-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ia3.py
75 lines (55 loc) · 1.5 KB
/
train_ia3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import transformers
from datasets import load_dataset
from transformers import Trainer
from dataset import Seq2SeqDataset, Seq2SeqCollator
from transformers import TrainingArguments
from peft import (
LoraConfig,
IA3Config,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
args = TrainingArguments("working_dir")
args = args.set_testing(num_train_epochs=3,
per_device_train_batch_size = 4,
gradient_accumulation_steps = 4,
learning_rate = 5e-4,
weight_decay = 0.,
warmup_ratio = 0.03,
lr_scheduler_type = "cosine",
logging_steps = 50,
tf32 = True,
)
device_map = "auto"
tokenizer = transformers.AutoTokenizer.from_pretrained(
"t5-base",
model_max_length=512,
padding_side="right",
use_fast=False
)
model = transformers.AutoModelForSeq2SeqLM.from_pretrained(
"t5-base",
load_in_8bit=False,
use_cache=False,
torch_dtype=torch.float16,
device_map=device_map,
)
config = IA3Config()
model = get_peft_model(model, config)
model.print_trainable_parameters()
dataset = load_dataset("blo05/cleaned_wiki_en_80-100")["train"]
print(dataset[0])
dataset = Seq2SeqDataset(dataset)
collator = Seq2SeqCollator(tokenizer, 40, 160)
trainer = Trainer(
model,
data_collator=collator,
evaluation_strategy = "no",
save_strategy = "no",
train_dataset=dataset,
)
trainer.train()
model.save_pretrained("./ckpts/"+"/English_Wiki_T5_IA3")