-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathplacalc.cpp
1197 lines (1118 loc) · 43.9 KB
/
placalc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
** Astrolog (Version 7.70) File: placalc.cpp
**
** IMPORTANT NOTICE: Astrolog and all chart display routines and anything
** not enumerated below used in this program are Copyright (C) 1991-2024 by
** Walter D. Pullen ([email protected], http://www.astrolog.org/astrolog.htm).
** Permission is granted to freely use, modify, and distribute these
** routines provided these credits and notices remain unmodified with any
** altered or distributed versions of the program.
**
** The main ephemeris databases and calculation routines are from the
** library SWISS EPHEMERIS and are programmed and copyright 1997-2008 by
** Astrodienst AG. Use of that source code is subject to license for Swiss
** Ephemeris Free Edition at https://www.astro.com/swisseph/swephinfo_e.htm.
** This copyright notice must not be changed or removed by any user of this
** program.
**
** Additional ephemeris databases and formulas are from the calculation
** routines in the program PLACALC and are programmed and Copyright (C)
** 1989,1991,1993 by Astrodienst AG and Alois Treindl ([email protected]). The
** use of that source code is subject to regulations made by Astrodienst
** Zurich, and the code is not in the public domain. This copyright notice
** must not be changed or removed by any user of this program.
**
** The original planetary calculation routines used in this program have
** been copyrighted and the initial core of this program was mostly a
** conversion to C of the routines created by James Neely as listed in
** 'Manual of Computer Programming for Astrologers', by Michael Erlewine,
** available from Matrix Software.
**
** Atlas composed using data from https://www.geonames.org/ licensed under a
** Creative Commons Attribution 4.0 License. Time zone changes composed using
** public domain TZ database: https://data.iana.org/time-zones/tz-link.html
**
** The PostScript code within the core graphics routines are programmed
** and Copyright (C) 1992-1993 by Brian D. Willoughby ([email protected]).
**
** More formally: This program is free software; you can redistribute it
** and/or modify it under the terms of the GNU General Public License as
** published by the Free Software Foundation; either version 2 of the
** License, or (at your option) any later version. This program is
** distributed in the hope that it will be useful and inspiring, but
** WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
** General Public License for more details, a copy of which is in the
** LICENSE.HTM file included with Astrolog, and at http://www.gnu.org
**
** Initial programming 8/28-30/1991.
** X Window graphics initially programmed 10/23-29/1991.
** PostScript graphics initially programmed 11/29-30/1992.
** Last code change made 4/22/2024.
*/
#include "placalc.h"
#ifdef PLACALC
/*
** ---------------------------------------------------------------
** | Copyright Astrodienst AG and Alois Treindl, 1989,1991,1993 |
** | The use of this source code is subject to regulations made |
** | by Astrodienst Zurich. The code is NOT in the public domain.|
** | |
** | This copyright notice must not be changed or removed |
** | by any user of this program. |
** ---------------------------------------------------------------
**
** Important changes:
** 11-jun-93 revision 1.12: fixed error which affected Mercury between -2100
** and -3100 (it jumped wildly).
*/
/* function calc():
** This is the main routine for computing a planets position.
** The function has several modes, which are controlled by bits in
** the parameter 'flag'. The normal mode (flag == 0) computes
** a planets apparent geocentric position in ecliptic coordinates relative to
** the true equinox of date, without speed
**
** Explanation of the arguments: see the functions header.
**
** Returns OK or ERR (if some planet out of time range). OK and ERR are
** defined in ourdef.h and must not be confused with TRUE and FALSE.
** OK and ERR are of type int, not of type PLABOOL.
**
** Bits used in flag:
** CALC_BIT_HELIO 0 = geocentric, 1 = heliocentric
** CALC_BIT_NOAPP 0 = apparent positions, 1 = true positions
** CALC_BIT_NONUT 0 = do nutation (true equinox of date)
** 1 = don't do nutation (mean equinox of date).
**
** CALC_BIT_SPEED 0 = don't calc speed,
** 1 = calc speed, takes quite long for moon
** (is observed only for moon, with other
** planets speed is cheap)
**
** Side effects and local memory:
** For doing heliocentric positions the fucntion must know the
** earth's position for the desired time t. It remembers the earth
** position so it does not have to recompute it each time a planet
** position is wanted for the same time t.
** It calls helup(t), which leaves as a side effect the global
** variables meanekl, ekl and nut for the time t.
**
** Functions called by calc():
** helup(t)
** hel(t)
** moon(t)
** togeo()
**
** Time range:
** The function can be used savely in the time range 5000 BC to
** 3000 AD. The stored ephemeris is available only for this time
** range, so Jupiter ... Pluto cannot be computed outside. The
** function will return results for the other planets also outside
** of this time range, but they become meaningless pretty soon
** before 5000 BC, because Newcombs time series expansions for the
** elements will not work anymore.
**
** pointers to the return variables:
** alng = ecliptic longitude in degrees
** arad = radius vector in AU (astronomic units)
** alat = ecliptic latitude in degrees
** alngspeed = speed of planet in degrees per day
**
** !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
** The precision of the speed is quite limited.
** !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
**
** For Sun, Mercury, Venus and Mars we take only the speed from
** the undisturbed Kepler orbit. For the Moon there is no
** reasonable undisturbed orbit and we derive the speed from
** its position at t + dt and t - dt. We need these
** moon positions anyway for the true node calculation.
** For the outer planets and Chiron we derive the precise
** speed from the stored ephemeris by high order inter-
** polation; the precision is limited for the geocentric
** case due to the limited precision of the earth's/sun's speed.
** Applications who need precise speeds should
** get them by calling calc() with slightly different times.
**
** Comment 7 May 1991 by Alois Treindl:
** Center of Earth versus Barycenter Earth-Moon:
** Brown's theory of the moon gives the moon's coordinates relative
** to the center of the earth. Newcomb's theory of the Sun gives the
** coordinates of the earth's center relative to the center of the Sun.
** This is what we need.
**
** How about the Mean Lunar Node?
** The orbital elements of the Sun in Newcomb's theory are given
** relative to the barycenter Earth-Moon; the reduction to geocentric
** is only applied after doing the Kepler ellipse calculation.
** Are the Lunar elements also relative to the barycenter??
** If yes:
** When we use the moon's mean node out of the elements, it is still
** as seen from the barycenter. Because the node is close to the
** earth, we would have to apply a considerable correction, which is of
** the order of 4000/384000 km or 35' (minutes of arc).
** Nobody has ever applied such a correction to the mean node.
**
** And the True Node?
** When we calculate the osculating orbital elements of the Moon (true node),
** are they relative to the barycenter or to the Earth's center?
** Our derivation of true node from the actual Moon positions considers
** the earth's center as the focal point of the osculating lunar ellipse.
** A more correct approach would first reduce the lunar position from
** geocentric to barycentric, then compute the orbital elements from
** the reduced positions, and then reduce the desired items
** (node, apogaeum, 'dark moon') to geocentric positions.
** No known astrological ephemeris has ever used such a correction, which is
** of the same order of magnitude as the correction to the meannode above.
** When the moon is going through the ecliptic, the geocenter, barycenter
** moon (and the node identical to the moon itself) line up; this is why
** the error does not show up in normal considerations.
*/
int calc(int planet, REAL8 jd_ad, int flag,
REAL8 *alng, REAL8 *arad, REAL8 *alat, REAL8 *alngspeed)
/* planet index as defined in placalc.h,
SUN = 0, MOON = 1 etc.
planet == -1 calc calculates only nut and ecl */
/* relative Astrodienst Juldate, ephemeris time.
Astrodienst Juldate is relative 31 Dec 1949, noon. */
/* See definition of flag bits above */
{
struct rememberdat /* time for which the datas are calculated */
{REAL8 calculation_time, lng, rad, zet, lngspeed, radspeed, zetspeed;};
static struct rememberdat earthrem =
{HUGE8, HUGE8, HUGE8, HUGE8, HUGE8, HUGE8, HUGE8};
static struct rememberdat moonrem =
{HUGE8, HUGE8, HUGE8, HUGE8, HUGE8, HUGE8, HUGE8};
REAL8 c, s, x, knn, knv;
REAL8 rp, zp; /* needed to call hel! */
REAL8 *azet = alat;
PLABOOL calc_geo, calc_helio, calc_apparent, calc_speed,
calc_nut;
/* helup checks whether it was already called with same time */
helup (jd_ad);
/* we could return now if we only wanted to compute ecl and nut */
calc_helio = flag & CALC_BIT_HELIO;
calc_geo = ! calc_helio;
calc_apparent = ! (flag & CALC_BIT_NOAPP);
calc_nut = ! (flag & CALC_BIT_NONUT);
calc_speed = flag & CALC_BIT_SPEED;
/*
** it is necessary to compute EARTH in the following cases:
** heliocentric MOON or EARTH
** geocentric any planet except MOON or nodes or LILITH
*/
if (calc_helio && (planet == MOON || planet == EARTH)
|| calc_geo && planet != MOON
&& planet != MEAN_NODE
&& planet != TRUE_NODE
&& planet != LILITH) {
if (earthrem.calculation_time != jd_ad) {
hel (EARTH, jd_ad, alng, arad, azet, alngspeed, &rp, &zp);
/* store earthdata for geocentric calculation: */
earthrem.lng = *alng;
earthrem.rad = *arad;
earthrem.zet = *azet;
earthrem.lngspeed = *alngspeed;
earthrem.radspeed = rp;
earthrem.zetspeed = zp;
earthrem.calculation_time = jd_ad;
}
}
switch(planet) {
case EARTH: /* has been already computed */
*alng = earthrem.lng;
*arad = earthrem.rad;
*azet = earthrem.zet;
*alngspeed = earthrem.lngspeed;
rp = earthrem.radspeed;
zp = earthrem.zetspeed;
if (calc_geo) { /* SUN seen from earth */
*alng = smod8360(*alng + 180.0);
*azet = - *azet;
}
if (calc_apparent)
*alng = *alng - 0.0057683 * (*arad) * (*alngspeed);
break;
case MOON:
moon(alng, arad, azet);
moonrem.lng = *alng; /* moonrem will be used for TRUE_NODE */
moonrem.rad = *arad;
moonrem.zet = *azet;
*alngspeed = 12;
moonrem.calculation_time = jd_ad;
if (calc_helio || calc_speed) {/* get a second moon position */
REAL8 lng2, _rad2, zet2;
helup(jd_ad + MOON_SPEED_INTERVAL);
moon(&lng2, &_rad2, &zet2);
helup(jd_ad);
if (calc_helio) { /* moon as seen from sun */
togeo(earthrem.lng, -earthrem.rad, moonrem.lng, moonrem.rad,
moonrem.zet, alng, arad);
togeo(earthrem.lng + MOON_SPEED_INTERVAL * earthrem.lngspeed,
-(earthrem.rad + MOON_SPEED_INTERVAL * earthrem.radspeed),
lng2, _rad2, zet2, &lng2, &_rad2);
}
*alngspeed = diff8360(lng2, *alng) / MOON_SPEED_INTERVAL;
/* rp = (rad2 - *arad) / MOON_SPEED_INTERVAL; */
/* zp = (zet2 - moonrem.zet) / MOON_SPEED_INTERVAL; */
}
*alat = RADTODEG * ASIN8(*azet / *arad);
/*
** light time correction, not applied for moon or nodes;
** moon would have only term of ca. 0.02", see Expl.Sup.1961 p.109
*/
break;
case MERCURY:
case VENUS:
case MARS:
case JUPITER:
case SATURN:
case URANUS:
case NEPTUNE:
case PLUTO:
case CHIRON:
case CERES:
case PALLAS:
case JUNO:
case VESTA:
if (hel(planet, jd_ad, alng, arad, azet, alngspeed, &rp, &zp) != OK)
return ERR; /* outer planets can fail if out of ephemeris range */
if (calc_geo) { /* geocentric */
REAL8 lng1, _rad1, lng2, _rad2;
togeo(earthrem.lng, earthrem.rad, *alng, *arad, *azet, &lng1, &_rad1);
togeo(earthrem.lng + earthrem.lngspeed,
earthrem.rad + earthrem.radspeed,
*alng + *alngspeed, *arad + rp, *azet + zp, &lng2, &_rad2);
*alng = lng1;
*arad = _rad1;
*alngspeed = diff8360(lng2, lng1);
/* rp = rad2 - rad1; */
}
*alat = RADTODEG * ASIN8(*azet / *arad);
if (calc_apparent)
*alng = *alng - 0.0057683 * (*arad) * (*alngspeed);
break;
case MEAN_NODE:
*alng = smod8360(el[MOON].kn);
/*
* the distance of the node is the 'orbital parameter' p = a (1-e^2);
* Our current use of the axis a is wrong, but is never used.
*/
*arad = pd[MOON].axis;
*alat = 0.0;
*alngspeed = -0.053;
break;
case TRUE_NODE: {
/* see comment 'Note 7 May 1991' above */
REAL8 ln, rn, zn,
lv, rv, zv,
l1, r1, z1,
xn, yn, xv, yv, r0, x0, y0;
helup(jd_ad + NODE_INTERVAL);
moon(&ln, &rn, &zn);
helup(jd_ad - NODE_INTERVAL);
moon(&lv, &rv, &zv);
helup(jd_ad);
if (moonrem.calculation_time != jd_ad)
moon(&l1, &r1, &z1);
else { /* moon is already calculated */
l1 = moonrem.lng;
r1 = moonrem.rad;
z1 = moonrem.zet;
}
rn = sqrt(rn * rn - zn * zn);
rv = sqrt(rv * rv - zv * zv);
r0 = sqrt(r1 * r1 - z1 * z1);
xn = rn * COS8(DEGTORAD * ln);
yn = rn * SIN8(DEGTORAD * ln);
xv = rv * COS8(DEGTORAD * lv);
yv = rv * SIN8(DEGTORAD * lv);
x0 = r0 * COS8(DEGTORAD * l1);
y0 = r0 * SIN8(DEGTORAD * l1);
x = test_near_zero(x0 * yn - xn * y0);
s = (y0 * zn - z1 * yn) / x;
c = test_near_zero((x0 * zn - z1 * xn) / x);
knn = smod8360(RADTODEG * ATAN28(s, c)); /* = ATAN8(s / c) */
x = test_near_zero(y0 * xv - x0 * yv);
s = (yv * z1 - zv * y0) / x;
c = test_near_zero((xv * z1 - zv * x0) / x);
knv = smod8360(RADTODEG * ATAN28(s, c));
*alng = smod8360((knv + knn) / 2);
/*
** the distance of the node is the 'orbital parameter' p = a (1-e^2);
** Our current use of the axis a is wrong.
*/
*arad = pd[MOON].axis;
*alat = 0.0;
*alngspeed = diff8360(knn, knv) / NODE_INTERVAL;
}
break;
case LILITH: {
/*
** Added 22-Jun-93
** Lilith or Dark Moon is the empty focal point of the mean lunar ellipse.
** This is 180 degrees from the perihel.
** Because the lunar orbit is not in the ecliptic, it must be
** projected onto the ecliptic in the same way as the planetary orbits
** are (see for example Montenbruck, Grundlagen der Ephemeridenrechnung).
**
** We compute the MEAN Lilith, not the TRUE one which would have to be
** derived in a similar way as the true node.
** For the radius vector of Lilith we use a simple formula;
** to get a precise value, the fact that the focal point of the ellipse
** is not at the center of the earth but at the barycenter moon-earth
** would have to be accounted for.
** For the speed we always return a constant: the T term from the
** lunar perihel.
** Joelle de Gravelaine publishes in her book "Lilith der schwarze Mond"
** (Astrodata, 1990) an ephemeris which gives noon (12.00) positions
** but does not project onto the ecliptic.
** This creates deviations
*/
double arg_lat, lon, cosi;
struct elements *e = &el[MOON];
arg_lat = degnorm(e->pe - e->kn + 180.0);
cosi = COSDEG(e->in);
if (e->in == 0 || ABS8(arg_lat - 90.0) < TANERRLIMIT
|| ABS8(arg_lat - 270.0) < TANERRLIMIT) {
lon = arg_lat;
} else {
lon = ATAN8(TANDEG(arg_lat) * cosi);
lon = RADTODEG * lon;
if (arg_lat > 90.0 && arg_lat < 270.0) lon += 180.0;
}
lon = degnorm(lon + e->kn);
*alng = lon;
*alngspeed = 0.111404; /* 6'41.05" per day */
*arad = 2 * pd[MOON].axis * e->ex;
/*
** To test Gravalaines error, return unprojected long in alat.
** the correct latitude would be:
** *alat = RADTODEG * ASIN8(SINDEG(arg_lat) * SINDEG(e->in));
*/
#ifdef ASTROLOG
*alat = RADTODEG * ASIN8(SINDEG(arg_lat) * SINDEG(e->in));
#else
*alat = degnorm(arg_lat + e->kn); /* unprojected longitude, no nut */
#endif
}
break;
default:
return ERR;
} /* end switch */
if (calc_nut)
*alng += nut;
*alng = smod8360(*alng); /* normalize to circle */
return OK;
}
/* helio to geocentric conversion */
void togeo(REAL8 lngearth, REAL8 radearth, REAL8 lng, REAL8 rad, REAL8 zet,
REAL8 *alnggeo, REAL8 *aradgeo)
{
REAL8 r1, x, y;
r1 = sqrt(rad * rad - zet * zet);
x = r1 * COS8(DEGTORAD * lng) - radearth * COS8(DEGTORAD * lngearth);
y = r1 * SIN8(DEGTORAD * lng) - radearth * SIN8(DEGTORAD * lngearth);
*aradgeo = sqrt(x * x + y * y + zet * zet);
x = test_near_zero(x);
*alnggeo = smod8360(RADTODEG * ATAN28(y, x));
}
/*
** helup()
** prepares the orbital elements and the disturbation arguments for the
** inner planets and the moon. helup(t) is called by hel() and by calc().
** helup() returns its results in global variables.
** helup() remembers the t it has been called with before and does
** not recalculate its results when it is called more than once with
** the same t.
*/
void helup(REAL8 jd_ad)
{
int i;
static REAL8 thelup = HUGE8; /* is initialized only once at load time */
struct elements *e = el; /* pointer to el[i] */
struct elements *ee = el; /* pointer to el[EARTH] */
struct eledata *d = pd; /* pointer to pd[i] */
REAL8 td, ti, ti2, tj1, tj2, tj3;
if (thelup == jd_ad)
return; /* if already calculated then return */
for (i = SUN; i <= MARS; i++, d++, e++) {
td = jd_ad - d->epoch;
ti = e->tj = td / 36525.0; /* julian centuries from epoch */
ti2 = ti * ti;
tj1 = ti / 3600.0; /* used when coefficients are in seconds of arc */
tj2 = ti * tj1;
tj3 = ti * tj2;
e->lg = mod8360(d->lg0 + d->lg1 * td + d->lg2 * tj2 + d->lg3 * tj3);
/* also with moon lg1 *td is exact to 10e-8 degrees within 5000 years */
e->pe = mod8360(d->pe0 + d->pe1 * tj1 + d->pe2 * tj2 + d->pe3 * tj3);
e->ex = d->ex0 + d->ex1 * ti + d->ex2 * ti2;
e->kn = mod8360(d->kn0 + d->kn1 * tj1 + d->kn2 * tj2 + d->kn3 * tj3);
e->in = d->in0 + d->in1 * tj1 + d->in2 * tj2;
e->ma = smod8360(e->lg - e->pe);
if (i == MOON) {
/* calculate ekliptic according Newcomb, APAE VI,
** and nutation according Exp.Suppl. 1961, identical
** with Mark Potttenger elemnut()
** all terms >= 0.01" only .
** The 1984 IAU Theory of Nutation, as published in
** AE 1984 suppl. has not yet been implemented
** because it would mean to use other elements of
** moon and sun */
REAL8 mnode, mlong2, slong2, mg, sg, d2;
mnode = DEGTORAD * e->kn; /* moon's mean node */
mlong2 = DEGTORAD * 2.0 * e->lg; /* 2 x moon's mean longitude */
mg = DEGTORAD * e->ma; /* moon's mean anomaly (g1) */
slong2 = DEGTORAD * 2.0 * ee->lg; /* 2 x sun's mean longitude (L), with
the phase 180 deg earth-sun irrelevant
because 2 x 180 = 360 deg */
sg = DEGTORAD * ee->ma; /* sun's mean anomaly = earth's */
d2 = mlong2 - slong2; /* 2 x elongation of moon from sun */
meanekl = ekld[0] + ekld[1] * tj1 + ekld[2] * tj2 + ekld[3] * tj3;
ekl = meanekl +
(9.2100 * COS8(mnode)
- 0.0904 * COS8(2.0 * mnode)
+ 0.0183 * COS8(mlong2 - mnode)
+ 0.0884 * COS8(mlong2)
+ 0.0113 * COS8(mlong2 + mg)
+ 0.5522 * COS8(slong2)
+ 0.0216 * COS8(slong2 + sg)) / 3600.0;
nut = ((-17.2327 - 0.01737 * ti) * SIN8(mnode)
+ 0.2088 * SIN8(2.0 * mnode)
+ 0.0675 * SIN8(mg)
- 0.0149 * SIN8(mg - d2)
- 0.0342 * SIN8(mlong2 - mnode)
+ 0.0114 * SIN8(mlong2 - mg)
- 0.2037 * SIN8(mlong2)
- 0.0261 * SIN8(mlong2 + mg)
+ 0.0124 * SIN8(slong2 - mnode)
+ 0.0214 * SIN8(slong2 - sg)
- 1.2729 * SIN8(slong2)
- 0.0497 * SIN8(slong2 + sg)
+ 0.1261 * SIN8(sg)) / 3600.0;
}
}
/* calculate the arguments sa[] for the disturbation terms */
ti = (jd_ad - EPOCH1850) / 365.25; /* julian years from 1850 */
for (i = 0; i < SDNUM; i++)
sa [i] = mod8360(_sd [i].sd0 + _sd [i].sd1 * ti);
/*
** sa[2] += 0.3315 * SIN8 (DEGTORAD *(133.9099 + 38.39365 * el[SUN].tj));
**
** correction of jupiter perturbation argument for sun from Pottenger;
** creates only .03" and 1e-7 rad, not applied because origin unclear */
thelup = jd_ad; /* note the last helup time */
}
/*
** hel()
** Computes the heliocentric positions for all planets except the moon.
** The outer planets from Jupiter onwards, including Chiron, are
** actually done by a subsequent call to outer_hel() which takes
** exactly the same parameters.
** hel() does true position relative to the mean ecliptic and equinox
** of date. Nutation is not added and must be done so by the caller.
** The latitude of the Sun (max. 0.5") is neglected and always returned
** as zero.
**
** return: OK or ERR
*/
int hel(int planet, REAL8 t, REAL8 *al, REAL8 *ar, REAL8 *az, REAL8 *alp,
REAL8 *arp, REAL8 *azp)
/* planet index as defined by placalc.h */
/* relative juliand date, ephemeris time */
/* Now come 6 pointers to return values. */
/* longitude in degrees */
/* radius in AU */
/* distance from ecliptic in AU */
/* speed in longitude, degrees per day */
/* speed in radius, AU per day */
/* speed in z, AU per day */
{
struct elements *e;
struct eledata *d;
REAL8 lk = 0.0;
REAL8 rk = 0.0;
REAL8 b, h1, sini, sinv, cosi, cosu, cosv, man, truanom, esquare,
k8, u, up, v, vp;
if (planet >= JUPITER)
return (outer_hel(planet, t, al, ar, az, alp, arp, azp));
if (planet < SUN || planet == MOON)
return ERR;
e = &el[planet];
d = &pd[planet];
sini = SIN8(DEGTORAD * e->in);
cosi = COS8(DEGTORAD * e->in);
esquare = sqrt((1.0 + e->ex) / (1.0 - e->ex)); /* H6 in old version */
man = e->ma;
if (planet == EARTH) /* some longperiodic terms in mean longitude */
man += (0.266 * SIN8 (DEGTORAD * (31.8 + 119.0 * e->tj))
+ 6.40 * SIN8(DEGTORAD * (231.19 + 20.2 * e->tj))
+ (1.882-0.016*e->tj) * SIN8(DEGTORAD * (57.24 + 150.27 * e->tj))
) / 3600.0;
if (planet == MARS) /* some longperiodic terms */
man += (0.606 * SIN8(DEGTORAD * (212.87 + e->tj * 119.051))
+ 52.490 * SIN8(DEGTORAD * (47.48 + e->tj * 19.771))
+ 0.319 * SIN8(DEGTORAD * (116.88 + e->tj * 773.444))
+ 0.130 * SIN8(DEGTORAD * (74 + e->tj * 163))
+ 0.280 * SIN8(DEGTORAD * (300 + e->tj * 40.8))
- (37.05 +13.5 * e->tj)
) / 3600.0;
u = fnu(man, e->ex, 0.0000003); /* error 0.001" returns radians */
cosu = COS8(u);
h1 = 1 - e->ex * cosu;
*ar = d->axis * h1;
if (ABS8(rPi - u) < TANERRLIMIT)
truanom = u; /* very close to aphel */
else
truanom = 2.0 * ATAN8(esquare * TAN8(u * 0.5)); /* true anomaly, rad*/
v = smod8360(truanom * RADTODEG + e->pe - e->kn); /* argument of latitude */
if (sini == 0.0 || ABS8(v - 90.0) < TANERRLIMIT
|| ABS8(v - 270.0) < TANERRLIMIT) {
*al = v;
} else {
*al = RADTODEG * ATAN8(TAN8(v * DEGTORAD) * cosi);
if (v > 90.0 && v < 270.0) *al += 180.0;
}
*al = smod8360(*al + e->kn);
sinv = SIN8(v * DEGTORAD);
cosv = COS8(v * DEGTORAD);
*az = *ar * sinv * sini;
b = ASIN8(sinv * sini); /* latitude in radians */
k8 = cosv / COS8(b) * sini;
up = 360.0 / d->period / h1; /* du/dt degrees/day */
if (ABS8(rPi - u) < TANERRLIMIT)
vp = up / esquare; /* speed at aphel */
else
vp = up * esquare * (1 + COS8 (truanom)) / (1 + cosu);
/* dv/dt degrees/day */
*arp = d->axis * up * DEGTORAD * SIN8(u) * e->ex;
/* dr/dt AU/day */
*azp = *arp * sinv * sini + *ar * vp * DEGTORAD * cosv * sini; /* dz/dt */
*alp = vp / cosi * (1 - k8 * k8);
/* now come the disturbations */
switch (planet) {
REAL8 am, mma, ema, u2;
case EARTH:
/*
** earth has some special moon values and a disturbation series due to the
** planets. The moon stuff is due to the fact, that the mean elements
** give the coordinates of the earth-moon barycenter. By adding the
** corrections we effectively reduce to the center of the earth.
** We neglect the correction in latitude, which is about 0.5", because
** for astrological purposes we want the Sun to have latitude zero.
*/
am = DEGTORAD * smod8360(el[MOON].lg - e->lg + 180.0); /* degrees */
mma = DEGTORAD * el[MOON].ma;
ema = DEGTORAD * e->ma;
u2 = 2.0 * DEGTORAD * (e->lg - 180.0 - el[MOON].kn); /* 2u' */
lk = 6.454 * SIN8(am)
+ 0.013 * SIN8(3.0 * am)
+ 0.177 * SIN8(am + mma)
- 0.424 * SIN8(am - mma)
+ 0.039 * SIN8(3.0 * am - mma)
- 0.064 * SIN8(am + ema)
+ 0.172 * SIN8(am - ema)
- 0.013 * SIN8(am - mma - ema)
- 0.013 * SIN8(u2);
rk = 13360 * COS8(am)
+ 30 * COS8(3.0 * am)
+ 370 * COS8(am + mma)
- 1330 * COS8(am - mma)
+ 80 * COS8(3.0 * am - mma)
- 140 * COS8(am + ema)
+ 360 * COS8(am - ema)
- 30 * COS8(am - mma - ema)
+ 30 * COS8(u2);
/* long periodic term from mars 15g''' - 8g'', Vol 6 p19, p24 */
lk += 0.202 * SIN8(DEGTORAD * (315.6 + 893.3 * e->tj));
disturb(earthkor, al, ar, lk, rk, man);
break;
case MERCURY: /* only normal disturbation series */
disturb(mercurykor, al, ar, 0.0, 0.0, man);
break;
case VENUS: /* some longperiod terms and normal series */
lk = (2.761 - 0.22*e->tj) * SIN8(DEGTORAD * (237.24 + 150.27 * e->tj))
+ 0.269 * SIN8(DEGTORAD * (212.2 + 119.05 * e->tj))
- 0.208 * SIN8(DEGTORAD * (175.8 + 1223.5 * e->tj));
/* make seconds */
disturb(venuskor, al, ar, lk, 0.0, man);
break;
case MARS: /* only normal disturbation series */
disturb(marskor, al, ar, 0.0, 0.0, man);
break;
}
return OK;
}
void disturb(struct kor *k, REAL8 *al, REAL8 *ar, REAL8 lk, REAL8 rk,
REAL8 man)
/* ENDMARK-terminated array of struct kor */
/* longitude in degrees, use a pointer to return value */
/* radius in AU */
/* longitude correction in SECONDS OF ARC
function can be called with an lk and rk already
!= 0, but no value is returned */
/* radius correction in units of 9th place of log r */
/* mean anomaly of planet */
{
REAL8 arg;
while (k->j != ENDMARK) {
arg = k->j * sa[k->k] + k->i * man;
lk += k->lampl * COS8(DEGTORAD * (k->lphase - arg));
rk += k->rampl * COS8(DEGTORAD * (k->rphase - arg));
k++;
}
*ar *= EXP10(rk * 1.0E-9); /* 10^rk */
*al += lk / 3600.0;
}
int moon(REAL8 *al, REAL8 *ar, REAL8 *az) /* return OK or ERR */
{
REAL8 a1,a2,a3,a4,a5,a6,a7,a8,a9,c2,c4,arg,b,d,f,dgc,dlm,dpm,dkm,dls;
REAL8 ca, cb, cd, f_2d, f_4d, g1c,lk,lk1,man,ms,nib,s,sinarg,sinp,sk;
REAL8 t, tb, t2c, r2rad, i1corr, i2corr, dlid;
int i;
struct elements *e;
struct m45dat *mp;
#if MOON_TEST_CORR
struct m5dat *m5p;
#endif
e = &el[MOON];
t = e->tj * 36525; /* days from epoch 1900 */
/* new format table II, parameters in full rotations of 360 degrees */
r2rad = 360.0 * DEGTORAD;
tb = t * 1e-12; /* units of 10^12 */
t2c = t * t * 1e-16; /* units of 10^16 */
a1 = SIN8(r2rad * (0.53733431 - 10104982 * tb + 191 * t2c));
a2 = SIN8(r2rad * (0.71995354 - 147094228 * tb + 43 * t2c));
c2 = COS8(r2rad * (0.71995354 - 147094228 * tb + 43 * t2c));
a3 = SIN8(r2rad * (0.14222222 + 1536238 * tb));
a4 = SIN8(r2rad * (0.48398132 - 147269147 * tb + 43 * t2c));
c4 = COS8(r2rad * (0.48398132 - 147269147 * tb + 43 * t2c));
a5 = SIN8(r2rad * (0.52453688 - 147162675 * tb + 43 * t2c));
a6 = SIN8(r2rad * (0.84536324 - 11459387 * tb));
a7 = SIN8(r2rad * (0.23363774 + 1232723 * tb + 191 * t2c));
a8 = SIN8(r2rad * (0.58750000 + 9050118 * tb));
a9 = SIN8(r2rad * (0.61043085 - 67718733 * tb));
dlm = 0.84 * a3 + 0.31 * a7 + 14.27 * a1 + 7.261 * a2 + 0.282 * a4
+ 0.237 * a6;
dpm = -2.1 * a3 - 2.076 * a2 - 0.840 * a4 - 0.593 * a6;
