Skip to content

2023 학부 졸업 논문 프로젝트(2023 bachelor graduation thesis ) by 2018310737 안현준

License

Notifications You must be signed in to change notification settings

DASH-Lab/differential-dropout

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

이미지 프라이버시 보호를 위한 딥러닝 신경망 모델 드롭아웃과 프루닝에 관한 연구

성균관대학교 2023 2학기 학부 졸업 논문 프로젝트(2023 bachelor graduation thesis)
소속: 소프트웨어학과 (Computer Science and Engineering)
학번: 2018310737
이름: 안현준(Hyunjun Ahn)


Environment

python = 3.7.13
torch = 1.10.1
torchvision = 0.11.2
numpy = 1.21.6
matplotlib = 3.5.2
sklearn = 1.0.2
PIL = 9.1.1

Files

├── metrics
│   ├── distance_celebA.ipynb (Example code to measure ICD(Inter Class Distance) of dataset with custom dataset class)
│   ├── distance.ipynb (Example code to measure ICD(Inter Class Distance) of dataset with ImageFolder)
│   ├── distance_distribution.ipynb (Example code to plot the distribution of ICD(Inter Class Distance) with ImageFolder)
│   ├── distance_distribution.ipynb (Example code to plot the distribution of ICD(Inter Class Distance) with custom dataset class)
│   └── utility.py (To measure utility performance of the trained model (i.e. Accuracy, Precision, Recall, F1-Score))
└── models
    ├── solver (differential dropout modules)
    │   ├── solver.py (Initial version to implement differential dropout)
    │   ├── solver_v2.py (Version without epoch-based score term)
    │   └── solver_v3.py (Final version of differential dropout module)
    ├── train_cifar10.ipynb (Example code to train a model with ImageFolder)
    ├── train_celebA.ipynb (Example code to train a model with custom dataset class)
    ├── ResNet.py (ResNet backbone implementation)
    ├── ViT.py (ViT backbone implementation)
    └── EfficientNet.py (EfficientNet backbone implementation)

About

2023 학부 졸업 논문 프로젝트(2023 bachelor graduation thesis ) by 2018310737 안현준

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 69.2%
  • Python 30.8%