We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
作者你好,关于模型稳定性有一些疑问,文章前面讲到自回归模型稳定差是由于隐状态的生成模型(比如VAE的隐状态高斯采样和VQVAE的隐状态离散化过程或者文中提出的Kmean toke生成器)容易产生误差并累计,即生成模型性能低,但是后面是通过比较VQ和Disc的编码器对噪声的鲁棒性来判断稳定性,即对噪声更鲁棒的编码器可以认为对应的生成过程或生成模型性能会更好吗,不知道我这样理解对不对,非常期待作者的解答,谢谢
The text was updated successfully, but these errors were encountered:
No branches or pull requests
作者你好,关于模型稳定性有一些疑问,文章前面讲到自回归模型稳定差是由于隐状态的生成模型(比如VAE的隐状态高斯采样和VQVAE的隐状态离散化过程或者文中提出的Kmean toke生成器)容易产生误差并累计,即生成模型性能低,但是后面是通过比较VQ和Disc的编码器对噪声的鲁棒性来判断稳定性,即对噪声更鲁棒的编码器可以认为对应的生成过程或生成模型性能会更好吗,不知道我这样理解对不对,非常期待作者的解答,谢谢
The text was updated successfully, but these errors were encountered: