new_vector->length = length;
OWNS_MEMORY(new_vector) = false;
MEMORY_OWNER(new_vector) = parent;
REF_COUNT(new_vector) = 0;
REF_COUNT(parent) += 1;
return new_vector;
}
struct vector* vector_from_array(double* data, int length) {
assert(length > 0);
struct vector* v = vector_new(length);
for(int i = 0; i < v->length; i++) {
VECTOR_IDX_INTO(v, i) = data[i];
}
return v;
}
void vector_free(struct vector* v) {
struct linalg_obj* mem_owner;
if(OWNS_MEMORY(v)) {
if(REF_COUNT(v) == 0) {
free(DATA(v));
free(v);
} else {
raise_non_zero_reference_free_error();
}
} else {
if(REF_COUNT(v) == 0) {
mem_owner = MEMORY_OWNER(v);
REF_COUNT(mem_owner) -= 1;
free(v);
} else {
raise_non_zero_reference_free_error();
}
}
}
void vector_free_many(int n_to_free, ...) {
struct vector* v;
va_list argp;
va_start(argp, n_to_free);
for(int i = 0; i < n_to_free; i++) {
v = va_arg(argp, struct vector*);
vector_free(v);
}
}
/* Construct a vector of a given length filled with a given constant. */
struct vector* vector_constant(int length, double x) {
assert(length > 0);
struct vector* v = vector_new(length);
for(int i = 0; i < v->length; i++) {
VECTOR_IDX_INTO(v, i) = x;
}
return v;
}
/* Construct a vector of a given length filled with zeros. */
struct vector* vector_zeros(int length) {
assert(length > 0);
return vector_constant(length, 0);
}
/* Construct a vector of equally spaced points within the closed
interval [min, max].
*/
struct vector* vector_linspace(int length, double min, double max) {
assert(min <= max);
assert(length > 1);
struct vector* v = vector_new(length);
double step = (max - min) / (length - 1);
for(int i = 0; i < v->length; i++) {
VECTOR_IDX_INTO(v, i) = min + step*i;
}
return v;
}
/* Construct a view into a segement of a vector. The returned vector is
a reference to a segment of data contained in the vector v, with left
index begin_idx and right index (excluded) end_idx.
*/
struct vector* vector_slice(struct vector* v, int begin_idx, int end_idx) {
assert(begin_idx <= end_idx);
assert(end_idx <= v->length - 1);
int new_vector_length = end_idx - begin_idx;
double* begin_ptr = DATA(v) + begin_idx;
struct vector* w = vector_new_view((struct linalg_obj*) v, begin_ptr, new_vector_length);
return w;
}
/* Copy all the data in a given vector into a new vector. */
struct vector* vector_copy(struct vector* v) {
struct vector* w = vector_new(v->length);
vector_copy_into(w, v);
return w;
}
void vector_copy_into(struct vector* reciever, struct vector* v) {
assert(v->length == reciever->length);
for(int i = 0; i < v->length; i++) {
VECTOR_IDX_INTO(reciever, i) = VECTOR_IDX_INTO(v, i);
}
}
/* Arithmatic methods.
Each of the following methods implements an arithmetic operation on vectors.
Each comes in two flavors, anaoagous to the + and += operators:
- vector_operation(v1, v2) applies the given operation elementwise to pairs
taken from v1, v2, and stores the results in a *new* vector, which is
then returned.
- vector_operation_into(v1, v2) applies the given operation elementwise to
pairs taken from v1, v2, and stores the results in v1. Note that this
operation destroys the data in v1, and if v1 is a reference, will
mutate the referenced object.
*/
struct vector* vector_subtract(struct vector* v1, struct vector* v2) {
assert(vector_lengths_equal(v1, v2));
struct vector* v = vector_new(v1->length);
vector_subtract_into(v, v1, v2);
return v;
}
void vector_subtract_into(struct vector* reciever, struct vector* v1, struct vector* v2) {
assert(vector_lengths_equal(v1, v2));
for(int i = 0; i < v1->length; i++) {
VECTOR_IDX_INTO(reciever, i) = VECTOR_IDX_INTO(v1, i) - VECTOR_IDX_INTO(v2, i);
}
}
struct vector* vector_add(struct vector* v1, struct vector* v2) {
assert(vector_lengths_equal(v1, v2));
struct vector* v = vector_new(v1->length);
vector_add_into(v, v1, v2);
return v;
}
void vector_add_into(struct vector* reciever, struct vector* v1, struct vector* v2) {
assert(vector_lengths_equal(v1, v2));
for(int i = 0; i < v1->length; i++) {
VECTOR_IDX_INTO(reciever, i) = VECTOR_IDX_INTO(v1, i) + VECTOR_IDX_INTO(v2, i);
}
}
struct vector* vector_normalize(struct vector* v) {
struct vector* vnorm = vector_new(v->length);
double norm = vector_norm(v);
assert(norm != 0);
vector_normalize_into(vnorm, v);
return vnorm;
}
void vector_normalize_into(struct vector* reciever, struct vector* v) {
double norm = vector_norm(v);
assert(norm != 0);
for(int i = 0; i < v->length; i++) {
VECTOR_IDX_INTO(reciever, i) = VECTOR_IDX_INTO(v, i) / norm;
}
}
struct vector* vector_scalar_multiply(struct vector* v, double s) {
struct vector* w = vector_new(v->length);
vector_scalar_multiply_into(w, v, s);
return w;
}
void vector_scalar_multiply_into(struct vector* reciever, struct vector* v, double s) {
for(int i = 0; i < v->length; i++) {
VECTOR_IDX_INTO(reciever, i) = VECTOR_IDX_INTO(v, i) * s;
}
}
/* Check that two vectors are equal to within some additive tolerance. */
bool vector_equal(struct vector* v1, struct vector* v2, double tol) {
if(!vector_lengths_equal(v1, v2)) {
return false;
}
for(int i = 0; i < v1->length; i++) {
if(fabs(VECTOR_IDX_INTO(v1, i) - VECTOR_IDX_INTO(v2, i)) > tol) {
return false;
}
}
return true;
}
bool vector_lengths_equal(struct vector* v1, struct vector* v2) {
return (v1->length == v2->length);
}
double vector_dot_product(struct vector* v1, struct vector* v2) {
assert(vector_lengths_equal(v1, v2));
double dp = 0;
for(int i = 0; i < v1->length; i++) {
dp += VECTOR_IDX_INTO(v1, i) * VECTOR_IDX_INTO(v2, i);
}
return dp;
}
double vector_norm(struct vector* v) {
double norm_squared = vector_dot_product(v, v);
return sqrt(norm_squared);
}
/* Print a vector to the console like:
[1, 2, 3, 4]
*/
// TODO: Maybe this should return a string, we are computing the representation and
// displaying it in the same method.
void vector_print(struct vector* v) {
if(v->length == 0) {
printf("[]\n");
} else if (v->length == 1) {
printf("[%.2f]\n", VECTOR_IDX_INTO(v, 0));
} else {
printf("[%.2f", VECTOR_IDX_INTO(v, 0));
for(int i = 1; i < v->length - 1; i++) {
printf(", ");
printf("%.2f", VECTOR_IDX_INTO(v, i));
}
printf(", %.2f]\n", VECTOR_IDX_INTO(v, v->length - 1));
}
}