forked from huangleiBuaa/CenteredWN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprovider.lua
executable file
·108 lines (95 loc) · 3.29 KB
/
provider.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
require 'nn'
require 'image'
require 'xlua'
local Provider = torch.class 'Provider'
function Provider:__init(full)
local trsize = 50000
local tesize = 10000
-- download dataset
if not paths.dirp('cifar-10-batches-t7') then
local www = 'http://torch7.s3-website-us-east-1.amazonaws.com/data/cifar-10-torch.tar.gz'
local tar = paths.basename(www)
os.execute('wget ' .. www .. '; '.. 'tar xvf ' .. tar)
end
-- load dataset
self.trainData = {
data = torch.Tensor(trsize, 3072),
labels = torch.Tensor(trsize),
size = function() return trsize end
}
local trainData = self.trainData
local groups=trsize/10000
print(groups)
for i = 0,groups do
local subset = torch.load('cifar-10-batches-t7/data_batch_' .. (i+1) .. '.t7', 'ascii')
trainData.data[{ {i*10000+1, (i+1)*10000} }] = subset.data:t()
trainData.labels[{ {i*10000+1, (i+1)*10000} }] = subset.labels
end
trainData.labels = trainData.labels + 1
local subset = torch.load('cifar-10-batches-t7/test_batch.t7', 'ascii')
self.testData = {
data = subset.data:t():double(),
labels = subset.labels[1]:double(),
size = function() return tesize end
}
local testData = self.testData
testData.labels = testData.labels + 1
-- resize dataset (if using small version)
trainData.data = trainData.data[{ {1,trsize} }]
trainData.labels = trainData.labels[{ {1,trsize} }]
testData.data = testData.data[{ {1,tesize} }]
testData.labels = testData.labels[{ {1,tesize} }]
-- reshape data
trainData.data = trainData.data:reshape(trsize,3,32,32)
testData.data = testData.data:reshape(tesize,3,32,32)
end
function Provider:normalize()
----------------------------------------------------------------------
-- preprocess/normalize train/test sets
--
local trainData = self.trainData
local testData = self.testData
print '<trainer> preprocessing data (color space + normalization)'
collectgarbage()
-- preprocess trainSet
local normalization = nn.SpatialContrastiveNormalization(1, image.gaussian1D(7))
for i = 1,trainData:size() do
xlua.progress(i, trainData:size())
-- rgb -> yuv
local rgb = trainData.data[i]
local yuv = image.rgb2yuv(rgb)
-- normalize y locally:
yuv[1] = normalization(yuv[{{1}}])
trainData.data[i] = yuv
end
-- normalize u globally:
local mean_u = trainData.data:select(2,2):mean()
local std_u = trainData.data:select(2,2):std()
trainData.data:select(2,2):add(-mean_u)
trainData.data:select(2,2):div(std_u)
-- normalize v globally:
local mean_v = trainData.data:select(2,3):mean()
local std_v = trainData.data:select(2,3):std()
trainData.data:select(2,3):add(-mean_v)
trainData.data:select(2,3):div(std_v)
trainData.mean_u = mean_u
trainData.std_u = std_u
trainData.mean_v = mean_v
trainData.std_v = std_v
-- preprocess testSet
for i = 1,testData:size() do
xlua.progress(i, testData:size())
-- rgb -> yuv
local rgb = testData.data[i]
local yuv = image.rgb2yuv(rgb)
-- normalize y locally:
yuv[{1}] = normalization(yuv[{{1}}])
testData.data[i] = yuv
end
-- normalize u globally:
testData.data:select(2,2):add(-mean_u)
testData.data:select(2,2):div(std_u)
-- normalize v globally:
testData.data:select(2,3):add(-mean_v)
testData.data:select(2,3):div(std_v)
end