dkm = 0.63 * a3 + 95.96 * a2 + 15.58 * a4 + 1.86 * a5;
dls = -6.4 * a3 - 0.27 * a8 - 1.89 * a6 + 0.20 * a9;
dgc = (-4.318 * c2 - 0.698 * c4) / 3600.0 / 360.0; /* in revolutions */
dgc = (1.000002708 + 139.978 * dgc); /* in this form used later */
man = DEGTORAD * (e->ma + (dlm - dpm) / 3600.0);
/* man with periodic and secular corr. */
ms = DEGTORAD * (el[EARTH].ma + dls / 3600.0);
f = DEGTORAD * (e->lg - e->kn + (dlm - dkm) / 3600.0);
d = DEGTORAD * (e->lg + 180 - el[EARTH].lg + (dlm - dls) / 3600.0);
lk = lk1 = sk = sinp = nib = g1c = 0;
i1corr = 1.0 - 6.8320E-8 * t;
i2corr = dgc * dgc; /* i2 occurs only as -2, 2 */
for (i = 0, mp = m45; i < NUM_MOON_CORR; i++, mp++) {
/* arg = mp->i0 * man + mp->i1 * ms + mp->i2 * f + mp->i3 * d; */
arg = mp->i0 * man;
arg += mp->i3 * d;
arg += mp->i2 * f;
arg += mp->i1 * ms;
sinarg = SIN8(arg);
/*
** now apply corrections due to changes in constants;
** we correct only terms in l' (i1) and F (i2), not in l (i0), because
** the latter are < 0.05"
** We don't apply corrections for cos(arg), i.e. for parallax
*/
if (mp->i1 != 0) { /* i1 can be -2, -1, 0, 1, 2 */
sinarg *= i1corr;
if (mp->i1 == 2 || mp->i1 == -2)
sinarg *= i1corr;
}
if (mp->i2 != 0) /* i2 can be -2, 0, 2 */
sinarg *= i2corr;
lk += mp->lng * sinarg;
sk += mp->lat * sinarg;
sinp += mp->par * COS8 (arg) ;
}
#if MOON_TEST_CORR /* optionally add more lunar longitudes */
for (m5p = m5; m5p->i0 != 99; m5p++) { /* i0 = 99 is end mark */
arg = m5p->i0 * man + m5p->i1 * ms + m5p->i2 * f + m5p->i3 * d;
sinarg = SIN8(arg);
lk1 += m5p->lng * sinarg;
}
#endif
/*
** now compute some planetary terms in longitude, list i delta;
** we take all > 0.5" and neglect secular terms in the arguments. These
** produce phase errors > 10 degrees only after 3000 years.
*/
dlid = 0.822 * SIN8 (r2rad * (0.32480 - 0.0017125594 * t));
dlid += 0.307 * SIN8 (r2rad * (0.14905 - 0.0034251187 * t));
dlid += 0.348 * SIN8 (r2rad * (0.68266 - 0.0006873156 * t));
dlid += 0.662 * SIN8 (r2rad * (0.65162 + 0.0365724168 * t));
dlid += 0.643 * SIN8 (r2rad * (0.88098 - 0.0025069941 * t));
dlid += 1.137 * SIN8 (r2rad * (0.85823 + 0.0364487270 * t));
dlid += 0.436 * SIN8 (r2rad * (0.71892 + 0.0362179180 * t));
dlid += 0.327 * SIN8 (r2rad * (0.97639 + 0.0001734910 * t));
/* without nutation */
*al = smod8360(e->lg + (dlm + lk + lk1 + dlid) / 3600.0);
/* solar Terms in latitude Nibeta */
f_2d = f - 2.0 * d;
f_4d = f - 4.0 * d;
nib += -526.069 * SIN8( f_2d);
nib += -3.352 * SIN8( f_4d);
nib += 44.297 * SIN8( man + f_2d);
nib += -6.000 * SIN8( man + f_4d);
nib += 20.599 * SIN8(-man + f );
nib += -30.598 * SIN8(-man + f_2d);
nib += -24.649 * SIN8(-2*man + f );
nib += -2.000 * SIN8(-2*man + f_2d);
nib += -22.571 * SIN8( ms + f_2d);
nib += 10.985 * SIN8( -ms + f_2d);
/* new gamma1C from 29 Jul 88, all terms > 0.4 " in table III, code 2 */
g1c += -0.725 * COS8( d);
g1c += 0.601 * COS8( 2 * d);
g1c += 0.394 * COS8( 3 * d);
g1c += -0.445 * COS8(man + 4 * d);
g1c += 0.455 * COS8(man + 1 * d);
g1c += 5.679 * COS8(2 * man - 2 * d);
g1c += -1.300 * COS8(3 * man );
g1c += -1.302 * COS8( ms );
g1c += -0.416 * COS8( ms - 4 * d);
g1c += -0.740 * COS8( 2 * ms - 2 * d);
g1c += 0.787 * COS8( man + ms + 2 * d);
g1c += 0.461 * COS8( man + ms );
g1c += 2.056 * COS8( man + ms - 2 * d);
g1c += -0.471 * COS8( man + ms - 4 * d);
g1c += -0.443 * COS8( -man + ms + 2 * d);
g1c += 0.679 * COS8( -man + ms );
g1c += -1.540 * COS8( -man + ms - 2 * d);
s = f + sk / 3600.0 * DEGTORAD;
ca = 18519.7 + g1c;
cb = -0.000336992 * ca * dgc * dgc * dgc;
cd = ca / 18519.7;
b = (ca * SIN8(s) * dgc + cb * SIN8(3.0 * s) + cd * nib) / 3600.0;
/* we neglect the planetary terms in latitude, code 4 in table III */
sinp = (sinp + 3422.451);
