-
Notifications
You must be signed in to change notification settings - Fork 315
/
dataset_sft.py
71 lines (69 loc) · 2.59 KB
/
dataset_sft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import random
import pandas as pd
import numpy as np
from torch.utils.data import Dataset,DataLoader
import torch
from sklearn.model_selection import train_test_split
from chatglm_tokenizer.tokenization_chatglm import ChatGLMTokenizer
class SFTDataset(Dataset):
def __init__(self,df,tokenizer
,max_length=256
,prompt_max_len=128
,answer_max_len=128):
super().__init__()
self.df=df
self.max_length = max_length
self.prompt_max_len = prompt_max_len
self.answer_max_len = answer_max_len
#
self.tokenizer = tokenizer
self.bos=self.tokenizer.special_tokens['<bos>']
self.eos=self.tokenizer.special_tokens['<eos>']
self.pad=0#self.tokenizer.special_tokens['<pad>']
def __len__(self):
return self.df.shape[0]
def __getitem__(self, index: int):
#
sample = self.df.iloc[index]
prompt = self.tokenizer.encode(sample['prompt'],add_special_tokens=False)
answer = self.tokenizer.encode(sample['answer'],add_special_tokens=False)
if len(prompt) > self.prompt_max_len:
prompt = prompt[:self.prompt_max_len-2]
if len(answer) > self.answer_max_len:
answer = answer[:self.answer_max_len-2]
#
input_id=prompt+[self.bos]+answer+[self.eos]
context_length = input_id.index(self.bos)
mask_position = context_length - 1
pad_len = self.max_length - len(input_id)
input_id = input_id + [self.pad] * pad_len
if pad_len==0:
loss_mask = [0]*context_length+[1]*(len(input_id[mask_position+1:])) + [0]*pad_len
else:
loss_mask = [0]*context_length+[1]*(len(input_id[mask_position+1:-pad_len])) + [0]*pad_len
#
input_id=np.array(input_id)
X=np.array(input_id[:-1]).astype(np.int64)
Y=np.array(input_id[1:]).astype(np.int64)
loss_mask=np.array(loss_mask[:-1])
#
return torch.from_numpy(X),torch.from_numpy(Y),torch.from_numpy(loss_mask)
#
if __name__=="__main__":
df=pd.read_csv('./data/sft_data.csv')
tokenizer=ChatGLMTokenizer(vocab_file='./chatglm_tokenizer/tokenizer.model')
train_ds = SFTDataset(df,tokenizer,max_length=256)
train_loader = torch.utils.data.DataLoader(
train_ds,
batch_size=1,
pin_memory=False,
drop_last=False,
shuffle=False,
num_workers=0,
)
for i, (X, Y,loss_mask) in enumerate(train_loader):
print(X.shape,Y.shape)
print(X[0])
print(Y[0])
print(loss_mask[0])
break