forked from huangleiBuaa/NormProjection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_execute_Conv_VGG.sh
executable file
·43 lines (37 loc) · 1.08 KB
/
3_execute_Conv_VGG.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#!/bin/bash
#
#vggE_BN indicates the Normal architecture of Inception
#vggE_WN indicates the method of 'WN' in the paper
#vggE_PN indicates the method of 'NP-Epoch' in the paper
#vggE_PN_EI indicates the method of 'NP' in the paper
#vggE_Oblique_EI indicates the method of 'NP-Reim' in the paper
#
#
#
methods=(vggE_BN vggE_PN vggE_PN_EI vggE_Oblique_EI vggE_WN)
lrs=(0.1)
datasets=(./dataset/cifar10_original.t7)
batchSize=128
weightDecay=0.0005
dr=0
depth=28
widen_factor=1
nN=0
maxEpoch=160
eStep="{80,120}"
n=${#methods[@]}
m=${#lrs[@]}
f=${#datasets[@]}
for ((i=0;i<$n;++i))
do
for ((j=0;j<$m;++j))
do
for ((k=0;k<$f;++k))
do
echo "methods=${methods[$i]}"
echo "learningRates=${lrs[$j]}"
echo "dataset=${datasets[$k]}"
CUDA_VISIBLE_DEVICES=1 th exp_Conv_CIFAR.lua -model ${methods[$i]} -learningRate ${lrs[$j]} -dataset ${datasets[$k]} -max_epoch ${maxEpoch} -seed 1 -dropout ${dr} -m_perGroup 64 -batchSize ${batchSize} -weightDecay ${weightDecay} -widen_factor ${widen_factor} -depth ${depth} -noNesterov ${nN} -epoch_step ${eStep}
done
done
done