/*
** Improved lunar ephemeris and APAE until ca. 1970 had here
** 3422.54 as constant of moon's sine parallax.
** The difference can be applied by direct addition of 0.089" to
** our parallax results.
**
** To get the radius in A.U. from the sine parallax,
** we use 1964 IAU value 8.794" for solar parallax.
** sinp is still in seconds of arc.
** To calculate moon parallax in " it would be:
** p = sinp (1 + sinp * sinp * 3.917405E-12)
** based on the formula p = sinp + 1/6 sinp^3
** and taking into account the conversion of " to radians.
** The semidiameter of the moon is: (Expl.Suppl. 61, p 109)
** s = 0.0796 + 0.272446 * p
*/
*ar = 8.794 / sinp;
*az = *ar * SIN8(DEGTORAD * b);
return OK;
}
/*
** outer_hel()
** Computes the position of Jupiter, Saturn, Uranus, Neptune, Pluto and
** Chiron by reading our stored ephemeris in steps of 80 (!) days and
** applying a high order interpolation to it. The interpolation errors are
** less than 0.01" seconds of arc.
** The stored ephemeris is packed in a special format consisting of
** 32 bit numbers; it has been created on the Astrodienst Unix system
** by numerical integration with routines provided originally by Marc
** Pottenger, USA, which we improved for better long term precision.
** Because the Unix system uses a different byte order than the MSDOS
** systems, the bytes must be reordered for MSDOS after reading from
** the binary files.
**
** outer_hel() takes the same parameters as hel().
** It returns the same type of values.
**
** The access to the ephemeris files is done in the functions chi_file_posit()
** and lrz_file_posit().
*/
int outer_hel(int planet, REAL8 jd_ad, REAL8 *al, REAL8 *ar, REAL8 *az,
REAL8 *alp, REAL8 *arp, REAL8 *azp)
/* jd_ad Astrodienst relative Julian ephemeris time */
{
static FILE *outerfp = NULL, *chironfp = NULL, *asterfp = NULL;
static double last_j0_outer = HUGE8;
static double last_j0_chiron = HUGE8;
static double last_j0_aster = HUGE8;
static long icoord[6][5][3], chicoord[6][3], ascoord[6][4][3];
REAL8 j0, jd, jfrac;
REAL8 l[6], r[6], z[6];
int n, order, p;
if ((planet < JUPITER || planet > PLUTO) && planet != CHIRON &&
(planet < CERES || planet > VESTA))
return ERR;
jd = jd_ad + JUL_OFFSET;
j0 = RFloor((jd - 0.5) / EPHE_STEP) * EPHE_STEP + 0.5;
jfrac = (jd - j0) / EPHE_STEP;
if (planet == CHIRON) {
if (last_j0_chiron != j0) {
for (n = 0; n < 6; n++) { /* read 6 days */
jd = j0 + (n - 2) * EPHE_STEP;
if (chi_file_posit(jd, &chironfp) != OK)
return ERR;
fread(&chicoord[n][0], sizeof(word4), 3, chironfp);
longreorder((UCHAR *)&chicoord[n][0], 3*4);
}
last_j0_chiron = j0;
}
for (n = 0; n < 6; n++) {
l[n] = chicoord[n][0] / DEG2MSEC;
r[n] = chicoord[n][1] / AU2INT;
z[n] = chicoord[n][2] / AU2INT;
}
} else if (planet >= CERES && planet <= VESTA) {
if (last_j0_aster != j0) { /* read all 4 asteroids for 6 steps */
for (n = 0; n < 6; n++) {
jd = j0 + (n - 2) * EPHE_STEP;
if (ast_file_posit(jd, &asterfp) != OK)
return ERR;
fread(&ascoord[n][0][0], sizeof(word4), 12, asterfp);
longreorder((UCHAR *)&ascoord[n][0][0], 12*4);
}
last_j0_aster = j0;
}
p = planet - CERES;
for (n = 0; n < 6; n++) {
l[n] = ascoord[n][p][0] / DEG2MSEC;
r[n] = ascoord[n][p][1] / AU2INT;
z[n] = ascoord[n][p][2] / AU2INT;
}
} else { /* an outerplanet */
if (last_j0_outer != j0) { /* read all 5 planets for 6 steps */
for (n = 0; n < 6; n++) {
jd = j0 + (n - 2) * EPHE_STEP;
if (lrz_file_posit(jd, &outerfp) != OK)
return ERR;
fread(&icoord[n][0][0], sizeof(word4), 15, outerfp);
longreorder((UCHAR *)&icoord[n][0][0], 15*4);
}
last_j0_outer = j0;
}
p = planet - JUPITER;
for (n = 0; n < 6; n++) {
l[n] = icoord[n][p][0] / DEG2MSEC;
r[n] = icoord[n][p][1] / AU2INT;
z[n] = icoord[n][p][2] / AU2INT;
}
}
if (planet > SATURN)
order = 3;
else
order = 5;
inpolq(2, order, jfrac, l, al, alp);
*alp /= EPHE_STEP;
inpolq(2, order, jfrac, r, ar, arp);
*arp /= EPHE_STEP;
inpolq(2, order, jfrac, z, az, azp);
*azp /= EPHE_STEP;
return OK;
}
/*
** quicker Everett interpolation, after Pottenger
** version 9 Jul 1988 by Alois Treindl
** return OK or ERR.
*/
int inpolq(int n, int o, double p, double x[], double *axu, double *adxu)
/* interpolate between x[n] and x[n-1], at argument n+p */
/* order of interpolation, maximum 5 */
/* argument , intervall [0..1] */
/* array of function values, x[n-o]..x[n+o] must exist */
/* pointer for storage of result */
/* pointer for storage of dx/dt */
{
static double q, q2, q3, q4, q5, p2, p3, p4, p5, u, u0, u1, u2;
static double lastp = 9999;
double dm2, dm1, d0, dp1, dp2,
d2m1, d20, d2p1, d2p2, d30, d3p1, d3p2, d4p1, d4p2;
double offset = 0.0;
if (lastp != p) {
q = 1.0-p;
q2 = q*q;