forked from Sunlitspace542/snes9x-neo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dsp2.cpp
361 lines (310 loc) · 8.78 KB
/
dsp2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/*****************************************************************************\
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
This file is licensed under the Snes9x License.
For further information, consult the LICENSE file in the root directory.
\*****************************************************************************/
#include "snes9x.h"
#include "memmap.h"
static void DSP2_Op01 (void);
static void DSP2_Op03 (void);
static void DSP2_Op05 (void);
static void DSP2_Op06 (void);
static void DSP2_Op09 (void);
static void DSP2_Op0D (void);
// convert bitmap to bitplane tile
static void DSP2_Op01 (void)
{
// Op01 size is always 32 bytes input and output
// The hardware does strange things if you vary the size
uint8 c0, c1, c2, c3;
uint8 *p1 = DSP2.parameters;
uint8 *p2a = DSP2.output;
uint8 *p2b = DSP2.output + 16; // halfway
// Process 8 blocks of 4 bytes each
for (int j = 0; j < 8; j++)
{
c0 = *p1++;
c1 = *p1++;
c2 = *p1++;
c3 = *p1++;
*p2a++ = (c0 & 0x10) << 3 |
(c0 & 0x01) << 6 |
(c1 & 0x10) << 1 |
(c1 & 0x01) << 4 |
(c2 & 0x10) >> 1 |
(c2 & 0x01) << 2 |
(c3 & 0x10) >> 3 |
(c3 & 0x01);
*p2a++ = (c0 & 0x20) << 2 |
(c0 & 0x02) << 5 |
(c1 & 0x20) |
(c1 & 0x02) << 3 |
(c2 & 0x20) >> 2 |
(c2 & 0x02) << 1 |
(c3 & 0x20) >> 4 |
(c3 & 0x02) >> 1;
*p2b++ = (c0 & 0x40) << 1 |
(c0 & 0x04) << 4 |
(c1 & 0x40) >> 1 |
(c1 & 0x04) << 2 |
(c2 & 0x40) >> 3 |
(c2 & 0x04) |
(c3 & 0x40) >> 5 |
(c3 & 0x04) >> 2;
*p2b++ = (c0 & 0x80) |
(c0 & 0x08) << 3 |
(c1 & 0x80) >> 2 |
(c1 & 0x08) << 1 |
(c2 & 0x80) >> 4 |
(c2 & 0x08) >> 1 |
(c3 & 0x80) >> 6 |
(c3 & 0x08) >> 3;
}
}
// set transparent color
static void DSP2_Op03 (void)
{
DSP2.Op05Transparent = DSP2.parameters[0];
}
// replace bitmap using transparent color
static void DSP2_Op05 (void)
{
// Overlay bitmap with transparency.
// Input:
//
// Bitmap 1: i[0] <=> i[size-1]
// Bitmap 2: i[size] <=> i[2*size-1]
//
// Output:
//
// Bitmap 3: o[0] <=> o[size-1]
//
// Processing:
//
// Process all 4-bit pixels (nibbles) in the bitmap
//
// if ( BM2_pixel == transparent_color )
// pixelout = BM1_pixel
// else
// pixelout = BM2_pixel
// The max size bitmap is limited to 255 because the size parameter is a byte
// I think size=0 is an error. The behavior of the chip on size=0 is to
// return the last value written to DR if you read DR on Op05 with
// size = 0. I don't think it's worth implementing this quirk unless it's
// proven necessary.
uint8 color;
uint8 c1, c2;
uint8 *p1 = DSP2.parameters;
uint8 *p2 = DSP2.parameters + DSP2.Op05Len;
uint8 *p3 = DSP2.output;
color = DSP2.Op05Transparent & 0x0f;
for (int32 n = 0; n < DSP2.Op05Len; n++)
{
c1 = *p1++;
c2 = *p2++;
*p3++ = (((c2 >> 4) == color) ? c1 & 0xf0: c2 & 0xf0) | (((c2 & 0x0f) == color) ? c1 & 0x0f: c2 & 0x0f);
}
}
// reverse bitmap
static void DSP2_Op06 (void)
{
// Input:
// size
// bitmap
for (int32 i = 0, j = DSP2.Op06Len - 1; i < DSP2.Op06Len; i++, j--)
DSP2.output[j] = (DSP2.parameters[i] << 4) | (DSP2.parameters[i] >> 4);
}
// multiply
static void DSP2_Op09 (void)
{
DSP2.Op09Word1 = DSP2.parameters[0] | (DSP2.parameters[1] << 8);
DSP2.Op09Word2 = DSP2.parameters[2] | (DSP2.parameters[3] << 8);
uint32 temp = DSP2.Op09Word1 * DSP2.Op09Word2;
DSP2.output[0] = temp & 0xFF;
DSP2.output[1] = (temp >> 8) & 0xFF;
DSP2.output[2] = (temp >> 16) & 0xFF;
DSP2.output[3] = (temp >> 24) & 0xFF;
}
// scale bitmap
static void DSP2_Op0D (void)
{
// Bit accurate hardware algorithm - uses fixed point math
// This should match the DSP2 Op0D output exactly
// I wouldn't recommend using this unless you're doing hardware debug.
// In some situations it has small visual artifacts that
// are not readily apparent on a TV screen but show up clearly
// on a monitor. Use Overload's scaling instead.
// This is for hardware verification testing.
//
// One note: the HW can do odd byte scaling but since we divide
// by two to get the count of bytes this won't work well for
// odd byte scaling (in any of the current algorithm implementations).
// So far I haven't seen Dungeon Master use it.
// If it does we can adjust the parameters and code to work with it
uint32 multiplier; // Any size int >= 32-bits
uint32 pixloc; // match size of multiplier
uint8 pixelarray[512];
if (DSP2.Op0DInLen <= DSP2.Op0DOutLen)
multiplier = 0x10000; // In our self defined fixed point 0x10000 == 1
else
multiplier = (DSP2.Op0DInLen << 17) / ((DSP2.Op0DOutLen << 1) + 1);
pixloc = 0;
for (int32 i = 0; i < DSP2.Op0DOutLen * 2; i++)
{
int32 j = pixloc >> 16;
if (j & 1)
pixelarray[i] = DSP2.parameters[j >> 1] & 0x0f;
else
pixelarray[i] = (DSP2.parameters[j >> 1] & 0xf0) >> 4;
pixloc += multiplier;
}
for (int32 i = 0; i < DSP2.Op0DOutLen; i++)
DSP2.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
}
/*
static void DSP2_Op0D (void)
{
// Overload's algorithm - use this unless doing hardware testing
// One note: the HW can do odd byte scaling but since we divide
// by two to get the count of bytes this won't work well for
// odd byte scaling (in any of the current algorithm implementations).
// So far I haven't seen Dungeon Master use it.
// If it does we can adjust the parameters and code to work with it
int32 pixel_offset;
uint8 pixelarray[512];
for (int32 i = 0; i < DSP2.Op0DOutLen * 2; i++)
{
pixel_offset = (i * DSP2.Op0DInLen) / DSP2.Op0DOutLen;
if ((pixel_offset & 1) == 0)
pixelarray[i] = DSP2.parameters[pixel_offset >> 1] >> 4;
else
pixelarray[i] = DSP2.parameters[pixel_offset >> 1] & 0x0f;
}
for (int32 i = 0; i < DSP2.Op0DOutLen; i++)
DSP2.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
}
*/
void DSP2SetByte (uint8 byte, uint16 address)
{
if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000))
{
if (DSP2.waiting4command)
{
DSP2.command = byte;
DSP2.in_index = 0;
DSP2.waiting4command = FALSE;
switch (byte)
{
case 0x01: DSP2.in_count = 32; break;
case 0x03: DSP2.in_count = 1; break;
case 0x05: DSP2.in_count = 1; break;
case 0x06: DSP2.in_count = 1; break;
case 0x09: DSP2.in_count = 4; break;
case 0x0D: DSP2.in_count = 2; break;
default:
#ifdef DEBUGGER
//printf("Op%02X\n", byte);
#endif
case 0x0f: DSP2.in_count = 0; break;
}
}
else
{
DSP2.parameters[DSP2.in_index] = byte;
DSP2.in_index++;
}
if (DSP2.in_count == DSP2.in_index)
{
DSP2.waiting4command = TRUE;
DSP2.out_index = 0;
switch (DSP2.command)
{
case 0x01:
DSP2.out_count = 32;
DSP2_Op01();
break;
case 0x03:
DSP2_Op03();
break;
case 0x05:
if (DSP2.Op05HasLen)
{
DSP2.Op05HasLen = FALSE;
DSP2.out_count = DSP2.Op05Len;
DSP2_Op05();
}
else
{
DSP2.Op05Len = DSP2.parameters[0];
DSP2.in_index = 0;
DSP2.in_count = 2 * DSP2.Op05Len;
DSP2.Op05HasLen = TRUE;
if (byte)
DSP2.waiting4command = FALSE;
}
break;
case 0x06:
if (DSP2.Op06HasLen)
{
DSP2.Op06HasLen = FALSE;
DSP2.out_count = DSP2.Op06Len;
DSP2_Op06();
}
else
{
DSP2.Op06Len = DSP2.parameters[0];
DSP2.in_index = 0;
DSP2.in_count = DSP2.Op06Len;
DSP2.Op06HasLen = TRUE;
if (byte)
DSP2.waiting4command = FALSE;
}
break;
case 0x09:
DSP2.out_count = 4;
DSP2_Op09();
break;
case 0x0D:
if (DSP2.Op0DHasLen)
{
DSP2.Op0DHasLen = FALSE;
DSP2.out_count = DSP2.Op0DOutLen;
DSP2_Op0D();
}
else
{
DSP2.Op0DInLen = DSP2.parameters[0];
DSP2.Op0DOutLen = DSP2.parameters[1];
DSP2.in_index = 0;
DSP2.in_count = (DSP2.Op0DInLen + 1) >> 1;
DSP2.Op0DHasLen = TRUE;
if (byte)
DSP2.waiting4command = FALSE;
}
break;
case 0x0f:
default:
break;
}
}
}
}
uint8 DSP2GetByte (uint16 address)
{
uint8 t;
if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000))
{
if (DSP2.out_count)
{
t = (uint8) DSP2.output[DSP2.out_index];
DSP2.out_index++;
if (DSP2.out_count == DSP2.out_index)
DSP2.out_count = 0;
}
else
t = 0xff;
}
else
t = 0x80;
return (t);
}