Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Alert: Some weights of Videollama2MistralForCausalLM were not initialized from the model checkpoint at checkpoints/Mistral-7B-Instruct-v0.2 and are newly initialized: ['model.mm_projector.readout.0.bias', 'model.mm_projector.readout.0.weight', ...... 'model.mm_projector.sampler.0.weight'] #132

Open
LiangMeng89 opened this issue Nov 30, 2024 · 0 comments

Comments

@LiangMeng89
Copy link

Dear authors,

After I used my own video Q&A data to finetune the videollama2 by qlora, then I run the new inference code on different new video data, I loaded the checkpoints of VideoLLaMA2-7B / VideoLLaMA2-7B-16F, but it output the same reply content and got some alerts before the result in terminal:

You are using a model of type videollama2_mistral to instantiate a model of type . This is not supported for all configurations of models and can yield errors. Loading VideoLLaMA lora model... Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:10<00:00, 3.55s/it] Some weights of Videollama2MistralForCausalLM were not initialized from the model checkpoint at checkpoints/Mistral-7B-Instruct-v0.2 and are newly initialized: ['model.mm_projector.readout.0.bias', 'model.mm_projector.readout.0.weight', 'model.mm_projector.readout.2.bias', 'model.mm_projector.readout.2.weight', 'model.mm_projector.s1.b1.conv1.bn.bias', 'model.mm_projector.s1.b1.conv1.bn.weight', 'model.mm_projector.s1.b1.conv1.conv.weight', 'model.mm_projector.s1.b1.conv2.bn.bias', 'model.mm_projector.s1.b1.conv2.bn.weight', 'model.mm_projector.s1.b1.conv2.conv.weight', 'model.mm_projector.s1.b1.conv3.bn.bias', 'model.mm_projector.s1.b1.conv3.bn.weight', 'model.mm_projector.s1.b1.conv3.conv.weight', 'model.mm_projector.s1.b1.downsample.bn.bias', 'model.mm_projector.s1.b1.downsample.bn.weight', 'model.mm_projector.s1.b1.downsample.conv.weight', 'model.mm_projector.s1.b1.se.fc1.bias', 'model.mm_projector.s1.b1.se.fc1.weight', 'model.mm_projector.s1.b1.se.fc2.bias', 'model.mm_projector.s1.b1.se.fc2.weight', 'model.mm_projector.s1.b2.conv1.bn.bias', 'model.mm_projector.s1.b2.conv1.bn.weight', 'model.mm_projector.s1.b2.conv1.conv.weight', 'model.mm_projector.s1.b2.conv2.bn.bias', 'model.mm_projector.s1.b2.conv2.bn.weight', 'model.mm_projector.s1.b2.conv2.conv.weight', 'model.mm_projector.s1.b2.conv3.bn.bias', 'model.mm_projector.s1.b2.conv3.bn.weight', 'model.mm_projector.s1.b2.conv3.conv.weight', 'model.mm_projector.s1.b2.se.fc1.bias', 'model.mm_projector.s1.b2.se.fc1.weight', 'model.mm_projector.s1.b2.se.fc2.bias', 'model.mm_projector.s1.b2.se.fc2.weight', 'model.mm_projector.s1.b3.conv1.bn.bias', 'model.mm_projector.s1.b3.conv1.bn.weight', 'model.mm_projector.s1.b3.conv1.conv.weight', 'model.mm_projector.s1.b3.conv2.bn.bias', 'model.mm_projector.s1.b3.conv2.bn.weight', 'model.mm_projector.s1.b3.conv2.conv.weight', 'model.mm_projector.s1.b3.conv3.bn.bias', 'model.mm_projector.s1.b3.conv3.bn.weight', 'model.mm_projector.s1.b3.conv3.conv.weight', 'model.mm_projector.s1.b3.se.fc1.bias', 'model.mm_projector.s1.b3.se.fc1.weight', 'model.mm_projector.s1.b3.se.fc2.bias', 'model.mm_projector.s1.b3.se.fc2.weight', 'model.mm_projector.s1.b4.conv1.bn.bias', 'model.mm_projector.s1.b4.conv1.bn.weight', 'model.mm_projector.s1.b4.conv1.conv.weight', 'model.mm_projector.s1.b4.conv2.bn.bias', 'model.mm_projector.s1.b4.conv2.bn.weight', 'model.mm_projector.s1.b4.conv2.conv.weight', 'model.mm_projector.s1.b4.conv3.bn.bias', 'model.mm_projector.s1.b4.conv3.bn.weight', 'model.mm_projector.s1.b4.conv3.conv.weight', 'model.mm_projector.s1.b4.se.fc1.bias', 'model.mm_projector.s1.b4.se.fc1.weight', 'model.mm_projector.s1.b4.se.fc2.bias', 'model.mm_projector.s1.b4.se.fc2.weight', 'model.mm_projector.s2.b1.conv1.bn.bias', 'model.mm_projector.s2.b1.conv1.bn.weight', 'model.mm_projector.s2.b1.conv1.conv.weight', 'model.mm_projector.s2.b1.conv2.bn.bias', 'model.mm_projector.s2.b1.conv2.bn.weight', 'model.mm_projector.s2.b1.conv2.conv.weight', 'model.mm_projector.s2.b1.conv3.bn.bias', 'model.mm_projector.s2.b1.conv3.bn.weight', 'model.mm_projector.s2.b1.conv3.conv.weight', 'model.mm_projector.s2.b1.se.fc1.bias', 'model.mm_projector.s2.b1.se.fc1.weight', 'model.mm_projector.s2.b1.se.fc2.bias', 'model.mm_projector.s2.b1.se.fc2.weight', 'model.mm_projector.s2.b2.conv1.bn.bias', 'model.mm_projector.s2.b2.conv1.bn.weight', 'model.mm_projector.s2.b2.conv1.conv.weight', 'model.mm_projector.s2.b2.conv2.bn.bias', 'model.mm_projector.s2.b2.conv2.bn.weight', 'model.mm_projector.s2.b2.conv2.conv.weight', 'model.mm_projector.s2.b2.conv3.bn.bias', 'model.mm_projector.s2.b2.conv3.bn.weight', 'model.mm_projector.s2.b2.conv3.conv.weight', 'model.mm_projector.s2.b2.se.fc1.bias', 'model.mm_projector.s2.b2.se.fc1.weight', 'model.mm_projector.s2.b2.se.fc2.bias', 'model.mm_projector.s2.b2.se.fc2.weight', 'model.mm_projector.s2.b3.conv1.bn.bias', 'model.mm_projector.s2.b3.conv1.bn.weight', 'model.mm_projector.s2.b3.conv1.conv.weight', 'model.mm_projector.s2.b3.conv2.bn.bias', 'model.mm_projector.s2.b3.conv2.bn.weight', 'model.mm_projector.s2.b3.conv2.conv.weight', 'model.mm_projector.s2.b3.conv3.bn.bias', 'model.mm_projector.s2.b3.conv3.bn.weight', 'model.mm_projector.s2.b3.conv3.conv.weight', 'model.mm_projector.s2.b3.se.fc1.bias', 'model.mm_projector.s2.b3.se.fc1.weight', 'model.mm_projector.s2.b3.se.fc2.bias', 'model.mm_projector.s2.b3.se.fc2.weight', 'model.mm_projector.s2.b4.conv1.bn.bias', 'model.mm_projector.s2.b4.conv1.bn.weight', 'model.mm_projector.s2.b4.conv1.conv.weight', 'model.mm_projector.s2.b4.conv2.bn.bias', 'model.mm_projector.s2.b4.conv2.bn.weight', 'model.mm_projector.s2.b4.conv2.conv.weight', 'model.mm_projector.s2.b4.conv3.bn.bias', 'model.mm_projector.s2.b4.conv3.bn.weight', 'model.mm_projector.s2.b4.conv3.conv.weight', 'model.mm_projector.s2.b4.se.fc1.bias', 'model.mm_projector.s2.b4.se.fc1.weight', 'model.mm_projector.s2.b4.se.fc2.bias', 'model.mm_projector.s2.b4.se.fc2.weight', 'model.mm_projector.sampler.0.bias', 'model.mm_projector.sampler.0.weight'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. Loading additional VideoLLaMA weights... Loading LoRA weights... Merging LoRA weights... Model is loaded... (My inference content......)
My project problem is similar with issues#89 ,I am very much looking forward to your reply.Please help me to solve this issue.Thanks!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant